Palynology and Source Rock Potential of the Ebba 2/7- IDX(9(1) Well, Norwegian North Sea

ВУ

E. B. Robertson

Exploration Projects Section Phillips Petroleum Company Bartlesville, Oklahoma

June, 1981

GEQLARY FILLE

Summary

The 14,910'-16,000' (TD) interval of the Ebba 2/7-19X well was divided palynostratigraphically into four intervals dated Barremian, Hauterivian, Hauterivian-Valanginian, and Valanginian-Berriasian. Source rock potential was determined for the interval between 13,900' and 16,000' (TD). The entire interval is within the thermal maturation range necessary for gas generation but a particularly promising interval between 15,700' and 16,000' (TD) is delimited on the basis of high (greater than 2%) total organic carbon (see attached summary chart).

Introduction

The Ebba 2/7-19X well was examined between 14,910' and 16,000' (TD). Eleven ditch cutting composites yielded well preserved palynofloras. Sidewall core material was not made available, but the recovery of progressively older floras, combined with the gradual increase of vitrinite reflectance in the interval support the interpretation that the palynofloras were not caved. The interval was divided into four intervals dated Barremian, Hauterivian, Hauterivian-Valanginian and Valanginian-Berriasian. A summary of the Phillips ages contrasted with those of the consultant is shown on the following page.

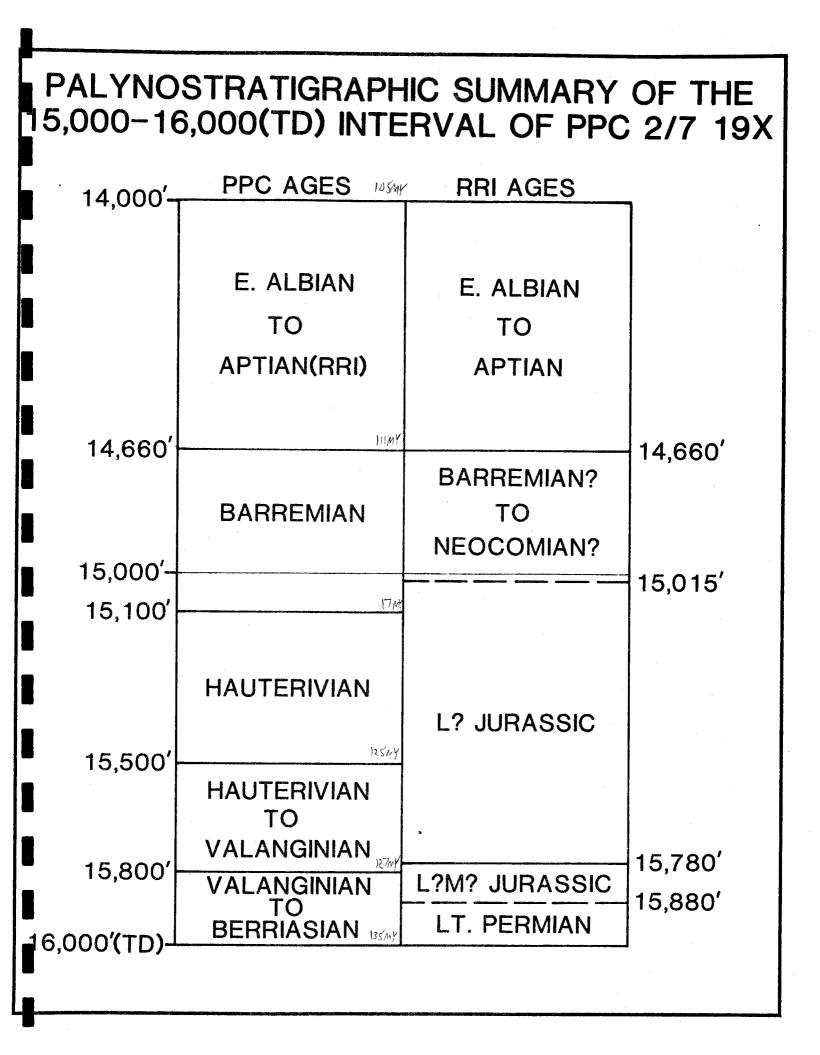
Source rock analysis of twenty-one samples was completed. A summary plot of the results is included. The interval sampled was within the maturity range necessary to produce gas. The total organic carbon values below 15,200' indicate an interval with fair to rich sourcing capabilities. The three samples between 15,700' and 16,000' have TOC values over 2* indicating a particularly good potential gas source.

