

GEOCHEMICAL SERVICE REPORT

Prepared for

STATOIL

GEOCHEMICAL EVALUATION OF STATOIL'S 30/3-3 WELL, NORWEGIAN NORTH SEA

CHESTER STREET CHESTER CH4

October 1983

ORGANISK GEOKJEMI

COMPANY PROPRIETARY

GEOCHEMICAL EVALUATION OF STATOIL'S 30/3-3 WELL, NORWEGIAN NORTH SEA

SUMMARY

The Tertiary silty mudstones from 925-1350± metres are immature but potentially good source rocks for gas and minor associated condensate. Between 1350± metres and 1860± metres they are only fair source rocks and are gas prone. The rest of the Tertiary and Cretaceous section has a minimal potential for hydrocarbons.

Minor hydrocarbon generation has occurred within the shales above 2850± metres in the Jurassic but, if mature, these sediments would be rich source rocks and associated reservoirs would be very prospective. As a result of changes in organic facies they are particularly rich above 2760± metres and have a potential for light oil and gas whilst below this depth, they will yield gas and condensate.

There are shows of condensate within this Jurassic interval, with weaker shows down to approximately the top of the Brent and a diffusion halo of wet gas up to 2535± metres in the Cretaceous. At 2955-2970± metres there is a possible show of relatively paraffinic crude.

The Jurassic mudstones from 2925-2978± metres are potentially very good source rocks for gas and condensate. Within the Brent Formation the coals are potentially rich gas sources whilst the coaly shales are also rich and, although not completely mature, have a potential for gas and light oil. With the exception of the minor coals at its base, the Dunlin Formation comprises relatively uninteresting poor and fair source rocks for gas.

Oil prone source rocks are mature below $2960\pm$ metres and lie within the oil window below $3360\pm$ metres. The section is presently at approximately its maximum paleodepth of burial. A change in the maturation gradient is indicated below approximately $2900\pm$ metres.

All itutes

N.J.L. Bailey GEOCHEM LABORATORIES (UK) LIMITED

INTRODUCTION

This report presents a geochemical evaluation of Statoil's 30/3-3 well drilled in the Norwegian sector of the North Sea.

The study was designed to be compatible with other studies undertaken for Statoil and to investigate the hydrocarbon source potential of the section in terms of:

- source richness
- thermal maturity
- organic facies
- potential for oil, condensate and gas.

In addition, shows of migrated, out of place hydrocarbons were sought and characterised.

This project was authorised by Dr. H. Irwin, Statoil, Stavanger.

A. ANALYTICAL

A total of two hundred and nine (209) canned samples, each composited over fifteen (15) metres, were received from 280-3419(TD) metres in 30/3-3. One (1) mud sample was also included. Subsequently, four (4) core samples from the interval 2979.3-2987.6 metres and five (5) sidewall core samples from below 3000 metres were submitted. These samples were assigned the Geochem job number 786.

During the sample preparation procedures significant contamination was observed at 2220-2310 metres and 2955-3210 metres. The interval below 3077 metres was turbodrilled. Sample quality was poor at 2850-2985 metres.

Analytical guidelines were provided by Dr. H. Irwin. More analyses were run than specified and in particular, the light hydrocarbon analysis was performed upon every sample in order to generate a complete geochemical well log. No charge has been made for these extra analyses. Following the screening of every sample with the light hydrocarbon analysis and of selected samples by the organic carbon and Rockeval pyrolysis analysis, further samples were selected for the detailed analyses. A total of two hundred and ten light hydrocarbon

analyses, one hundred and forty three organic carbon analyses, seventy Rockeval pyrolysis analyses, twenty four pyrolysis-GC analyses, thirty eight kerogen analyses, thirty five vitrinite reflectance determinations, eighteen C_{15+} extractions with chromatography, eighteen high resolution paraffin-naphthene analyses, and fifteen high resolution aromatic analyses were performed in this study. As instructed nine carbon isotope analyses and three mass fragmentogram analyses were run upon the sandstone core samples.

The data are presented in tables 1 through 9 and graphically in figures 1 through 10. A brief description of the analytical techniques employed in this study is included in the back of the report.

B. GENERAL INFORMATION

Ten (10) copies of this report have been forwarded to Dr. H. Irwin at Statoil in Stavanger together with the kerogen slides. In addition the analytical data have also been supplied on magnetic tape. A copy of the data has been retained by Geochem for future consultation with authorised Statoil personnel.

The remaining sample material will be returned to Statoil.

All of the results related to this study are proprietary to Statoil.

RESULTS AND INTERPRETATION

Each of the parameters relevant to the geochemical evaluation of this well will be considered in turn and will then be combined to form the "Conclusions".

No well logs were available for this study but the major formation tops were supplied by Dr. H. Irwin and have been incorporated into the following discussion.

A. ZONATION

This zonation represents a synthesis of the formation tops with the light hydrocarbon (C_1-C_7) and organic carbon data. Ten (10) zones are recognised.

The Tertiary is sub-divided into Zones A^1 through A^3 .

Zone A¹ 280 metres to 925± metres, consists of sands with, above 720± metres, minor proportions of a basic igneous rock.

The C_1-C_4 gases generally range from (2173)2565 ppm up to 10795 ppm, although they exceed 4000 ppm only at 385-625± metres. The gases are sparser above 325± metres and below 730± metres. Above 730± metres the gases are very dry (generally less than 3% C_{2+}) but below this depth, although still dry, they are commonly 10-25% wet. The heavier C_5-C_7 hydrocarbons fail to exceed 100 ppm over some intervals but jump to (94)357-1062(2615) ppm at 370-580± metres and to (108)933-3655 ppm below 820± metres. The upper of these two intervals is also enhanced in the C_1-C_4 gases but there is no improvement in gas wetness, whilst the lower interval is characterised by wetter gases. The section between 835± metres and 910± metres is of the most interest.

Zone A² 925± metres down to 1860± metres is dominated by silty mudstones which are light olive grey and olive grey in colour.

Within this interval the $C_1 - C_4$ gases lie within the limits of (173)1114-10944(13113) ppm and are dry throughout, although there is a gross trend of increasing wetness with depth. Below 1000± metres their isobutane to normal butane ratios generally

exceed 1.0. The C_5-C_7 fraction normally ranges from 13 ppm up to 350 ppm but is improved above 970± metres where the butane ratios are also lower.

Zone A³ lies between 1860± metres and 2212± metres. It consists of medium grey mudstones and shales with interbeds of siltstone.

The gaseous hydrocarbons decrease from (216)1196-2622(3456) ppm above 2055± metres to 256-1155 ppm below this depth but are now commonly 8-17% wet, although there is no obvious trend against depth. However, the C_5-C_7 fraction varies more dramatically from 55 ppm to 1383 ppm, peaking at 1920-2055± metres.

Zone B 2212± metres to 2535± metres is, like Zone C, Cretaceous in age. It is composed of medium light grey shaly mudstones.

 C_1-C_4 and C_5-C_7 hydrocarbon abundances are low at (92)170-556 (812) ppm and 22-85(101) ppm respectively, but the gases pass from dry (14-24% C_{2+}) above 2310± metres to marginally wet (31-47% C_{2+}) below this depth and then, below 2445± metres, to wet (52-71% C_{2+}). Isobutane to normal butane ratios are however high, although they do increase with depth.

Zone C 2535± metres to 2663± metres, comprises shaly mudstones, calcareous shales and shales.

The trend observed in Zone B continues into Zone C. Thus this interval is richer (1270-2306(3596) ppm C_1-C_4 ; 142-843 ppm C_5-C_7) than Zone B and is very wet, with 76-90% of the C_2-C_4 fraction. The C_5-C_7 hydrocarbons increase in abundance with depth whilst the butane ratios decrease with depth from 0.8 to 0.3.

Zone D extends from 2663± metres down to 2850± metres and corresponds to the upper part of the Jurassic. This interval is characterised by brownish black shales and silty shales. Interbeds of medium dark grey shale are also present.

The brownish black shales and silty shales above 2820± metres appear to be oil-stained and the minor silty limestone from 2790-2805± metres also exhibits a weak stain.

Zone D is rich and wet. Gas abundances lie within the limits of (8808)16696-37966 ppm, the gases are 80-94(98)% wet and their isobutane to normal butane ratios approximate 0.2. The C₅-C₇ hydrocarbons have values of 11805-19937(24761) ppm above $2760\pm$ metres but then fall to 2872-7355 ppm. Although the break is not as dramatic, the interval above $2760\pm$ metres is also richer in the C₁-C_µ fraction and is somewhat wetter.

Zone E which is also Jurassic, lies between 2850± metres and 2978± metres. The samples contain abundant lost circulation material but this interval apparently consists of olive grey mudstones (sometimes calcareous).

A slight oil stain was observed in the mudstone from $2940-2955\pm$ metres.

The C_1-C_4 gases generally lie within the limits of 1815-3037 ppm above 2925± metres and then jump to 9621-12572 ppm. They are extremely wet throughout at 85-95% C_{2+} and have low butane ratios of 0.2-0.3. C_5-C_7 abundances increase at 2910± metres from 1074-3768 ppm to 6576-8252 ppm.

Zone F 2978± metres to 3116± metres, represents the Brent Formation. The samples suggest an interval of sandstones with interbeds of coal above 2988± metres and an interval of sandstones interbedded with coaly shales (carbargillites) below 3030± metres. These two units sandwich a sequence of dolomites, mudstones and coaly shales. The latter sometimes resemble an additive but are believed to be indigenous to the section.

Zone F generally contains 11324-22300 ppm of the C_1-C_4 gaseous hydrocarbons but is significantly richer (38677-47134 ppm) at 2985-3045± metres. With the exception of the uppermost sample, gas wetnesses are much lower (50-66% C_{2+}) than in Zone E whilst butane ratios are higher at 0.3-0.4. Again with the exception of

the uppermost sample, the C_5-C_7 hydrocarbons lie within the lower limits of 1017-2455 ppm.

Zone G 3116± metres to 3330± metres, represents the upper part of the Dunlin Formation and corresponds to a sequence of silty mudstones and shales interbedded with sandstones.

Geochemically, the top sample resembles Zone F but otherwise, this interval is leaner in the gases with (1849)3393-9262 ppm of marginally wet to wet $(41-61(66)\% C_{2+})$ gas. Isobutane to normal butane ratios are low (0.2-0.3). The C_5-C_7 hydrocarbons generally lie within the limits of 2484-5864 ppm but jump to 9637-11925 ppm at 3180-3210± metres.

Zone H extends from 3330± metres to 3419± metres (TD) and also belongs to the Dunlin Formation. It consists of medium dark grey siltstones and silty shales with interbedded sandstones. Minor proportions of coal are present in the samples below 3390± metres.

> Gas abundances are significantly higher than in Zone G and also jump at 3375± metres from 10397-24492 ppm at 43061-89641 ppm. This improvement is not reflected in the C_5-C_7 fraction (1683-4325 ppm) whilst the gases are now only marginally wet, with 27-51% of the C_2-C_4 hydrocarbons.

B. AMOUNT AND TYPE OF ORGANIC MATTER

The amount of organic matter within a sediment is measured by its organic carbon content. Average shales contain approximately one percent organic carbon, and this is the standard to which these samples will be compared.

Organic matter type influences not only source richness but also the character of the hydrocarbon product (oil, gas) and the response of the organic matter to thermal maturation. Richness and oiliness decrease in the order: amorphousalgal-herbaceous-woody. Wood has a primary (but not exclusive) potential for gas whilst inertinitic (oxidised, mineral charcoal) material has only a limited hydrocarbon potential.

The interbeds of medium greenish grey silty mudstone below $1600\pm$ metres in Zone A² are very lean at 0.15-0.19% organic carbon, but the olive grey silty mudstones which dominate Zone A² are of approximately average organic richness at (0.50)0.85-1.35% organic carbon. Wood is the major component of their organic matter which is however, better described as a mixed woody-herbaceous-algal assemblage with minor to significant proportions of amorphous material. The amorphous fraction is occasionally a major constituent but is of relatively poor quality and is not oil-prone.

Interbeds of very lean mudstone are present within Zone A³ and even the dominant medium grey mudstones and siltstones are relatively lean at 0.26-0.52(0.95)% organic carbon. Their organic matter is generally woody and inertinitic in type but in the richest shale, it is woody with significant proportions of herbaceous, inertinitic, amorphous and algal debris. The amorphous fraction is atypical and is not oil-prone.

The Cretaceous mudstones and shales of Zones B and C contain 0.42-0.52% and 0.45-0.72% organic carbon respectively, being richest below 2595± metres in Zone C. Both zones are characterised by organic matter which is dominantly reworked woody and inertinitic in type.

In contrast, the brownish black shales which characterise the Jurassic of Zone D are organically rich with values of 4.37-7.61% organic carbon. They tend to be richest above approximately 2745± metres, although this is only a gross generalisation. However their organic matter certainly does change. Thus above 2760± metres it is dominantly amorphous with significant proportions of partially converted algal debris, although the amorphous dominance is less marked below 2720± metres where woody and inertinitic material is also significant. In fact the organic matter within the interval 2720-2760± metres is transitional towards the mixed inertinitic-amorphous-algal-herbaceous-woody assemblage below 2760± metres. The intervals of medium dark grey shale within Zone D are much leaner at 0.49-0.62(0.92)% organic carbon.

Sample quality is poor in the Jurassic of Zone E but the calcareous mudstones at 2880-2925± metres increase with depth from 0.62% to 1.54% organic carbon and the underlying mudstones continue with this trend, increasing from 1.84% to 3.27% organic carbon. The organic matter in the calcareous mudstones is largely woody, although with significant proportions of all the other fractions,

whilst the mudstones have a mixed algal-amorphous-herbaceous-woody-inertinitic assemblage which is similar in appearance to that at the base of Zone D.

The Brent Formation (Zone F) is quite variable. Thus the dolomites within the interval 2985-3060± metres are lean at 0.13-0.21% organic carbon but the coal from 2987 metres is very rich (60.3%) in organic matter which is almost entirely woody in type. The coaly shales within the interval 2985-3090± metres range from 11.2% up to 45.9% organic carbon (i.e. impure coal) but generally fail to exceed 24% and these more representative coaly shales are characterised by organic matter which is dominantly woody in type but also includes significant proportions of herbaceous and algal debris. The minor medium dark grey shales within Zone F contain 0.68-2.01% of a mixed kerogen assemblage (algal-woody-herbaceous-amorphous-inertinitic) which is very similar to those observed at the base of Zone D and in Zone E.

Most of the silty mudstones and shales of Zone G (Dunlin) contain 0.77-1.23% organic carbon but there are a few intervals (above 3135± metres, 3186 metres) with better values of 1.77-2.32% organic carbon. These variations are not convincingly reflected in the character of their organic matter as the sediments above 3150± metres have a herbaceous-woody assemblage whilst below this depth the organic matter is woody and herbaceous with minor to significant proportions of inertinite. Amorphous material is sometimes significant but this is believed to be largely contaminant.

The silts above approximately 3375± metres in Zone H contain 1.46-1.71% of organic matter which is believed to be woody, herbaceous and inertinitic in type as the abundant amorphous material is thought to be due to contamination. The underlying silty shales have lower values of 0.94-1.16% and their organic matter is dominantly woody with significant proportions of herbaceous and inertinitic debris. Finally, the minor coals below 3390± metres contain 39.1-67.6% of organic matter which is almost entirely woody in type.

The most oil-prone organic matter is that in the shales at the top of Zone D.

C. LEVEL OF THERMAL MATURATION

Thermal maturity has been evaluated with the spore colouration and vitrinite reflectance techniques.

A spore colouration thermal index of 2- is achieved at a depth of $2500\pm$ metres, with indices of 2 and of 2 to 2+ being reached at $2970\pm$ metres and at $3360\pm$ metres respectively.

All organic matter with a thermal index of less than 2- is immature. At 2- the amorphous, herbaceous±algal fractions of the total organic matter become marginally mature (minor hydrocarbon generation) whilst they become mature (significant generation) at 2 and pass into the oil window of peak hydrocarbon generation at 2 to 2+. However woody material only becomes marginally mature at 2.

Thus in this well the section above 2500± metres is immature and no thermal hydrocarbon generation has occurred. Due to the character of the organic matter the remainder of the Cretaceous is effectively immature and only very limited hydrocarbon generation can be anticipated. The Jurassic of Zones D and E is however, marginally mature and off-structure (buried to below 2970± metres) will be mature. Within the Brent Formation and above 3360± metres in the Dunlin, hydrocarbon generation has generally been rather minor due to the overall nature of the organic matter although significant generation will have occurred in the herbaceous fraction which is commonly fairly abundant. Below 3360± metres significant generation has been initiated from the dominant woody organic matter whilst the significant herbaceous fraction within the silty shales lies in the oil window. Naturally, any oil-prone organic matter below 3360± metres is experiencing the optimum maturation conditions of the oil window.

Many vitrinite reflectance readings were obtained from most of the samples and, although most of these sediments contain more than one population of vitrinite, the major population apparently generally corresponds to the indigenous vitrinite. Indeed plotted against depth and allowing for the prevalent reworking in the Cretaceous (which was also observed in the kerogen preparations), the major populations give a good trend or rather two trends, as a different gradient is indicated below approximately 2900± metres. The discontinuous trend line suggests that the section is presently at approximately its paleodepth of burial. It reaches 0.45% Ro at approximately 2500± metres, 0.53% Ro at 2940± metres and 0.72% Ro at 3320± metres. As these values should correlate with spore colouration thermal indices of 2-, 2 and 2 to 2+, the correlation between the two methods is quite satisfactory.

The light hydrocarbon data and the C_{15+} paraffin-naphthene chromatograms

provide qualitative support for the maturation profile derived above.

Pyrolysis Tmax determinations are influenced by organic facies but can provide an indication of maturation levels. In this well a trend is established below 2200± metres and Tmax levels of 430°C and of 440°C are achieved at depths of approximately 2400-2500± metres and 3000-3100± metres respectively.

D. SOURCE RICHNESS

A preliminary evaluation of source richness using the organic carbon data suggests that the silty mudstones of Zone A^2 have a fair to good source potential and that there are good intervals within Zones E, G and H. Zone D, together with the coals and coaly shales of Zone F (and H), is rich.

Upon Rockeval pyrolysis the dominant silty mudstones of Zone A^2 yielded 1.73-3.67(4.53) mg/g P2 (pyrolysate). They are richest towards the top of the zone and indeed, only those from above 1350± metres are assigned a good rating, with the underlying mudstones being fair. The hydrogen index indicates that organic matter quality is also better at the top of the interval and then deteriorates with depth – particularly below 1450± metres. The interbedded medium greenish grey silty mudstones are lean.

Although there is a slight improvement below $2595\pm$ metres in Zone C, Zones A³ and C comprise poor source rocks (0.21-0.65(1.10) mg/g).

In contrast, Zone D (Jurassic) is rich. The brownish black shales yielded 23.3-36.2 mg/g P2 above $2760 \pm$ metres and 14.6-18.8 mg/g below this depth. They are richest at the top of the zone above $2685 \pm$ metres. Hydrogen indices also decrease at $2760 \pm$ metres from 430-524(622) down to 261-371. Clearly, the interval above $2760 \pm$ metres contains the best and most oil-prone organic matter. The interbedded medium dark grey shales are lean.

Zone E (Jurassic) is more varied, although the quality of its organic matter is generally comparable to that in the lower part of Zone D. The calcareous mudstones from 2895-2925± metres are potentially fair and good source rocks whilst the underlying mudstones (6.5-10.9 mg/g) have a very good source potential. The coaly shales and carbargillites of the Brent (Zone F) vary as a function of organic richness from 18.8 up to 93.2 mg/g and commonly have fair hydrogen indices. In contrast the minor medium dark grey shales are generally

only fair source rocks. It is believed that the shale from 2970-2985± metres is caved from Zone E.

The silty mudstones of Zone G (Dunlin) are commonly only poor to fair source rocks, but those from 3180-3195± metres and 3285-3330± metres (4.3-4.7 mg/g) are classified as good and are also characterised by good quality organic matter. It is suspected that this apparent enhancement is due, at least in part, to contamination. Similarly in Zone H, the variation in the siltstones from 0.8 up to 6.0 mg/g is also believed to be due to contamination and, allowing for this, it is likely that these sediments are only poor or fair source rocks, although the coals at the base of this zone are rich.

Upon extraction the two silty mudstones analysed from below 1600 metres in Zone A^2 yielded 57-81 ppm C_{15+} hydrocarbons, and are clearly poor source rocks. In contrast the Jurassic shales of Zone D gave high values of 921-2975 ppm resulting in rather high hydrocarbon to organic carbon and hydrocarbon to total extract ratios. The reason for this is evident from the paraffinnaphthene chromatograms where the high background envelopes indicate the presence of non-indigenous in addition to the source indigenous hydrocarbons. However, even when allowance for this is made, it would be expected that these shales would still be very good source rocks. The calcareous mudstone from 2895-2910± metres in Zone E is probably a fair source rock but it is not possible to evaluate the mudstone from 2955-2970± metres as its apparent richness (2611 ppm) is not real but reflects the presence of contamination and possibly, also a show of crude oil (see below). Contamination is evident in Zones F through H but the shales and siltstones are probably only fair (at best) source rocks. The contamination discussed above can also be observed in the chromatograms of the aromatic hydrocarbons.

Chromatograms of the pyrolysate (P2) material define whether a source rock, when mature, will yield oil, condensate or gas. Oil-prone sediments are characterised by a well defined series of normal alkene-alkane doublets which extend out to the heavy ends and dominate the chromatogram. If these doublets are confined to the light ends then a potential for condensate is indicated whilst in gas-prone sediments the doublets are (essentially) absent and the chromatogram is dominated by the methane and aromatic compound peaks.

In this well the silty mudstones of Zone A^2 have a potential for gas with, in

the richer mudstones from the top of this interval, minor associated condensate. Zones A^3 through C are gas prone. In contrast the Jurassic of Zone D, although not classically oil-prone, has a mixed potential for light oil and gas above 2760± metres whilst below this depth it will yield gas and condensate. This lower interval is deceptive as, although the peaks extend out to approximately C_{25} , it is believed that they represent contamination. A potential for gas and condensate is also assigned to the Jurassic Zone E interval. The coaly shales of the Brent (Zone F) will apparently yield gas and light oil but the silty mudstones of Zone G (Dunlin) are gas prone and those which were richer by the Rockeval technique are evidently contaminated. The silts and coals of Zone H are also gas-prone. Interestingly, the facies changes within Zone D appear to be reflected in the chromatograms of the aromatic hydrocarbons.

In summary therefore:

- dominant silty mudstones of Zone A^2 potentially good source rocks for gas with minor associated condensate above 1350± metres and fair source rocks for gas below this depth.
- Zones A³ through C (Tertiary and Cretaceous), poor and gas prone.
- Jurassic shales of Zone D potentially rich source rocks, especially above 2760± metres (and particularly above 2685± metres). Mixed potential for light oil and gas above 2760± metres passing to gas and condensate below this depth.
- mudstones below 2925± metres in Zone E (Jurassic) potentially very good source rocks for gas and condensate. Calcareous mudstones from 2895-2925± metres fair and good source rocks.
- Brent Formation (Zone F): coals rich, probably for gas; coaly shales and carbargillites potentially rich source rocks for gas and light oil.
- Zone G (Dunlin) poor and fair for gas.
- Zone H (Dunlin): siltstones poor and fair source rocks for gas. Coals at base of interval potentially rich gas source.

E. MIGRATED HYDROCARBONS

Staining was observed in the mudstones above $2820\pm$ metres in Zone D (Jurassic), in the minor silty limestone from $2790-2805\pm$ metres and in the mudstones from $2940-2955\pm$ metres.

The C_1-C_4 data suggest the possibility of traces of fairly dry gas between 820± metres and 910± metres in Zone A^1 , although the C_5-C_7 abundances are suspiciously high. This could be due either to the presence of contamination or possibility (but less likely) to residual oil. The extremely wet gases in Zone D suggest shows within this Jurassic interval with traces extending up to the top of Zone C (diffusion halo ?) and weaker shows in Zone E. It is also possible that there could be shows of wet gas within the Brent but the data are not definitive on this point.

The Rockeval Production Indices are generally low and non-indigenous hydrocarbons are suggested only in a few isolated samples (1695-1710± metres, 2580-2595± metres, 3135-3150± metres).

Samples were selected for extraction from Zones A^2 and D through H. High C_{15+} hydrocarbon yields were obtained from most of the Jurassic Zone D samples and, above 2715± metres, these hydrocarbons constitute approximately half of the total extract. However, their paraffin-naphthene chromatograms are not oil-like and any migrated C₁₅₊ hydrocarbons which are present could only occur as a young and relatively light product. This is also true of the sample from 2895-2910± metres in Zone E where indeed only a weak show (at best) However the sample from 2955-2970± metres is more could be present. interesting. It yielded 2611 ppm C₁₅₊ hydrocarbons, resulting in an anomalous hydrocarbon to organic carbon ratio and a relatively high (56.6%) proportion of hydrocarbons in the total extract. Drilling-introduced contamination is evident in the paraffin-naphthene chromatograms but the normal paraffins suggest the possibility that oil could also be present. The sandstone core samples from the Brent (Zone F) contain only 26-260 ppm C_{15+} hydrocarbons and, although the samples have good hydrocarbon to total extract ratios, their "richer" chromatograms indicate that this is due to drilling-introduced contamination. The same explanation applies to the enhanced sample from 3345-3360± metres in the Dunlin Formation.

Combining these data the following interpretation is obtained:

- Zone D (Jurassic); shows, possibly of condensate. Best shows above 2760± metres. A diffusion halo, probably of wet gas, extends up to the top of Zone C in the Cretaceous.
- Zone E (Jurassic); sample quality is poor but weaker shows (condensate ?) are suggested throughout this interval. There could be a show of a relatively paraffinic crude at 2955-2970± metres.
- Zone F (Brent); possible shows of wet gas. Only contamination was detected in the sandstone core samples and if any oil is present (but masked) it could only occur as insignificantly minor traces.

The three sandstone core samples from the Brent Formation were analysed in Those from 2979 metres and 2983 metres yielded 233-260 ppm C₁₅₊ detail. hydrocarbons which appear, from the paraffin-naphthene and aromatic chromatograms, to be dominantly if not entirely contaminant in origin. These two samples also have essentially identical carbon isotope compositions and phenanthrene and terpane mass fragmentograms, although there are some differences in the sterane (m/e 217) fragmentogram. In contrast the sandstone from 2987.5 metres is almost barren (26 ppm C₁₅₊ hydrocarbons) and its aromatic chromatogram and mass fragmentograms are quite different. The most dramatic differences are in the sterane mass fragmentogram which is not only quite unlike the others but significantly, is dominated by peaks of the 20R isomers, thus suggesting immaturity. Clearly, this is not the trace of a crude oil and must presumably, in view of its immaturity, reflect invasion by drilling mud bentonite. In conclusion therefore, the deepest core does not contain crude oil and there is nothing to suggest oil in the two shallower cores. Certainly, if oil is present, then only trace amounts could be involved.

F. CONCLUSIONS

Ten (10) zones are recognised between 280 metres and 3419 metres in 30/3-3.

The Tertiary is subdivided into Zones A^1 through A^3 .

Zone A^1 (280-925± metres) is an interval of sands. It is tentatively speculated

that there could be traces of fairly dry gas between $820\pm$ metres and $910\pm$ metres.

Zone A^2 (925-1860± metres) is composed of silty mudstones. The interbedded medium greenish grey variety below 1600± metres is very lean but the dominant silty mudstones throughout this zone contain (0.50)0.85-1.35% of a mixed woody-herbaceous-algal assemblage within which the woody fraction is the major constituent. These sediments are immature but the silty mudstones above 1350± metres are potentially good source rocks for gas with minor associated condensate whilst those from below this depth are only fair source rocks for gas.

In Zone A^3 (1860-2212[±] metres) the mudstones and siltstones generally contain only 0.26-0.52% of woody and inertinitic organic matter. They constitute <u>poor</u> and immature source rocks for gas, which are of no interest.

The Cretaceous is represented by Zones B (2212-2535± metres) and C (2535-2663± metres). However the differences between these two zones are minimal as, although there is an improvement below 2595± metres in Zone C, the mudstones of Zones B and C have low values of 0.42-0.52% and 0.45-0.72% organic carbon respectively and their organic matter is dominantly composed of reworked woody and inertinitic material. Zone B is immature whilst Zone C, due to the character of its organic matter, is effectively immature but even if mature, this entire interval would have only a minimal potential for gas.

Minor hydrocarbon generation would be anticipated from good quality organic matter below 2500± metres.

The post-Brent Jurassic is sub-divided into Zones D and E.

Within Zone D (2663-2850± metres) the interbeds of medium dark grey shale resemble Zone C at 0.49-0.62(0.92)% organic carbon. In contrast, the brownish black shales which characterise this interval have high values of 4.37-7.61%, tending to be richest above approximately 2745± metres. The character of their organic matter changes with depth. Thus above 2720± metres it is dominantly amorphous in type, with significant proportions of partially sapropelised algal debris. Between 2720± metres and 2760± metres the amorphous fraction is less dominant and significant proportions of woody and inertinitic material are also present. Finally, below 2760± metres, the organic matter in these shales is a

mixed inertinitic-amorphous-algal-herbaceous-woody assemblage. Clearly, the environment of deposition became increasingly favourable for the formation of oil-prone source rocks towards the top of the zone and this is reflected in the source character of the sediments. Thus, whereas all of these shales are potentially rich source rocks (especially above 2760± metres and particularly above 2685± metres) their potential is for light oil and gas above 2760± metres and for gas and condensate below this depth. Minor hydrocarbon generation has already occurred on-structure and their lateral equivalents buried to below 2960± metres will be mature and starting to generate significant volumes of hydrocarbons. Within the oil window (below 3360± metres) they would generate major volumes of hydrocarbons.

Hydrocarbon generation is certainly occurring within the drainage area of the structure as Zone D contains shows which are probably of condensate. A diffusion halo of wet gas extends up into the Cretaceous up to the top of Zone C whilst there are apparently weak shows (condensate ?) down to the base of Zone E (see below) and there could be a show of a relatively paraffinic crude at $2955-2970\pm$ metres.

Sample quality is poor in Zone E (2850-2978± metres), but calcareous mudstones and mudstones are indicated at 2880-2925± metres and below 2925± metres The former contain 0.62-1.54% of a mixed organic matter respectively. assemblage within which wood is the major component whilst the mudstones have values of 1.84-3.27% organic carbon and their organic matter is algalamorphous-herbaceous-woody-inertinitic in type. Organic carbon contents increase with depth. Minor hydrocarbon generation has occurred in this interval. The calcareous mudstones are potentially fair and good source rocks but the underlying mudstones are potentially very good source rocks for gas and condensate.

Oil-prone organic matter is mature below 2960± metres.

The Brent Formation (2978-3116± metres, Zone F) is apparently an interval of sandstones with interbedded coals and coaly shales. Dolomites are present between 2988± metres and 3030± metres but are very lean, whilst the minor medium dark grey shales vary between 0.68% and 2.01% organic carbon and contain a mixed organic matter assemblage similar to that in Zone E. The coal from 2987 metres contains 60.3% of organic matter which is almost entirely woody in type. The coaly shales from 2985-3090± metres range from 11.2% up to 45.9%

organic carbon but generally fail to exceed 24% and these more typical shales contain organic matter which is dominantly woody but which also includes significant proportions of herbaceous and algal debris. <u>The coals represent</u> potentially rich source rocks for gas within which only minor generation has occurred whilst the coaly shales are also potentially rich source rocks but will yield gas and light oil. Some oil generation would be anticipated from the herbaceous and algal fraction.

Indeed, there are possible shows of wet gas within the Brent Formation. Only contamination was detected in the sandstone core samples and, if any oil is present, it could only occur as insignificantly minor traces.

Zone G (3116-3330± metres, Dunlin) is a sequence of silty mudstones and shales interbedded with sandstones. The argillites generally contain 0.77-1.23% organic carbon but a few intervals (above 3135± metres, 3186 metres) are enriched at 1.77-2.32%. Their organic matter is herbaceous and woody above 3150± metres but is rather more woody below this depth. <u>These sediments are</u> mature, poor and fair source rocks for gas.

In Zone H (3330-3419± metres, Dunlin) the siltstones above 3375± metres contain 1.46-1.71% of mixed woody-herbaceous-inertinitic organic matter whilst the underlying silty shales are leaner at 0.94-1.16% and have organic matter which is largely woody, although the herbaceous and inertinitic fractions are both significant. They lie within the oil window but are only poor and fair source rocks for gas. The minor coals below 3390± metres have high values of 39.1-67.6% organic carbon and organic matter which is almost exclusively woody in type. Per unit of rock, the coals represent potentially rich source rocks for gas within which significant hydrocarbon generation has already been initiated.

Oil-prone source rocks are mature below 2960± metres and lie within the oil window of peak generation below 3360± metres. Sediments (including coals) in which the organic matter is dominantly woody in type are also mature (significant generation) below 3360± metres. The most oil-prone sediments in this section lie above 2760± metres in the Jurassic.

This section is presently at approximately its maximum paleodepth of burial. It is interesting to note that there is a significant change in the maturation gradient below approximately 2900± metres.

