

L.NR.

KODE

L&U DOK.SENTER

Well 31/3-2

30284300027

Returneres etter bruk

nr.

OIL PLUS

WATER MANAGEMENT TECHNOLOGY FOR OIL PRODUCTION

WATER MANAGEMENT TECHNOLOGY FOR OIL PRODUCTION

TROLL FIELD WELL 31/3-2

Completion Fluid Quality Monitoring.

Wessex House, Oxford Road, Newbury, Berks RG13 1PA, England. Telephone: Newbury (0635) 30226 Telex: 849181

CN 6659B

TROLL FIELD

WELL 31/3-2

Results of Monitoring the Quality of Completion Fluids for the Production Test in the Oil Zone

Perforation Interval 1567 m to 1577 m

OIL PLUS

Report Prepared By Oil Plus Limited

For Norsk Hydro

May 1984.

INTRODUCTION

This reports presents the results of monitoring the quality of seawater and calcium chloride brine, circulated in well 31/3-2, in the Troll Field.

This was the clean-up procedure in preparation for the production test in the oil zone (perforation interval 1567 m to 1577 m).

The cleanliness of the completion fluid prior to perforation, and setting the gravel pack are vital to the success of the production test by reducing the skin factor of the producing zone and reducing the fines entrained within the gravel pack when placed.

The completion fluid monitoring tests were performed by Oil Plus on rig Treasure Seeker between 8th April 1984 and 17th April 1984.

CONCLUSIONS AND RECOMMENDATIONS

SECTION 1

CONCLUSIONS AND RECOMMENDATIONS

SECTION 1. CONCLUSIONS AND RECOMMENDATIONS

These points are discussed in more detail in Section 3.

1. Two acid pill treatments, each followed by high rate seawater circulation were required to produce final seawater returns of 10 NTU turbidity. The corresponding particle size distribution was as follows:-

Particle Diameter d microns	Count per 0.05 ml of particles of diameter ≥ d microns
2	2156
2	805
5	56

Coulter Counts and turbidities were at this point levelling off towards an irreducible minimum.

The seawater circulation following the first acid pill produced seawater returns of almost as good quality after 8 hole volumes had been circulated. Six hole volumes were circulated after the second acid pill. The quality of the final seawater returns before displacing to brine corresponds closely to the best achieved for previous completions in the Troll Field.

2. Experience has shown that a realistic target for final seawater returns, which should be reached by the time ten hole volumes have been circulated, is as follows.

i). Turbidity of 10 NTU or less ii). Particle Size Distribution

OIL PLUS

Particle Diameter	Count per 0.05 ml of particles
d microns	of diameter ≥d micron
3	2,500 or less
5	1,000 or less
10	100 or less

iii). 2 or more litres passed through 0.45 u rated Millipore membrane filter in 30 mins with a pressure differential of 20 psi.

If the minimum solids level achieved for the return is significantly above this level a second acid pill treatment should be considered before displacing to brine.

3. It is often stated in procedures that the ideal finishing point for the seawater circulation is when the solids level into the well is the same as that exiting the well. This has never yet been achieved for completion in the Troll Field and is an unrealistic target. 4. During the subsequent brine circulation the target quality for the returns at the shaker box was specified in the test procedure as:-

i). in the range of 5 NTU ii). 50% of particles havng a diameter of less than 2 microns

As 50% of the particles in the brine usually have a diameter of 2 microns or less, regardless of whether the brine is relatively clean or dirty, the second part of this specification is of little use.

Due to the gradual improvement in methods for the casing and pipe clean up, the cleanliness of brine handling and in brine filtration, in successive completions in the Troll Field, a target turbidity of 5 NTU underestimates the quality of the brine returns that can be achieved within a relatively short number of circulations. Turbidities of final brine returns of just over 1 NTU have been achieved.

- 5. Target brine quality, as specified in the test procedures was reached by the time three hole volumes had been circulated for the circulation prior to perforation and also for the circulation prior to setting the gravel pack. In each case, significantly better brine returns would probably have been achieved by the addition of just one or two extra circulations.
- 6. The production of required brine quality at the well outlet for the circulation prior to perforation was hampered by erratic filter effluent and thus, well inlet brine quality. This may be attributed to there being only two pods of Pall filters instead of the standard four pods. Thus filter changes had a more marked effect on the filter effluent. Also two pods may not have been able to maintain filter effluent quality during the highest flow rates due to the flow rate per pod exceeding the manufacturers recommendations. The standard filtration system should be employed in later completions.
- 7. The quality of the final brine returns prior to stopping circulation to perform perforation was as follows:-

Turbidity 4.1 NTU

OIL PLUS

Particle Diameter d microns
Count per 0.05 ml of particles of diameter ≥ d microns 1906 5 10
403 44 7. Continued....

Running in hole adds to solids in the brine downhole. If an operation, such as perforation, requiring absolute cleanliness is to be performed after a trip, when conditions allow, at least one circulation should be made to ensure that the brine is still of sufficient quality after the trip.

8. Quality of final brine returns before setting gravel pack with gravel pack assembly RIH.

Turbidity 5.2 NTUParticle Diameter
d micronsCount per 0.05 ml of
Particles of diameter \geq d microns3
5
103589
419
30

- 9. Experience has shown that a realistic target for final brine returns representing an acceptable level of solids before perforating or setting a gravel pack is:
 - i). Turbidity 2 to 3 NTU

OIL PLUS

ii). Particle Size Distribution

Particle Diameter	Count per 0.05 ml of
d microns	Particles of diameter≥d microns
3	1,000 to 2,000
5	200 to 300
10	20 to 40

This target should be obtainable by the time five hole volumes have been circulated.

10. Brine returns of turbidity greater than 30 NTU should be dumped. Attempting to recirculate brine any dirtier than that back to the filter system will result in rapid blocking of the filters and a significant decline in the filter effluent quality to greater than 5 NTU.

With brine of less than 20 NTU at the filter inlet the recommended filter system should be able to produce a filter effluent of less than 2 NTU. As mentioned later good quality brine at the well inlet speeds up the clean up procedure.

11. Jet cleaning the casing with seawater whilst RIH with the $3\frac{1}{2}$ " PH-6 tubing did not speed up the clean up procedure or result in cleaner returns at the end of the seawater circulation in comparison to previous completions when this method was not used.

