88-0855-1 1 6 JUNI 1988 O'L EDIREKTORATET Licence

: 089

Partners

: SAGA/ESSO/STATOIL/NORSK

HYDRO/ELF/DEMINEX/DNO

Date

MAY 1988

Revision no.

Date of revision:

Word Processing :

FINAL WELL REPORT

34/7-11 & 12

Norwegian Continental Shelf

Classification / Distribution

X Saga and partners

	Exploration	Petr.Tech.	Drilling si	norre Dev. Planin
Responsible Author	T. L. Larsen	C. Slungaard	S. Bjørheim	G. Diesen
Reviewed	B. Gustavsen	P. Smestad	TMalavenes/T. Va	the state of the s
Accepted	12. 40	Them toly -	Attlewers for 801	1 NAAskanL
Approved	of Hissel Le	u librez for	LTO .	

Approved

Mead Office Oslo Address / Maries ver 20 P.O.Box 9 1322 Hevik Norway

Nat. (02) 12 66 00 Imernet. 47 2 12 66 00

Teles 18852 Saga n Fac&mie Nat. (02) 53 99 00 Internat. 47 2 53 99 00 Regional Office Stavanger Address P 0.86x 117

4033 Forus Norway

Telephone Nat. (04) 57 66 55 Internat. 47 4 57 66 55

Telex 33244 \$2080 9 Facsimile Nat. (04) 57 02 61 Irremet. 47 4 57 02 61

DISTRIBUTION LIST

Copy No.	Company	
1	NPD	
2	10	
3	Statoil	
4		
5	Esso Norge A.S	
6	н н н	
7	Norsk Hydro Produksjon a.s.	
	11 11 11 11	
9	Elf Aquitaine Norge A/S	
10	n n n	
11	Deminex (Norge) A/S	
12	11 11 11	
13	Det Norske Oljeselskap a.s	
14		
15	Saga Petroleum a.s., Høvik	
16		
17		
18	99 19 39 89	
19	91 . 11 11 11	
20	11 II II II	
21	,ii ii ii 11	
22	91 31 31 46	
23	11 11 11 11	
24	11 11 11	
25	31 11 11 11	
26	11 11 11	
27	20 20 20 20	
28	H 1 H H H	
29		
30	H H H H	
31	H H H	
32	11 11 11 11	

Copy No. Company

33	Saga	Petroleum	a.s.,	Høvik
34	**	41	**	51
35	1,1	e †	**	.41
36	**	**		11
37	**	•1	**	:11
3,8	Saga	Petroleum	a.s.,	Stavanger
39	•	81	••	
40	.0	:01	.11	**
42	**	**	**	**
42	.**	,91	11	**
43	••	91	1,9	**
44	.**	•1	***	**
45	**	••	11	.11
46	**	**	11	**
47	41	11	**	**

			Page
1.	LIST	OF CONTENTS	1
2.	SUMMA	RY	4
	2.1	Exploration	5
	2.2	Operation	7
	2.3	Testing and Formation Evaluation	9
3.	GENER	AL INFORMATION	10
	3.1	Licence and General Well Information	11
	3.2	Saga Personnel	13
		3.2.1 Drilling	13
		3.2.2 Engineering	13
		3.2.3 Geology	14
		3.2.4 Petroleum Technology	15
	3.3	Contractors and Service Companies	16
	anor o	OGY AND GEOPHYSICS	17
4.		Geographic and Structural Setting	18
	4.1		18
	4.2	Purpose of the Well	20
	4.3	Sampling 4.3.1 Routine Samples	20
		4.3.1 Routine Samples 4.3.2 Distribution and Analyses of Samples	20
		4.3.2 Distribution and Analyses of Samples 4.3.3 Conventional Cores	22
		4.3.4 Sidewall Cores	24
		Measurement While Drilling	31
	4.4	Open Hole Logs, well 34/7-11	32
	4.5	_	33
	4.6	Open Hole Logs, well 34/7-12 Well Velocity Survey	34
	4.7	Formation Temperature	37
	4.8	Formation Pressure	41
	4.9 4.10		44
			47
	# • TT	4.11.1 Lithostratigraphic Summary	47
		4.11.2 Biostratigraphic Summary	49
		4.11.3 Hegre Group	53
		4.11.4 Statfjord Formation	53
		4.11.5 Dunlin Group	54
		4.11.6 Brent Group	57

				Page
		4.11.7	Viking Group	61
		4.11.8	Shetland Group	61
		4.11.9	Rogaland Group	62
		4.11.10	Hordaland Group	64
		4.11.11	Nordland Group, well 34/7-12	65
		4.11.12	Nordland Group, well 34/7-11	67
	4.12	Hydroca	rbon Indications	68
			·	
5.	FORMA	TION EVA	LUATION	70
	5.1	Logging		71
	5.2	Core An	alyses	71
	5.3	Formati	on Pressure Measurements	72
	5.4	Testing		72
	5.5	Fluid A	nalyses	76
				105
6.	DRILI	ING DATA		105
	6.1	-	perational Description, wells 34/7-11 and 12	106
		6.1.1	Bit Record, wells 34/7-11 and 12	129
			Bottom Hole Assemblies, wells 34/7-11 and 12	133
		6.1.3	Drilled Depth vs. Rotating Hours,	
			wells 34/7-11 and 12	137
	6.2		a, wells 34/7-11 and 12	139
		6.2.1	Mud Properties, Daily Report,	
			wells 34/7-11 and 12	139
		6.2.2	Mud Materials used, wells 34/7-11 and 12	142
	6.3	Casing	Data, wells 34/7-11 and 12	144
	6.4	Cement	Data, well 34/7-12	148
	6.5	Deviati	on Data, wells 34/7-11 and 12	150
		6.5.1	Horizontal Projection, wells 34/7-11 and 12	153
		6.5.2	Vertical Projection, Looking West,	
			wells 34/7-11 and 12	155
		6.5.3	Vertical Projection, Looking North,	
			wells 34/7-11 and 12	157
	6.6	Formati	ion Leak off Test Data, wells 34/7-11 and 12	159
	6.7	Rig Tin	ne Distribution, wells 34/7-11 and 12	162
		6.7.1	Drilled Depth vs. Rig Time,	
			wells 34/7-11 and 12	164
		6.7.2	Daily Rig Time Distribution,	
			wells 34/7-11 and 12	166

			Page
7.	OPER#	ATIONAL DATA	174
	7.1	Anchor Pattern, wells 34/7-11 and 12	175
	7.2	Helicopter and Charter Flights, wells 34/7-11 and 12	177
	7.3	Accident Reports, wells 34/7-11 and 12	179
	7.4	Daily Operating Conditions, wells 34/7-11 and 12	185
8.	WELL	PROFILES	189
	8.1	Wellbore Schematic, well 34/7-12	190
	8.2	Abandonment Profile, wells 34/7-11 and 12	191
9.	ENCL	DSURES	
	i (Composite Well Log	
	TT 1	Formation Pressure Evaluation Sheet	

III Wellsite Core Description

2. SUMMARY

2.1 <u>Exploration</u>

The primary purpose of well 34/7-11, and after respudding 34/7-12, was to assess the hydrocarbon potential of the "B"-structure in the southern part of block 34/7. Further objectives were to establish the thickness and reservoir quality of the prospective Brent Group, assess the potential of the secondary prospects in the Dunlin Cook Formation and the Statfjord Formation, and determine the OWC. The well was to be terminated in the upper Lunde Formation.

Well 34/7-11 was drilled through the Late Miocene to Pliocene Nordland Group down to 861 m RKB. The lithology was sand with minor clay down to 400 m RKB and clay with scattered sand beds in the rest of the well.

Well 34/7-12 was terminated in Late Triassic claystones and siltstones of the upper Lunde Formation at a total depth (T.D.) of 2784 m RKB (driller's depth). Also in this well the Late Miocene to Pliocene Nordland Group was mainly composed of sand with minor clay down to 400 m RKB. Down to Top Utsira at 930 m RKB the lithology was clay with scattered sand beds. The Utsira Formation, from 930 to 1021 m RKB, consisted of alternating sand and clay.

From the Top Hordaland Group at 1021 m RKB down through the Late Paleocene Rogaland Group and the Late Cretaceous Shetland Group to the Top Jurassic at 2160.5 m RKB, the lithology was predominantly claystone apart from some Late Eocene to Early Oligocene sand intervals between 1140 and 1430 m RKB and some limestone and dolomite stringers in the Shetland Group. The claystones in the Late Paleocene Balder Formation from 1643.5 to 1691.5 m RKB was characteristically tuffaceous.

The Jurassic comprised the Middle Jurassic Viking and Brent Groups and the Early Jurassic Dunlin Group and Statfjord Formation.

The Viking Group was only 8.5 m thick and consisted of claystone belonging to the Heather Formation. The Brent Group, from 2169 to 2340.5 m RKB (171.5 m thick) comprised the sandy Tarbert Formation,

the interbedded shaly and sandy Ness Formation, the sandy Etive and Rannoch Formations and at the base the conglomeratic Broom Formation.

The Dunlin Group was penetrated from 2340.5 to 2606 m RKB (265.5 m thick), comprising the shaly Drake Formation at the top, the Cook Formation with interbedded sandstone and claystone, the Burton Formation with claystone and minor sandstone and the Amundsen and Calcareous Amundsen Formations having claystones with minor limestone.

The Statfjord Formation, 157 m thick from 2606 to 2763 m RKB, was dominated by sandstones with minor to interbedded claystone.

The Late Triassic upper Lunde Formation was encountered at 2763 m RKB, and comprised claystone interbedded with siltstone. The well was drilled down to T.D. at 2784 m RKB.

10 cores were cut through the whole Brent Group and 20 m into the Dunlin Group, totalling 191.5 m. 180.8 m were recovered giving a recovery of 94.4%.

34/7-12 was plugged and abandoned after testing as an oil discovery.

2.2 Operation

Well 34/7-11:

The drilling rig "Treasure Saga" arrived on location on October 1, 1987, and the well was spudded on October 2, at 1730 hrs.

The 36" hole section was drilled from 216 m RKB (Seabed) to 332 m RKB with a 36" bottom hole assembly (BHA) in one run. The 30" casing was run and cemented with the shoe at 327 m RKB.

The seabed diverter was run on riser and landed before the 26" BHA was made up and run in hole. The cement and 30" shoe was drilled out with a 17 1/2" bit and 26" underreamer. A 17 1/2" BHA was run in hole prior to displacing to 1.13 SG mud. The pilot hole was drilled to 861 m RKB.

After flowchecking procedures the 17 1/2" pilot hole was opened to 26" using an underreamer, and with a flowcheck at 650 m RKB. At 861 m RKB the mudweight was increased to 1.20 SG due to slight flow on flowchecks. The riser was displaced to seawater and pulled prior to a checktrip with a 26" bit.

The 20" casing was run. One meter above the latch point the casing was stopped to break circulation with mud and to mix/pump cement. After displacing 3700 strokes it was attempted to land the casing with no success. The plug was bumped, and the casing was pressure tested as per programme, but the 18 3/4" wellhead landed 0.6 m high. The BOP was run and tested, but due to movement of the 18 3/4" wellhead it was decided to abandon the well.

A cement plug was set from 455 to 255 m RKB, and the well was finished on October 11, 1987, at 1100 hrs.

Well 34/7-12:

After abandonment of well 34/7-11 the drilling rig "Treasure Saga" was moved 20 m north by pulling on anchors to get in position for

well 34/7-12. The well was spudded on October 11, 1987, at 2200 hrs.

The 36" section was drilled from 216 m RKB (Seabed) to 332 m RKB with a 36" bottom hole assembly (BHA) in one run. The hole was displaced to high viscosity mud before the casing was run and cemented with the shoe at 327 m RKB.

The seabed diverter was on riser and landed before the 17 1/2" BHA was made up. Water was used to drill cement from 321 to 327 m RKB prior to displacing the hole to 1.12 SG mud. The 17 1/2" pilot hole was drilled to 852 m RKB with one BHA. The mudweight was gradually increased to 1.15 SG.

The hole was opened to 26" using an underreamer. The hole was displaced with 1.20 SG mud, and the riser displaced to seawater prior to flowchecking. The riser and seabed diverter were then pulled. A checktrip with a 26" bit was made before the 20" casing was run and cemented with the shoe at 838 m RKB. The BOP was then installed.

The 20" shoetrack was drilled out with a 17 1/2" BHA, using seawater. At 832 m RKB the hole was displaced to KCL-mud, and the 17 1/2" section was drilled to 1865 m RKB (casing point) in 2 bit runs. At casing point the mudweight was up to 1.58 SG. The section was logged before the 13 3/8" casing was run and cemented with the shoe at 1851 m RKB.

The 12 1/4" section was drilled to 2169 m RKB. Then a corebarrel was run in hole, and a total of 10 cores were cut to 2360.5 m RKB. A 12 1/4" hole was drilled to 2480 m RKB before the reservoir was logged. A new 12 1/4" bit was made up and run in hole, and the section was drilled to 2785 m RKB (T.D. of the well). After logging the well was plugged back with cement to 2360 m RKB, and the 9 5/8" casing was run and cemented with the shoe at 2366 m RKB.

The well was tested before it was plugged back with cement and casings were cut. The PGB was recovered with 20"/30" casings, but the TGB was left on location.

The rig left location on December 17, 1987, at 1345 hrs.

2.3 Testing and Formation Evaluation

Well 34/7-12 penetrated the reservoir at 2169.0 m RKB. The oil water contact (OWC) was defined in the Ness Formation at 2250 m RKB (2224 m MSL). The average log porosity in the Tarbert Formation (2169 - 2213 m RKB) is 28.4%, the net to gross ratio is 1.0, and the average water saturation is 10%. The Ness Formation (2213 - 2251.5 m RKB) has an average log porosity of 24.4%, a net to gross ratio of 0.32, and an average water saturation of 41%. The Statfjord Formation is waterbearing.

A total of 10 cores were cut and recovered during drilling of the well. The cores were cut in the interval 2169 - 2360.5 m RKB (driller's depth). A total of 180.8 m of cores were recovered, corresponding to a total recovery of 94.4%.

Production tests were carried out in Lower Brent, Ness and Tarbert. The maximum oil rate, $2600~\mathrm{Sm}^3/\mathrm{D}$, was obtained during test No. 3 in Tarbert with a productivity index of 190 $\mathrm{Sm}^3/\mathrm{D/bar}$. The corresponding wellhead pressure was 121.3 bar.

Further information on testing and formation evaluation is presented in section 5.

3. GENERAL INFORMATION

3.1 <u>Licence and General Well Information</u>

Licence 089, awarded on March 9, 1984, covers most of block 34/7 on the Tampen Spur, approximately 240 km northwest of Bergen. The location map is shown in fig. 3.1.

Group Members	Working Interest	Net Interest
Saga (operator)	10%	10%
Esso	30%	15%
Statoil	23%	50%
Norsk Hydro	12%	12%
Elf Aquitaine	16%	8%
Deminex	8%	4%
DNO	1%	1%

Rig taken over by PL 089: September, 30, 1987.

Spud date, 34/7-11: October 2, 1987.

Spud date, 34/7-12: October 11, 1987.

T.D. date, 34/7-11: October 6, 1987.

T.D. date, 34/7-12: November 15, 1987.

Rig released from PL 089: December 16, 1987.

Completion status: Plugged and abandoned as an oil discovery.

Final location coordinates: 34/7-11 34/7-12

Latitude 61° 16' 17.20" N 61° 16' 17.86" N

Longitude 02° 06' 47.10" E 02° 06' 47.26" E

UTM-coordinates: 34/7-11 34/7-12 6793 507.0 m N 6793 527.6 m N 452 438.9 m E 452 441.5 m E

Seismic position: Line SG 8431, row 155, column 534.

Rig: "Treasure Saga"

RKB - MSL: 26 m

MSL - Seabed (water depth): 190 m

RKB - Seabed: 216 m

RKB - T.D. 2784 m RKB (driller's depth)
2785 m RKB (logger's depth)

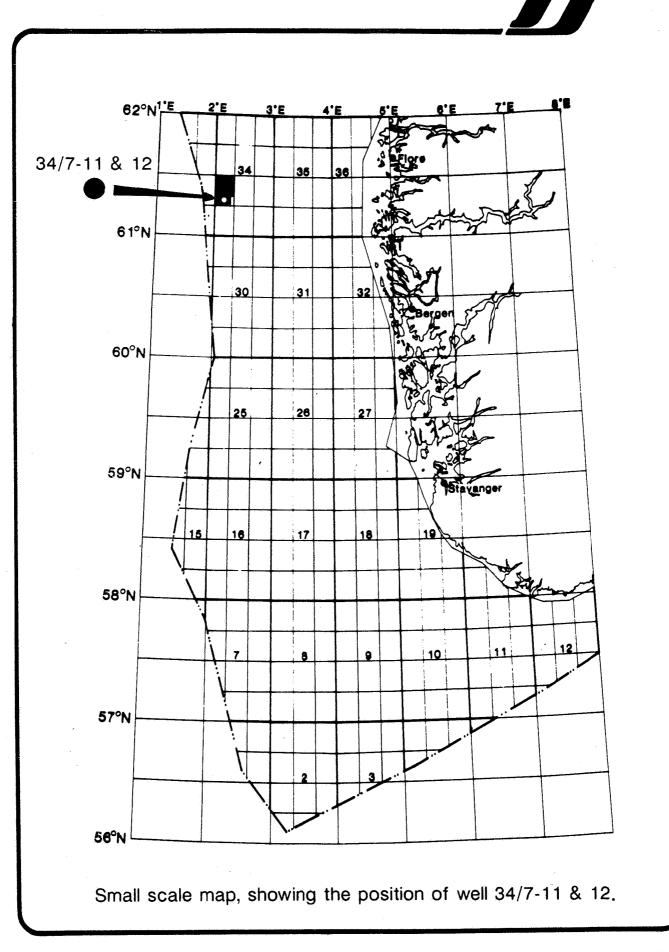


Fig. 3.1

Date May.88	Auth. 7	LL	Appr	BAG
Draw by RHK	Ref			

3.2 Saga Personnel

3.2.1 Drilling

Onshore:

Vice President, Drilling Operations:
Senior Manager, Drilling Operation:
Ass. Senior Manager, Drilling Operation:

Senior Drilling Engineers:

Reidar O. Nyvik

Terje Vatn

Kristian Sirevaag Ole Kristian Brobak

Jon Arne Aase

Offshore:

Drilling Supervisors:

Johan Bysveen
Einar Framnes
John Nilsen
Kjell Randulff
Jan Petter Rød
Jon Arne Aase
Øivind Holte
Trond Myrseth

Assistant Drilling Supervisors:

3.2.2 Engineering

Onshore:

Senior Manager, Engineering: Chief Engineer, Engineering: Senior Drilling Engineers:

Drilling Engineers:

Paul T. Klavenes
Tor Stein Ølberg
Svein Bjørheim
Jarle Haga
Helge Varhaug
Frode Leraand
Hilde Ødegaard

3.2.3 Geology

Onshore:

Exploration Department

Vice President, Exploration:

Senior Manager, Operation Geology:

Operation Geologist:

Operation Engineer:

Senior Manager, Geophysical Laboratory:

Geophysicist:

Geologist:

Senior Manager, Geological Laboratory:

Micropaleontologist:

Palynologist:

Sedimentologists:

Geochemist:

Sample distribution:

Offshore:

Well-site Geologists:

Hans Chr. Rønnevik

Terje Solli

Bjørn Karlstad

Jan Egil Pedersen

Kristian Kolbjørnsen

Steven Helmore

Kirsten Tibballs

Hans O. Augedal

Sven A. Bäckström

Frøydis Eide

Per Bakøy

Ellen Sofie Mo

Kari Chruchow

Carl W. Carstens

K Geir Dalen

Geir W. Diesen

Brit Riise Fredheim

Øystein Jacobsen

Bjørn Karlstad

Tormod Lid Larsen

Øystein Mjelde

Snorre Development Planning Department:

Department Manager:

Senior Geological Manager:

Licence Geologists:

Senior Geophysical Manager:

Licence Geophysicists:

Nils B. Hollander

Nils Ræstad

Geir W. Diesen

Knut Jorde

Kari Bøyum

John Battie

Atle Edvardsen

Mona Kjølseth

3.2.4 Petroleum Technology

Onshore:

Vice President, Petroleum Technology:

Senior Manager, Formation Evaluation:

Arne Westeng

Bjørn A. Rasmussen

Offshore:

Petrophysicists:

.

Test Engineers:

Peter Dempsey

Cathrine Slungaard

Bård Beldring

Sven-Ove Brandvold

Bengt Hultberg

Gabriel Jensen

Torgeir Opdahl

Harald Selseng

Ingeborg Vrenne

Onshore:

Senior Manager, Reservoir Engineering:

Reservoir Engineers:

Lars Rasmussen

Jon Magne Hvidsten

Tone Kjenstad

Kari Solberg

3.3 <u>Contractors and Service Companies</u>

Drilling Contractor:

Mud Logging:

Wireline Services:

VSP:

Mud Engineering:

Cement and Pumping Services:

Casing Services:

Cutting Services:

Coring Services:

Underreaming:

MWD Logging:

ROV Service:

Well Head System:

Jarring Services:

Stabilizers:

Cement Retainers:

Surface Sampling:

Supply Boat:

Standby Boat:

Helicopter Service:

Catering Service:

Wilh. Wilhelmsen

Exploration Logging Norge A/S

Atlas Wireline Services

Seismograph Services Ltd.

Dresser Norway A/S

B.J. Hughes B.V.

Salvesen

Salvesen

Eastman Christensen

Tri-State

Teleco

Bergen Underwater Services

Aker Vetco

Eastman Christensen

Eastman Christensen

Halliburton

Petrotech a.s

"Skandi Beta"

"Standby Master"

Helicopter Service A/S

Wilh. Wilhelmsen

4. GEOLOGY AND GEOPHYSICS

4.1 Geographic and Structural Setting

The 34/7-11 and 12 wells were drilled on the "B"-structure in the southern part of block 34/7, not far from the borderline between blocks 34/7 and 34/10 (fig. 4.1). A northeast-southwest striking fault (the southern Main Fault) with throw down to the east forms the southern boundary of the "B"-structure. Furthermore, an east-west fault (the northern Main Fault) with throw down to the south cuts across the southern part of the structure. A north-south striking fault with a throw down to the west dissects the structure. 34/7-11 and 12 is thus located in the northwestern segment of the "B"-structure, close to the intersection of the northern Main Fault and the north-south striking fault. The geological strata are striking north-south and dip to the west in this area. The structure map is defined at the depth of the Top Brent Group.

4.2 Purpose of the Well

The primary purpose of well 34/7-11 and 12 was to assess the hydrocarbon potential of the "B"-structure. Further objectives were to establish the thickness and reservoir quality of the prospective Brent Group, determine the OWC, assess the potential of the secondary objectives in the Dunlin Cook Formation reservoir and the Statfjord Formation and assess the upper part of the Triassic Lunde unit B/C reservoir section.

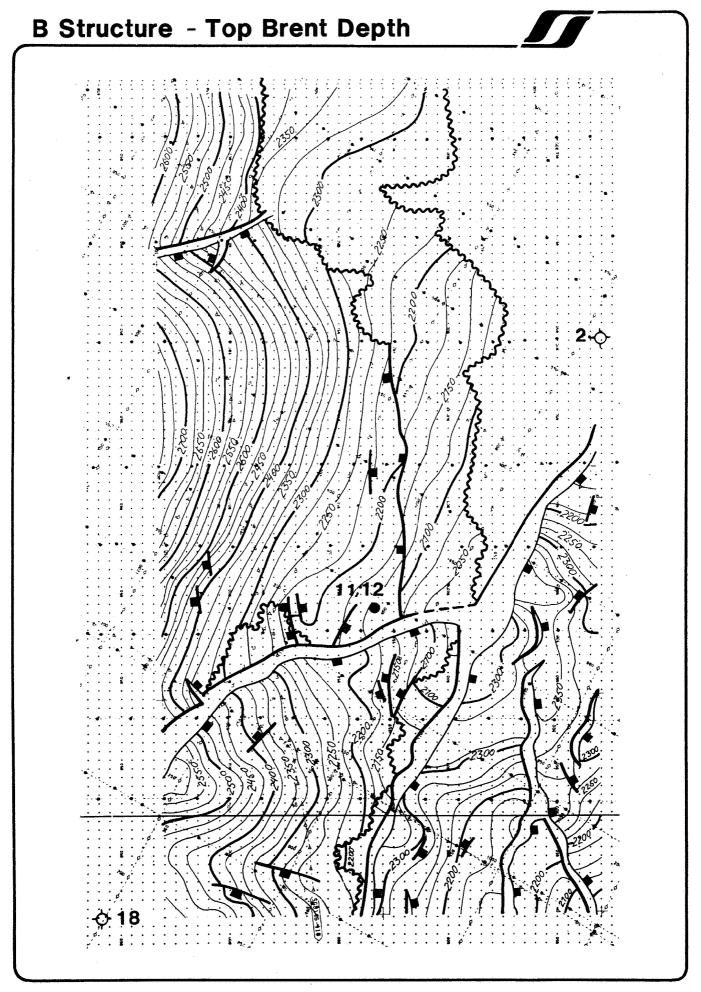


Fig. 4.1

Dato 11/3 88	Forf.	GWD	Godkiy 8/
Tegn.av HBe	Ref.		

4.3 Sampling

4.3.1 Routine Samples

The following routine samples were collected:

- a) Six sets of wet ditch cuttings (a 1/2 kg).
- b) Two sets of well-site washed and dried cuttings.

No returns: 216 (Seabed) - 340 m RKB

10 m intervals: 340 - 1800 m RKB 5 m intervals: 1800 - 2165 m RKB

3 m intervals: 2165 - 2784 m RKB

c) One set of canned composite wet samples for geochemical analyses.

10 m intervals: 340 - 2160 m RKB

9 m intervals: 2160 - 2784 m RKB

4.3.2 Distribution and Analyses of Samples

Six sets of wet cutting samples, two sets of washed and dried samples, and one set of canned samples were collected from first sample return to total depth. These samples were distributed in the following way:

Wet samples:

- a) Sent to Paleoservices for paleodating. The rest material was returned to Saga.
- b) Treated according to NPD regulations by Scanwell and sent to NPD.
- c) Washed and divided into 10 splits by Scanwell and transferred to Statoil as trade sets.

- d) Washed and divided into 6 splits by Scanwell. One split containing one half of this set was transferred to Statoil, and the other splits were sent to partners.
- e) Sent to Saga, Høvik, for paleontological and mineralogical analyses.
- f) Washed and dried by Scanwell, and sent to Saga, Høvik.

Washed and dried samples directly from the rig:

- a) One set transferred to Saga, Høvik.
- b) One set transferred to NPD.

Canned samples were sent to Saga, Arkivrommet, Hamang Næringssenter, Eyvind Lychesvei 21C, 1300 Sandvika.

The petrophysical measurements and the slabbing of the cores were carried out by Geco. Cut C was sent to Statoil and cut D to NPD. Cuts A and B were transferred to Arkivrommet, Sandvika, for detailed sedimentological and structural description together with petrographical and paleontological analysis. The A and B cuts will be stored at Arkivrommet, Hamang Næringssenter, Eyvind Lychesvei 21C, 1300 Sandvika, when the analyses are completed.

The sidewall cores (SWC) were sent to Saga, Høvik, for paleontological, geochemical and petrographical analysis. Selected SWC were sent to Paleoservices for paleodating.

4.3.3 Conventional Cores

Core No. 1 Cut : 2169.0 - 2196.5 m RKB

Recovered : 2169.0 - 2196.3 m RKB

Recovery : 27.3 m (99.3%)

Correction factor : +2.5 m

Recovered interval, log : 2171.5 - 2198.8 m RKB

Core No. 2 Cut : 2196.5 - 2214.0 m RKB

Recovered : 2196.5 - 2212.9 m RKB

Recovery : 16.4 m (93.4%)

Correction Factor : +2.5 m

Recovered interval, log : 2199.0 - 2215.4 m RKB

Core No. 3 Cut : 2214.0 - 2216.0 m RKB

Recovered : 2214.0 - 2215.5 m RKB

Recovery : 1.5 m (75%)

Correction Factor : +1.75 m

Recovered interval, log : 2215.75 - 2217.25 m RKB

Core No. 4 Cut : 2216.0 - 2228.0 m RKB

Recovered : 2216.0 - 2224.9 m RKB

Recovery : 8.9 m (74.2%)

Correction Factor : +1.75 m

Recovered interval, log : 2217.75 - 2226.65 m RKB

Core No. 5 Cut : 2228.0 - 2242.0 m RKB

Recovered : 2228.0 - 2242.0 m RKB

Recovery : 14.0 m (100%)

Correction Factor : +1.75 m

Recovered interval, log : 2229.75 - 2243.75 m RKB

Core No. 6 Cut : 2242.0 - 2262.0 m RKB

Recovered : 2242.0 - 2261.5 m RKB

Recovery : 19.5 m (97.5%)

Correction Factor : +2.25 m

Recovered interval, log : 2244.25 - 2263.75 m RKB

Core No. 7 Cut : 2261.0 - 2290.0 m RKB

Recovered : 2262.0 - 2289.9 m RKB

Recovery : 27.9 m (99.6%)

Correction Factor : +1.75 m

Recovered interval, log : 2263.75 - 2291.65 m RKB

Core No. 8 Cut : 2290.0 - 2305.5 m RKB

Recovered : 2290.0 - 2305.0 m RKB

Recovery : 15 m (96.8%)

Correction Factor : +1.75 m

Recovered interval, log : 2291.75 - 2306.75 m RKB

Core No. 9 Cut : 2305.5 - 2333.0 m RKB

Recovered : 2305.5 - 2332.5 m RKB

Recovery : 27 m (98.2%)

Correction Factor : +1.25 m

Recovered interval, log : 2306.75 - 2333.75 m RKB

Core No. 10 Cut : 2333.0 - 2360.5 m RKB

Recovered : 2333.0 - 2356.3 m RKB

Recovery : 23.3 m (84.7%)

Correction Factor : +1 m

Recovered interval, log : 2334.0 - 2357.3 m RKB

Comments:

All core depths (cut) in section 4.3.3 correspond to driller's depth. The log depths correspond to the CDL log. The wellsite core descriptions are presented in Enclosure III, and the core analyses are given in chapter 5.2.

4.3.4 Sidewall Cores

Three runs were made with a coregun attempting a total of 150 sidewall cores.

101 cores were recovered (67.3%), 37 were lost and 12 were empty or had only trace recovery (too small to be paid for).

The geological descriptions are given in table 4.1.