GEOCHEM SAMPLE NUMBER	DEPTH	GROSS LITHOLOGIC DESCRIPTION	G S A Colour Code	TOTAL ORGANIC CARBON (Wt. % of Rock)
786-005	340-355m	A 90% Quartzose sand, unconsolidated, white B 10% Limestone, blocky, soft, minor caving, very light grey to white Minor shale, basic igneous, chert Minor LCM - paint and cement	≥ N9 N8-N9	0.08
786-010	415-430m	A 90% Quartzose sand, as 786-005A B 5% Limestone, as 786-005B, abundant caving Minor basic igneous, chert, micaecous sandstone	N9 N8-N9	
786-013	460-475m	A 85% Quartzose sand, as 786-005A B 10% Basic ignenous, greenish black C 5% Limestone, as 786-005B, totally cave Acid igneous, chert and micaceous sandstone	N9 5gy2/1 1 N8-N9	-
786–018	535-550m	A 95% Quartzose sand, as 786-005A B 5% Basic igneous, as 786-013B Minor limestone and LCM - metal turnings	N9 5GY2/1	
786–023	610-625m	A 85% Quartzose sand, as 786-005A B 10% Basic igneous, as 786-013B C 5% Limestone, as 786-005B, dominant caving LCM - metal turnings	N9 5gy2/1 N8–N9	L
786–029	700-715m	A 90% Quartzose Sand, as 786-005A B 10% Basic igneous, as 786-013B Minor limestone and LCM - metal turnings	N9 5gy2/1	L
786–032	745-760m	A 95% Quartzose sand, as 786-005A B 5% Shell fragments, molluscs, foramini- fers, echinoderms & bryozoa, pinkish grey Minor basic igneous LCM - mica	N9 5yr8/1	L
786-039	850-865m	A 95% Quartzose sand, as 786-005A B 5% Shell fragment, as 786-032B Minor basic igneous LCM - mica	N9 5yr8/1	L
786-041	880-895m	A 95% Quartzose sand, as 786-005A B 5% Shell fragments, as 786-032B Minor basic igneous LCM - mica Minor siltstone	N9 5yr8/1	L
786-044	925-940m	<pre>A 85% Silty mudstone, blocky, soft, calc- areous, light olive grey B 10% Basic igneous, as 786-013B C 5% Quartzose sand, as 786-005A Minor shell fragments LCM - mica and cement</pre>	5Y6/1 5GY2/2 N9	0.50 L

TABLE 1 ORGANIC CARBON RESULTS AND GROSS LITHOLOGIC DESCRIPTIONS

r	T				
GEOCHEM SAMPLE NUMBER	DEPTH	c	GROSS LITHOLOGIC DESCRIPTION	G S A Colour Code	TOTAL ORGANIC CARBON (Wt. % of Rock)
786-050	1020-1035m	areo grey	y mudstone, blocky, soft, calc- us, dominant caving, light olive r basic igneous and limestone	5¥6/1	1.18
786-056	1110-1125m	A 98% Silt cavi Mino	y mudstone, as 786-050A, abundant	5Y6/1	0.92
786-060	1170-1185m	abun	y mudstone, v. soft, calc., dant caving, light olive grey r limestone and basic igneous	5¥6/1	1.19
786-063	1215-1230m	cavi	r limestone, mudstone and basic	£ 5¥6/1	1.17,1.18
786-069	1305-1320m	B 20% Shal soft	y mudstone, as 786-060A, dominan y mudstone, platy - subfissile, , non-calc., abundant caving, e grey	5¥6/1 5¥4/1	
786-074	1380-1395m	soft cavi	y mudstone, blocky - platy, v. , non. to sl. calc., dominant ng, medium olive grey or caved limestone and basic yous	5¥5/1	0.85
786-080	1470-1485m	- mc	y mudstone, blocky - platy, soft d. hard, non. to v. sl. calc., dant caving, olive grey	5¥4/1	1.08
786-083	1515-1530m	A 98% Silt cavi	y mudstone, as 786-080A, abundan ng	t 5Y4/1	1.17
786-090	1620 - 1635m	non	y mudstone, blocky - platy, soft - v. sl. cacl., abundant caving, re grey	, 5¥4/1	1.23,1.21
		B 40% Silt hard	y mudstone, blocky, soft - mod. , non-calc., minor caving, enish grey	5GY6/	1 0.17
786-095	1695-1710m	A 65% Silt cavi	y mudstone, as 786-090B, abundan	t 5GY6/	1 0.19
			y mudstone, as 786-090A, abundan	t 5Y4/1	1.05
786-098	1740-1755m	A 50% Silt cavi	y mudstone, as 786-090A, abundan	t 5Y4/1	1.13
			y mudstone, as 786-090B, abundan	t 5GY6/	1 0.19
786-105	1845-1860m	A 60% Silt cavi	y mudstone, as 786-090A, abundan .ng	t 5Y4/1	1.36,1.31
		B 40% Muds shal cavi	stone, platy, soft, non-calc., y in part, sig. to abundant .ng, medium dark greenish grey or limestone and siltstone	5GY5/	1 0.15

Abbreviations = arenaceous, argillaceous, calcareous, Cut, dolomitic, Fluorescence, foraminifera, fossiliferous Lost Circulation Material, moderately, occasionally, slightly, very

والرجابة المحمد أجاب والمالية		C CARBON RESCETS AND GROSS ETHIOEOGIC DESCHI	·····	
GEOCHEM SAMPLE NUMBER	DEPTH	GROSS LITHOLOGIC DESCRIPTION	Colour CAF	DRGANIC RBON of Rock)
786-111	1935-1950m	A 70% Mudstone, platy, soft, non-calc., shaly in part, abundant caving, medium dark greenish grey	5GY5/1	0.26
		B 30% Mudstone, blocky, soft, non-calc., w sl. calc., greyish red Minor other mudstone and limestone	5R4/2	0.09
786-116	2010 <u>-</u> 2025m	A 70% Mudstone, as 786-111A, abundant caving	5GY5/1	0.36
		B 25% Mudstone, as 786-111B, sig. caving C 5% Siltstone, blocky, soft, non-calc., minor caving, medium grey to medium light grey	5R4/2 N5-N6	0.10 0.90,0.91
786-120	2055-2070m	A 60% Siltstone, as 786-116C, minor caving	N5-N6	0.32
		B 30% Shale, platy - subfissile, mod. hard non-calc., abundant caving, medium grey	l, N5	0.95
		C 10% Mudstone, as 786-111A, sig. caving Minor other mudstone	5GY5/1	0.19
786-126	2145-2160m	A 90% Shale, as 786-120B, sig. to abundant caving	: N5	0.52
		B 10% Mudstone, as 786-111A, totally caved Minor siltstone	1 5GY5/1	
786-130	2205-2220m	A 95% Shale, as 786-120B, sig abundant caving	N5	0.49
		B 5% Limestone, blocky, soft, sig. caving very light grey Minor mudstone and siltstone	J, N8	
786–133	2250-2265m	A 90% Shaly mudstone, blocky, mod. hard, sl. calc., abundant to dominant caving, medium light grey to medium olive grey	N6-5Y5/1	0.47,0.45
		B 10% Mudstone, as 786-111B, totally cave Minor limestone	N6-5¥5/1	
786-139	2340-2355m	A 98% Shaly mudstone, as 786-133A, sig. caving Minor other mudstone and limestone	N6-5Y5/1	0.44
786-143	2400-2415m	A 98% Shaly mudstone, as 786-133A, sig. caving Minor caved, other mudstone and	N6-5Y5/1	0.47
		minor limestone		
786-147	2460-2475m	<pre>A 95% Shaly mudstone, blocky - platy, sof - mod. hard, non - sl. calc., abund caving, medium grey</pre>		0.42
		B 5% Mudstone, blocky - soft, non-calc., totally caved, greyish red	10R4/2	
786-150	2505-2520m	A 98% Shaly mudstone, as 786-147A, abunda caving Minor caved limestone and mudstone	nt N5	0.52

TABLE 1
ORGANIC CARBON RESULTS AND GROSS LITHOLOGIC DESCRIPTIONS

GEOCHEM SAMPLE NUMBER	DEPTH	GROSS LITHOLOGIC DESCRIPTION	G S A Colour Code	TOTAL ORGANIC CARBON (Wt. % of Rock)
786 - 152	2535-2550m	A 98% Shaly mudstone, blocky - platy, soft - mod. hard, non - sl. calc., abundant caving, medium grey Minor caved mudstone		0.45
786-153	2550-2565m	A 98% Shaly mudstone, as 786-152A, abundant caving Minor caved mudstone	N5	0.47,0.48
786–155	2580-2595m	A 98% Shaly mudstone, as 786-152A, abundant caving Minor caved mudstone and minor calcareous siltstone	N5	0.54
786-156	2595-2610m	<pre>A 85% Calcareous shale, blocky - platy, sig. caving, medium dark grey B 10% Shaly mudstone, as 786-152A, totally caved C 5% Mudstone, blocky - soft, non-calc., totally caved, greyish red</pre>	N4 N5 10R4/2	0.72
786-157	2610-2625m	A 98% Calcareous shale, as 786-156A, sig. caving Minor caved mudstone	N4	0.72
786-158	2625-2640m	A 98% Shale, blocky - platy, soft - mod. hard, sl v. calc., sig. caving, medium dark grey Minor caved mudstone	N4	0.68
786 - 159	2640-2655m	A 98% Shale, as 786-158A, sig. caving Minor caved mudstone	N4	0.70
- 786-160	2655-2670m	A 50% Shale, platy - soft, non-calc., oil stained, minor caved, brownish black	5YR2/3	1 , 6.91 - Prym
		B 45% Shale, as 786-158A, sig. caving C 5% Limestone, blocky, soft, white	N4 N9	0.84
786-161	2620-2685m	A 70% Shale, as 786-160A, oil stained, sig. caving	5YR2/	1 27.57,7.65
		B 20% Shale, as 786-158A, abundant caving C 5% Mudstone, blocky, mod. hard, sl. calc., totally caved, dark greenish grey	N4 5GY4/3	0.52 1
		D 5% Mudstone, blocky, soft - mod. hard, non-calc., totally caved, very dusky red Minor limestone	10R2/	2
786-162	2685-2700m	A 65% Shale, as 786-160A, oil stained, sig. caving	5YR2/	1 🖕 5.78
		 B 25% Shale, as 786-158A, abundant - dominant caving C 5% Mudstone, as 786-161C, totally caved D 5% Mudstone, as 786-161D, totally caved 		
786-163	2700-2715m	A 80% Shale, as 786-160A, oil stained, sig. - abundant caving		1 \$5.64
		B 20% Shale, as 786-158A, dominant caving Beous, calcareous, Cat, Wildsite, Provandant, in the formation of the source of the so	N4	0.50
Lost Circulations	– arenaceous, argilla on Material, moderate	eous, calcareous, Cut, automnte, Flabrescence, forcemente, forceme		

GEOCHEM SAMPLE NUMBER	DEPTH		GROSS LITHOLOGIC DESCRIPTION	G S A Colour Code	TOTAL ORGANIC CARBON (Wt. % of Rock)
786–164	2715-2730m		Shale, platy - soft, non-calc., oil stained, sig. caving, brownish black Shale, blocky - platy, soft - mod. hard, sl v. calc., abundant caving medium dark grey Minor caved mudstone	5yr2/1 N4	1 6.42,6.30 0.49
786-165	2730-2745m		Shale, as 786-164A, sig. caving Shale, as 786-164B, abundant caving Minor limestone	5YR2/: N4	1 5.85 0.55
786–166	2745-2760m		Shale, platy, soft, non - sl. calc., sig. caving, sl. oil stain, brownish black Shale, blocky - platy, mod. hard, sig. caving, medium dark grey	5yr2/: N4	0.72
			Minor caved mudstone		
786-167	2760-2775m		Shale, as 786-166A, sig. caving Shale, as 786-166B, abundant caving	5yr2/: N4	1 4.91,4.93 0.56
786 - 168	2775-2790m		Shale, as 786-166A, sig. caving Shale, as 786-166B. abundant caving Minor limestone and caved mudstone	5yr2/: N4	1 4.37 0.52
786–169	2790-2805m	в 35%	Shale, as 786-166A, sig. caving Shale, as 786-166B, abundant caving Silty limestone, blocky, soft, sl. oil stain, sl. milky cut, very light grey	5yr2/3 N4 N8	1 5.06 0.62 1.39,1.39
786-170	2805-2820m		Shale, as 786-166B, abundant caving Silty shale, blocky - platy, soft - mod. hard, sig. caving, oil stained, brownish black Minor caved mudstone and minor limestone	N4 5yr2/	0.55 1 5.01
786-171	2820-2835m	A 80%	Silty shale, blocky - platy, soft, sl. calc., sig. caving, brownish black	5yr2/	1 5.59
		в 20%	Shale, as 786-166B, sig. caving Minor limestone	N4	0.92
786-172	2835-2850m		Silty shale, as 786-170B, sig. caving Shale, as 786-166B, sig. caving Minor limestone	g 5YR2/ N4	1 7.20 0.62,0.62
786-173	2850-2865m		LCM - cement Silty shale, as 786-170B, minor caving	5YR2/	1 4.09
		C 5%	Shale, as 786-166B, dominantly caved Minor limestone	N4	
786-174	2865-2880m	A 100%	LCM - cement		
786-175	2880-2895m		LCM - cement LCM - metal turnings		

GEOCHEM SAMPLE NUMBER	DEPTH		GROSS LITHOLOGIC DESCRIPTION	G S A Colour Code	TOTAL ORGANIC CARBON (Wt. % of Rock)
786–175	2880-2895m	C 5%	Calcareous shale, platy, soft, medium olive grey Minor other shale and ?basic igneous	5¥5/1	0.62
786-176	2895-2910m		LCM - cement Calcareous mudstone, blocky, soft, minor caving, medium olive grey LCM - metal turnings	5¥2/1	0.96
786–177	2910-2925m		LCM - cement Calcareous mudstone, as 7860176B, minor cavings LCM - metal turnings	5¥5/1	1.54
786–178	2925-2940m		LCM - cement Shaly mudstone, platy - subfissile, soft, non-calc., sig. caving, medium olive grey LCM - metal turnings	5¥5/1	1.84
786–179	2940-2955m		Mudstone, blocky, soft, non - sl. calc., sig. caving, sl. oil stain, olive grey LCM - cement LCM - metal turnings	5¥4/1	2.53,2.53
786-180	2955-2970m	в 45%	LCM - cement Mudstone, as 786-179A LCM - metal turnings	5¥4/1	3.27
786-211 CORE	2979.335m	A 98%	Sandstone, fine grained, mod. hard - hard, laminated, light grey to very light grey	N7-N8	
786-181	2970-2985m	в 25%	LCM - cement Silty shale, platy - subfissile, soft - mod. hard, non calc., dominant cavings, medium dark grey LCM - metal turnings LCM - paint	: N4	2.01
786-212 CORE	2983.08- 2983.18m	A 98%	Sandstone, as 786-211A, cross laminated	N7-N8	
786-213 CORE) 2986.93m	A 98%	Coal, blocky, hard, lustrous, black	Nl	60.30
786-214 CORE	2987.50- 2987.59m	A 98%	Sandstone, fine - medium grained, hard - mod. hard, micaceous, white	N9	
786-182	2985-3000m		Crystalline dolomite, blocky, soft - mod. hard, contaminated by rust, white	N9	0.21
		C 5%	LCM - cement Silty shale, as 786-181B Coaly shale, blocky - platy, soft, non-calc., ?possible additive (coaly) greyish black LCM - metal turnings	N4 N2	1.52 22.80

	ORGAN	IC CARB	ON RESULTS AND GROSS LITHOLOGIC DESCRIPTI	ONS	
GEOCHEM SAMPLE NUMBER	DEPTH		GROSS LITHOLOGIC DESCRIPTION	G S A Colour Code	TOTAL ORGANIC CARBON (Wt. % of Rock)
786-183	3000-3015m		Crystalline dolomite, blocky, soft - mod. hard, minor caving, contaminated by rust, white Coaly shale, blocky - platy, soft,	N2	0.21,0.20
		C 5%	<pre>non-calc., ?possible additive (coaly) greyish black LCM - metal turnings Minor other shale</pre>	,	
786-215 SWC	3025m	A 98%	Shaly mudstone, blocky, soft, non- calc., contains carbonaceous inclusions, olive grey	5¥4/1	0.68
786–184	3015-3030m	в 40%	Coaly shale, as 786-183B, sig. caving Crystalline dolomite, as 786-183A, sig. caving, contaminated by rust	N9	33.60 0.21
		C 10%	Silty shale, platy - subfissile, soft - mod. hard, non calc., minor caving, medium dark grey Minor LCM - cement and metal turnings		1.62
786-185	3030-3045m	A 60%	Quartz sand, unconsolidated, rust	<u>N</u> 9	
			contaminated, white Coaly shale, as 786-183B, sig. to abundant caving	N2	18.70
		C 5%	Crystalline dolomite, as 786-183A, minor caving, rust contaminated LCM - metal turnings Minor other shale	N9	0.13,0.14
786-186	3045-3060m		Quartz sand, as 786-185A Crystalline dolomite, as 786-183A,	N9	0.21
			minor caving, rust contaminated Silty shale, as 786-184C, abundant	N9 N4	0.21
			caving		
		D 10%	Coaly shale, as 786-183B, abundant caving	N2	19.10
786-187	3060-3075m		Quartz sand, as 786-185A Shale, platy - subfissile, soft, non- calc., dominant caving, medium dark grey	N9 N4	
		C 5%	Coaly shale, as 786-183B, sig. caving Minor LCM - metal turnings Minor dolomite	N2	14.10
786-188	3075-3090m		Quartz sand, as 786-185A	N9	0.02
			Shale, as 786-187B, abundant caving Coaly shale, as 786-183B, abundant caving	N4 N2	0.93 11.20
		D 10%	Limestone, blocky, soft, white Minor dolomite and LCM - metal turnings	N9	0.52
786-190	3105-3120m		Quartz sand, as 786-185A	N9	0.87
		ы Э 046	Shale, as 786-187B, abundant - dominant caving, dark grey	N3	0.0/

GEOCHEM SAMPLE NUMBER	DEPTH	GROSS LITHOLOGIC DESCRIPTION	G S A Colour Code	TOTAL ORGANIC CARBON (Wt. % of Rock)
786-190	3105-3120m	C 30% Coaly shale, blocky - platy, soft, non-calc., ?possible additive (coaly) totally caved, greyish black Minor dolomite and LCM - metal turnings Minor bitumen	N2 ,	
786-191	3120-3135m	<pre>A 90% Shale, platy - subfissile, soft, non- calc., sig. caving, medium dark grey B 10% Coaly shale, as 786-190C, sig. caving Minor dolomite, bitumen and LCM - metal turnings</pre>		2.05 23.90
786-216 SWC	3125m	A 98% Silty shale, fissile - subfissile, mod. hard, non-calc., micaeous, dark grey	N3	1.77
786–192	3135-3150m	A 80% Silty mudstone, blocky, mod. hard, non-calc., minor cavings, turbo- drilled, dark brownish greyB 15% Sandstone, blocky, unconsolidated in part, fine grained, subangular, non- calc. matrix, clear, white	5YR3/1 N9	0.80
		C <5% Shale, platy to subfissile, mod. hard, non-calc., sl. carbonaceous, dominant? cavings, dark grey to dark grey to dark olive grey	N3-5¥3	3/1
786–194	3165-3180m	 A 40% Silty mudstone, as 786-192A, minor cavings, turbodrilled B 35% Sandstone, as 786-192B C 20% Silty mudstone, blocky, soft to mod. hard, non-calc., abundant? cavings, medium grey to medium brownish grey 	5YR3/1 N9 N5-5YF	
		D <5% Shale, as 786-192C, dominant? cavings	N3-5Y3	3/1
786-195	3180-3195m	A 65% Silty mudstone, blocky, mod. hard, non-calc., minor cavings, turbo- drilled, medium dark grey to brownish grey	N4-5YF	84/1 0.88
		B 35% Sandstone, mostly unconsolidated, medium grained, subangular, fairly well sorted, clear, white Minor caved siltstone and carbonaceou shale	N9 IS	
786-217 SWC	3186m	A 98% Silty shale, as 786-216A	N3	2.32
786-196	3195-3210m	A 70% Silty mudstone, as 786-195A, minor cavings	N4-5Y1	R4/1 0.77
		B 20% Mudstone, blocky, soft, non-calc., sl. silty, minor to sig.? cavings, medium brownish grey	5yr5/:	L 0.87,0.89
		C 10% Sandstone, as 786-195B Minor caved shale	N9	

GEOCHEM SAMPLE NUMBER	DEPTH	GROSS LITHOLOGIC DESCRIPTION	Colour	DTAL ORGANIC CARBON Wt. % of Rock)
786-198	3225-3240m	A 65% Sandstone, blocky, medium to fine grained, mostly unconsolidated, sub- angular, poorly sorted, clear, white	N9	
		B 20% Silty mudstone, blocky, mod. hard, non-calc., turbodrilled, sig.? cavings, medium dark grey to brownis	N4-5YR4/ h	1 0.78
		grey C 10% Mudstone, blocky, soft to mod. hard, non-calc., sl. silty, sig. to abundant? cavings, medium brownish	5YR5/1	1.16
		grey D <5% Silty shale, platy, non-calc., dominant cavings, dark grey Minor caved shales	N3	
786-200	3255-3270m	A 70% Sandstone, as 786-198A B 20% Silty mudstone, as 786-198B, sig.	N9 N4-5YR4/	1 0.86
		cavings C 10% Mudstone, as 786-198C, minor cavings Minor coal and shale - caved?	5YR5/1	1.17
786-202	3285-3300m	A 40% Sandstone, blocky fine grained, sub- angular, white	N9	
		B 40% Silty mudstone, blocky, mod. hard, non-calc., turbodrilled, sig.? cavings, dark grey to dark brownish	N3-5YR3/	′1 0.91
		grey C 15% Siltstone, blocky, soft to mod. hard non-calc., sl. micaceous, medium brownish grey	, 5YR5/1	1.37
		D 5% Shale, platy, mod. hard, non-calc., <u>caved</u> , dark grey to medium dark grey Minor coal and other shale - caved	N3-4	
786-218 SWC	3297m	A 98% Silty shale, fissile - subfissile, mod. hard, non-calc., micaeous, dark grey	N3	0.95
786–204	3315-3330m	A 30% Sandstone, as 786-202A B 30% Silty mudstone, as 786-202B, sig.	N9 N3-5YR3/	/1 1.23
		cavings C 25% Mudstone, blocky, soft, non-calc., minor cavings, medium dark grey to brownish grey	N4-5YR4/	/1 1.02,1.07
		<pre>D 10% Shale, platy, <u>caved</u>, dark grey E <5% Siltstone, as 786-202C, sig. cavings Minor coal</pre>	N3 5YR5/1	
786-205	3330-3345m	A 60% Siltstone, platy to blocky, soft to mod. hard, sl. micaceous, non-calc., minor to sig. cavings, medium grey t		/1 1.60
		medium brownish grey B 30% Silty mudstone, as 786-202B, sig.	N3-5YR3/	/1 0.96
		cavings C 10% Sandstone, as 786-202A Minor shale and coal - caved	N9	

GEOCHEM SAMPLE NUMBER	DEPTH	GROSS LITHOLOGIC DESCRIPTION	G S A Colour Code	TOTAL ORGANIC CARBON (Wt. % of Rock)
786-206	3345-3360m	A 98% Siltstone, blocky, mod. hard, non- calc., minor cavings, turbodrilled, medium dark grey to brownish grey Minor caved shale, coal and sand	N4-5YF	R4/l 1.71
786–208	3375-3390m	<pre>A 60% Sand, unconsolidated, medium to fine grained, subrounded to subangular, fairly well sorted, clear, white B 40% Siltstone, blocky, mod. hard, non-</pre>	N9 N4-541	84/1 1.46,1.46
		calc., turbodrilled, minor cavings, medium dark grey to brownish grey Minor caved shale and coal?	N4-311	(4/1 1.40,1.40
786-219 SWC	3376m	A 98% Silty shale, fissile, soft, non- calc., micaceous, medium dark grey to medium grey	N4-N5	1.15,1.17
786-209	3390-3405m	A 70% Sand, as 786-208A B 20% Coal, blocky, glassy, brittle, sig.	N9 N2	67.60
		<pre>cavings, greyish black C 10% Silty shale, blocky, mod. hard, non- calc., turbodrilled, sig. cavings, medium dark grey to brownish grey Minor caved shale</pre>	N4-5Y	84/1 0.94
786-210	3405-3420m	A 70% Sand, as 786-208A B 20% Silty shale, as 786-209C, sig.	N9 N4-541	84/1 1.10
		<pre>cavings C 10% Coal, as 786-209B, sig. cavings Minor caved shale</pre>	N2	39.10

	iC4 nC4	0.04 0.07 0.07 0.07 0.07 0.07 0.07 0.07	1.00
	тотаL с ₅ - с ₇	$\begin{array}{c} 31\\ 31\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50$	Ŧ
	% GAS WETNESS		C• N
SPACE GAS	TOTAL C2 - C4	9 11 11 12 12 12 12 12 12 12 12	ת
BONS IN AIR	TOTAL C ₁ - C ₄	799 566 1518 1518 1996 3207 3207 1945 5499 6402 5499 5499 5499 5499 5499 5499 5549 554	LUUJ
IYDROCAR	nC4 Butane	00000000000000000000000000000000000000	D
OF C1 - C7 H	iC4 Isobutane		D
PPM OF ROCK) OF C1 - C7 HYDROCARBONS IN AIR SPACE GAS	C ₃ Propane	, 4 / 9 – 9 / 9 / 9 / 9 / 9 / 9 / 9 / 9 / 9	T
	C2 Ethane	1 8 2 8 8 1 1 3 2 4 2 2 3 2 2 3 2 2 4 2 2 3 2 2 4 2 2 3 2 3	
CONCENTRATION (VOL.	C1 Methane	791 791 560 1511 1987 1987 1987 1987 1987 5603 5433 5439 5439 5439 5439 5439 5439 543	1884
ö	DEPTH		715-730 30
	GEOCHEM SAMPLE NUMBER	786-001 786-003 786-003 786-005 786-005 786-006 786-000 786-010 786-010 786-011 786-011 786-011 786-013 786-013 786-013 786-013 786-023	786-030

TABLE 2A

	iC ₄ nC ₄	0.48	60° 0	0.06	0.30	0.11	0.15	0.08	0.98	0.13	0.18	0.11	00.00	0.13	0.92	0.60	1.03	1.55	2.63	2.51	2.46	2.56	2.42	2.39	2.36	2.22	1.75	•	1.30	1.73	1.59
	Т <u></u> ОТАL С ₅ - С ₇	£	13	8	£	1	2	7	16	2102	2311	3502	1974	740	1042	445	291	9	1	1	Ŝ	4	I	2	S	4	14	28	23	18	14
	% GAS WETNESS	8.6	1.0	14.3	4.2	1.7	2.4	13.7	22.7	12.8	14.0	25.3	14.6	4.0	3.6	4.1	2.5	3.2	1.7	0.9	2.8	4.1	2.0	1.9	5.2	2.3	1.8	1.4	1.7	1.6	1.0
SPACE GAS	тотаL С ₂ - С4	4	7	34	20	12	17	77	258	532	227	247	171	68	107	114	89	46	9	£	52	42	7	11	55	39	163	93	158	68	125
PPM OF ROCK) OF C1 - C7 HYDROCARBONS IN AIR SPACE GAS	тотаL С ₁ - С ₄	45	727	236	471	704	704	561	1135	4172	1622	978	1172	1693	2946	2745	3592	1424	331	361	1872	1011	319	557	1049	1699	9106	6474	9455	4198	12861
IYDROCARI	nC4 Butane	1	1	2	1	1	1	S	26	11	9	9	1	ŝ	ŝ	14	8	2	0	0	2	2	0	0	2	1	9	7	7	ς	9
0F C ₁ - C ₇ F	iC4 Isobutane	0	0	0	0	0	0	0	25	1	1	1	0	0	ŝ	8	8	ŝ	1	0	5	4	1	1	5	e	11	8	6	Ś	6
M OF ROCK)	C ₃ Propane	1	1	4	2	1	1	30	106	101	93	116	97	29	48	44	37	15	2	1	19	15	2	4	20	14	58	33	45	24	39
	C2 Ethane	2	2	27	16	6	14	41	101	418	126	124	73	36	53	48	36	26	e.	2	24	20	ŝ	5	27	21	87	44	97	35	71
CONCENTRATION (VOL.	C1 Methane	41	719	202	451	692	687	484	878	3639	1395	731	1001	1625	2840	2631	3503	1378	326	358	1821	696	313	546	964	1660	8943	6382	9297	4130	12736
CC	DEPTH	730-745 5	745-760	760-775	775-790	790-805	805-820	820-835	835-850	850-865	865-880	880-895	895-910	910-925	925-940	940-955 46	955-970	970-995	995-1010	1010-1025	1020-1035 50/1	1035-1050	1050-1065	1065-1080	1080-1095	1095-1110	1110-1125 53/g	1125-1140	1140-1155	1155-1170	1170-1185 62 (3
	GEOCHEM SAMPLE NUMBER	786-031	786-032	786-033	786-034	786-035	786-036	786-037	786-038	786-039	786-040	786-041	786-042	786-043	786-044	786-045	786-046	786-047	786-048	786-049	786-050	786-051	786-052	786-053	786-054	786-055	786-056	786-057	786-058	786-059	786-060

٢

TABLE 2A

	COL	CONCENTRATION (VOL. PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS IN AIR SPACE GAS	N (VOL. PPI	M OF ROCK)	OF C1 - C7 H	IYDROCAR!	BONS IN AIR	SPACE GAS			
GEOCHEM SAMPLE NUMBER	DEPTH	C1 Methane	C2 Ethane	C ₃ Propane	iC4 tsobutane	nC4 Butane	TOTAL C ₁ - C ₄	тотаL C ₂ - C ₄	% GAS WETNESS	ТЮТАL С ₅ - С7	iC ₄ nC ₄
786-061	1185-1200 64	6903	100	39	8	4	7053	150	2.1	19	2.14
786-062	1200-1215	8040	136	52	6	S	8242	202	2.5	25	1.63
786-063	1215-1230 66 / 3	7664	63	27	1	9	7761	97	1.2	44	0.17
786-064	1230-1245	6522	52	26	5	4	6608	86	1.3	35	1.44
786-065	1245-1260	6279	59	28	8	5	6680	100	1.5	50	1.55
786-066	1260-1275	6542	53	29	7	4	6635	93	1.4	41	1.69
786-067	1275-1290	491	9	4	2	1	504	13	2.5	14	1.42
786-068	1290-1305	1287	58	24	5	2	1376	89	6.5	10	1.87
786-069	1305-1320 7 _{3/4}	1120	32	13	e	2	1171	51	4.3	6	1.34
786-070	1320-1335	1394	55	22	S	2	1477	84	5.7	7	1.87
786-071	1335-1350	1569	43	19	4	2	1639	69	4.2	6	1.92
786-072	1350-1365	843	27	6	2	I	883	40	4.5	4	1.97
786-073	1365-1380	2019	65	26	7	4	2121	102	4.8	16	1.89
786-074	1380-1395 79/80	4021	137	61	20	10	4250	228	5.4	50	1.87
786-075	1395-1410	1385	73	24	8	4	1493	108	7.3	16	1.98
786-076	1410-1425 82	1379	75	28	13	9	1501	122	8.1	23	2.05
786-077	1425-1440	1912	144	45	17	6	2127	215	10.1	35	1.88
786-078	1440-1455	1360	98	33	13	7	1510	150	10.0	26	2.02
786-079	1455-1470	1939	101	35	15	8	2098	159	7.6	23	1.88
786-080	1470-1485 %(Դ	8619	229	66	46	31	9024	405	4.5	145	1.49
786-081	1485-1500	8933	168	70	28	19	9218	285	3.1	126	1.51
786-082		2064	06	84	44	26	2309	245	10.6	122	1.74
786-083	1515-1530 ⁸⁹ 190	6885	139	84	35	21	7164	279	3.9	80	1.69
786-084	1530-1545	1095	83	35	14	9	1233	138	11.2	13	2.18
786-085	1545-1560	12	0	0	0	0	12	1	4.7	e	6.23
786-086	1560-1575	887	56	28	11	ъ	987	101	10.2	13	2.04
786-087	1575-1590	135	ŝ	2	1	0	142	7	4.6	1	2.31
786-088	1590-1605	327	8	4	2	1	341	15	4.3	2	2.41
786-089	1605-1620	271	e.	2	1	0	276	9	2.0	0	2.33
786-090	1620−1635 9 ₁ / ₈	3886	72	46	19	12	4036	150	3.7	50	1.54

TABLE 2A

Γ		
	iC ₄ nC ₄	$\begin{array}{c} 1.94\\ 1.94\\ 1.94\\ 1.94\\ 1.94\\ 1.94\\ 1.94\\ 1.94\\ 1.94\\ 1.95\\ 1.94\\ 1.95\\ 1.95\\ 1.93\\$
	ТрТАL С ₅ - С ₇	$\begin{array}{c}13\\13\\16\\27\\28\\27\\28\\27\\27\\27\\27\\27\\27\\27\\27\\27\\27\\27\\27\\27\\$
	% GAS WETNESS	6.0 10.0 1
SPACE GAS	тотаL С2 - С4	216 84 63 63 104 105 81 81 81 107 1107 1124 64 64 11285 1160 1160 1160 1160 1160 1160 1160 1185 1185 1185 1185 1185 1185 1185 118
BONS IN AIF	тотаL С ₁ - С4	1405 2951 1456 2951 2475 2477 2477 2677 2677 2677 2950 312 995 1678 1678 1678 1158 1158 1158 1158 1158 1158 1158 11
HYDROCARI	nC4 Butane	10 23 23 23 24 60 36 0 8 0 0 1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
TABLE 2A) OF C ₁ - C ₇ I	iC4 Isobutane	6 - 1 5 0 2 3 3 8 0 4 4 5 0 1 - 1 8 4 5 3 3 6 6 4 8 7 1 5 2 3 3 2 6 7 4 4 5 0 1 1 0 1 - 1 8 4 5 2 3 3 6 6 4 4 5 3 3 5 6 7 4 4 5 0 5 1 5 3 3 6 6 4 5 5 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 6 7 5 7 5
T M OF ROCK)	C ₃ Propane	12 2 4 3 2 6 6 3 7 0 1 3 2 6 1 8 8 3 3 3 1 1 7 2 6 6 3 7 2 0 1 3 2 6 1 3 2 7 2 6 1 3 2 7 2 6 7 8 3 3 3 3 1 1 7 7 5 6 1 3 2 6 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1
TABLE 2A CONCENTRATION (VOL. PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS IN AIR SPACE GAS	C2 Ethane	14 ° 0 1 ° 6 ° 7 ° 1 ° 7 ° 7 ° 7 ° 7 ° 7 ° 7 ° 7 ° 7
NCENTRATI	C ₁ Methane	1321 1321 2735 2735 2735 2096 3331 2449 449 449 449 27 2800 1097 1247 1247 1247 1247 1247 1247 1247 124
COI	DEPTH	1635-1650 % 1650-1665 % 1665-1680 1680-1695 1680-1695 1710-1725 1725-1710 (03/4 1710-1755 0.7/8 1770-1785 1770-1785 1770-1785 1770-1785 1770-1785 1770-1785 1770-1785 1770-1785 1770-1785 1770-1785 1815-1890 1885-1890 18875-1890 18875-1890 18875-1890 18875-1890 1905-1905 1920-1935 1935-1950 1995-2010 1995-2010 1965-1980 1995-2010 1965-1980 1995-2010 1955-2010 1955-2010 2040-2055 2050 2055-2070 /33/4
	GEOCHEM SAMPLE NUMBER	786–091 786–092 786–093 786–095 786–096 786–096 786–099 786–099 786–100 786–101 786–103 786–103 786–103 786–103 786–103 786–110 786–111 786–113 786–113 786–113 786–113 786–113 786–113 786–113 786–113 786–113 786–113