- 12. The absence of the sand pill (used in previous completions) during the abrasive treatment was not noticed in terms of the quality of the final seawater and brine returns. The scraper and the acid treatment are the most effective means of clean up when followed by maximum rate seawater circulation prior to displacing to brine.
- 13. Procedures of well clean up operations often state that brine circulation should continue until the solids level of the returns had reached a minimum. It is unlikely that an irreducible solids concentration would be reached because once the casing, and gravel pack string have been cleaned the filter system will still continue to remove a certain percentage of particles on each pass through the filters.

If it proves impractical to achieve the target quality as specified above, we recommend that circulation should be continued until the clean-up rate', or reduction in particle counts (of particles of diameter greater than or equal to size which will critically block the formation, in this case considered to be 3 microns), in the returns, reduces by less than 5% in the time of one circulation.

- 14. To be able to achieve a target brine cleanliness for subsequent completions, as was attained for this completion, it will be important to repeat the following steps in addition to the standard scraper and acid abrasive treatments.
 - i). Thoroughly clean the casing and gravel pack string before RIH. Use minimum pipe dope whilst making up the string.
 - ii). Thoroughly flush and circulate seawater through the mud system, all lines to be used during the gravel pack, and the choke and kill lines, before circulating brine. The quality of the fluids flushing these lines should be carefully monitored to measure the efficiency of the clean up. It is important to recognise that seawater from the rig seawater main is a very clean fluid, even in comparison to the filtered brine, and should be used to the maximum benefit to clean up the topsides equipment and well prior to brine circulation.
 - iii). Transport the brine to the rig in lined tanks on the deck of the supply boats to ensure that the brine can be filtered by the fine filters. After transportation to and filtration on the rig, brine of turbidity of less than 3 NTU should be achieved. If not investigations into the cleanliness of the brine producing and transporting system should be made. Brine of this quality is vital to the swift and successful clean up operation.

- iv). Ensure lines used to transfer the brine from the supply boat to the rig are clean, and are not contaminated with diesel oil or other contaminants.
- v). Always use the complete filter system, including the fine filters when filtering the brine.
- vi). Thoroughly hose down the parts of the mud system to be used for the brine circulation, and circulate seawater through it so that the solids pick up in the system can be monitored prior to the introduction of the brine.

As a further assurance of brine cleanliness, thought should be given to the feasibility of bypassing the mud system altogether when circulating the seawater and brine.

- vii). Use a standby system when changing filters, and ensure that enough filters are on-line to cope with the prevailing flow rate. Failure to do so will result in a deterioration of brine quality.
- viii). Use a water soluble oil to lubricate the pistons of the Dowell high pressure pump unit. This prevents insoluble oil particles picked up from the pump adding to the suspended particle counts level of the brine. Water soluble oil should also be used for the pump which transfers the brine from the supply boat to the rig.
 - ix). Fittings should be available to provide sample points in the chicksan downstream of the Dowell high pressure pump during the brine circulation.

A sample point should also be available at the drill floor during seawater circulation, downstream of the mud pumps and the mud lines to the drill floor to distinguish between solids picked up in the mud system, and those picked up in the well.

- x). The pH of the calcium chloride should be kept below 10 to ensure that the solids level in the brine is not increased by precipitates.
- 15. The filter skids should have sample points at the inlet and outlet. No sample point facility at the filter system inlet was available on this occasion.

ANALYTICAL TECHNIQUES

SECTION 2

ANALYTICAL TECHNIQUES

SECTION 2. ANALYTICAL TECHNIQUES

This section describes the techniques used to analyse the completion fluids, in terms of particle size distribution, turbidity and the weight of suspended solids.

2.1 Seawater and Calcium Chloride Brine Quality Monitoring

2.1.1 Particle Size Analysis

The particle size analyses of the seawater and calcium chloride brine samples were conducted using a Model D Industrial Coulter Counter, counting particles of diameter between 2.0 and 15.0 microns.

This equipment measures the volume of a particle, and the particle size is expressed as the diameter of a sphere having an equal volume.

2.1.2 Turbidity

Turbidity was measured using a Hach 2100A turbidity meter. This instrument measures the amount of light scattered, at 90° to the incident light, by the suspended particles. The results are given in Nephelometric Turbidity Units (N.T.U.).

The readings are dependent on the particle size distribution and particle shape, as well as the suspended solids concentration. Thus, two waters having the same turbidity may well be quite different in terms of particle size and their distribution.

2.1.3 Membrane Filter Tests

OIL PLUS

All membrane tests were run using pre-weighed Millipore membrane filters of 47 mm diameter and 0.45 micron pore size. These tests were run in accordance with the National Association of Corrosion Engineers Standard TM-01-73. "Methods for determining water quality for sub-surface injection using membrane filters".

The method used by Oil Plus involved taking a 10 litre sample of water into a pressure cell which was then pressurised and held at 20 psig; water flowed from this cell through the Millipore filter, discharging to atmosphere.

Simultaneously, 'Slope' tests were conducted by measuring the volume passing through a Millipore membrane with time. The rate of change of the flowrate gives an indication of the water quality. The dirtier the water the more rapid the decline in flow rate.

ANALYTICAL TECHNIQUES

2.1.3 Continued....

The results of the membrane filter slope tests are drawn as Barkman and Davidson Plots". The steeper the gradient of the plot the better the water quality. In essence the plots for the worst water qualities plot closest to the x-axis.

After conducting these tests the Millipores were flushed through using 0.45 micron filtered, de-ionised water to remove all traces of salt water which would otherwise crystallise on the membrane and give false results. After drying, the Millipore membranes were weighed and suspended solids calculated.

RESULTS AND DISCUSSIONS

SECTION 3

RESULTS AND DISCUSSIONS

ļ

SECTION 3. RESULTS AND DISCUSSIONS

3.1 Introduction

This section presents and discusses the results of the completion fluid monitoring performed by Oil Plus in preparation for the production test in the oil zone of well 31/3-2, in the Troll field. The perforation interval was between 1567 m and 1577 m.

3.2 Results of Casing and Pipe Clean up Procedure

The clean up procedure was in preparation, initially, for perforation and the interval gravel pack which followed.

3.2.1 Seawater Circulation

OIL PLUS

Following the displacement of the old drilling mud with seawater, a $9\frac{5}{3}$ " casing scraper was RIH. A 50 bbl weighted spacer, having the same weight as the mud, was pumped ahead of the seawater.

Seawater was then circulated at a high rate, using the mud pump fed from mud pit No. 1. The string was reciprocated with the scraper at the depth of the proposed perforation interval.

Previously the parts of the mud system used for seawater circulation had been thoroughly cleaned. The seawater circulation system is illustrated in Figure 3.1.