Table 4.1: Sidewall Core Description, well 34/7-12

No.	Depth	Lithology
on log	m RKB	
1	858	Clyst: olv gy, sft, sl mic-mica, calc
		Tr: rk frag
2	897	Sample as above
3	918	Clyst: olv gy - dk gn gy, else as above
4	925	Clyst: sl calc, else as above
5	930	Clyst: sl aren, olv gy - dk gn gy, sft, sbfis, sl mic-mica,
		calc, v microf, burrows (pyr micxl)
6	942	Clyst: olv gy, sft, sl calc
7	961.5	Clyst: slty, /thn str ss
		Clyst: slty, olv gy, sft, mic-mica, calc, tr rk frag
		Ss: wh, occ orng, slt-vf, w srtd, sbrnd, lse
8	995	Sample as above
9	1014	Sample as above
10	1021	Ss: v arg, v glauc, olv gy, vf-vc, occ bldr, p srtd, sbrnd-
		rnd, occ ang, fri-frm, mica, sl calc
11	1025	Clyst: v slty, pa brn - olv gy - dk yel brn, frm, mica,
		glauc, non calc
12	1038	Clyst as above /str of ss
		Ss: lt brn gy - lt gy, vf-f, w srtd, sbrnd-rnd, lse, v
		glauc, mica, calc
13	1061	Clyst: slty, pa brn - dk yel brn, frm, mic-mica, glauc, non
		calc
14	1099.5	Clyst: olv gy, frm, sl mic-mica, non calc
15	1150	Sample as above
16	1228	Clyst: olv gy - dk gn gy, wxy, frm, occ hd, sbfis, sl mic-
,		mica, non calc, sks
17	1265	Clyst, v aren, /thk lam ss, clyst as above
		Ss: clr-wh, vf-f, w srtd, sbang-rnd, lse, tr mica, pyr
18	1310.5	Clyst: m dk gy - m bl gy, wxy, frm, occ hd, sbfis, sl mic-
-		mica, non calc
19	1356	Clyst: m dk gy - m gy - m bl gy, else as above
	_000	en de la companya de La companya de la co

No.	Depth	Lithology
on log	m RKB	
20	1382	Ss: sl arg, m lt gy - olv gy, qtz, clr-wh, f-m, occ c, mod
		srtd, sbrnd-rnd, lse, tr glauc
21	1400	Clyst: m gy - m bl gy, else as above
22	1427	Ss: wh, qtz, clr, pred f, occ m, w-mod srtd, sbrnd-rnd,
		frm, v calc cmt
23	1438	Clyst: dk gn gy, wxy, frm occ hd, sbfis, non calc
24	1467	Clyst /thk lam ss
		Clyst as above
		Ss: sl arg, v lt gy, clr-wh, f-m, w srtd, sbrnd-rnd, lse,
		non calc, tr of mica
25	1497	Clyst: m dk gy - dk gn gy, wxy, frm-hd, sbfis, non calc
26	1544	Sample as above
27	1587	Sample as above
28	1632.5	Clyst: brn gy, wxy, frm-hd, sbfis, calc
29	1640.5	Clyst: m gy - m bl gy, wxy, frm, sbfis, non calc
30	1645	Clyst: occ slty, olv gy - gy brn, frm, non calc
31	1649.5	Clyst: dk gn gy - m dk gy, frm, non calc
32	1657	Sample as above
33	1680	Clyst: pt tuff, dk gy - gy blk, occ m lt gy /wh & blk spec
		sft-frm, occ v calc
34	1687	Clyst: tuff, else as above
35	1692	Clyst: dk gy - m dk gy, frm-hd, non calc
36	1696	Clyst: dk gn gy, wxy, frm, sbfis, non calc
37	1703	Clyst: dk gn gy - olv gy, micxl pyr, else as above
38	1730	Sample as above
39	1770	Clyst: dk gy, hd-frm, blky, non calc
40	1803	Clyst and ss
	•	Clyst: dk gy, hd-frm, wxy, non calc
		Ss: v-sl arg, mod brn - dk yel brn, vf-f, occ m, w srtd,
		sbang-sbrnd, occ rnd, lse, g vis por, non calc
		Shows: strong hc od, exc brn stn, 100% strong-mod yel flor
		inst-fast strmg strong wh-yel cut, yel res upon evap
41	1814	Clyst: dk gy, frm, non calc
42	1827.5	Clyst: m gy - m lt gy, frm, non calc, micxl pyr

No.	Depth	Lithology
on log	m RKB	
		alanta and the control of the state of the s
43	1831	Clyst: m lt gy - gn gy, frm, v calc
		Tr: ls, wh, sft
44	1833.5	Clyst: lt gy - lt olv gy, frm, non calc
45	1837	Clyst: v calc, else as above
46	1841	Clyst: m dk gy, sft-frm, v calc
47	1848.7	Clyst: aren, m dk gy - olv gy, frm, v calc
48	1875	Clyst: sl slty, m gy - m lt gy, fros surf, frm, sl mic-
		mica, calc
49	1885	Clyst: sl darker, else as above
50	1900	Clyst: pred m gy, else as above
51	1917	Clyst: m gy, sl fros surf, sl plas, frm, sl mic-mica, sl
		calc
52	1935	Clyst: m dk gy - m gy, else as above
53	2055	Clyst: m dk gy, non-sl calc, else as above
54	2070	Clyst: sl slty, m dk gy - dk gn gy - gn gy, sl fros surf,
		sl plas, frm, sl mic-mica, non-sl calc
		Tr: sltst occuring as irregular lam and specs, lt gy, sl
		mica
		Shows in sltst: no stn, no od, 80-100% mod pale yel flor,
		slow strmg pale yel - bl wh cut, yel wh res
55	2085	Sample as above
		Shows in sltst: p od, else as above
56	2130	Clyst: slty, else as above
		A good tr of sltst: sl aren, else as above
		Shows in sltst: as above
57	2162	Clyst: gy blk - brn blk, sl gsy surf, plas, frm, sl mic-
	,	mica, non calc
58	2165	Clyst: gy blk - brn blk, sl gsy surf, sl plas surf, sbfis,
		frm, mic-mica, non calc
59	2171.5	Ss: slty, gy brn, grns clr-trnsl /lt brn o stn, vf-m, pred
		vf-f, w srtd, sbrnd, lse, sl mica, g por
		Shows: lt brn o stn, fr od, 90-100% mod-strong pale yel -
		bri yel flor, inst strmg mlky wh - bl wh cut, pale yel - wh
		res

No.	Depth	Lithology
on log	m RKB	
60	2227	Ss: v slty, arg, col as above, vf, occ f and m, fri, mica,
		p por
		Shows: p od, 60-80% flor as above, slow strmg cut as above,
		else as above
61	2358	Slty clyst alt /sltst
		Clyst: v slty, dk yel brn, frm, mic-mica, non calc
		Sitst: sl aren, pale yel brn, frm, sl mica, non calc
		Shows in sltst: p od, weak lt brn o stn, 80% mod yel brn
		flor, slow strmg mlky wh-bl wh cut, pale yel res
62	2472	Ss /clyst lam
		Ss: slty, lt olv gy, grns clr-trnsl, vf, w srtd, sbang,
		fri, mica, sl calc, p por
		Clyst: m gy, frm, mic-mica, sl calc
63	2485	Clyst: sl slty, olv gy - m gy, sl gsy surf, sl plas, frm,
		mic-mica, sl calc
64	2490	Clyst: slty, olv gy, fros surf, frm, v mic-mica, sl calc -
		calc
65	2500	Sample as above
66	2534	Clyst: brn gy - olv gy, frm-hd, blky, occurence of one thin
		"vein" of recryst ls in clyst, else clyst is calc
67	2540	Clyst: sl slty, brn gy, sl plas, frm, sl calc
68	2545	Sample as above
69	2550	Clyst: slty, brn gy - olv gy, fros surf, sl brit, sks, frm,
		v mic-mica, sl calc
7,0	2553	Clyst: brn gy, sl brit, frm, sl calc
71	2555	Clyst: brn gy - brn blk, sl gsy surf, sl plas, frm, sl mic-
	v	mica, sl calc
72	2560	Clyst: sl slty, brn gy - olv blk, fros surf, sft-frm, sl
		mic-mica, sl calc
73	2563	Sample as above
74	2565	Clyst: slty, olv gy, fros surf, frm, v mic-mica, calc
75	2567	Sltst: v arg, olv gy - m gy, sft-frm, mica, sl calc
76	2568	Sample as above
77	2572	Sltst: v mica, else as above
78	2577	Sltst/clyst, else as above
79	2580	Clyst: slty, col as above, fros surf, else as above

No.	Depth	Lithology
on log	m RKB	
80	2582	Sltst: arg, sl aren, m gy - m lt gy, brit, frm, mica, v calc
81	2585	Clyst: slty, m gy, fros surf, frm, mica, calc
82	2587	Clyst: slty, m gy - olv gy, sl calc - calc, else as above
83	2590	Clyst: v slty, sl calc, else as above
84	2595	Sltst: v arg, m dk gy, frm, mica, sl calc
85	2598	Sample as above
86	2600	Sample as above
87	2603	Sample as above
88	2605	Sltst: v arg, m dk gy - dk gy, frm, v mic-mica, sl calc -
		calc
89	2606	Ss: lt gy - v lt gy, vf-vc, p srtd, sbang, lse-fri, kaol,
		sl mica, g por
90	2610	Ss: lt gy, vf-c, occ vc, p-mod srtd, else as above
91	2613	Ss: sl arg, slty, lt gy, vf-f, occ m, mod-w srtd, ang-
		sbang, lse-fri, sl mica, somewhat lam /clyst, p-fr por
92	2617	Ss: sl arg, lt gy - v lt gy, vf-vc, p srtd, sbang, lse-fri,
		sl kaol, sl mica, g por
93	2622	Ss: v lt gy, vf-c, occ vc, pred vf-f, mod-w srtd, else as
		above
94	2645	Ss: lt gy - v lt gy, vf-c, pred f, mod srtd, sbang, fri, sl
		kaol, occ sl mica, g por
95	2665	Clyst: sl slty, brn gy, sl plas, frm, sl mic-mica, non calc
96	2668	Clyst: slty, shy, brn-blk, frm, brit, mic-mica, non calc
97	2678	Ss: v lt gy, vf-m, occ c, pred f, mod-w srtd, sbang-sbrnd,
		kaol, sl mica, g por
98	2695	Clyst: v aren, vf-m, sd grns, slty, gy brn, frm, mic-mica,
,		non calc
99	2712	Clyst: v aren, slty, brn gy, frm, brit, sl mic-mica, sl cal
100	2719	Clyst: sl slty, dk gn gy, fros surf, frm, sl brit, mic-
		mica, non calc
101	2742	Ss: v arg and slty mtx, lt olv gy, vf-f, occ m, mod srtd,
		sbang, fri, mica, p por
102	2750	Ss: arg, v slty, m gy - m lt gy, slt-vf, occ f, mod srtd,
		sbang, fri, sl mica, non-sl calc, p por

No.	Depth	Lithology
on log	m RKB	
103	2754	Sltst: arg, m gy, fri, mica, non calc
104	2761	Ss: conglomeratic, lt gy - v lt gy, grns clr-trnsl, vf-pbl
		(max. diameter 5 mm), p srtd, ang-sbrnd, fri, sl mica,
		kaol, fr-g por
105	2763	Clyst: slty, gy brn, frm, occ hd, brit, non-sl calc
106	2765	Sltst: arg and v aren, vf-f, occ m grns, olv gy - dk gn gy,
		frm, sl mica, non calc
107	2767	Sltst: arg, olv gy, frm, mica, non calc
108	2768	Clyst: olv gy - brn gy, frm, occ hd, brit, sbfis, sl calc
109	2770	Clyst: slty, aren, gy brn - olv gy, sdy specs, frm,
		mic-mica, occ sl calc
110	2773	Clyst: v slty, v aren grdg to greywacke (sd grns vf-f), gn
		gy - gy brn specs, frm, mica - mic-mica, non calc
111	2775	Clyst: slty, sl aren, dk gn gy - frequent gy brn specs,
		else as above

4.4 Measurement While Drilling

The Measurement While Drilling (MWD) services on wells 34/7-11 and 12 were performed by Teleco Oilfield Services Ltd. The downhole recordings included Resistivity, Gamma Ray and Directional Survey. For technical tool specifications, see Teleco's End of Well Report.

Well 34/7-11

The MWD were recorded during drilling of the 17 1/2" pilot hole for the 26" section from 327 to 861 m RKB. The hole was completed in one bit run. No tool or recording problems were encountered and good quality log was obtained.

Well 34/7-12

A 17 1/2" pilot hole for 26" section was drilled from 327 to 852 m RKB in one bit run. Down to 379 m RKB there were some erratic GR-readings due probably to flushing of highly radioactive KCl-mud into the active mud system. The resistivity values were probably also affected. In the rest of the section there were no recording or tool problems, and a good quality log was obtained.

The 17 1/2" hole section down to 1865 m RKB was performed in two bit runs. Apart from some erratic resistivity readings around 1425 - 1430 m RKB, there were no recording or tool problems in this section. The log was of good quality.

The 12 1/4" hole section was drilled from the casing shoe at 1851 m RKB down to T.D. at 2784 m RKB (driller's depth). There were no MWD-recordings during the coring from 2169 to 2360 m RKB. The rest of the section was drilled in 7 bit runs. There were, however, no recording problems or tool problems during these runs, and the final log that was obtained was of good quality.

Apart from the coring section from 2169 to 2360 m RKB, Teleco produced a continuous log through the whole well of good quality.

4.5 Open Hole Logs, well 34/7-11

Casing 1	Record	Hole Size	Logged Interval (m RKB)	Type of Log	Run No.	Date
	30"	36" to 332 m				
	327 m 20"	26" to 861 m	332.0 - 861.0	MWD (GR, Res, Dir)		5-6.10.87
	845 m					

4.6 Open Hole Logs, well 34/7-12

asing	Record	Hole Size	Logged Interval	Type of Log	Run No.	Date
		36" to 332 m	216.0 - 327.0	GR to surface	1A	25.10.87
	30" 327 m					
		17 1/2" (26") to 852 m	327.0 - 852.0	MWD (GR, Res, Dir) GR to surface	1A	25.10.8
	20" 838 m					
		17 1/2" to 1865 m	837.7 - 1852.6 837.7 - 1836.1 858.0 - 1848.7	MWD DIFL-LSBHC-GR CDL-GR COREGUN	1A 1A 1A	25.10.8 25.10.8 25.10.8
	13 3/8" 1851 m					
		12 1/4" to T.D.	2100.0 - 2476.0 2100.0 - 2479.5 2171.0 - 2312.0	MWD DLL-MLL-GR CDL-CNL-GR FMT	2A 2A-B 2A-E	06.11.8 06.11.8 06.11.8
,	9 5/8" 2366 m		1852.0 - 2784.3 600.0 - 1852.0 1852.0 - 2784.4	MWD DIFL-LSBHC-GR ACBL CNL-CDL-GR FMT	3B 3A 3C 3G	15.11.8 15.11.8 15.11.8
			2210.0 - 2474.0 2210.0 - 2692.0 MISRUN 1850.0 - 2784.0 2140.0 - 2784.0	FMT DIPMETER DIPMETER CNL-CDL-GR	3H 3A 3B 3D	17.11.8 17.11.8 18.11.8
	,		2125.0 - 2784.0 1875.0 - 2775.0	DLL-MLL-GR VSP COREGUN	3B 3A 3B-C	18.11.8 18.11.8 19.11.8
(logge	T.D. 2785 m er's depth	1)				

4.7 <u>Well Velocity Survey</u>

A zero offset VSP was conducted, recorded and processed by Seismograph Services Limited (SSL). The VSP data were recorded from T.D. (2784 m RKB) to 1525 m RKB. The VSP survey was conducted on 18.11.87. The nominal recording interval was 20 m from T.D. to 1800 m RKB and 25 m from 1800 m RKB to the end of the VSP survey at 1525 m RKB.

The seismic source was one 160 cu.in. airgun at a depth of 9 m and an offset of 59 m. Full details are contained in the VSP and check shot/synthetic seismogram processing report.

For check shot and VSP processing details the reader is referred to the final report. The sonic log was edited by SSL and Saga, and the sonic log was drift corrected by the check shot values. A set of interpreters composites showing velocity log, density log, acoustic impedance log, reflection coefficient series, synthetic seismogram and VSP were produced. These were at minimum and zero phase and both polarities.

A seismic summary is given in fig. 4.2 and in table 4.2.

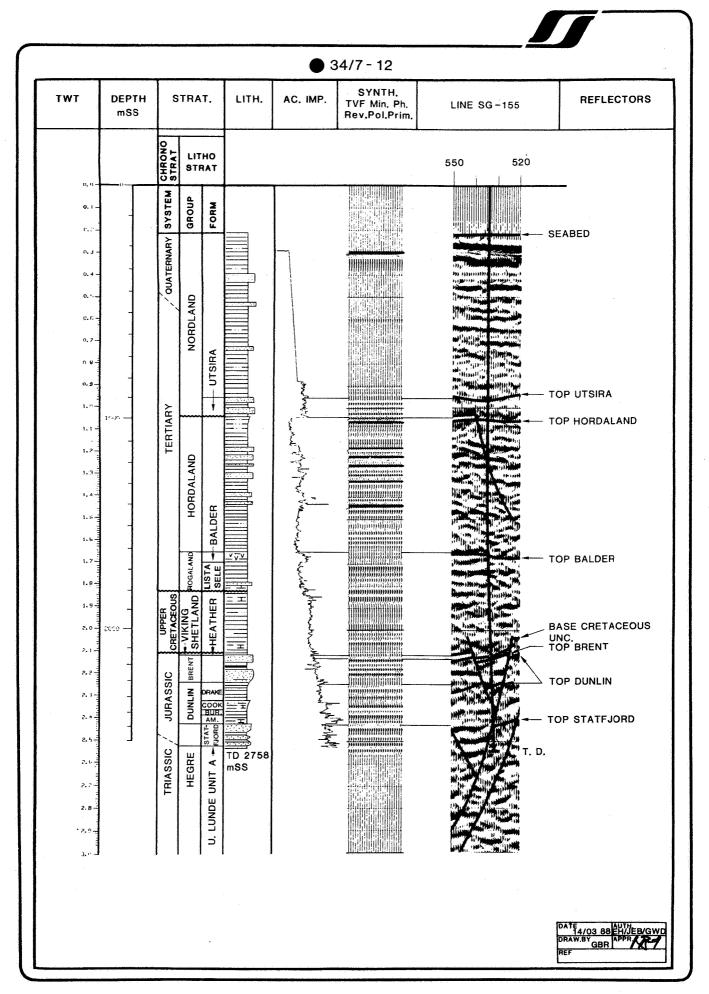


Fig. 4.2

Dato 4 / 5 88 FOJE BY GWD Godki Tegn.av GBR Ref.

B-Field

WELL DATA SUMMARY	KB:	26 WELL:	34/7-12

REFLECTOR	UNIT	TWT	INTERVAL	DEPTH	DEPTH	INTERVAL	INTERVAL
	· ·	(ms)	TWT	mRKB	mMSL	THICKNESS	VELOCITY
1 SEABED	T.NORDLAND GR.	0.2216		216.0	190.0		
			0.7430			740.0	1992
2 T.UTSIRA	T.UTSIRA FM.	0.9646		930.0	904.0		
			0.0814			91.0	2236
3 T.HORDALAN	ID T.HORDALAND GR	1.0460		1021.0	995.0		
			0.6132			622.5	2030
4 T.BALDER	T.ROGALAND/	1.6592		1643.5	1617.5		
	T.BALDER FM.		0.0412			47.5	2306
-	T.LISTA/SELE FM.	1.7004		1691.0	1665.0		
			0.1350				
5 T.CRETACEO	US T.SHETLAND GR.	1.8354		1832.0	1806.0		
			0.4128			469.5	2275
6 B.CRETACEO	US T.VIKING	2.1132		2160.5	2134.5		
			0.0070			8.5	2429
7 T.BRENT	T.BRENT GR.	2.1202		2169.0	2143.0		
			0.1234			171.5	2780
8 T.DUNLIN	T.DUNLIN GR.	2.2436		2340.5	2314.5		
			0.1580			224.0	2835
	CALC.AMUNDSEN	2.4016		2564.5	2538.5	:	
			0.0246	:		41.5	3374
9 T.STATFJORD FM.		2.4262		2606.0	2580.0		
			0.0978			157.0	3211
10 U. LUNDE	U. LUNDE MB/	2.5240		2763.0	2737.0		
erina ayala erina in distribution di maria and a	UNIT A		0.0126			21.0	3333
11	T.D.	2.5366		2784.0	2758.0		

4.8 Formation Temperature

The maximum recorded temperatures (BHT) obtained during logging have been converted to static formation temperatures (T_f) using a Horner plot technique. The recorded BHTs and the estimated static formation temperatures are listed in table 4.3. The data used for the calculations are listed in table 4.4.

All the data have been plotted in fig. 4.3.

In addition to the calculated static formation temperatures, the following bottom hole temperatures were measured during testing:

m RKB	Temp. °C
2230.7	84.2
2202.6	83.4
2161.3	82.1

Table 4.3: Average bottom hole temperatures (BHT) and static formation temperatures ($\mathbf{T}_{\mathbf{f}}$).

Depth m RKB	No. of BHT readings	Average BHT °C	T _f °C
1830	3	46	60
2462	3	62	
2468	3	72	78
2763	3	65	
2767	3	84	
2770	3	80	96
2773	3	81	
2775	2 .	83	

Table 4.4: Temperature Data

Log	Date	Run No.	Btm log	Avg. rec.	Time since circ. hrs.	Circ. time hrs.
			(m RKB)	(BHT)	(đ t)	(t)
DIFL-LSBHC-CDL-GR	25.10.87	1 A	1830	46	7.6	9.3
DLL-MLL-GR	06.11.87	2 A	2462	62	4.8	8.5
CNL-CDL-GR	06.11.87	2A	2468	72	12.8	6.3
DIFL-LSBHC-GR	15.11.87	3B	2763	65	6.0	7.0
DLL-MLL-GR	18.11.87	3B	2767	84	22.7	2.7
DIPMETER	17.11.87	3A	2770	80	10.3	8.0
CNL-CDL-GR	18.11.87	3D	2773	81	17.2	7.0
CNL-CDL-GR	15.11.87	3C	2775	′83	14.3	5.0

FORMATION TEMPERATURE 50 100 . m RKB WELL: 34/7-11&12 NORDLAND **LEGEND** O BHT STATIC BHT FROM DST 1000 HORDALAND TEMP GRAD = (FORM. TEMP - 5 °C)/ (DEPTH-WATER DEPTH) ROGA LAND SHET. 2000 BRENT DUNLIN STAT -FJORD HEGRE 3000 4 000

Fig. 4.3

Date April.88	Auth.	TLL	Appr	BAG
Draw by RHK	Ref			

4.9 Formation Pressure

The most relevant parameters used in this pressure evaluation are plotted in the Formation Pressure Evaluation Sheet (Enclosure II). Parameters as the d_c-exponent, the sonic log, gas data related to the mud weight and of course pressure measurements are looked upon as the most reliable in this context. In fig. 4.4 an interpreted pressure gradient profile is given.

In the sediments of the Nordland Group (190 - 1021 m RKB) normal pressure conditions prevail, that is a pressure gradient of 1.04 g/cm³ subsea.

The d_C -exponent displays an overall normal trend, some shifts are seen, but these are due to bit changes and change in the lithology. Trend shift to the left is seen in the d_C -exponent curve especially in the Utsira sands at 930 m RKB. Background gas data averages 0.5% down to approximately 850 m RKB, below this level even lower values were recorded. The maximum mud weight (ECD) in this section was 1.15 g/cm³. At approximately 354 - 360 m RKB a gas charged sand was encountered. The gas column might create a slight overpressure in this sand sequence, but a gradient higher than 1.05 g/cm³ subsea is not likely.

The uppermost part of the Hordaland Group is also believed to be normally pressured at least down to approximately 1400 m RKB. The normal trend line on the $d_{\rm C}$ -exponent has to be adjusted to the left due to changes in formation characteristics. A trend parallel to the one above is then displayed over the discussed section. Some scattering occurs, but again this is due to variations in lithology. Background gas data read close to zero with a maximum mud weight (ECD) of 1.19 g/cm 3 . The sonic data display slightly decreasing Δ ts in this section with some scattering due to the lithology. This again is a confirmation of normally pressured sediments.

Below 1400 m RKB a build-up in pressure gradient seems to take place. A clear cut back is seen in the $\rm d_c$ -exponent curve. This correlates well with a increase in the background gas. The increase

Formation Pressure Gradient

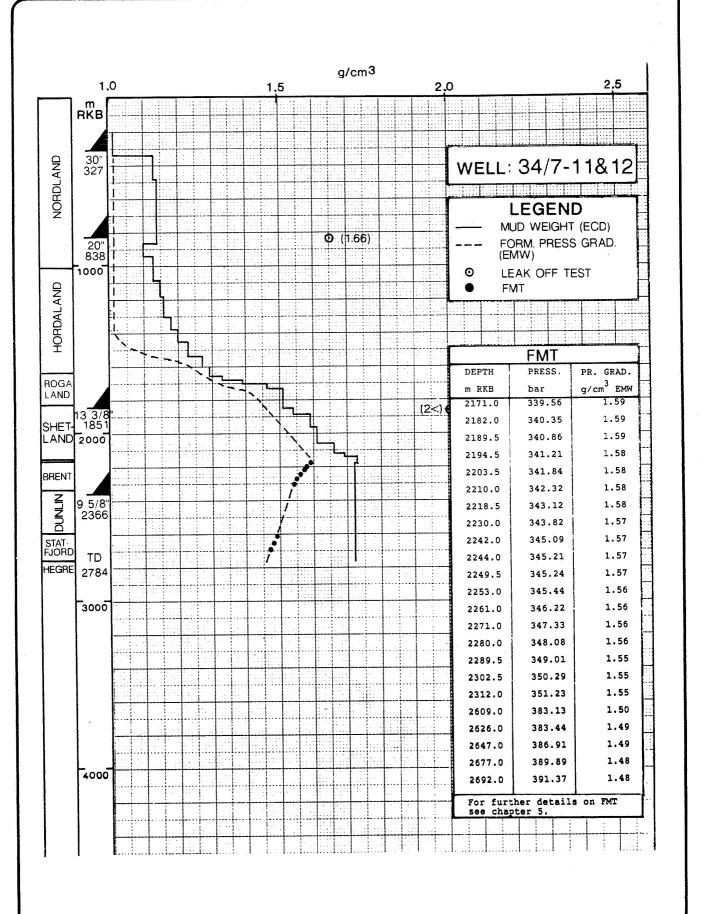


Fig. 4.4

Date	Auth	ar co	Appr	DAG	
Date May.1988	3	JEP	L	BAG	
	Ref				
DIAW DY RHK					

in background gas level takes place parallel with a steady increase in the mud weight (ECD) from 1.20 g/cm^3 to 1.52 g/cm^3 . These facts clearly indicate a build-up in pressure gradient. Sonic data confirm the build-up in pressure gradient by plotting with increasing Δts .

The increase in pressure gradient continues steadily throughout the Hordaland Group and Rogaland Group into the Shetland Group at 1832 m RKB. Pressure estimates (mainly based on the sonic log) performed at 1600 m RKB (Hordaland Group), 1675 m RKB (Rogaland Group) and 1900 m RKB (Shetland Group) indicate pressure gradients of 1.22 g/cm³ EMW, 1.32 g/cm³ EMW and 1.49 g/cm³ EMW respectively.

The pressure development throughout the Shetland Group is uncertain. Below 1900 m RKB the d_c-exponent indicates a regression in pressure gradient by plotting on an increasing trend followed by a new cut back around 2050 m RKB. However, the sonic log displays a close to vertical trend throughout the entire Shetland Group sequence which is indicative of a steady increase in pressure gradient. In this context the sonic log is believed to be the most reliable parameter. Hence the pressure gradient is said to increase steadily towards the Brent Group (reservoir) at 2169 m RKB.

Several pressure measurements were performed in the Brent Group sandstones giving a maximum pressure gradient of 1.59 g/cm³ EMW at 2171 m RKB decreasing to 1.55 g/cm³ EMW at 2312 m RKB. This is according to an oil gradient of 0.07 bar/m and a water gradient of 0.098 bar/m. It seems that the pressure gradient continues to decrease throughout the Dunlin Group.

Further pressure measurements were performed in the Statfjord Formation at 2606 m RKB. The deepest reading at 2692 m RKB gives a pressure gradient of 1.48 g/cm³ EMW. The well was terminated at 2784 m RKB in the Hegre Group.

4.10 Shallow Gas

Site survey interpretation:

The shallow seismic sections close to the well sites (fig. 4.5) indicated shallow gas at 360, 484 and 600 m RKB.

Attention was also drawn to frequent gas observations in the Gullfaks area within the 308 - 460 m MSL interval (corresponding to 334 - 486 m RKB at the present site) and to the fact that these were not always marked by distinct seismic anomalies.

Well log interpretation:

Well logs (Well Site Lithology Log, Composite Log) revealed certain differences between the two wells with respect to gas distribution and concentration. The shallowest gas sand was present only at 34/7-11, between 348.5 and 351 m RKB. Its maximum value of 3.1% (mud weight 1.12 - 1.15) was the highest recorded from the combined locations. 20 m away at 34/7-12 there was no sign of either gas or a coherent sand unit.

A few metres deeper both wells encountered gas at the top of a 35-40 m thick sand body. At 34/7-11 gas readings reached 2.8% in the interval 357.5-361 m RKB (mud weight 1.12-1.15) but at 34/7-12 only 1.7% in the interval 355-360.5 m RKB (mud weight 1.12-1.13).

The seismic anomaly reported as "360 m RKB" could represent either of these sands. Fig. 4.5 clearly shows several anomalies at approximately this depth in the general vicinity of the site, but also demonstrates depth variations of the equivalent of 10 m for these "shallow gas pockets" over distances of 10-15 shot points, which corresponds to the well locations' offset from the two profile lines. It is possible that the gas is associated with buried channels of Late Pliocene age, capped by impermeable beds.

At 34/7-11 a gas value of 1.3% (mud weight 1.15) was observed at 516 - 517 m RKB at the top of a 5 m thick sand unit. At 34/7-12 a similar gas value was logged (mud weight 1.13 - 1.14) at 511 - 512 m RKB. Although only thin sands are indicated in this well, a distinctly clayey horizon at 510 m RKB could provide a trap.

The wells apparently missed the local anomalies where gas was predicted some 30 m shallower (at 458 m RKB) and intercepted an even smaller anomaly just discernible on the relative amplitude plot of line 805 at c. 575 ms.

Shallow Gas - Well and \$ N WNW 34/7-11 & 34/7-11 & 12 (200m W of line) (120m SSW of 350 🖖 200 250 SP 300 Seismic line SG84 Seismic line SG8431-717 (Relative amplitu Godki BUH May.88 Forf. AJR

Fig. 4.5

4.11 Stratigraphy

4.11.1 Lithostratigraphic Summary

The lithostratigraphic subdivision of well 34/7-11 and 12 (table 4.5) is based on wireline log responses, conventional cores, sidewall cores and cutting descriptions, supported by the biostratigraphic breakdown prepared by Paleoservices.

Table 4.5: Lithostratigraphic Summary, wells 34/7-11 and 12

Formation Tops	Depths	Thickness
	(m RKB)	
Wordland Group (Seabed), 34/7-11	216.0	645.0
Nordland Group (Seabed), 34/7-12	216.0	805.0
Utsira Formation	930.0	91.0
Hordaland Group	1021.0	622.5
Rogaland Group	1643.5	188.5
Balder Formation	1643.5	48.0
Lista/Sele Formation	1691.5	140.5
Shetland Group	1832.0	328.5
Viking Group	2160.5	8.5
Heather Formation	2160.5	8.5
Brent Group	2169.0	171.5
Tarbert Formation	2169.0	44.0
Ness Formation	2213.0	38.5
Etive Formation	2251.5	17.0
Rannoch Formation	2268.5	65.0
Broom Formation	2333.5	7.0
Dunlin Group	2340.5	265.5
Drake Formation	2340.5	121.5
Cook Formation	2462.0	56.0
Burton Formation	2518.0	29.0
Amundsen Formation	2547.0	17.5
Calc. Amundsen	2564.5	41.5
Statfjord Formation	2606.0	157.0
Hegre Group	2763.0	21.0
Upper Lunde	2763.0	21.0
T.D.	2784.0	(driller's d

4.11.2 Biostratigraphic Summary

The routine biostratigraphic interpretation was prepared by Paleoservices. The following analyses were carried out:

1. Paleoservices:

Micropaleontology: 277 ditch cutting samples, 47 sidewall

core samples and 3 core samples.

Palynology: 98 ditch cutting samples, 36 sidewall core

samples and 22 core samples.

2. Saga:

Micropaleontology: 27 sidewall core samples.

Palynology: 17 sidewall core samples and 26 core

samples.

The biostratigraphic interpretations from Paleoservices have been somewhat modified by Saga.

The biostratigraphic breakdown is given in table 4.6. The Cainozoic and Mesozoic stratigraphic history is given in figs. 4.6 and 4.7.

Table 4.6: Biostratigraphic Summary, wells 34/7-11 and 12

Age	Depth		Remarks
		ness	
	m RKB	m	
Seabed	216.0		
Pliocene - Late Miocene	360.0	661.0	Top not seen
UNCONFORMITY			
Late Oligocene	1021.0	78.5	Log
Early Oligocene	1099.5	260.5	
?UNCONFORMITY	R		
Late Eocene	1360.0	100.0	
Middle Eocene	1460.0	120.0	
Early Eocene	1580.0	63.5	
Late Paleocene	1643.5	88.5	Log
UNCONFORMITY			
Maastrichtian	1832.0	163.0	Log
Late Campanian	1995.0	60.0	
Early Campanian	2055.0	105.5	
UNCONFORMITY			
Bathonian - Bajocian	2160.5	180.0	Log
Aalenian - Late Toarcian	2340.5	104.5	Log
Early Toarcian	2445.0	17.0	
UNCONFORMITY			
Late Pliensbachian	2462.0	102.5	Log
UNCONFORMITY			
Early Pliensbachian	2564.5	41.5	Log
Early Jurassic - ?Late Triassic	2606.0	166.0	Log
Late Triassic	2772.0	12.0	
T.D.	2784.0	(driller's	depth)

Well 34/7-11 & 12 CAINOZOIC STRATIGRAPHIC HISTORY

PAGE	ONE	OF	TMO
PAGE	UNE	UF	1 77 0

SYS- TEM	SER- IES	STA- GE	MILL. YEAR	DEPTH (m RKB)	THICKNESS	LITH.	GROUP	FORMATION/ MEMBER
					·			
				SEA BED	:			
QUAT.	PLEISTOC.	EARLY		216	146	8 6		
		LATE	1 ,8 3	— 360 <i>—</i>		.⊘ 	· · · · · · · · · · · · · · · · · · ·	
	PLIOCENE	EARLY	.4	:	661	~	NORDLAND	
		LATE	5 10	~ 1021 ~		* ·*· ·*·		UTSIRA
	MIOCENE	EARLY	15 20	0213				
TIARY	ENE	TE E,	25	1 021~		-* -	~~~~	
TERI	OLIGOCE	EAR LA	30 35	—1099.5 — ~? 1360 ~	622.5	M	HORDALAND	
	IINE	LATE	40 45	1460		* p		
	EOCENE	EAR- MID-	50	— 1580 —			·	
	PALEOC	EARLY T	55 60	— 1643.5 — — 1832 —	188.5	\ ->	ROGALAND	

Fig. 4.6

Date May.88	Auth.	TLL	Appr BAG	-
Draw by RHK	Ref			_

Well 34/7-11 & 12 MESOZOIC STRATIGRAPHIC HISTORY

PAGE TWO OF TWO

SYS- TEM	SER- IES	STA- GE	MILL. YEAR	DEPTH (m RKB)	THICKNESS	LITH.	GROUP	FORMATION/ MEMBER
CRETACEOUS	LATE	CAMPA-LS NIAN -P	70 75	— 1995 — — 2055 — ~ 2160.5~	328.5		SHETLAND	
		SANTO- NIAN	80	5				
		CONIA	85				•	
		TURON-C IAN	90		:			
		CENO-TL MAN IA	95					
	EARLY	BN ALB.	100					
		APT. BARR.	110			1 1		•
		HAUT.	120					
		VALA- NG.	130					
TRIASSIC	ATE.	TA ASIAN	140					
		KIMM. OX-	150					
	MIDDLE L	FORD CALL BATH,	160	2160.5 <i>_</i> _			VIKING	HEATHER
		BA- JOC. AALEN TOARC	170	2340.5	180		BRENT	TARBERT- BROOM DRAKE
	EARLY	PLIE.	180	~ 2445 ~ — 2606 —	161	.к	DUNLIN	COOK- CALC. AMUNDSEN
		HETT- ANG.		2772 _	157	; Ķ		STATFJORD
	Z- LATE	NOR.	200	2784 —	21		HEGRE	LUNDE
		CARNIAN LADIN	l					
	EA DLE	ANIS. SCYT HIAN	220					

Fig. 4.7

Date	May.88	Auth.	TLL	Appr	BAG
Draw	by RHK	Ref			

4.11.3 Hegre Group

Lunde Formation, upper Lunde member

Depth interval: 2763 - 2784 m RKB (T.D., driller's depth)

Thickness: 21

Age: Late Triassic

This short sequence of the upper Lunde member is composed of claystone interbedded with siltstone. The claystones are occasionally silty, olive grey to grey brown to dark green grey, firm, brittle, subfissile and slightly calcareous.

The siltstones are arenaceous, grading to fine grained sandstones, olive grey to dark green grey, firm, slightly micaceous and non calcareous.

Trace occurence of white to grey white and firm limestone.

Upper boundary

The transition from the Statfjord Formation to the upper Lunde member is marked on the logs by an increase in the gamma ray and the resistivity.

4.11.4 Statfjord Formation

Depth interval: 2606 - 2763 m RKB

Thickness: 157 m

Age: Early Jurassic - ?Late Triassic

The Statfjord Formation is dominated by fluvial channel sandstones with minor to interbedded claystone.