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		COI	CONCENTRATION (VOL. PP	N (VOL. PPI	M OF ROCK)	M OF ROCK) OF $c_1 - c_7$ HYDROCARBONS IN AIR SPACE GAS	IYDROCARI	BONS IN AIR	SPACE GA			
The finate Fromat Propende Lemma		DEPTH	Ŀ	c2	c ³	iC4	nC4	TOTAL	TOTAL	% GAS	TOTAL	iC ₄
$ [55] \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			Methane	Ethane	Propane	Isobutane	Butane	c ₁ - c ₄	c2 - c4	WEINESS	c ² - c ²	nc4
$ [S_{0}(1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	070		664	15	6	4	9	698	33		57	0.63
$ [S_{6}(r_{1}) = 12 = 12 = 12 = 6 = 553 = 37 = 6.8 = 21 = 0 \\ 701 = 17 = 7 = 3 = 3 = 20 = 17 = 1044 = 10.4 = 10.6 = 1 \\ 776 = 31 = 30 = 15 = 10 = 619 = 73 = 11.8 = 37 = 11 \\ 776 = 31 = 30 = 15 = 10 = 862 = 86 = 10.0 = 6 = 1 \\ 776 = 31 = 30 = 15 = 10 = 862 = 86 = 10.0 = 6 = 1 \\ 776 = 130 = 4 = 3 = 1 = 1 = 130 = 34 = 10.0 = 6 = 1 \\ 209 = 10 = 11 = 12 = 7 = 4 = 310 = 34 = 11.0 = 8 = 1 \\ 115 = 7 = 0 = 0 = 0 = 0 = 3 = 339 = 9 = 6.7 = 9 = 12 \\ 115 = 1 = 0 = 0 = 0 = 0 = 3 = 319 = 9 = 6.7 = 9 = 12 \\ 115 = 1 = 0 = 0 = 0 = 0 = 3 = 310 = 34 = 11.0 = 8 = 1 \\ 115 = 17 = 0 = 0 = 0 = 0 = 3 = 319 = 9 = 6.7 = 9 = 12 \\ 115 = 17 = 0 = 0 = 0 = 0 = 3 = 310 = 34 = 11.0 = 8 = 1 \\ 115 = 17 = 0 = 0 = 0 = 0 = 0 = 3 = 310 = 34 = 11.0 \\ 116 = 1 = 20 = 0 = 0 = 3 = 310 = 34 = 11.0 \\ 116 = 1 = 0 = 0 = 0 = 0 = 3 = 11 = 74 = 1 = 310 = 34 = 11.0 \\ 116 = 1 = 20 = 0 = 0 = 3 = 11 = 74 = 1 = 310 = 34 = 11.0 \\ 116 = 1 = 20 = 11 = 3 = 127 = 32 = 9 = 25.9 = 5 = 3 \\ 160 = 1 = 10 = 113 = 10 = 113 = 12 = 12 \\ 160 = 1 = 10 = 115 = 40 = 20 = 25 = 12 = 12 \\ 160 = 11 = 10 = 115 = 40 = 20 = 25.0 = 2 = 2 = 12 \\ 110 = 112 = 110 = 115 = 40 = 20 = 356 = 8 = 11 \\ 110 = 112 = 110 = 115 = 40 = 21 = 101 = 108 = 56.6 = 8 = 11 \\ 110 = 112 = 11 = 13 = 0 = 0 = 0 = 15 = 112 \\ 110 = 113 = 30 = 115 = 40 = 21 = 117 = 51.5 = 8 = 11 \\ 110 = 112 = 11 = 20 = 115 = 40 = 21 = 310 = 115 = 51.5 = 8 = 11 \\ 110 = 123 = 30 = 115 = 40 = 22 = 12 = 1117 = 51.5 = 8 = 11 = 20 \\ 110 = 113 = 30 = 115 = 40 = 29 = 356 = 213 = 10 = 15 = 12 = 20 \\ 110 = 113 = 30 = 115 = 40 = 29 = 356 = 213 = 0 = 0 = 15 = 12 = 20 = 16 = 12 = 20 = 16 = 12 = 20 = 16 = 12 = 20 = 16 = 12 = 20 = 20 = 20 = 20 = 20 = 20 = 20$	2085		824	21	21	6	11	885	61	6•9	50	0.77
$ \left(S_{0}(1) 17 15 7 6 746 45 6.1 16 11 \\ S_{16}(23) 7 7 3 3 20 17 1048 104 10.0 611 \\ 776 31 30 15 10 862 86 10.0 6 11 \\ 776 31 30 15 10 862 86 10.0 6 11 \\ 776 31 30 15 10 862 86 10.0 6 11 \\ 776 130 4 3 1 12 7 3 184 29 15.5 7 2 \\ 155 10 11 7 3 184 29 15.5 10 88 11 \\ 115 7 9 4 1 137 21 15.6 3 3 3 \\ 116 11 12 7 3 184 29 15.5 10 21 \\ 115 17 9 4 1 137 21 15.6 3 3 3 \\ 116 11 12 6 3 213 21 15.6 3 3 3 \\ 116 11 12 6 4 2 7 13 11 137 21 15.6 3 3 3 \\ 16/7 114 11 26 14 5 170 25 22 10 21 \\ 27 27 2 4 2 1 36 9 25.7 4 9 25.7 \\ 69 8 17 35 14 4 1 249 71 28.6 5 3 3 3 \\ 16/7 178 11 26 14 2 137 35 27.4 5 2 \\ 210 17 62 23 14 4 2 7 1 28.6 5 3 3 2 \\ 10 17 62 23 15 127 128.6 5 3 3 1 2 \\ 10 17 62 23 15 127 108 56.6 8 1 \\ 10 17 62 23 15 227 117 55.5 8 1 2 \\ 110 17 62 23 15 227 128 50.0 15 1 \\ 110 17 62 23 15 227 128 50.0 15 1 \\ 110 17 62 23 15 227 128 50.0 15 1 \\ 110 17 62 23 15 227 128 50.0 15 1 \\ 110 17 62 23 15 227 128 50.0 15 1 \\ 123 00.0 15 11 1 \\ 123 00.0 15 10 15 123 1 \\ 123 00.0 15 10 15 101 15 117 15 117 15 111 123 1 \\ 123 10 15 123 10 11 1 \\ 123 10 11 123 10 11 1 \\ 123 10 11 123 10 11 1 \\ 123 10 11 1 1 \\ 123 10 11 1 1 \\ 123 10 11 1 1 \\ 123 1 1 1 1 1 \\ 123 1 1 1 1 1 1 1 1 \\ 1 1 $	100	-2115	516	12	12	9	9	553	37	6.8	21	0.98
$ H_{V_1} = \begin{array}{ccccccccccccccccccccccccccccccccccc$	2115	-2130	701	17	15	7	9	746	45	6.1	16	1.09
$ P_{6}(r_{1}) = 943 = 33 = 33 = 20 = 17 = 1048 = 104 = 10.0 = 61 = 1 = 1 = 17 = 546 = 52 = 26 = 15 = 10 = 619 = 73 = 11.0 = 61 = 1 = 130 = 276 = 11 = 12 = 7 = 61 = 11 = 139 = 9 = 6.7 = 9 = 115 = 13 = 11 = 139 = 9 = 6.7 = 9 = 115 = 13 = 11 = 7 = 3 = 13 = 33 = 11 = 1 = 139 = 34 = 11.0 = 8 = 11 = 7 = 3 = 3 = 33 = 33 = 33 = 33 = $	2130)-2145	223	7	7	ς	ŝ	244	21	8.5	11	1.27
	2145	-2160 140/1	943	33	33	20	17	1048	104	10.0	61	1.18
$ h_{5}(k = 31 = 30 = 15 = 10 = 862 = 86 = 10.0 = 6 = 1 = 12 = 12 = 12 = 139 = 9 = 6.7 = 9 = 11 = 12 = 12 = 139 = 9 = 6.7 = 9 = 11 = 12 = 12 = 139 = 10 = 11 = 12 = 12 = 139 = 10 = 11 = 12 = 12 = 1316 = 15 = 17 = 5 = 3 = 239 = 29 = 15.5 = 7 = 2 = 11 = 11 = 1 = 1 = 3 = 3 = 130 = 34 = 11.0 = 8 = 115 = 17 = 9 = 4 = 361 = 45 = 12.4 = 9 = 2 = 2 = 11 = 137 = 21 = 137 = 21 = 137 = 21 = 137 = 21 = 137 = 21 = 137 = 21 = 137 = 21 = 137 = 21 = 137 = 21 = 12 = 12 = 12 = 12 = 12 = 12 = 1$	2160)-2175	546	22	26	15	10	619	73	11.8	37	1.47
$ H_{5}(k = 128 = 6 = 5 = 3 = 2 = 245 = 17 = 6.9 = 11 = 1 = 139 = 9 = 6.7 = 9 = 11 = 1 = 139 = 11 = 1 = 139 = 9 = 6.7 = 9 = 11 = 1 = 139 = 10 = 11 = 1 = 139 = 10 = 13 = 11 = 0 = 200 = 11 = 1 = 1 = 137 = 20 = 12 = 200 = 12 = 200 = 13 = 200 = 13 = 200 = 13 = 200 = 13 = 200 = 2$	2175	5-2190	776	31	30	15	10	862	86	10.0	9	1.46
$ \begin{split} & h_{5}(k & 130 & 4 & 3 & 1 & 1 & 139 & 9 & 6.7 & 9 & 11 \\ & 276 & 11 & 12 & 7 & 4 & 310 & 34 & 11.0 & 8 & 1 \\ & 209 & 10 & 11 & 6 & 3 & 239 & 29 & 15.5 & 7 & 2 \\ & 316 & 15 & 17 & 9 & 4 & 361 & 45 & 12.4 & 9 & 2 \\ & 316 & 15 & 7 & 9 & 4 & 1 & 137 & 21 & 15.6 & 3 & 3 & 3 \\ & 15 & 7 & 9 & 4 & 1 & 137 & 21 & 15.6 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & $	219()-2205	228	9	5	Ś	2	245	17	6.9	11	1.39
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	220		130	4	e	1	1	139	6	6.7	6	1.64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	222		276	11	12	7	4	310	34	11.0	80	1.68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	5-2250	155	8	11	7	ŝ	184	29	15.5	7	2.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2250	0-2265	209	10	11	9	en	239	29	12.2	10	1.98
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	226	5-2280	316	15	17	6	4	361	45	12.4	6	2.42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	228(0-2295	63	4	9	4	2	78	16	20.0	2	2.23
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	229	5-2310	115	7	6	4	1	137	21	15.6	'n	3.36
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2310	0-2325	2	0	0	0	0	e	1	44.9	0	0.55
	2325	5-2340	27	2	4	2	1	36	6	25.9	S	3.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	234(0-2355 156/7	114	11	26	14	2	170	56	32.9	14	2.83
	2355	5-2370	64	2	12	7	2	06	26	29.2	8	2.91
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	237(0-2385	92	8	17	8	e	127	35	27.4	ß	2.74
	238.	5-2400	56	4	6	4	1	74	19	25.0	2	2.90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2400		178	17	35	14	4	249	71	28.6	Ŝ	3.22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2415		20	2	e	1	0	26	9	23.3	1	2.41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2430)-2445	69	S	6	4	2	88	20	22.2	2	1.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	744	5-2460	58	80	16	9	2	89	31	35.3	1	2.98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	246(83	16	58	22	12	191	108	56.6	8	1.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	247		110	17	62	23	15	227	117	51.5	8	1.50
$(\gamma_{0/1} $ 143 30 115 40 29 356 213 60.0 15 1	249	0-2505	123	19	67	26	16	252	128	51.0	8	1.61
	250		143	30	115	40	29	356	213	60.0	15	1.41

TABLE 2A

	iC4 nC4	1.22 0.92 0.86 0.78 0.55 0.36 0.36 0.36 0.36 0.38 0.36 0.38 0.38 0.27 0.29
	TOTAL C ₅ - C ₇	497 497 458 162 1586 1586 454 454 454 4586 4686 4686 4686 4686
	% GAS WETNESS	68.6 83.0 83.0 83.0 84.6 84.6 84.6 88.1 74.6 88.1 77.2 88.1 77.2 91.6 88.1 77.2 91.6 88.1 77.5 88.1 77.5 91.6 88.7 77.5 88.7 77.5 91.6 88.7 72.9 91.6 88.7 72.9 91.6 88.7 72.9 91.6 88.7 72.9 91.6 88.7 72.9 91.6 88.7 72.9 91.6 88.7 72.9 91.6 88.7 72.9 91.6 88.7 72.9 91.6 88.7 72.9 91.6 88.7 72.9 91.6 88.7 72.9 91.6 88.7 72.9 92.7 72.9 92.7 72.9 92.7 72.9 92.7 72.8 88.7 72.9 92.7 72.9 92.7 72.9 92.7 72.8 88.7 72.9 92.7 72.9 92.7 72.9 92.7 72.9 92.7 72.9 92.7 72.9 92.7 72.9 92.7 72.9 92.7 72.9 92.7 72.9 92.7 72.9 92.7 72.9 92.7 72.9 88.7 72.9 88.7 72.9 88.7 72.9 88.7 72.9 88.7 72.9 88.7 72.9 88.7 72.9 88.7 72.9 88.7 72.9 88.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.9 87.7 72.7 87.7 72.7 87.7 72.7 87.7 87.7
TABLE 2A PPM OF ROCK) OF C ₁ · C ₇ HYDROCARBONS IN AIR SPACE GAS	тотаL C2 - C4	360 360 820 742 742 951 1182 951 1182 9560 8860 8482 5566 8482 5682 5682 5682 5682 5682 5682 5682 56
BONS IN AIF	тотаL С ₁ - С4	524 524 988 1470 1019 2912 1525 1525 1622 1622 1903 8552 19693 186677 7519 10874 7279 19693 8427 11099 29003 2467 8427 8427 11099 2903 29003 8427 8427 8427 11099 2988 2983 29633 8712 8712 8712
HYDROCAR	nC4 Butane	259 139 139 139 139 139 131 133 2332 2333 2332 2333 2333
TABLE 2A) OF C ₁ - C ₇ I	iC ₄ Isobutane	72 153 153 153 153 155 163 163 163 163 163 163 163 163 163 163
1 M OF ROCK)	C3 Propane	187 454 650 650 650 650 777 872 872 872 872 872 872 872 872 872
	C2 Ethane	41 191 191 192 1126 1134 1134 1134 1134 1136 1136 1136 113
CONCENTRATION (VOL.	C ₁ Methane	$\begin{array}{c}164\\164\\168\\277\\752\\752\\752\\752\\752\\752\\752\\752\\752$
COL	DEPTH	2520-2535 P3/ ₅ 2550-2565 P3/ ₆ 2550-2565 P3/ ₆ 2565-2580 P3/ ₆ 2565-2580 P3/ ₆ 2565-250 P3/ ₆ 2595-2610 P30/ ₁ 2610-2625 P30/ ₅ 2640-2655 P36/ ₅ 2640-2655 P36/ ₅ 2670-2685 P3/ ₅ 2670-2685 P3/ ₅ 2670-2715 P3/ ₅ 2775-2790 P3/ ₅ 2760-2775 P3/ ₅ 2895-2895 P3/ ₅ 2910-2955 P3/ ₆
	GEOCHEM SAMPLE NUMBER	786–151 786–152 786–154 786–155 786–156 786–156 786–159 786–159 786–160 786–163 786–163 786–167 786–167 786–167 786–167 786–171 786–171 786–173 786–173 786–173 786–173 786–173 786–173 786–173 786–173

	ic ₄ nC ₄	0.53 0.51 0.62 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.0	0.05
	TOTAL C ₅ - C ₇	61 55 55 55 55 55 55 55 55 55 55 55 55 55	2/ 19
	% GAS WETNESS		8.8 11.2
TTING GAS	TOTAL C2 - C4	,	31
BONS IN CU	TOTAL C ₁ - C ₄	$\begin{array}{c}185\\185\\286\\286\\286\\286\\286\\286\\286\\286\\286\\286$	2/1 280
HYDROCAR	nC4 Butane	۰ ۲ ۵ ۵ ۵ ۲ ۵ ۵ ۵ ۲ ۲ ۵ ۵ ۵ ۲ ۲ ۵ ۵ ۵ ۲ ۹ ۵ ۵ ۲ ۹ ۵ ۵ ۲ ۹ ۵ ۲ ۹ ۵ ۲ ۹ ۵ ۲ ۹ ۵ ۲ ۹ ۵ ۲ ۹ ۵ ۲ ۹ ۵ ۲ ۹ ۵ ۲ ۹ ۵ ۲ ۹ ۱۰ ۳۰ ۳۰ ۳۰ ۳۰ ۳۰ ۳۰ ۳۰ ۳۰ ۳۰ ۳۰ ۳۰ ۳۰ ۳۰	4 4
TABLE 2B CONCENTRATION (VOL. PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS IN CUTTING GAS	iC ₄ Isobutane	400000000000000000000000000000000000000	00
	C ₃ Propane	✓ 135 8 8 1 1 3 1 0 6 1 3 1 6 5 1 6 5 1 6 5 1 6 5 3 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	6 10
	C2 Ethane	22 23 24 21 23 25 26 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 27 28 27 27 27 27 27 27 27 27 27 27 27 27 27	13 17
	C1 Methane	$\begin{array}{c}111\\117\\658\\634\\634\\756\\755\\755\\755\\313\\756\\313\\307\\255\\307\\313\\307\\255\\307\\315\\255\\307\\313\\255\\307\\315\\255\\307\\315\\255\\307\\315\\255\\307\\315\\255\\307\\315\\255\\307\\315\\255\\307\\305\\255\\307\\305\\255\\305\\305\\255\\305\\305\\255\\305\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\305\\255\\255\\305\\255\\255\\255\\255\\255\\255\\255\\255\\255\\2$	247 248
S	DEPTH	280-295 295-310 310-325 340-325 340-355 355-340 370-385 385-400 415-490 415-445 415-445 415-445 415-445 505-515 505-515 515-520 510-625 610-625 610-625 610-655 610-655 610-655 610-655 610-655	700-715 715-730
	GEOCHEM SAMPLE NUMBER		786-029 786-030

	iC ₄ nC ₄	0.05 0.06 0.06 0.06 0.06 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.02 0.03 0.09 0.03 0.03 0.04 0.09 0.03
	тотаL с ₅ - с ₇	257 257 257 257 257 257 257 257 257 257
	% GAS WETNESS	$\begin{array}{c}11\\17.6\\17.6\\17.6\\17.6\\17.6\\17.6\\17.6\\17$
TABLE 2B PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS IN CUTTING GAS	тотаL C ₂ - C ₄	523555557766665513475118178283836666 5235555774676055134751785538336666 5235555774676055134751785538336666
BONS IN CU	TOTAL C ₁ - C ₄	188 154 154 154 154 154 154 124 124 124 124 124 124 124 124 124 12
нурвосав	nC4 Butane	<u> </u>
TABLE 2B () OF C ₁ - C ₇	iC4 Isobutane	00000000-0000000004
T M OF ROCK	C ₃ Propane	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	C2 Ethane	120220228282828282822223338222822228222 22222222
CONCENTRATION (VOL	C1 Methane	159 159 170 170 170 170 176 176 176 176 176 176 176 176 176 176
CONCENTRA	DEPTH	730-745 745-760 760-775 775-790 775-790 790-805 805-820 805-820 820-835 835-850 865-880 895-910 910-925 910-925 940-955 925-940 940-955 925-910 970-995 970-995 1020-1035 1020-1035 1020-1035 1020-1035 1020-1035 1020-1035 1020-1035 1020-1035 1125-1110 1110-1125 1155-1170
	GEOCHEM SAMPLE NUMBER	786-031 786-032 786-033 786-034 786-035 786-035 786-039 786-039 786-040 786-040 786-043 786-044 786-044 786-044 786-049 786-049 786-049 786-051 786-051 786-050 786-053 786-055

	iC4 nC4	0.16 1.43 0.84 0.86 1.06 1.06 1.00 1.00 1.03 1.03 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.2
	тотаL С ₅ - С ₇	30 35 35 31 35 31 35 31 35 31 35 35 133 133
	% GAS WETNESS	20.33 20.33 20.33 20.33 20.34 20.33 20.33 20.33 20.33 20.33 20.33 20.33 20.33 20.33 20.44
TABLE 2B . PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS IN CUTTING GAS	тотаL С ₂ - С ₄	63 67 67 67 67 67 67 73 73 73 73 73 73 73 73 73 73 73 73 73
BONS IN CU	тотаL с ₁ - с ₄	2374 2533 1591 607 607 607 607 607 607 607 607 607 6147 2388 2388 2388 23865 1178 2333 2333 23565 2358 2373 2375 23665 2755 2756 2755 2755 2755 2755 2755 2
нурвосав	nC4 Butane	1 1 1 1 1 1 1 2 2 3 3 3 2 2 1 2 3 1 2 2 3 2 3
rable 2B) of c ₁ - c ₇	iC ₄ Isobutane	1345953333333452552715299005937671 1355333333355525271255990059333351
TABLE 2 PPM OF ROCK) OF C ₁	C ₃ Propane	18 23 23 23 23 23 24 24 23 23 24 24 23 25 25 25 25 25 25 25 25 25 25 25 25 25
ION (VOL. PF	C2 Ethane	4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
DNCENTRAT	C1 Methane	2311 2311 2560 550 550 550 111 553 111 111 553 584 584 584 584 584 584 1640 1553 1553 1553 1553 1553 1553 1553 155
CONCENTRATION (VOL	DEPTH	1185-1200 1200-1215 1215-1230 1230-1245 1245-1260 1245-1260 1260-1275 1260-1275 1305-1305 1305-1305 1335-1350 1335-1350 1335-1350 1335-1336 1410-1425 1440-1485 1440-1485 1440-1485 1440-1485 1440-1485 1440-1485 1470-1485 1515-1500 1500-1515 1575-1590 1575-1590 1575-1590 1575-1590 1575-1605 1575-1605 1575-1605
	GEOCHEM SAMPLE NUMBER	786-061 786-063 786-063 786-065 786-065 786-066 786-069 786-069 786-071 786-071 786-073 786-073 786-073 786-073 786-079 786-081 786-081 786-081 786-081 786-083 786-083 786-083 786-083 786-083 786-083 786-089 786-086 786-089 786-089 786-089 786-089

	iC4 nC4	1.10 1.05 1.05 1.05 1.05 1.05 1.25	0.43
	тотаL С ₅ - С ₇	89 140 140 126 128 11 126 126 126 126 126 126 126 126 126	456
	% GAS WETNESS	13.7 17.5 17.5 17.5 17.5 17.5 17.5 10.2	29.3
TTING GAS	TOTAL C2 - C4	93 196 196 197 197 197 197 197 197 197 197 197 197	55
BONS IN CU	TOTAL C1 - C4	676 676 597 567 567 1272 1272 1272 1272 1265 1288 1272 1265 1265 1265 1265 1265 1265 1265 126	188
HYDROCAR	nC ₄ Butane	28003845255938558815505464558 385038845259385588155055465559	19
TABLE 2B PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS IN CUTTING GAS	iC ₄ Isobutane	0593233353535355555555555555555555555555	000
T M OF ROCK	C ₃ Propane	e 7 6 5 1 8 6 1 5 4 6 7 5 1 3 5 6 7 7 7 2 7 8 6 7 5 1 3 5 6 7 5 1 3 5 7 7 7 2 7 3 7 7 2 8 7 5 7 7 3 7 7 2 8 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	15
ON (VOL. PPM OF RC	C2 Ethane	6 6 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12
CONCENTRATION (VOL	C1 Methane	583 245 6363 6363 6363 493 493 641 1170 121 641 1366 1366 138 138 138 138 138 138 138 138 138 138	133
CONCENTRA	DEPTH	1635-1650 1650-1665 1665-1680 1680-1695 1710-1725 1710-1725 1725-1740 1770-1785 1765-170 1760-1755 1700-1785 1770-1785 1785-170 1880-1750 1880-1875 1845-1890 1880-1875 1875-1890 1880-1905 1920-1935 1955-1980 1955-1980 1965-1980 1965-1980 1955-2010 2025-2040 2025-2040 2040-2055 2010-2055	2055-2070
	GEOCHEM SAMPLE NUMBER	786-091 786-092 786-094 786-095 786-095 786-099 786-099 786-099 786-099 786-100 786-101 786-100 786-100 786-110 786-110 786-111 786-111 786-111 786-111 786-111 786-111 786-111 786-111 786-111	786-120

	iC4 nC4	0.55 0.655 0.655 0.636 0.888 0.83 0.93 0.94	06.0
	тотаL С _Б - С ₇	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20
	% GAS WETNESS	12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4	70.6
TABLE 2B PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS IN CUTTING GAS	TOTAL C2 - C4	111 112 122 123 123 123 123 123 123 123	141
BONS IN CU	TOTAL C ₁ - C ₄	170 170 170 170 177 177 177 177 177 177	200
HYDROCAR	nC ₄ Butane	44451719888977771557595555	27
TABLE 2B CONCENTRATION (VOL. PPM OF ROCK) OF C ₁ - C ₇ HYDROCAR	iC4 Isobutane	2183873285951679779104692819797	24
	C ₃ Propane	259568553353555585558558555855585555555555	74
	C2 Ethane	۲۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵	17
	C1 Methane	238 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	59
	DEPTH	2070-2085 2085-2100 2100-2115 2115-2130 2130-2145 2145-2160 2145-2160 2175-2190 2190-2205 2250-2265 2250-2265 2250-2265 2280-2295 2280-2490 2475-2490	2505-2520
	GEOCHEM SAMPLE NUMBER	786-121 786-122 786-122 786-123 786-124 786-125 786-126 786-129 786-129 786-129 786-133 786-133 786-133 786-144 786-144 786-144 786-144 786-144 786-144 786-144 786-144	786-150

	iC ₄ nC ₄	0.70 0.59 0.53 0.53 0.53 0.344 0.344 0.25 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	0.17
	TOTAL C ₅ - C ₇	52 73 124 124 130 233 203 264 264 11896 11896 11896 11896 11896 11896 11703 11896 11896 11703 11	3437
	% GAS WETNESS	75.3 73.8 73.8 87.6 88.5 90.5 86.6 91.4 92.6 92.6 92.6 92.8 92.6 92.8 92.9 92.9 92.9 92.9 92.9 92.9	94.0
TABLE 2B . PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS IN CUTTING GAS	тотаL С ₂ - С4	217 217 508 504 648 648 822 620 620 620 620 620 620 620 12404 12805 12805 13341 18922 13341 18922 13341 18922 13341 18922 13341 8494 8494 8539 8539 8539 8539 8539 8539 8539 8539	1772
BONS IN CU	TOTAL C ₁ - C ₄	288 282 575 882 885 684 685 685 685 685 685 685 6936 19735 13293 13293 13293 13293 13293 13293 13293 13293 13263 8628 8185 8963 1723 1723 1723 8185 8963 1723 1723 1723 8185 8963 8175 9012 82638 8363 8363 8359 8359	1885
HYDROCAF	nC4 Butane	50 58 147 147 147 147 263 263 263 263 2648 2405 2405 2405 2405 2405 2405 2405 2405	1047
TABLE 2B PPM OF ROCK) OF C ₁ - C ₇ HY	iC4 Isobutane	35 35 34 35 35 37 32 32 32 32 32 32 32 33 32 33 33 33 34 35 35 32 32 32 33 32 33 33 33 33 33 33 33 33	181
	C ₃ Propane	$\begin{array}{c}111\\97\\97\\86\\97\\86\\86\\86\\86\\86\\86\\86\\86\\86\\86\\86\\86\\86\\$	462
ION (VOL. PI	C2 Ethane	$\begin{array}{c} 21\\ 21\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23$	83
CONCENTRATION (VOL	C ₁ Methane	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & $	113
CONCEN	DEPTH	2520-2535 2535-2560 2550-2565 2565-2580 2565-2580 2565-2580 2610-2625 2640-2655 2640-2655 2640-2655 2640-2655 2640-2655 2640-2655 2640-2655 2775-2700 2775-2700 2775-2700 2775-2700 27805-2885 2865-2880 2865-2880 2865-2880 2865-2895 2865-2865 2865-2895 2865-2895 2865-2910 2910-2955 2910-2955	2955-2970
	GEOCHEM SAMPLE NUMBER	786–151 786–152 786–155 786–155 786–156 786–156 786–156 786–161 786–163 786–163 786–166 786–166 786–166 786–166 786–169 786–171 786–171 786–171 786–171 786–173 786–173 786–173 786–173 786–176 786–177	786-180

	Ö	CONCENTRATION (VOL. PPM OF ROCK) OF $c_1 - c_7$ HYDROCARBONS IN CUTTING GAS	ION (VOL. PI	PM OF ROCK	1 ABLE 28 () 0F C ₁ - C ₇	HYDROCAI	RBONS IN CU	JTTING GAS			
ICHEM MPLE MBER	DEPTH	C1 Methane	C2 Ethane	C ₃ Propane	iC4 Isobutane	nC4 Butane	TOTAL C1 - C4	TOTAL C2 - C4	% GAS WETNESS	тотаL с ₅ - с ₇	iC ₄ nC ₄
81	2970-2985	217	76	342	120	588	1345	1127	83.8	2288	0.20
82	2985-3000	9731	6012	5784	558	1641	23727	13996	59.0	1075	0.34
83	3000-3015	8845	5898	5541	427	1463	22174	13329	60.1	806	0.29
84	3015-3030	13788	9013	9010	1592	3828	37230	23442	63.0	1434	0.42
85	3030-3045	10710	7869	8317	1105	3305	31306	20596	65.8	1562	0.33
86	3045-3060	2353	1974	2573	285	1046	8231	5878	71.4	850	0.27
87	3060-3075	594	507	1509	185	797	3592	2998	83.5	760	0.23
88	3075-3090	833	836	1462	198	711	4040	3207	79.4	066	0.28
89	3090-3105	1943	863	1053	134	528	4522	2579	57.0	718	0.25
90	3105-3120	4372	1462	1561	208	776	8378	4007	47.8	1855	0.27
91	3120-3135	8399	3367	2709	325	1081	15881	7483	47.1	1341	0.30
92	3135-3150	2354	514	379	99	321	3634	1280	35.2	2258	0.20

тотаL с ₅ - с ₇	2288	1075	806	1434	1562	850	760	066	718	1855	1341	2258	2276	3047	9668	5273	4167	3417	4370	2330	2953	1982	2883	2369	3029	448	1629	1016	1440	1135
% GAS WETNESS	83.8	59.0	60.1	63.0	65.8	71.4	83.5	79.4	57.0	47.8	47.1	35.2	44.6	58.8	54.6	69.0	71.1	70.8	63.1	37.8	59.6	41.7	57.3	55.0	75.1	21.8	27.8	25.4	58.8	39.7
TOTAL C ₂ - C4	1127	13996	13329	23442	20596	5878	2998	3207	2579	4007	7483	1280	1501	970	502	738	836	1062	1736	2275	1925	1406	710	849	1942	3134	4572	3747	23967	7805
тотаL C ₁ - C ₄	1345	23727	22174	37230	31306	8231	3592	4040	4522	8378	15881	3634	3362	1650	919	1070	1176	1500	2750	6022	3231	3370	1240	1542	2586	14348	16458	14725	40778	19635
nC4 Butane	588	1641	1463	3828	3305	1046	797	711	528	776	1081	321	427	393	256	380	407	461	680	511	550	374	238	258	488	676	619	381	2484	820
iC4 Isobutane	120	558	427	1592	1105	285	185	198	134	208	325	99	66	74	43	73	82	70	107	87	91	88	47	53	112	152	139	92	790	247
C ₃ Propane	342	5784	5541	9010	8317	2573	1509	1462	1053	1561	2709	379	541	323	84	184	235	348	547	718	652	499	241	284	793	851	1475	1120	9652	2740
C2 Ethane	76	6012	5898	9013	7869	1974	507	836	863	1462	3367	514	434	179	119	102	112	183	402	959	632	445	185	253	550	1456	2338	2154	11041	3998
C ₁ Methane	217	9731	8845	13788	10710	2353	594	833	1943	4372	8399	2354	1861	680	417	332	340	437	1014	3747	1306	1965	530	693	644	11214	11886	10978	16810	11830
DEPTH	2970-2985	2985-3000	3000-3015	3015-3030	3030-3045	3045-3060	3060-3075	3075-3090	3090-3105	3105-3120	3120-3135	3135-3150	3150-3165	3165-3180	3180-3195	3195-3210	3210-3225	3225-3240	3240-3255	3255-3270	3270-3285	3285-3300	3300-3315	3315-3330	3330-3345	3345-3360	3360-3375	3375-3390	3390-3405	3405-3420
GEOCHEM SAMPLE NUMBER	786-181	786-182	786-183	786-184	786-185	786-186	786-187	786-188	786-189	786-190	786-191	786-192	786-193	786-194	786-195	786-196	786-197	786-198	786-199	786-200	786-201	786-202	786-203	786-204	786-205	786-206	786-207	786-208	786-209	786-210

0.230.190.170.170.150.150.160.160.230.220.220.220.220.220.220.220.220.220.220.220.230.220.220.230.220.230.220.220.230.220.220.230.220.230.220.230.220.230.230.220.230.220.230.330.330.330.330.330.330.33

TABLE 2B

	j	ちょてららり4245515515515052050505151
	iC ₄ nC ₄	0.543 0.547 0.256 0.036 0.125 0.123 0.125
	тотаL с ₅ - с ₇	$\begin{array}{c} 92\\ 78\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75$
	% GAS WETNESS	854814414094835510607381709648
VS (2A + 2B)	тотаL C ₂ - C4	43 43 43 43 44 43 43 44 43 43 44 43 44 43 44 43 44 43 44 44
DROCARBON	тотаL С ₁ - С4	985 637 637 637 637 637 2752 2752 6799 67797 67797 67797 67797 67797 67797 67797 67797 67797 67797 67797 67797 67797 67797 67797 67797 67797 67797 77968 67797 77968 67797 77968 67797 77968 67797 77968 67797 77968 67797 77968 77972 77977777777
TABLE 2 C TOTAL CONCENTRATION (VOL. PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS (2A + 2B)	nC4 Butane	040402128480799999999999999999999999999999999999
	iC4 Isobutane	
	C ₃ Propane	11 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 10
	C2 Ethane	253 253 253 253 253 253 253 254 253 254 255 255 257 267 27 27 27 27 27 27 27 27 27 27 27 27 27
OTAL CONCE	C1 Methane	907 603 1610 2645 3827 3827 3827 3827 3827 2645 6135 6594 6135 5598 6136 5791 6137 8663 8663 8663 8663 8663 10378 10378 2581 2791 6138 2591 25791 25791 25791 25791 25791 25791 25791 25791 25791 25791 25791 25791 25791 25791 257333 25733 257532 25753 25753 25755557 257555757575757575757575757575
Ţ	DEPTH	280-295 295-310 310-325 325-340 340-355 355-370 370-385 355-370 370-385 385-400 415-430 445-460 445-460 445-460 440-475 445-460 490-535 535-550 535-550 535-550 535-550 535-550 535-550 535-550 540-655 640-655 685-700 715-730
	GEOCHEM SAMPLE NUMBER	786-001 786-002 786-003 786-005 786-006 786-006 786-009 786-010 786-011 786-011 786-011 786-012 786-012 786-012 786-023

	iC4 nC4	0.08 0.04 0.05 0.08	0.06	0.75 0.12 0.10	0.07 0.06	0.05 0.24 0.38	0.45 0.83 1.04 0.97	1.62 1.47 1.54 1.61	1.45 1.48 1.61 1.61 0.93 1.24 1.36 1.36
	тотаL С ₅ - С ₇	30 22 8	44 44 142	108 2232 2455	3665 2049	933 1206 525	384 13 33 41	53 34 32 15	38 41 69 65 39
	% GAS WETNESS	14.3 4.6 15.4 10.0	6.2 4.9 16.7	21.9 13.5 14.6	24.7 15.6	04 0 0 0 0 0 0 0 0	3.5 2.5 2.5	3.1 4.2 3.8 1.7	2.0 2.0 1.9 1.2 1.2
IS (2A + 2B)	TOTAL C2 - C4	33 43 73	60 60 127	301 603 285	288 202	120 154 157	131 97 58 64	128 88 78 83	109 92 195 135 211 119 152
TABLE 2 C (VOL. PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS (2A + 2B)	TOTAL C ₁ - C ₄	233 932 390 728	966 827 759	1372 4473 1952	1164 1296	1898 3118 2965	3762 3577 2261 2539	4101 2113 2022 4768	2728 3564 9583 7274 10944 13113
	nC4 Butane	8 6 11	10 16 16	34 22 16	13	16 14 23	18 5 6	10 6 6	9 0 1 1 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	iC4 Isobutane	-00-	0 -	26 2 2	10,	- n o i	0000	17 9 8	12 11 13 13 13
	C ₃ Propane	8 11 17	15 44 44	118 123 111	127 111	44 62 58	49 32 22	48 31 39	41 44 44 48 47 49 48 48 48
	C2 Ethane	16 24 43	34 27 66	123 456 157	146 86	60 74 67	56 52 30 30	53 42 40	45 45 64 119 82
TOTAL CONCENTRATION	C1 Methane	200 889 330	907 787 782	1071 3870 1668	877 1094	1778 2964 2808	3631 3480 2203 2475	3974 2025 1944 4685	2619 3472 9388 7139 10733 5006 12962
Ţ	DEPTH	730-745 745-760 760-775	790-805 805-820 820-835	835-850 850-865 865-880	880-895 895-910	910-925 925-940 940-955	955-970 970-995 995-1010 1010-1025	1020-1035 1035-1050 1050-1065	1000-1095 1080-1095 1110-1125 1125-1140 1140-1155 1155-1170 1170-1185
	GEOCHEM SAMPLE NUMBER	786-031 786-032 786-033	786-034 786-035 786-036 786-037	786-038 786-039 786-040	786-041 786-042	786-043 786-044 786-045	786-046 786-047 786-048 786-048	786-050 786-051 786-052 786-052	786-054 786-054 786-055 786-057 786-058 786-059 786-059