The best possible benefit should be taken whilst circulating seawater to clean the casing and pipe. It is a clean fluid even in comparison to filtered brine and can be circulated at a higher rate. Trying to achieve the cleanest possible returns for seawater will reduce the period of brine circulation.

During the first period of seawater circulation, following the scraper run, about six hole volumes were circulated in three hours. Severe contamination of the seawater was found to have occurred between the mud pit and the standpipe manifold, the latter being the input to the well. The average turbidity of the seawater in mud pit No. 1 was about 1 NTU, whilst that at the standpipe manifold was averaging 200 NTU. The dirty lines, causing the contamination were subsequently cleaned. This produced a marked improvement in seawater quality at the well inlet for later seawater circulations, during which the inlet turbidity averaged 2.5 NTU.

This highlights the need to have sample points which help to distinguish between solids picked up in the mud system and those picked up downhole during the initial

3.2.1 Continued.....

seawater circulations, thus saving time during the seawater circulation and pin pointing sources of contamination in the mud system before the brine is introduced. The brine circulation system is illustrated in Figure 3.2.

The scraper and the 5" TAC-1 tubing was POOH. $3\frac{1}{2}$ " PH-6 tubing was then RIH with a perforated pump joint on the end. The $3\frac{1}{2}$ " PH-6 tubing was that to be used during the setting of the gravel pack and was RIH to be cleaned along with the casing during the next stages of the clean up.

After each stand of $3\frac{1}{2}$ " PH-6 tubing had been RIH, seawater was circulated to jet clean successive lengths of casing. The jet cleaning did not speed up the clean up procedure, in terms of the number of circulations required to reach target returns quality, when compared to previous completions when this method was not used.

Particular attention was paid to jet cleaning the proposed perforation zone.

With the $3\frac{1}{2}$ " PH-6 tubing RIH, a 50 bbl viscosified seawater pill, a 2000 gal 15% HCl acid pill, and a 20 bbl viscous pill were pumped downhole, in that order, by the Dowell pump unit, each separated by seawater.

Previous completions had used a sand viscous pill. Its absence on this occasion was not found to be detrimental to the rate of clean up.

Following the acid treatment the seawater was circulated at the maximum rate. The seawater returns were dumped at the shaker box. The aim was to reach an irreducible minimum of solids in the returns as measured by the Coulter Counter and the turbidity meter.

The results of the turbidity measurements and Coulter Counts at the well inlet and outlet during this seawater circulation, between 0400 hrs and 1200 hrs on 12.4.84, are illustrated in Figures 3.3 to 3.7 inclusive. The results of the membrane filter tests are illustrated in Figure 3.8. The results are tabulated in Tables 3.3, 3.7, 3.8 and 3.9.

The turbidity of the seawater returns at the shaker box, levelled off at 11 NTU after 8 hole volumes had been circulated, taking 9 hours. The average turbidity at the well inlet (standpipe manifold) was 1.6 NTU.

The Coulter Counter is more sensitive to the solids level in the seawater. Its particle counts show signs of leveling off after the results from the turbidity meter.

RESULTS AND

3.2.1 Continued....

The final Coulter counts at the well outlet were as listed below.

Particle Diameter Count per 0.05 ml d microns particles of diameter ≥ d micr											
2	7295										
3	2669										
5	906										
10	52										
15	9										

The results of the membrane filter slope tests, illustrated in Figure 3.8, indicate the improvement in the quality of the seawater returns as circulation progressed. Just over 2.5 litres was passed through the final millipore in 30 minutes.

In an attempt to produce cleaner seawater returns (of 10 NTU or less), a second acid pill was pumped downhole and seawater was again circulated at the maximum rate.

After circulating 6 hole volumes, taking 8 hours, the turbidity of the seawater returns began to level off at 10 NTU. The average turbidity at the well inlet was 3 NTU.

The final Coulter Counts at the well outlet were as follows.

Particle Diameter	Count per 0.05 ml of particles of
d micron	diameter ≥ d microns
2	5321
3	2156
5	805
10	56
15	7

The results of the turbidity and Coulter Count readings during this seawater circulation, following the second acid pill, are again illustrated in Figures 3.3 to 3.7 inclusive. The results are tabulated in Tables 3.4, 3.10 and 3.11.

The main effect of the second acid pill was to reduce the counts for particles of diameter less than 5 microns, when compared to the final seawater returns after the first acid pill.

The solids level encountered in the final seawater returns was similar to that measured during previous completions in the Troll field.

3.2.1 Continued....

Experience has shown that a reasonable target for final seawater returns is:-

- i). a turbidity of 10 NTU or less
- ii). particle counts of 1,000 per 0.05 ml for particles of diameter greater than or equal to 5 microns.
- iii). passing 2 litres or more through a 0.45 μ millipore in 30 minutes.

It is often stated in test procedures that the ideal finishing point for the seawater circulation is when the solids level into the well is the same as that exiting the well. This has never yet been achieved for completions in the Troll field and appears to be an unrealistic target.

3.2.2 Brine Circulation Prior to Perforation

OIL PLUS

At the end of the seawater circulation, the seawater was circulated out with a 20 bbl viscosified seawater pill ahead of the calcium chloride brine (SG 1.12).

The brine was circulated as shown in Figure 3.2. Water soluble oil was used to lubricate the pistons of the Dowell high pressure pump unit. This guards against insoluble oil droplets producing erroneous Coulter Counts and turbidities.

The viscosified seawater pill was dumped on return. Care should be taken not to recirculate any of the viscous pill back to the filters as this will rapidly block them.

Initial brine returns of turbidity greater than 30 NTU should be dumped. Attempting to recirculate brine any dirtier than that back to the filter system would result in rapid blocking of the filters and a significant decline in the quality of the brine at the filter outlet. As mentioned in Section 3.4 good quality brine at the well inlet is all important in achieving a clean up operation as quickly as possible. The filter system is capable of producing an effluent brine quality, averaging 2 NTU or less, when the influent quality is less than 20 NTU. The effluent quality rapidly rises to above 5 NTU when the influent quality at the well outlet was 5 NTU or less, it is obviously important to avoid recirculating brine, of turbidity greater than 30 NTU, back to the filters.

The brine circulation following the circulating out of the seawater represented the conditioning of the well with clean brine prior to tripping so that the perforation string could be RIH.

3.2.2 Continued....

The results of the turbidity and Coulter Count readings are illustrated in Figures 3.3 to 3.7 inclusive, and are tabulated in Tables 3.12, 3.13, 3.16 and 3.17. The results of the membrane filter slope tests are illustrated in Figures 3.9 and 3.10.