The sandstones are light grey to very light grey and predominantly fine to coarse, moderately sorted, subrounded to subangular, loose to

friable with occasional kaolinite and mica and a good visible porosity. They are very coarse to conglomeratic at the base of two sand intervals (2693 and 2762 m RKB). Occasionally the sandstones are silty and argillaceous, very fine to fine and well sorted. The sandstones are non to slightly calcareous throughout the Statfjord Formation.

The claystones are occasionally silty and shaly and occasionally arenaceous, brown grey to dark green grey to brown black, firm, brittle, micro-micaceous and non to slightly calcareous.

There are sporadic stringers of white to grey white and firm limestones and trace occurence of pyrite.

Upper boundary

The top Statfjord is marked on the logs by a marked decrease on both the gamma ray reading and the resistivity.

4.11.5 Dunlin Group

Calcareous Amundsen

Depth interval: 2564.5 - 2606 m RKB

Thickness: 41.5 m

Age: Early Pliensbachian

The Calcareous Amundsen Formation consists of claystone and siltstone with minor limestone.

The claystone is silty, olive grey to medium grey, firm, micro-micaceous and calareous.

The silststone is argillaceous, olive grey to medium dark grey, firm, micaceous and slightly calcareous to calcareous. The limestone is white to grey white and soft to firm. Trace occurence of pyrite.

Upper boundary

The Top Calcareous Amundsen Formation is characterized on the logs by a slight decrease in the gamma ray readings together with a marked decrease in the sonic transit time.

Amundsen Formation

Depth interval: 2547 - 2564.5 m RKB

Thickness: 17.5 m

Age: Late Pliensbachian

The Amundsen Formation consists of claystone with minor limestone.

The claystone is silty, brown grey to olive black, firm, brittle, slightly micro-micaceous and slightly calcareous.

The limestone is grey white and soft to firm. Trace occurence of pyrite.

Upper boundary

The Top Amundsen Formation is marked on the logs by an increased and more erratic resistivity reading than the Burton Formation.

Burton Formation

Depth interval: 2518 - 2547 m RKB

Thickness: 29 m

Age: Late Pliensbachian

The Burton Formation consists of claystone with minor sandstone and limestone.

The claystone is silty, olive grey to brown grey, firm and slightly calcareous to calcareous.

The sandstone is silty, clear, predominantly very fine, occasionally fine to medium, well to moderately sorted, subangular to subrounded and loose.

The limestone is white to grey white and soft to firm. Trace occurence of dolomite and pyrite.

Upper boundary

The Top Burton Formation is characterized on the logs by a slight increase in gamma ray and slight increase in sonic transit time.

Cook Formation

Depth interval: 2462 - 2518 m RKB

Thickness:

56 m

Age:

Late Pliensbachian

The Cook Formation is represented by an interbedded sequence of claystone and sandstone and minor limestone.

The claystones are silty, olive grey to medium grey to grey brown, firm, micro-micaceous and slightly calcareous.

The sandstones are silty, clear to light olive grey, predominantly very fine, occasionally fine to medium, well to moderately sorted, subangular to subrounded, loose to friable, micaceous, occasionally calcareous cemented, and they have a poor porosity.

The limestone is arenaceous, white to grey white and soft to firm. Trace occurence of yellow white firm to hard dolomite and pyrite.

Upper boundary

The Top Cook Formation is characterized by a decrease in gamma ray reading and sonic transit time.

Drake Formation

Depth interval: 2340.5 - 2462 m RKB

Thickness: 121.5 m

Age: Aalenian - Early Toarcian

The Drake Formation consists of silty shales varying in colour from brown grey to medium dark grey to grey black. They are firm, brittle, micro-micaceous, slightly calcareous and dolomitic.

There is trace occurence of sandstone, limestone and dolomite. The sandstones are clear, very fine to medium, moderately sorted, subrounded and loose.

The limestones are partly nodular, 4 cm in diameter, partly bedded, grey white to yellow white, soft to firm.

The dolomite is slightly arenaceous, light brown and very hard. Pyrite occurs sporadic.

Upper boundary

Top Drake is characterized by an increased and steady gamma ray reading.

4.11.6 Brent Group

Broom Formation

Depth interval: 2333.5 - 2340.5 m RKB

Thickness: 7 m

Age: Bathonian - Bajocian

The Broom Formation is the basal formation of the Brent Group. The upper 2-3 m is a shale, occasionally interlaminated with thin sand stringers. The shale is medium to dark grey, firm to brittle and very

micaceous. The sandstone is very fine and slightly dolomitic, else as in the Rannoch Formation.

The next 3-4 m is a mudstone intercalated with matrix supported conglomeratic sandstones where grain sizes are ranging from very fine to pebbly (4 mm in diameter), subangular to subrounded, poorly sorted, firm to hard, calcareous and dolomite cemented, pyritic and with a poor visible porosity.

At the base there is a 1 m thick dolomite bed. The dolomite is slightly arenaceous, light brown and very hard.

Upper boundary

The Top Broom is characterized by a decrease in the gamma ray log reading together with a decreased sonic velocity.

Rannoch Formation

Depth interval: 2268.5 - 2333.5 m RKB

Thickness: 65 m

Age: Bathonian - Bajocian

The Rannoch Formation is a massive sandstone deposit, becoming shaly towards the base.

From the top and down to 2317 m RKB the Rannoch Formation consists of light grey sandstone, very fine to fine, coarsening upwards, well sorted, rounded to subrounded, loose to friable, occasionally kaolonitic, micaceous, non calcareous and with a fair to good visible porosity. Only trace occurence of shale laminae.

From 2317 m RKB and down to the bottom there is a tight interbedded sequence of sandstone and shale in cm to dm scale. The sandstone is as above. The shale is dark grey to grey black, brittle to firm and very micaceous.

Upper boundary

The Top Rannoch is marked by a slight increase in the gamma ray and the density log readings.

Etive Formation

Depth interval: 2251.5 - 2268.5 m RKB

Thickness: 17 m

Age: Bathonian - Bajocian

The Etive Formation consists of fining upwards sandstone of inner foreshore facies.

The sandstones are light grey, but dusky yellow brown to weak yellow brown where they are oil stained, very fine to medium with a pebbly zone at the bottom, well to moderately sorted, subangular to subrounded, loose to friable, occasionally micaceous and with a good visible porosity. Trace occurence of mm to cm thick coal layers. The coal is black, hard and brittle.

Upper boundary

The Top Etive Formation is marked on the logs by a distinctive decrease in the resistivity and an overall reduced gamma ray reading.

Ness Formation

Depth interval: 2213 - 2251.5 m RKB

Thickness: 38.5 m

Age: Bathonian - Bajocian

The Ness Formation is a delta plain deposit constituting and interbedded sequence of shale, sandstone and minor coal.

The shales are occasionally silty, medium to dark grey, micromicaceous, firm and brittle with occasional occurence of slickenslides and non calcareous.

The sandstones are moderately to dark yellow brown where they are oil stained, elsewhere light grey, fine to medium down to 2235 m, very fine to fine lower down, well sorted, subangular to subrounded, loose to friable, non calcareous and have a good visible porosity.

The coal is black, occasionally shaly, hard and brittle.

Upper boundary

The Top Ness Formation is marked on the logs by a distinctive increase in the gamma ray.

Tarbert Formation

Depth interval: 2169 - 2213 m RKB

Thickness: 44 m

Age: Bathonian - Bajocian

The Tarbert Formation consists of marginal marine sandstones with minor occurence of shale and coal beds.

The sandstones are yellowish brown to dark brown where there is oil staining, elsewhere clear, fine to medium and medium to coarse, well sorted, rounded to subrounded, loose, friable, micaceous, non calcareous and with a fine to good porosity.

The shale is dark grey to grey black, firm, brittle and micaceous.

The coal is black, hard and brittle.

Upper boundary

The Top Tarbert Formation represents the top reservoir and is marked on the logs by a distinctive reduction in the gamma ray reading and a marked increase in the resistivity.

4.11.7 Viking Group

Heather Formation

Depth interval: 2160.5 - 2169 m RKB

Thickness: 8.5 m

Age: Bathonian - Bajocian

The Heather Formation is an 8.5 m thick sequence of claystone. The claystones are grey black to brown black, firm, subfissile, micro-micaceous and non calcareous. Trace occurence of fossils.

Upper boundary

The Top Heather Formation is marked on the logs by an increased gamma ray reading.

4.11.8 Shetland Group

Depth interval: 1832 - 2160.5 m RKB

Thickness: 328.5 m

Age: Maastrichtian - Early Campanian

The lithology of the Shetland Group is predominantly claystone with occasional stringers of limestone and dolomite.

The claystone is occasionally silty and arenaceous, medium grey to medium dark grey to brown grey, occasionally green grey to dark green grey, predominantly firm, occasionally sticky, calcareous from the top becoming non to slightly calcareous from 2000 m.

There is also trace occurence of sandstone which is clear, occasionally orange, predominantly fine to coarse, occasionally very fine to fine, moderately sorted, subangular to subrounded, loose and friable.

From 2060 m there is scattered occurence of mm thin laminations of light grey and slightly micaceous siltstone in the claystones. Trace occurence of pyrite and fossil fragments throughout the Shetland Group.

Upper boundary

The Top Shetland Group is marked on the logs by a slight increase in resistivity and gamma ray and a decreased sonic transit time.

4.11.9 Rogaland Group

Depth interval: 1643.5 - 1832 m RKB

Thickness: 1988.5 m

Age: Late Paleocene

Lista/Sele Formation

Depth interval: 1691.5 - 1832 m RKB

Thickness: 140.5 m

Age: Late Paleocene

The lithology of the Lista/Sele Formation is predominantly claystone with minor occurence of sandstone and limestone in the lower half.

The claystones are varicoloured from medium grey to dark grey, olive grey to dark green grey, occasionally brown grey, firm to hard, occasionally sticky and occasionally waxy, non calcareous from the top becoming calcareous to very calcareous towards bottom.

The sandstones are argillaceous, clear to light brown grey, predominantly very fine to fine, occasionally fine to coarse, well to moderately sorted, rounded to subangular, loose to firm, occasionally calcareous cemented and have a good visible porosity.

The limestones are argillaceous, white to light grey and soft to firm.

There is also trace occurence of dolomite and pyrite. The dolomite is brown to dark orange brown and hard.

Upper boundary

The Top Lista/Sele Formation is marked on the logs by a sharp increase in gamma ray and a slight decrease in the resistivity.

Balder Formation

Depth interval: 1643.5 - 1691.5 m RKB

Thickness: 48 m

Age: Late Paleocene

The Balder Formation consists of tuffaceous and marly claystone. These are varicoloured, olive grey to grey brown, medium dark grey to grey black, occasionally light grey with occasional white and black specks, soft to firm and non to very calcareous. There is also trace occurence of pyrite, fossils, limestone and dolomite.

Upper boundary

The Top Balder Formation is characterized by a decrease in the gamma ray reading and an increase in the resistivity.

4.11.10 Hordaland Group

Depth interval: 1021 - 1643.5 m RKB

Thickness: 622.5 m

Age: Late Oligocene - Early Eocene

We can lithologically divide the Hordaland Group into 3 sections.

Down to 1140 m RKB the lithology is claystone with trace of sandstone. The claystone is silty with colours from brown grey to olive grey to dark yellow brown, firm, micro-micaceous and non to slightly calcareous.

The sandstone is light grey to light brown grey, very fine to fine, well sorted, rounded to subrounded, loose, micaceous and calcareous. There are also traces of glauconite and pyrite.

Between 1140 and 1430 m RKB there are alternating beds of claystone and sandstone. The claystones are silty to arenaceous, olive grey to dark green grey, medium dark grey to medium bluish grey, waxy, firm, occasionally hard, subfissile, slightly micro-micaceous, predominantly non calcareous, occasionally calcareous. The sandstones are slightly argillaceous, clear to white and medium light grey to olive grey, fine to medium, occasionally coarse, well to moderately sorted, rounded to subrounded, loose and occasionally calcite cemented. Occasional stringers of limestone and dolomite and traces of glauconite, pyrite and mica.

From 1430 m RKB and down to Top Balder at 1643.5 m RKB the lithology is again dominated by claystone with trace occurence of sandstone stringers. The claystones are occasionally silty with colours varying from medium grey to medium bluish grey to dark green grey, occasionally brown grey, waxy, firm to hard, subfissile, predominantly non calcareous, occasionally calcareous.

The sandstones are slightly argillaceous, clear to white and very light grey, fine to medium, well sorted, rounded to subrounded, loose, non calcareous and slightly micaceous.

There is also trace occurence of limestone, dolomite, pyrite and foraminifera. The limestone is white to light grey brown, soft to firm while the dolomite is brown to dark orange brown and hard.

Upper boundary

The transition from the Utsira Formation to the Hordaland Group is characterized by a reduced and steady reading on both the gamma ray and resistivity logs and an increased sonic transit time.

4.11.11 Nordland Group, well 34/-12

Depth interval: 216 (Seabed) - 1021 m RKB

Thickness: 805 m

Age: Pliocene - Late Miocene

Utsira Formation

Depth interval: 930 - 1021 m RKB

Thickness: 91 m

Age: Pliocene - Late Miocene

The Utsira Formation is composed of sand alternating with clay.

The sand is clear to white, occasionally orange and loose quartz grains. They vary from very fine to medium, are well sorted, rounded to subrounded and glauconitic.

The clay is slightly arenaceous, olive grey to brown grey, soft to firm, micro-micaceous, subfissile and slightly calcareous.

Traces of glauconite, shell fragments, fossils and foraminiferas.

Upper boundary

The Top Utsira Formation is marked on the logs by a decrease in both the gamma ray and resistivity

Nordland Group above the Utsira Formation

Depth interval: 216 - 930 m RKB

Thickness: 714 m

Age: Pliocene - Late Miocene

The Nordland Group above the Utsira Formation consists of clay with occasional beds of sand.

The clay is arenaceous, medium grey, soft, sticky and non to slightly calcareous.

Down to 400 m RKB sand is dominating. The sand is clear to white subangular quartz grains, predominantly fine, occasionally medium to coarse, moderately to well sorted, loose and slightly micaceous. Further down the sand is silty, clear to white, very fine to fine, occasionally medium, well to moderately sorted, subangular to subrounded, loose and slightly micaceous.

There is trace occurence of rock and shell fragments, fossils and pyrite.

4.11.12 Nordland Group, well 34/7-11

Depth interval: 216 (Seabed) - 861 m RKB

Thickness: 645 m

Age: Pliocene - Late Miocene

Clay with occasional interbedded sand bodies.

The clay is arenaceous becoming lesser arenaceous towards bottom, predominantly medium to medium light grey becoming darker grey towards bottom, soft and sticky and slightly calcareous.

The sand consists of clear, loose quartz grains with occasional content of mica. Down to 400 m RKB the sand is predominantly medium to very coarse, subangular to subrounded and poorly sorted. Further down the sand is clear, very fine to medium, moderately to poorly sorted, subrounded and occasionally micaceous.

There are also traces of rock fragments, shell fragments, grey white arenaceous and soft limestone, fossil fragments and pyrite.

4.12 <u>Hydrocarbon Indications</u>

Well 34/7-11 was drilled down to 861 m RKB through the Late Miocene to Pliocene Nordland Group before it was abandoned. Apart from the shallow gas sands, which will be referred to in section 4.10, the total background gas was 0.2 - 0.6% through the well. Only Cl was recorded. The mud weight averaged 1.15 g/cc.

In well 34/7-12 the 26" hole was drilled down to 852 m RKB before the 20" casing was set. Apart from the shallow gas sands (section 4.10), the total background gas averaged 0.4 - 0.5% in this section. Only C1 was recorded. The mud weight was 1.14 - 1.15 g/cc.

The 17 1/2" hole was drilled down to 1865 m RKB. From 852 m RKB down through the Utsira Formation and into the Hordaland Group down to 1370 m RKB, the well was normally pressured. The mud weight was increased from 1.10 g/cc to 1.19 g/cc, and the background gas decreased accordingly from 0.2% at the top down to 0.08% below 1140 m RKB. A maximum gas peak of 0.55% at 885 m RKB and a trip gas of 0.2% at 1200 m RKB was recorded. Only C1 was recorded.

From 1370 m RKB there is a gradual pressure build-up through the rest of the section to 1865 m RKB at the top of the Shetland Group. The mud weight was gradually increased from 1.19 g/cc to 1.55 g/cc at 1865 m RKB. The background gas increased to 0.2% down to 1580 m RKB. Between 1580 and 1700 m RKB it increased to 0.4 - 0.5%. Then it decreased to 0.2 - 0.3% down to 1865 m RKB. Gas peaks of 1.8% at 1713 m RKB and 4.41% at 1798 m RKB were recorded. C2 was recorded from 1480 m RKB, C3 from 1510 m RKB and iC4 from 1590 m RKB.

The first sign of shows in the well were recorded in a sandstone between 1800 and 1805 m RKB. It had strong HC-odour, a strong brown oil staining, 100% moderate to strong yellow flourescence, and instant to fast streaming strong yellow - white cut and a yellow residue upon evaporation.

The pressure build-up continued down from 1865 m RKB to Top Brent at 2169 m RKB, and the mud weight was gradually increased from 1.55 g/cc

to 1.72 g/cc. Down to 2060 m RKB the background gas was 0.2%. From 2060 m RKB the gas increased markedly with a maximum registration of 2.76% at 2123 m RKB. A gas peak of 2.17% at 2120 m RKB was decomposed to 12529 ppm C1, 1632 ppm C2, 917 ppm C3, 97 ppm iC4 and 272 ppm nC4. A trip gas of 3.2% was recorded at 2169 m RKB. nC4 was recorded from 2015 m RKB.

Shows were recorded in siltstones from 2060 m RKB just where the gas registrations started to increase. The siltstones showed no oil stain or odour, 80-100% moderate pale yellow flouresence, slow streaming pale yellow to bluish white cut and a yellow white residue.

From the Top Brent at 2169 m RKB there were good oil shows in the sandstones all the way down to Top Rannoch at 2268.5 m RKB. Down to the OWC at 2250 m RKB the sandstones showed a good to strong HC-odour, 80-100% brown to yellow brown oil stain, 80-100% bright yellow moderate to strong flourescence, instant to fast streaming milky to bluish white cut and yellow white residue upon evaporation. Below the OWC there were only weak oil stains, 20-80% weak yellow white - strong yellow-white flourescence, moderate to fast streaming milky white to bluish white cut and yellow white to yellow brown residue upon evaporation. From Top Rannoch there were no shows.

The mud weight was held constant at 1.72 g/cc in this interval. The background gas was 0.8% at the top decreasing to 0.2% at 2268.5 m RKB. All the components from C1 to C5 were recorded. Gas peaks of 3.86% at 2223 m RKB and 2.62% at 2250 m RKB were recorded. The gas peak of 3.86% was decomposed to 26428 ppm C1, 3221 ppm C2, 1800 ppm C3, 76 ppm iC4, 206 ppm nC4 and 68 ppm nC5.

From 2268.5 m RKB down to T.D. at 2784 m RKB the shows disappeared, and the mud weight was kept constant at 1.72 g/cc. The background gas dropped below 0.1% and was kept predominantly below 0.1% for the rest of the well. Gas peaks of 0.2% at 2330 m RKB, 1.13% at 2623 m RKB (in the top part of Statfjord) and 0.21% at 2724 m RKB.

Concerning the different components iC4 disappears at 2285 m RKB, nC4 at 2330 m RKB, C3 at 2740 m RKB and C2 at 2766 m RKB. A trip gas of 1.8% was recorded at 2484 m RKB.

FORMATION EVALUATION

5.1 Logging

The logging programme included 3 runs (Section 4.6.) The density/
neutron logs from run 2a and the neutron log from run 3b are not of
reliable quality. In the log analysis density neutron logs from run
3c are used, ref. Petrophysical Report R-EPF 0055 34/7-12, June 1988.

The logs have been analysed with a computer model based on a complex lithology method. Net sand averages have been calculated using a porosity cutoff of 12% in the Brent Group, except for the lowermost part of the Rannoch Formation (Rannoch I) and the Broom Formation, where a porosity cutoff of 16% is used. The porosity cutoff in the Statfjord Formation is 12%. The shale volume cutoff used is 40% for all formations.

Shows are reported from a sidewall core cut at 1803 m RKB in a Paleocene sand. Logs also seem to indicate the presence of a two metres thick residual or hydrocarbon bearing zone from 1801 m RKB to 1803 m RKB (fig. 5.1).

An oil water contact of 2250 m RKB (2224 m MSL) has been defined in the Ness Formation. The net sand averages for the separate zones are given in table 5.1, a-d.

5.2 Core Analyses

A total of 10 cores were cut through the Brent Formation and 20 m into the top of the Dunlin Group. The cores were taken in the interval 2169.0 - 2360.5 m RKB. A total of 180.8 m were cored with a recovery of 94.4%.

Conventional core analyses were performed on all cores except core No. 3. Horizontal air permeability, helium porosity and grain density were measured every 0.25 m while vertical permeability, summation porosity and pore saturation were measured every metre. The analysis results are listed in table 5.2, a-e. Core depth shifts are given in section 4.3.3.

5.3 Formation Pressure Measurements

An Atlas Wireline Services Formation Multi Tester (FMT) with a Hewlett Packard crystal gauge was used to obtain formation pressures (table 5.4, a-b).

An OWC at 2250 m RKB (2224 m MSL) is defined from formation pressure measurements, and is in agreement with logs. In the Brent Group an oil gradient of 0.070 bar/m and a water gradient of 0.098 bar/m were determined. The pressure points measured in the Cook Formation were not of reliable quality. The water gradient in the Statfjord Formation is 0.100 bar/m. The Stafjord Formation is 1.4 bar overpressured compared to the pressure regime in the Brent Group.

Results from 2 3/4 gallon chambers (segregated samples) opened on the rig floor are listed in table 5.4. The 1 gallon chambers were sent to laboratory for PVT studies, with the results presented in section 5.5.

5.4 Testing

The following production tests were performed in well 34/7-12:

Formation	Test No.	Fluid	Perforation Interval
			(m RKB)
Lower Brent	1	Water	2276.2 - 2282.2
Ness	2	Oil	2229.0 - 2235.0
Tarbert	3	Oil	2205.5 - 2209.5

The objectives of the tests were to:

Test No. 1:

- obtain formation water samples
- estimate the productivity
- estimate the formation characteristics

Test No. 2:

- measure the productivity
- investigate formation characteristics and sand continuity
- obtain formation fluid samples
- estimate sand free production rate
- investigate the continuity of the shale interval 2235 -2241 m RKB

Test No. 3:

- measure the productivity
- estimate sandfree production rate
- obtain formation fluid samples
- estimate the formation characteristics

Operations:

Production test No. 1:

The interval 2276.2 - 2282.5 m RKB was perforated underbalanced with a 5 inch Schlumberger tubing conveyed perforation gun, 5 shots/foot. After perforation, the well was shut-in for 1 hour in order to get the initial reservoir pressure.

The well was opened through an adjustable choke. Due to sand production it was necessary to go straight into the main flow to avoid sand settling in the test string. During the 29.8 hours main flow, an 11 mm fixed choke was used. The last recorded water rate was 1284 Sm³/D with a corresponding wellhead pressure of 106 bar and a productivity index of 186 m³/D/bar. The sand production at the beginning of the main flow was 10% of the total flow. It decreased during the flow, and for the last 10 hours of the main flow it was approximately zero. The well was then shut-in for 30 hours.

During the sand detection flow, the well was flowed at different rates using choke sizes between 8 mm and 16 mm, with a maximum rate of $1810 \text{ m}^3/\text{D}$. When the flow rate was increased the sand production increased to a peak and thereafter decreased.

The pressures and rates are shown in fig. 5.2. A summary of the flow periods and flow data are listed in table 5.5.

Production test No. 2:

The interval 2229 - 2235 m RKB was perforated overbalanced with a 4 inch Atlas Wireline Services Jumbo Jet casing gun (120° phasing, 4 shots/foot).

Prior to opening the well for flow, 1 hour stabilization period was performed by opening the PCT valve underbalanced against a closed choke manifold to obtain the initial reservoir pressure.

The well was opened for a 6.3 hours clean-up flow through a 8 mm adjustable choke. The choke size was then stepwise increased to a 21 mm fixed choke. A final oil rate of 1670 Sm³/D was recorded with a corresponding wellhead pressure of 104.8 bar. The total pressure drawdown was 46.3 bar. The well was then shut-in for 9 hours.

After installing the surface read-out system for pressure (MUST), the well was opened through a 13 mm fixed choke. The well was flowed for 73 hours through the same choke giving a final oilrate of $880 \text{ Sm}^3/D$ with a corresponding wellhead pressure of 127 bar. The total pressure drawdown was 46.7 bar, giving a productivity index of 19 Sm $^3/D/bar$.

After the main build-up the well was opened for a 6 hours sampling flow, mainly through a 6 mm fixed choke. After the sampling flow, attempts were made to unlatch the MUST. This was not successful, and the weak point eventually broke.

The pressures and rates are shown in fig. 5.3. A summary of the flow periods and flow data are listed in table 5.6.

Production test No. 3:

The interval 2205.5 - 2209.5 m RKB was perforated underbalanced with a 5 inch Schlumberger tubing conveyed perforation gun, 5 shots/foot. After perforation, the well was shut-in for 1 hour to get the initial reservoir pressure.

The well was opened for a 10.1 hour clean-up flow through a 5 mm adjustable choke. The choke size was then stepwise increased to 26 mm. The last recorded oil rate was 2600 Sm³/D with a corresponding wellhead pressure of 121.3 bar. The total pressure drawdown was 10.9 bar. The well was then shut in for 7.9 hours.

After installing the MUST, several attempts were made to open the well for the main flow. A large pressure drop was observed across the MUST, indicating a closed MUST valve, which only allowed fluid to flow through the equalizing ports. After cycling the MUST, the MUST opened and the well was flowed for 23.4 hours through a 11 mm fixed choke. After approximately 11.5 hours of sampling, the choke size was increased to 14 mm fixed.

The final oil rate was $1460 \, \mathrm{Sm}^3/\mathrm{D}$ with a corresponding wellhead pressure of $156.3 \, \mathrm{bar}$. The total pressure drawdown was $5.4 \, \mathrm{bar}$, giving a productivity index of $270 \, \mathrm{Sm}^3/\mathrm{D/bar}$.

After the main build-up a minifracture test was performed to determine the formation strength.

The pressures and rates are shown in fig. 5.4. A summary of the flow periods and flow data are listed in table 5.7.

5.5 Fluid Analyses

FMT samples

5 one gallon chambers were brought to the laboratory. The FMT-chambre from 2249.5 m RKB was empty while the FMT-chambre from 2252.5 m RKB contained water. The others were filled with oil. PVT analyses were carried out on the three oil samples (table 5.8). The water sample was contaminated with mudfiltrate.

Test No. 1:

Water samples were taken regularly during the different flow periods and analysed offshore for pH, chloride, conductivity, density, alkalinity, barium/strontium, sulfate and turbidity to establish when formation water was produced to surface. Seven sample sets of true formation water were then collected at inlet test separator for onshore analyses.

A representative formation water composition is given in table 5.9.

Test No. 2:

During production test No. 2, six sets of separator samples containing separator gas and oil were collected. For five of the sets, the separator gas was sampled isokinetically to establish the correct recombination GOR and to examine the separator efficiency. Nine monophasic oil samples were taken at the wellhead, since the wellhead flowing pressure exceeded the bubble point pressure at wellhead temperature.

A complete PVT analyses was carried out on one of the monophasic wellhead samples. The main results are given in tables 5.10 and 5.11.

Samples of gas and oil were taken regularly throughout the test for trace component analyses (table 5.12). A small amount of water was produced at the separator and analysed offshore. This water is likely to be seawater from cleaning the separator.

Test No. 3:

Six sets of separator samples containing gas and oil were taken throughout test No. 3. The separator gas was sampled isokinetically to establish the correct recombination GOR and to examine the separator efficiency. At low rates the flow was monophasic at wellhead, as the wellhead flowing pressure was above the bubble point pressure for the actual wellhead temperature. Nine monophasic oil samples were taken on the wellhead.

One monophasic wellhead sample was brought to the laboratory for PVT-analysis. The main results from the PVT-analysis are listed in tables 5.13 and 5.14.

Samples of gas and oil were taken regularly throughout the test for trace component analyses (table 5.15).

A small amount of water was produced at the separator and analysed. This water is likely to be seawater from cleaning the separator.

Log Analysis Well 34/7-12 RFOC AC 0.2 100 20 200 DEN GR 100 0.2 RILD 20 1.95 2.95 0 **Well Site** Lithology Log ·I-

Fig. 5.1 Logs from the Paleocene sequence, well 34/7-12

Date 03-88	Auth	CS	Appr	BR	
Draw by GAF	Ref	EPF			

The same

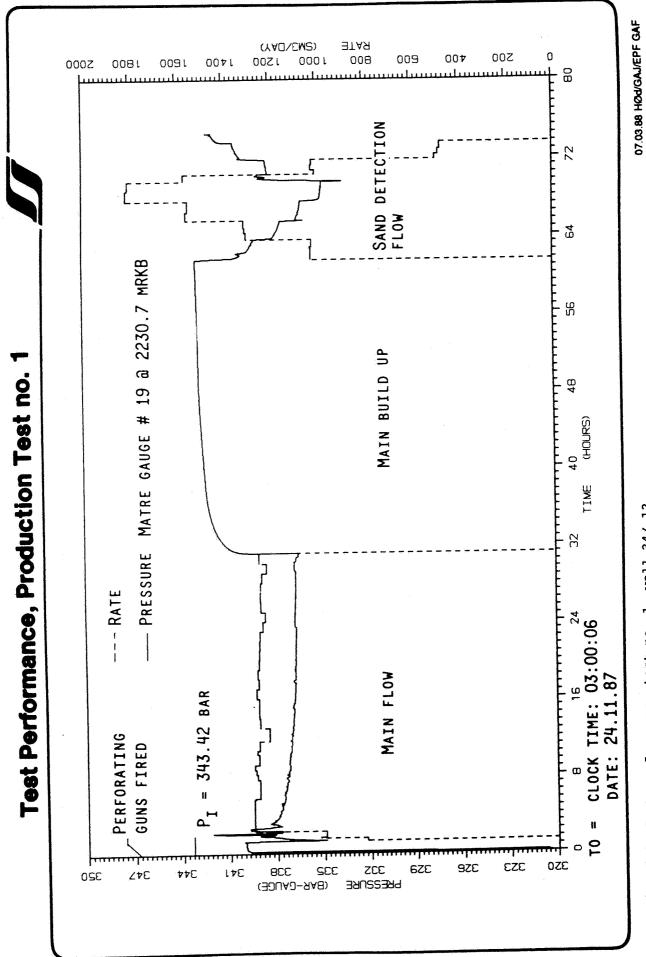


Fig. 5.2 Test performance, test no. 1, well 34/-12

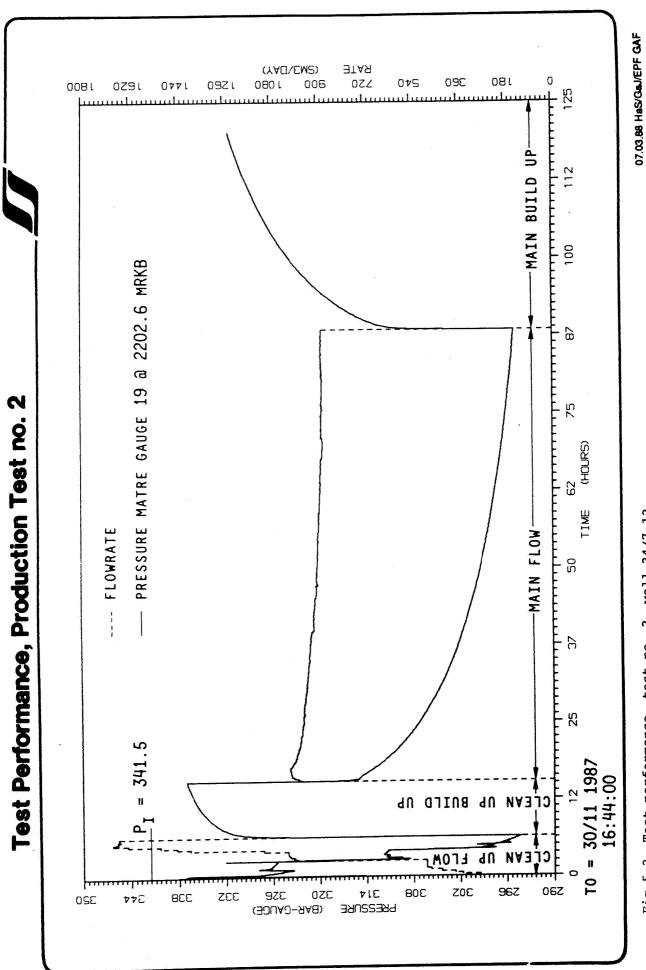



Fig 5.3 Test performance, test no. 2, well 34/7-12

Fig. 5.4 Test performance, test no. 3, well 34/-12

FORMATION/ UNIT	TARBERT	NE	Top down to OWC	ETIVE
TOP m RKB	2169.0	2213.0	2213.0	2251.5
BOTTOM m RKB	2213.0	2251.5	2250.0	2268.5
GROSS m	44.0	38.5	37.0	17.0
NET SAND m	44.0	12.5	12.5	17.0
N/G	1.0	0.32	0.34	1.0
Φ (%)	28.4	24.4	24.4	31.6
SW (%)	10	41	41	-

CUTOFFS:

Φ (%) 12 Vsh (fraction) 0.4

REMARKS

OWC: 2224 m MSL (2250 m RKB)

KB = 26 m

Well 34/7-12

FORMATION/ UNIT	RANNOCH III	RANNOCH II	RANNOCH	RANNOCH I
TOP m RKB BOTTOM m RKB GROSS m NET SAND m N/G Φ (%) SW (%)	2268.5 £ 2286.0 17.5 17.5 1.0 30.4 -	2286.0 2317.5 31.5 31.5 1.0 28.4	2268.5 2317.5 49.0 49.0 1.0 29.1	2317.5 2333.5 16.0 7.5 0.47 19.4
CUTOFFS:				
Φ (%) Vsh (fraction)	12 0.4	12	12	16 0.4