Discussion

Interval: 14,910-15,100' <u>Age:</u> Barremian Environment: (2 samples) Marine

The Barremian age determination is based on the presence of Tenua anaphrissa.

Palynomorphs characteristic of the interval include: <u>Tenua</u> <u>anaphrissa</u>, <u>Subtilisphaera</u> terrula, <u>Chlamydaphorella</u> spp., Sirmoidinium grossi, and Gardodinium eisenacki (elongatum).


Interval: 15,100'-15,500' Age: Hauterivian Environment: (4 samples) Marine

The age of the interval is based on the abundant recovery of Nelchinopsis kostromiensis.

Palynomorphs characteristic of the interval include: Nelchinopsis kostromiensis, Kleisthriasphaeridium simplicispinum, Pareodinia ceratophora, and Odontodnitina operculata.

The recovery of <u>Stephanelytron</u> redcliffense indicates Jurassic reworking is encountered.

Interval: 15,500'-15,800'

Age: Hauterivian-Valanginian Environment: (3 samples) Marine

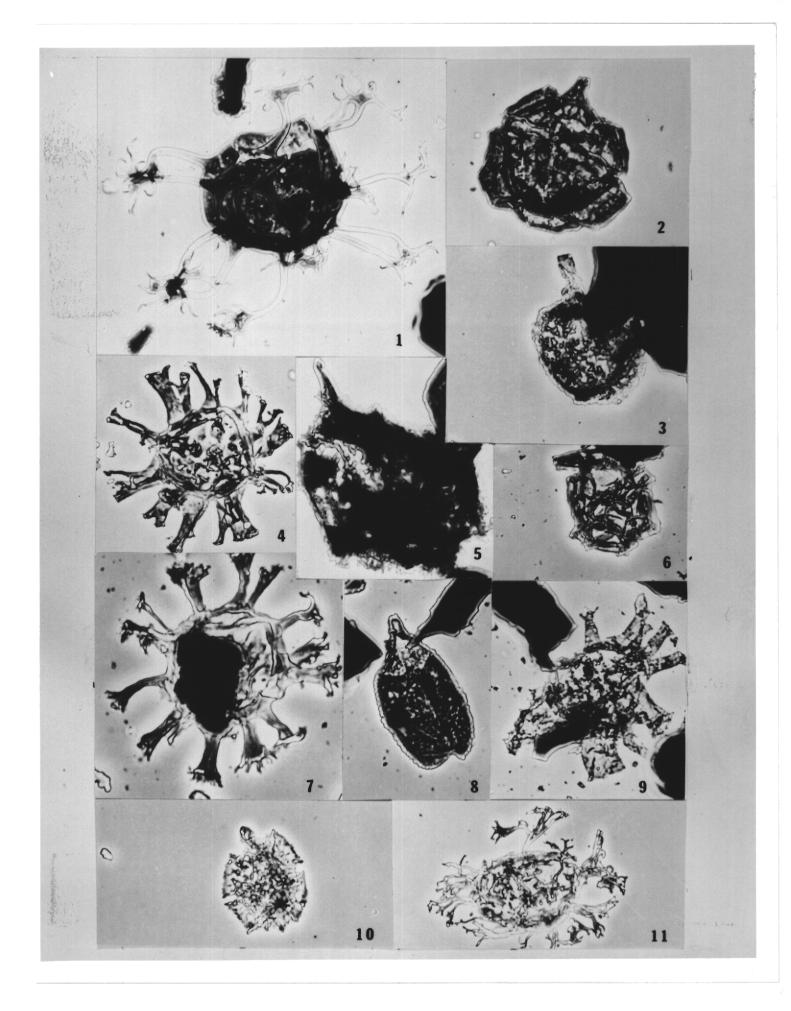
The age is based on the recovery of <u>Nelchinopsis</u> <u>kostromiensis</u> and <u>Gonyaulacysta haploderma</u>.