The target brine quality for the brine returns at the shaker box was stated in the test procedure as:-

- i). in the range of 5 NTU and
- ii). 50% of the particles having a diameter of less than 2 microns.

A turbidity of 5 NTU is readily achievable with the present clean up procedure and is perhaps slightly pessimistic. Turbidities of final brine returns of just over 1 NTU have been achieved in previous Troll completions without significantly longer circulation periods.

50% of particles in brine usually have a diameter of two microns or less regardless of whether the brine is relatively dirty or clean. This part of the specification is of little use.

The target quality of brine returns of less than 5 NTU was achieved after circulating approximately 3 hole volumes of filtered brine. The final brine returns averaged just over 4 NTU. Final Coulter Counts for brine returns at the various size limits were as follows:-

Particle Diameter d microns	Counts Per 0.05 ml of Particles of Diameter≥d microns
2 3 5	8500 2276 425 39
15	4

The production of good quality brine at the well outlet was hindered by erratic brine quality at the filter system outlet and thus at the well inlet. This may be attributed to there being only two pods housing Pall filters as opposed to the standard four pods. This was due to the short call out for the job. This point is highlighted in Section 3.3 which discusses filter performance and the filter system.

The indications were that better quality final brine returns could have been achieved within the space of one extra circulation.

RESULTS AND DISCUSSIONS

3.2.2 Continued....

Experience has shown that a realistic target for final brine returns, representing an acceptable level of solids, before perforating or setting a gravel pack is as follows:-

Particle Diameter d microns	Counts per 0.05 ml of particles of diameter d microns
3	1,000 to 2,000
5	200 to 300
10	20 to 4
Turbidity	2 to 3 NTU

This target should be obtainable by the time 5 hole volumes have been circulated.

This could be a target to aim for in subsequent completions. If this proves impractical, brine circulation could be continued until the 'clean-up' rate, or reduction in particle counts (of particles of diameter greater than or equal to the size which will critically block the formation or gravel pack), in the returns reduces by less than 5% in the time of one circulation (assuming a fairly constant well inlet quality). The turbidity measurements are less sensitive to solids levels in the brine than the Coulter Counts and begin to level off first.

Following the conditioning of the well to filtered brine a trip was made so that the perforating string could be RIH.

Trips always add to the solids in the brine. Thus after RIH for each new operation such as perforation it would be prudent to circulate one hole volume, when possible, as a check on brine quality. With the present procedure it is not possible to check on brine quality between finishing conditioning the well to filtered brine and perforation, between which there is a trip.

3.2.3 Brine Circulation After Killed Well Following Perforation and Flow Test

The results of monitoring brine quality during this circulation between 0800 hrs and 1300 hrs on 16.4.84 are again illustrated in Figures 3.3 to 3.7 inclusive. The final brine returns averaged 6.5 NTU.

This circulation was meant to remove debris due to the perforation and flow test, prior to tripping so that the gravel pack string could be RIH.

RESULTS AND DISCUSSIONS

3.2.4 Brine Circulations With Gravel Pack String RIH Just Prior to Setting Gravel Pack.

Two hole volumes were pumped in about 2 hours before the target brine quality of "in the range of 5 NTU" was achieved. Final brine returns had a turbidity of 5.2 NTU. The particle size distribution was as follows

Particle Diameter d microns	Counts per 0.05 ml of particles of diameter > d microns
2	20615
3	3589
5	419
10	30
15	11

As illustrated in Figures 3.3 to 3.7 inclusive the solids level at well outlet were still showing a marked downward trend when circulation was stopped. This helps to illustrate the pessimistic nature of the 5 NTU target quality. One more circulation would have produced significantly better quality brine at the well outlet.

3.3 Brine Filtration System and Filter Performance

OIL PLUS

The brine filtration system is illustrated in Figure 3.2. As previously mentioned this represents a deviation from the standard filtration system recommended by Oil Plus. Only two pods of Pall filters instead of the usual four were present due to the short call out for the job. It is strongly recommended that the standard filter system is used for the next completion.

With only 2 pods of Pall filters, changing the filters in one pod will have a much more marked effect on filter effluent quality than if 4 pods were available. Also 2 pods may not be able to maintain filter efficiency at the higher flow rates due to the rate per pod exceeding that recommended by the manufacturers.

The standard filtration system consists of 4 pods, each housing 18, 5 micron nominal Hytrex cartridge filters, arranged in parallel, and two pods each containing 32, 10 micron absolute Pall cartridge filters. This is the filtration system, suggested by Oil Plus, for previous completions in the Troll field. The filter details are given in Table 3.21.

Each pod containing the Hytrex filters can take a maximum flow of 5 bpm without adversely affecting filter performance. For the Pall filters the maximum recommended flow rate is 2 bpm per pod. As the maximum flow rate for the brine was approximately 6 bpm, 2 pods of Hytrex filters and 3 pods of Pall filters should be online.

3.3 Continued....

The other pods should be filled and on standby ready for when the differential pressure reaches that requiring a change of filters. The maximum allowable differential pressures for the Hytrex and Pall filters is 20 psi and 40 psi respectively.

The increase in differential pressure across the filters represents a build up of filter cake on the filter surface which improves filter efficiency. The 5 micron nominal Hytrex filters are coarse enough to let sufficient particles pass for a filter cake to build up on the Pall filters, yet still fine enough to enable a reasonable filter life for the Pall filters. The filter system is a compromise between filter efficiency and a reasonable filter life.

Filter change overs are an important aspect of filtration. The system of standby filters mentioned above should be adopted. This enables a quicker filter change to be made and also guards against the need to bypass a filter stage during filter change out.

If the coarse filtration has to be bypassed during filter changes the life of the fine filters will be dramatically reduced. If the fine filtration stage has to be bypassed during filter changes, brine of substandard quality will enter the well, lengthening the time required to reach the desired brine quality at the well outlet. Thus, efficient filter changes, adopting a standby system will lengthen filter life and save rig time during the brine circulation.

A standby system in which only one new pod of filters is introduced at one time will also help to maintain filter efficiency, again saving rig time. As mentioned above, as a filter cake builds up on filters and the differntial pressure increases, filter efficiency will also increase. If all of the filter pods are changed at once the benefit to filtration due to filter cake build up will all be lost and has to be regained gradually as the filter cakes redevelop. Changing only one pod at a time will be less detrimental to filter efficiency. In this case when only 2 pods of Pall filters were available 50% of the filters would have to be renewed at each filter change.