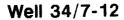
REMARKS

KB = 26 m

OWC: 2224 m MSL (2250 m RKB)

Well 34/7-12

3.5 2:	UNLIN ROUP 340.5	STATFJORD 2606.0	
ı			
ı			
0.5 20	606.0		
1		2763.0	
7.0	265.5	157.0	
	-	108.5	
-	-	0.69	
-	-	22.0	
-	_		
		12	
16	15	0.4	
		16 15 0.4 0.4	


REMARKS

KB = 26 m

OWC: 2224 m MSL (2250 m RKB)

Table 5.1 c Net Sand Log Averages, well 34/7-12

Date 03-88	Auth	cs	Appr	BR	
Draw by RM	Ref	EPF			

FORMATION/ UNIT	UPPER STATFJORD	MIDDLE STATFJORD	LOWER STATFJORD	UPPER LUNDE UNIT A
TOP m RKB BOTTOM m RKB GROSS m NET SAND m N/G Ф (%)	2606.0 2663.5 57.5 56.0 0.97 22.9	2663.5 2700.0 36.5 20.0 0.55 22.9	2700.0 2763.0 63.0 32.5 0.52 19.8	2763.0 2780.0 * 17.0 - -

CUTOFFS:

Φ (%) 12 Vsh (fraction) 0.4

REMARKS

* TD LOG

KB = 26 m

OWC: 2224 m MSL (2250 m RKB)

DEPTH POR (Drill.) (mRKB) (%)	HOR. PERM. (mD)	PERM.	GRN. DEN. (g/cc)	DEPTH POR. (Dril.) (mRKB) (%)	HOR. PERM. (mD)	VER. PERM. (mD)	GRN. DEN. (g/cc)
	CORE No 1 3940.000 5440.000		2.66 2.66	2185.25 27.20 2186.00 2186.00 26.00	12100.000	8720.000 1800.000	
2170.00 31.50 2170.25 25.20 2170.50 31.00	5350.000 5860.000 804.000		2.65 2.67 2.66	2188.00 31.70 2188.25 29.30 2188.50 30.50	3450.000 2910.000 26500.000	4410.000	2.66 2.65
2170.75 30.70 2171.00 31.60 2171.25 32.20	774.000 934.000 1030.000		2.65 2.65 2.65	2189.00 29.80 2189.25 22.40 2189.50 30.30	1930.000 63.900 4060.000	176.000	2.66 2.67
2171.50 31.20 2171.75 31.30 2172.00 31.10	796.000 514.000 626.000		2.65 2.65 2.65	2189.75 28.80 2190.00 28.60 2190.25 27.20	8160.000 2530.000 1270.000	2020.000	2.67
2172.25 32.20 2172.50 31.20 2172.75 31.30	1010.000 558.000 689.000		2.65 2.65 2.65	2190.50 28.10 2191.00 27.70 2191.25 27.30	1660.000 1760.000 1640.000	2160.000	2.68 2.68 2.68 2.67
2173.00 31.50 2173.25 30.00 2173.50 30.30	639.000 264.000 534.000		2.65 2.65 2.65	2191.75 27.20 2192.00 27.40 2192.25 27.90	3660.000 3190.000 1230.000 1640.000	914.000	
2173.75 30.10 2174.00 30.10 2174.25 29.20	434.000 720.000 388.000		2.65 2.65 2.65	2192.50 26.40 2193.00 28.40 2193.25 27.30 2193.75 28.50	3660.000 3190.000 2050.000	3250.000	
2174.75 30.10 2175.00 29.70 2175.25 30.10	337.000	289.000	2.67	2193.75 28.50 2194.00 28.60 2194.25 31.30 2194.50 32.20	6180.000 5570.000 4800.000		2.67 2.70 2.71
2175.50 29.10 2175.75 27.50 2176.00 27.10	400.000 452.000 222.000		2.68 2.67 2.69 2.65	2194.50 32.20 2195.00 28.30 2195.25 30.20 2195.50 30.40	2300.000 4040.000 3430.000		
2176.25 22.40 2176.50 28.10 2176.75 22.30	222.000 442.000 237.000 196.000 516.000	565.000	2.66 2.65	2195.75 30.90 2196.00 30.70	4000.000 3890.000 CORE No 2		2.68 2.68
2177.00 31.40 2177.25 32.10 2177.50 32.00	639.000 563.000 504.000	202.000	2.66 2.67 2.67		2230.000 8600.000 1620.000		
2177.75 31.30 2178.00 30.60 2178.25 22.70 2178.50 32.90	430.000 4120.000 416.000	477.000		2196.75 30.30 2197.00 31.90 2197.25 29.30 2197.50 31.90 2198.00 31.90 2198.25 30.90 2198.50 30.70 2198.50 30.70	4140.000 6130.000 5810.000		2.67 2.67 2.67
2178.50 32.90 2179.00 2180.00 2180.25 30.40		4060.000 6040.000		1 ZIJJ.UU ZO.JU	3310.000		2.07
2180.25 30.40 2181.00 28.80 2181.25 31.80 2181.75 25.50	3030.000		2.66 2.66 2.65	2199.25 28.00 2199.75 30.10 2200.00 31.10	3490.000 6870.000 3750.000		2.67 2.67 2.68
2182.00 29.30 2182.75 29.00	11700.000 3810.000 19200.000	4300.000		2200.25 30.50 2200.50 31.00 2200.75 27.80	5550.000 2180.000 4870.000		2.67 2.69 2.67
2183.25 28.70 2183.75 31.50	958.000 2880.000	14900.000 813.000	2.67 2.65	2201.00 29.40 2201.25 28.60 2202.00 30.30	5060.000 3790.000 5980.000	2520.000	2.66 2.70 2.69
2184.00 2184.25 27.60 2184.75 27.90	1600.000 2160.000	1800.000	2.64 2.66	2202.25 29.90 2202.50 29.20 2202.75 30.80	1660.000 2950.000		2.68 2.67 2.68
2185.00		1000.000					

Date 03-88	Auth CS	Appr	BR	
Draw by CS	Ref EPF			

							CDV
DEPTH POR	HOR.	VER.	GRN.	DEPTH POI	R. HOR.		GRN. DEN.
(Dril.)	PERM.		DEN.	(Dril.)	PERM. (mD)	(mD)	
(mRKB) (%)	(mD)	(mD)	(g/cc)	(MRKB) (*			
(mRKB) (%) 2203.25 31.90 2204.00 30.80 2204.75 31.90 2205.50 27.70 2207.25 31.40 2208.50 31.70 2208.75 30.60 2209.25 29.20 2209.50 29.80 2210.25 30.60 2210.50 24.00 2211.25 21.80 2211.50 27.80 2211.75 30.60 2212.00 29.70 2212.25 30.80	8900.000		2.65	2251.75 33.			2.66
2203.23 31.90	10000.000		2.66	2254.50 31.4	40 1190.000		2.66
2204.00 30.00	6150.000		2.65	2254.75 34.3	10 1840.000		2.65
2205 50 27 70	11900.000		2.65	2255.00 33.	30 721.000		2.66
2203.30 27.70	1790.000		2.68	2255.50 33.9	90 2150.000		2.65
2208.50 31.70	5220.000		2.66	2256.00 32.4	40 459.000	886.000	2.67
2208.75 30.60	7110.000		2.67	2256.25 33.	00 870.000		2.66
2209.25 29.20	705.000		2.69	2256.50 34.3	10 1020.000		2.66
2209.50 29.80	5210.000		2.66	2256.75 35.4	00 870.000 10 1020.000 40 4210.000		2.65
2210.25 30.60	556.000		2.67	2257.00			
2210.50 24.00	32.500		2.69	2257.25	1540.000		2 67
2211.25 21.80	554.000		2.70	2257.50 33.0	60 1060.000		2.07
2211.50 27.80	84.600		2.71	2257.75 36.	00 2310.000	2560 000	2.01
2211.75 30.60	256.000		2.69	2258.00 34.			
2212.00 29.70	328.000		2.67	2258.25	6210.000		2 66
2212.25 30.80	188.000		2.68	2258.50 34.0	40 9420 000		2.65
	CORE No 4		2.66	2258.75 35. 2259.00 35.		10600.000	2.65
2216.25 29.40	4820.000		2.00	2250 25	8430 000		
2216.50 25.90	240 000		2.03	2259.25	50 4990.000		2.65
2216.75 23.80	249.000		2.05	2259.50 34. 2259.75 34.	60 3620.000		2.65
2217.25	841.000		2 67	2260.00 35.	80 4760.000	4110.000	2.65
2218.00 25.70	160 000		2.68	2260.25	7000.000		
2218.25 27.20 2218.50 33.70	761 000		2.65	2260.50 35.	20 3430.000		2.65
2210.50 33.70	249.000 841.000 56.000 169.000 761.000 CORE No 5				- CORE No 7		
2228.75 33.80	4430.000		2.66	2262.25	6100 000		
2230.25 34.40	2070.000		2.67	2262.50 31.	90 4500.000	235.000	2.65
2230.75 31.00	1730.000		2.64	2263.00 32.	70 4600.000	235.000	2.65
2231.00 29.00	198.000		2.65	2263.25 35.	70 3230.000		2.65
2231.50 28.70	63.300		2.66	2263.75 31.			2.65
2232.00 30.00	1720.000		2.61	2264.00 33.			2.65
2232.25 30.30	477.000		2.65	2264.25			2 (2
2232.50 24.20	4.710		2.67	2264.50 31.	20 1130.000	1160 000	2.63
2235.50 22.10	0.456		2.75	2265.00 32.	20 3540.000	1160.000	
2239.50 30.10	185.000		2.77	2265.25 33.	60 1110.000		
2240.00 27.30	183.000		2.71	2265.75 29.	ZU 3910.000	413 000	2.04
2241.50 21.10	CORE No 5 4430.000 2070.000 1730.000 198.000 63.300 1720.000 4.710 0.456 185.000 183.000 63.200 370.000 309.000	455 000	2.90	2265.75 29. 2266.00 32. 2266.25 35. 2266.50 33. 2266.75 22.	10 935.000	411.000	2.07
2242.00 30.40	370.000	157.000	2.69	2266.25 35. 2266.50 33.	10 345.000 20 1280 000	•	2.68
2242.25 29.60	309.000		2.78	2266 75 22	10 28 400		2.66
	CORE NO 6	1680.000	2 66	2267 00 30	10 400.000	224.000	2.65
2247.00 31.90	3760.000	1000.000	2.00	2267.25	557.000	221.000	_,,,,
2247.25	1520.000 22.300	79.500	2 48	2267.50 30.			2.65
2249.00 23.00		19.500	2.40	2267.75 29.			2.66
2249.25	167.000 433.000		2.65	2268.00 29.		242.000	
2249.75 29.70	222.000	796.000		2268.25 33.			2.66
2250.00 27.00	1360.000	750.000	2.00	2268.50 30.			2.67
2250.25	1380.000	33.900	1	2268.75 30.			2.68
2250.50 2.65 2250.75 32.20	1050.000	55.500	2.66	2269.00 30.	50 562.000	329.000	2.70
2251.00 32.60	1230.000	347.000		2269.25	583.000		
2251.00 32.00	791.000	2.7.000		2269.50 32.			2.67
2251.25	2270.000		2.65	2269.75 33.			2.68
2232.30 33.40				i			
Ł				I			

Table 5.2 b Conventional Core Analysis, well 34/7-12 (Driller's Depth)

Date	03	-88	Auth	CS	Api	or JMH	_
Draw	by	CS	Ref	EPF			

DEDMII DOS	HOR.	VER.	GRN.	DEPTH POR.	HOR.	VER.	GRN.
DEPTH POR	PERM.	PERM.	DEN.	(Dril.)	PERM.	PERM.	DEN.
(Dril.)	(mD)		(g/cc)	(mRKB) (%)	(mD)		(g/cc)
(mRKB) (%)	(mD)						
2270.00 32.40	824.000	576.000	2.68	2290.50 32.40	589.000		2.73
2270.00 32.40 2270.25 37.10	726.000	5,5.000	2.73	2290.75 32.20	581.000		2.72
	638.000		2.67	2291.00 32.40	629.000	636.000	2.71
2270.50 31.70	595.000		2.67	2291.00 32.40	714.000		2.70
2270.75 31.50			2.68	2291.25 32.00	621.000		2.73
2271.50 33.10	1180.000		2.68	2292.00 31.90	603.000	517.000	
2271.75 34.20	1330.000	1330.000		2292.00 31.90	890.000		2.71
2272.00 33.50	1380.000	1550.000		2292.25 32.60 2292.75 31.90	852.000		2.70
2272.25 34.10	549.000		2.70	2292.75 31.90 2293.00 32.00	872.000	571.000	
2272.50 34.20	1350.000		2.67	2293.00 32.00 2293.25 31.50	706.000		2.73
2273.25	418.000		2 74	2293.25 31.50 2293.75 30.40	535.000		2.73
2273.75 33.10	703.000	509 000	2.71	2293.75 30.40 2294.00 31.30	646.000	561.000	
2274.00 30.20	385.000	307.000	4.7U	2294.00 31.30 2294.25 32.20	687.000	201.000	2.72
2274.25	681.000		3 1		622.000		2.72
2275.25 35.20	868.000		2.66	2294.50 32.00			2.72
2277.75 30.20	225.000		2.75	2294.75 31.80	623.000	487.000	
2278.00 33.30	867.000	907.000		2295.00 31.60	607.000	407.000	
2278.25 33.90	1070.000		2.68	2295.25 31.90	568.000		2.72
2278.50 33.60	1130.000		2.68	2295.75 32.70	615.000	400 000	2.71
2279.50 33.60	1020.000		2.71	2296.00 31.30	413.000	482.000	
2281.25	1310.000			2296.50 32.20	514.000		2.70
2281.50 32.20	512.000		2.70	2296.75 32.60	553.000	350 555	2.70
2281.75 33.30	912.000		2.69	2297.00 31.80	387.000	358.000	2.71
2282.00 33.30	790.000	964.000		2297.25 31.60	408.000		2.70
2282.25	1250.000			2297.50 32.70	577.000		2.70
2282.75 32.90	901.000		2.71	2297.75 32.40	511.000		2.70
2283.00 32.70	756.000	907.000		2298.00 32.60	573.000	424.000	
2283.25	559.000		. =	2298.25 29.20	225.000		2.71
2283.50 32.30	731.000		2.71	2298.50 32.80	665.000		2.68
2283.50 32.30 2283.75 31.30	845.000		2.63	2298.75 31.60	457.000		2.68
2284.00 30.90	535.000	642.000		2299.00 31.80	466.000	90.300	2.69
2284.00 30.90	566.000	5.2.000		2299.25 31.30	368.000		2.67
	450.000		2.75	2299.50 31.40	360.000		2.68
2284.50 32.10	545.000		2.72	2299.75 31.90	404.000		2.68
2284.75 31.70	390.000	446.000		2300.00 29.80	278.000	31.100	2.69
2285.00 29.30		440.000	2.73	2300.00 29.00	332.000	.,.,	2.69
2285.25 35.10	423.000 344.000		2.78	2300.50 30.50	301.000		2.70
2285.50 31.00			2.78	2300.50 30.50	421.000		2.69
2285.75 31.10	551.000	399.000		2300.75 31.50	441.000	294.000	
2286.00 31.00	486.000	377.000	2.13	2301.00 31.80	488.000		2.69
2286.25	581.000		2.68	2301.25 32.10	648.000		2.67
2286.50 30.90	578.000		2.68	2301.50 32.60	774.000		2.67
	495.000			2301.75 33.30 2302.25 25.90	39.100		2.70
2287.00 31.60	534.000	575.000		2302.25 25.90 2302.50 23.30	8.000		2.67
2287.25 33.80	514.000		2.69	2302.50 23.30 2302.75 26.30	72.800		2.68
2287.50 31.90	600.000		2.68		256.000	84.600	
2287.75 32.10	732.000	F3. 665	2.68	2303.00 30.70 2303.25 31.70	321.000	5-4-, 000	2.67
2288.00 31.50	480.000	534.000	2.10		290.000		2.69
2288.25	756.000		2	2303.50 31.10			2.69
2288.50 32.00	830.000		2.69	2303.75 31.50	323.000		00
2289.25 32.60	579.000		2.69		CORE No 9	27.000	2 70
	CORE No 8			2306.00 29.50	147.000	∠/.000	
2290.00 31.40	459.000	400.000		2306.25 32.60	400.000		2.68
2290.25 32.10	582.000		2.72	2306.50 31.10	257.000		2.70
				1			

Table 5.2 c Conventional Core Analysis, well 34/7-12 (Driller's Depth)

ļ	Date 03-88	Auth	CC	Appr TMH	
1	03-88	L	CS	 JMI	
	Draw by CS	Ref	EPF		- 1

2307.00 29.90 2307.25 31.90 2307.50 32.30 2307.75 31.90	HOR. PERM. (mD) 	118.000	GRN. DEN. (g/cc) 2.73	DEPTH POR. (Dril.) (mRKB) (%)	PERM. (mD)	PERM.	DEN. (g/cc)
(Dril.) (mRKB) (%) 	PERM. (mD) 168.000	PERM. (mD) 118.000	DEN. (g/cc)	(Dril.) (mRKB) (%)	PERM. (mD)	PERM.	DEN. (g/cc)
(mRKB) (%) 2307.00 29.90 2307.25 31.90 2307.75 32.30 2307.75 31.90	(mD) 	(mD) -118.000	(g/cc)	(mRKB) (%)	(mD)		(g/cc)
2307.00 29.90 2307.25 31.90 2307.50 32.30 2307.75 31.90	168.000	118.000			0 534		
2307.00 29.90 2307.25 31.90 2307.50 32.30 2307.75 31.90	168.000		2.73	2324.75 19.60	0 534		
2307.25 31.90 2307.50 32.30 2307.75 31.90			2,13				2.71
2307.50 32.30 2307.75 31.90	316.000 355.000			2325.00 19.30	0.274	<0.040	2.70
2307.75 31.90	355.000		2.69	2325.00 19.30	2 300	(0,0.0	2.66
0000 00 01 00		213.000	2.68	2325.25 21.20 2325.50 21.80 2325.75 21.40 2326.00 20.30	2.330		2 60
0000 00 01 00	323.000		2.68	2325.50 21.80	2.900		2.09
/ 100 UU 11.4V	275.000	213.000	2.68	2325.75 21.40	1.190		2.00
2308.25 30.40	139.000		2.69	2326.00 20.30	1.480	0.090	2.70
2308.50 28.20	111.000		2.70	2326.25 18.60 2326.50 18.90 2326.75 25.90	0.205		2.68
2308.75 29.10	131 000		2.70	2326.50 18.90	0.378		2.71
2309.00 28.00	91 500	51 000	2.70	2326.75 25.90	48.100		2.67
2309.00 26.00	210 000	31.000	2 68	2327.25 12.00	0.091	<0.040	2.76
2309.25 30.70	139.000 131.000 131.000 81.500 219.000 92.100 144.000 297.000		2.00	2327.50 20.70	0.091 1.740		2.74
2309.50 28.50	92.100		2.70	2327.75 21.10	1 950		2.72
2309.75 29.50	144.000	0.17 000	2.70	2220 00 22 70	4 050	0.288	2 70
2310.00 31.50	297.000	247.000	2.68	2328.00 22.70	4.950 22.900	0.200	2.67
2310.25 30.50	261.000		2.10	2328.25 23.60	22.900		2.82
2310.50 33.10	615.000		2.67	2328.50 21.90	0.805		2.02
2310.75 31.60	430.000		2.67	2328.75 19.60	0.200		2.69
	308.000	226.000	2.68	2329.00 21.00	0.289	0.122	2.79
	63.500		2.67	2329.25 22.20	0.656		2.84
	326.000		2.67	2328.00 22.70 2328.25 23.60 2328.50 21.90 2328.75 19.60 2329.00 21.00 2329.25 22.20 2329.50 22.80			2.80
2311.75 30.70	196.000		2.68	2329.75 21.10			2.71
	166 000	51.500	2 68	2330.00 21.90	2.480	0.116	2.69
	100.000	51.500	2.60	2330.25 21.10	1.560		2.74
	139.000		2.00	2331.00 21.70	0.831	0.064	2.71
	165.000		2.00	2331.00 21.70	0.532	0.00.	2.65
	102.000		2.69	2331.25 20.70	CORE No 10		
2313.00 29.60	26.700 38.400	86.500	2.67		0.656 2.480 1.560 0.831 0.532 CORE No 10	0.064	2 72
	38.400	43.100	2.70	2333.25 13.90 2333.50 20.80 2333.75 20.20 2334 00 21 80	0.275	0.00.	
2313.50 25.60	55.000		2.70	2333.50 20.80	5.350		2.68
2313.75 28.40	157.000		2.67	2333.75 20.20	2.400		2.81
2314.00 30.40	90.200	43.100	2.67	2334.00 21.80	3.990 1.850	0.660	2.71
	95.100		2.70	2334.25 20.60	1.850		2.71
	294.000		2.67	2334.50 21.60	1.850 4.460 <0.040 1.030		2.77
	00 000	13.600	2 68	2334.75 4.50	<0.040		2.79
2315.00 27.00	83.600	23.000	2 68	2335.00 21.10	1.030	0.342	2.68
2315.25 28.80	68.500		2.68	2335.25 15.10	0.141		2.63
	204 000		2.60	2335.50 15.80	0.141 0.421 0.418		2.65
	294.000	E 010	2.00	2335.75 16.80	0 418		2.66
	227.000	5.210	2.00	2222.12 10.00	0.410		2.75
2316.25 25.90	31.800	5.210	2.00	2336.25 17.80	0.130		2.61
2320.75 20.60	1.850 3.960 1.240	4	2.00	2336.50 12.00	0.130		2.66
2321.00 20.10	3.960	15.500	2.66	2337.00 14.90			2.65
2321.25 19.70	1.240		2.0/	2337.25 13.80 2337.50 13.50	0.257		
2321.50 17.50	0.356		2.04				2.65
2321.75 20.80	3.510		2.66	2337.75 13.60			2.66
2322.00 21.90	11.200	0.394	2.66	2338.00 14.30		<0.040	
2322.25 22.40	6.490		2.67	2338.25 15.00			2.61
2322.25 22.40	10.600		2.67	2338.50 17.60	0.847		2.62
2322.50 23.70		110.000		2339.00 12.50	÷ * **		2.86
2323.00 30.30	189.000	110.000	2.69	2339.25 13.30			2.64
2323.25 30.70	223.000			2339.50 13.80	0.099		2.64
2323.50 30.70	221.000		2.69	2337.30 13.00	0.122	2 520	2.63
2323.75 31.00	186.000		2.70	2340.50 13.40	0.122	3330	2.63
2324.00 20.90	5.040	0.192	2.70	2340.75 13.70		20 040	
2324.25 18.60	0.562		2.65	2341.00 13.30	.0 040	<0.040	
2324.50 19.20	0.385		2.68	2341.50 5.80	<0.040		2.82
				1			

Table 5.2 d Conventional Core Analysis, well 34/7-12 (Driller's Depth)

Date 03-88	Auth	CS	Appr	BR	
Draw by RM	Ref	EPF			

DEPTH (Dril.)		HOR. PERM.	PERM.	GRN. DEN. (g/cc)
(mRKB)	(%)	(mD)	(mp)	
2341.75 2342.25 2342.50	11.90 14.00 15.90	-:	<0.040	2.63 2.65 2.64 2.62
2342.75 2343.00 2343.25 2343.50	14.20 14.90 15.40		<0.040	2.64 2.64
2343.75 2344.00 2344.25	15.50 15.70 16.10 15.60		<0.040	2.66
2344.50 2344.75 2345.00 2345.25	14.90 15.30 15.70	<0.040	e e	2.63 2.67 2.25
2345.50 2345.75 2346.00	14.60 16.30 15.00 16.90		<0.040	2.62 2.67 2.64 2.67
2346.25 2347.00 2347.50 2347.75	14.50 14.80 12.10		<0.040	2.69 2.70 2.69
2348.25 2348.50 2348.75	14.20 13.70 14.80	0.185	<0.040	2.69 2.68 2.67
2349.00 2349.25 2349.50 2350.00	15.70 15.30 16.30 15.00		<0.040	2.68 2.65 2.67 2.70
2350.00 2350.25 2350.75 2351.00	15.60 14.80 9.30	0.337	<0.040	2.66 2.64 2.71
2351.25 2351.50 2351.75	16.20 15.80 16.10		10.040	2.67 2.66 2.65
2352.00 2352.25 2352.50	15.90 15.90 15.80		<0.040	2.90 2.66 2.65 2.65
2353.00 2353.25 2353.50 2353.75	16.30 14.00 16.00 15.70		10.040	2.67 2.65 2.65
2354.00 2354.25 2354.50	15.70 16.00 16.10		<0.040	2.64 2.63 2.65
2354.75 2355.00 2235.25	16.10	0.687	<0.040	2.66
2355.50 2355.75	16.10 15.80	0.144		2.64

Table 5.2 e Conventional Core Analysis, well 34/7-12 (Driller's Depth)

Date 03-88	Auth	CS	Appr	BR	
Draw by RM	Ref	EPF			

Formation Pressures

Depth	Hydrosta press		Format pressi		Comments
	Before	After			
(m RKB)	(psia)	(psia)	(psia)	(bar)	
			. —		
Run 2A	·		4000	220 55	
2171.0	5372.7	5372.3	4924.9	339.56	
2182.0	5399.4	5399.4	4936.3	340.35	
2189.5	5418.2	5417.9	4943.8	340.86	
2194.5	5430.4	5430.0	4948.9	341.21	
2203.5	5452.5	5452.5	4958.1	341.84	*
2210.0	5468.7	5468.5	4964.9	342.32	
2218.5	5489.5	5489.4	4976.6	343.12	
2230.0	5517.3	5517.4	4986.7	343.82	
2242.0	5546.5	5546.6	5005.1	345.09	
2244.0	5551.3	5551.3	5006.9	345.21	
2249.5	5564.6	5564.7	5007.3	345.24	
2253.0	5573.0	5573.0	5010.2	345.44	
2261.0	5592.4	5592.5	5021.5	346.22	
2271.0	5516.8	5617.0	5037.7	347.33	
2280.0	5639.0	5639.2	5048.5	348.08	
2289.5	5662.5	5662.5	5062.0	349.01	
2302.5	5694.2	5694.5	5080.5	350.29	
2312.0	5717.5	5717.5	5094.2	351.23	
2171.0	5372.8	5371.5	4925.3	339.59	Segregated sample
2					1 gallon chamber empty
Run 2B					
2171.5	5371.7	5371.6	4925.8	339.62	Segregated sample

REMARKS:

The pressures are temperature corrected KB = 26 m

Table 5.3 a Formation Pressures, well 34/7-12

Date 03-88	Auth	cs	Appr	BR	- 3
Draw by RM	Ref	EPF			

Formation Pressures

Depth	Hydrosta	tic mud	Format	ion	
	pressi	ıres	pressi	ires	Comments
	Before	After			
(m RKB)	(psia)	(psia)	(psia)	(bar)	
Run 2C					
2189.5	5419.5	5418.6	4943.4	340.84	Segregated sample
Run 2D					
2189.5	5420.0	-	4943.9	340.87	Segregated sample
Run 2E					
2249.5	5565.0	5564.4	5006.9	345.21	Segregated sample
		:			1 gallon chamber empty
Run 3G					
2210.0	5477.2	5477.4	4964.9	342.32	
2312.0	5729.8	5729.9	5094.8	351.27	
2471.0	6122.3	6122.2	5363.2	369.78	Pressure draw down
					3000 psi
2474.0	6121.8	6122.1	5362.3	369.72	Pressure draw down
					3500 psi. Tool
					differential stuck at
		,			2465 m RKB
Run 3H					
2210.0	5294.9	5294.9	4970.8	342.72	
2210.0	5261.4	5281.6	4964.9	342.32	
2312.0	5531.6	5533.2	5093.6	351.19	
2609.0	6259.5	6258.9	5556.9	383.13	
2626.0	6278.2	6297.6	5581.4	383.44	
2647.0	6348.1	6347.6	5611.7	386.91	
2677.0	6420.2	6420.2	5654.9	389.89	Pressure draw down
					1500 psi
2692.0	6459.1	-	5676.4	391.37	
2252.5			5009.9	345.42	Segregated sample

REMARKS: The pressures are temperature corrected

KB = 26 m

Table 5.3 b Formation Pressures, well 34/7-12

Date 03-88	Auth	cs	Appr	BR	
Drawby RM	Ref	EPF			

Segregated Samples

Well 34/7-12

Run	Depth	2 3/4 gallon	1 gallon ²
2A	2171.0	Opening pressure: 1700 psi Gas: 18.4 cuft Oil: 8000 cc	
2В	2171.5	Opening pressure: 100 psi Gas: 15.5 cuft Oil: 8000 cc	Empty ³
2C	2189.5	Opening pressure: 1700 psi Gas: 14.6 cuft Oil: 7500 cc	
2D	2189.5	Opening pressure: 1600 psi Gas: 19.0 cuft Oil: 7750 cc	
2E	2249.5	Opening pressure: 450 psi Gas: 4.9 cuft Oil/mud: 8800 cc	Empty ³
3Н	2252.5	Opening pressure: 150 psi Water: 9600 cc	

Remarks

- 2 3/4 gallon chambers opened at rig floor.
- 1 gallon chambers sent ashore for PVT studies.
- 3. Empty, probably, due to plugging.

Table 5.4 Results from 2 3/4 gallon chambers (segregated samples), well 34/7-12

Date 03-88	Auth	cs	Appr	BR	
Draw by RM	Ref	EPF			

Summary of Flowperiods, Production Test no 1

EVENT		TIME	FLOW-	BOTTOM HOLE	WELLHEAD	GWR	SEPARATOR	CHOKE
			RATE	PRESSURE/TEMP. PRESSURE/TEMP.	PRESSURE/TEMP.		PRESSURE/TEMP.	
			(Sm3/D)	Sm3/D) (bar) (DegC)	(bar) (Degc)	(Sm3/Sm3)	(bar) (DegC)	(mm)
. _								
Main	0pen	24/11/87 04:16						
flow		02:00		341.1/81.2	103.9/34.3			11.1
		00:60		337.6/83.5	105.9/59.7			12.7
		17:00	1269	336.9783.9	105.2/61.7		7.7/30.3	12.7
		25/11/87 02:00	1271	336.7/84.1	104.8/64.0	1.3	9.2/30.9	12.7
	Shut-in	10:04	1297	336.5/84.2	104.6/65.5	1.4	9.1/32.7	12.7
Sand-	0pen	26/11/87 16:26						
prod.		17:00	1025	340.0/83.1	112.5/37.1			11.1
flow		21:00	1555	336.2/84.2	98.8/68.1			14.3
		27/11/87 01:00	1570	338.5/84.2	112.7/65.0			11.1
	Shut-in	04:30	475	340.9/84.2	118.0/56.4			7.9

Bottomhole pressures measured at 2230.7 mRKB

Table 5.5 Flowperiods and flow data,	34/7-12
--------------------------------------	---------

Date 04-88	Auth.	HaS	Appr _{GaJ}
Draw by	Ref	EPF	

Summary of Flowperiodes, Production Test no. 2

EVENT	***************************************	TIME	FLOW-	BOTTOM HOLE	WELLHEAD DDESCIIDE/TEMP	GOR	SEPARATOR PRESSURE/TEMP.	CHOKE
			RATE (Sm3/D)	RATE PRESSURE/1EMF. Sm3/D) (bar) (DegC)	(bar) (Degc)	(Sm3/Sm3)	(bar) (DegC)	(mm)
מו-מפר)	Open	30/11/87 16:45						
flow	4	17:00		336.7/74.1	115.9/9.3			7.1
;) {		20:00	· · ·	311.1/81.2	139.0/50.3			12.7
	Shut-in	30/11/87 23:05	1666	294.3/82.8	104.8/63.6	29	44.6/57.7	20.64
Main	Open	1/12/87 08:07					,	
flow		00:60		314.5/82.1	139.8/50.5			t (
		13:00	895	310.2/82.9	138.3/61.1	89	40.4/53.8	12.1
		2/12/87 11:00	922	300.8/83.2	131.6/62.7	89	39.9/55.0	12.7
	المعادد المناسب	3/11/87 10:00	894	297.0/83.3	128.6/63.4	89	40.2/55.9	12.7
	Shut-in	4/11/87 09:06	888	294.8/83.4	127.0/63.2	89	40.0/55.3	12.7
			-					

Bottomhole pressures measured at 2202.6 mRKB

				3	
Table	5.6	Flowperiods	and flow	, data,	34/7-12

Date 04-88	Auth.	HaS	Appr _{GaJ}
Draw by	Ref	EPF	

Summary of Flowperiods, Production Test no. 3

CHOKE (mm)	9.5 12.7 25.4	11.1 11.1 11.1 14.3 14.3
GOR SEPARATOR PRESSURE/TEMP. (Sm3/Sm3) (bar) (DegC)	67 54	70 66 70 65 68
GOR (Sm3/Sm3)	35.3/44.3	42.7/23.8 42.8/35.2 35.3/34.4 48.1/44.7 48.0/46.4
WELLHEAD PRESSURE/TEMP. (bar) (Degc)	112.9/10.6 174.2/33.9 129.8/56.6	169.2/29.0 170.1/37.2 170.5/38.5 155.8/48.5 156.3/50.3
FLOW- BOTTOM HOLE WELLHEAD RATE PRESSURE/TEMP. PRESSURE/TEMP. (Sm3/D) (bar) (DegC) (bar) (Degc)	336.6/74.5 336.2/80.0 328.8/81.6	335.6/81.3 335.3/81.6 335.4/81.8 333.3/82.0
FLOW- RATE (Sm3/D)	791	1032 1014 999 1477 1460
TIME	9/12/87 11:45 12:00 16:00 21:53	10/12/87 11:21 12:00 16:00 22:00 11/12/87 04:00 10:45
**************************************	Open Shut-in	Open Shut-in
EVENT	Clean-up flow	Main flow

Bottomhole pressures measured at 2161.3 mMRKB

Table 5.7 Flowperiods and flow data, 34/7-12

Date 04-88	Auth	HaS	Appr GaJ
Draw by	Ref	EPF	

FMT Sample	ST 014	ST015	ST019
Sampling depth [mRKB]	2171.0	2189.5	2189.5
Bubblepoint pressure			
at 82.0°C [bar]	171.0	171.0	170.0
From single stage flash:			
Gas oil ratio [Sm ³ /Sm ³]	100.8	113.9	108.9
Density of oil at 15°C [kg/m ³]	845.7	844.7	845.3
Gas gravity (air = 1)	0.863	0.854	0.879
Composition of reservoir fluid [mol%]			
co ₂	0.29	0.25	0.22
N ₂	0.64	0.67	0.65
c_1	33.51	35.72	34.31
C ₂	6.69	6.98	6.81
c ₃	6.26	6.76	6.60
i-C ₄	1.10	1.15	1.16
n-C ₄	3.34	3.41	3.54
i-C ₅	1.27	1.24	1.29
n-C ₅	1.85	1.79	1.85
C ₆	2.63	2.47	2.48
C ₇ +	42.42	39.56	41.09
Molecular weight of C7+	227	228	226
Density of $C_{7}+[kg/m^{3}]$	862	861	861

Table 5.8 Analyses of oil from FMT-sampling. Well 34/7-12.