		181 22602444735555555555555555555555555555555555	ŝ
	iC ₄ nC ₄	0.83 0.63 0.53 0.63 0.63 0.98 1.28 1.28 1.29 1.29 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	1.3
	тотаL C ₅ - С ₇	49 60 66 66 105 123 80 104 123 88 104 88 123 224 123 224 177 232 224 177 233 233 233 224 177 233 234 224 177 223 80 224 177 223 80 177 80 80 80 80 80 80 80 80 80 80 80 80 80	167
	% GAS WETNESS		5.0
IS (2A + 2B)	TOTAL C2 - C4	214 214 164 164 164 195 195 269 282 282 282 282 282 282 282 282 282 28	210
DROCARBON	TOTAL C ₁ - C ₄	9427 9427 9352 9352 7741 7375 7215 7375 7215 621 621 621 621 621 621 621 621 621 621	4243
. с ₁ - с ₇ ну	nC4 Butane	13\$\$\$ * 312\$	26
TABLE 2 C ON (VOL. PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS (2A + 2B)	iC4 Isobutane	1 4 6 0 5 5 9 3 6 7 8 7 8 7 7 4 7 7 4 7 7 9 9 9 9 9 9 9 9 9 9 9 9	34
(VOL. PPM C	C ₃ Propane	64 64 65 65 66 79 79 79 79 79 79 79 79 79 79 79 79 79	64
INTRATION	C ₂ Ethane	130 130 140 157 100 104 109 104 100 104 100 104 100 104 100 104 100 104 100 104 100 104 100 104 100 104 100 100	86
TOTAL CONCENTRATION	C ₁ Methane	9214 9214 9214 7072 7581 7581 7581 7581 7072 602 602 602 602 602 602 602 602 602 60	4033
TOTAL COI	DEPTH	1185-1200 1200-1215 1215-1230 1245-1260 1245-1260 1245-1260 1275-1290 1275-1290 1335-1320 1335-1350 1335-1350 1335-1335 1365-1335 1410-1425 1440-1425 1440-1425 1440-1425 1440-1425 1440-1425 1440-1425 1440-1425 1440-1425 1440-1425 1440-1515 1515-1530 1500-1515 1575-1590 1590-1605 1500-1605	1620-1635
	GEOCHEM SAMPLE NUMBER	786–061 786–063 786–065 786–065 786–066 786–066 786–069 786–070 786–071 786–073 786–073 786–073 786–073 786–081 786–081 786–081 786–081 786–081 786–083 786–083 786–083 786–083 786–083 786–080 786–080 786–080 786–080	786-090

	ş	<u> </u>
	iC ₄ nC ₄	1.30 1.51 1.51 1.51 1.53 1.53 1.29 1.53 1.29 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25
TABLE 2 C (VOL. PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS (2A + 2B)	тотаL С ₅ - С ₇	98 157 157 157 157 157 157 157 157 157 157
	% GAS WETNESS	88 88 12 12 12 12 12 12 12 12 12 12
	TOTAL C2 - C4	177 177 268 177 172 172 172 172 172 172 172 172 172
DROCARBON	тотаL С ₁ - С ₄	2081 3248 7958 6507 6507 6507 6507 8949 7724 780 7704 1595 1595 1196 1598 1777 1596 1598 1777 2245 2380 2245 2380 2245 1777 2245 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 22622 1777 26622 1777 26622 1777 26622 1777 26622 1777 26622 1777 26622 1777 26622 1777 26656 1777 26657 26657 2766 2766 2766 2726 2726
с <mark>1 - с</mark> 7 н и	nC4 Butane	$\begin{array}{c} 17\\ 12\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 23\\ 2$
TABLE 2 C DF ROCK) OF	iC4 Isobutane	1 5 3 6 3 2 8 8 8 2 2 1 5 1 5 1 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5
(VOL. PPM C	C ₃ Propane	25 112 112 112 112 112 112 112 1
	C2 Ethane	278 2115 2115 2115 2115 212 213 213 213 213 213 213 213 213 213
TOTAL CONCENTRATION	C1 Methane	1904 1904 7756 6105 3824 3824 38557 3956 3956 711 711 711 711 711 1483 1483 1483 1483 1405 1405 1405 1781 1507 1531 1531 1532 1532 1532 1532 1532 1532
Ţ	DEPTH	1635-1650 1650-1665 1665-1680 1665-1680 1695-1710 1710-1725 1725-1740 1770-1755 1770-1785 1770-1785 1770-1785 1770-1765 1815-1890 1880-1875 1845-1890 1880-1905 1920-1905 1935-1950 1955-1950 1955-2010 1965-1980 1955-2010 2010-2025 2010-2025 2055-2070
	GEOCHEM SAMPLE NUMBER	786–091 786–092 786–093 786–095 786–096 786–099 786–099 786–099 786–100 786–101 786–103 786–103 786–103 786–103 786–111 786–111 786–111 786–113 786–113 786–113 786–113 786–113 786–113 786–113 786–113

C2 C3 iC4 Ethane Propane Isobutane
24 15
42
27
35
10
11
25
14
29
20
17
17
14
45
61
28
49
31
101
87
27
65
35 119
141
189

	1	0008-70005-400808020-4005-485000
	iC ₄ nC ₄	0.98 0.98 0.65 0.65 0.46 0.46 0.46 0.46 0.41 0.24 0.24 0.25 0.25 0.19 0.20 0.18 0.21 0.21 0.22 0.25 0.22 0.22 0.22 0.22 0.22 0.22
	TOTAL C ₅ - C ₇	101 170 248 142 292 292 293 718 24761 17393 19385 19385 19385 19385 19385 19385 19385 19385 19385 19385 19385 1074 1074 1074 1074 1074 1074 1074 1074
	% GAS WETNESS	71.0 80.9 80.9 80.9 80.3 87.7 88.3 88.3 88.3 88.3 88.3 88.3 88
TABLE 2 C (VOL. PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS (2A + 2B)	TOTAL C2 - C4	577 1028 1685 1390 1773 1773 1773 1991 1980 1980 23350 1980 23350 1980 29486 28165 28165 28165 1695 1695 1695 1695 1695 10972 10972
	TOTAL C1 - C4	812 1270 2045 1820 3596 2153 2153 2153 2153 2153 2306 2153 2306 2306 2253 33398 30110 8808 30110 8808 16696 18007 20552 20110 3037 1815 20552 20110 37966 20110 20552 20110 1807 20552 20110 1807 20552 20110 1807 20552
F C ₁ - C ₇ HV	nC4 Butane	109 197 197 197 255 535 535 535 535 535 535 535 535 533 5335 11773 11773 11773 5335 5335
TABLE 2 C DF ROCK) OI	iC4 Isobutane	107 161 171 171 171 171 171 171 171 171 189 1930 1042 1044 1044 1044 1046 1046 1046 1046 1046
(VOL. PPM C	C ₃ Propane	299 552 552 874 959 953 1516 953 1052 979 7915 7915 7915 7915 7915 7915 7915
TOTAL CONCENTRATION (C ₂ Ethane	62 118 118 118 118 118 128 128 12
	C ₁ Methane	236 236 242 359 430 430 430 430 3321 3321 3321 3321 3321 347 3279 3321 347 159 159 159 159 150 150 1517 859 1517
	DEPTH	2520-2535 2535-2550 2550-2565 2550-2565 2550-2565 25610-2655 2580-2595 2610-2655 2640-2655 2640-2655 2640-2655 2640-2655 2640-2655 2685-2640 2700-2715 2685-2640 2715-2790 2790-2805 2790-2805 2790-2805 2865-2820 2865-2880 2865-2880 2865-2880 2865-2880 2865-2895 2865-2910 2955-2910 2955-2970
	GEOCHEM SAMPLE NUMBER	786–151 786–152 786–153 786–155 786–155 786–156 786–156 786–156 786–156 786–161 786–161 786–166 786–166 786–166 786–166 786–166 786–167 786–171 786–171 786–171 786–171 786–177 786–177 786–177 786–177 786–177 786–177 786–177 786–177 786–177 786–177

[
	iC ₄ nC ₄	0.32 0.38 0.45 0.36 0.36 0.37 0.33 0.33 0.33 0.33 0.33 0.28 0.29 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.25 0.25 0.25 0.34 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.25 0.36 0.25 0.36 0.25 0.36 0.25 0.37 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.25
	тотаL С ₅ - С ₇	5129 1641 1641 1641 1671 1788 1037 1588 1588 1588 2892 2892 2892 2892 2892 2892 2892 2
	% GAS WETNESS	81.3 55.7 56.9 61.3 56.9 55.9 55.9 55.9 55.9 55.9 55.9 55.9
NS (2A + 2B)	TOTAL C2 - C4	9209 25712 25712 25096 28682 8662 8662 8662 8552 10737 3574 10737 3574 10737 3574 10737 3574 10737 3574 10737 3574 10737 3574 4184 4184 4184 4184 4184 4184 3765 3119 4184 4184 4184 4184 4184 4184 4184 4
TABLE 2 C (VOL. PPM OF ROCK) OF C ₁ - C ₇ HYDROCARBONS (2A + 2B)	TOTAL C ₁ - C ₄	11324 47134 47134 45094 45094 45094 13223 13223 13223 13223 13223 13223 13223 13223 13223 13223 13223 13223 13223 13223 13223 13223 13223 13223 12533 4559 4119 5374 5119 5374 5119 5368 5374 5368 5374 5368 5374 5368 5374 5368 5368 5374 5368 5374 5368 5368 5368 5374 5368 5368 5374 5368 5374 5368 5374 5368 5374 5368 5374 5368 5374 5376 5376 5376 5376 5376 5376 5376 5376
: с <mark>1 - с</mark> 2 н л	nC4 Butane	2725 2502 2502 2502 2404 3814 3814 1332 1263 1434 1336 631 722 631 1131 722 631 1131 722 880 880 880 880 734 779 882 880 882 880 882 880 882 880 882 880 883 880 885 885
TABLE 2 C DF ROCK) OF	iC4 Isobutane	867 963 963 964 1382 1382 1382 1382 1382 1382 1382 1382
(VOL. PPM O	C ₃ Propane	4173 10500 10770 9898 3656 3574 4703 3574 4703 3574 4703 3574 4703 3576 3282 682 682 682 1070 11295 11295 11209 11459 11459 11459 11459 11209 11459 11209 11459 11209 11644 117129 6852 17129
TOTAL CONCENTRATION (C2 Ethane	$\begin{array}{c} 1444\\ 11748\\ 11748\\ 11046\\ 9623\\ 3167\\ 3167\\ 3167\\ 2865\\ 5369\\ 3511\\ 451\\ 2588\\ 2539\\ 2639\\ 3511\\ 1417\\ 1417\\ 1417\\ 1351\\ 451\\ 2569\\ 1351\\ 1696\\ 1182\\ 1639\\ 1639\\ 1182\\ 23603\\ 23603\\ 10184\end{array}$
	C ₁ Methane	2115 2115 21421 19998 17933 17933 17936 5506 8535 10275 5406 8535 10275 5406 8535 10275 5406 8535 10275 5406 8535 10275 2355 4198 1568 2355 4198 1568 2355 4414 6097 17803 13052 2587 2587 2587 2587 2587 2587 2587 25
	DEPTH	2970-2985 2985-3000 3000-3015 3015-3030 3030-3045-3060 3045-3060 3060-3075 3045-3090 3060-3075 3060-3075 3060-3075 3155-3090 3155-3160 3155-3160 3155-3160 3255-3240 3255-3240 3255-3240 3255-3240 3255-3300 3360-3315 3360-3315 3360-3315 3360-3305 3360-3305 3360-3405 3360-3405 3360-3405
	GEOCHEM SAMPLE NUMBER	786–181 786–182 786–183 786–184 786–184 786–186 786–189 786–191 786–191 786–193 786–193 786–193 786–193 786–193 786–201 786–203 786–201 786–203 786–203 786–203 786–203 786–203 786–203 786–203 786–203 786–203 786–203 786–203 786–203 786–203 786–203

GEOCHEM			ORGANIC MATTER DESCRIPTION				THERMAL
SAMPLE NUMBER	DEPTH	TYPES 40%;10—40%; 10%	REWARKS	REWORKED P (%)	PARTICLE P SIZE	PRESERV- ATION	MATURATION INDEX
786-050A	1020-1035m	Am**;-;W-Al-I-H	<pre>**not typically oil prone</pre>	ഹ	Ъ-С	٤ı	1+ to 2-(?)
786-063A	1215-1230m	W;H-A1;Am-I		10	С- И-С	ტ	1+
786-069B	1305-1320m	W;H-A1-Am**;I	**as 050A	10	F-C	IJ	1+
786-080A	1470-1485m	-; W-A1-H-Am; I		10	W	IJ	1+ to 2-
786-090A	1620-1635m	-;W-H-Al-Am;I		10	₽-M	IJ	1+ to 2-
786-098A	1740-1755m	- ; W-A1-H-Am; I		10	F-M	IJ	1+ to 2-
786-105A	1845-1860m	- <i>;</i> Am**-W-Al-H; I	H at 2- through 2. Fungal spores **as 050A	10	н-ч	F-G	1+ to 2-
786-111A	1935-1950m	-;W-Am**-H-Al-I;-	H at 2- through 2 **not typically oil prone, frequently unrecognisable and disseminated	15	Е-М	Eq.	1+ to 2-
786-120B	2055-2070m	W;H-I-Am**-Al;-	**as 111A H dominantly 2- to 2 and 2	30	F-M/C	Б-Ч	1+ to 2-
786-126A	2145-2160m	I-W;-;Am**-H-Al	**unrecognisable, disseminated H frequently reworked	85	F-M	٤	1+ to 2-(?)
786-130A	2205-2220m	W−I;-;H-Am-A1		80	W	ы	1+ to 2-
786-133A	2250-2265m	W-I;-;H-A1-Am	extensive reworking	06	W	IJ	1+ to 2-(?)
786-143A	2400-2415m	W-I;-;H-Al	H very variable at 1+ to 2- through 2 to 2+ disseminated Am-like contaminant	06	W	Б-Ч	1+ to 2-(?)
786-152A	2535-2550m	W-I <i>;-;</i> H-Al	contaminant as in 143A	06	W	F-G	2-
786-156A	2595-2610m	W-I;-;H-A1	contaminant as in 143A	85	Ψ	Б-Ч	2-

Algal, Amorphous, Herbaœous, Inertinite, Resin, Wood

postscript = coarse, cuticle, cysts, degraded, fine, other, structured, spore-pollen, thick-walled, unstructured

TABLE 3 KEROGEN TYPE AND MATURATION
--

GEOCHEM			ORGANIC MATTER DESCRIPTION				THERMAL
SAMPLE NUMBER	ОЕРТН	TYPES 40%; 10—40%; 10%	REMARKS (REWORKED P/ (%)	PARTICLE P	PRESERV- ATION	MATURATION INDEX
786-160A	2655-2670m	Am**;Al*;I-W-H	<pre>**includes incompletely developed material *includes Al passing to Am H at 2- to 2</pre>	10	F-VC	U	2-
786-163A	2700-2715m	Am**;Al*;I-W-H	** * as 160A	10	F-VC	Ċ	2- to 2
786-165A	2730-2745m	Am**; W-A1*-1; H	frequent fine pyrite ** as 160A	35	н М	Гч	2- to 2(?)
786-168A	2775-2790m	-;I-Am**-Al**-H**-W;-	significant H at 2- to 2 **includes material passing to Am	45	F-M/C	ტ	2- to 2
786-171A	2820-2835m	-;Al**-W-H**-Am**-I;-	**as 168A	35	M-C	ი	2- to 2
786-176B	2895-2910m	W;H-I-Al-Am;-		40	M-C	F4	2- to 2
786-180B	2955-2970m	-;Al**-Am**-H**-W-I;-	**as 168A	25	M-C	ი	2- to 2
786-181B	2970-2985m	-;Al-W-H-Am-I;-	close to 2	30	М	ი	2- to 2/2
786-213A	2986.93m CORE	W;-;I-H		10	M-C	ი	2(?)
786-185B	3030-3045m	W;H**-Am**-I;A1	**includes material passing to Am	10	F-VC	U	77
786-188C	3075-3090m	W; Am-H; I-A1		10	Ъ-С	ი	7
786-216A	3125m CORE	H-W;-;Am-I-Al		ß	Б-С	Ċ	7
786-192A	3135-3150m	H-W;-;I-Am-A1	disseminated Am-like contaminant	10	F-С	U	7
786-194A	3165-3180m	W-H; I; Am-Al	disseminated Am-like contaminant H at 2 to 2+	30	F-C	ს	7
786-217A	3186m SWC	-;W-H-Am**-I;Al	<pre>**not prime quality, may include contamination</pre>	10	F-M/C	ი	7
786-196A	3195-3210m	W-H;I;Am-A1	abundant disseminated Am-like contaminant. H at 2 to 2+	20	F-M/C	Ċ	7

Algal, Amorphous, Herbaceous, Inertinite, Resin, Wood postscript = coarse, cuticle, cysts, degraded, fine, other,. structured, spore-pollen, thick-walled, unstructured TABLE 3 KEROGEN TYPE AND MATURATION

GEOCHEM			ORGANIC MATTER DESCRIPTION				THERMAL
SAMPLE NUMBER	DEPTH	TYPES 40%;10-40%; 10%	REMARKS	EWORKED (%)	REWORKED PARTICLE PRESERV- (%) SIZE ATION	PRESERV- ATION	MATURATION INDEX
786-200B	3255-3270m	-;W-H-Am**-I;Al	**grainy, poor quality, frequently resembles contaminant	10	F-M/C F	Ēų	7
786-202B	3285-3300m	Am**;W-H-I;A1	**as 200B	15	F-VC	F-G	2
786-218A	3297m SWC	W;H-I;Am-Al	material at 2 to 2+	20	M-C	U	7
786-206A	3345-3360m	Am**;W-H-I;Al	**as 200B. Close to 2 to 2+	20	F-C	U	7
786-219A	3376m SWC	W;H-I;Am-Al		20	M-C	U	2 to 2+
786-209B	3390-3405m	W; -; Am-H-I		I	F-VC	U	2 to 2+

TABLE 4VITRINITE REFLECTANCE DATA

GEOCHEM SAMPLE	DEPTH	SAMPLE		FLECTIVITY Ro (%	5), (NUMBER OF P	ARTICLES)	
NUMBER	DEPTH	SAMPLE TYPE	1	2	3	4	REMARKS
786-050A	1020-1035m	KC	0.29(4) 🗸	0.43(17)	0.59(4)	0.76(2)	
786-063A	1215-1230m	KC	0.28(52)	0.45(6)	-	-	
786-069в	1305-1320m	KC	0.24(12)√	0.40(6)	-	-	
786-080A	1470-1485m	KC	0.31(43)	-	-	-	
786-090A	1620-1635m	KC	0.33(51)"	-	-	-	
786-098A	1740-1755m	KC	0.35(51) ⁄	0.47(5)	-	-	
786-105A	1845 - 1860m	KC	0.35(65) 🗸	0.53(2)	-	-	
786-111A	1935-1950m	WR	N	O DETERMINAT	ION POSSIBL	Е	
786 - 120B	2055-2070m	KC	0.39(20)√	0.51(2)	0.84(20)	1.12(11)	
786 - 126A	2145-2160m	WR	0.50(2)√	0.63(2)	1.20(6)	1.36(6)	
786-130A	2205-2220m	WR	0.58(2) 🗸	0.76(1)	1.20(11)	-	
786 - 133A	2250-2265m	WR	0.75(4)√	1.25(11)	-	-	
786-143A	2400-2415m	WR	0.86(1) 🗸	1.07(4)	1.29(9)	-	
786 - 147A	2460-2475m	WR	1.18(8)√	-	-	-	
786–152A	2535-2550m	KC	0.47(5)√ 1.41(3)	0.67(3)	0.91(3)	1.15(22)	
786-156A	2595-2610m	WR	0.57(1) 🗸	0.73(1)	1.26(6)	-	
786-160A	2655-2670m	KC	0.31(16) 1.14(1)	0.49(10)√ 1.39(2)	0.67(2)	0.93(7)	
786-163A	2700-2715m	KC	0.38(10)√	0.77(7)	1.25(2)	-	
786-165A	2730-2745m	KC	0.48(42)√	0.69(19)	-	-	
786-168a	2775-2790m	KC	0.34(13) 1.13(10)	0.48(8)√	0.57(1)	0.83(7)	
786–171A	2820-2835m	ĸc	0.48(20)√ 1.21(1)	0.73(1)	0.81(1)	1.02(17)	
786 - 176B	2895-2910m	WR	0.38(5)	0.53(20)√	0.81(1)	-	
786-180B	2955-2970m	KC	0.36(2) 🗸	0.45(4)	0.75(3)	1.07(8)	
786 - 181B	2970-2985m	KC	0.36(3)	0.58(5)√	0.84(6)	1.20(9)	
786-213A	2986.93m CORE	ĸc	0.68(60)	-	-	-	
786 - 185B	3030-3045m	KC	0.46(1)	•0.69(71)∨	-	-	
786-188C	3075-3090m	KC	0.72(40)••	-	-	-	
786 - 190B	3105-3120m	KC	0.65(68)• 🗸		-	-	
786 - 216A	3125m SWC	KC	0.68(27)•	/ 0.96(1)	-	-	
786 - 192A	3135-3150m	KC	0.60(30) 🗸	•0.75(7)	-	-	
786-217A	3186m SWC	KC	0.41(3)	•0.61(5)√	0.86(4)	-	
786 - 196A	3195-3210m	WR	0.49(1)	€0.66(22) J	1.11(1)	-	
786-218A	3297m SWC	KC	0.44(4)	•0.71(26) 5	-	-	
786-206A	3345-3360m	KC	•0.77(41)√	1.09(1)	-	-	

TABLE 4 VITRINITE REFLECTANCE DATA

GEOCHEM			AVERAGE REFLECTIVITY Ro (%), (NUMBER OF PARTICLES)				
SAMPLE NUMBER	DEPTH	SAMPLE	1	2	3	4	REMARKS
786-219A	3376m SWC	KC	0.48(3)	0.76(19)√	0.92(1)	-	
786-209в	3390-3405m	KC	0.76(26)√	0.88(24)	-	-	

TABLE 5

ROCKEVAL PYROLYSIS DATA

GEOCHEM SAMPLE	DEPTH	<u></u>	<u>52</u> (mg/g)	<u>53</u> (mg/g)	HYDROGEN INDEX	PRODUCTION	TMAX
NUMBER		(mg/g/	(шд/д)	(mg/g)	INDEX	INDEX	(°C)
786-050A	1020-1035	0.07	3.22	1.76	272.88	0.02	425
786-056A	1110-1125	0.07	2.91	1.27	316.30	0.02	429
786-060A	1170-1185	0.09	4.53	1.78	380.67	0.02	428
786-063A	1215-1230	0.07	3.18	1.24	269.49	0.02	432
786-069B	1305-1320	0.07	3.67	0.65	374.49	0.02	453
786-074A	1380 - 1395	0.09	2.48	1.48	291.76	0.04	434
786-080A	1470-1485	0.08	2.64	1.04	244.44	0.03	437
786-083A	1515-1530	0.08	2.64	0.76	225.64	0.03	430
786-090A	1620-1635	0.09	2.31	1.02	189.34	0.04	430
786-095A	1695-1710	0.05	0.18	1.24	94.74	0.22	424
786-098A	1740 - 1755	0.06	1.73	0.74	153.10	0.03	433
786-105A	1845-1860	0.06	2.25	0.79	169.17	0.03	443
786-111A	1935 - 1950	0.05	0.26	0.51	100.00	0.16	436
786-116A	2010-2025	0.05	0.40	0.55	111.11	0.11	435
786-120B	2055 - 2070	0.08	1.10	0.51	115.79	0.07	437
786-126A	2145-2160	0.05	0.37	0.61	71.15	0.12	430
786-130A	2205-2220	0.05	0.29	0.46	59.18	0.15	430
786-133A	2250 - 2265	0.04	0.23	0.52	50.00	0.15	428
786 - 139A	2340 - 2355	0.05	0.30	0.28	68.18	0.14	428
786-143A	2400-2415	0.04	0.29	0.35	61.70	0.12	429
786 - 147A	2460 - 2475	0.03	0.21	0.19	50.00	0.13	429
786 - 150A	2505-2520	0.03	0.27	0.28	51.92	0.10	431
786 - 152A	2535-255 0	0.03	0.26	0.23	57.78	0.10	434
786 - 153A	2550 - 2565	0.03	0.27	0.25	56.25	0.10	431
786 - 155A	2580-2595	0.20	0.35	0.35	64.81	0.36	434
786 - 156A	25 95-2 610	0.05	0.62	0.26	86.11	0.07	441
786 - 157A	2610-2625	0.06	0.65	0.25	90.28	0.08	441
786 - 158A	2625 - 2640	0.05	0.50	0.28	73.53	0.09	439
786-160A	2655-2670	1.33	36.23	0.28	524.31	0.04	436
786–161A	2670-2685	2.67	34.78	0.18	457.63	0.07	435
786–162A	2685-2700()v	yne 1.58	28.64	0.20	495.50	0.05	435
786 - 163A	2700-2715	1.51	28.16	0.21	499.29	0.05	436
786 - 164A	2715-2730	2.27	27.12	0.25	622.02	0.08	435
786 - 165A	2730-2745	2.07	26.07	0.27	445.64	0.07	434
786 - 166A	2745 - 2760	1.39	23.31	0.30	430.07	0.06	436
786 - 167A	2760-2775	0.99	16.89	0.38	343.29	0.06	438
786–168A	2775 - 2790	0.91	14.56	0.34	333.18	0.06	438
786-169A	2790-2805	1.10	18.79	0.31	371.34	0.06	439
786 - 170B	2805-2820	1.11	14.79	0.23	295.21	0.07	441
786–171A	2820-2835	1.27	15.15	0.27	271.02	0.08	440
786 - 171B	2821-2835	1.0.08	0.52	0.25	56.52	0.13	439
786–172A	2835-2850	2 1.35	18.81	0.32	261.25	0.07	438
786 - 176B	2895-2910	0.26	2.55	0.31	265.62	0.09	437
786 - 177B	2910-2925	0.33	4.44	0.37	288.31	0.07	438
786-178B	2925-2940	0.56	8.71	0.45	473.37	0.06	437
786–179A	2940-2955	0.38	6.50	0.25	256.92	0.06	439
786-180B	2955-2970	0.71	10.94	0.31	334.56	0.06	438
786-181B	2970-2985 🛩		5.31	0.25	264.18	0.04	442
786-183B	3000-3015	5.40	82.15	0.78	178.98	0.06	445
	A	1					
	Bu	nf					

TABLE 5

ROCKEVAL PYROLYSIS DATA

GEOCHEM SAMPLE NUMBER	DEPTH	<u></u> (mg/g)	<u>52</u> (mg/g)	<u>53</u> (mg/g)	HYDROGEN INDEX	PRODUCTION INDEX	TMAX (°C)
786 - 184A	3015-3030	6.93	93.19 <	0.76	277.35	0.07	444
786-185B	3030-3045	2.76	52 . 43 ×	0.34	280.37	0.05	442
786–186C	3045-3060	0.23	2.35	0.22	165.49	0.09	443
786–187C	3060-3075	0.60	18.79	0.13	133.26	0.03	440
786–188C	3075-3090	1.31	36.42~	0.37	313.97	0.03	440
786 - 190B	3105-3120	0.23	4.02	0.18	462.07	0.05	443
_786-191B	3120-3135	3.02	62.59 ≻	0.43	261.88	0.05	441
	3135 - 3150	0.17	0.29	0.08	36.25	0.37	441
786–194A	3165-3180	0.25	1.65	0.09	214.29	0.13	439
₩786-194C	3166-3180	0.17	1.82	0.15	152.94	0.09	441
×* 786–195A	3180 - 3195	0.35	4.29	0.06	487.50	0.08	438
786–196A	3195-321 0	0.31	2.03	0.25	263.64	0.13	442
786-198C	3225-3240	0.27	0.98	0.29	84.48	0.22	445
Cook 786-200B	3255-3270	0.30	2.26	0.29	262.79	0.12	444
⁻ 786–202B	3285-3300	0.26	4.35	0.19	478.02	0.06	444
786-202B 786-204B 786-205A 786-205A	3315-3330	0.28	4.68	0.21	380.49	0.06	446
wr ^{16,1} 786-205A	3330-3345	0.18	2.11	0.18	131.87	0.08	446
۳ 786–206A	3345-3360	0.84	5.03	0.16	294.15	0.14	441
786-208B	3375-3390	0.18	0.75	0.23	51.37	0.19	446
786-209B	3390 - 3405	5.31	105.01	1.26	155.34	0.05	450
786-210B	3405-3420	0.43	5.99	0.28	544.55	0.07	446

HYDROCARBONS NON HYDROCARBONS Precipid. Parattin GEOCHEM Naphthenes Asphatenes Noneluted Aromatics Eluted TOTAL Sulphur DEPTH SAMPLE TOTAL N50'S N50'5 NUMBER EXTRACT NSO 86 786-090A 98 1620-1635 **9**V 786-098A 108 1740-1755 187 2655-2670 40 538~ 786-160 786-163A 194 2700-2715 × n 1304~ 786-165A 198 2730-2745× ୬ 3437√ 2775-2790 * D 2434 🗸 786-168 1489√ 2820-2835 × D 786-171A 210 384√ 786-176 217 2895-2910 1456 🗸 H: 4609 786-180 225 2955-2970 102 ₩ 786-211 ,5 1 ja72979.3-.35 786-212 5513282983.08-18 *U* 786-214 55 2987.50-.59 69 U 652 \ 786-185 238 3030-3045 786-190B 218 3105-3120 585√ 746 J 786-196A 262 3195-3210 786-202 271 3285-3300 262√ 1004 🗸 786-206 278 3345-3360 **9**√ 786-209 284 3390-3405

 TABLE
 6a

 CONCENTRATION (PPM) OF EXTRACTED C15+ MATERIAL IN ROCK

GEOCHEM SAMPLE NUMBER	DEPTH	HYDROC	HYDROCARBONS		NON HYDROCARBONS			
		Paraffin — Naphthenes	Aromatics	Preciptd. Asphaltenes	Eluted NSO's	Non eluted NSO's	Sulphur	
786-090A	1620-1635	9.09	8.64	52.27	18.86	9.32	1.82	
786-098A	1740-1755	7.35	13.24	53.78	18.49	6.30	0.84	
786-160	2655-2670	19.46	28.33	27.93	19.82	4.05	0.41	
786-163A	2700-2715	20.62	29.76	24.07	18.00	7.25	0.29	
786-165A	2730-2745	15.42	23.02	44.41	11.40	1.95	3.80	
786-168	2775-2790	10.33	19.25	52.98	12.54	4.49	0.41	
786-171A	2820-2835	11.24	32.22	37.83	15.45	3.27	0.00	
786-176	2895-2910	15.63	24.93	41.35	12.56	4.35	1.19	
786-180	2955-2970	26.04	30.61	31.60	9.71	1.61	0.44	
786-211	2979.335	44.12	13.04	25.15	9.20	2.56	5.94	
786-212	2983.08-18	46.31	8.83	21.50	5.50	1.14	16.72	
786-214	2987.5059	8.68	9.97	49.52	13.83	6.75	11.25	
786-185	3030-3045	9.59	22.28	57.94	7.55	1.71	0.93	
786-190B	3105-3120	14.15	25.41	45.43	10.88	3.46	0.67	
786-196A	3195-3210	12.87	19.30	53.80	12.87	1.17	0.00	
786-202	3285-3300	18.52	23.49	32.46	12.64	4.00	8.89	
786-206	3345-3360	18.10	32.67	33.53	13.17	1.40	1.13	
786-209	3390-3405	8.96	29.75	51.03	7.39	1.54	1.33	

 TABLE 6b

 COMPOSITION (NORMALISED %) OF C15+ MATERIAL EXTRACTED FROM ROCK

TABLE 7SIGNIFICANT RATIOS (%) OF C₁₅₊ FRACTIONS AND ORGANIC CARBON

GEOCHEM SAMPLE NUMBER	DEPTH	ORGANIC CARBON (wt. %)	HYDROCARBONS	HYDROCARBONS ORG. CARBON	TOTAL EXTRACT ORG. CARBON	P-NAPHTHENES AROMATICS
786-090A	1620-1635	0.92	17.73	0.88	4.95	1.05
786-098A	1740-1755	0.73	20.59	0.78	3.80	0.56
786-160	2655-2670	1.92	47.80	4.80	10.04	0.69
786-163A	2700-2715	3.70	50.38	7.38	14.64	0.69
786-165A	2730-2745	3.95	38.44	7.53	19.59	0.67
786-168	2775-2790	2.94	29.58	4.62	15.63	0.54
786-171A	2820-2835	3.58	43.46	4.78	10.99	0.35
786-176	2895-29 10	0.60	40.55	6.27	15.47	0.63
786-180	2955–297 0	1.94	56.64	13.46	23.76	0.85
786-211	2979.335	0.14	57.16	16.61	29.07	3.38
786-212	2983.08-18	0.10	55.14	25.97	47.09	5.25
786-214	2987.50 59	0.06	18.65	4.36	23.39	0.87
786-185	3030-3045	1.81	31.87	1.98	6.22	0.43
786 - 190B	3105-3120	1.25	39.56	4.07	10.30	0.56
786-196A	3195-3210	1.04	32.16	4.29	13.33	0.67
786-202	3285-3300	1.08	42.01	3.14	7.48	0.79
786-206	3345-3360	1.25	50.77	12.16	23.96	0.55
786-209	3390-3405	2.34	38.71	3.30	8.54	0.30

GEOCHEM SAMPLE NUMBER	-090A	-098A	-160	-163A	-165A	-168
DEPTH	1620- 1635m	1740- 1755m	2655- 2670m	2700- 2715m	2730 - 2745m	2775- 2790m
SAMPLE TYPE						
^{nC} 15	8.55	11.01	11.46	11.85	10.02	11.41
^{nC} 16	14.77	15.75	11.46	9.76	10.27	10.49
^{nC} 17	15.93	14.04	11.36	12.32	11.26	9.85
^{nC} 18	11.66	12.33	8.06	8.06	9.03	7.94
^{nC} 19	7.38	8.35	7.09	7.58	8.91	8.12
^{nC} 20	6.09	7.59	7.28	7.87	7.80	7.30
^{nC} 21	7.64	6.64	5.92	6.82	8.04	6.30
¹⁰ 22	5.70	6.83	6.12	6.07	6.93	6.57
^{nC} 23	9.84	8.16	7.38	5.97	8.17	6.66
^{hC} 24	4.15	3.98	5.92	6.07	5.94	5.84
^{nC} 25	3.89	2.47	3.69	5.12	5.07	5.29
^{nC} 26	1.55	0.95	4.85	4.74	3.84	4.65
^{nC} 27	1.04	0.57	3.69	3.22	1.73	4.29
^{nC} 28	0.78	0.38	2.23	1.61	1.24	2.55
^{nC} 29	0.39	0.19	1.75	1.33	0.62	1.64
^{nC} 30	0.26	0.19	0.68	0.66	0.25	0.46
nC ₃₁	0.13	0.19	0.39	0.38	0.25	0.18
^{nC} 32	0.13	0.19	0.29	0.19	0.25	0.18
^{nC} 33	0.13	0.19	0.19	0.19	0.12	0.09
nC ₃₄	0.00	0.00	0.10	0.09	0.12	0.09
^{nC} 35	0.00	0.00	0.10	0.09	0.12	0.09
PARAFFIN	24.99	21.18	32.23	33.14	33.51	37.29
ISOPRENOID	5.44	6.51	6.54	6.66	7.67	6.67
NAPHTHENE	69.57	72.31	61.23	60.19	58.81	56.04
CPI INDEX A	1.56	1.20	0.97	1.00	1.11	1.04
CPI INDEX B	1.40	1.31	0.94	1.08	1.03	1.15
PRISTANE/PHYTANE	2.57	3.91	1.58	1.41	2.19	2.06
PRISTANE/nC ₁₇	0.98	1.74	1.09	0.95	1.40	1.22