Palynomorphs characteristic of the interval include: Nelchinopsis kostromiensis, Chlamydophorella spp., Achomosphaera neptuni and Cyclonephelium compactum.

Interval: 15,800'-16,000' (T.D.) Age: Valanginian-Berriasian Environment: (2 samples) Marine

The age is based on the recovery of Gonyaulacysta fastigiata.

Palynomorphs characteristic of the interval include: <u>Gonyaulacysta fastigiata</u>, <u>Hystrichoclinium</u> voigtii, and <u>Cyclonephelium</u> spp..


enkon

Approved: Mullimple W. Dalrymple

Plate 1

Partial Suite of Neocomian Microplankton Recovery from the 15,000-16,000' Interval of the Ebba 2/7-19X Well, Norwegian North Sea

- Figure 1. Oligosphaeridium complex
- Figure 2. Sirmiodinium grossi
- Figure 3. Gardodinium eisenacki (elongatum)
- Figure 4. Kleithriasphaeridium simplicispinum
- Figure 5. Tenua anaphrissa
- Figure 6. Gonyaulacysta haploderma
- Figure 7. Cordosphaeridium eionoides
- Figure 8. Pareodinia ceratophora
- Figure 9. Hystrichosphaeridium cooksoni
- Figure 10. Nelchinopsis kostromiensis
- Figure 11. Systematophora complicata

		Ē	•	ē	•	ROBERTSON	
 -	-	~	-	~	~		

PHILLIPS 2/7-19X NORWAY

1653

₩ A G T 1

INTERVAL ((FEET)- TOP BASE TYPE TAI	LIQUID PRONE)	100% BY VOLUME (GAS FROME) VITRI- NITE OTHER	(PO) MEAN	STND. DEV	MODE	RA: LOW	VGF HIGH	ND.40F VIT. Readince	TOTAL FRENIC CARRON (WT)	5×7) (12) *4) (P)
13830. 13900. CC 23	ξ. 6	42. 5.	===			======	========	==========	=॑ ੑ === <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	= = = = :
1139		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-139	- J.12	1.36	- 1.13	-1.56	Ζ.		
14168.14288. CC 23	11.64.	34. 0.	1.56	6.12	1.57	-1.32	1.77	57		
-142.3.14300. CC 21	10. 50.	42. 2.				,		.5 1	1.2	
-14330. 14483. CC 25 7144	0. 33.	7 0. 0.	1.61	2.15	1.69	1.31	1.97	66	4 ♥	
		34.+ C.+	1.54	0 •1 5	1.57	1.31	1.64	67	· . E 7	
~14620. 14782. CC 24	10. 51.	40. °.	1.55	í .1 6	1.35	1.31	-1.87	É 5	65	
-14700-14880- CC 25	1 4	5,	1.62	6.15	1.69	1.32	1294	81	1.40	
-14800 14900 CC 26		4%. û.	1.56	2.17	1.45	1.29	. 1.97	81	. 4.9	
-14900. 15000. CC 26			1.57	0+17	1.37	1:531	1.91	67	. 46	
-15010. 15100. CC 27	10. 50.	46. 0.	1.62	2.17	1.56	1.30	1.94	67	-62	
-15100. 15200. CC 30	• • • •	5°• 0.	1.56	0.18	1.31	1.30	1.94	68	.7=	
-1524 15300 CC 28	4	6.							2.45	
-1530J. 15400. CC 29		50e 8a	1.58	0.18	1.57	1.30	. 1.93	74	1.07	
-154(2.1550). CC 28	10. 30. 10. 30.	61.	1.56	(•17	1 + 37	1.31	-1.87	68	1.61	
-155/2. 15600. CC 32	10.35.	61. j.	1.53	0 +1 5	1.49	1.31	1.95	44	 2 € 5 	
-156		60. C.							1.19	
-15700. 1580. CC 28	16. 5.	66. é.	1.59	i. 18	1.35	1.34	1.97	71	1.12	
-158 1598 CC 32		4 • [*] • 2 • 8 •	1.62	<u>ू</u> । 19	1.69	1.32	2.00	65	2.35	
-15901. 16000. CC 33	1. 50.		1.52	-15	1.37	1.31	1.949	57	2.78	
	▲ ● ●	4. • •	1.57	16	1 • 7 3	1•32	2•10	6.2	2+17	