SAMPLING TIME:	03.00	SAMPLING D)ATE:	27.11.87

CATI	ONS		1	2	
1. 2.	Lithium Aluminium	(Li) (Al)	3.3 <0,5		mg/l mg/l
3.	Boron	(B)	67		mg/1
4.	Barium	(Ba)	35	39	mg/l
5.	Calcium	(Ca)	560	690	mg/l
6.	Cobalt	(Co)	<0,1		mg/l
7.	Cromium	(Cr)	<0,1		mg/1
8.	Cupper	(Cu)	<0,1		mg/1
9.	Iron	(Fe)	5.0	0.3	mg/1
10.	Potassium	(K)	200	172	mg/1
11.	Magnesium	(Mg)	110	106	mg/l
12.	Manganese	(Mn)	0.27		mg/1
13.	Molybdenum	(Mo)	<0,1		mg/l
14.	Sodium	(Na)	11000	11093	mg/l
15.	Nickel	(Ni)	<0,1		mg/l
16.	Silicon	(Si)	17		mg/1
17.	Strontium	(Sr)	100	105	mg/l
18.	Zinc	(Zn)	<0.1		mg/1
19.	Phosphorus	(P)	<1		mg/1

ANIONS

1.	Chloride	(C1)	18500	mg/1
2.	Sulfate	(SO4)	4	mg/1
3.	Carbonate	(CO3)	<1	mg/1
4.	Bicarbonate	(HCO3)	677	mg/1

OTHER PROPERTIES

Н	7.44	6.39 *
Specific gravity 60/60 F	1.0221	g/cm3
Resistivity (25oC)	0.208	ohm-m
Iron (total)	13	mg/1

*The pH-value is measured offshore

- 1. Cations are analysed by ICP-technique
- 2. Cations are analysed by atom absorbtion technique

RESERVOIR FLUID COMPOSITION, PT 2

Component	Weight %	Mol %
CO ₂	0.10	0.26
N ₂	0.12	0.49
c_1^{2}	4.97	34.36
c_2^-	1.80	6.64
c_3	2.76	6.95
i-C ₄	0.65	1.25
n-C ₄	2.00	3.82
i-C5	0.92	1.41
n-C ₅	1.34	2.06
C ₆	2.12	2.78
c_7	3.25	3.91
C ₈	4.34	4.56
C ₉	2.94	2.75
C ₁₀ +	72.69	28.76

Average molecular weight 111.0 Molecular weight C₇+ (calculated) : 231

 859 kg/m^3 Density of C7+ (calculated)

Molecular weight of C_{10} + (measured): 280

Density of C₁₀+ (calculated) 876 kg/m³

Well 34/7-12.

SUMMARY OF GENERAL PVT DATA WELL 34/7-12, PT 2

343.8 Initial pressure used in analysis [bar] : [°C] 83.5 Temperature used in analysis 160.0 Saturation pressure [bar] 715 Reservoir oil density [kg/m3] 0.540 Viscosity at initial pressure [cP] [cP] 0.441 Viscosity at reservior pressure

Differential liberation

Bo at reservoir conditions [m3/Sm3]: 1.363 [Sm3/Sm3]: 112.4 GOR [kg/m3]: 843 Residal oil density

Flash data 1.290 1.339 [m3/Sm3]: Bo at reservoir conditions [Sm3/Sm3]: 108.9 93.6 GOR 841.7 835.4 Stock tank oil density [kg/m3]:

Separator conditions for single stage flash:

1) 1.01 bar and 15 ° C

SINGLE

Separator conditions for multi stage flash

66 ° C 1) 63 bar and 2) 31 bar 60 ° C and 54 ° C 3) 11 bar and 1 bar 15 ° C and

MULTI

TRACE ELEMENT ANALYSES, PT 2

		Range	Arithmetic average	# of measure- ments
GASPHASE				
Hydrogen Sulphide	[ppm-mol]	< 0.45	0.29	25
Mercaptans	[ppm-mol]	< 0.1		19
Carbon Dioxide	[mo1%]	0.5-0.6	0.5	22
Radon 222	[Bq/1]	0.008-0.092	0.038	14
Water	[mg/1]	0.3-0.7	0.5	13
Total Mercury	[µg/m ³]	0.26-6.9	2.7	6
Helium	[mol%]	0.008-0.012	0.009	6
OILPHASE				
Density @25°C	[g/cm ³]	0.840-0.841	0.840	14
Water in Oil	[mg/l]	39.5-146.5	57.5	14
Total Sulphur	[weight %]	0.25-0.29	0.26	6
Polonium - 210	[Bq/1]	0.2-2.5	1.7	3
Nickel	[ppm-weight]	0.2-0.5	0.3	6
Vanadium	[ppm-weight]	1.6-1.7	1.7	6
Mercury	[ppm-weight]	0.4-4.1	1.4	. 6

Table 5.12

Trace Element Analyses, PT 2. Well 34/7-12.

Date 0 4 . 8 8	Auth	ToK	Appr J M H
Draw by	Ref	EPR	

RESERVOIR FLUID COMPOSITION, PT 3

Component	Weight %	Mol %	
, 	0.11	0.27	
co ₂	0.11	0.27	
N ₂	0.16	0.60	
c_1	5,42	36.39	
c_2^-	1.96	7.03	
c_3^2	2.80	6.85	
i-C ₄	0.64	1.18	
n-C ₄	1.87	3.47	
i-C ₅	0.85	1.27	
n-C ₅	1.19	1.78	
c_6°	1.91	2.44	
c ₇	3.09	3.63	
c ₈	4.11	4.24	
Cg	2.99	2.71	
C ₁₀ +	72.90	28.14	

Average molecular weight : 107.8 Molecular weight C_{7+} (calculated) : 231 Density of C_{7+} (calculated) : 862 kg/m³

Density of C_{7+} (calculated) : 862 kg/m³ Molecular weight of C_{10+} (measured) : 279

Density of C_{10} + (calculated) : 878 kg/m³

SUMMARY OF GENERAL PVT DATA WELL 34/7-12, PT 3

342.1 Initial pressure used in analysis [bar] : 82.0 [°C] Temperature used in analysis 171.5 Saturation pressure [bar] [kg/m3] 709 Reservoir oil density 0.554 [cP] Viscosity at initial pressure 0.461 [cP] Viscosity at reservior pressure

Differential liberation

1.380 Bo at reservoir conditions [m3/Sm3]: [Sm3/Sm3]: 118.9 GOR [kg/m3]: 847 Residal oil density

SINGLE Flash data 1.303 Bo at reservoir conditions [m3/Sm3]: 1.355 101.8 GOR [Sm3/Sm3]: 115.8 845.0 837.4 [kg/m3]: Stock tank oil density

Separator conditions for single stage flash:

1) 1.01 bar and 15 ° C

Separator conditions for multi stage flash

66°C 1) 63 bar and 60 ° C 2) 31 bar and 54 ° C 3) 11 bar and 15 ° C 1 bar and

MULTI

TRACE ELEMENT ANALYSES, PT 3

		Range	Arithmetic average	# of measure- ments
GASPHASE				
Hydrogen Sulphide	[ppm-mol]	< 0.20	0.11	14
Mercaptans	[ppm-mol]	< 0.1		9
Carbon Dioxide	[mol%]	0.5	0.5	12
Radon 222	[Bq/l]	0.031-0.075	0.055	5
Water	[mg/l]	0.03-0.56	0.29	7
Total Mercury	[µg/m³]	2.8-3.8	3.2	.3
Helium	[mol%]	0.010-0.012	0.011	2
OILPHASE				
Density @25°C	[g/cm ³]	0.840-0.845	0.844	8
Water in Oil	[mg/l]	45-500	294	6
Total Sulphur	[weight %]	0.22-0.26	0.24	3
Polonium - 210	[Bq/1]	4.1	4.1	1
Nickel	[ppm-weight]	< 0.1		3
Vanadium	[ppm-weight]	1.3	1.3	3
A CITICACIT CITI			4.2	3

Table 5.15 Trace Element Analyses, PT 2. Well 34/7-12.

6. DRILLING DATA

If not otherwise mentioned, all depths in this chapter refer to m RKB (Rotary Kelly Bushing).

Page 1	of	Well no: 34/7-11
		Operational Description
	2400	On tow to location 34/7-11.Last anchor in bolster at 2030 hrs.Skandi Beta back in bridle after hook up of anchor no. 2 and 3. Total distance: 213 nm. Average speed: 6 kts. ETA location: 1100 hrs oct. 1.
30.09.87	2400	On tow to location 34/7-11. Distance gone 138 nm. Distance to go 57 nm. Average speed 6 kts.
01.10.87	1330 2130	On tow to location 34/7-11. Anchorhandling: 1300: Drop anchor no 5. 1735: anchor no 1 on bottom. 1800: anchor no 8 on bottom. 1840: anchor no 4 on bottom. 2105: anchor no 3 on bottom.
	2400	2140: piggy back on anchor no 3 on bottom. 2215: anchor no 2 on bottom (not holding). 2240: piggy back on anchor no 2 on bottom. 2255: anchor no 7 on bottom. 2330: piggy back on anchor no 7 on bottom.
02.10.87	0600	Anchor handling. 0230 hrs: Anchor no 6 on btm. 0300 hrs: Piggy back on no 6 on btm. 0315 hrs: Resat anchor no 1. 0500 hrs: Anchor no 1 on bottom. Attempted to reset 2nd time. Sat piggy back on anchor no 1.
	1000 1200	Ballasted rig down to operating draft. Pretensioned anchors to 160 tons. Anchor no 5 slipped. Resat same and pretensioned to 160 tons. OK.
	1500	Ran TGB and landed same while checking orientation with ROV. 182 deg. RKB - seabed 216 m. Pulled TGB-
	1730 2030 2100 2300	running tool. TGB slope indicator: 1.5 deg. Made up 36" spud assembly and ran in hole. Pumped first meters down. Drilled to 230 m. Ran MSS on slick line. Recovered same. Drilled to 241 m. Swept hole with hi-vis pills on each connections.
	2330 2400	Ran MSS on slick line. Recovered same. Drilled 36 " hole to 248 m.

Page	2	of	4 Well no: 34/7-11
Date		Stop	Operational Description
03.10.	03.10.87	0300	Drilled 36" hole from 248 to 270 m. Ran MSS survey at 270 m. Drilled 36" hole from 270 to 297 m. Ran MSS survey at 297 m. Drilled 36" hole from 297 to 330 m. Pumped 8 m3 hi-vis pill around to clean hole. Ran MSS survey at 330 m. Wiper trip to seabed. Hole in good condition.Ran in hole to bottom. Drilled 36" hole to 332 m due to 2-3 m sunk in of
		1130	TGB. Pumped hi-vis mud to clean hole. Displaced with a
		1400	total of 1100 m3 mud. Pulled out of hole with bit and hole opener. Hole
		1730	in good shape. Made up 30" running tool and stand back in derrick Rigged up and ran 30" casing and drill pipe
		1800	stinger. Lock ring on 30" housing was damaged when housing was landed in PGB. Repaired same.
٥		2000	Landed 30" casing with top housing at 214.5 m. PGB visible above mudline. 30" shoe at 327 m.
		2400	Rigged up cement lines. Pumped 10 m3 of seawater prior to mixing and pumping 51.5 m3 of 1.58 SG lead slurry and 16 m3 of 1.92 SG tail slurry. Displaced with 110.8 m3 seawater. Waited for cement to set while holding 30" casing in tension.
04.10.	87	0700	Waited on cement to set up. Held 30" casing in tension in meantime.
		0830	Released 30" casing running tool. Pulled same. Depth RKB-30" hanger: 215 m.
	2000	Rigged up and ran seabed diverter on riser. Pressure tested every 4 joints of kill/choke lines.Made up kill choke and booster line to slip joint. Landed SBD, latched onto 30" housing and made overpull test with 10 ton.	
		2330	Broke down and laid out 26" bit and 36" holeopener Picked up 26" underreamer. Function tested same. Made up 26" bottom hole assembly and ran in hole. Tagged cement inside 30" casing at 323 m.
		2400	Attempted to hang off string weight on surface diverter bag. Negative. String started slipping through with 7 MT weight down on it. Function tested surface diverter system. Flushed through over board lines.

Page 3 of 4 Well no: 34/7-11

6.1

Stop Operational Description ______ 05.10.87 0030 Closed annular preventer on SBD and pressure tested same and 30" casing to 35 bar for 10 min. OK. Function tested dump valve. Drilled out cement and shoe in 30 "casingand clean 0130 out rathole from 323 to 332 m. POOH. Broke down bit. Racked back stands with 9 1/2" DC's and 26 " underreamer in derrick. 0300 0700 Picked up 9 1/2" MWD-tool, made up 17 1/2" bit and bit sub and function tested MWD-tool in rotary table. Made up 17 1/2" bottom hole assembly and Displaced hole to mud. Flushed kill and choke 0730 lines with mud. Drilled 5 m of new hole from 332 to 337 m. 0830 Performed leak off test. EMW at 30" casing shoe 0930 = 1.17 SG (RKB)Drilled 17 1/2" pilot hole from 337 to 664 m. 2400 Gas peaks: 350 m = 3.2%, 360 m = 2.79%, 394 m = 2.2%, 517 m=1.28% . Continued to drill 17 1/2" pilot hole from 664 06.10.87 0830 to 861 m. Circulated hole clean and 1.14 SG mud through 1030 system. Closed seabed diverter and opened dump valve. 1100 Flowchecked for 40 minutes. Negative. Circulated bottoms up to check for gas. Negative. 1200 1430 POOH. Made up new assembly with 26" underreamer and 1600 Opened hole to 26" from 332 to 455 m. 2200 Pump pressure dropped 30 bar. Checked surface 2300 system. Negative. Suspected washout. POOH. Found washout in connection on third stand. Laid down damaged joints and RIH. Opened hole to 26" from 455 to 465 m. 2400 Opened hole to 26" from 465 to 702 m. Flowcheck 07.10.87 1100 at 650 m. Negative. Circulated while repairing mud pump no.1 Opened hole to 26" from 702 to 861 m. 1130 1800 Circulated hole clean. 2000 POOH to wellhead. Broke down and laid down drill-2200 pipe on way out. Closed SBD-bag. Opened dump valve. Flowchecked. 2300

RIH to TD and circulated bottoms up.

Well flowing.

2400

Page 4 of	Well no: 34/7-11
Date Stop	Operational Description
08.10.87 0900	RIH to TD and circulated bottoms up. Max gas 0.91% Closed SBD-bag, opened dump valve and flowchecked. Positive. Increase mudweight to 1.18 SG. Flow-checked. Positive. Increased mudweight to 1.20 SG POOH to wellhead. Flowchecked. Well stable.
1100	POOH. Laid down 9 1/2" DC's, 26" underreamer and 17 1/2" bit.
1800 2000	Rigged up and pulled seabed diverter. Picked up 18 3/4" wellhead. Made up running tool to same and laid down.
2400	Made check trip to TD with 26" bit. POOH. Refilled hole at 360 m.
09.10.87 0130 1500	POOH. Laid down 26" bit, bit sub and X-over. Rigged up and ran 56 joints of 20" casing on drill pipe. Stop 1m above landing point. Break circ- ulation.Pump 3M3 of seawater. Mixed and pumped lead with and without Emsac and tail.Attempted to land casing after displacing 2/3. No go.
1700	Continued to displace cement. Bumped plug and pressure tested casing to 115 bar for 10 minutes. OK. 18 3/4" wellhead landed 0.6 meters high. Released running tool and pulled same.
2400	
10.10.87 0800	Continued to run BOP. Tested kill/choke lines every third joint. Hooked up kill/choke and booster lines to slip joint while positioning rig for alignment. Landed stack at 0700 hrs. Overpull tested with 30 MT. OK. Made up diverter.
1100	Ran in hole with BOP test plug. Pressure tested BOP to 115 bar. POOH with testplug.
1200 1400 2030	RIH and set seatprotector. POOH with running tool. Made up hang off tool and stand back same. Made up 11 1/4" overshot,15" lipguide and 5" basket grapple and RIH to 832 m to retrieve broken part of running mandrel for cement plug lost after cementing 20" casing. POOH. No fish.Replaced grapple with taper tap and RIH. No fish recovered.
2130 2300	Cut 34m and slipped 17m of drill-line.
2400	
11.10.87 0130	to 235 m and reverse circulate string volume.
0200	POOH. Made up seatprotector running tool. RIH and retrieved seatprotector. POOH with same.
1100	

Page 1	of	19 Well no: 34/7-12	
Date S	Stop	Operational Description	
11.10.87	1200	Moved rig 20 m north by pulling on anchors to get in position for spudin of well 34/7-12.	
	1600	Made up stand with 9 1/2" monel, 2x9 1/2" DC, 36" holeopener and 26" bit. Prepair spud in of well 34/7-12 by welding arms on TGB for TV-guidelines and installed all guidelines and slopeindicator on TGB.	
:	1930	Made up TGB running tool and installed same in TGB RIH with same and land TGB. Check orientation of same with ROV. Heading 175 deg. Slope indicator reading 0.5 deg. POOH with TGB running tool.	3
:	2200	RIH with 36" spud assembly. Installed guideframe on same.	
:	2300	Spud in at 2200 hrs. Drilled 36 " hole from 216 to 223 m.	
	2330 2400	Ran MSS-survey on slickline. Drilled 36" hole from 223 to 225 m.	
	0030 0100 0730 0800 1200 1230 1330 1400 1500 1600 2230	Drilled 36" hole from 225 to 232 m. Ran magnetic single shot survey on slickline. Drilled 36" hole from 232 to 279 m. Ran magnetic single shot survey on slickline. Drilled 36" hole from 279 to 332 m. Swept hole with 10 m3 hi-visc pill. Ran magnetic single shot on slickline. Made wiper trip to seabed. 2 m fill when back at bottom. Displaced hole to hi-visc mud. Pumped a total of 110 m3. POOH. Made up 30" casing running tool on drillpipe. Stood back in derrick. Rigged up and ran 9 joints of 30" casing. Ran 3 stands of drillpipe as stinger. Installed running tool. Landed casing on drillpipe. Had to move rig to stab into TGB. TGB had sunk approx 2 m. Circulated casing down last 3m. Housing at 215 m. Circulated 500 strokes with seawater prior to cement job. Mixed and pumped 51.5 m3 of 1.58 SG lead slurry and 16 m3 of 1.92 SG tail slurry.	

DAILY OPERATIONAL DESCRIPTION

Page	2	of	19 Well no: 34/7-12
Date		Stop	Operational Description
13.10	. 87	0030	Continued cement casing.Displaced slurries with l1.1 m3 of seawater.
		0800	Held casing in tension while waiting on cement to set up.
		0830	Released casing running tool.Pulled out with landing string and stinger.
		1600	Rigged up and ran pinconnector on riser.Landed and latched same.
		1930	Made up new BHA.Tested MWD on surface.Continued RIH.Tagged top of cement at 321m.Function tested diverter system by flushing through both lines before drilling out of shoe.
		2100	Drilled cement from 321m and through shoe at 327m. Cleaned rathole.Displaced hole from seawater to
		2400	1.12 sg mud while drilling out of shoe. Drilled 17-1/2" hole from 332m to 379m.
14.10	. 87	0900 0930 1830	Drilled 17-1/2" pilothole from 379m to 609m. Circulated with mudpump §1 while repaired pump §2. Drilled 17-1/2" pilothole to 852m.Flowchecked
		2000	at 704m.Negativ. Circulated and swept hole with 8 m3 hivisc.pill.
		2400	Circulated until shakers clean. POOH.Laid down excess drillpipe on way out.Tight hole .Max overpull 20 tons.
15.10	.87	0300	Laid down 36" holeopener and 26" bit.Made up 26" underreamer.Tested same.RIH.
		1300 1500	Opened hole to 26" from 321m to 557m. Repaired pop-off on mudpump § 2.
		2100 2200 2400	Opened hole to 26" from 557m to 758m. Repaired mudpump § 1.Changed cap and capseal. Opened hole to 26" from 758m to 825m.
16.10	.87	0100 0230 0400	Opened hole to 26" from 825m to 852m. Circulated and conditioned hole. Displaced hole with 1.2 SG mud.
		0500 0630	POOH to wellhead. Displaced riser to seawater.Flowchecked for 10 min Opened dump valve and flowchecked for 30 minutes. Observed with subsea T.V.
		0700	РООН.
		1300	Pulled riser and pin connector.
		1430 1930	Made up 18-3/4" wellhead and running tool. Check trip to TD at 852m with 26" bit.No fill. No drag.
		2400	Rigged up and ran 20" casing.

Page 3	of	19 Well no: 34/7-12
Date	Stop	Operational Description
17.10.87	2200 2330 2400	Made up 18-3/4" wellhead.Ran in with landing string.Broke circulation with 1,2 SG mud.Landed wellhead.Overpull tested to 12 tons.
		pump cement.
18.10.87	7 0400 0630	
	0700 0730 1730	Slipped 56 drill line.
	1900	
	2400	Waiting on weather. TIME WIND (m/s) HEAVE(m) ROLL(deg) PITCH(deg) 1900 34 2.3 4.2 3.4 2100 33 2.5 3.4 4.4 2300 34 3.1 4.8 3.6
19.10.8	7 2400	Waiting on weather. TIME WIND(M/S) HEAVE(M) ROLL(deg) PITCH(deg). 0200 36 3 3.4 4.4 1000 31 2.6 4.4 5.6 2200 30 2 3.6 3.4
20.10.8	7 0500	Waiting on weather. TIME WIND(m/s) HEAVE(m) ROLL(deg) PITCH(deg) 0200 31 1.7 3.4 3.4 0500 27 1.2 3.2 3.4
	0730 1000	Pulled 9 joints riser. Waiting on weather. TIME WIND(m/s) HEAVE(m) ROLL(deg) PITCH(deg) 0800 27 1.2 2.8 3.4
	1330 2100	
	2400	

Page 4 c	of 19	Well no: 34/7-12
Date St	top Oper	ational Description
		tablished guidelines no. 1 and 3. d out drillpipe and guideline re-establish
11	130 Ran B	OP and riser. Hooked up choke-, kill- and erline.
. 14	430 RIH w	ith BOP test plug. Pressure tested BOP to ar. POOH with test plug.
15	530 RIH a	nd set nominal seat protector. POOH with ng tool.
18	800 RIH w	ith 17 1/2" bottom hole assembly. Tested MWD ok. Tagged cement at 822 m.
	water	ed out shoe track from 822 to 838 m with sea- Switched to KCL-mud. Cleaned out rathole.
		ed 17 1/2" hole from 852 to 856 m.
22		lated and conditioned mud. Pulled into 20" g shoe. Performed leak-off test, EMW = 1.66.
24		ed 17 1/2" from 856 to 870 m.
22.10.87 13		ed 17-1/2" hole from 870m to 1154m.
	130 Circu	lated while repair mudpump § 2.
		ed 17-1/2" hole from 1154m to 1200m.
	330 Circu	lated prior to wipertrip.
	430 Wiper	trip to 20" shoe and back to 1190m.
		d and washed from 1190m to 1200m.
	630 Drill	ed 17-1/2" hole from 1200m to 1230m.
		lated while repair mudpump § 1.
		ed 17-1/2" hole from 1230m to 1334m.
23.10.87 10	Errat	ed 17-1/2" hole from 1334m to 1425m. ic torque,slow drilling.
		Max overpull 18 tons.
		complete kick drills.
1:		nued POOH.Laid down MWD-tool(cuts in rubber ator) and NB-stab (worn blades).
10	600 Made	up new NB-stab and MWD-tool. Tested MWD-tool. to 1385m.
13	830 Washe	d from 1385m to 1414m. Washed and reamed from
24		n to 1425m. ed 17-1/2" hole from 1425m to 1544m.
24.10.87 1	430 Drill	ed 17-1/2" hole from 1544m to 1834m.
		lated while repair mudpump § 2.
		ed 17-1/2" hole from 1834m to 1865m.
		lated clean
2.		to 840m.Max overpull 36 tons.Tight spot at a-68 tons overpull.
9	14251 230 Washe	ed 26" rathole from 838m to 852m.
		leamed and washed tight spots at 1580m and
	1740n	
•	_, .01	

Page 5	of	19	Well no:	34/7-12
Date S	Stop	Operational Description		
25.10.87	0100	Continued RIH.Reamed and 1750m to 1795m and 1844m	washed ti to 1865m.	ght hole from
		Circulated clean.		(ATD 1
		POOH.Laid down MWD, NB st on lower part of blades)		.(NB Stab Worn
	1900	Rigged up Dresser Atlas. Log §1:DIFL-LSBHC-CDL-GR Changed pulse modulator. SWC §1: 50 shots 92 % recovery.Lost 3.	in 0745 in 1000 in 1520 Rigged d	hrs-out 1340 hrs hrs-out 1840 hrs own Dresser
2	2000	Made up 13-3/8" casing h assembly.	_	•
	2200	Made up 17-1/2" bit and	RIH to sho	e.Strapped pipe.
		Slipped and cut drill li Continued RIH.	ne.	
26.10.87	0100	Continued RIH. Washed and 1630m to 1645m and fill	reamed ti from 1848m	ght hole from to 1865m.
		Circulated clean.		
		POOH.	Unabad real	Thord Continued
,	0700	Made up jet sub and RIH. RIH and retrieved seat p		
:	2400	Rigged up and ran 138joi up casing hanger.	nts 13-3/8	" casing.Picked
27.10.87	0130	RIH with 13 3/8" casing kelly.	on DP. Pic	ked up cement
(0400	Breaked circulation and 1851 m.Circulated 95 cum with YP = 10 ahead of 5 tested surface lines to bursted.Rigged up new ho	.Pumped 32 cum FW spa 345 bar,ce	cum KCL mud cer.Pressure ment hose
(0600	Cemented casing with 70. 1.60 SG and 21.3 tons ta Dropped dart and sheared	6 tons lea il slurry	d slurry at
	0830	Displaced cement with ri pressure tested casing t	g pumps.Bu	mped plug and
	1000	Set seal assembly.Pressu except UPR due to malpla running tool.	re tested	BOP to 290 bar
	1030	POOH with casing running	tool.	
	1130	Set wearbushing.		
		Pressure tested kelly an	d valves.	// " PUA Tootod
	1730	Laid down 17 1/2" BHA.Ma MWD tool.RIH. Tagged cem		
	1800	Pressure tested UPR to 2	90 bar.ok.	т д.
	2200	Drilled out 13 3/8" shoe hole.	track.Cle	aned out rat
,	2330	Drilled 12 1/4" hole from	m 1865 to	1870 m.
	2400	Circulated for leak off	test.	

Page	6	of	19 Well no: 34/7-12
Date		Stop	Operational Description
28.10.	87		Pressure tested surface lines.Performed formation integrity test to 2.23 SG EMW.
		1000	Drilled 12-1/4" hole from 1870 to 1943 m. Circulated and conditioned mud for leak off test.
			Pulled into shoe. Repeated formation integity test to 2.0 SG EMW. RIH to bottom.
		2400	Drilled 12-1/4" hole from 1943 to 2106 m.
29.10.	. 87	0100	Changed washpipe on swivel. Made up circulating head. Circulated and worked pipe.
		0830	Drilled 12-1/4" hole from 2106 to 2169 m.Drilling break at 2167 m.
		1400	Circulated for sample.Conditioned mud. POOH.
			Picked up core barrel.
			RIH to 1851 m. Slipped drill line.
		1900	RIH to 2169 m.
			Circulated.Dropped ball.Measured SCR.
		2400	Cut core no.1 from 2169 to 2183 m.
30.10.	. 87	0300 0530	Cut core no 1 from 2183-2196.5m. POOH.
		0630	
			Made up new inner barrel and serviced core barrel.
		1000	RIH to bottom. Circulated, dropped ball and took SCR.
		1530	
		1800	
		1900	
		2000	Made up aluminum inner barrel and serviced core barrel.
		2230	RIH to bottom. Circulated, dropped ball and took SCR.
			Repaired kelly spinner motor.
		2400	Cut core no 3 from 2214-2216m.Observed leaking
			washpipe.
31.10	. 87	0100	Made up circulating head. Circulated and worked pipe while changing wash pipe.
		0200	Attempted to restart coring. Negative.
		0500	POOH.
		0600	
		0730 0830	
		0900	Slipped 56 feet and cut 112 feet of drilline. RIH to bottom.
		0930	
		1630	Cut core no 4 from 2216-2228m.Core jammed.
	,		POOH.
		2000	Recovered core no 4 : 8.9m-74.2%. Serviced core barrel.
			RIH to bottom.
		2400	
			2234m.

Page 7 of	19 Well no: 34/7-12
Date Stop	Operational Description
0630 0830 0900 1400 1630 1730 1800	Cut core no.5 from 2234 to 2242 m. Core jammed. POOH. Recovered core no.5 (14 m , 100 %). Serviced corebarrel. RIH to 2242 m. Circulated.Spaced out.Dropped ball.Took SCR. Cut core no.6 from 2242 m to 2262 m.Core jammed. POOH. Recovered core no.6 (19.5 m 97.5 %). Serviced corebarrel. RIH to 2262 m. Circulated.Spaced out.Dropped ball.Took SCR. Cut core no.7 from 2262 to 2276 m.
02.11.87 0230 0500 0600 0630 0800 0830 0900 0930 1500 1730 1800 1930	Cut core § 7 from 2276m to 2290m. POOH. Recovered core § 7.Recovery:99.6%. Made up innerbarrel and serviced core barrel. RIH to 1851m. Slipped 17m of drilline. RIH to 2290m. Circulated.Spaced out.Dropped ball.Took slow circulating rate. Cut core § 8 from 2290m to 2305.5m. POOH. Recovered core § 8.Recovery:96.8 %. Made up inner barrel.Serviced corebarrel.
2130 2200 2400 03.11.87 0530 0800 0830 0930 1130 1200 1230	RIH to 2305.5m. Circulated.Spaced out.Dropped ball.Took slow circulating rate. Cut core § 9 from 2305.5m to 2314m. Cut core § 9 from 2314m to 2333m. POOH. Recovered core § 9.Recovery:98.2%. Made up innerbarrel.Serviced corebarrel. RIH to 2330m. Circulated while repair valve on DSC manifold. Circulated.Spaced out.Dropped ball.Took slow circulating rate. Cut core § 10 from 2333m to 2357m.

Well no: 34/7-12 Page 8 of _____ Date Stop Operational Description _____ 04.11.87 0230 Cut core § 10 from 2357m to 2360.5m. 0500 POOH.12 tons overpull on 1st.stand. 0600 Recovered core § 10.Recovery: 84.7 %. 0700 RIH with bull nose and jet sub.Washed wellhead area. Made up BOP test tool. Continued to RIH. 1030 Pressure tested BOP to 290 bar on blue pod. Function tested on yellow pod. POOH.Ran travelling block into upper racking arm. 1500 Damaged same. Repaired upper racking arm. Pressure tested kelly valves and kelly hose to 1600 345 bar while repairing upper racking arm. Continued repairing upper racking arm. POOH. Laid down BOP test tool, bull nose and jetsub. 1700 1800 2100 Made up bit and BHA. Function tested MWD-tool. RIH to 1851m. 2200 Slipped and cut drilline. 2230 RIH to 2281m. Took weight. Work pipe. 2330 Reamed from 2281m to 2360.5m. 2400 Drilled 12-1/4" hole from 2360.5m to 2364m. Drilled 12-1/4" hole from 2364m to 2465m. 05.11.87 1800 Drilling break at 2461m. 2000 Circulated bottoms up to check for hydrocarbons. Negativ. Drilled 12-1/4" hole from 2465m to 2480m. 2130 Drilling break at 2469m.No indications of hydrocarbon formation on MWD tool. Circulated hole clean prior to logging. POOH. Tight hole from 2235m to 2300m. Max overpull 2300 2400 40 tons. Wiper trip to shoe.RIH to 2262m.Tight hole.Reamed 06.11.87 0230 down to 2297m.RIH with one stand. Took weight. Reamed to 2355m.RIH to TD at 2480m. 0430 Circulated bottoms up. POOH for logging. Hole in good shape. 0800 Rigged up Dresser Atlas.Log § 1:MLL-DLL-GR 2100 in 0850 hrs-out 1210 hrs.Log § 2:CDL-CNL-GR.Pulled in 1305 hrs. Pulled out due to malfunction.out 1540 hrs.in 1625 hrs with back up tool. out 1935 hrs. FMT §1. in 2105 hrs for pressure measurements and 2400 sampling. 07.11.87 2200 Logging.FMT § 1: FMT § 2:in 0520 hrs - out 0825 hrs. FMT § 3:in 0920 hrs - out 1130 hrs. FMT § 4:in 1230 hrs - out 1440 hrs.Misrun.Repair gamma ray tool.FMT § 5:in 1730 hrs - out 2035 hrs. 2400 Made up 12-1/4" bit and RIH.Tested MWD tool.