The results of filter system performance monitoring are tabulated in Table 3.22. No sample points were available on the filter skids at the inlet to the filter system. As a result, the filter inlet sample had to be taken from the mud pit. Care should be taken on subsequent completions that all filters skids have the facility for sample points.

Average filter efficiency for the system on Treasure Seeker for particles of diameter greater than or equal to 3 microns was 91.1%.

3.4 Brine Quality as Received on Board the Rig from the Supply Boat

Great effort was made to present the brine at the rig in as clean a condition as possible. Providing clean brine to the rig reduces the circulation required to reach the desired brine quality and also saves on the number of filters used on the rig.

To this end the brine was filtered twice onshore by 5 micron nominal Hytrex cartridge filters, and transported to the rig in lined storage tanks on the deck of the supply boat.

During some previous completions in the Troll field the brine had to be transported to the rig in the supply boats own tanks often resulting in contamination of the brine which negated the effects of onshore filtering. This meant that the brine could only be filtered by the coarse filters during transfer to the rig, and on those occasions, brine of substandard quality was placed in the rig storage tanks.

The results of monitoring the quality of the brine as it was transferred onto the rig from the supply boat are presented in Table 3.23. The brine was of sufficient quality that it could always be filtered by the complete filter system incorporating the fine Pall filters.

The absence of a sample point at the inlet to the filter system meant that the quality of the brine from the supply boat could not be monitored.

The importance of obtaining clean brine in the Dowell rig storage tanks prior to the displacement of the well to brine cannot be over emphasised. It should be possible to have brine in the storage tanks, with a turbidity of 3 NTU or less using the present filtration and transportaion system. Investigation into the cleanliness of the equipment used should be made if brine of this quality is not obtained.

The quality of the brine used to perform the initial displacement of the well will greatly effect the time required to reach the target brine quality. As shown in Figure 3.2 the brine was not filtered on passing from the Dowell residence/storage tank to the Dowell pump (the brine is filtered before it enters the Dowell tank). Thus the quality of the brine when it reaches the rig is all important in saving rig time whilst performing the clean up operation.

If seawater circulations performed prior to the brine circulation have been successful, and the mud system has been thoroughly cleaned, theoretically the brine should pick up a relatively low level of solids on being circulated through the well.

3.4 Continued....

OIL PLUS

Providing the brine is clean at the well inlet the circulation and filtration will soon result in acceptable brine qualities. The importance of inlet brine quality, thorough cleaning of the system and successful seawater circulations are all crucial in achieving satisfactory completion fluid quality.

The average turbidity of the brine at the filter system outlet whilst transferring brine from the supply boat to the lined Dowell tanks on the rig was 1.1 NTU. The turbidity never exceeded 3 NTU. This indicates that brine of good quality was received on board Treasure Seeker and that the brine preparation and cleanliness was adequate.

The pH of the brine was always below 10 ensuring that the solids levels in the brine was not added to by precipitates. The stability of the counts in a filtered brine sample was periodically checked.

SEAWATER QUALITY AT WELL INLET (STANDPIPE MANIFOLD) 5" TAC-1 TBG DRILL PIPE RIH

L

،

D) TABLE 3.1

	10.4.84	0090				17013	16349	7246	499	5		8
	10.4.84	02:40				17702	17299	10712	671	123		320
	10.4.84	0200				17894	7946	1263	8	14		27
31/3-2	10.4.84	0430				16934	14881	5188	268	30		260
METL	10.4.84	0400		05 m]		17352	17263	11410	817	40		340
	10.4.84	0330		ns) in 0.(17308	16708	9061	645	99		245
	10.4.84	0300		um (micro		17488	16698	8682	511	62		240
	10.4.84	0230		les >d	•	18291	17789	9219	362	53		285
	10.4.84	0200		of Partic								260
	10.4.84	0130		Number								340
	10.4.84	0100										460
	10.4.84	830										460
	Date	Time hrs	Particle	dia. d	microns	2	2	5	10	15		Turbidity NTU

|

i

TABLE 3.2 SEAWATER QUALITY AT WELL INLET (STANDPIPE MANIFOLD) WHIIST RIH 31" PH-6 PIPE

ļ

<u>،</u>

5-2	1.84	35				52	<u> 86</u>	41	ω	0		5.1
WELL 31/3	4.84 111.2	110 1 21		Ц		923 16	530 2	51	5	1		2.2
	4.84 11.	015 1 2		in 0.05 m	ŀ	484 1	268	226	17	1		5.0
	4.84 11.	905 2		microns)		745 5	831 1	121	13	3		4.3
	4.84 11.	1750 1) mrt p ≪	, ר	1496 4	307	47	9	3 [1.4
	.4.84 11.	1605		Particles		1494	312	42	3	1		1.1
	1.4.84 11	1355		Number of		1435	321	52	5			0.95
	1.4.84 11	1240		4		1363	345	43	4			1.1
	1.4.84 1	1125				5410	1272	240	14	5		3
	Date	Time hrs	Particle	dia. d	microns	2	3	5	10	15		Turbidity NTU

1

TABLE 3.3

SEAWATER QUALITY AT WELL INLET (STAND PIPE MANIFOLD) AFTER FIRST ACID AND VISCOUS PILLS PUMPED DOWNHOLE (3¹, PH-6 RIH TO TD)

2													
ШТ 31/3													
IM				.05 ml									
	12.4.84	1205		s) in 0	•	1462	292	44	ω	0		2.1	
	12.4.84	1010		um (micron	•	1134	198	39	6	0		1.3	
	12.4.84	0800		les ≯d u		1940	355	68	9	2		2.3	
	12.4.84	0555		of Partic]		2076	292	62	5	1		1.5	
	12.4.84	0450		Number (1484	392		6			1.2	
	12.4.84	0405				1499	397	80	4	0		1.2	
	12.4.84	0315				1299	363	63	5			0.95	
	Date	Time hrs	Particle	dia. d	microns	5	3	5	10	15		Turbidi ty NTU	

TABLE 3.4 SEAWATER QUALITY AT WELL INLET (STANDPIPE MANIFOLD) AFTER SECOND ACID PILL AND VISCOUS PILL PUMPED DOWNHOLE (3¹/₂" PH-6 RIH TO TD)

C

ļ

1 |

j

ļ

ł

į

:

ł

WELL 31/3-2	.84	30				80	61	45	2		2.8
	112.4.84 112.4	2330 00		ons) in 0.05 ml		1026 1 11	325 2	62		9	1.9
	4.84 112.4.84	2130 2230		≯d um (micr	-	1171 698	246 144	26 15	3 4	0	4.5 2.2
	12.4.84 12	2040		of Particles		876	215	10	3	0	4.6
	12.4.84	1925		Number		1095	244	42	4	2	3.7
	12.4.84	1745				3911	643	67	4	0	3.6
	12.4.84	1605				2031	542	108	2	0	1.1
	Date	Time hrs	• Particle	Pdia. d	microns	2	3	ഹ	10	15	TUL DIGITY

TABLE 3.5

(X)	
A	
(SHAKER	RIH
OUTLET	TLL PIPE
T WELL	PBG DRI
A	
QUALLTY	5" TAC
SEAWATER	

Ĵ
۲ ۲
к Н
E
- 2
5
-2
-3
.3

								WELLEN				
Date	10.4.84	10.4.84	10.4.84	10.4.84	10.4.84	10.4.84	10.4.84	10.4.84	10.4.84	10.4.84	10.4.84	10.4.84
Time hrs	0200	0100	0130	0200	0230	0300	0330	0400	0430	0200	0530	0090
Particle												
dia. d			Number	of Partic	les≯d ∣	um (micro	ns) in 0.0)5 립 1				
microns					`							
5					17364	17856	17490	17620	16792	17437	17209	17768
~					16799	17177	16485	1 6960	14927	16945	16500	17214
5					8224	9531	7218	8464	5202	8156	10138	11168
10					576	540	393	465	380	467	750	<u> 7</u> 06
15					78	61	34	55	47	47	83	44
			, 									
Turbidity												
NTU	290	155	410	380	210	260	180	220	120	205	230	305

SEAWATER QUALITY AT WELL OUTLET (SHAKER BOX) WHIIST RIH 34" PH-6 PIPE

| | ,

	11.4.84	2205				11606	6332	2627	246	22		58
	11.4.84	2135				12310	1957	2592	144	18		32
31/3-2	11.4.84	2110				12791	7226	2736	243	28		55
MELL	11.4.84	1940		55 B.L		11083	6518	2796	243	35		33
	11.4.84	1840		us) in 0.C	•	10935	6460	2858	267	23		32
	11.4.84	1745		um (micror		11610	8146	3952	475	69		37
	11.4.84	1605		es ≥d µ		10790	6539	2603	150	18		29
	11.4.84	1450		of Particl		9755	5537	2548	230	25		28
	11.4.84	1405		Number o		9465	2560	2465	267	47		31
	11.4.84	1240				10517	5869	2262	321	51		36
	11.4.84	1040				11984	4471	2000	473	78		38
	Date	Time hrs	Particle	dia. d	microns	2	3	5	10	15		Turbidity NTU

.

1

| i

TABLE 3.6

4	10.4.84	0625		15624	12404	1083	175	22		29
TABLE 3.	10.4.84	0605		109801	6152	1864	59	ω		16
[SCOUS	10.4.84	0540		13048	4824	1210	47	4		10.2
LLL AND V.	31/3-2 10.4.84	0525		16450	5174	1300	46	16		11
ST ACID PI to TD)	WELL 10.4.84	0425	5 ш1 С	12246	8233	3551	315	23		31
AFTER FIR PH-6 RIH 1	10.4.84	0345	13) in 0.(13593	11304	5071	339	56		45
CER BOX) / DLE (3 ¹) 1	10.4.84	0550	um (micror	12706	3297	743	44	7		22
PED DOWNHO	10.4.84	010	les ≥ d }	11702	2461	664	49	9		25
r well ou Pills pum	10.4.84	0245	of Partic]	13040	2885	711	39	8		28
UALITY AN	10.4.84	ncm	Number (12964	11384	6424	843	110		67
SEAWATER (10.4.84			12039	7061	2597	205	22		29
01	10.4.84	NC(7		13805	8890	3491	439	56		41
	Date	Particle	Sdia. d microns	5	6	5	01	15		 UTU UTU UTU

ļ

111

. | | |

i İ

. i

l i

I

į

1

i

TABLE 3.8 SEAWATER QUALITY AT WELL OUTLET (SHAKER BOX) AFTER FIRST ACID PILL AND

Date Tate	Particle	dia. d microns	2	2	5	0	15			Turbidity NTU
12.4.84	2400		11439	6593	1391	29	2			12
12.4.84	0170		10752	6294	2499	125	0			18
12.4.84	(7/A	Number	11112	6719	2869	196	24			23
12.4.84	1 0/45	of Partic	10921	6109	2343	109	11			50
12.4.84	C100	iles > d	11054	6323	2460	106	13			22
12.4.84	<u> 1</u>	ym (micro	1 10152	5535	1922	54	9			-1
12.4.84	6160	ns) in 0.(10947	5809	1926	106	15			18
WELL 12.2.84	0440	5 립	9199	4299	1516	17	13			16
31/3-2 12.4.84	1020		9165	4260	1477	46	9			15
12.4.84	1040		9817	5089	1915	92	4			16.5
12.4.84	1105		76391	3497	1236	61	5			12
12.4.84	1130		7534	3237	1076	41	0			12

TABLE 3.9 SEAWATER QUALITY AT WELL OUTLET (SHAKER BOX) AFTER FIRST ACID PILL AND VISCOUS PILLS PUMPED DOWNHOLE (32 PH-6 RIH TO TD)

OIL

31/3-2															
WEIL				Ē											
) in 0.05											
				(microns											
				mu b ≼ s											
				Particle											
				Number of		-									
	2.4.84	1130		, -		7295	2669		202	25	c	7	 		11
	12.4.84 1	1220				6742	2915	DEF	116	39	4	5			11
D	рате	Time hrs	Particle	dia. d	microns	2	5			10	1 1 1			Thinkidity	INTO DIA

TABLE 3.10 SEAWATER QUALITY AT WELL OUTLET (SHAKER BOX) AFTER SECOND ACID PILL AND VISCOUS PILLS PUMPED DOWNHOLE $(3\frac{1}{2}$ " PH-6 TO TD)

	2.4.84	2030				7314	3808	1577	123	11 11		13		
31/3-2	12.4.84 11	2000				7201	3510	1529	125	4		13		
WEIL	12.4.84	1930		05 ml		8298	4796	1858	.8	ω		13		
	12.4.84	1900		ns) in 0.	•	9621	5334	1952	78	13		16		
	12.4.84	1830		um (micro		11612	8645	4259	360	30		25		
	12.4.84	1800		iles ≥ d	•	11256	5919	1208	33	14		12		
	12.4.84	1730		of Partic		14035	5347	1343	34	2		12		
	12.4.84	1620		Number		9078	3909	1404	8	5		15	Acid	returns
	12.4.84	1550				10786	5507	1684	0 6	6		17		
	12.4.84	1525				11106	6192	2249	109	6		18		
	Date	Time hrs	Particle	dia. d	microns	5	3	5	10	15		Turbidity NTU		Comments