 TABLE
 8

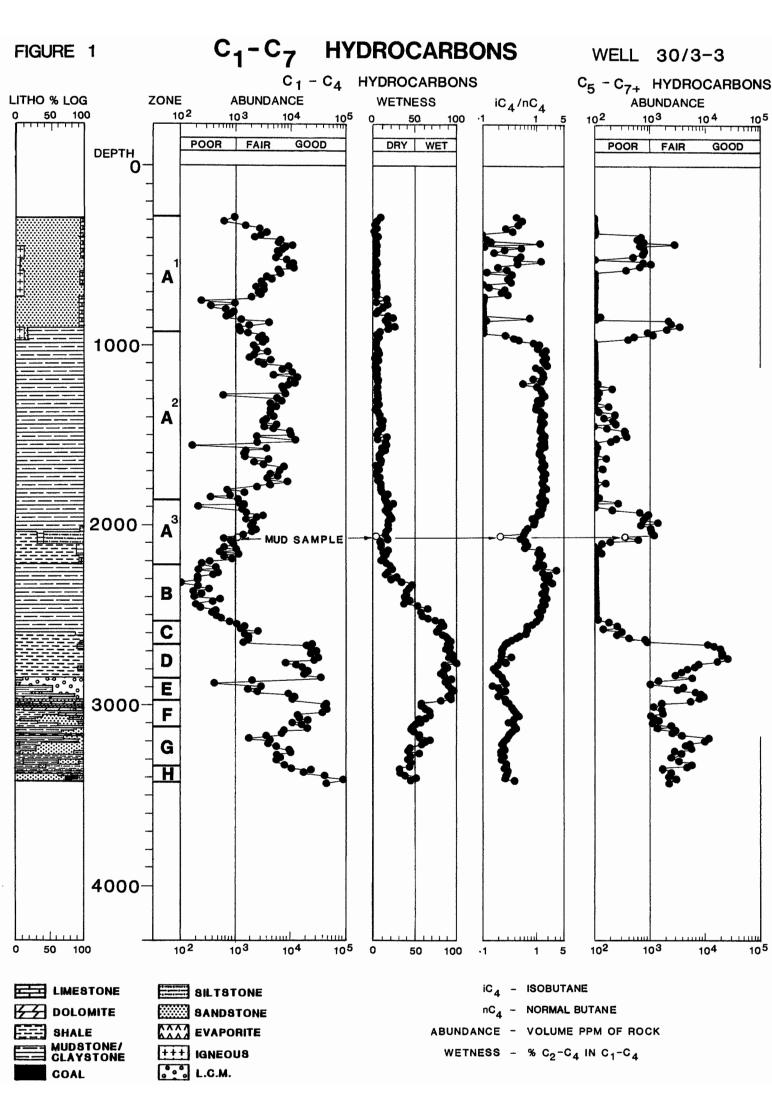
 COMPOSITION (NORMALISED %) OF C15+ PARAFFIN – NAPHTHENE HYDROCARBONS

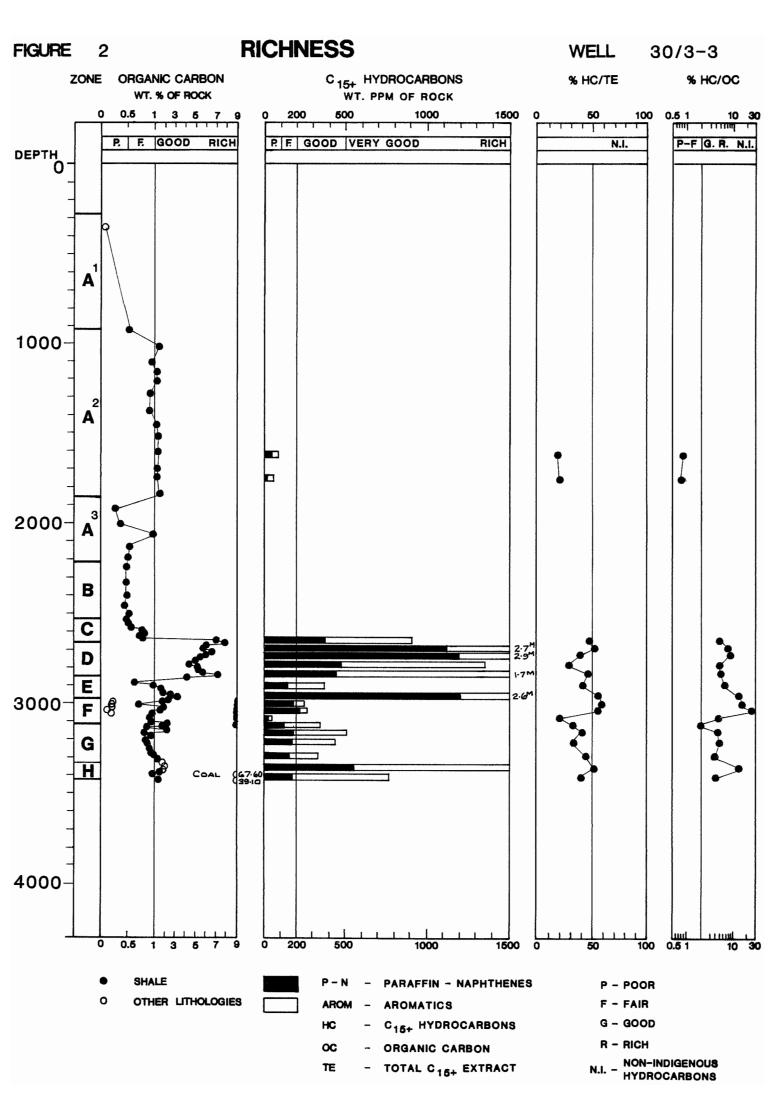
GEOCHEM SAMPLE NUMBER	-171A	-176	-180	-211	-212	-214
DEPTH	2820- 2835m	2895 - 2910m	2955- 2970m	2979.3- 2979.35m	2983.08- 2983.18m	2987.50- 2987.59m
SAMPLE TYPE				CORE	CORE	CORE
^{nC} 15	10.87	7.09	10.11	4.62	10.98	2.08
^{nC} 16	9.91	9.64	10.35	8.32	9.80	6.52
^{nC} 17	9.53	12.67	9.79	10.17	7.45	10.05
^{nC} 18	7.82	9.55	8.29	10.57	6.67	12.05
^{nC} 19	7.63	8.03	7.58	9.78	8.24	10.60
^{nC} 20	7.15	7.56	7.03	11.49	9.41	10.24
^{nC} 21	6.01	8.51	6.64	8.19	11.37	9.33
^{nC} 22	6.10	6.24	5.37	7.13	7.06	9.33
^{nC} 23	6.77	7.56	5.13	7.00	4.71	8.06
nC ₂₄	6.48	5.48	4.50	7.00	4.31	6.70
^{nC} 25	6.39	4.16	4.58	5.55	3.53	5.53
^{nC} 26	5.15	3.97	3.95	3.83	3.92	3.62
^{nC} 27	4.19	3.88	3.55	1.85	3.53	2.54
^{nC} 28	2.86	2.55	3.63	1.59	2.75	1.18
^{nC} 29	1.14	1.23	3.16	1.06	1.96	0.82
^{nC} 30	0.76	0.57	2.45	0.79	1.57	0.54
^{nC} 31	0.48	0.47	1.90	0.40	0.78	0.27
^{nC} 32	0.38	0.28	1.03	0.26	0.78	0.18
^{nC} 33	0.19	0.28	0.63	0.13	0.39	0.18
^{nC} 34	0.10	0.19	0.24	0.13	0.39	0.09
^{nC} 35	0.10	0.09	0.08	0.13	0.39	0.09
PARAFFIN	38.47	36.80	36.58	13.05	5.12	31.27
ISOPRENOID	6.75	4.59	3.47	1.41	0.52	3.68
NAPHTHENE	54.79	58.61	59.95	85.54	94.36	65.05
CPI INDEX A	1.04	1.18	1.05	0.96	1.11	1.04
CPI INDEX B	1.07	1.05	1.05	1.02	0.93	1.21
PRISTANE/PHYTANE	2.61	2.47	2.16	1.41	1.89	1.89
PRISTANE/nC 17	1.33	0.70	0.66	0.62	0.89	0.77

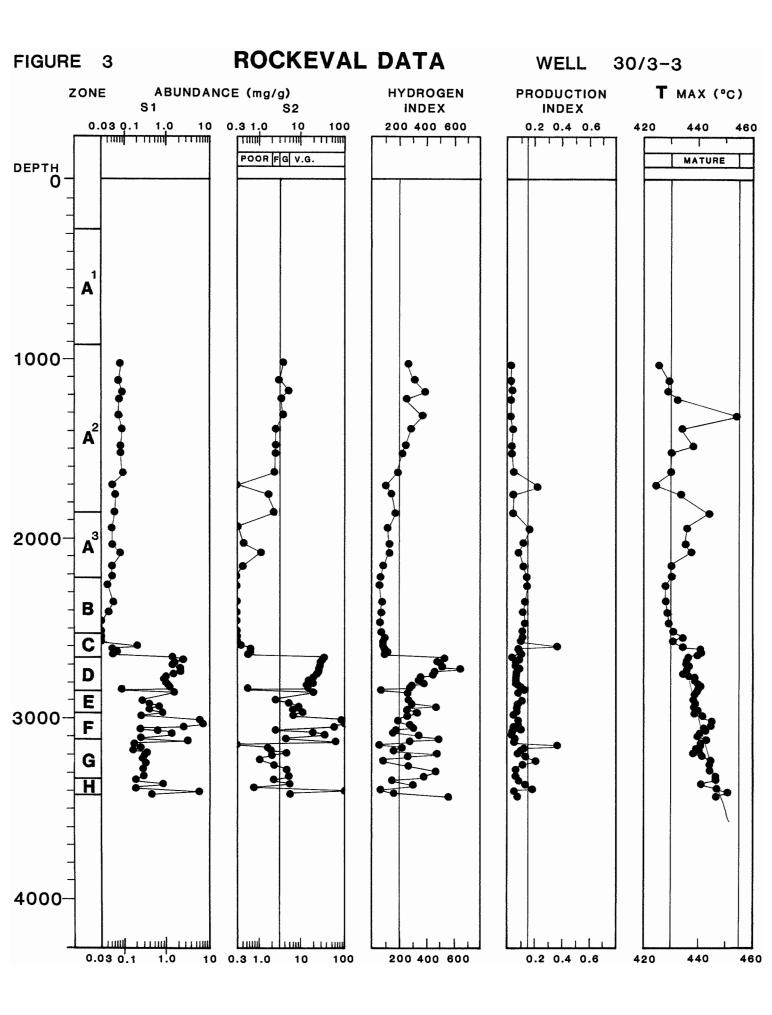
 TABLE
 8

 COMPOSITION (NORMALISED %) OF C15+ PARAFFIN – NAPHTHENE HYDROCARBONS

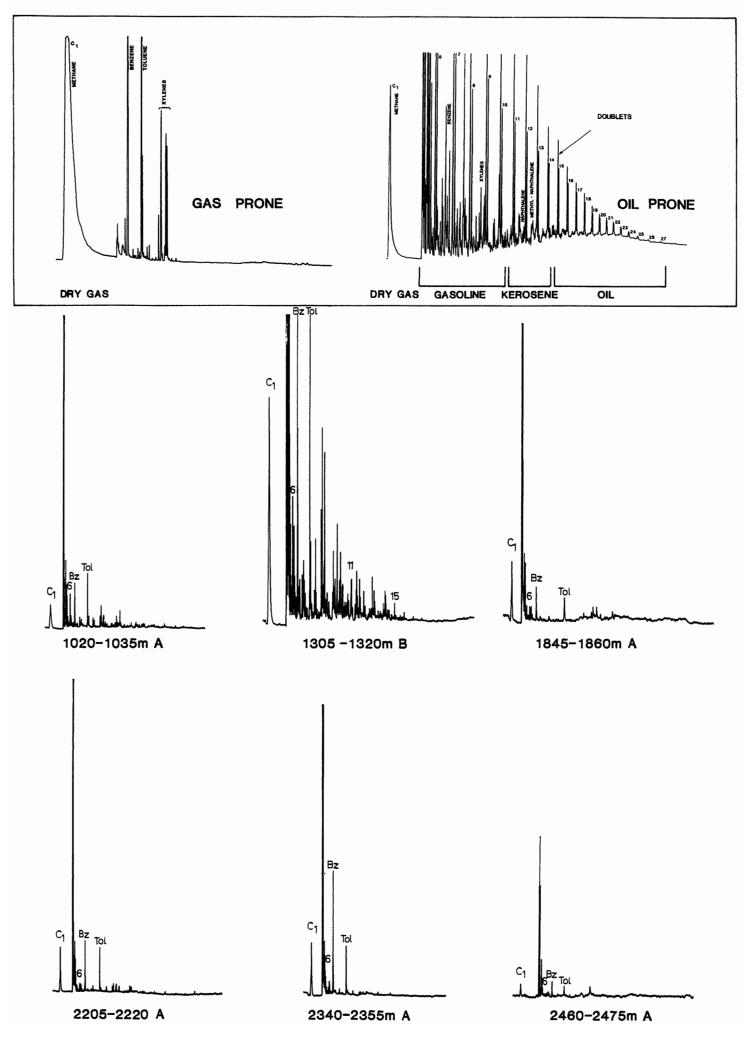
GEOCHEM SAMPLE NUMBER	-185	-190в	-196A	-202	-206	-209
DEPTH	3030- 3045m	3105- 3120m	3195 - 3210m	3285 - 3300m	3345- 3360m	3390- 3405m
SAMPLE TYPE						
^{nC} 15	7.45	10.34	9.79	7.56	8.68	9.78
^{nC} 16	7.88	12.23	11.56	8.85	7.97	8.24
^{nC} 17	8.60	9.80	15.68	8.98	7.84	8.63
^{nC} 18	8.45	7.73	10.26	8.71	7.46	8.09
^{nC} 19	7.02	7.37	8.61	8.17	7.01	7.55
^{nC} 20	6.95	6.65	8.61	7.90	6.43	7.16
^{nC} 21	7.88	6.56	7.19	7.02	5.40	6.47
^{nC} 22	6.23	6.03	6.72	6.62	5.46	6.86
nC ₂₃	6.88	6.83	6.60	7.29	5.40	6.24
^{nC} 24	6.16	5.58	6.72	5.00	5.66	5.86
nC ₂₅	6.95	6.38	4.48	6.14	5.33	6.55
^{nC} 26	4.73	5.04	1.53	4.52	4.76	5.01
^{nC} 27	5.80	4.59	0.59	4.39	4.69	4.85
^{nC} 28	3.80	2.25	0.35	2.90	3.92	3.00
^{nC} 29	3.08	1.35	0.35	2.50	3.66	2.77
^{nC} 30	1.29	0.45	0.24	1.28	3.21	1.23
^{nC} 31	0.50	0.27	0.24	0.95	2.83	0.62
nC ₃₂	0.14	0.18	0.12	0.41	1.93	0.39
^{nC} 33	0.07	0.18	0.12	0.41	1.61	0.31
^{nC} 34	0.07	0.09	0.12	0.27	0.51	0.23
^{nC} 35	0.07	0.09	0.12	0.14	0.26	0.15
PARAFFIN	51.14	48.50	40.04	48.65	30.85	48.25
ISOPRENOID	6.41	5.84	4.86	3.06	2.38	6.25
NAPHTHENE	42.45	45.66	55.10	48.29	66.77	45.50
CPI INDEX A	1.23	1.17	1.02	1.17	0.99	1.07
CPI INDEX B	1.33	1.27	1.58	1.28	1.07	1.26
PRISTANE/PHYTANE	3.38	4.15	2.32	2.58	2.43	3.80
PRISTANE/nC ₁₇	1.13	0.99	0.54	0.50	0.70	1.19

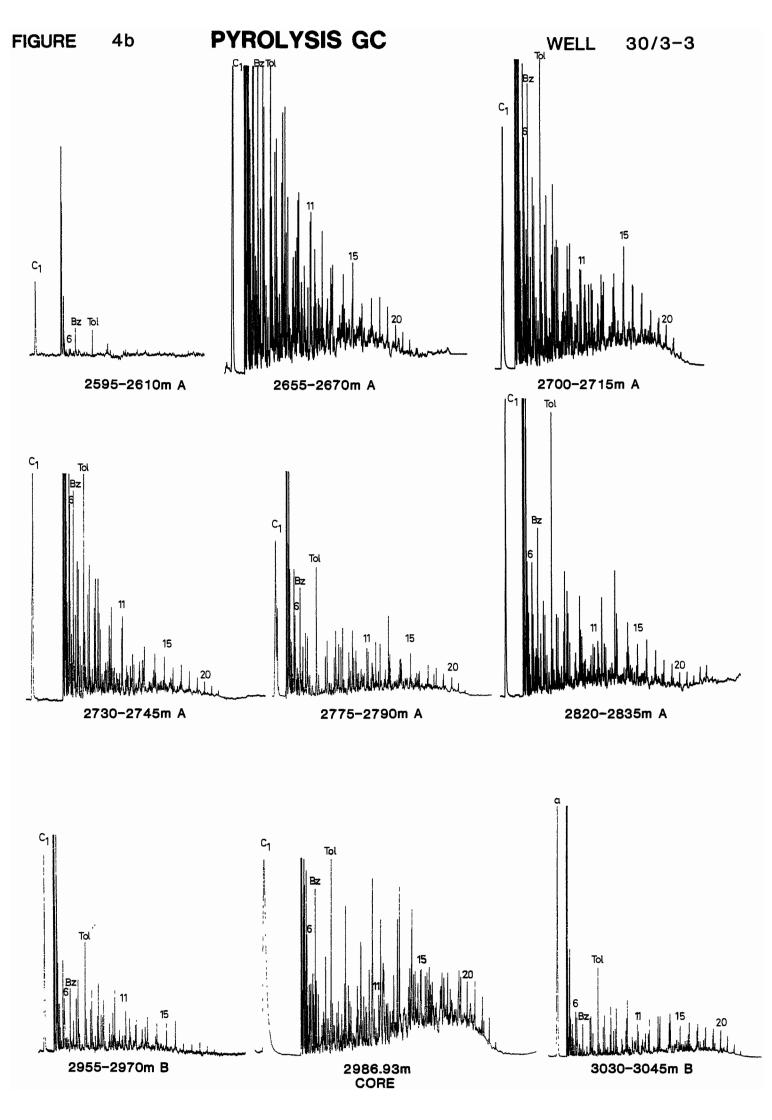

 TABLE 8

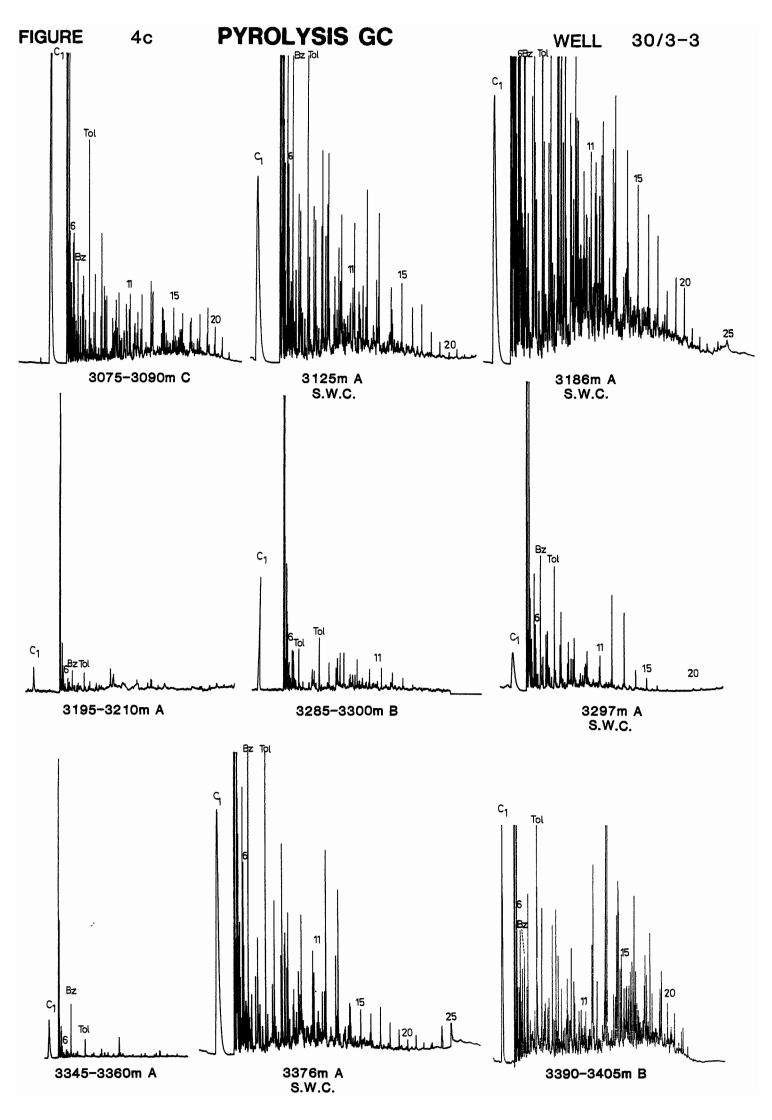

 COMPOSITION (NORMALISED %) OF C15+ PARAFFIN -- NAPHTHENE HYDROCARBONS

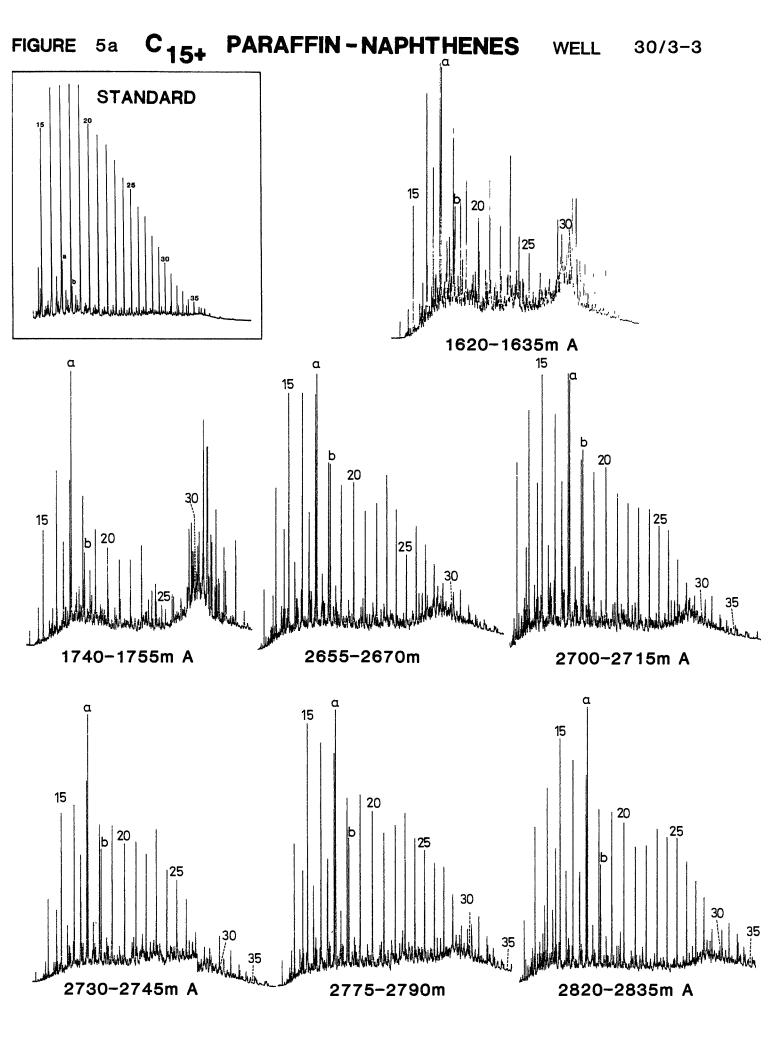

TABLE 9

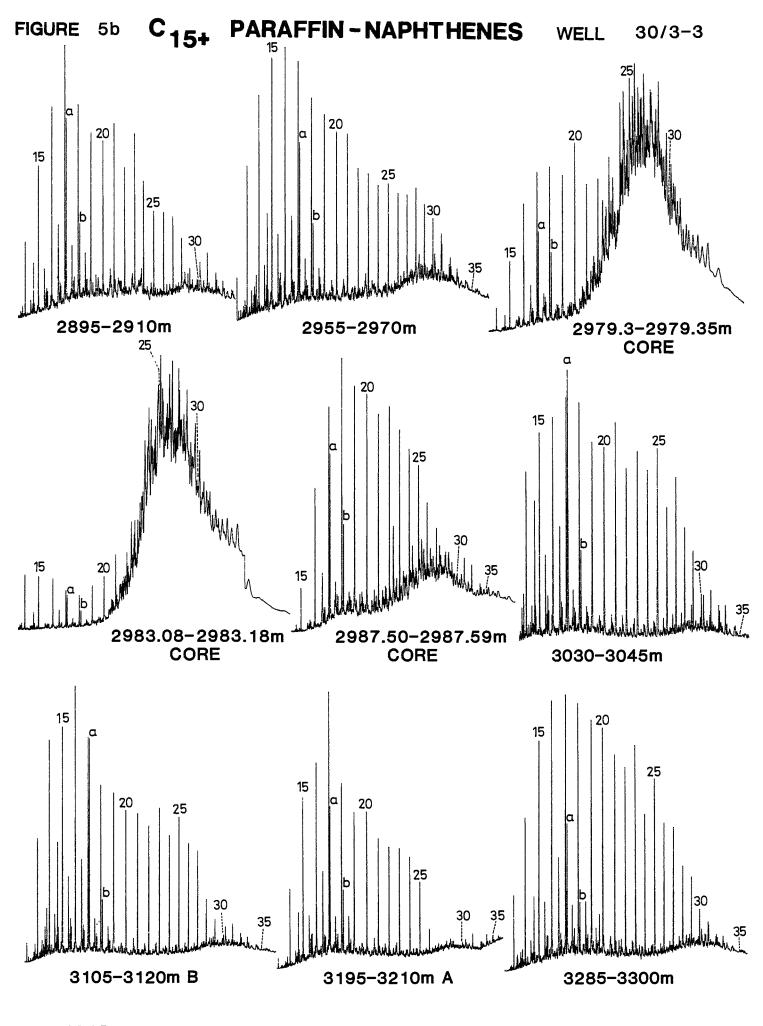
CARBON ISOTOPE RESULTS (⁰/00, PDB)

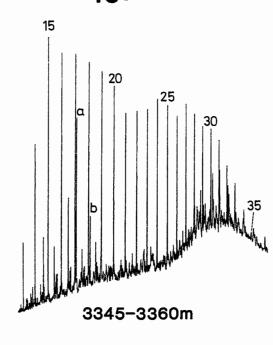

GEOCHEM SAMPLE NUMBER	DEPTH	PARAFFIN- NAPHTHENE	AROMATICS	ASPHALTENES
786-211 CORE	2979.335m	-28.67	-27.89	-26.77
786-212 CORE	2938.0818m	-28.67	-27.74	-27.43
786-214 CORE	2987.5059m	-28.56	-27.63	-27.42

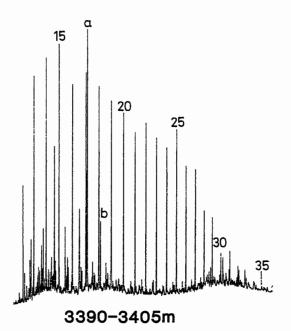


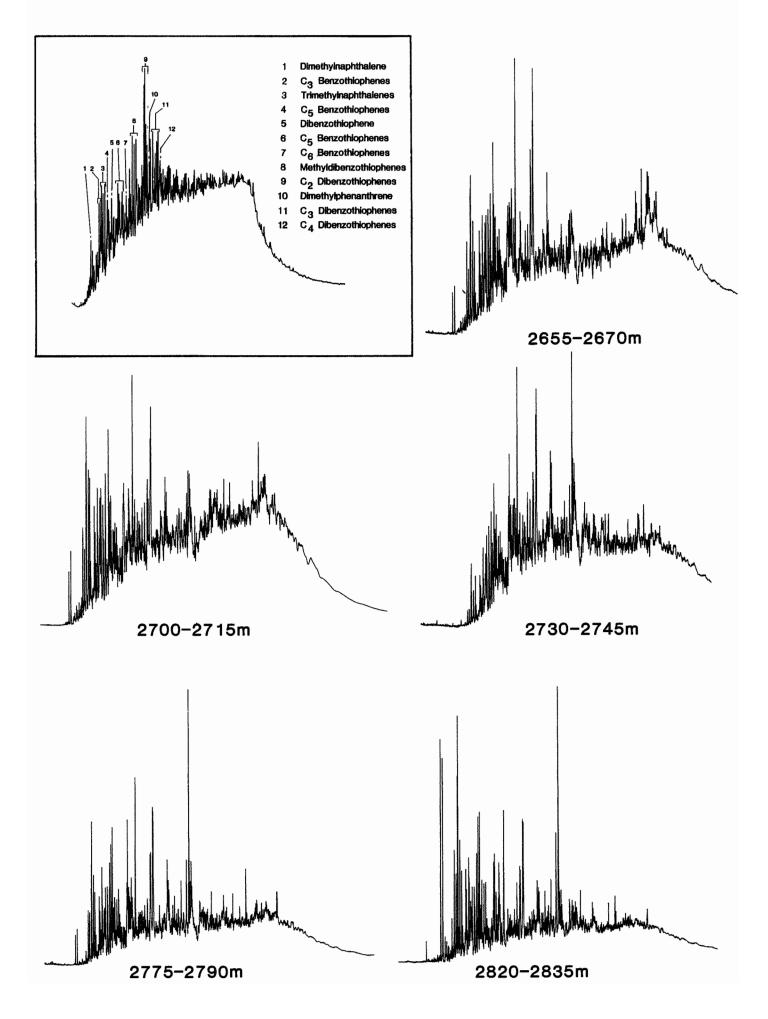


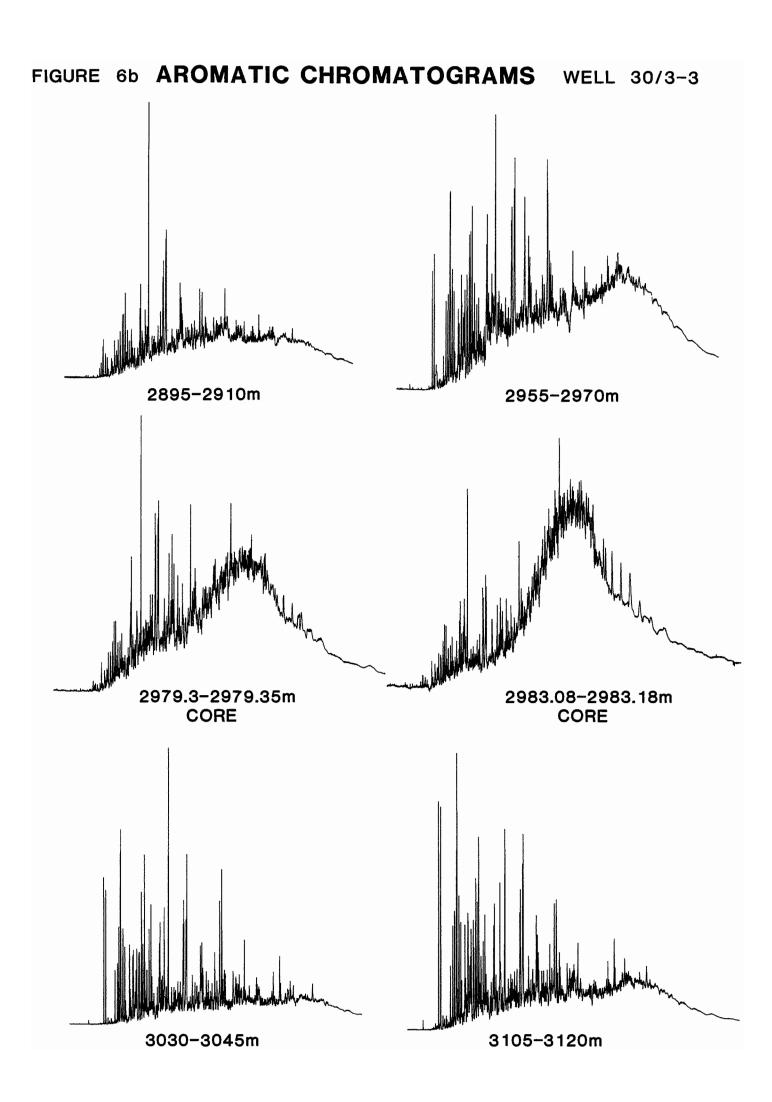


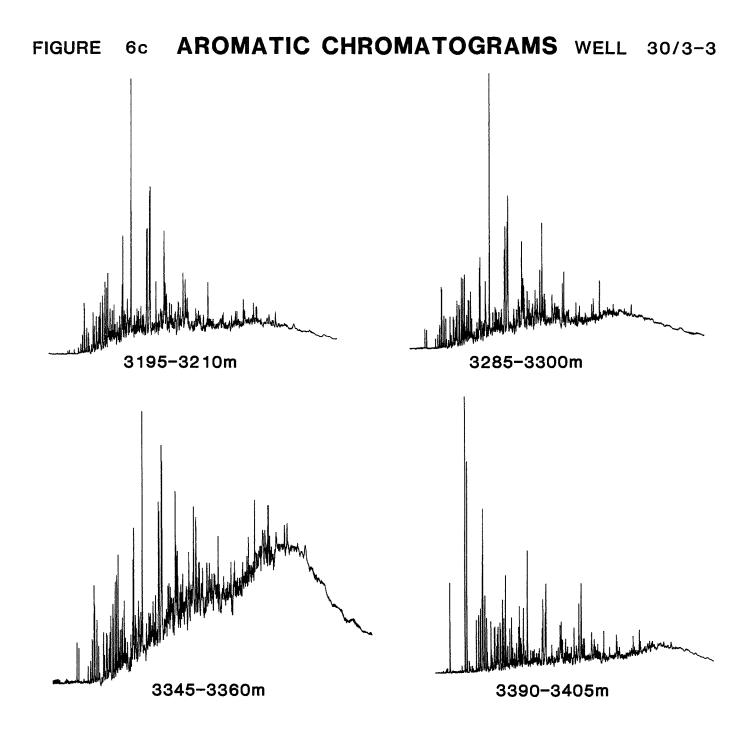

4a

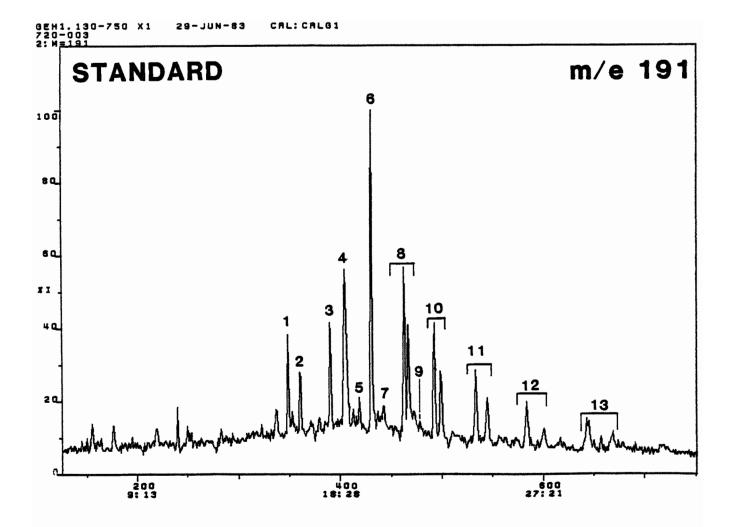


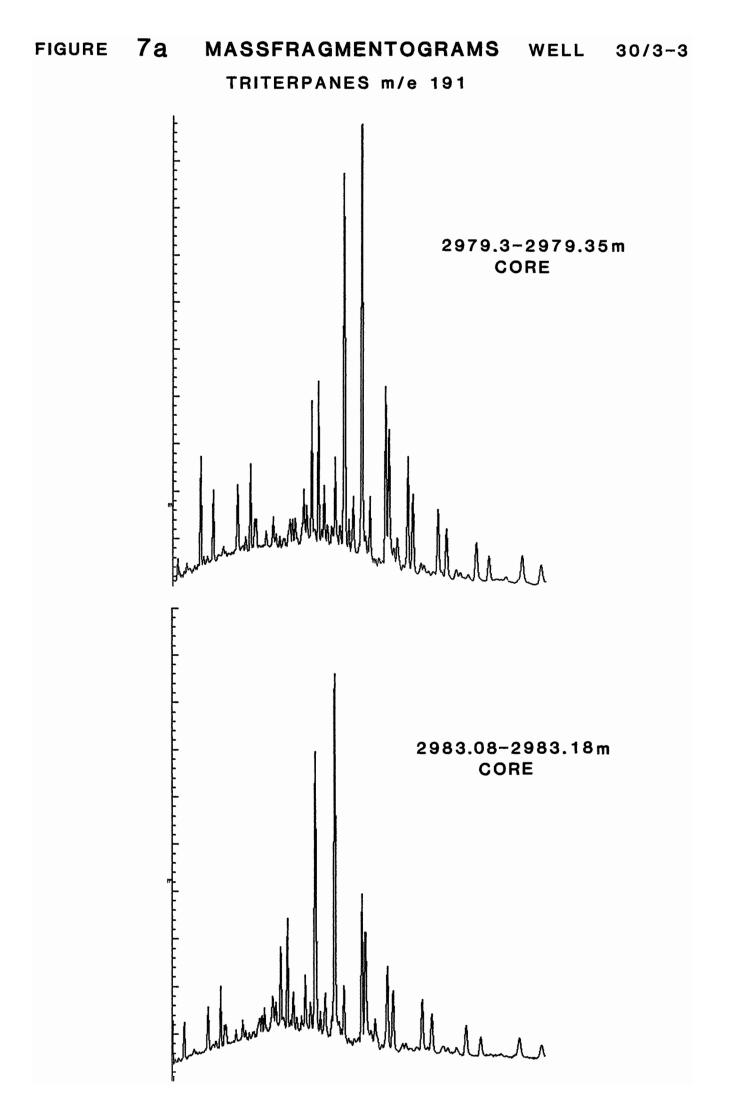

A - PRISTANE

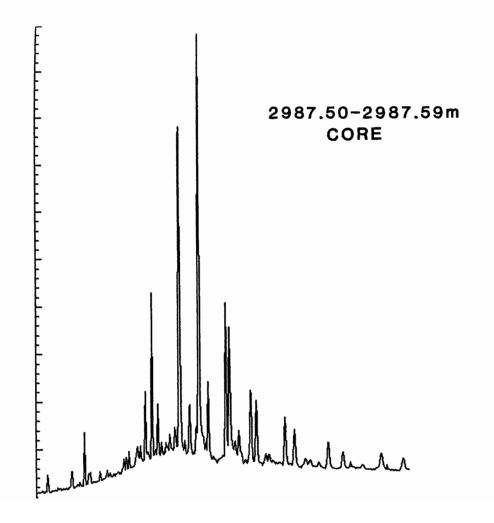

6 - PHYTANE


CARBON NUMBERS OF NORMAL PARAFFINS INDICATED (20 - nC_{20})