SAGA IL	TKOLLON	N.J. Dilli of Mail Property
Page	9 of	19 Well no: 34/7-12
Date	Stop	Operational Description
08.11.8	7 0130 0600	RIH. Tight hole at 2177 m. Reamed from 2177 to 2337 m. Continued RIH with 4 stands, tight hole. Reamed last 3 joints to TD.
	1130	Drilled 12 1/4" hole from 2480 to 2492 m.
	1500	POOH due to low ROP. Hole tight through reservoir, max overpull 30 tons.
	1830	Changed bit and RIH. Tested MWD tool, ok.
		Drilled 12 1/4" hole from 2492 to 2510 m.
	2400	Repaired kelly spinner.
09.11.8	7 2400	Drilled 12 1/4" hole from 2510 to 2595 m.
10.11.8	7 0500	Drilled 12 1/4" hole from 2595 to 2605 m.
		Changed hinge pin on lower dolly.
	1100	
	1330	Changed bit. Made up junk sub and RIH. Tested MWD tool, ok.
	1400	Slipped 56 ft of drilline.
		Continued RIH to TD.
		Worked junk sub.
	2000	Drilled 12 1/4" hole from 2605 to 2609 m. Got erratic torque.
	2300	POOH, hole in good shape. Found inserts and metal
		pieces in junk sub.
	2400	Made up new bit and RIH.
11.11.8	37 0030	RIH.
		Changed airhose on drillpipe elevator. RIH to TD.
	0330	
	1130	Drilled 12 1/4" hole from 2609 to 2622 m.
	1500	POOH due to high torque and low ROP. L/D junk
	2030	basket. RIH with BOP test plug. Tested BOP to 290 bar. Tested stab-in-valve and kelly cocks to 345 bar. POOH with test plug.
	2300	Made up new bit and RIH. Tested MWD tool, ok.
	2400	

Page 10 of	19 Well no: 34/7-12
Date Stop	Operational Description
12.11.87 0100 0300	RIH to 2621m. Reamed 1m to bottom.Drilled 12-1/4" hole from 2622m to 2632m.
0330	Got 1.6 m3 pitgain corresponding with bottoms up. Flowchecked. Gained 0.3 m3 in 20 mins. Shut in well and observed pressures while displacing gas cut mud in riser. No pressures recorded. Opened bag and circulated. Well stable.
1500 1800	Drilled 12-1/4" hole from 2632m to 2655m. POOH due to erratic torque and slow drilling.
2030	Laid down nearbit stabilizer, crossover, MWD and bit Made up new MWD, crossover, nearbit stabilizer and bit.Tested MWD tool.OK!
2330 2400	
13.11.87 1700 2000	
2300	
2400	
14.11.87 0730 1030 1200 1230 1330 1400 2400	POOH due to slow drilling.Max overpull 45 tons. Changed bit.RIH. Slipped 56 drilline. Continued RIH. Reamed from 2728m to bottom at 2744m.
15.11.87 0200 0400 0700 2400	Circulated bottoms up. POOH.Max overpull 25 tons.
16.11.87 0230 0630	
0800 1400 1600	Prepared for cut and thread operation. Made up overshot.RIH to 2465m.
1800 2230	POOH.Lost FMT on way out.
2400	

Page 11 of	19	Well no:	34/7-12
Date Stop	Operational Descript	ion	
1330	stands.Pumped new slu FMT and fishing equip Slipped 56` and cut 1 Made up bit and RIH t Reamed and circulated Circulated. POOH. Rigged up Dresser Atl FMT in at 1415	g.Continued POment. 12` drilline. o 2750m. from 2750m to as. hrs out at hrs - out at nced the azim	00H.Laid down 0 2784m. 1830 hrs. 2225 hrs.
18.11.87 2400	Logging. DIPLOG out CDL-CNL-GR in 0255 - MLL-DLL-GR in 0820 - VSP in 1235 - out 14 out 2320 hrs. SWC § 1	out 0640 hrs. out 1135 hrs. 15 hrs.Misrun	
	SWC § 2: in Rigged down Dresser A RIH with open ended of Circulated. Set cement plug from 2570m.Reversed circul 2570m to 2370m.Revers POOH. Made up 9-5/8" casing running tool. RIH with 12-1/4" bit	of 0300 hrs - of tlas. 2780m to 2580m to 2580m to 2580m to cement of the control	784m. m.Pulled out to nt plug from at 2360m. ement plug on
20.11.87 0100 0200 0230 0400 0600 0630 2100 2300 2400	POOH. Repair broken elevator POOH.Washed wellhead RIH with wearbushing wearbushing.No go.She 90 tons overpull.POOH running tool. Slipped 56 drilline. Rigged up and ran 9-5 and landed casing. Circulated.	or hose. on way out. running tool. eared "hold do H.Laid down wea 5/8" casing.Bro nt lines.Mixed G slurry with	Worked stuck wn" pins using arbushing and oke circulation and pumped 5 m3 freshwater

Page	12	of	19 Well no: 34/7-12
		Stop	Operational Description
			Continued cementing. Displaced cement.Bumped plug with 140 bar.Switched to BJ and pressure tested casing to 385 bar. Made up sealassembly.Tested BOP to 385 bar.
		0600 0700 1030	POOH with casing running tool.Laid down drillpipe. RIH with wearbushing.Set same.POOH.Laid down DP. Laid down excess drillpipe,8" drillcollar and corebarrel.
		1300	Picked up and made up Matre gauge carrier, flow- head, EZ-tree and lubricator valve. Made up bit, scraper, 18 6-1/2" drillcollars. RIH.
		2400	Made up 5" tubing.
22.11.	87	0030 0200 0600 1100	RIH with 5" tubing.Tagged top of cement & 2327.5m. Circulated and conditioned mud. POOH.Worked scraper from 2245m to 2225m. Rigged up Dresser Atlas.Run CBL. in 0640 hrs - out 1025 hrs.Rigged down Dresser Atlas.
		1700 2300	Made up downhole test-tools. Tested as per program. Got leak when pressure testing on top of slip-joints. Pulled out. Found leak between crossover and must extention joint. Laid down same. Made 2.8" drift. Drifted one 6-1/2" drillcollar and made up same onto extention joint. Continued RIH.
		2400	Pressure tested downhole tools.OK!.Continued RIH with 5" tubing.
23.11.	. 87	0600	RIH with 5" tubing.Made up fluted hanger.RIH with landing string.Landed hanger in wellhead.Closed middle pipe ram.
		0900	Rigged up Dresser Atlas.Ran GR-CCL for depth correlation.Rigged down Dresser Atlas.
		1230	POOH with landing string.Laid down fluted hanger. Changed out one pupjoint.Made up subsea-test-tree with fluted hanger.Pressure and function tested same.
		1600	RIH with landing string. Made up lubricator valve and flowhead. Landed hanger in wellhead.
		2330	Pressure testing.Got leak when testing flowhead. Serviced and pressure tested flowhead in mouse- hole.Made up flowhead in string.Continued pressure testing.
		2400	Sat packer.

2300

2400

Continued RIH.

Circulated.

Well no: 34/7-1219 Page 13 of Stop Operational Description Date _____ 24.11.87 0200 Rigged up Dresser Atlas.Ran GR-CCL for depth correlation. Perforations at 2276.22 to 2282.22m. Rigged down Dresser Atlas. Closed middle pipe ram. Opened PCT. Checked for leak 0300 across packer for 10 minutes. Pressured up test-string to 380 bar. Bled of on choke-manifold to 93 bar. Closed kill-valve and choke. Guns fired at 0310 hrs. Wellhead pressure increased 0400 20 bar. Closed PCT for initial build up. Opened PCT and choke and flow well. Switch to fixed 2400 28/64" choke Got sand production. Switched back to adjustable choke and reduced flow. Sandproduction decreased. Switched flow through seperator at 1450 hrs.Choke: 32/64", rate: 1260m3/day, WHP: 105.3bar 25.11.87 1000 Flowed well:Choke:32/64",Rate:1260 m3/day, WHP:105 bar. Closed PCT at 1005 hrs. and shut in well for main 2400 build up. Well shut in for main build up. 26.11.87 1600 Opened well on PCT at 1620 hrs. Sand detection flow 2100 Choke Water rate(cum/d) WHP(bar) BSW(%) 1024 1700 28/64 112.5 0.1532/64 0.15 1900 1302 105.4 36/64 98.8 1559 1.2 2100 Choke Water rate(cum/d) WHP(bar) BSW(%) 2400 Time 2300 40/64 1814 91.9 27.11.87 0430 Flowed well for sand detection. Well shut in at PCT for build up. 0530 Bullheaded well with 25 cum 1.72 SG mud , 5.6 cum 0630 overdisplacement. Final squeeze pressure: 200 psi at 4.5 BPM. Flowchecked 10 min, ok. Opened SSARV .Reverse circulated. Max gas 0.2 %. 0730 Opened MPR.Unseated packer.Relanded fluted hanger 0900 in wellhead. Closed MPR and bullheaded 1 cum. Reverse circulated. Laid down flowhead. POOH with teststring DST no. 1. 1230 1300 Repaired hydraulics on upper racking arm. Continued POOH with teststring. Laid down all test 1900 tools.Flowchecked at 1/3 and 1/2 way out. Made up 9 5/8" EZSV retainer on drillpipe.RIH to 1930 300 m. 2030 Slipped 56 ft and cut 112 ft drill line.

Set cement retainer at 2267 m. Stinged out.

6.1 Well no: 34/7-1219 Page 14 of _____ Date Stop Operational Description ______ 28.11.87 0100 Circulated drillpipe content. Attempted injectionnegative Stung out and rotated additional 10 turns and released setting sleeve. Stung in and established injection rate: 1.5 BPM-1000 psi. Pumped 0.8 m3 freshwater spacer. Mixed and pumped 0200 4.8 m3 cement slurry at 1.9 SG. Pumped 0.159 m3 freshwater behind. Displaced and squeezed 0.95 m3 into perforation at 2276.2m to 2282.2m. Final squeeze pressure 186 bar Reverse circulated from 2265m. 0230 0400 POOH. 0730 Made up 21 joints thermocase tubing and racked in Made up connections on EZ-tree. 0800 Rigged up Dresser Atlas.Ran CBL-VDL from 2267m to 1530 2150m.Perforated from 2228m to 2230m with 4" gun. Rigged down Dresser Atlas.

1800 Made up 12 joints 3-1/2" tubing stringer and ran in on drillpipe to 2235m. 2130 Circulated string content. Attempted injection rate test-241 bar. Negative. Sat balanced cement plug from 2235m to 2164m. Pulled back to 2145m. Reversed circulated. Squeezed 0.64 m3 cement into perforations. Final squeeze pressure 241 bar. 2400 Slugged pipe and POOH. 29.11.87 0030 Continued POOH with drillpipe and 3 1/2 tubing Ran BOP test plug. 0100 0330 Tested BOP to 385 bar. POOH with test plug. 0400 Tested kelly and kelly valves. 0700 Made up 8-1/2 bit and 9-5/8 casing scraper. RIH. Tagged cement at 2204m. Drilled cement from 0930 2204m to 2245m. Washed down to 2267m. Circulated bottoms up. 1030 1230 Rigged up Dresser Atlas. Ran CBL-VDL log from 1830

Perforated casing for DST no.2 from 2229m to

2400 Picked up and RIH with test tools for DST no.2.

Picked up flowhead. Serviced same.

Pressure tested as per program.

2267m to 2142m.

1900

Page	15	of	19 Well no: 34/7-12
Date		Stop	Operational Description
30.11	.87	0530 0800	
		0930 1200	RIH with 5 1/2 thermocase tubing.
		1530	
		1600	tested against packer with 35 bar. Open PCT.
		1700	Observed pressure build up. Open well on choke 1645 hrs.
		2300	// Flow well. Time Choke(1/16) Oil rate(cum/D) WHP(bar) BSW(%) 2050 32 941 140 .1 2130 44 1408 115 .1
			2300 52 1706 105 0
		2400	Shut in well at PCT 2305 hrs. Build up.
01.12	. 87	0800	Well shut in for build up. Meanwhile rigged up MUST assembly. Changed out wireline jar due to el. failure. Open PCT.
		2400	
02.12	.87	2400	Flowed well. Time Choke Oil(cum/D) WHP(bar) 0400 32/64 935 133 0800 32/64 926 132 1600 32/64 901 131
			2000 32/64 902 130
03.12	.87	2400	Flowed well. Time Choke(64th) Oil(cum/d) WHP(bar) 0400 32 895 129
			1200 32 888 128.4
			2000 32 884 127.8 2400 32 881 127.6
04.12	.87	0900	Flowed well on 32/64" choke. Time Oil rate(cum/D) WHP(bar) 0400 884 127.3
			0400 884 127.3 0800 884 127.1
		2400	Shut in well at MUST for build up. Time: 0910 1200 1600 2000 2400
			BHP(bar): 301.4 310.3 314.5 317.4 319.7

Page	16	of	19 Well no: 34/7-12
Date		Stop	Operational Description
			Well shut in at MUST for build up. Final BHP 325 bar.
		1630	
		2300 2400	Opened PCT and flowed well for surface sampling. Shut in well at PCT and chokemanifold. Worked wireline to release MUST. Broke weakpoint on wireline. Bled off pressure above PCT.
06.12	.87	0200	Pulled wireline out off DST string. Pumped 8 cum mud to equalize pressure across PCT. Open PCT.
		0300	Bullheaded tubing content with 1.72 s.g. mud. Overdisplaced with 4 cum. Final squeeze holding pressure 70 bar.
		0500	
		0630	
		1200	Laid down flowhead, lub.valve and thermotubing.
		1900 2400	Rigged up Dresser Atlas. Ran in with cased hole FMT at 1950 hrs. Not able to pass 2258.5m. Took pressure readings at 2242.5m. Out: 2330 hrs.
07.12	. 87	0200	
		0500	pressure readings at 2253m. No seal. POOH. RIH Flopetrol 1-1/2" sandbailer. Passed obstruction at 2258.5m. Tagged cement retainer at
		0830	2267m. POOH. No sand. Cased hole FMT no.3. Attempted to take pressure reading at 2254m. No seal. POOH. Found FMT
		1200	
		1330	Circulated 10 min. Set cement retainer at 2224m. Perform injection test.
		1500	
		1630	
		1830 1930	

2300 Pressure tested BOP stack and cement retainer

lubricator valve.

to 385 bar. 2400 Made up downhole test tools.

Page 17	of	19 Well no: 34/7-12				
Date	Stop	Operational Description				
08.12.87	0430 0900 2030 2230	Made up and RIH with downhole test tools. Attempted to test down hole test tools. Failed. Checked for leaks. Changed out slipjoints. Pressure test to 385 bar, ok. RIH 5" tubing, S.S.T.T., and landingstring. Rigged up Dresser Atlas. Correlated tubing depth, ok. Rigged down D.A.				
	2400	Made up flowhead.				
09.12.87	0100	Made up flowhead and landed fluted hanger in wellhead.				
	0330 0700	Pressure tested as pr program.				
	0730 0930	Cycled MORV into start position again.				
	1100	Set packer 2177.2m. Pressure tested packer on annulus side. Perforated from 2205.5 to 2209.5 m.				
	1200	Gun fired at 1035 hrs. Closed PCT 1039 hrs. Well closed in for buildup. Open PCT 1142 hrs. Opened well for cleanup and sanddetection at 1145 hrs.				
	2200	Flowed well on several different chokesizes from 4.8 to 26 mm. No sandproduction. Closed in well on PCT at 2153 hrs.				
	2400	Clean up build-up.				
10.12.87	0600	Cleanup build-up. RIH with MUST. Open well 0544hrs Shut in well 0553 hrs due to excessiv pressure drop down hole.				
	1130	Functioned PCT and MUST to check for restrictions. Shut well in 0937 hrs. Attempted to unlatch MUST. Failed. Opened well for sampling flow. Pressure normale, no evidence of downhole choke effect.				
	2400	Flowed well. Time Choke WHP(bar) BHP(bar) Oil(cum/D) 2200 28/64 170 327 1000 2400 36/64 155 323 1516				
11.12.87	1100	Flowed well on 36/64" choke. Time WHP(bar) BHP(bar) Oil(cum/D) GOR 0220 155.6 323.7 1480 66 0600 156.1 323.6 1469 67				
	2400	1000 156.2 323.6 1459 67 Shut in well on PCT 1045 hrs. Main build-up.				

Page	18	of	19 Well	no: 34/7-12					
Date		Stop	Operational Description						
12.12	. 87	1100 1700	Build-up at PCT. Open PCT 1106 hrs. Bullheaded string content with HEC fluid. Performed steprate and minifracture						
		1830	ests. Bottom hole fracture p closed PCT 1704 hrs. Attempte Cailed. Broke weakpoint. POOH	d to release MUST					
		1930	Bullhead string content with mud. Overdisplaced with 2.4 cum. mud. Observed well.	mud. Overdisplaced					
		2100 2300	Open SSARV. Reversed circulateull packer free. Landed fluteullheaded 0.8 cum. down annueirculated. Max. gas 0.51 %.	ed. Max. gas 0.55 % ed hanger in W.H.					
		2400	Rigged down flowhead.						
13.12	. 87	1500 1700 1800 2100	200H test string. Laid down RIH with 9-5/8"cement retaine Circulated 10 min. Set cement Established injection rate. 5.3 cum. 1.9 s.g. cement slur Max. squeeze pressure: 280 back to 2120 m. Reverse circu	r on drillpipe. retainer at 2195 m. Mixed and pumped ry. Squeezed 3.2 cum. r. ment retainer. Pulled					
		2200 2400	Circulated long way. Max. gas 200H. Laid down excess drillp						
14.12	. 87	0300	POOH. Laid down excess drillp	ipe					
		0530 0630	Made up and RIH with 9-5/8 ca Cut 9-5/8" casing at 401m wit annular swivel sub. No pressu	h bag closed around					
		0800	POOH with 9-5/8" cutting asse Made up and RIH with 9-5/8" c	mbly.					
		0900 1000	Attempted to enter casing wit						
		1100	POOH with spear. Landingplat Lost in wellhead.						
		1200	RIH with 11-1/2" magnet on dr Attempted to fish marine swiv POOH.	illpipe. vel ring. Failed.					
		1500	Made up taper tap below 9-5/8 Entered through marine landin Attempted to pull 9-5/8" casi Overpull 100 tonnes. Worked to POOH and recovered marine swi	ng ring lost in W.H. ng free. Failed. o catch landing ring.					
		1700	RIH with $9-5/8$ " cutting assy.						
		1800 1830	Cut 9-5/8" casing second time on annulus POOH with 9-5/8" cutting assy						
	,	2200	RIH and recovered 9-5/8" casi Pressure tested 9-5/8" - 13-3	ng. Overpull 100 ton.					
		2330 2400	while laying down casing. Ann Made up and RIH with 13-3/8" Cut 13-3/8" casing at 329m wi	ulus tested ok. cutting assy.					

SAGA	PETI	ROLEUM	A.S.	6.	1	DAII	Y OPE	RATIONAL DESCRIPTION	N
Page	19	of	19			Well	no:	34/7-12	
Date		Stop	Operati	onal Desc	riptio	n			
15.12	2.87	0030	Cut 13-3	/8" casin	ng at 3	29m wi		bar pressure	
		0130	on annul POOH wit		, accem	hlv			
			Made up			Dry.			
		0530	Recovere 70 tonne	1 13-3/8' s.	cut-o		ing.	Max. overpull	
		0600	RIH with	drillpip	e to 4	60m.			
								to 260m.	
		0800	POOH to free off	240m. Re	eversed	circu	ilated	l drillpipe	
		0900	Displase		, seawa	ter			
			Slip and						
			Pulled r						
		2000	Made up	20" & 30'	' cutti	ng ass	embly	7. RIH.	
		2230	Cut 20"	and 30" o	casing	at 223	Bm.		
		2400	Engaged	cur & pu.	ll tool	to 18	3-3/4"	' WH. Max. pull 30 t.	
			Recovere	u 20 , 50	Casi	ing and	reb.	max. puil 50 c.	
16.12	2.87	0100	Recovere	d cut-of	E 20&30	" casi	ing an	nd PGB.	
	- • - ,	0530	Made up	and ran ?	[GB run	ning 1	cool w	vith T-sub,	
								otated down	
		2000						locate TGB.	
		0900	and TV 1		ng toor	. Jump	ea Ku	OV and cut guide	
			Moved ri		7-11				
		1030				y. RII	ł.		
		1100	Position	rig and	stabbe	d into	well	lhead with	
			cutting			_		4	
		1400						11 1/0 *****	
		1430	Failed.	a to pur	L casin	ig. Maz	c, ove	erpull 140 tonnes	
		1530	Continue	d to cut	casing				
		1600	Attempte	d to pul:	l casin	g. Max	c. ove	erpull 150 ton.	
			Failed						
			POOH wit				• • • •		
		1900	Fired at	and ran	into w	ellnea	ad Wit	th severing charg	
		2230				embly.			
		2300						asing and PGB.	
		2400						No sign of TGB.	
		0700				.		1 . 1	
1/.13	2.87	0700						o. 6 on bolster.	
			0157 hrs 0412 hrs	anchor	no. 7 o	n hole	ster		
			0655 hrs						
		1345	Anchorha			- 2020	- ·		

0740 hrs anchor no.3 on bolster 0800 hrs anchor no.1 on bolster. 1018 hrs anchor no. 8 on bolster. 1345 hrs anchor no. 4 on bolster.

1345 Anchorhandling.

6.1.1 BIT RECORD PART 1 Well no: 34/7-11

Rem	*	*	*		*
Bitactivity	DRILLING	DRLG CMT	DRILLING	U REAMING	CIRC
PUMP Dull.cond. bar T B G Other	140 2 3 1	0 1 1 I	207 2 3 I	207 5 8 I	0
PUMP 1/m	0077	0	4100	4100	0
RPM	50780	0/0	100/115	100/110	0/0
WOB	0/15	0/0	8/12	0/10	0/0
m/HR	8	9.0 1.0 9.0	22.1	21.6	0.
Hrs	7.5	1.0	24.0	24.5	0
Drld depth	116.0	0.6	529.0	529.0	0.
Depth out	337 0	332.0	861.0	861.0	861.0
Jets 32 inch	3/1-3/1-3/1	24-24-24	24-24-24	6X16	24-24-24
Ser.no.	OROUN	727BR	727BR	3918	089WR
Type	086341	X3A	X3A	KWB	OSC3AJ
Make	HTC	HTC	HTC	TRISTA	HTC
Size	96	17-1/2	$\frac{1}{17-1/2}$	26 -/ -	26
No :			RR	-	RR

SAGA PETROLEUM A.S.

SAGA PETROLEUM A.S

PAKT 2		34/7-11
BIT RECORD	Remarks	Well no:
6.1.1 BI	Re	We
9		

Remarks	Run with 36" Smith GTA (20-20-20). Drilled out 30" shoe. Drilled 17 1/2" pilot hole. Check trip prior to 20" casing job.
Ser.no.	089WR 727BR 727BR 089WR
Type	0SC3AJ X3A X3A 0SC3AJ
Make	HTC HTC HTC
Size	26 17-1/2 17-1/2 26
oN	1 2 2 RR 1 RR

Rem	**** *
Bitactivity	DRILLING DRILLING U REAMING U REAMING U REAMING DRILLING DRILLING CORING DRILLING DRILLI
d. Other	62 03 03 108 40 58 8 60 58 60 60 60 60 60 60 60 60 60 60 60 60 60
Dull.cond. B G O	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
T B	10336222 1163225813 2 103362324 117513258 6 756335
PUMP bar	140 200 200 200 200 200 176 176 176 177 178 178 179 179 179 179 179 179 179 179 179 179
PUMP 1/m	44400 4300 33993 33993 3070 2050 11290 11290 1290 1290 1290 1290 1290 1
RPM	50/80 110/130 110/130 100/120 110/130 120/130 90/130 90/130 90/130 90/100 90/100 90/100 90/100 90/100 90/100 90/100 90/100 90/100 90/100 90/100 90/100 90/100 90/100 90/100
WOB	717 717 717 717 717 717 717 717 717 717
m/HR V	0.35.55.55.55.55.55.55.55.55.55.55.55.55.
Hrs m,	00000000000000000000000000000000000000
1 .	25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Drld depth	116 0 529 0 529 0 529 0 573 0 173 0
Depth	332.0 852.0 852.0 1425.0 11425.0 11865.0 2216.0 22242.0 2242.0 2242.0 2492.0 2492.0 2609.0 2609.0 2609.0 2744.0
Jets 32 inch	24-24-24 28-24-24 20-20-24 24-24-28 24-24-28 18-18-18 13-13-13-13-13 15-15-15 18-18-18 18-18-18 18-18-18 18-18-18 18-18-18 18-18-18 18-18-18-18 18-18-18-18
Ser.no.	089WR 581AR XE4962 XE2999 BR5218 118751 150197 150197 1450930 1450930 1450930 114176 AAG895 001 PN012 AA1996 XE2792 BR5134 001 XC6456 BR5135
Type	OSC3AJ X3A OTCGJ/ SDGH SDGH SDGH HP11J RC476 SC225 SC226 SC226 SC226 SC226 SC226 HP12 HP12 HP12 HP12 HP12 HP12
Make	HTC HTC SMITH SMITH REED CHRIST CHRIS
Size	$\begin{array}{c} 26 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\$
No :	1 RR 2 RR 8 RR 9 8 RR 9 8 RR 10 11 11 11 11 11 11 11 11 11 11 11 11

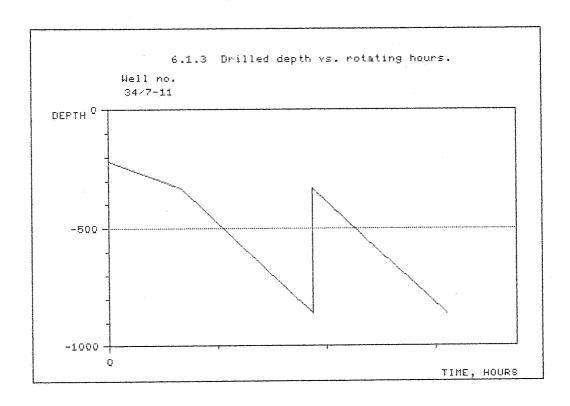
SAGA PETROLEUM A.S

6.1.1 BIT RECORD PART 2 Remarks Well no: 34/7-12

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			6 838 m. 851 m	ng of	
Remarks	Run with 36" Smith GTA (20-20-20). Rerun from well 34/7-11.	Drilled also out 30" shoe in 1.5 hrs. Run with 17 1/2" pilot bit, (2RR).	Drilled 20" casing shoe track from 822 t	Not able to continue coring after changing of	washpipe. POOH for logging.
Ser.no.	089WR	581AR 581AR	XE4962	150197	AAG895
Type	0SC3AJ	X3A OTCGJ/	SDGH	SC225	HP12
Make	HTC	HTC	SMITH	CHRIST	REED
Size	26	$\frac{17-1}{26}$	17-1/2	12 - 1/4 $12 - 1/4$	12-1/4
No 	1 RR	3.2	4	o ∞	11

6.1.2. Bottom Hole Assemblies Well no: 34/7-11

<u> </u>			<u> </u>		133 -
COMMENTS	${ t Spud}$ assembly	Drilled cmt. and 30" shoe	Drilling 17 1/2" pilot hole	Open hole to 26"	
DESCRIPTION	26" Bit/36" Holeopener/Bit Sub w/Float/9 1/2" Monel w/Totco/2 x 9 1/2" DC/XO/12 x 8"DC/XO/HWDP's	17 1/2" Bit/26" Underreamer/Bit Sub/9 1/2" Monel w/Totco/2 x 9 1/2" DC/XO/15 x 8" DC/XO/15 x HWDP	17 1/2" Bit/Bit Sub w/Float/X0/9 1/2" MWD/X0/Stab/8" Mone1/8" DC/Stab/ 11 x 8" DC/7 3/4" Jar/3 x 8" DC/XO/HWDP/Dart Sub/14 x HWDP	17 1/2" Bit/26" Underreamer/Bit Sub w/Float/9 1/2" Monel/2 x 9 1/2" DC/XO/Stab/11 x 8"DC/7 3/4" Jar/3 x 8" DC/XO/HWDP/Dart Sub/14 x HWDP	
DEPTH INTERVAL (m)	216 - 332	332 - 332	332 - 861	332 - 861	
BIT SIZE	26"/36"	17 1/2"/26"	17 1/2"	17 1/2"/26"	

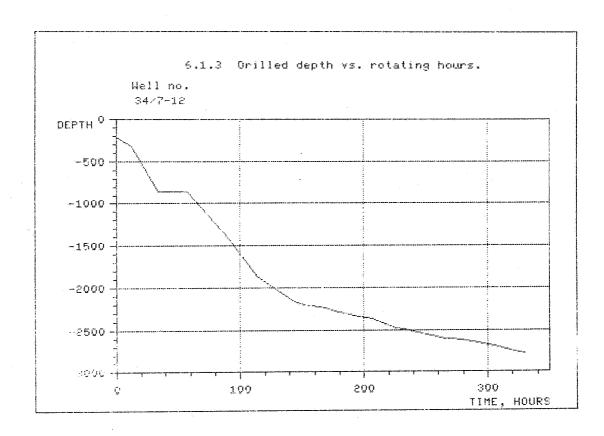

6.1.2. Bottom Hole Assemblies Well no:	COMMENTS	1/2" DC/XO/	stab/12 x 8" DC/ Pilot hole	8" DC/Jar/3 x 8" Opened hole to 26"	8" DC/Jar/	8" DC/Stab/14 x 8"	8" DC/Stab/20 x 8" P	Industritykk 31725
	DESCRIPTION	26" Bit/36" HO/Bit Sub w/Float/9 1/2" Monel w/Totco/2 x 9 1/2" DC/XO/ 12 x 8" DC/XO/HWDP	17 1/2" Bit/NB Stab w/Float/9 1/2" MWD/XO/Stab/8" Monel/Stab/12 7 3/4" Jar/3 x 8" DC/XO/HWDP/Dart Sub/14 x HWDP	17 1/2" Bit/26" UR/Bit Sub/Monel/2 x 9 1/2" DC/XO/12 x 8 DC/XO/HWDP/Dart Sub/14 x HWDP	17 1/2" Bit/NB Stab w/Float/MWD/XO/Stab/Monel/DC/Stab/14 x 3 x 8"DC/XO/1 x HWDP/Dart Sub/14 x HWDP	17 1/2" Bit/NB Stab/XO/Sub/MWD/XO/Stab/8" Monel/1 x 8" DOC/Jar/3 x 8" DC/XO/1 x HWDP/Dart Sub/14 x HWDP	12 1/4" Bit/NB/Stab/Sub/8 1/4" MWD/Stab/8" Monel/1 x 8" DC/7 3/4" Jar/3 x 8" DC/X0/1 x HWDP/Dart Sub/14 x HWDP	
	DEPTH INTERVAL (m)	216 - 332	332 - 852	332 - 852	852 - 1425	1425 - 1865	1865 - 2169	
Saga Petroleum a.s.	BIT SIZE	26"/36"	17 1/2"	17 1/2"/26"	17 1/2"	17 1/2"	12 1/4"	

6.1.2. Bottom Hole Assemblies Well no: $\frac{34/7-12}{}$

135 COMMENTS Core no 10 ~ 'n 9 7 œ 0 က 4 Core no 1 Core no 12 1/4" Corehead/90' Corebarrel/2 x 8" DC/Stab/12 x 8" DC/Jar/3 x 8" DC/X0/HWDP/Dart Sub/14 x HWDP -----------DESCRIPTION 1 2289.5 - 2305.5 DEPTH INTERVAL (m) 2333 - 2360.5 2169 - 2196.5 2262 - 2289.5 2305.5 - 2333 2196.5 - 2214 2242 - 2262 2214 - 2216 2216 - 2228 2228 - 2242 12 1/4" 12 1/4" 12 1/4" 1/4" 12 1/4" 12 1/4" 12 1/4" 12 1/4" 12 1/4" 12 1/4" BIT SIZE 12

6.1.2. Bottom Hole Assemblies Well no:

					- 136 -	-			, , , , , , , , , , , , , , , , , , , 	ac.
COMMENTS										Cleaned out cmt. inside 9 5/8" csg.
DESCRIPTION	12 1/4" Bit/NB Stab w/Float/MWD Sub/MWD/Stab w/TR/Monel/1 x 8" DC/Stab/ 20 x 8" DC/Jar/3 x 8" DC/XO/HWDP/Dart Sub/14 x HWDP			12 1/4" Bit/Junk Sub/NB Stab w/Float/8" MWD/Stab/8" Monel/8" DC/Stab/ 20 x 8" DC/7 3/4" Jar/3 x 8" DC/XO/HWDP/Dart Sub/14 x HWDP	12 1/4" Bit/NB Stab w/Float/8" MWD/Stab/8" Monel/21 x 8" DC/7 3/4" Jar/ 3 x 8" DC/XO/HWDP/Dart Sub/14 x HWDP					8 1/2" Bit/9 5/8" Csg. scraper/X0/18 x 6 1/2" DC/1 x HWDP/Dart Sub/ 14 x HWDP
DEPTH INTERVAL (m)	2360.5 - 2480	2480 - 2492	2492 - 2605	2605 - 2609	2609 - 2622	2622 - 2655	2655 - 2703	2703 - 2744	2744 - 2784	2204 - 2245
BIT SIZE	12 1/4"	12 1/4"	12 1/4"	12 1/4"	12 1/4"	12 1/4"	12 1/4"	12 1/4"	12 1/4"	8 1/2"



Saga
Petroleum a.s.

DATE 14.4.88 AUTH. SBj

DRAW BYSBj APPR. PTK

REF. 6.1.3 34/7-11

Petroleum a.s.

DATE 7.4.88 AUTH. SBj

DRAW. BY SBj APPR. PTK

REF. 6.1.3 34/7-12

SAGA PETROLEUM A.S.

6.2.1 MUD PROPERTIES, DAILY REPORT

Well no: 34/7-11

Mudtype	SPUD MUD	KCL MUD
Solids	7.0	3.5 11.5
Sand	0.1 0.5 0.5	0.1
KCL		28 33
C1- mg/1	11000 12500 13000 13000	40000
Ca++ mg/l		200
Alkalinity Pf / Mf	0.1/0.0	0.5/0.1
Hd	9.0 8.7 8.0 9.4	8.2
Gel strength	23/28 23/29 21/26 17/25	3/14 2/3
YP	26 28 25 21	20 22
. PV	N O O N	19 22
Mud weight	1.03 1.03 1.05 1.12 1.12 1.14 1.16	1.07
Hole	248.0 332.0 332.0 664.0 861.0 861.0	861.0 216.0
Hole	36 36 26 17-1/2 26 26	26 PB
Date	870929 870930 871002 871003 871004 871005 871006 871006	871010 871010 871011

SAGA PETROLEUM A.S.