TERMINOLOGY USED FOR SOURCE ROCK PLOT

A series and the advectored symplectic is contact, by open it is made at the series of the series

TAI = THERMAL ALTERATICN INDEX (SPORE COLOR) (1+2 YELLOW) (2+3 BROWN) (3+4 DARK BROWN) (5 BLACK) EXINITE = POLLEN AND SPORE EXINE + PLANT CUTICLES + RESINS + OTHER STRONGLY FLUORESCENT ORGANIC MATERIALS + AMORPHOUS HERBACEOUS (IF RECOGNIZABLE AS FROM TERRESTRIAL SOURCE + IF NOT IT IS RECORDED UNDER ALGINITE = (ALGAL DEBRIS - CYSTE AND BODIES) + AMORPHOUS SAPROPEL

ALGIVITE = (ALGAL DEBRIS - CYSTS AND BODIES) + AMORPHOUS SAPROPEL VITRINITE = WOODY TISSUE (ALTERED TO HUMIC COMPGUNDS) + NONFLUORESCENT STRUCTURED TRANSLUCENT MATERIAL CTHER ______ (FOR OPTIONAL USE+ NORMALLY USED FOR COALY MATERIAL INCLUDING INERTINITE AND FUSINITE) * RATIO = EDM / (1+25 * TOC)

PPC	1603	2/7-19X	NORWAY	
		E.B. ROBERTSON		

14910.-15000.

APTEODINIUM GRANULATUM(R), CHLAMYDDPHORELLA SPP.(VA), CUNOSPHAERIDIUM SPP.(VR), CYCLONEPHELIUM CDMPACTUM(A), DINOFLAGELLATES(VA), DINOPTERYGIUM CLADOIDES(VR), EXOCHOSPHAERIDIUM PHRAGMITES(R), E. STRIOLATUM(VR), GARDODINIUM EISENACKI(ELONGATUM)***(VR). GCNYAULACYSTA HAPLODERMA***(VR), G. SPP.(R), HYSTRICHODINIUM SPP.(C), H. VOIGTII***(C), HYSTRICHODINIUM SPP.(C), H. VOIGTII***(C), HYSTRICHOSPHAERIDIUM TUBIFERUM(VR), MEMBRANOSPHAERA MAASTRICHTIAN(R), MICRHYSTRIDIUM SPP.(VR), MICRODINIUM SPP.(C), ODONTOCHINA OPERCULATA(R), OLIGOSPHAERIDIUM COMPLEX(A), PARODINIA SPP.(VR), POLYSPHAERIDIUM SPP.(C), SPINIFERITES SPP.(A), SUBTILISPHAERA TEPRULA(VR), TANYOSPHAERIDIUM VARIECALAMUM(R), TENUA ANAPHRISSA(VR),

ALISPORITES GRANDIS(R), A. SPP.(C). CALLIALASPORITES TRILOBATUS(VR). CEREBROPOLLENITES MESOZOICUS(R), CICATRICOSISPORITES SPP.(VR). DELTOIDOSPORA SPP.(C), FORAMINISPORIS WONGTHAGGIENSIS(R), GLEICHENIIDITES SPP.(VR), LETOLEPIDITES VERRUCATUS(VR). PINUSPOLLENITES SPP.(C), PETICULATISPORITES SPP.(R). SPORES INDET.(R), VITREISPORITES SPP.(R).

15000 - 15100 -

APTEODINIUM GRANULATUM(VR), A. SPP.(R), CANNOSPHAEROPSIS SPP.(VR), CHLAMYDOPHORELLA SPP.(C), CORDOSPHAERIDIUM EIONOIDES(VR), CRIBROPERIDIUM SPP.(R), CYCLONEPHELIUM COMPACTUM(A), C. SPP.(VR), DINOFLAGELLATES(A), GARDODINIUM EISENACKI(ELONGATUM)***(R), GUNYAULACYSTA HAPLODERMA***(VR), HYSTRICHODINIUM SPP.(R), H. VOIGTII***(VR), HYSTRICHOSPHAERIDIUM COOKSONI(VR), GDCNTOCHINA OPERCULATA(C), GLIGOSPHAERIDIUM COMPLEX(R), O. SPP.(R), POLYSPHAERIDIUM SPP.(R), PTERODINIUM SPP.(VA), SIRMIODINIUM GROSSI(VR), SPINIFERITES SPP.(A), TANYOSPHAERIDIUM VARIECALAMUM(VR), TENUA ANAPHRISSA(VR).