SEAWATER QUALITY AT WELL OUTLET (SHAKER BOX) AFTER SECOND ACID PILL AND VISCOUS PILLS PUMPED DOWNHOLE $(3\frac{1}{2}$ " PH-6 RIH TO TD)

OIL PLUS

TABLE 3.11

ED DOWNH	
PUMP	
PILLS	TO TD
VISCOUS	PH-6 RIH

		_									 		
1 31/3-2	13.4.84												
MEILI	13.4.84	0030		Сл п л		5321	2156	805	56	6			0.0
	12.4.84	8000		n: (su) in 0.(5603	2510	927	58	6			9. 2
	12.4.84	2330		um (micro		6633	3410	1379	96	6			13
	12.4.84	2300		les ≽ d ∣		5989	2625	1058	54	4			9
	112.4.84	2230		of Partic		6193	2708	1033	57	6			11
	12.4.84	2200		Number		6999	3347	1294	75	8			12
	12.4.84	2130				6454	2911	1145	<i>LL</i>	9			12
	112.4.84	2100				6654	3465	1279	61	2			12
	Date	Time hrs	Particle	dia. d	microns	2	2	5	10	15		Turbidity	UTU

TABLE 3.12

BRINE QUALITY AT WELL INLET (DOWNSTREAM DOWELL HIGH PRESSURE PUMP) PRIOR TO PERFORATION

5

								WELL 31/	7-2		
Date	15.4.84	13.4.84	13.4.84	13.4.84	13.4.84	13.4.84	13.4.84	113.4.84	113.4.84	13.4.84	13.4.84
Time hrs	0140	1220	0245	0400	0530	0650	0750	0620	NAFE		0201
Particle								2222		~~~~~	2/2
dia. d			Number	of Partic	les ≫ d ı	um (miero	na) in O.	O5 mJ			
microns					- -						
1.75	13194	5048	9929	20226	18782	16413	18751	DORGA	10642	6160	8027
2	10076	2275	2090	10090	11752	11089	13875	17360	5846	7157	10CD
2	2398	828	1088	814	071	CVDC	7965	72/2	1073	12/21	1021
U	1 174	C				4 J#C	7500	+/+/	1017		1074
		αу	<u>c</u> c 1	112	125	565	448	326	162	266	141
10	ω	~	13	47	19	38	14	61	Th	24	
15	0			T		k	c	ic			
			-				>	>	D	ر ا	
Turbidity											
NTU	2.8		2.0	2.9	5.7	6.9	3.3	4.4	2.4	-	0
					•	•					

OIL PLUS

6.9

1.7

2.4

4.4

3.3

6.9

BRINE QUALITY AT WELL INLET (DOWNSTREAM DOWELL HIGH PRESSURE PUMP) PRIOR TO PERFORATION

🐌 OIL PLUS

TABLE 3.13

/32													
WELL 31				.05 ml									
				oni (suo.									
				um (micr	- - -								
				ticles ≥ d									
	-84	30		ber of Par		61	88	93	72	3	0		3.4
	.4.84 13.4	1110 11		Num		3616 67	5068 36	1353 6	251	L	0		4.6
	13.4.84 13	1050				7114 8	3686	. 1/8	170	17	2		6.3
	Date	Time hrs	Particle	dia. d	microns	1.75	2	3	5	10	15		Turbidity NTU

TABLE 3.14 BRINE QUALITY AT FTLIFER OUTLEY WHILST CIRCULATING AFTER FLOW TEST FOLLOWING PERFORATION PROIR TO POOH

WELL 31/3-2

OIL PLUS

k		Ī			Ī	1		Ī		Ī	İ	
16.4.5												
16.4.84	1230											3.9
16.4.84	1130											1.6
16.4.84	1115		З Б П									2.6
16.4.84	1100		ns) in 0.(6.0
16.4.84	1045		um (micro									8.5
16.4.84	1030		les ≥d j									9•5
16.4.84	1000		of Partic		3512	258	31	ĸ	0			1.5
16.4.84	0660		Number (1639	133	23	2	0			0.95
16.4.84	0060				4093	1022	149	11	6			1.5
16.4.84	0830				1358	425	42	6	5			1.0
Date	Time hrs	Particle	dia. d	microns	2	5	5	10	15			Tur bidity NTU

I .

TABLE 3.15

i.

PUMP)
PRESSURE
LAVEL PACK DOWELL HIGH
PRIOR TO GR DOWNSTREAM
CIRCULATION WELL INLET (
AT
te quality
BRIN

OIL PLUS

3-2													
WELL 31/	17.4.84	1910		년 전		10239	2806	243	26	4	-		0.95
	17.4.84	1855		us) in 0.0		16467	5325	395	39	+	0		1.4
	17.4.84	1840		um (micror	•	19285	9838	566	130	ω	0		1.6
	17.4.84	1825		les ≥ d r		21150	12396	852	64	2	0		2.3
	17.4.84	1810		of Partic.		24351	15198	1052	96	7	0		2.6
	17.4.84	1755		Number (24036	23215	6471	212	19	2		7.1
	17.4.84	1740				25184	22474	4384	04	10	0		7.5
	17.4.84	1725			1	24894	22952	6050	131	4	0		7.2
	Date	Time hrs	Particle	dia. d	microns	1.75	2	3	5	10	15		Turbidity NTU

BRINE QUALITY AT WELL OUTLET (SHAKER BOX) PRIOR TO PERFORATION

O

TABLE 3.16

WEILL 31/3-2

13.4.84	0855				15556	11989	3816	618	51	7		7.2
13.4.84	0820				11083	7565	3235	1004	117	25		5.7
13.4.84	0750		රූ සි පි		13143	1056	4369	1208	69	15		5.9
13.4.84	0650		ns) in 0.(16722	13378	5227	1005	58	21		6.2
13.4.84	0090		um (micro	_	17845	14698	5057	743	51	4		6.8
13.4.84	0530		les ≥ d]	1	19061	15215	5402	752	99	10		8.2
13.4.84	0450		of Partic		19352	15744	5301	609	49	7		7.7
13.4.84	0410		Number (20373	16871	5521	069	99	7		6.8
13.4.84	0340				21081	17620	5605	578	26	10		5.8
13.4.84	0320				22745	20851	4806	531	44	10		16
Date	Time hrs	Particle	dia. d	microns	1.75	2	3	2	10	15		Turbidity NTU