FIGURE 5c C15+ PARAFFIN - NAPHTHENES WELL 30/3-3






LIST OF IDENTIFIED TRITERPANES

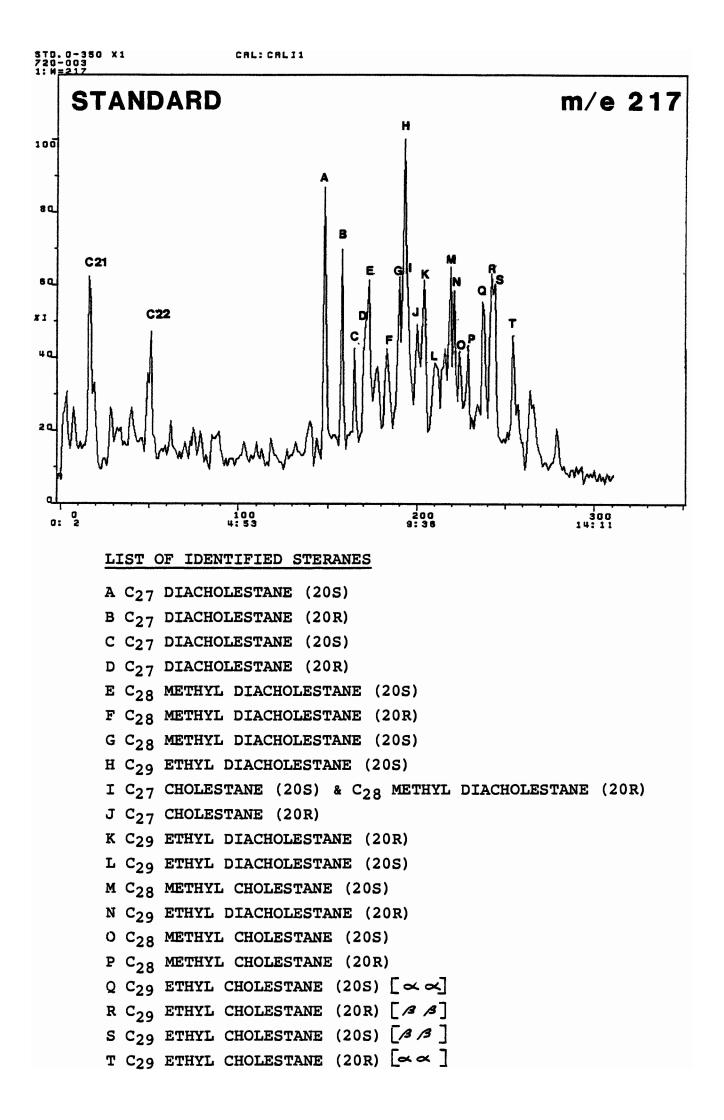
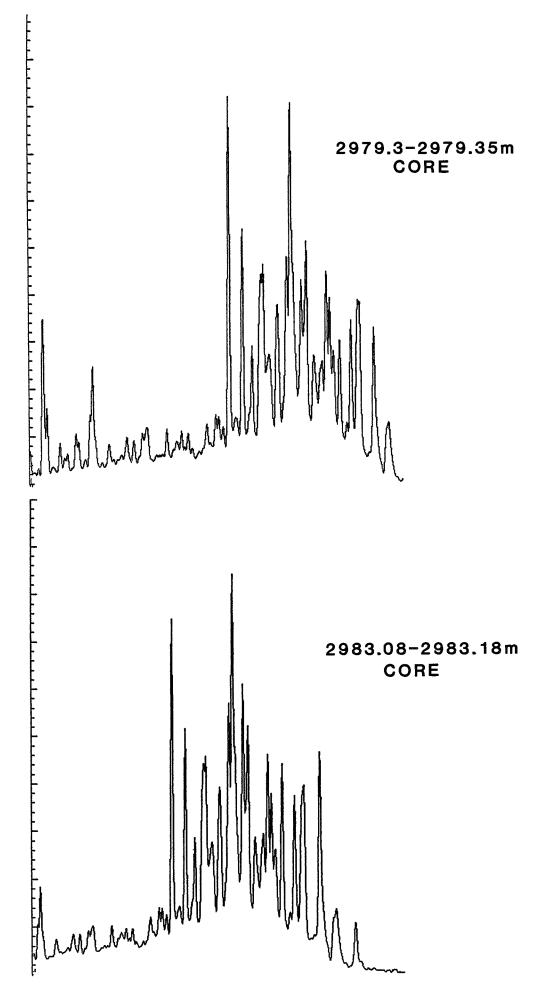
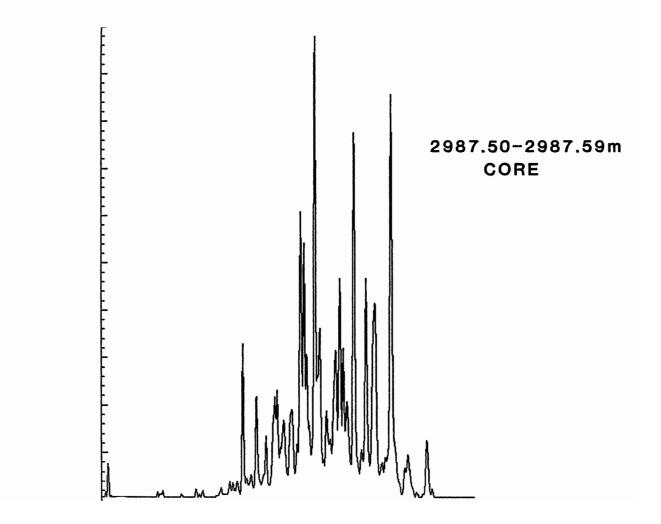
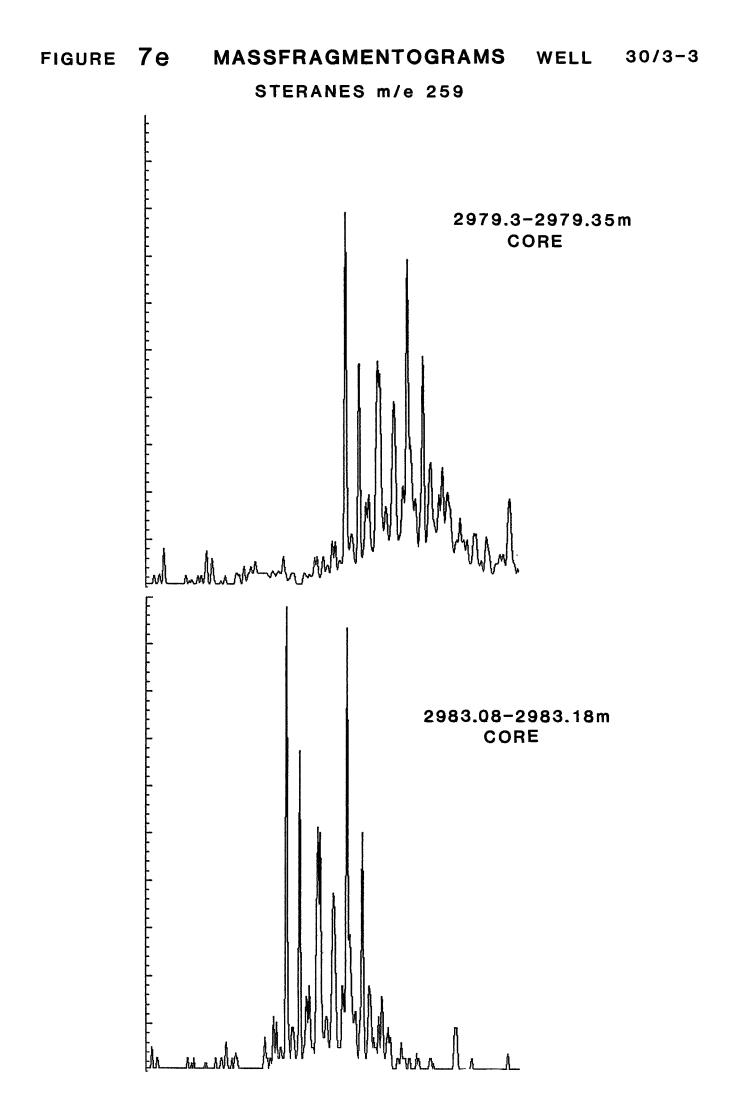

1		17×H TRISNORHOPANE (C27)
2		17 H TRISNORHOPANE (C27)
3		BISNORHOPANE (C28)
4		17«H NORHOPANE (C29)
5		NORMORETANE (C29)
6		17 H HOPANE (C ₃₀)
7		17 KH MORETANE (C ₃₀)
8	(22S) (22R)	17%H HOMOHOPANES (C31)
9		GAMMACERANE
10	(22S) (22R)	BISHOMOHOPANE (C32)
11	(22S) (22R)	TRISHOMOHOPANES (C33)
12	(22S) (22R)	TETRAHOPANES (C ₃₄)
13	(22S) (22R)	HOPANES (C35)

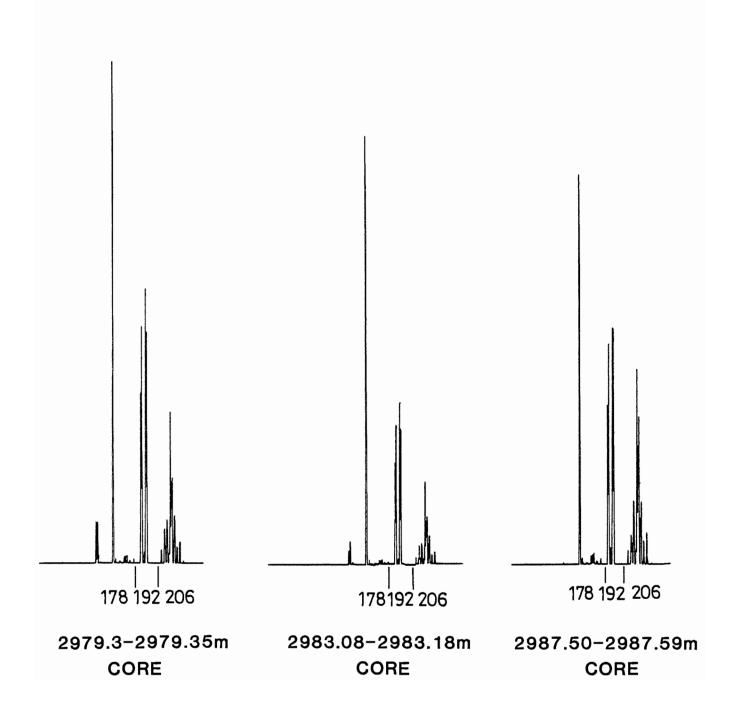
FIGURE 7b MASSFRAGMENTOGRAMS WELL 30/3-3

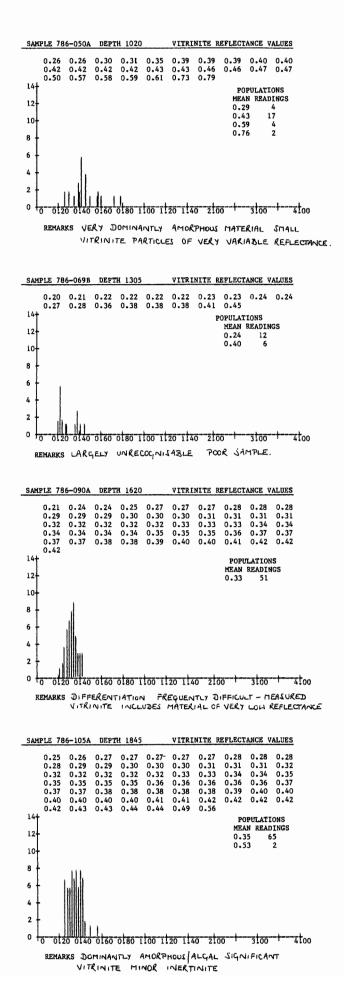

TRITERPANES m/e 191

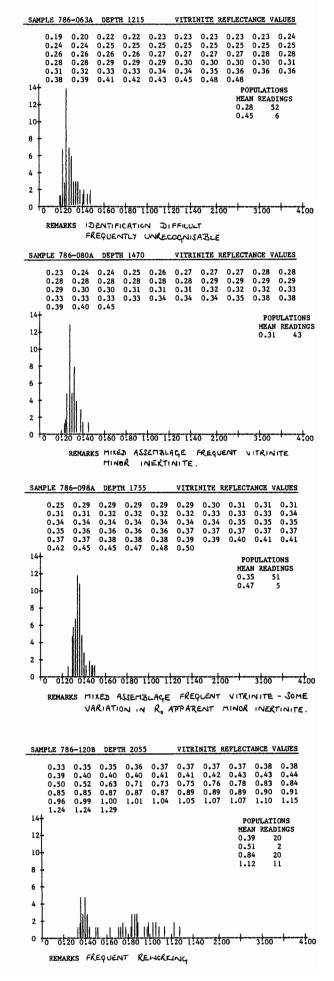


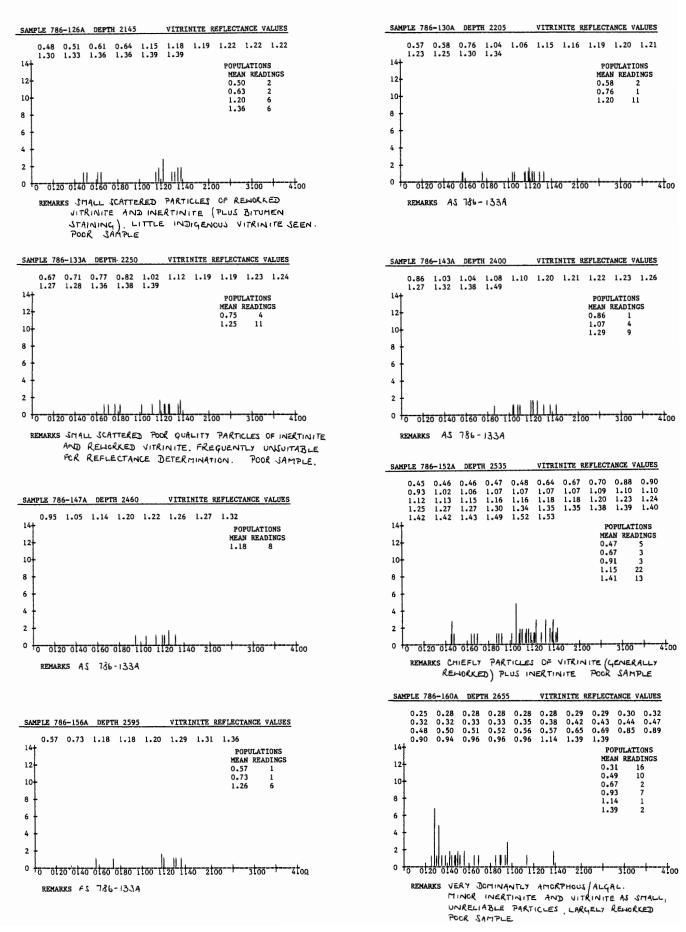

MASSFRAGMENTOGRAMS WELL 30/3-3

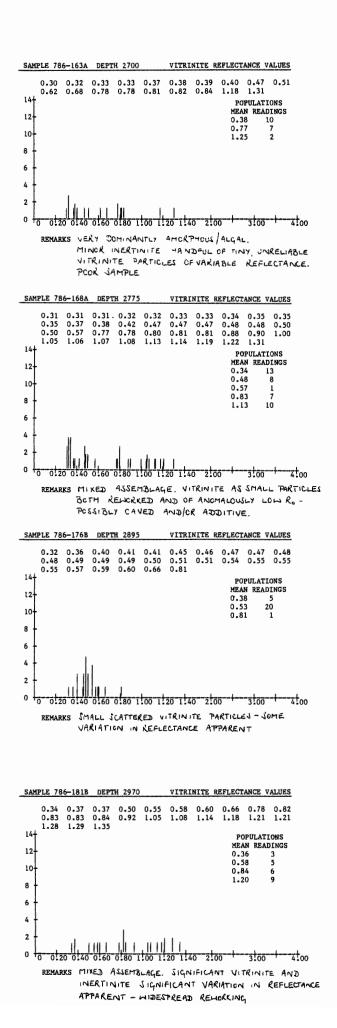
STERANES m/e 217

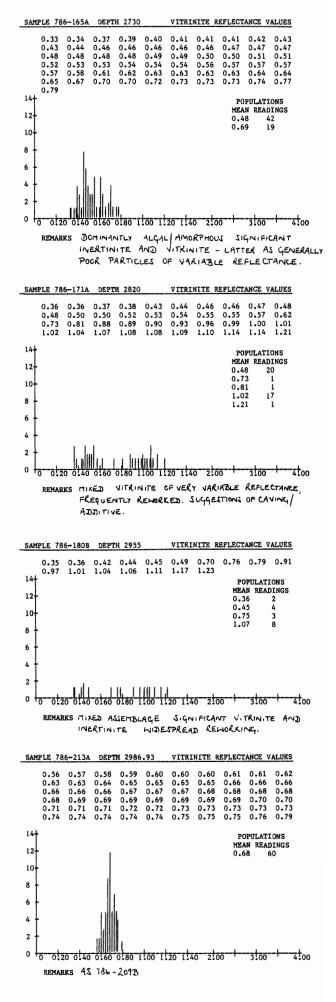

FIGURE 7d MASSFRAGMENTOGRAMS WELL 30/3-3 STERANES m/e 217











0.70 0.74 0.71

0.80 0.82

0.69 0.70

0.77 0.96 0.71 0.71 0.75 0.76

0.84 0.84

40

POPULATIONS

MEAN READINGS

0.64 0.64 0.65

POPULATIONS

MEAN READINGS

0.96

0.70 0.70

27

1

DODIT ATTONS

MEAN READINGS

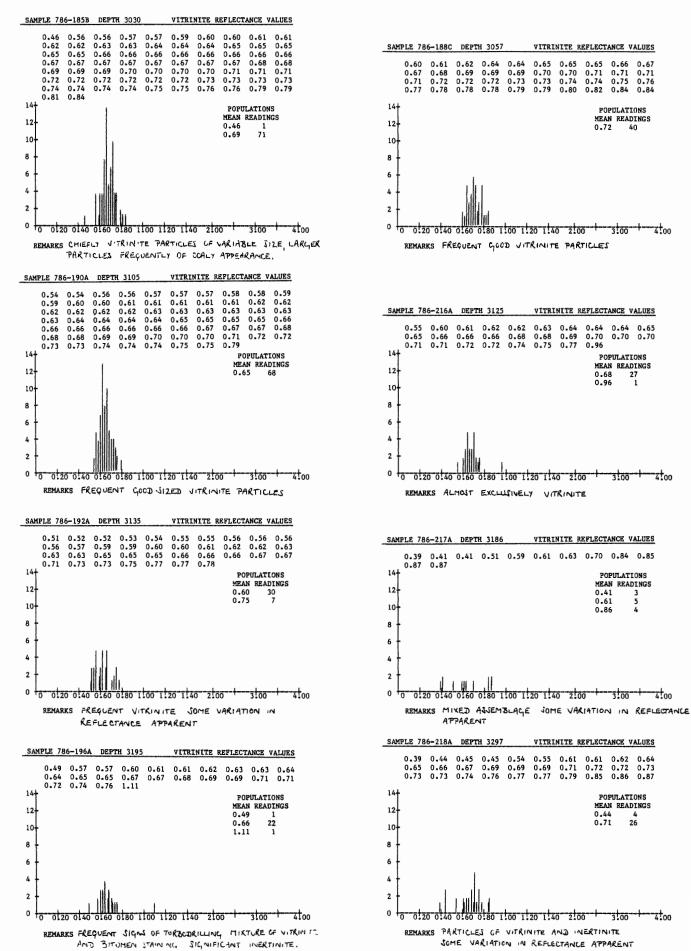
3 5

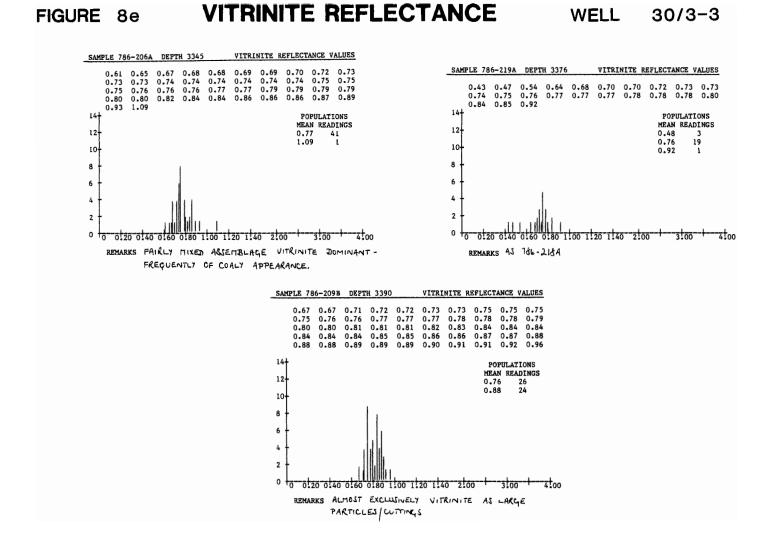
0.41

0.61

0.86

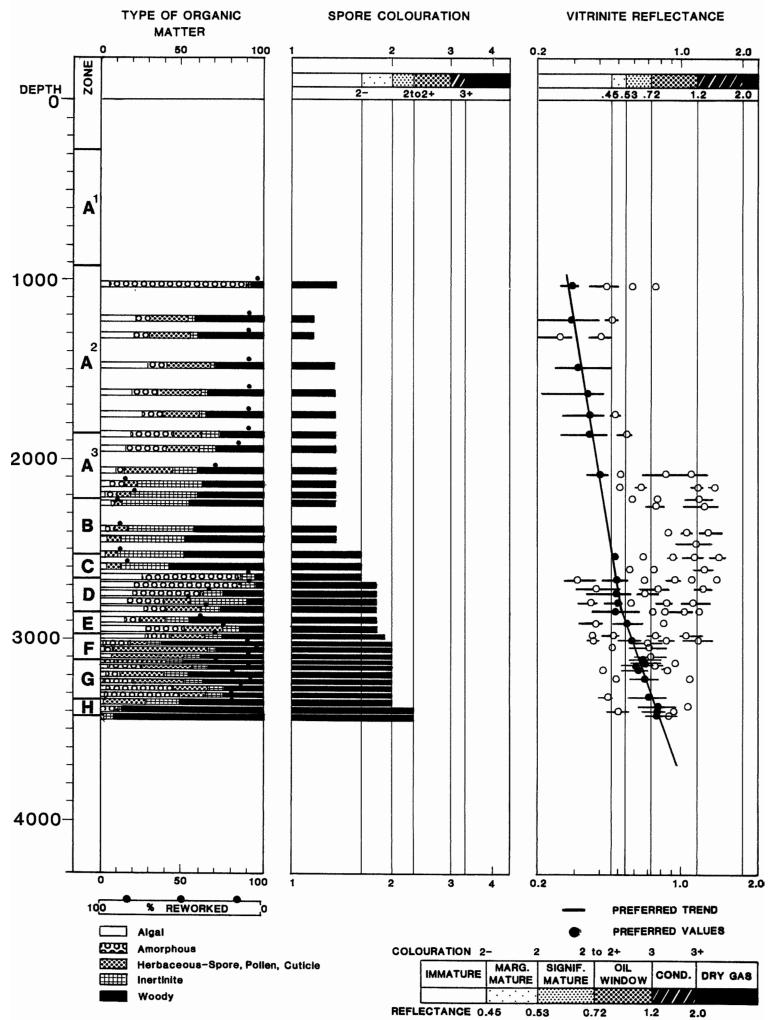
0.79 0.85 0.86 0.87

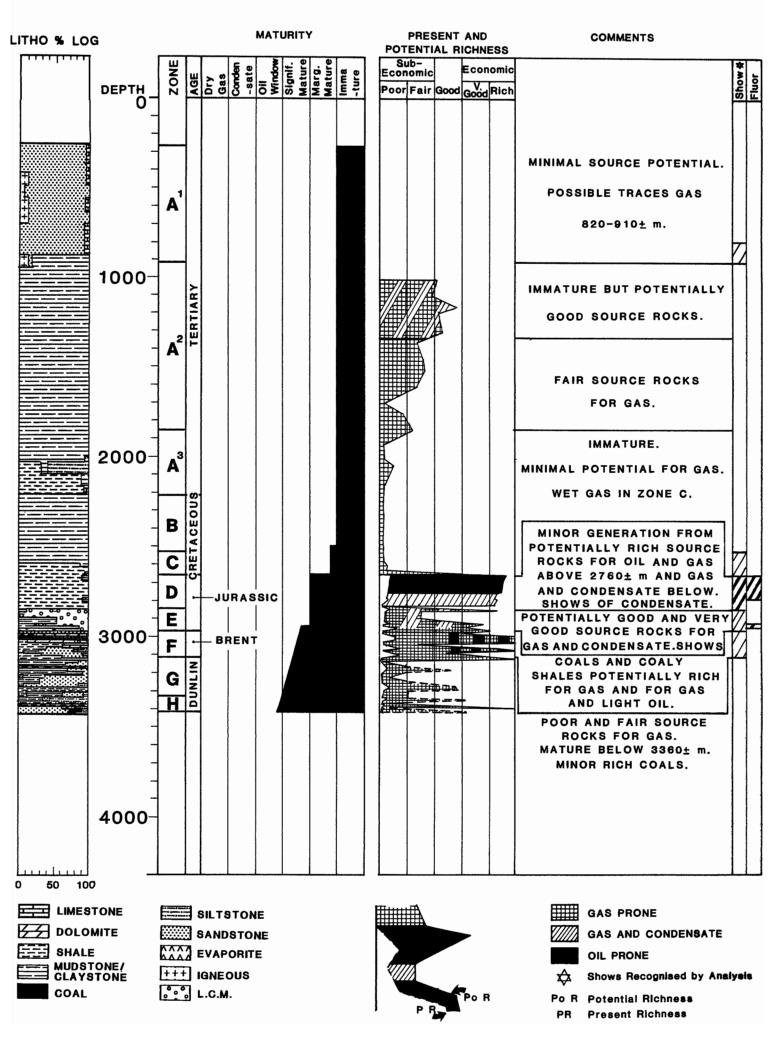

0.44 0.71


POPULATIONS

MEAN READINGS

26


0.72



ORGANIC FACIES & MATURITY WELL

RATING

BRIEF DESCRIPTION OF THE ANALYSES PERFORMED BY GEOCHEM

"Screen Analyses" are described in sections A, C and D, "Sample Preparation" in section B, "Follow-up Analyses" in sections E through K and "Correlation Studies" in section L. The analyses can be run on either core or cuttings material with the proviso that samples must be canned for the C_1 - C_7 analysis and should be canned (or at least wet) for the C_4 - C_7 analysis. The other analyses can be run on both canned and bagged samples.

A) C1-C7 LIGHT HYDROCARBON ANALYSIS

The abundance and composition of the C_1-C_7 hydrocarbons in sediments reflects their source richness, maturity and the character of the hydrocarbons they can yield. Most importantly, it is extremely sensitive to the presence of migrated hydrocarbons and is an excellent method for their detection. As it provides the information on most of the critical parameters and is also economical, this analysis is excellent for screening samples to decide which of them merit further analysis.

During the time which elapses between the collection of the sample at the wellsite and its analysis in the laboratory, a fraction of the total gas passes from the rock to the air space at the top of the can. For this reason, both the air space and the cuttings are analysed.

The analysis involves the gas chromatographic separation of the individual C_1-C4 gaseous hydrocarbons (methane, ethane, propane, isobutane and normal butane) and a partial resolution of the C_5-C_7 gasoline-range hydrocarbons (for their complete resolution see Section E). The ppm abundance of the five gases and of the total C_5-C_7 hydrocarbons are calculated from their electronically integrated peak areas (not from peak height) by comparison with a standard.

In the report, the following data are tabulated: the abundance and composition of the air space gas, of the cuttings gas and of the combined air space and cuttings gases. The combined results are also presented graphically.

B) SAMPLE WASHING AND HAND PICKING

All of the analyses described in subsequent sections are run on washed and hand picked samples.

Cuttings are washed to remove the drilling mud, care being taken not to remove soft clays and fine sand during the washing procedure. Using the C_1-C_7 hydrocarbon data profile of the well, or the organic carbon profile (if this analysis is used for screening), electric logs (if supplied) and the appearance of the cuttings under the binocular microscope, samples are selected to represent the lithological and geochemical zones penetrated by the well. These samples are then carefully hand picked and the lithology of the uncaved material is described. It is these samples which are submitted for further analysis.

Sample material remaining after analysis is retained for six months. Unless instructions are received to the contrary, Geochem Laboratories may then destroy the samples.

Our reports incorporate a gross lithological description of <u>all</u> the samples which have been analysed and litho percentage logs. As screen analyses are recommended at narrow intervals, a complete lithological profile is obtained.

C) ORGANIC CARBON ANALYSIS

The organic carbon content of a rock is a measure of its total organic richness. Combined with the visual kerogen, C_1 - C_7 , C_4 - C_7 , pyrolysis and C_{15+} analyses, the organic carbon content is used to evaluate the potential (not necessarily actual) hydrocarbon source richness of the sediment. This analysis is an integral part of a total evaluation and it can also be used as an economical screen analysis for dry samples (when the C_1 - C_7 analysis cannot be used).

Hand picked samples are dried, crushed and then acidised to remove the inorganic calcium and magnesium carbonates. The actual analysis involves combustion in a Leco carbon analyser. Blanks, standards and duplicates are run routinely for purposes of quality control at no extra cost to the client.

The data are tabulated and presented diagramatically in our reports in a manner which facilitates comparison with the gross lithology (see Section B) of the samples.

D) <u>MINI-PYROLYSIS</u>

An ideal screen analysis which provides a definitive measure of potential source richness upon those samples whose organic carbon contents suggest fair or good source potential. This is described in detail in section K.

E) DETAILED C4-C7 HYDROCARBON ANALYSIS

The abundance and composition of the C_4-C_7 gasoline-range hydrocarbons in sediments reflects their source quality, level of thermal maturation and organic facies. In addition, the data also reveal the presence of migrated hydrocarbons and can be used for crude oil-parent source rock correlation studies.

This powerful analysis, performed upon hand picked lithologies, is employed as a follow-up to confirm the potential of samples which have been selected using the initial screen analysis. It is used in conjunction with the organic carbon, visual kerogen and C_{15+} analyses.

The individual normal paraffins, isoparaffins, naphthenes and aromatics with between four and seven carbon atoms in the molecule (but also including toluene) are resolved by capillary gas chromatography and their peak areas electronically integrated.

Normalised compositions, selected ratios and the ppm abundance of the total gasoline-range fraction are tabulated in the report and also presented graphically.

F) KEROGEN TYPE AND MATURATION

Kerogen is the insoluble organic matter in rocks. Visual examination of the kerogen gives a direct measure of thermal maturity and of the composition of the organic matter (organic facies) and indicates the source quality of the sediment - which is confirmed using the organic carbon, light hydrocarbon, pyrolysis and C_{15+} analyses.

The type of hydrocarbon (oil or gas) generated by a source rock is a function of the types and level of thermal maturation of the organic matter which are present. Both of these parameters are measured <u>directly</u> by this method.

Kerogen is separated from the inorganic rock matrix by acid digestion and flotation methods which avoid oxidation of the organic matter. It is then mounted on a glass slide and examined at high and low magnifications with a Leitz microscope. Chemical methods measure the total kerogen population but, with this technique, individual particles can be selected for examination and spurious material identified. This is particularly valuable in reworked, contaminated and turbodrilled sediments.

The following data are generated: the types of organic matter present and their relative abundances, an estimate of the proportion of reworked material, preservation state, the thermal maturity of the non-reworked organic matter using the spore colouration technique.

Our maturation scale has been developed to digitise small but recognisable changes in organic matter colouration resulting from increasing maturity and to place particular emphasis upon the immature to mature transition. In the absence of a universal colouration scale, the most significant points on our scale have been calibrated against equivalent vitrinite reflectance values. The following maturation stages are recognised at the low end of the scale:-

- a) immature; thermal index less than 2- (0.45% Ro)
 b) marginally mature; indices between 2- and 2.
 Minor hydrocarbon generation from amorphous and herbaceous ([±] algal) organic matter
- c) mature; indices between 2 (0.53% Ro) and 2 to 2+ (0.72% Ro), significant generation from amorphous, algal and herbaceous organic matter but wood only marginally mature
- d) oil window; indices of 2 to 2+ (0.72% Ro) through to 3 (1.2% Ro). Peak hydrocarbon generation.