6.2.1 MUD PROPERTIES, DAILY REPORT

Well no: 34/7-12

Mudtype	SPUD MUD SPUD MUD SPUD MUD SPUD MUD SPUD MUD SPUD MUD KCL MUD
Solids	7.0 9.5 10.5 11.5 11.5 2.0 8.0 8.0 5.0 2.0 2.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Sand	00.333
KCL ppb	230 230 230 230 230 230 230 230 230 230
C1- mg/1	9500 13000 13000 13000 13000 13000 60000 60000 60000 60000 60000 58000 58000 58000 60000 60000 60000 60000
Ca++ mg/l	120 120 120 240 240 240 260 280 280 320 320 320
Alkalinity Pf / Mf	0.27 0.27 0.27 0.27 0.27 0.27 0.33 0.27 0.33 0.37
Hd	88888899999999999999999999999999999999
Gel strength	21/23 23/26
YP	25 26 27 28 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28
PV	200 200 300 300 300 300 300 300 300 300
Mud	1.05 1.05 1.13 1.13 1.120 1.05 1.05 1.05 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72
Hole depth	225.0 332.0 332.0 852.0
Hole	36 17-1,2 17-1,2 17-1,2 17-1,2 17-1,2 17-1,2 17-1,4 17-1,2 17-1,4 17
Date	871011 871012 871013 871014 871015 871016 871019 871020 871021 871022 871023 871024 871025 871026 871027 871028 871028 871028 871028 871028 871028 871028 871030 871103 871103 871104 871105 871106 871106

SAGA PETROLEUM A.S.

6.2.1 MUD PROPERTIES, DAILY REPORT

Well no: 34/7-12

Mudtype			KCL MUD	_		_	_	_				_							
Solids %		26.0	26.5	26.5	27.0	27.0	27.0	-		27.0	-			•	-		-	27.0	
Sand *			0.1		0.3	0.3	0.1	0.1		0.1				0.1			0.1	0.1	0.1
KCL ppb		25	25	23	21	20	20	20	20										
Cl- mg/l		57000	57000	56500	52000	51000	51000	50500	50500	40000	42000	42000	42000	42000	42000	39000	39000	37000	37000
Ca++ mg/l		360	280	240	220	200	200	200	200	320	320	240	240	240	240	320	340	320	320
Alkalinity Pf / Mf		0.2/0.7	0.2/0.9	0.2/0.9	0.2/1.1	0.2/1.0	0.2/0.9	0.2/0.9	0.2/0.9	0.5/1.8	0.5/1.5	0.5/1.5	0.2/1.5	0.5/1.5	0.5/1.5	0.7/1.7	0.7/1.7	0.6/1.5	0.6/1.5
Нd		9.6	9.6	9.3	6.7	9.5	9.6	9.2	9.5	11.5	11.5	11.8	11.5	11.8	11.8	12.5	12.5	12.2	12.2
Gel strength		2/8	3/9	3/17	3/21	3/24	3/24	3/21	3/21	5/31	3	7	7	4/25	7,	3/22	3/24	3/24	3/24
YP	1	-	11	13	13	14	14	13	13	22		15	15	15	13	14	14	14	14
ΡV		23	25	25	28	28	28	26	26	31	29	30	30	30	28	25	24	24	24
Mud weight		1.72	1.72	1 72	1.72	1.72	1.72	1.72	1.72	1.72	$\frac{1}{1}$ 72	$\frac{1}{1.72}$	1.72	1.72	1.72	1.72	1.72	1.72	1.72
Hole depth		0 6696	2655 0	2705.0	2778.0	2784.0	2784.0	2784.0	2784.0	2381.0	2330.0	2330.0	2330.0	2330.0	0.7967	2267.0	2224 0	2120.0	2120.0
Hole size		12-1/4	12-1/4	' -		۱,-	- ا	' [٦, ا	4	PB	PB	PB	P.B.	PR	P.B.	7 E	PB	EB.
Date		871111	871112	871113	871114	871115	871116	871117	871118	871119	871120	871121	871122	871124	871129	871206	871207	871213	871214

SAGA PETROLEUM A.S.

6.2.2 MUD MATERIALS USED

							,
Materials	Unit	36 in hole	26 in hole	17-1/2 hole	12-1/4 hole	8-1/2 hole	Total
	-,						
BARITE	M/T	0	123	0	0	0	123
CAUSTIC SODA	25 KG	4	7	Ŏ	Ŏ	Õ	11
Antisol FL 30	25 kg	0	22	0	0	0	22
LIME	40 KG	4	10	0	0	0	14
SODA ASH	50 KG	4	. 7	0	0	0	11
BENTONITE	M/T	15	53	0	0	0	68
ANTISOL FL 30	25 KG	0	68	.0	0	0	68
KCL - BRINE	BBL	0	600	0	0	0	600
				0	0	0	

SAGA PETROLEUM A.S.

6.2.2 MUD MATERIALS USED

							
Materials	Unit	36 in hole	26 in hole	17-1/2 hole	12-1/4 hole	8-1/2 hole	Total
SAPP	50 KG	0	0	18	3	0	21
BARITE	M/T	.0	67	356	758	0	1181
BICARBONATE	50 KG	0	0	8	16	0	24
CAUSTIC SODA	25 KG	6	8	1	52	0	67
Antisol FL 30	25 kg	0	0	103	161	0	264
Magconol	25 1	0	0	4	2	0	6
Resinex	50 lb	0	0	0	120	0	120
Oilex	GALLO	0	O	0	20	0	20
Sodium Sulpha	50 kg	0	0	0	2	0	2
LIME	40 KĞ	2	.7	0	42	0	51
KOH - POTASS.	50KG	0	.0	36	32	0	68
SODA ASH	50 KG	4	0	7	0	0	11
BENTONITE	M/T	28	21	0	3	0	52
BENTONITE	50 KG	0	0	33	0	0	33
ANTISOL FL 10	25 KG	0	0	0	.3	0	3
ANTISOL FL 30	25 KG	0	0	195	70	0	265
BORREWELL C	25KG	0	0	0	244	O	244
MAGCO 101 INH	55 GA	0	0	0	15	0	1 5
XC-POLYMER	25 KG	0	0	2	10	.0	12
KCL - SXS	50 KG	0	0	921	1072	0	1993
KCL - BRINE	BBL	.0	0	1830	0	0	1830
XP-20	50 LB	0	0	0	265	0	265

6.3. Casing Data
Well no: 34/7-11

· [- T		· · · · · · · · · · · · · · · · · · ·	- 14	4 -	· · · · · · · · · · · · · · · · · · ·		1
	REMARKS		Held 18 3/4" wellhead 1 m above 30" housing while displacing cement.	Attempt to land 18 3/4" wellhead after 3700 strokes. No success. 18 3/4" wellhead 0.6 m too high.				
	CENTRALIZERS type depth m		318.56 306.76	842.01 838.76 813.75 801.80 789.84 777.89				
	CENTR		Pos	Bow.				
	FLOAT COLL DEPTH m-RKB	I	831.45					
	SHOE DEPTH m-RKB	327	845.01					
	COUPLINGS	ST-2	RL-4S					
	WEIGHT kg/m (lbs/ft)	459.87 (309)	197.94					
	TOTAL LENGTH m	111.6	630.71					
	NO OF JOINTS	6	53					
	GRADE	В	x56				yang ing tanggan panggan pangg	
	DATE	3.10.87	9.10.87			-territoria de la compansión de la compa		
	SIZE	30"	02		Ì			

6.3. Casing Data	Well no: 34/7-12	

				145 -
	REMARKS			PAGE
	CENTRALIZERS type depth m	1	835 823 810 797 785 772,5 760 314	820 1848 1835 1813 1799 1787 1775
	CENTR	I	Bow:	Pos:
	DEPTH m-RKB	ı	824.03	1826
ſ	DEPTH P-RKB		837.51	1851.27
	COUPLINGS	ST-2	LS	Buttress
	WEIGHT kg/m (lbs/ft)	459.87 (309)	197.94 (133)	107.15 (72)
	TOTAL LENGTH	112	621.51	1635.27
	NO OF JOINTS	D	20	139
	GRADE	ά	X-56	08-N
	DATE	12.10.87	18.10.87	3/8"27.10.87
	SIZE	30"	20"	13 3/8"

•	
	. 1
7	
	7
	- 1
	46
	S.
	•
	•
	- €
	=
	7
	enu.
	AT O
	- W C
	Saga
	A 4
	W W
	MA

6.3. Casing Data
Well no: 34/7-12

Г	\neg	ye. i i i chever	140	31725
			- 146 -	Industritivkk 31725
				=
	HEMAHKS			
	MEM.			
		·		
U	E	5.5	0 8 9 7 7 0 8 9 2 2 2 8 9 2 1 3 8 9 2 1 3 8 9 2 2 8 9 2 1 3 8 9 2 1 3	
17EB	depth m	1845 1832	2360 2348 2324 2312 2312 2300 2288 2276 2265 2265 2213 2213 2213 2213	
CENTRA! 17EBS	type	::	:	
		Pos:	Bow:	$\ $
COLL	DEPTH m-RKB	3.3		
FLOAT	프	2330.3		
OH.	DEPTH m-RKB	2366		
\mid	တ္သ			1
	COUPLINGS	Buttress		
	00	But		
	s/ft)	86 (
	WEIGH I kg/m (Ibs/ft)	69.98		
H	-	9		1
Į.	LENGTH	2149.96		۱
		21		4
	STNIOL	178		
f	GRADE J			
-	GR.	7 N-80		-
	DATE	21.11.87		
	<u> </u>			4
	SIZE inches	5/8"		
L	<u>-</u>	6		ل

6.4. Cement Data
Well no: 34/7-11

Г		 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	- 147 -	
	S S						
	REMARKS						
	<u> </u>						
	<u></u>						$\left\{ \right.$
	LOSSES m³	I	ı	ſ	t	·	
9,1	. e⊢	2		9			
74/4/	L/100 kg CEMENT	SW:93.65 SW:41.1	SW:92.31	SW:67.96	44		
	<u>₹</u> - ∪	SW: SW:	SW:		SW: 44		$\Big $
رُنّ	0 F	0 55	55	EMSAC:25.18 D19:1.4 % D31LN:2			
I. C.	ADDITIVES L/100kg CEMENT	A-3L:4.0 A-7L:3.55	A-3L:3.55 R-15L:0.53	EMSAC:25 D19:1.4 D31LN:2	at t		
L			A-()	EMS D19 D31	Neat		$\left\{ \right.$
	SCURRY VOLUME USED m ³	51.5 16	16	200	16		
-	SLUHHY WEIGHT SG	L:1.58 T:1.92	1.56	•• m	T:1.92		
		11.	LI:1	LII: 1.63	T:1		1
	CEMENT	Ü	5				4
	SHOE DEPTH m-RKB	327	845.01				
ŀ		•	÷	· · · · · · · · · · · · · · · · · · ·		the second of th	
	JOB DESCRIPTION	csg.	" csg.				
	DES(30"	20"				
	Щ	.87	183	,			
	DATE	3.10.87	9.10:87				

6.4. Cement Data
Well no: 34/7-12

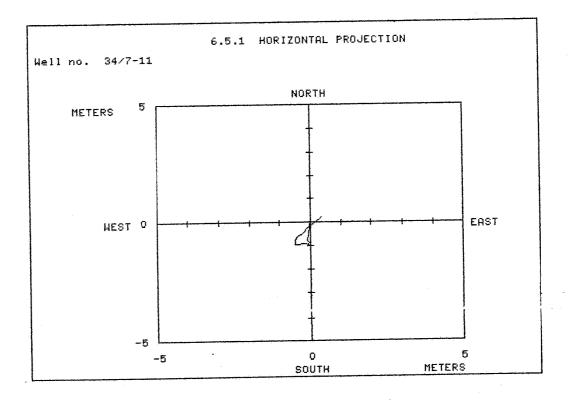
	 	· · · · · · · · · · · · · · · · · · ·		48 -			er	7 %
REMARKS	Lost returns halfway through the lead slurry. Reduced pumprate and succeeded to regain partial returns.	EMSAC was used in lead II due to shallow gas.			Set balanced cementplug from 2780-2580 m.	Set balanced cementplug from 2570-2370 m.		Industriivyk 31725
LOSSES		1 1	. 1	1 1	1	1	l	
MIX WATER L/100 kg CEMENT	SW:93.65 SW:41.1	SW:92.31 SW:67.81	SW:44	FW:81.81 FW:43.09	FW:43.24	FW:43.24	FW:41.96	
ADDITIVES L/100kg CEMENT	A-3L:4.0 A-7L:3.55	A-3L:3.55 R-15L:0.53 EMSAC:25.18 D19:1.4 %	D31LN:2.5 R-12L:0.36 Neat	Bent:1.7 % D31LN:1.78 D31LN:0.89 R-12L:0.4	R-12L:1.07	R-12L:1.07	D19:0.5 % D31LN:1.33 R-12L:0.27	
SLURRY VOLUME USED m³	52.33	21.59	16.14	81.95	11.9	18.1	29.56	
SLURRY WEIGHT SG	L:1.58 T:1.92	LI: 1.56 LII: 1.63	T:1.92	L:1.60 T:1.90	1.90	1.90	T:1.90	
CEMENT	ဗ	ಲ	:	ဗ	ဗ	9	ဗ	
SHOE DEPTH m-RKB	327	837.51		1851.27	ı	1	2366	
JOB DESCRIPTION	30" csg.	20" csg.		13 3/8"csg.1851.27	Balanced cmt. plug	Balanced cmt. plug	9 5/8"csg.	
DATE	12.10.87	18.10.87	ay a the state of	27.10.87	18.11.87	18.11.87	21.11.87	

6.4. Cement Data
Well no: 34/7-12

				- 149 -	ve dans, i dans		17.25
REMARKS	Set a balanced cementplug from 2235-2164 m. Pull up 3 stds and reverse out drillpipe. Close MPR and squeeze 2.3 m ³ using hesitation squeeze method.	Displace cement to retainer at 2267 m and squeeze 4 m 3 through perforations, and rest on top of retainer. Reverse out drillpipe.	Displace cement to retainer at 2224 m. Squeeze $3.2~\mathrm{m}^3$ through perforations and rest on top of retainer.	Displace cement to retainer at 2195 m. Squeeze $3.2~\mathrm{m}^3$ through perforations and dump rest on top of retainer.	Set a balanced cementplug from 460-260 m.		Indistritude 34 205
LOSSES	ı	I	1	1	l	agasta ka sa	
MIX WATER L/100 kg CEMENT	FW:42.05	FW:42.05	FW:42.05	FW:42.05	SW:42.48		
ADDITIVES L/100kg CEMENT	D-19LN:1.5 R-12L:0.75	D-19LN:1.5 R-12L:0.75	D-19LN:1.5 R-12L:0.75	D-19LN:1.5 R-12L:0.75	A-7L:1.78		
SLURRY VOLUME USED m³	2.7	4.7	4.7	6.4	20		
SLURRY WEIGHT SG	1.90	1.90	1.90	1.90	1,92		
CEMENT	ຽ	v	ຶ່ນ	ဗ	Ð		
SHOE DEPTH n-RKB	ı	1	1	1	1		,
JOB DESCRIPTION	Plug/ squeeze	Squeeze	Squeeze	Squeeze	Balanced cmt. plug		
DATE DE	28.11.87	28.11.87	7.12.87	13.12.87	15.12.87		

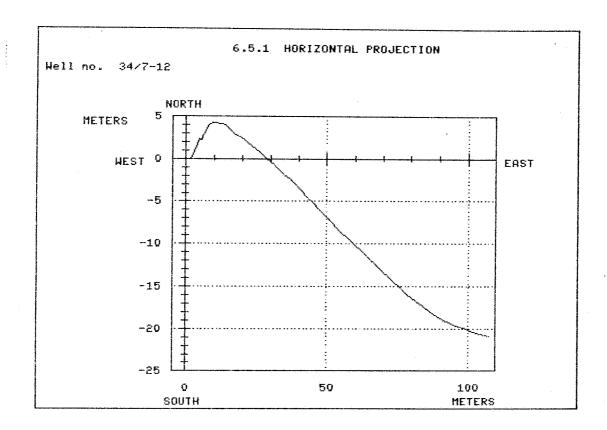
SAGA PETROLEUM A.S.

6.5 DEVIATION DATA


MD	TVD	INCLIN.	AZIMUT	DOGLEG	+N,-S	+E,-W
meter	meter	deg.	deg.	deg/30m	meter	meter
230.0 241.0 270.0 297.0 324.0 380.0 428.0 466.0 513.0 563.0 619.0 659.0 707.0 754.0 802.0 856.0	230.0 241.0 270.0 297.0 324.0 380.0 428.0 466.0 513.0 563.0 619.0 659.0 707.0 754.0 802.0 856.0	1.00 .75 1.00 .00 .40 .40 .40 .20 .30 .10 .40 .50 .20	240.0 135.0 200.0 151.0 102.0 4 298.1 254.2 271.7 94.2 304.8 86.5 35.0 27.0 52.7 58.3	.00 3.81 1.00 1.11 .00 .21 .26 .24 .08 .36 .26 .29 .22 .08 .21	.0014557878959296796760501904	.0002070909040818505045432607 .12 .35

6.5 DEVIATION DATA

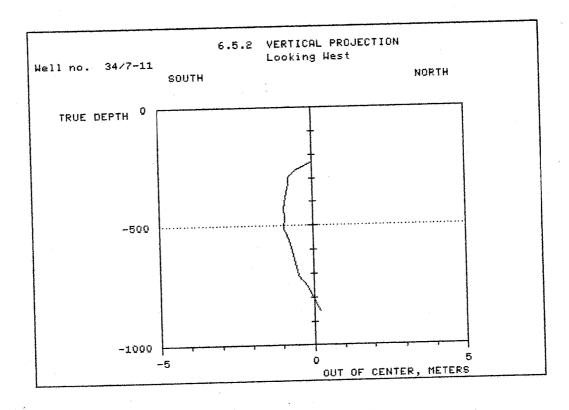
MD meter	TVD meter	INCLIN. deg.	AZIMUT deg.	DOGLEG deg/30m	+N,-S meter	+E,-W meter
		deg. .75 .75 .50 .25 .60 .80 1.00 .90 .70 .80 .40 .30 .40 .50 .40 .50 .70 .90 1.40 1.60 1.80 1.90 2.20 2.40 2.50 2.80 3.30 3.70 4.00 4.10 4.20				
2357.0 2384.0 2414.0 2441.0 2472.0	2354.6 2381.5 2411.4 2438.3 2469.2	5.10 5.00 4.90 5.10 5.10	106.5 105.8 105.8 104.7	.02 .13 .10 .25 .00	-14.34 -15.01 -15.71 -16.33 -17.03	73.34 75.62 78.11 80.38 83.05


6.5 DEVIATION DATA

MD meter	TVD meter	INCLIN. deg.	AZIMUT deg.	DOGLEG deg/30m	+N,-S meter	+E,-W meter	
2482.0 2510.0 2538.0 2558.0 2577.0 2598.0 2612.0	2479.1 2507.0 2534.9 2554.8 2573.7 2594.6 2608.6	5.10 5.10 5.20 5.40 5.30 4.90 5.00	104.7 104.4 103.3 100.2 99.7 97.4	.00 .03 .15 .52 .17 .64	-17.25 -17.88 -18.48 -18.86 -19.16 -19.44 -19.60	83.91 86.32 88.76 90.57 92.31 94.16 95.35	
2631.0 2659.0 2679.0 2709.0 2728.0 2756.0 2775.0	2627.5 2655.4 2675.4 2705.3 2724.2 2752.2 2771.1	4.90 4.50 4.40 4.00 4.00 3.90 3.70	96.7 98.4 96.0 96.7 93.5 93.8 98.8	.18 .45 .32 .40 .35 .11	-19.80 -20.10 -20.29 -20.54 -20.65 -20.78 -20.91	96.98 99.26 100.80 102.98 104.30 106.22	

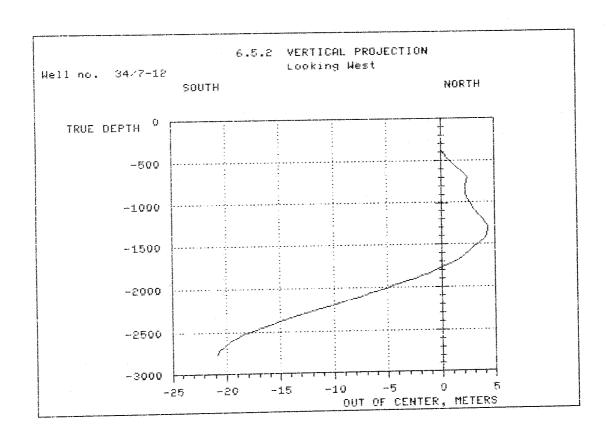
Saga
Petroleum a.s.

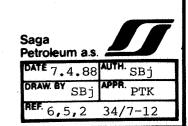
DATE 14.4.88 AUTH. SBj
DRAW. 8Y SBj APPR. PTK
REF. 6.5.1 34/7-11

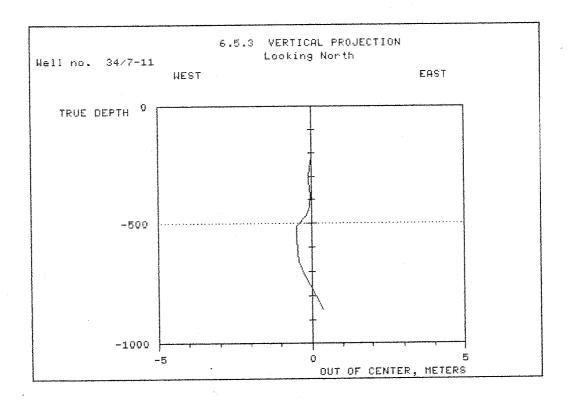


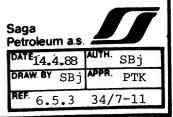
Saga
Petroleum a.s.

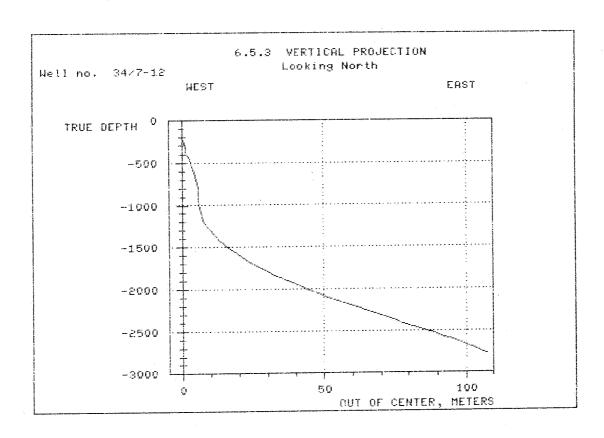
DATE 7.4.88 AUTH. SBj


DRAW. BYSBj


REF. 6.5.1 34/7-12




Saga
Petroleum a.s.


DATE 14.4.88 AUTH. SBj
DRAW. BYSBj APPR.
PTK
REF. 6.5.2 34/7-11

Saga
Petroleum a.s.

DATE 7.4.88 AUTH. SBj
DRAW. BY SBj APPR. PTK
REF. 6.5.3 34/7-12

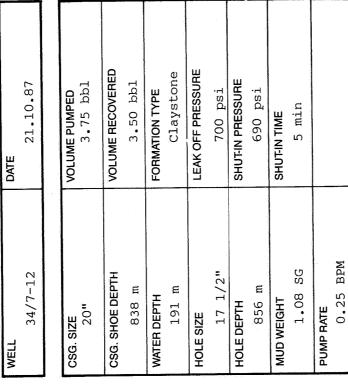
6.6. Formation Leak off Test Data Well no: 34/7-11

Saga Petroleum a.s.

DATE	5,10,87	
	34/7-11	

WELL	DATE
34/7-11	5.10.87
CSG. SIZE	VOLUME PUMPED
30"	3.5 bbl
CSG. SHOE DEPTH	VOLUME RECOVERED
327 m	4
WATER DEPTH	FORMATION TYPE
190 ш	Claystone
HOLE SIZE	LEAK OFF PRESSURE
26"	21 psi
ноге рертн	SHUT-IN PRESSURE
337 m	22 psi
MUD WEIGHT	SHUT-IN TIME
1.12 SG	4
PUMP RATE 0.25 bbl/min	

ജ	
0,	ĺ
13	
[-	1
ij	
X	
G.	
SS	
VEIGHT AT CSG. SHOE	
노	
EIG	
>	١
JUD	١
≥ >	
G	
	1


0.75 7 2.25 19 1.0 9 2.50 21 1.25 11 2.75 22 1.50 13 3.0 22 1.75 15 3.25 22 2.0 17 3.50 22	bb1	PRESSURE	pp1	PRESSURE
75 7 2.25 0 9 2.50 25 11 2.75 50 13 3.0 75 15 3.25 0 17 3.50				
0 9 2.50 25 11 2.75 50 13 3.0 75 15 3.25 0 17 3.50		7	2.25	19
25 11 2.75 50 13 3.0 75 15 3.25 0 17 3.50		6	2.50	21
50 13 3.0 75 15 3.25 0 17 3.50		11	2.75	22
75 15 3.25 0 17 3.50		13	3.0	22
.0 17 3.50		15	3,25	22
	2.0	17	3.50	22

	ang talang talang					- 1. 1	
`							
							- I
		*					- bk
							PED
		×					₹ N
		×					A G
		*					2. SVOLUME OF MUD PUMPED - bb1
,	//						
		\ ` *					1 8
		The same of the sa					2.5
		`	1				-8
			,				<u></u>
				*	×		
					*		+
				· · · · · · · · · · · · · · · · · · ·		1	1/2
		Ţ	eg -BRUSSE	IRA AMUA :	SURFACE	8 9 4	7 7

set Data

\Box	
Test	1/7-12
4	34/
Leak	no:
Formation	Well
6.6.	

Saga Petroleum a.s.

EQV. MUD WI	EQV. MUD WEIGHT AT CSG. SHOE:	SHOE : 1.66	6 SG
pp1	PRESSURE	bb1	PRESSURE
0.25	45	2.00	425
0.50	100	2.50	510
0.75	165	3.00	009
1.00	240	3,50	700
1.25	280	3,75	725
1.50	325		

WELL 34	CSG. SIZE 20 CSG. SHOE	MATER DEF 19 HOLE SIZE 17 HOLE DEPT	MUD WEIGI 1. PUMP RATE	EQV. MU	0.25 0.50 0.75 1.00 1.25	
		PONUE:- bet	× × × × × × × × × × × × × × × × × × ×	O 1 2 3 4 5 min	300 -	1 2 VOLUME OF MUD PUMPED - bb1
		, ==		43 8 SURF	7, 2, 3,	

off Test Data 6.6. F

lest	/7-12
# O	34
Leak	.ou
ation	Well
Form	

WELL	DATE
34/7-12	28.10.87

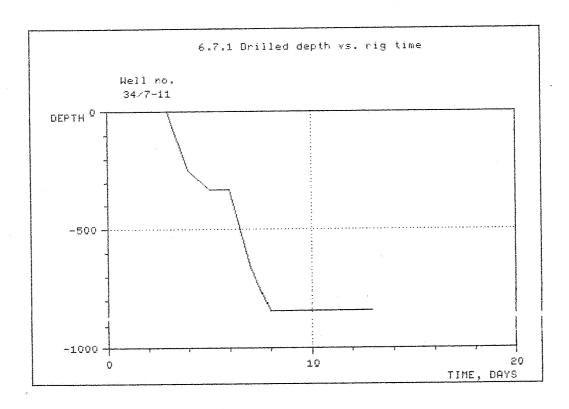
in the second se	
WELL 34/7-12	28.10.87
CSG. SIZE	VOLUME PUMPED
13 3/8"	4.25 bbl
CSG. SHOE DEPTH	VOLUME RECOVERED
1851 m	3.75 bbl
WATER DEPTH	FORMATION TYPE
191 m	Claystone
HOLE SIZE	LEAK OFF PRESSURE
12 1/4"	1053 psi
HOLE DEPTH	SHUT-IN PRESSURE
1944 m	1055 psi
MUD WEIGHT	SHUTIN TIME
1.60 SG	5 min
PUMP RATE	
0.5 BPM	

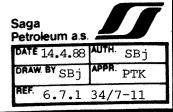
EQV. MUD WI	EQV. MUD WEIGHT AT CSG. SHOE:	SHOE : 2.00) SG
bb1	PRESSURE	bb1	PRESSURE
0.25	70	3.00	730
0.75	150	3,50	875
1.00	200	4.00	1000
, L	330	7 O. P.	1053

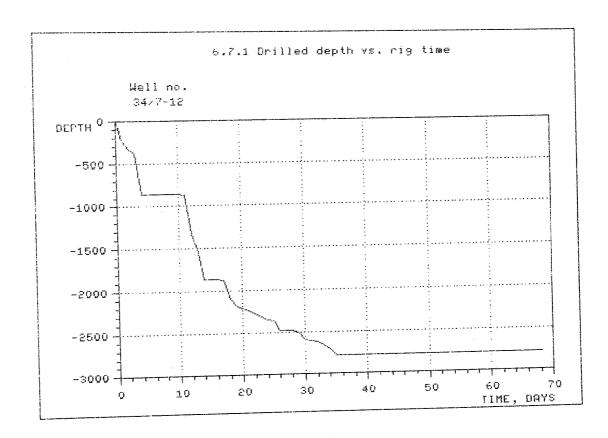
· · · · · · · · · · · · · · · · · · ·	bbl	PRESSURE	pb1	PRESSU
				
	0.25	70	3.00	730
- , 	0.75	150	3.50	875
	1.00	200	4.00	1000
. , ••	1.50	330	4.25	1053
	2.00	460		
	2.50	009		:

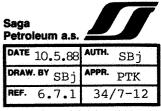
a.s.	Limited! No. 1 2 3 4 5 min	1 2 VOLUME OF MUD PUMPED - bb1
Saga Petroleum a.s.	10 30 4 60 SURFACE PUMP PRESSURE. pai	

SAGA PETROLEUM A.S.


6.7. RIG TIME DISTRIBUTION


Mainoperation	Suboperation	Hours	% of	total ri	lg time
MOVING MOVING Sum :	ANCHOR	22.5	63.5	8.1	22.8
DRILLING DRILLING DRILLING DRILLING DRILLING DRILLING DRILLING	CIRC/COND DRILL HOLE OPEN OTHER PRESS DETECTION SURVEY	35.5 8.0 38.5 24.5 1.0		12.7 2.9 13.8 8.8 0.4 3.8 0.9 10.4	59.7
INTERRUPTION INTERRUPTION Sum :		6.5 1.0	7.5	2.3	2.7
PLUG & ABANDON Sum :		2.5 9.5 1.5	13.5	0.9 3.4 0.5	4.8


SAGA PETROLEUM A.S.


6.7. RIG TIME DISTRIBUTION

W. 1	Cubanamatian	Loura	 Q	of total	ria ti	ne
mainoperation	Suboperation ANCHOR POSITION	nours	ъ 		TTR CT	:
MOVING	ANCHOR	13.8		0.9		
MOVING	POSITION	1.0	1/. 0	0.1	0.9	
ouii .			17.0	0.1	0.9	
DRILLING	BOP ACTIVITIES BOP/WELLHEAD EQ CASING CIRC/COND DRILL PRESS DETECTION REAM SURVEY TRIP UNDERREAM	26.5		1.6		
DRILLING	BOP/WELLHEAD EQ	52.0		3.2 6.8 0.8 15.1 0.4		
DRILLING	CASING	109.0		6.8		
DRILLING	CIRC/COND	12.5		0.8		
DRILLING	DRILL	242.5		15.1		
DRILLING DRILLING	PRESS DETECTION	9.0		0.4		
DRILLING	SIRVEY	2.0		0.6 0.1		
DRILLING	TRIP	114.0		7.1		
DRILLING	UNDERREAM	19.0				
Sum :			592.5		36.8	
T001(1870) 51111	GTD G GAWDI EG	2.0 16.5 77.0		0.1		
FORMATION EVAL	CIRC SAMPLES	2.U 16.5		1.0		
FORMATION EVAL	CORE	77 O		4.8		
FORMATION EVAL	DST	428.0		26.6		
FORMATION EVAL	LOG	130.0		8.1		
FORMATION EVAL	CIRC SAMPLES CIRC/COND CORE DST LOG TRIP	147.0		1.0 4.8 26.6 8.1 9.1		
Sum :			800.5		49.7	
TMTEDDIIDTTOM	LOG TRIP FISH MAINTAIN MAINTAIN/REP SUBSEA EQ/F SUBSURFACE EQ/F SURFACE EQ/F WAIT WELL CONTROL	30.0		1.9		
THTERRUFTION	MATNTAIN	1.0		0.1		
INTERRUPTION	MAINTAIN/REP	21.0		1.3		
INTERRUPTION	SUBSEA EQ/F	12.0		0.7		
INTERRUPTION	SUBSURFACE EQ/F	6.0		0.4		
INTERRUPTION	SURFACE EQ/F	6.5		0.4		
INTERRUPTION	WAIT	49.5		3.1		
INTERRUPTION	WELL CONTROL	0.5	126.5	0.0	7.9	
Sum:			120.3		1.9	
		6.5		0.4		
PLUG & ABANDON PLUG & ABANDON	CIRC/COND	2.0		0.1		
PLUG & ABANDON	CUT EQUIP RECOVERY OTHER	12.0		0.7		
PLUG & ABANDON	EQUIP RECOVERY	17.5		1.1		
PLUG & ABANDON	OTHER	1.5		0.1		
PLUG & ABANDON	TRIP	36.5	76.0	2.3	4.7	
Sum :			70.0	•	4./	
Total rig time :		1610.3		100.0		

SAGA PETROLEUM A.S. 6.7.2. DAILY RIG TIME DISTRIBUTION

Page	1 of 2	Well no:	34/7-11
Dato	Mainoperation	Suboperation	Hours
29.09.87	MOVING Sum :	TRANSIT	3.5
30.09.87	- · · · · · · · · · · · · · · · · · · ·	TRANSIT	24.0
01.10.87		ANCHOR TRANSIT	10.5 13.5
02.10.87	Sum : DRILLING		24.0 3.0
	DRILLING DRILLING	DRILL SURVEY	5.5 1.0
	DRILLING MOVING	TRIP ANCHOR	2.5 12.0
03.10.87	Sum : DRILLING	CASING GIRG (COND	24.0 9.5 1.5
	DRILLING DRILLING	CIRC/COND DRILL SURVEY	8.0 1.5
	DRILLING DRILLING INTERRUPTION	TRIP	3.0 0.5
04.10.87	Sum : DRILLING	BOP ACTIVITIES	24.0 0.5
	DRILLING DRILLING	BOP/WELLHEAD EQ CASING	11.5 8.5
	DRILLING Sum :	TRIP	3.5
05.10.87	DRILLING	BOP ACTIVITIES CIRC/COND	1.5 0.5 16.5
	DRILLING DRILLING Sum :	DRILL TRIP	5.5
06.10.87	DRILLING	CIRC/COND DRILL	3.0 8.5
	DD TTT TNC	HOLE OPEN PRESS DETECTION	7.0 0.5
	DRILLING Sum:	TRIP	5.0
07.10.87	DICTULLIO	CIRC/COND HOLE OPEN	3.0 17.5 1.0
	DRILLING DRILLING INTERRUPTION	PRESS DETECTION TRIP MAINTAIN/REP	1.0 2.0 0.5
08 10 87	Sum : DRILLING	BOP/WELLHEAD EQ	24.0 7.0
00.10.07	DRILLING DRILLING	CASING PRESS DETECTION	2.0 9.0
	DRILLING Sum :	TRIP	6.0
09.10.87	DRILLING DRILLING	BOP/WELLHEAD EQ CASING	7.0 15.5 1.5
	DRILLING Sum :	TRIP	24.0

SAGA PETROLEUM A.S.