į

BRINE QUALITY AT WELL OUTLET (SHAKER BOX) PRIOR TO PERFORATION

OIL PLUS

•

TABLE 3.17

2													
NELLI 31/3													
	13.4.84	1130		s) in 0.0		13658	8500	2276	425	39	4		4.3
	13.4.84	1110		m (micron		9932	5585	1629	408	49	2		3.9
	13.4.84	1050		es≯d µ	~	11243	6622	1813	375	43	9		4.1
	13.4.84	1030		of Particl		16973	12644	3371	553	56	6		5.4
	13.4.84	1010		Number c		16675	12569	5043	959	14	6		6.9
	13.4.84	0955				19596	14675	4572	1074	127	29		51
	13.4.84	0630				19916	15857	2508	1289	80	20	_	15
	Date	Time hrs	Particle	dia. d	microns	1.75	2	3	5	10	15		Turbidity NTU

BRINE QUALITY AT WELL OUTLET WHIIST CIRCULATING AFTER FLOW TEST FOLLOWING PERFORATION PRIOR TO POOH

OIL PLUS

TABLE 3.18

÷ {

I

Da+0	11 1 01							WELL 31/	3-2		
Daue	10.4.04	10.4.04	16.4.84	16.4.84	16.4.84	16.4.84	16.4.84	16.4.84	16.4.84	16.4.84	
TIME Nrs	0680 0	0000	0630	8	1030	1045	1100	1115	1130	1215	
Particle									2		
dia. d			Number	of Partic	les ≥d ı	um (microv	na) in O.C	ר ש] שון			
microns											
5		13015	12171				16258			11994	
3		9833	7485				6633			4576	
5		4416	3493				2052			1266	
10		499	452				214			285	
15		86	8				46) 88	
TUL DIGITY	64	49	36	65	75	64	50	40	67	8.5	
										•	

|

BRINE QUALITY AT WELL OUTLET WHILST CIRCULATING AFTER FLOW TEST FOLLOWING FERFORATION PRIOR TO POOH

OIL PLUS

TABLE 3.19

						_	_	_					
1/3-2	╞	-								-			
WELL 3				ر س	1								
				in 0.0									
		-		crons)) 								
				im) mu									
				s ≫ d	•								
				urticle									
				· of Pa									
	16.4.84	1315		Number		15797	5077	1154	193	42			7.1
	16.4.84	1255				13972	4351	1027	166	58			5.9
	16.4.84	1230				12288	4058	9 8 6	187	83			6.0
L.	Date	Time hrs	Particle	dia. d	microns	5	5	<u>ل</u>	10	15			Turbidity NTU

.

TABLE 3.20

GRAVEL PACK	(SHAKER BOX
I PRIOR TO	TLL OUTLET
CIRCULATION	JALITY AT WE
BRINE	BRINE QU

7-12														
WELL 31/	17.4.84	1910)5 mJ		24156	20615	3589	419	30	11			5.2
	17.4.84	1855		no 0.0		23811	21940	9738	365	31	ω			7.6
	17.4.84	1840		um (micror		23846	22476	12626	430	27	9			8 . 8
	17.4.84	1825		les ≥d ı		22141	21921	14102	814	67	16			13
	17.4.84	1810		of Partic		22556	20910	13665	949	61	13			16
	17.4.84	1755		Number										155
	17.4.84	1740				16286	16246	15627	7519	775	148			62
	17.4.84	1725					15690	15240	9259	1030	130	-		82
	Date	Time hrs	Particle	dia. d	microns	1.75	2	3	2	10	15			Turbidity NTU

TABLE 3.21

DETAILS OF FILTERS USED FOR BRINE FILTRATION

1. PECO FILTER SKIDS

2 pods per skid.

Manufacturer:

Media:

Length:

Ratings of filter type used and product code:

Recommended Flow Rate:

Recommended Δp for change of filters:

2. PALL FILTER SKID

2 pods per skid.

Manufacturer:

Media:

Length:

Product Code:

Rating in virgin state of AB4LC4:

Recommended Flow Rate:

Recommended Δ p for change of filters:

OIL PLUS

18 filters per pod.

Hytrex

Polypropylene

367 inches.

5 microns nominal (GX 05-336C)

5 bpm per pod containing 18 filters

20 psi

32 filters per pod.

Pall

Resin impregnated cellulose (Epocel type)

40 inches

AB4LC4

10 microns absolute 99% @ 5 microns 90% @ 2 microns

2 bpm per pod containing 32 filters

40 psi

FILTER PERFORMANCE

TABLE 3.22

		13.4.84			13.4.84			13.4.84	ILI 31/3	3-2 1	13.4.84	
ø		0400			0610			0835			0915	
	Filter Inlet	Filter Outlet	Eff	Filter Inlet	Filter Outlet	Eff %	Filter Inlet	Filter	Eff	Filter Inlet	Filter Outlet	Eff ¢
le										~~~~	001000	2
			Number	of Parti	cles > d	ym (mie	crons) in	0.05 mJ				
75	26285	1 23876	9.2	1 20256	18177	10.3	1 12185	7050	1 A 3		284	05.4
	21829	18372	15.8	16975	11170	34.1	II ROYE	143		11 12071	£€	07 F
	4728	858	81.9	1 6067	879	85.5	1 4048	18) - 86	1 4083	24 24	08.7
	161	48	94.0	169 1	90	90.4	1376	5	6.86	123		0.66
	6	m	95.9	48		97.9	35		97.8	74	0	10
	6	0	8	4	0	100	1 16	0	0	2	0	100
								_				
946												
		*		===	-		===	9		= ==	9	
Ω					ron nomi	nal Hytex						
					1011 00000	TTDT DANT						

OIL PLUS

1.0

7.8

1.7

6.7

6.0

12.5

4.6

26

Turbidity NTU

Ì

TABLE 3.23

BRINE QUALITY AT FILTER SYSTEM OUTLET WHILST TRANSFERRING BRINE FROM SUPPLY BOAT TO DOWELL STORAGE TANKS ON TREASURE SEEKER

Date	Time	Turbidity at filter system outlet NTU
	0840	2.4
12.4.84	0900	0.89
	0925	0.48
	0955	0.77

FIG 3.1.

SCHEMATIC OF CaCl₂ BRINE AND CIRCULATION AND FILTRATION SYSTEM

TIME HOUDS