The condensate zone starts at a thermal index of 3 whilst indices of 3+(2.0% Ro) and higher indicate the eometamorphic dry gas stage.

A total of fourteen types of organic matter are sought based upon the major categories of algal, amorphous, herbaceous (spore, pollen, cuticle), wood, inertinite and resin. This detail is essential for a proper under-standing of hydrocarbon source potential as the different sub-groups within each category have different properties.

Upon completion of the study, the kerogen slides are sent to the client.

G) VITRINITE REFLECTANCE

Vitrinite reflectance is an alternative/confirmatory method for evaluating thermal maturation which is used in conjection with the <u>visual kerogen</u> analysis. The reflectivity of vitrinite macerals increases in response to thermal alteration and is used to define maturation levels and, by projection, to predict maturity at depth or the thicknesses of section removed by erosion.

Measurements are made upon kerogen separations in conjunction with polished whole rock samples. In general, this analysis is performed upon the same samples as the visual kerogen analysis, thus facilitating a direct comparison of the two sets of results.

If possible, forty to fifty measurements are taken per sample - unless the sediments are organically lean, vitrinite is sparse or only a single uniform population is present. The data are plotted in a histogram which distinguishes the indigenous vitrinite from possible reworked or caved material. Averages are calculated for each population. Comments upon exinite fluorescence and upon the character of the phytoclasts are noted on the histograms. The reports contain the tabulated data, histograms and the reflectivities plotted against depth.

The vitrinite and visual kerogen techniques provide mutually complementary information upon maturity, organic matter type and diagenesis.

H) C15+ EXTRACTION, DEASPHALTENING AND CHROMATOGRAPHIC SEPARATION

Sections "A" and "E" dealt with analyses covering the light end of the hydrocarbon spectrum. This section is concerned with the solvent extractable organic material in the rock with more than fourteen carbon atoms in the molecule (i.e. the heavy end). The amount and composition of this extract indicates source richness and type, the level of thermal maturation and the possible presence of migrated hydrocarbons.

These results are integrated with those derived from the pyrolysis, visual kerogen, organic carbon and light hydrocarbon analyses.

The techniques involved in this analysis employ pure solvents and have been designed to give reproducible results. Hand picked samples are ground and then solvent extracted in a soxhlet apparatus, or by blending, with dichloromethane (the solvent system can be adapted to client's specifications). After asphaltene precipitation, the total extract is separated by column chromatography or high pressure liquid chromatography into the following fractions: paraffin-naphthene hydrocarbons, aromatic hydrocarbons, eluted NSO's (nitrogen-, sulphur-, and oxygen- containing non-hydrocarbons) and non-eluted NSO's. Note that the non-hydrocarbons are split into three fractions and not reported as a gross value. These fractions can be submitted for further analyses (carbon isotopes, gas chromatography, high mass spectroscopy) including correlation studies.

For convenience and thoroughness, the data are reported in three formats: the weights of the fractions, ppm abundances and normalised percentage compositions. The data are also presented diagramatically.

J) GC ANALYSIS OF C15+ PARAFFIN-NAPHTHENE HYDROCARBONS

The gas chromatographic configurations of the heavy C_{15+} paraffinnaphthene hydrocarbons reflect source type, the degree of thermal maturation and the presence and character of migrated hydrocarbons or contamination.

Not only is this analysis an integral part of any source rock study but it also provides a fingerprint for correlation purposes and helps to define the geochemical/palynological environmental character of the source rocks from which crude oils were derived.

The paraffin-naphthene hydrocarbons obtained by column chromatography are separated by high resolution capillary chromatography. Excellent resolution of the individual normal paraffins, isoprenoids and significant individual isoparaffins and naphthenes is achieved. Runs are normally terminated at nC₃₅. A powerful in-house microprocessor system is being introduced to correct for the change in response factor with chain length.

The normal paraffin carbon preference indices (C.P.I.) indicate if odd (values in excess of 1) or even (values less than 1) normal paraffins are dominant. Strong odd preferences (± strong pristane peaks) are characteristic of immature land plant organic matter whilst even preferences (± strong phytane peaks) suggest a reducing environment of deposition. With increasing maturity, values approach 1.0 and oils are typically close to 1.0. The indices are calculated using the following formulae:

C.P.I _A	=	$C_{21} + C_{23} + C_{25} + C_{27}$	+	$C_{21} + C_{23} + C_{25} + C_{27}$
		$C_{20} + C_{22} + C_{24} + C_{26}$		$C_{22} + C_{24} + C_{26} + C_{28}$
			2	
C.P.I _B	=	$C_{25} + C_{27} + C_{29} + C_{31}$	+	$C_{25} + C_{27} + C_{29} + C_{31}$
		$C_{24} + C_{26} + C_{28} + C_{30}$		$C_{26} + C_{28} + C_{30} + C_{32}$
			2	

Chromatograms are reproduced in the report for use as visual fingerprints and in addition, the following data are tabulated: normalised normal paraffin distributions; proportions of paraffins, isoprenoids and naphthenes in the total paraffin-naphthene fraction; C.P.I_A and C.P.I_B; pristane to phytane ratio; pristane to nC_{17} ratio.

K) <u>PYROLYSIS</u>

The process of thermal maturation can be simulated in the laboratory by pyrolysis, which involves heating the sample under specified conditions and measuring the oil-like material which is freed/generated from the rock. With this analysis, the potential richness of immature sediments can be determined and, by coupling the pyrolysis unit to a gas chromatograph, the liberated material can be characterised. These results are correlated with those obtained from the organic carbon, kerogen and C_{15+} analyses.

Small amounts of powdered sample are heated in helium to release the thermal bitumen (up to 340°C) and pyrolysate (340-550°C). The thermal bitumen correlates with the solvent extractable material (see above) whilst the pyrolysate fraction does not exist in a "free" state but is generated from the kerogen, thus simulating maturation in the subsurface. Abundances (weight ppm of rock) are measured with a flame ionisation detector against a standard. Thermal bitumen includes source indigenous, contaminant and migrated hydrocarbons but the pyrolysate abundance is a measure of ultimate source richness. The capillary gas chromatogram of the pyrolysate is used to evaluate the character of the parent organic matter and whether it is oil or gas prone. Peak temperature(s) of pyrolysate evolution is recorded. Carbon dioxide can be measured if requested but is normally ignored as the separation of the organic and inorganic species has been found to be artificial and unreliable.

Pyrolysate yields provide a definitive measure of potential source richness which avoids the ambiguities of the organic carbon data and the problem of contamination. This analysis is also used to evaluate the quality and character of the organic matter and the degree to which it has realised its ultimate hydrocarbon potential. Geochem does not employ the pyrolysis technique to evaluate maturation, preferring the kerogen and vitrinite reflectance analyses which avoid the problem of reworking and hence, are more reliable.

Capillary chromatograms produced for the pyrolysate hydrocarbons range from C_1 (methane) out towards C_{35} but exhibit considerable variations. They are used to define whether a source rock will yield oil, condensate or gas. With this new technique, it is now possible to complete the evaluation of a source rock.

The data are tabulated and presented graphically. MINI-PYROLYSIS includes ppm thermal bitumen and ppm pyrolsate. PYROLYSIS also provides the above together with the temperature of peak pyrolysate evolution. The capillary chromatograms of the pyrolysate obtained by PYROLYSIS-GC are reproduced in the report. The Mini-Pyrolysis analysis is recommended as a screening technique.

L) CORRELATION STUDY ANALYSES

Oil to oil and oil to parent source rock correlation studies require high resolution analytical techniques. This requirement is satisfied by some of the analyses discussed above but others have been selected specifically for correlation work. Many of these analyses also provide information upon the character of the environment of deposition of the parent source rocks. detailed C4-C7 hydrocarbon (gasoline range) analysis. See Section E. Although these hydrocarbons can be affected by migrational/alteration processes, they commonly provide a very useful correlation parameter.

- capillary gas chromatography of the C15+ paraffin-naphthenes. See section J. The branched[±]normal paraffin distributions are used to "fingerprint" the samples.
- capillary chromatograms of whole oils and of the C₈₊ fraction of source rocks.
- capillary gas chromatography of C15+ aromatic hydrocarbons. Separate chromatograms of the hydrocarbons and of the sulphurbearing species are reproduced.
- high pressure liquid chromatograms.
- mass spectrometric carbon isotope analyses of crude oil and rock extract fractions and of kerogen separations. A powerful tool for comparing hydrocarbons and correlating hydrocarbons to organic matter. With this technique the problem of source rock contamination can be avoided. The data are recorded on x-y or Galimov plots.
- mass fragmentograms (mass chromatograms) of fragment ions characteristic of selected hydrocarbon groups such as the steranes and terpanes. The fragmentograms provide a convenient and simple means of presenting detailed mass spectrometric data and are used as a sophisticated fingerprinting technique. This provides the ultimate resolution for correlating hydrocarbons and facilitates the examination of hydrocarbon classes.
- vanadium and nickel contents.

Suites of (rather than single) analyses are employed in correlation studies, the actual selection depending upon the complexity of the problem. See also section N.

M) ANALYSES FOR SPECIAL CASES

M-1) ELEMENTAL KEROGEN ANALYSIS

This analysis evaluates source quality, whether the sediments are oil or gas prone, the character of the organic matter and its level of thermal maturation. It is the chemical equivalent of the visual kerogen analysis. The pyrolysis analysis is generally preferred to this technique, both methods providing similar information.

M-2) SULPHUR ANALYSIS

The abundance of sulphur in source rocks and crude oils.

M-3) CARBONATE CONTENT

The mineral carbonate content of sediments is determined by acid treatment. These data are particularly useful when used in conjunction with organic carbon contents as a screening technique.

M-4) NORMAL PARAFFIN ANALYSIS

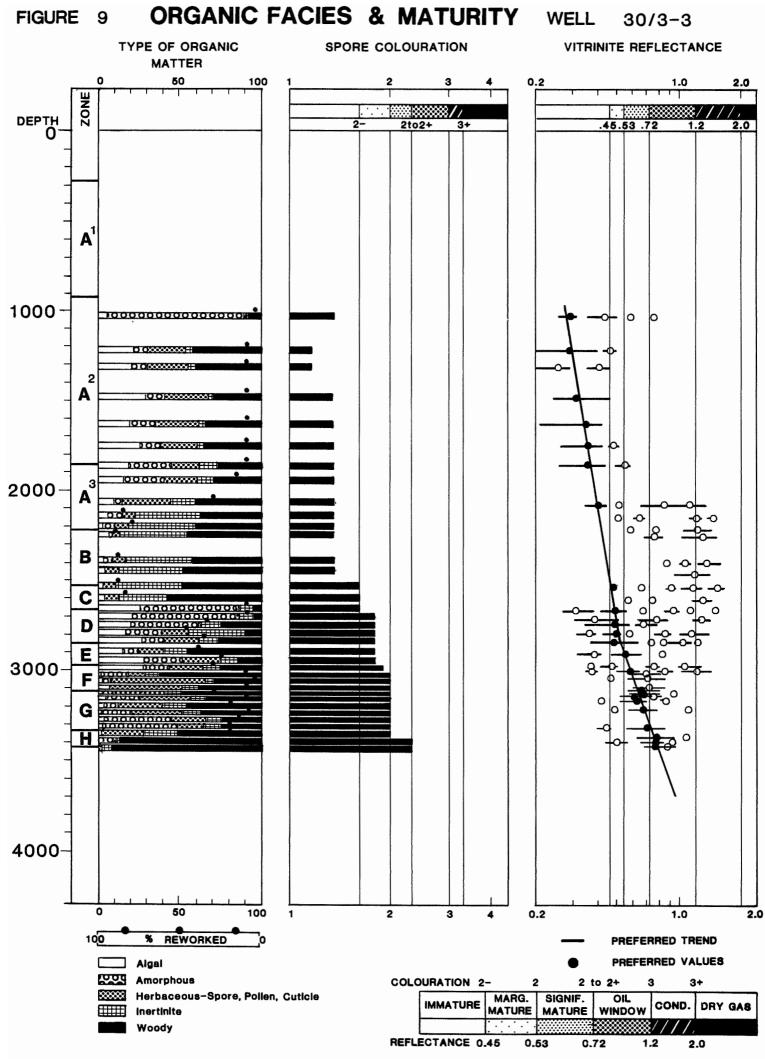
Following the removal of the branched paraffins and naphthenes from the total paraffin-naphthene fraction, a chromatogram of the normal paraffins is obtained. The resulting less complicated chromatogram facilitates the examination of normal paraffin distributions.

M-5) SOLID BITUMEN EVALUATION

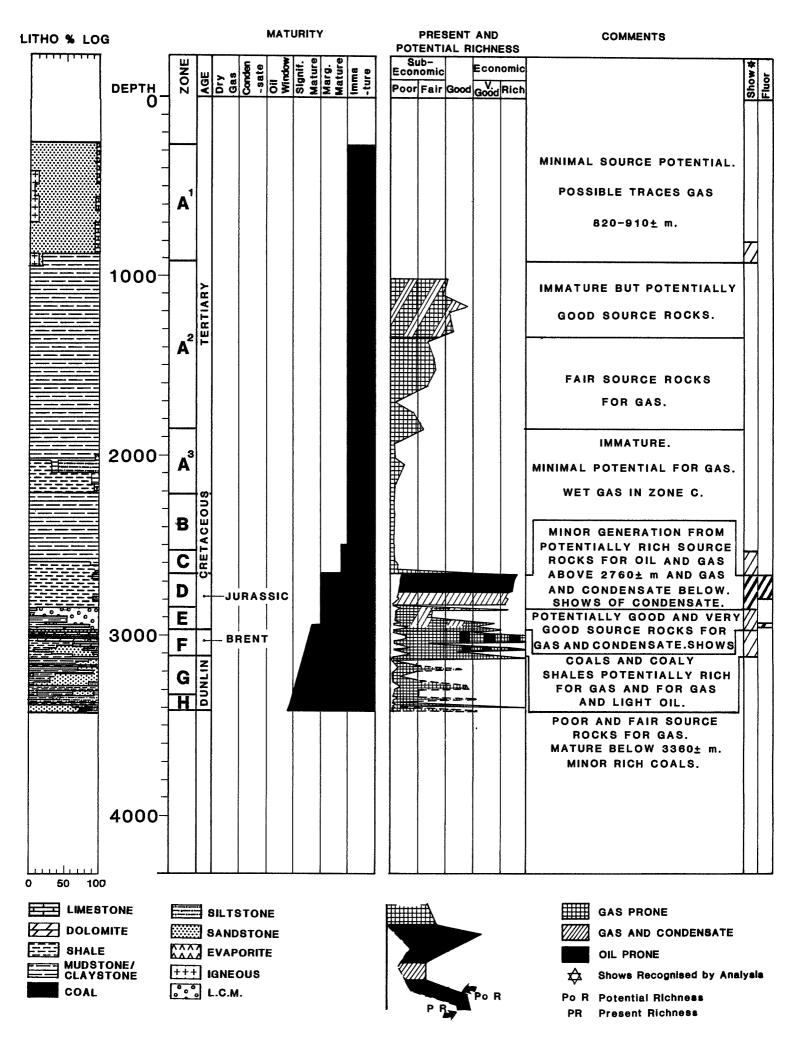
Residual solid bitumen after crude oil is generated by three prime processes: the action of waters, gas deasphalting, thermal alteration. Thus it provides a means of determing the reservoir history of a crude and of evaluating whether adjacent traps will or will not be prospective for oil. In carbonate sections, where organic matter is sometimes sparse, this technique is also used to evaluate thermal maturation levels.

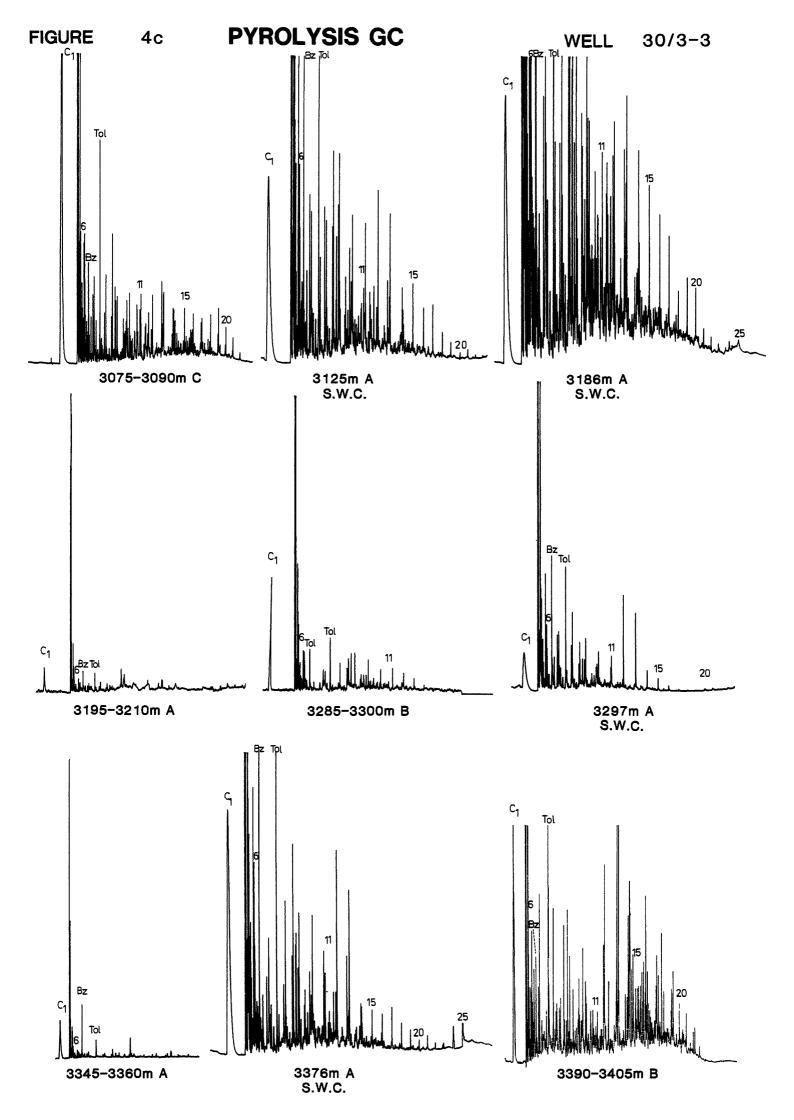
The analysis involves the determination of the solubility (in CS_2) of the solid bitumen and of the atomic hydrogen to carbon ratio of the insoluble fraction.

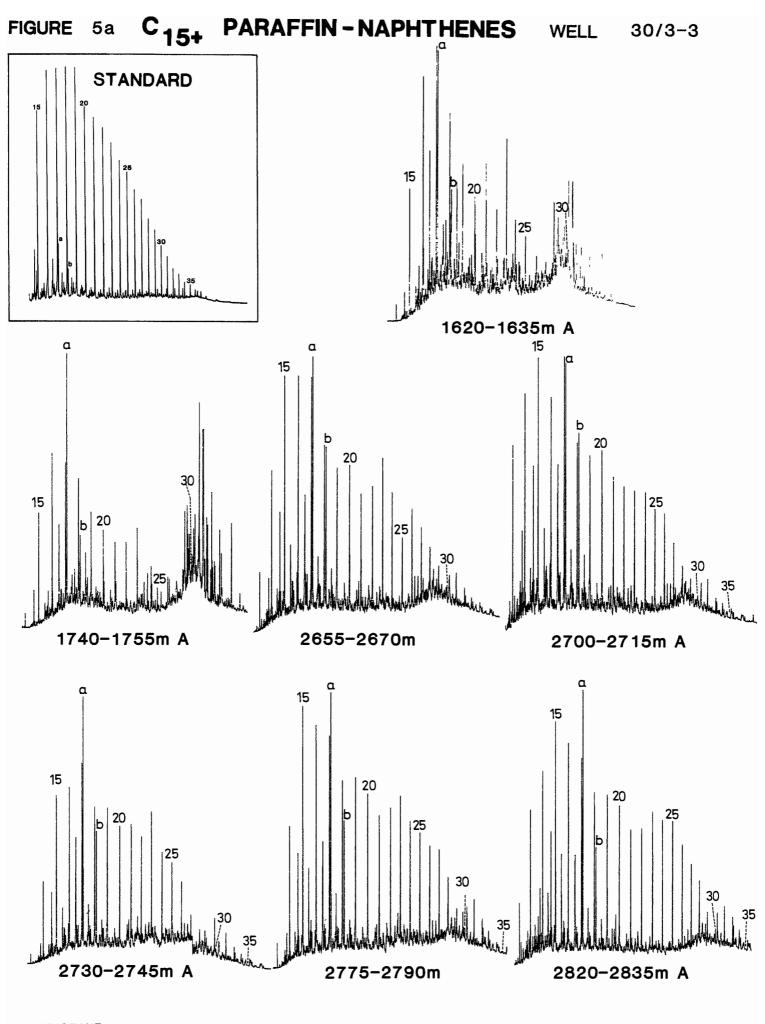
N) CRUDE OIL ANALYSIS

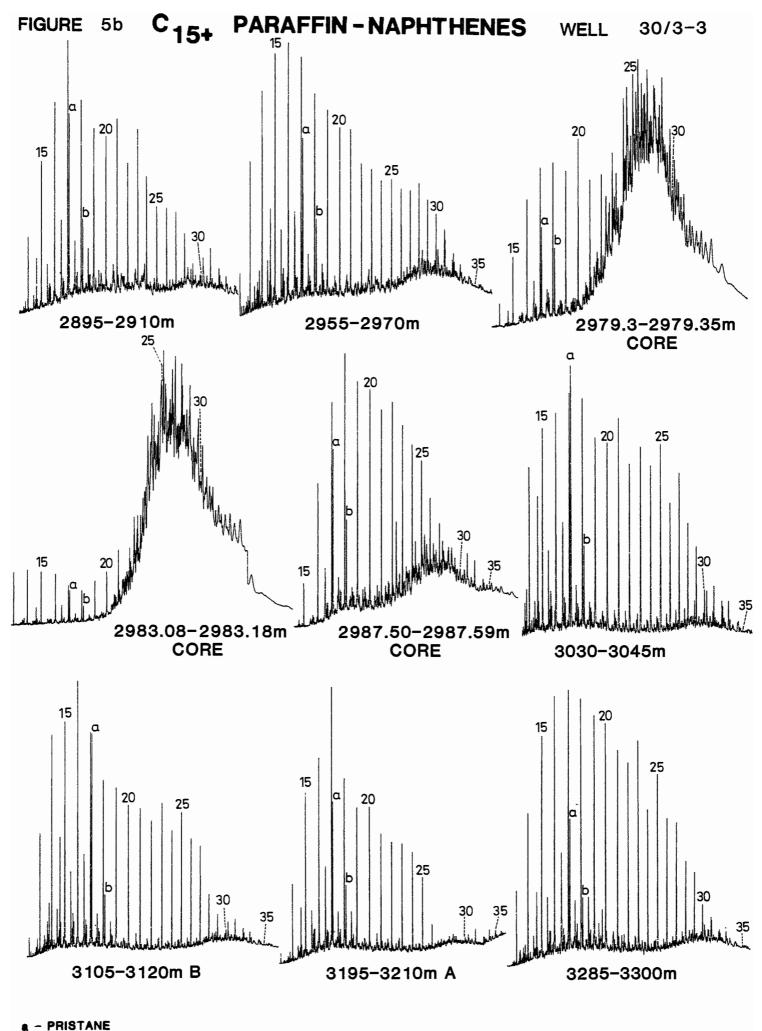

N-1) API GRAVITY

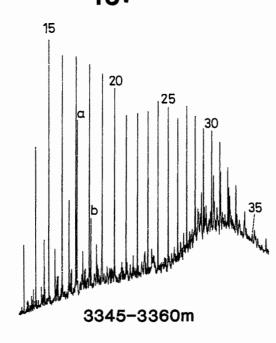
This can be performed upon large (hydrometer) and small (SG bottle, pycnometer) samples and even upon stains extracted from sediments (refractive index).

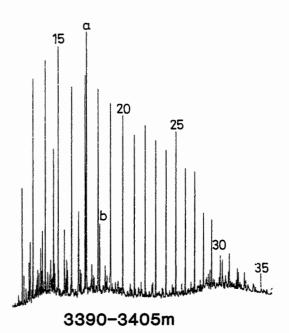

- N-2) SULPHUR CONTENTS (ASTM E30-47)
- N-3) POUR POINT (ASTM D97-66, IP15/67)
- N-4) <u>VISCOSITY</u> (ASTM D445-72, IP71/75)
- N-5) FRACTIONAL DISTILLATION

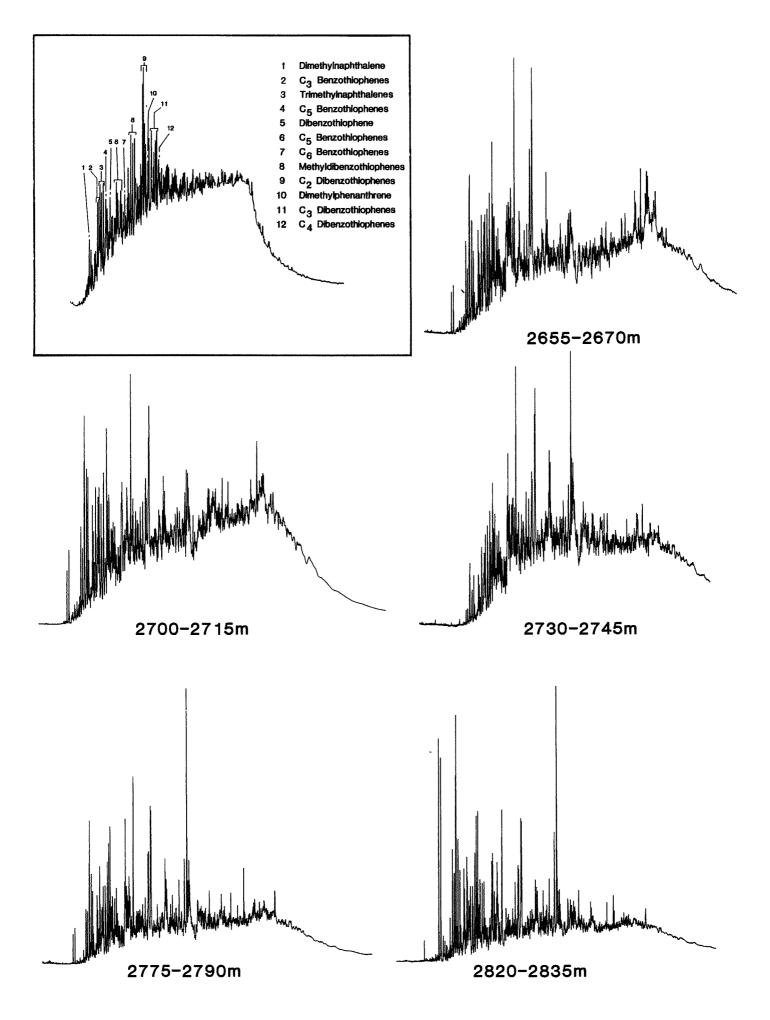

Graph of cumulative distillation yield against temperature. Five percent cuts taken for further analysis. Mass spectrometric studies of these fractions provide a detailed picture of the distribution of paraffins and of the various naphthene and aromatic groups within a crude, which is useful both for correlation and for refinery evaluation purposes.