Page	2 0	f 2	2	Well no:	34/7-11	
Dato	Maino	peration	n Suboperation		Hour	's
10.10.87	DRILL DRILL INTER PLUG PLUG Sum: PLUG	ING ING RUPTION & ABANDO & ABANDO	ON OTHER ON CEMENT PLUG	EQ	3.0 11.0 1.0 6.5 1.0 1.5	24.0 11.0

Page		Well no:	
Dato	Mainoperation	Suboperation	Hours
	DRILLING DRILLING DRILLING DRILLING MOVING	BOP/WELLHEAD EQ DRILL SURVEY TRIP POSITION	
12.10.87	Sum: DRILLING DRILLING DRILLING DRILLING DRILLING DRILLING Sum:	CASING CIRC/COND DRILL SURVEY TRIP	9.0 1.0 11.0 1.5 1.5
13.10.87	DRILLING DRILLING DRILLING DRILLING DRILLING Sum:	BOP/WELLHEAD EQ CASING DRILL TRIP	7.5 9.5 3.0 4.0 24.0
14.10.87	DRILLING DRILLING DRILLING INTERRUPTION Sum:	CIRC/COND DRILL TRIP MAINTAIN/REP	1.5 18.0 4.0 0.5
15.10.87	DRILLING DRILLING INTERRUPTION Sum :	TRIP UNDERREAM MAINTAIN/REP	3.0 18.0 3.0 24.0
16.10.87	DRILLING DRILLING DRILLING DRILLING DRILLING DRILLING DRILLING Sum:	BOP/WELLHEAD EQ CASING CIRC/COND PRESS DETECTION TRIP UNDERREAM	6.0 6.0 3.0 1.5 6.5 1.0
17.10.87	DRILLING INTERRUPTION Sum :	CASING WAIT	11.0 13.0 24.0
18.10.87	DRILLING DRILLING INTERRUPTION INTERRUPTION INTERRUPTION	BOP/WELLHEAD EQ CASING MAINTAIN/REP SUBSEA EQ/F WAIT	10.0 7.0 0.5 1.5 5.0
	Sum : INTERRUPTION Sum :	WAIT	24.0 24.0 24.0
20.10.87	DRILLING INTERRUPTION INTERRUPTION Sum:	TRIP SUBSEA EQ/F WAIT	7.5 9.0 7.5 24.0

Page	2 of 6	Well no:	34/7-12
Dato	Mainoperation		Hours
21.10.87	DRILLING DRILLING DRILLING DRILLING	BOP ACTIVITIES BOP/WELLHEAD EQ CASING DRILL PRESS DETECTION TRIP	3.0 11.0 2.0 2.5 1.5 2.5
22.10.87	Sum : DRILLING DRILLING DRILLING DRILLING INTERRUPTION	CIRC/COND DRILL REAM TRIP	24.0 0.5 21.0 0.5 1.0
23.10.87	Sum : DRILLING DRILLING DRILLING DRILLING SUM :	BOP ACTIVITIES DRILL REAM TRIP	24.0 0.5 15.5 2.5 5.5
24.10.87	DRILLING FORMATION EVAL FORMATION EVAL INTERRUPTION Sum:	CIRC/COND	17.0 3.5 3.0 0.5
25.10.87	DRILLING DRILLING FORMATION EVAL FORMATION EVAL FORMATION EVAL INTERRUPTION Sum:	CASING TRIP CIRC/COND LOG TRIP MAINTAIN/REP	1.0 3.0 2.5 12.5 4.0 1.0
26.10.87	DRILLING DRILLING DRILLING DRILLING DRILLING Sum :	BOP/WELLHEAD EQ CASING CIRC/COND TRIP	1.5 17.0 2.5 3.0 24.0
27.10.87	DRILLING DRILLING DRILLING DRILLING DRILLING DRILLING Sum:	BOP ACTIVITIES BOP/WELLHEAD EQ CASING DRILL TRIP	2.5 1.0 14.5 1.5 4.5
	DRILLING DRILLING Sum :	BOP ACTIVITIES DRILL	2.5 21.5 24.0
29.10.87	DRILLING DRILLING DRILLING FORMATION EVAL FORMATION EVAL INTERRUPTION INTERRUPTION Sum:	DRILL PRESS DETECTION TRIP CORE TRIP MAINTAIN/REP SURFACE EQ/F	7.5 3.0 2.5 4.5 5.0 0.5 1.0

	3 of 6	Well no:	
Dato	Mainoperation	Suboperation	Hours
	FORMATION EVAL FORMATION EVAL INTERRUPTION Sum :	CORE	11.0 12.5 0.5
31.10.87	FORMATION EVAL FORMATION EVAL INTERRUPTION INTERRUPTION	TRIP MAINTAIN/REP	11.5 10.5 1.0 1.0
01.11.87	Sum : FORMATION EVAL FORMATION EVAL Sum :		24.0 14.5 9.5 24.0
02.11.87	FORMATION EVAL FORMATION EVAL FORMATION EVAL INTERRUPTION Sum :	CORE	1.0 13.5 9.0 0.5
03.11.87	FORMATION EVAL FORMATION EVAL FORMATION EVAL INTERRUPTION Sum:		0.5 18.5 4.5 0.5
04.11.87	DRILLING DRILLING DRILLING DRILLING FORMATION EVAL FORMATION EVAL INTERRUPTION	DRILL REAM TRIP CORE	6.5 0.5 1.0 3.5 3.5 2.5 6.5
05.11.87	Sum : DRILLING FORMATION EVAL FORMATION EVAL FORMATION EVAL Sum :	CIRC/COND	19.5 2.0 1.5 1.0
06.11.87	FORMATION EVAL FORMATION EVAL FORMATION EVAL Sum :	CIRC/COND LOG TRIP	2.0 16.0 6.0 24.0
07.11.87	DRILLING FORMATION EVAL Sum :	TRIP LOG	2.0 22.0 24.0
08.11.87	DRILLING DRILLING DRILLING INTERRUPTION Sum:	DRILL REAM TRIP SURFACE EQ/F	10.5 4.5 8.5 0.5
09.11.87	DRILLING Sum :	DRILL	24.0
10.11.87	DRILLING DRILLING DRILLING INTERRUPTION INTERRUPTION Sum:	CIRC/COND DRILL TRIP MAINTAIN/REP SURFACE EQ/F	1.0 9.5 10.5 0.5 2.5

Page	4 of 6	Well no	: 34/7-12
Dato	Mainoperation	Suboperation	Hours
	DRILLING DRILLING DRILLING DRILLING INTERRUPTION INTERRUPTION	BOP ACTIVITIES CIRC/COND DRILL TRIP MAINTAIN/REP	5.5 0.5 8.0 8.5 1.0 0.5
12.11.87	Sum: DRILLING DRILLING DRILLING INTERRUPTION Sum:	CIRC/COND DRILL TRIP	24.0 0.5 13.5 9.5 0.5
13.11.87	DRILLING DRILLING Sum :	DRILL TRIP	18.0 6.0 24.0
14.11.87	DRILLING DRILLING DRILLING INTERRUPTION Sum :	DRILL REAM TRIP MAINTAIN/REP	17.5 0.5 5.5 0.5 24.0
15.11.87	DRILLING DRILLING DRILLING FORMATION EVAL Sum :	CIRC/COND DRILL TRIP LOG	2.0 2.0 3.0 17.0
16.11.87	FORMATION EVAL INTERRUPTION Sum :	LOG FISH	2.5 21.5 24.0
17.11.87	FORMATION EVAL FORMATION EVAL FORMATION EVAL INTERRUPTION INTERRUPTION Sum :	CIRC/COND LOG TRIP FISH MAINTAIN/REP	3.0 10.5 5.0 4.5 1.0
18.11.87	FORMATION EVAL Sum:	LOG	24.0
19.11.87	DRILLING FORMATION EVAL PLUG & ABANDON PLUG & ABANDON PLUG & ABANDON Sum :	CASING LOG CEMENT PLUG CIRC/COND TRIP	5.0 10.0 4.5 1.0 3.5
	DRILLING DRILLING DRILLING INTERRUPTION Sum:	BOP/WELLHEAD EQ CASING TRIP MAINTAIN/REP	2.0 18.5 2.5 1.0 24.0
21.11.87	DRILLING DRILLING DRILLING DRILLING FORMATION EVAL Sum :	BOP ACTIVITIES BOP/WELLHEAD EQ CASING TRIP TRIP	2.5 1.0 3.5 3.5 13.5

Page	5	of	6	W	ell no:	34/7-12	
Dato	Mai	nopera	tion	Suboperation		Hour	S
22.11.87	DRT	TITNG		CASING CIRC/COND TRIP SUBSURFACE EQ/F		5.0	
22.11.07	FOR	MATTON	EVAT.	CTRC/COND		1.5	
	FOR	MATTON	EVAL	TRIP		11.5	
	TNT	EDDIIDT.	TON	SUBSURFACE EO/F	•	6.0	
	Crim	·	LON	Bobbolarion Eq. 1		3.0	24.0
23.11.87	FOD	MATTON	E77AT	DCT		11.0	
. 23.11.07				TRIP		13.0	
			EVAL	IKIE			24.0
24.11.87	Sum		TEXTAX	DST		24.0	24.0
24.11.67			EVAL	ופת			24.0
05 11 07	Sum		ESTAT	Dem		24.0	24.0
25.11.87			EVAL	DST			24.0
06 11 07	Sum		TOTA T	DOM		24.0	24.0
26.11.87			EVAL	DST			24.0
	Sum		*****	D.C.W.		22.5	24.0
27.11.87				DST		1.0	
		ERRUPT		MAINTAIN			
			ION	SURFACE EQ/F		0.5	07. 0
	Sum			200			24.0
28.11.87			EVAL	DST		24.0	0.6.0
	Sun						24.0
29.11.87	DRI	LLING		BOP/WELLHEAD EC	₹	4.5	
			EVAL			17.0	
			EVAL	TRIP		2.0	
		ERRUPT	ION	MAINTAIN/REP		0.5	0/ 0
	Sun						24.0
30.11.87			EVAL	DST		24.0	24. 0
	Sun						24.0
01.12.87			EVAL	DST		24.0	27. 0
00 10 07	Sun		TITTAT	D.C.		24.0	24.0
02.12.87			EVAL	DST		24.0	24.0
00 10 07	Sun		1237 A T	ъст		24.0	24.0
03.12.87			LVAL	DST			24.0
0/ 10 07	Sun		TOTAT	DST		24.0	24.0
04.12.87			EVAL	מסו		24.0	24.0
05 10 07	Sun		TOTTAT	DOT		24.0	24.0
05.12.87			EVAL	DST		24.0	24.0
06 10 07	Sun		THEAT	D.CIT		6.5	24.0
06.12.87				DST		5.0	
		MATION		LOG		12.5	
		MOITAMS	EVAL	TRIP		12.5	24.0
07 10 07	Sun			DOD ACTIVITED		3.5	24.0
07.12.87			TATE	BOP ACTIVITIES		10.0	
		RMATION		DST		8.5	
		MATION		LOG		2.0	
		RMATION	EVAL	TRIP		2.0	24.0
00 10 07	Sur		TOTTAT	DOT.		22.0	24.0
08.12.87				DST		2.0	
		RMATION	EVAL	LOG		2.0	24.0
00 10 05	Sur		TATE	ner		24.0	47.V
09.12.87			LVAL	DST		24.0	24.0
10 10 07	Sur		T 47774 T	DOT.		24.0	44.V
10.12.87			LVAL	DST		24.0	24.0
11 10 07	Sur		TOTAT	DST		24.0	,4-T.V
11.12.87			EVAL	זפת		24.0	24.0
	Sur	н :					47.V

Page	6 of 6	Wel	1 no: 34/7-12
Dato	Mainoperation	Suboperation	Hours
12.12.87	FORMATION EVAL	DST	24.0
13.12.87	FORMATION EVAL FORMATION EVAL FORMATION EVAL Sum :	DST	1.0 3.0 20.0 24.0
14.12.87	INTERRUPTION PLUG & ABANDON PLUG & ABANDON PLUG & ABANDON	CUT EQUIP RECOVERY	4.0 2.5 3.5 14.0 24.0
15.12.87	Sum : INTERRUPTION PLUG & ABANDON Sum :	CIRC/COND CUT	1.0 2.0 1.0 3.0 11.5 5.5
16.12.87	PLUG & ABANDON Sum :	EQUIP RECOVERY OTHER	6.5 2.5 1.5 13.5
17.12.87		ANCHOR	13.8

7. OPERATIONAL DATA

If not otherwise mentioned, all depths in this chapter refer to m RKB (Rotary Kelly Bushing).

Anchor Pattern

PTK

Anchor no :	1	2	3	4	5	6	7	8
Compass direction :	202	247	292	337	022	067	112	157
Length of chain out (m):	1095	1112	1412	1395	1445	1420	1430	1425
Max. initial tension (MT) :	160	160	160	160	160	160	160	160

Remarks:

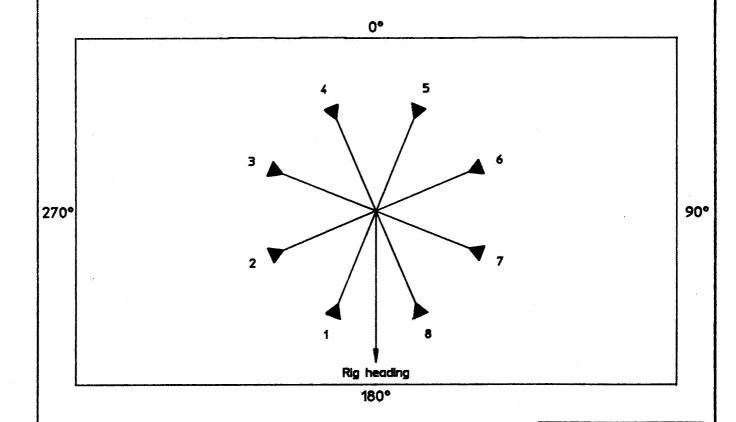


Fig. 7.1

Anchor Pattern

AUTH. SBj.

APPR. PTK

DATE 10.05.88

DRAW.BY APH

7.2 34/7-12

Anchor no :	1	2	3	4	5	6	7	8
Compass direction :	202	247	292	337	022	067	112	157
Length of chain out (m) :	1095	1112	1412	1395	1445	1420	1430	1425
Max. initial tension (MT) :	160	160	160	160	160	160	160	160

Remarks:

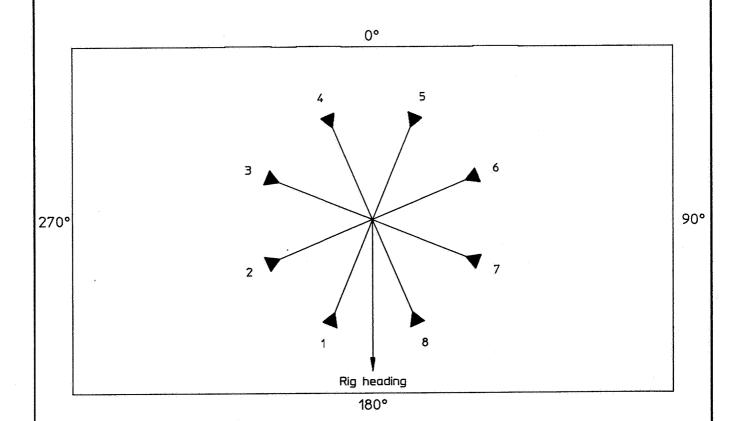


Fig. 7.1

Helicopter and Charter Flights
Well no: 34/7-11

							 177				·····
DEMADES		ן :									
	DESCRIPTION OF CANGO	Oil Ewuirment and Mail									
GERS	Z	35		_							
PASSENGERS	OUT	31		15							
	FLIGHT HOUTE	BG0~TS-BG0		= =							
	:	SCHEDULED HELICOPTER FLIGHTS	SCHEDULED CHARTER FLIGHTS	Extra Helicopter Fl	i						
1000	FLIGHT	3		က							

1

Saga Petroleum a.s.

Helicopter and Charter Flights Well no: 34/7-12

178 REMARKS (1490 kilos) Oil Equipment, Mai Oil Equipm. Mail DESCRIPTION OF CARGO 58 426 **PASSENGERS** Z 423 0.9 P. FLIGHT ROUTE BGO-TS Extra Helicopter F1 BG0-TS SCHEDULED HELICOPTER FLIGHTS SCHEDULED CHARTER FLIGHTS NO OF FLIGHT 32 0 ىد

Saga Petroleum a.s. A

Occupational Accidents. Incident/Profession Arbeidsulykker. Skadehendelse/Yrke Well no: _______

redoledin a.s.																			γ	
Profession Yrke Incident Skadehendelse	Administration – Administrasjon	Roughneck – Boredekksarbeider	Driller – Borer	Electrician – Elektriker	Catering - Forpleining	Roustabout – Hjelpearbeider	Electronic technician – Instrumenttekniker	Crane operator – Kranfører	Derrikman – Tårnmann	Painter Sandblaster worker – Sandblåser	Mechanic/ Mekaniker/Motormann/ Repairer – Reparatør	Operator - Operatør	Plumber – Rørlegger	Service technichan – Servicetekniker	Scaffolding worker - Stillasbygger	Welder – Sveiser	Unspecified – Uspesifisert	Total – Totalt	%	Year – år
Contact with machinery in motion Kontakt med maskindel i bevegelse																				
Fire, explosion, etc. Brann, eksplosjon e.l.																				
Fall to same level Fall til samme nivå																				
False step Tråkk på ujevnheter, feiltråkk																				
Falling objects Fallende gjenstander																				
Contact with stationary objects Kontakt med gjenstander i ro																				
Accident of handling mobile units Håndteringsulykker																				
Chemicals Kontakt med kjemiske forbindelser																			-	
Body overload Overbelastning av kroppsdeler																				
Splinter, spurt Splinter, sprut																				
Electricity Elektrisk strøm																				
Extreme temperatures Ekstreme tempraturer																				
Occupational disease Yrkessykdommer																				
Man overboard Mann overbord																				
Other Annet																				
Total Totalt																	3	0		

Petroleum a.s.										-	<u> </u>		
Injured part of the body Skadet legemsdel Incident Skadehendelse	Eye – Øye	Back – Rygg	Toe/foot – Tå/fot	Hip/leg – Hofte/bein	Abdomen/chest – Mage/bryst	Arm/shoulder – Arm/skulder	Head - Hode	Tooth – Tann	Hand/finger – Hånd/finger	Other – Annet	Total - Totalt	%	Year – År
Contact with machinery in motion Kontakt med maskindel i bevegelse							:						
Fire, explosion, etc. Brann, eksplosjon e.l.			-			:							
Fall to lower level Fall til lavere nivå			:										
Fall to the same level Fall til samme nivå						:							
False step Tråkk på ujevnheter, feiltråkk												•	
Falling objects Fallende gjenstander					-								
Contact with stationary objects Kontakt med gjenstander i ro					:								
Accident of handling mobile units Håndteringsulykker													
Chemicals Kontakt med kjemiske forbindelser													
Bodity overload Overbelastning av kroppsdeler													
Splinter, spurt Splinter, sprut											-		
Electricity Elektrisk strøm													
Extreme tempratures Ekstreme temperaturer													
Occupational disease Yrkessykdommer													
Man overboard Mann overbord													
Other Annet													
Total Totalt				4							0		

Saga Petroleum a.s. A

Occupational Accidents. Incid./extern. influence Arbeidsulykker. Skadehendelse/ytre faktor Well no: 34/7-11

Petroleum a.s.										10			
External influence Ytre faktor Incident Skadehendelse	Chemical, physical, biological influence Kjemisk, fysisk, biologisk faktor	Cooling, pressure, wormth, ventilation Kjøling, trykk, varme, ventilasjon	Material, goods, packing Materiale, gods, emballasje	Electric equipment Elektrisk utrustning	Other machine Annen maskin	Drilling tools Boretenger	Handcraft tool, machines, instruments Håndverktøy, maskiner, instrumenter	Movable/fixed arrangements of the constr. Løs/fast innretning på bygning, konstruksjon	Lifting-/transport equipment Løfte-/transport anordning	Other Annet	Total Totalt	%	Year År
Contact with machinery in motion Kontakt med maskindel i bevegelse													
Fire, explosion, etc. Brann, eksplosjon e.l.												:	
Fall to lower level Fall til lavere nivå													
Fall to same level Fall til samme nivå													
False step Tråkk på ujevnheter, feiltråkk													
Falling objects Fallende gjenstander													
Contact with stationary objects Kontakt med gjenstander i ro													
Accident of handling mobile units Håndteringsulykker													
Chemicals Kontakt med kjemiske forbindelser													
Bodity overload Overbelastning av kroppsdeler													
Splinter, spurt Splinter, sprut													
Electricity Elektrisk strøm													
Extreme tempratures Ekstreme temperaturer													
Occupational disease Yrkessykdommer													
Man overboard Mann overbord													
Other Annet													
Total Totalt											0		

Saga Petroleum a.s. A

Öccupational Accidents. Incident/Profession Arbeidsulykker. Skadehendelse/Yrke Well no: ___34/7-12_____

Petroleum a.s.															110					
Profession Yrke Incident Skadehendelse	Administration – Administrasjon	Roughneck – Boredekksarbeider	Driller – Borer	Electrician – Elektriker	Catering - Forpleining	Roustabout – Hjelpearbeider	Electronic technician – Instrumenttekniker	Crane operator – Kranfører	Derrikman – Tårnmann	Painter Sandblaster worker – Sandblåser	Mechanic/ Mekaniker/Motormann/ Repairer – Reparatør	Operator – Operatør	Plumber – Rørlegger	Service technichan – Servicetekniker	Scaffolding worker – Stillasbygger	Welder – Sveiser	Unspecified – Uspesifisert	Total – Totalt	%	Year – år
Contact with machinery in motion Kontakt med maskindel i bevegelse				:																
Fire, explosion, etc. Brann, eksplosjon e.l.																				
Fall to same level Fall til samme nivå								:												
False step Tråkk på ujevnheter, feiltråkk																				
Falling objects Fallende gjenstander		1																1		
Contact with stationary objects Kontakt med gjenstander i ro																				
Accident of handling mobile units Håndteringsulykker																				
Chemicals Kontakt med kjemiske forbindelser																				
Body overload Overbelastning av kroppsdeler																				
Splinter, spurt Splinter, sprut																				
Electricity Elektrisk strøm																				
Extreme temperatures Ekstreme tempraturer																				
Occupational disease Yrkessykdommer																				
Man overboard Mann overbord																				
Other Annet																				
Total Totalt		1																1		

- 183 -Occupational Accidents. Incid./injur. part of the body Arbeidsulykker. Skadehendelse/skadet legemsdel Well no: __34/7-12_____

Petroleum a.s.								V'	veli n	U	34/ /		
Injured part of the body Skadet legemsdel Incident Skadehendelse	Eye – Øye	Back – Rygg	Toe/foot – Tå/fot	Hip/leg – Hofte/bein	Abdomen/chest – Mage/bryst	Arm/shoulder – Arm/skulder	Head - Hode	Tooth - Tann	Hand/finger – Hånd/finger	Other - Annet	Total – Totalt	%	Year – År
Contact with machinery in motion Kontakt med maskindel i bevegelse					-								
Fire, explosion, etc. Brann, eksplosjon e.l.							:						
Fall to lower level Fall til lavere nivå													
Fall to the same level Fall til samme nivå												:	
False step Tråkk på ujevnheter, feiltråkk													
Falling objects Fallende gjenstander						1					1		
Contact with stationary objects Kontakt med gjenstander i ro											· ·		
Accident of handling mobile units Håndteringsulykker													
Chemicals Kontakt med kjemiske forbindelser													
Bodity overload Overbelastning av kroppsdeler													
Splinter, spurt Splinter, sprut													
Electricity Elektrisk strøm													
Extreme tempratures Ekstreme temperaturer													
Occupational disease Yrkessykdommer													
Man overboard Mann overbord													
Other Annet													
Total Totalt						1					1		
													ritnykk 3172

Saga Petroleum a.s. 4

reudieum a.s.													يصنب
External influence Ytre faktor Incident Skadehendelse	Chemical, physical, biological influence Kjemisk, fysisk, biologisk faktor	Cooling, pressure, wormth, ventilation Kjøling, trykk, varme, ventilasjon	Material, goods, packing Materiale, gods, emballasje	Electric equipment Elektrisk utrustning	Other machine Annen maskin	Drilling tools Boretenger	Handcraft tool, machines, instruments Håndverktøy, maskiner, instrumenter	Movable/fixed arrangements of the constr. Løs/fast innretning på bygning, konstruksjon	Lifting-ftransport equipment Løfte-ftransport anordning	Other Annet	Total Totalt	9%	Year Ar
Contact with machinery in motion Kontakt med maskindel i bevegelse					-								
Fire, explosion, etc. Brann, eksplosjon e.l.													
Fall to lower level Fall til lavere nivå													
Fall to same level Fall til samme nivå													
False step Tråkk på ujevnheter, feiltråkk													
Falling objects Fallende gjenstander						1					1		
Contact with stationary objects Kontakt med gjenstander i ro													
Accident of handling mobile units Håndteringsulykker													
Chemicals Kontakt med kjemiske forbindelser													
Bodity overload Overbelastning av kroppsdeler													:
Splinter, spurt Splinter, sprut													
Electricity Elektrisk strøm													
Extreme tempratures Ekstreme temperaturer											:		
Occupational disease Yrkessykdommer													
Man overboard Mann overbord													
Other Annet													
Total Totalt						1					1		

SAGA PETROLEUM A.S.

DAILY OPERATING CONDITIONS

7.4

Remarks RISER max 0 0 240 240 175 175 168 168 187 tons 0 1110 1120 1118 1120 1220 120 120 ANCHOR 100 100 100 100 100 100 100 min head 180 180 180 180 180 180 180 180 periode heave roll pitch RIG MOVEMENT deg 0.3 22.0 2.0 1.6 1.6 1.8 200073 dir SWELL height 225 180 180 180 180 180 180 180 315 0 SEAS height dir deg 225 180 180 180 180 200 200 180 315 315 WIND speed m/s 870930 871002 871003 871004 871006 871006 871008 871008 871010 Date

SAGA PETROLEUM A.S.

7.4 DAILY OPERATING CONDITIONS

	rks	
	Remarks	
RISER	max	150 150 150 150 175 175 175 175 175 175 175 175 175 175
	tons max	125 125 1223 1223 1224 1226 1226 1226 1221 1231 1231 1231 1231
ANCHOR	min	100 100 100 100 100 100 100 100 100 100
7	head deg	180 180 180 180 180 180 180 180 180 180
EMENT	pitch deg	11.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
RIG MOVEMENT		8.10.10.10.10.10.10.10.10.10.10.10.10.10.
RI	heave roll m deg	7.0000.3 1.0
·	periode sec	
1	dir	
SWELL	height m	
	dir	255 70 125 135 135 140 150 150 170 170 170 170 170 170 170 170 170 17
SEAS	height m	37122111122133355444221339355444221339375544453939375554753937555475554755554755547555547555547555547555547555547555547555547555547555547555547555547555547555547555547555547555547555547555547555475555475547547
	dir	255 70 125 135 135 135 126 126 126 126 120 120 120 120 120 120 120 120 120 120
WIND	speed m/s	21 13 13 14 17 13 15 16 17 17 18 18 18 17 18 18 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10
	Date	871011 871012 871012 871013 871016 871016 871019 871020 871022 871022 871023 871024 871027 871029 871029 871029 871029 871029 871029 871029 871029 871029 871029 871102 871103 871103 871103 871103 871103 871103

SAGA PETROLEUM A.S.

7.4 DAILY OPERATING CONDITIONS

	S	
	Remarks	
RISER	max	240 240 240 2338 2338 2336 2336 2336 2336 2336 2336
œ	tons	123 121 121 124 125 126 127 120 120 120 120 120 120 120 120 120 120
ANCHOR	min	100 100 100 100 100 100 100 100 100 100
	head deg	180 180 180 180 180 180 180 180 180 180
EMENT	pitch deg	11.22.0000.0000000000000000000000000000
RIG MOVEMENT	roll deg	20000000000000000000000000000000000000
24	heave m	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	periode sec	
ų	dir	
SWELL	height m	
	dir	135 45 315 135 135 250 315 250 315 295 200 320 240 180 220 220 220 220 220 220 220 220 220 2
SEAS	height m	22252222222222222222222222222222222222
	dir	135 255 250 340 250 250 250 250 340 340 250 260 340 345 270 320 330 330 330 270 330 330 330 330 330 330 330
WIND	sbeed m/s	13 13 14 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
	Date	871112 871113 871113 871114 871115 871116 871110 871112 871122 871123 871124 871129 871129 871202 871202 871209 871209 871209 871209 871209 871209

SAGA PETROLEUM A.S.

7.4 DAILY OPERATING CONDITIONS

	Remarks	
RISER	max	0000
ANCHOR	tons min max	100 125 100 125 0 0 0 0
	head deg	180 180 180 180
RIG MOVEMENT	coll pitch deg deg	9 2.4 1.4 5 1.4 1.4
	periode heave sec m	0
SWELL	height dir m deg	
	dir deg	270 40 130 0
SEAS	height m	4.5 3.0 5.2
	dir deg	270 45 130 180
MIND	s/m m/s	20 4 17 15
	Date	871214 871215 871216 871216

8. WELL PROFILES

If not otherwise mentioned, all depths in this chapter refer to m RKB (Rotary Kelly Bushing).

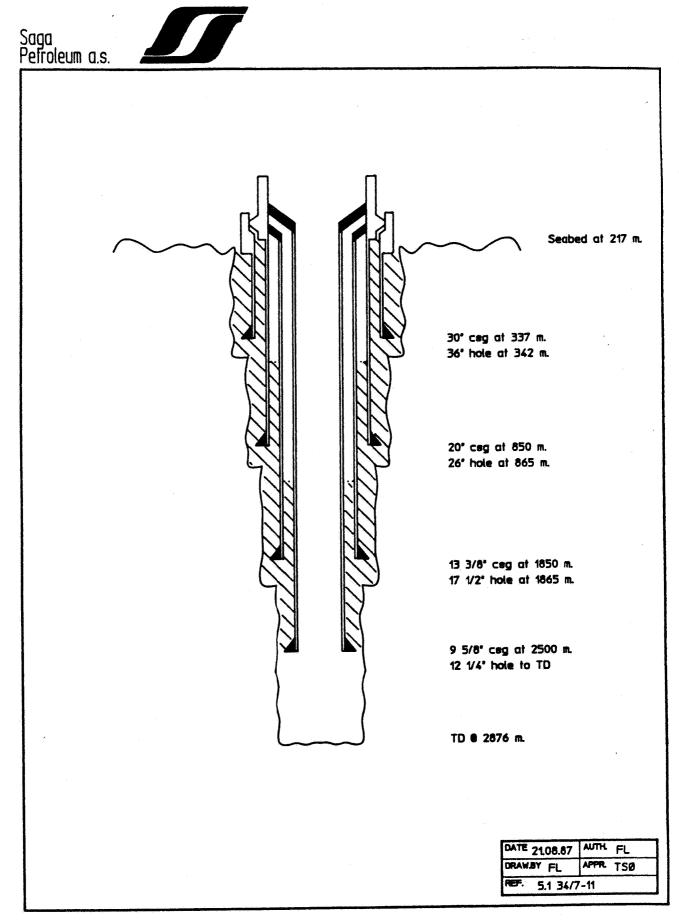
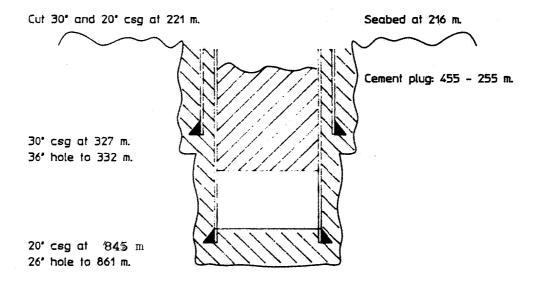



Fig. 8.1

Saga Petroleum a.s.

Abandonment Profile weil 34/7-11

DATE 20.11.87 AUTH FL
DRAWBY FL APPR.
REF. 34/7-11

Saga Petroleum a.s. Abandonment Profile well 34/7-12 Seabed at 216 m. 20" & 30" cag cut at 221 m. Cement plug : 460 to 260 m. 30° cag at 327 m. 36' hole to 332 m. 13 3/8' ceg cut at 330 m. 9 5/8° csg cut at 400 m. TOC (CBL): 600 m. 20' cay at 838 m. 26' hole to 852 m. TOC (CBL): 1525 m. - 13 3/8" csg at 1851 m. 17-1/2' hole to 1865 m TOC at 2115 h. Perforations at : Cement retainer at 2195 m. 2205 - 2209 m DST#3 Cement retainer at 2224 m. 2229 - 2235 m DST#2 Cement retainer at 2267 m. 2277 - 2284 m DST#1 TOC: 2327.5 m. 9 5/8" ceg of 2366 m. ATE 26.11.87 Cement plugs 2784 to 2381 m. DRAWBY FL TD at 2784 m. 34/7-12

Fig. 8.2