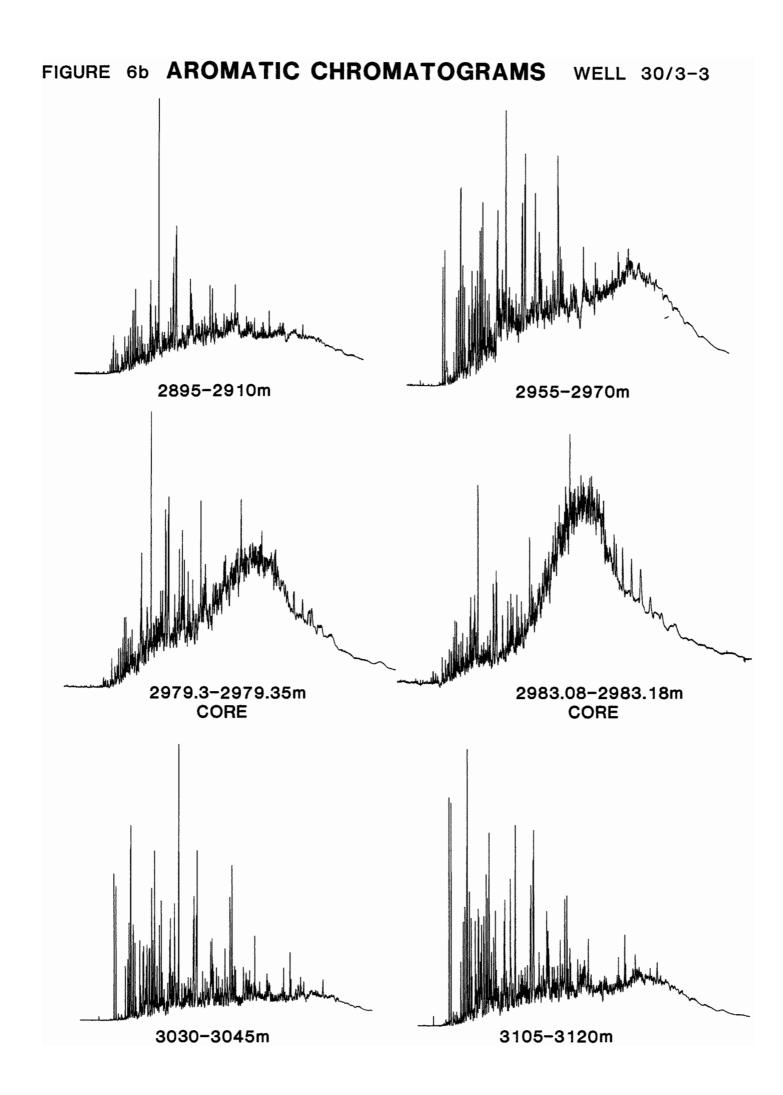

-vii-

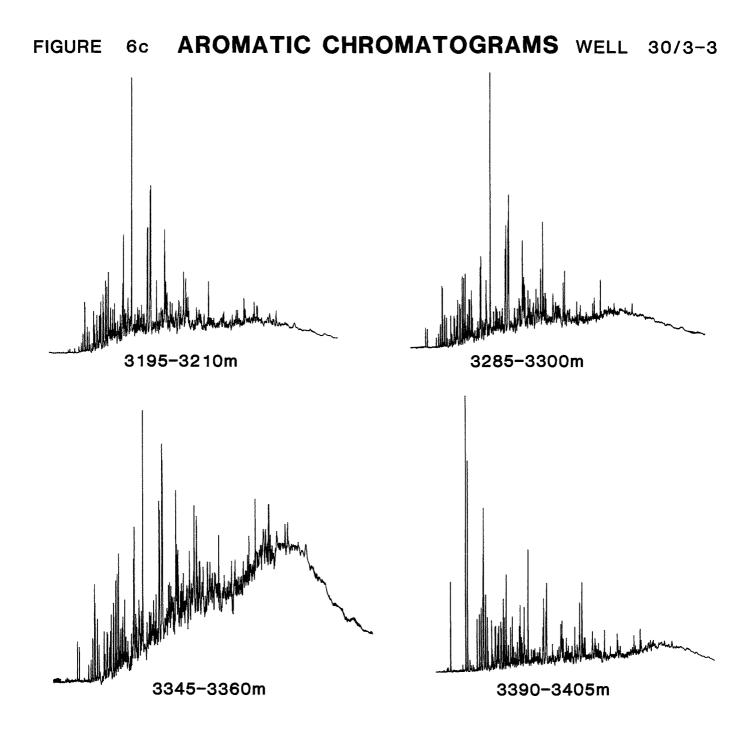


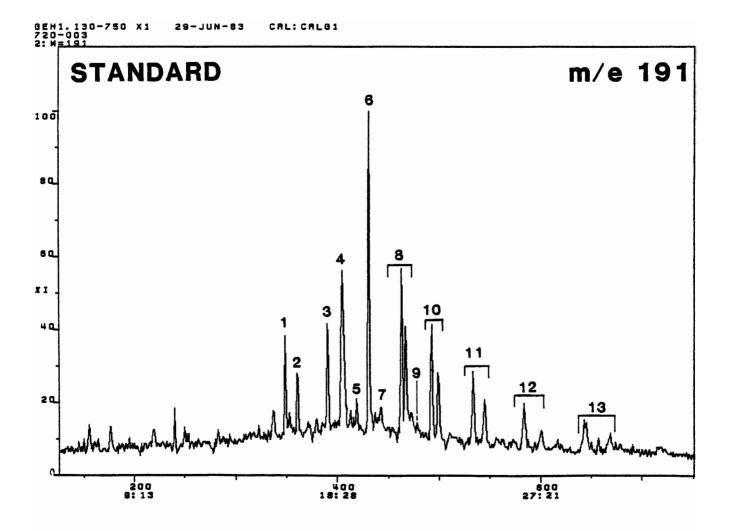

RATING

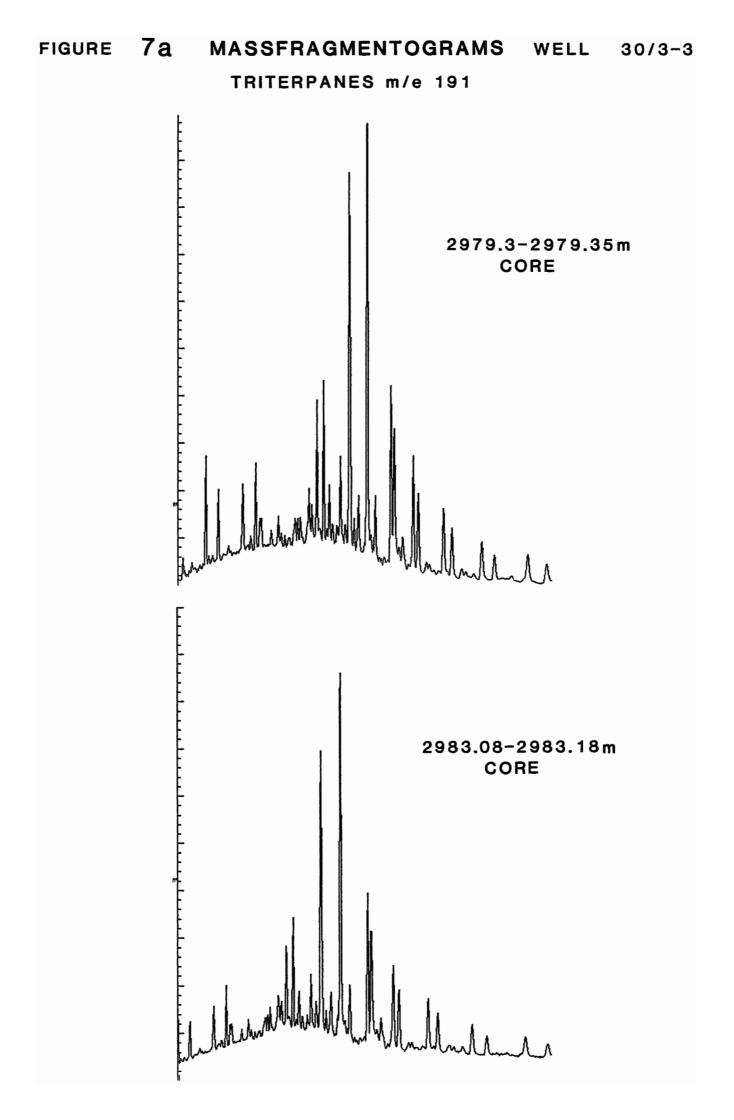


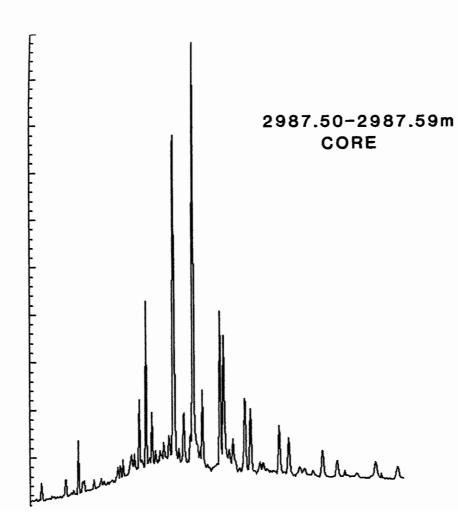


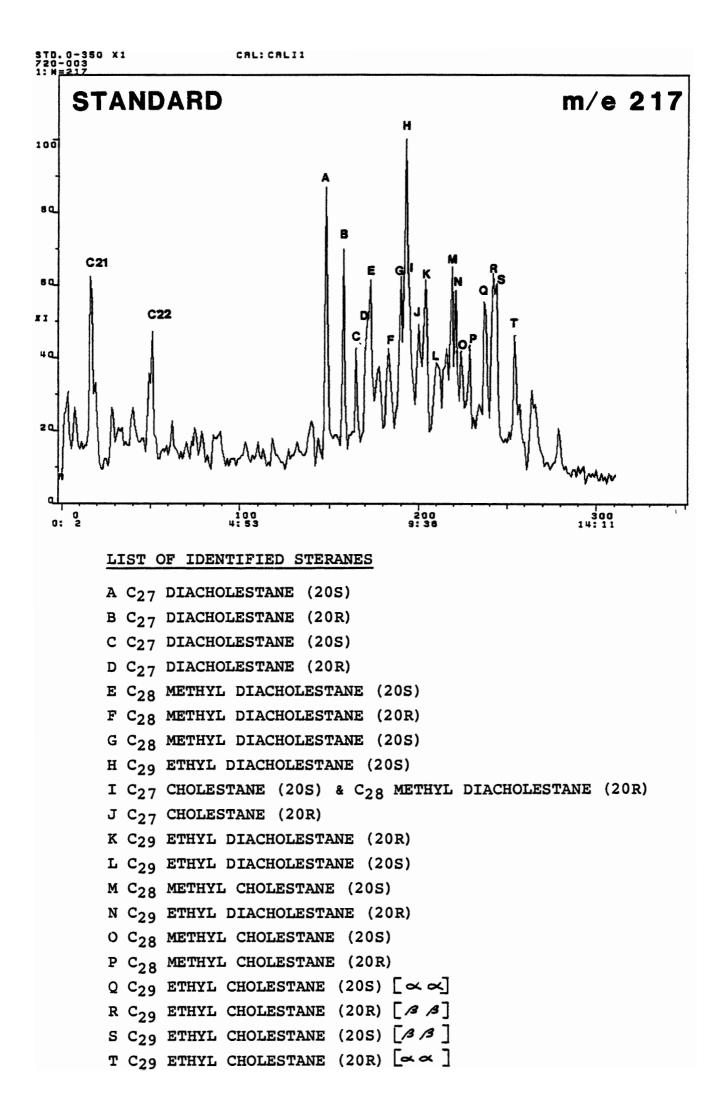


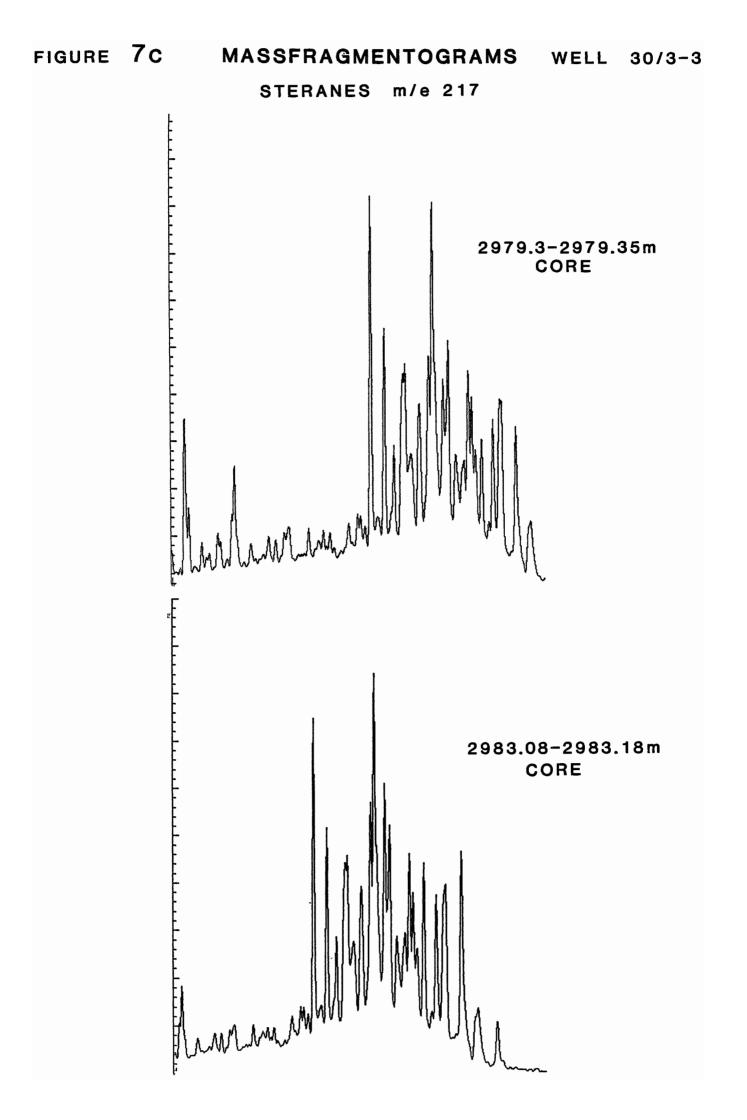


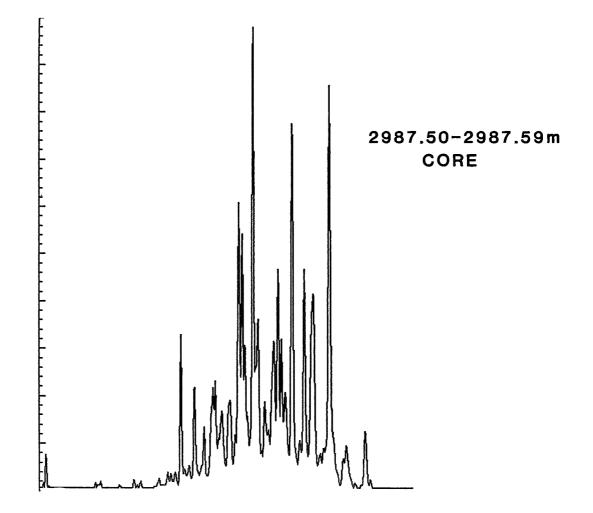


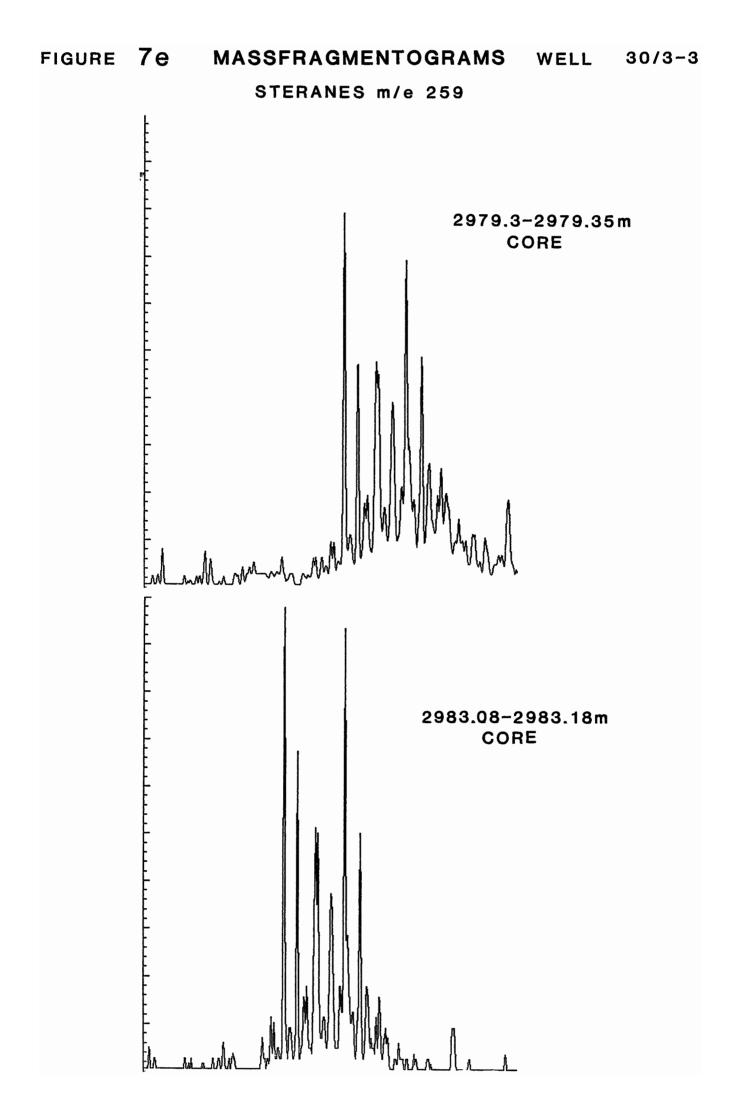


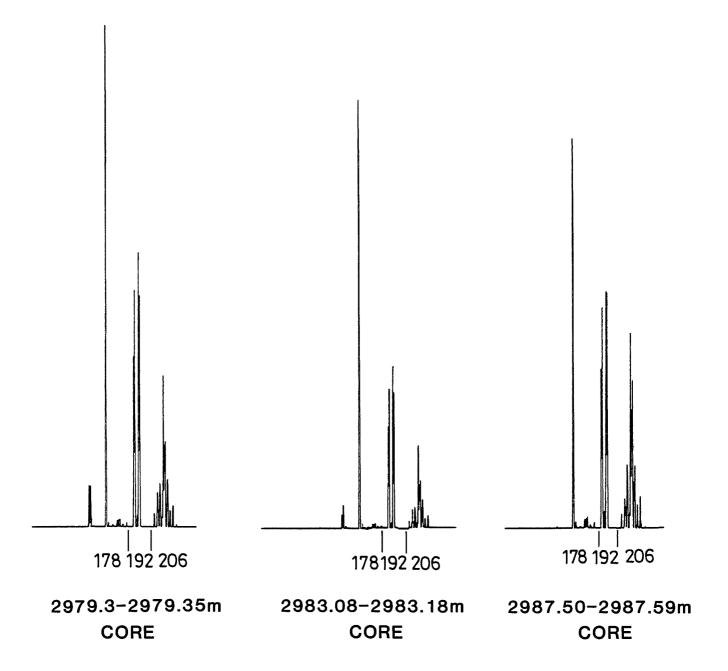


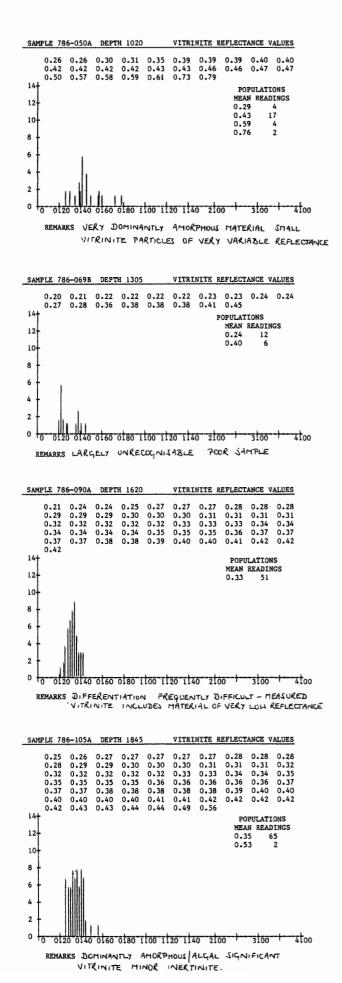

LIST OF IDENTIFIED TRITERPANES


1		17 H TRISNORHOPANE (C27)
2		17 H TRISNORHOPANE (C27)
3		BISNORHOPANE (C ₂₈)
4		17 H NORHOPANE (C29)
5		NORMORETANE (C29)
6		17 H HOPANE (C ₃₀)
7		17×H MORETANE (C ₃₀)
8	(22S) (22R)	17%H HOMOHOPANES (C31)
9		GAMMACERANE
10	(22S) (22R)	BISHOMOHOPANE (C32)
11	(22S) (22R)	TRISHOMOHOPANES (C33)
12	(22S) (22R)	TETRAHOPANES (C ₃₄)
13	(22S) (22R)	HOPANES (C35)


FIGURE 7b MASSFRAGMENTOGRAMS WELL 30/3-3 TRITERPANES m/e 191




FIGURE 7d MASSFRAGMENTOGRAMS WELL 30/3-3 STERANES m/e 217



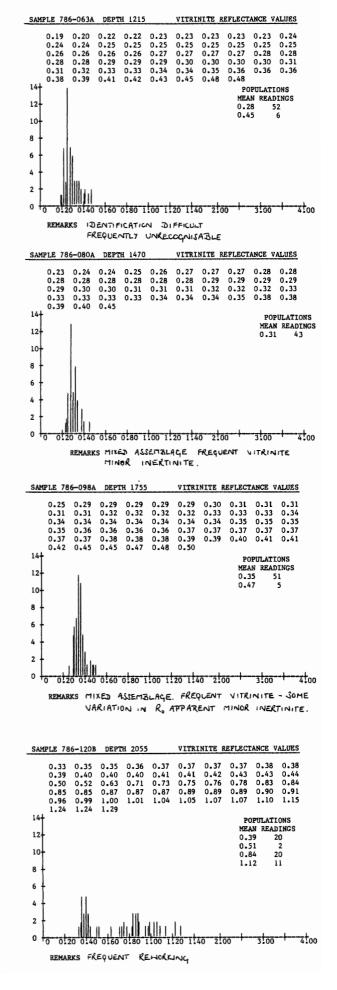


FIGURE 7f MASSFRAGMENTOGRAMS WELL 30/3-3

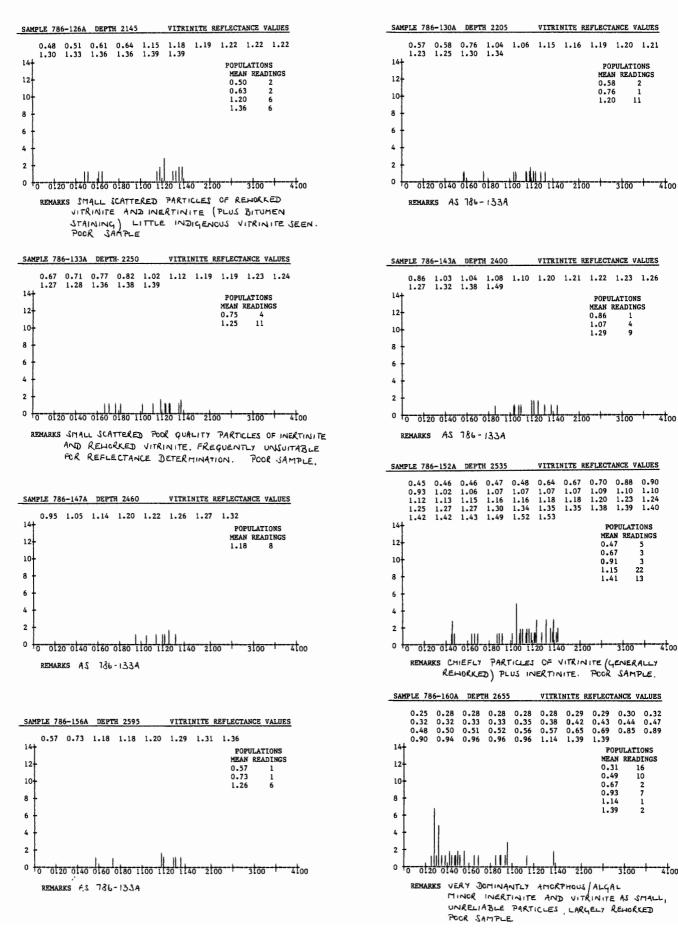
PHENANTHRENES

WELL 30/3-3

-4too

-4100

533


22 13

16 10

27

1 2

4100

0.43

42 19

0.48

0.62

20

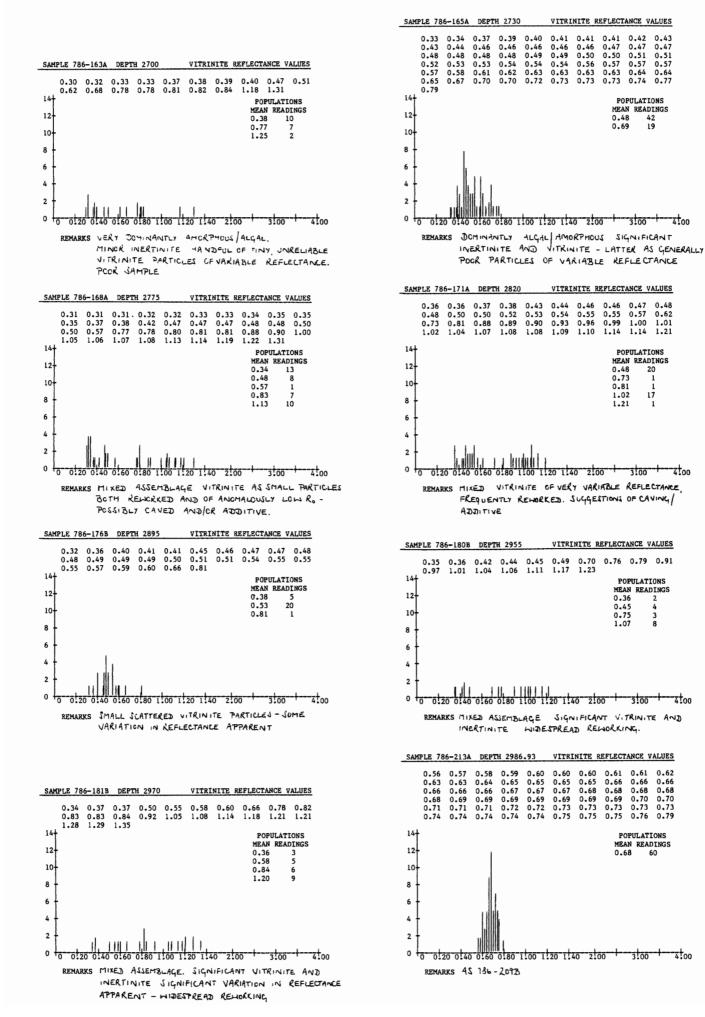
1 1 17

1

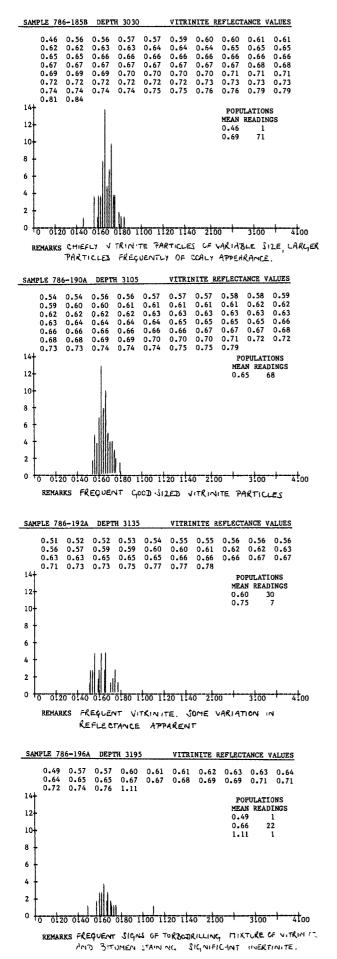
2 4

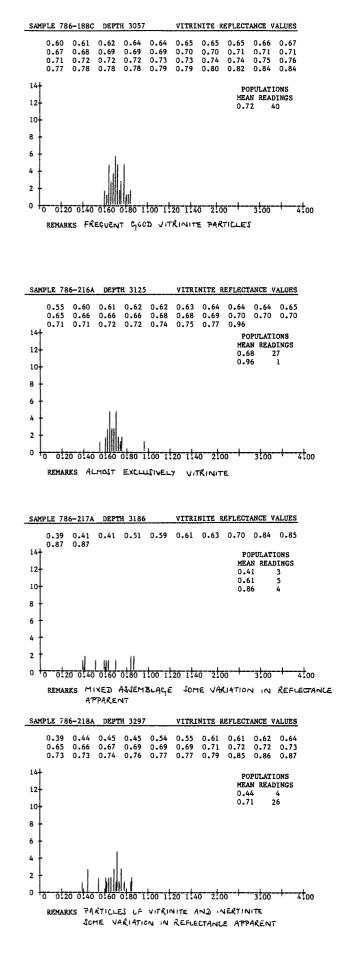
38

0.62

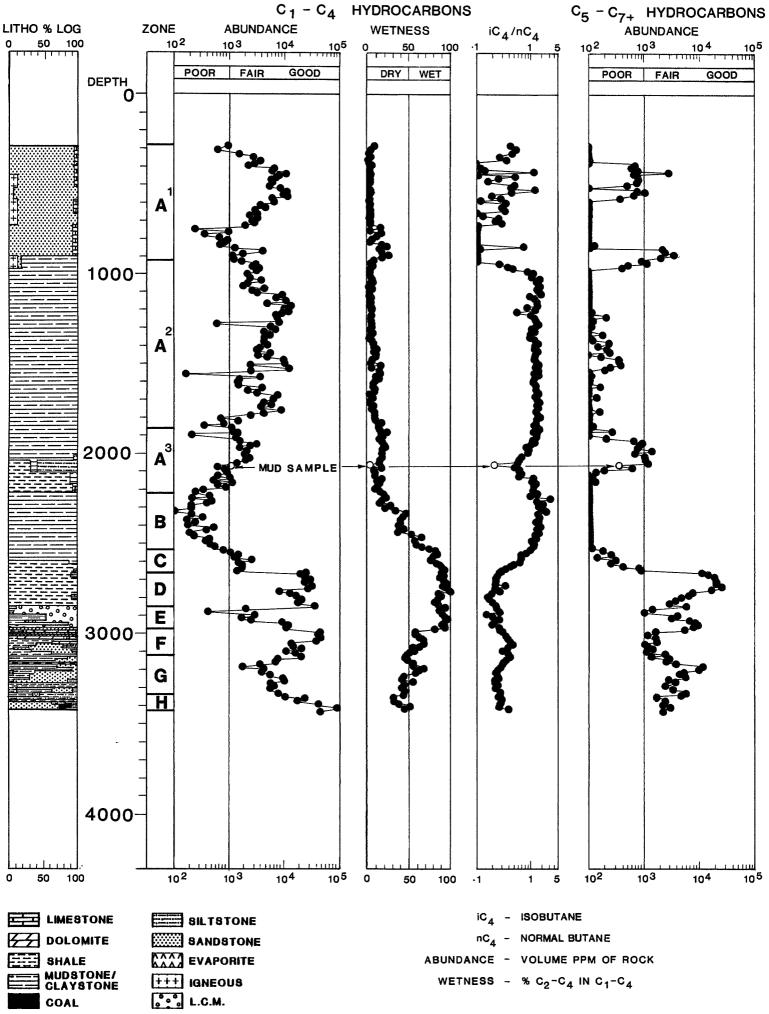

0.66 0.68 0.70

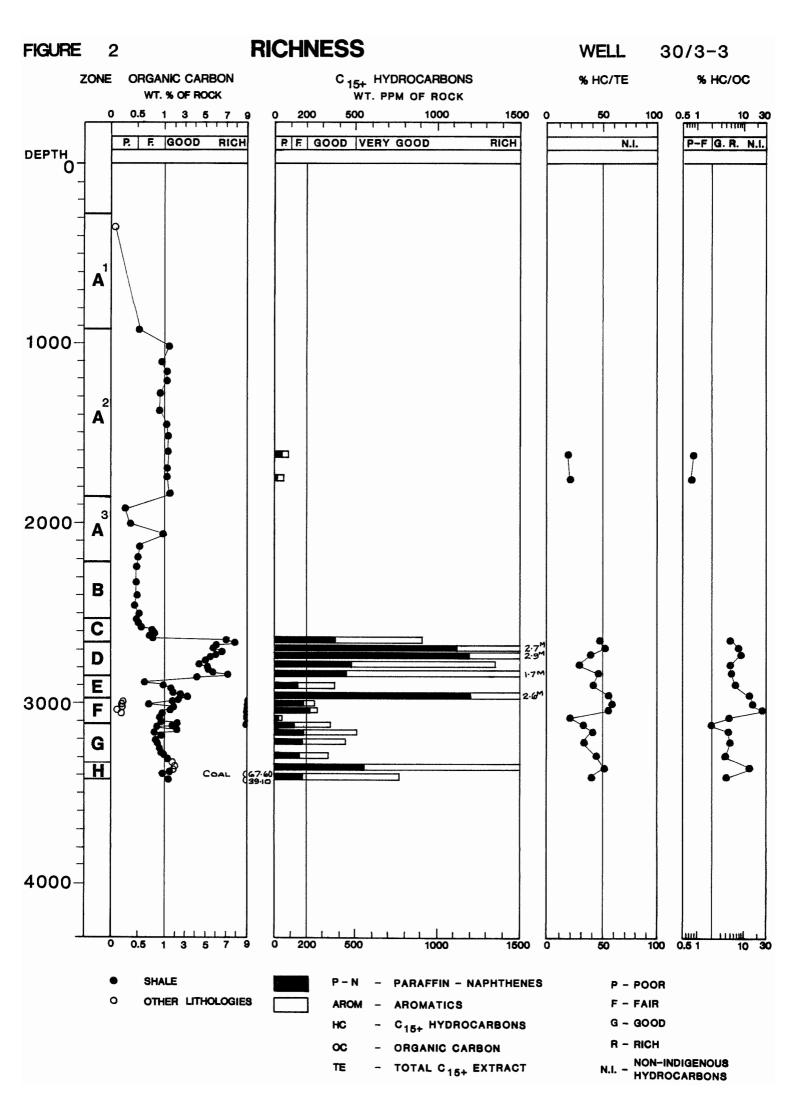
0.73 0.79

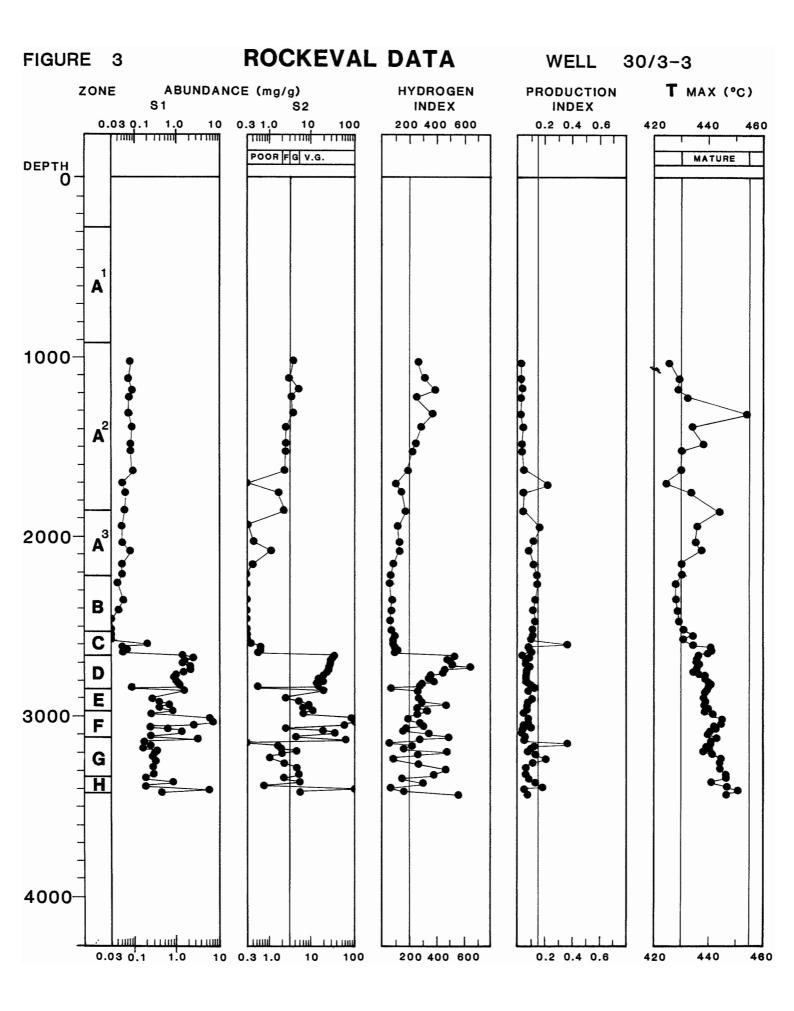

4100

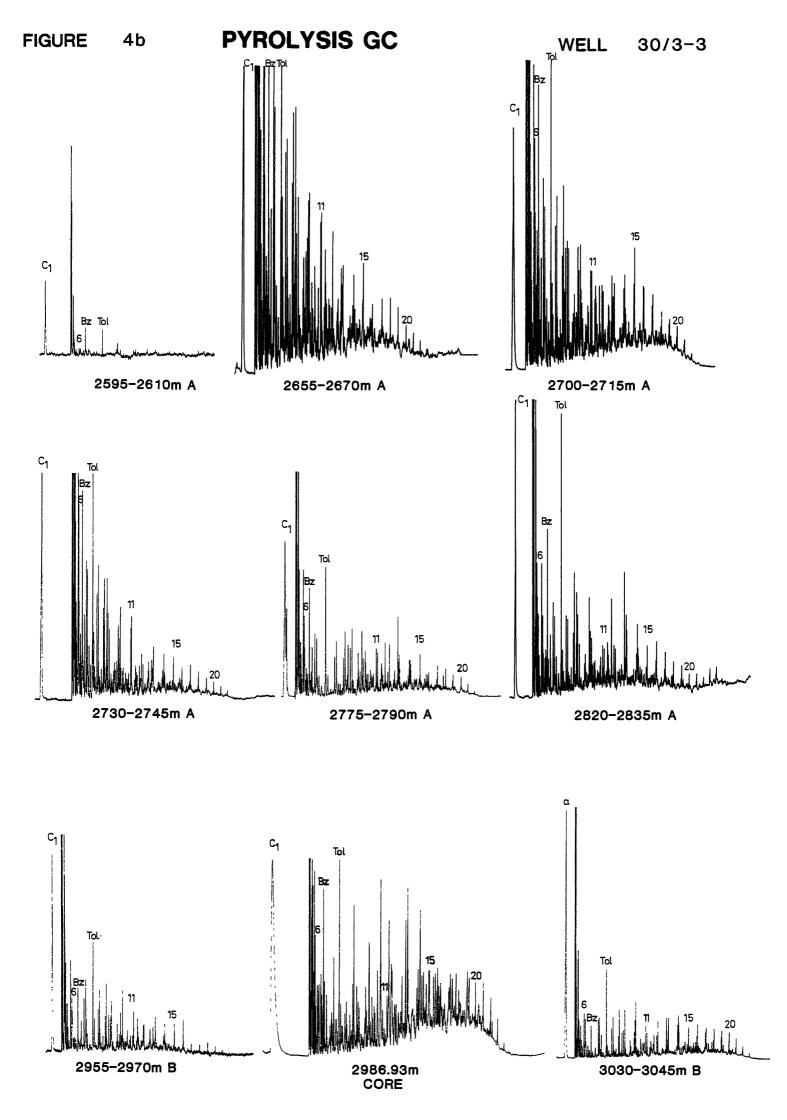

60

-2100

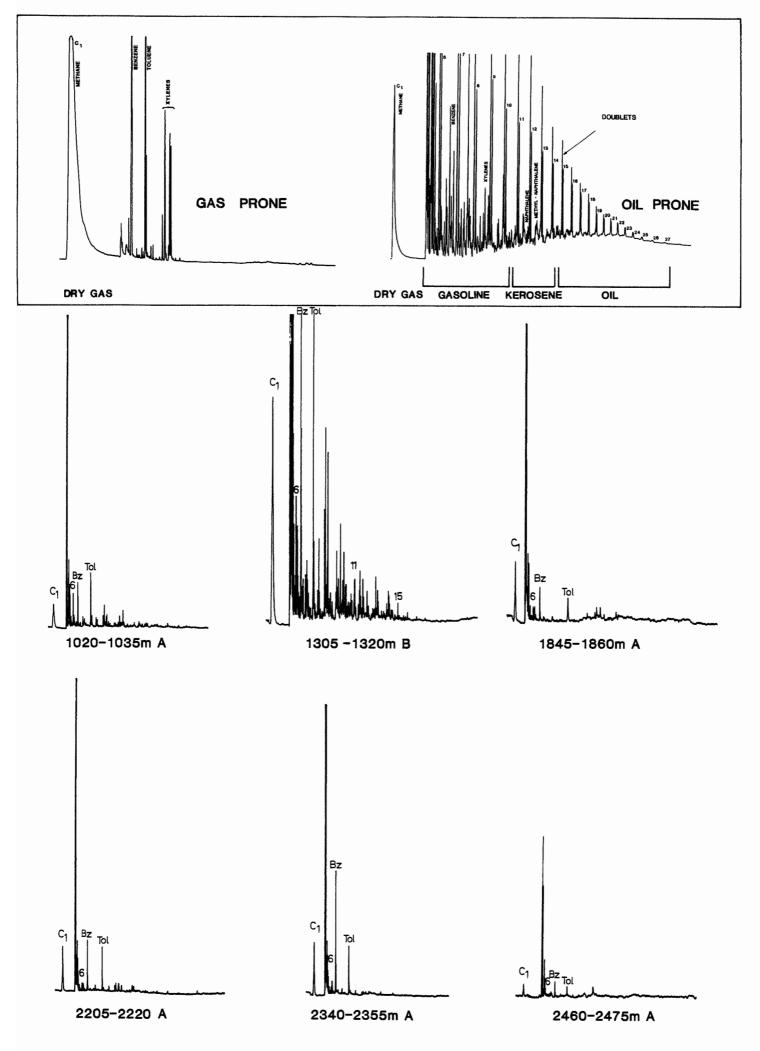

WELL 30/3-3

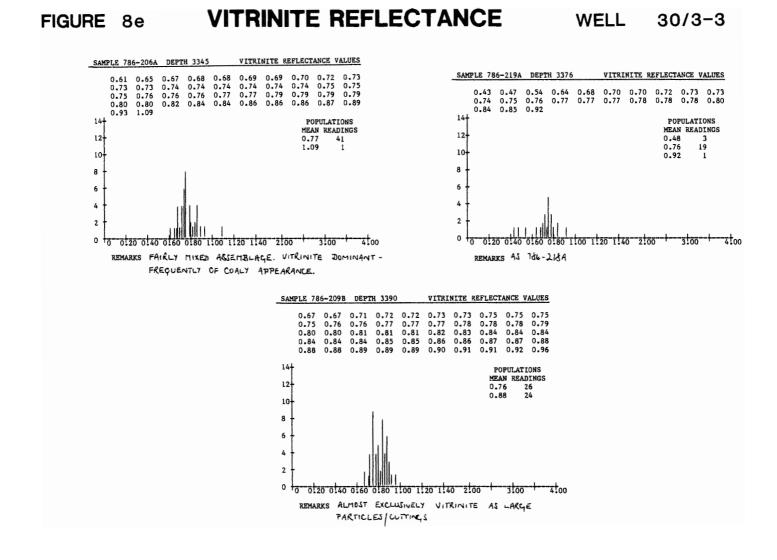






$C_{1} - C_{7} HYDROCARBONS WELL 30/3-3$ $C_{1} - C_{4} HYDROCARBONS C_{5} - C_{7+} HYDROCARBONS$





4a