ALISPORITES SPP.(C), GLEICHENIIDITES SPP.(VR), SPORES INDET.(R), VITREISPORITES SPP.(C),

15100.-15200.

ACHOMOSPHAERA SPP.(R), APTEODINIUM GRANULATUM(R), CHLAMYDOPHORELLA SPP.(C), CYCLONEPHELIUM COMPACTUM(C), C. SPP.(VR), DINOFLAGELLATES(VA), GARDODINIUM SPP.(R), GONYAULACYSTA HAPLODERMA***(VR), G. SPP.(R), HYSTRICHODINIUM SPP.(R), HYSTRICHOSPHAERIDIUM COOKSONI(R), KLEITHRIASPHAERIDIUM SIMPLICISPINUM***(VR),

PPC 1603	2/7-19X	NORWAY	PAGE	2
	E.B. ROBERTSON		MAY 1981	

MICRHYSTRIDIUM SPP.(C), NELCHINOPSOS KOSTROMIENSIS***(VR), DDCNTOCHINA OPERCULATA(R), OLIGOSPHAERIDIUM SPP.(R), PAREODINIA CERATOPHORA***(VR), POLYSPHAERIDIUM SPP.(R), PTERODINIUM SPP.(A), SCRINIODINIUM SPP.(VR), SPINIFERITES SPP.(R),

ALISPORITES SPP.(C). GLEICHENIIDITES SPP.(VR), SPORES INDET.(R), VITREISPORITES SPP.(R),

15200.-15300.

CHLAMYDOPHORELLA SPP.(A), CRIBROPERIDIUM SPP.(VR), CYCLONEPHELIUM COMPACTUM(R), C. SPP.(R), DINOFLAGELLATES(A), GARDODINIUM EISENACKI(ELONGATUM)***(VR), GCNYAULACYSTA SPP.(VR), HYSTRICHODINIUM VOIGTII***(R), KLEITHRIASPHAERIDIUM SIMPLICISPINUM***(VR), NELCHINOPSOS KDSTROMIENSIS***(C), ODONTOCHINA OPERCULATA(R), ODCNTOCHITINA SPP.(R), D. STRIATOPERFORATA(R), GLIGOSPHAERIDIUM COMPLEX(R), O. PULCHERRIMUM(R), O, SPP.(R), PALAEOPERIDINIUM CRETACEUM(R), PARODINIA SPP.(VR), PCLYSPHAERIDIUM SPP.(VR), PTERODINIUM SPP.(A), SCRINIODINIUM SPP.(VR), SPINIFERITES SPP.(VR), TENUA SPP.(R), VERYHACHIUM SPP.(R),

ALISPORITES SPP.(C), CEREBROPOLLENITES MESDZOICUS(VR), DELTOIDOSPORA SPP.(VR), GLEICHENIIDITES SPP.(R), PINUSPOLLENITES SPP.(R), PODOCARPIDITES BIFORMIS(R), RETICULATISPORITES SPP.(R), UNDULATISPORITES SPP.(VR), VITREISPORITES SPP.(R).

15300.-15400.

APTEODINIUM GRANULATUM(R), CHLAMYDOPHORELLA SPP.(C), CYCLDNEPHELIUM COMPACTUM(C), DINOFLAGELLATES(C), GARDUDINIUM EISENACKI(ELONGATUM)***(R), HYSTRICHODINIUM VOIGTII***(R), KLEITHRIASPHAERIDIJM SIMPLICISPINUM***(VR), MEMBRANOSPHAEPA MAASTRICHTIAN(VR), ODONTOCHINA OPERCULATA(P), GLIGOSPHAERIDIUM ASTERIGERUM(VR), O. COMPLEX(VR), O. PULCHERRIMUM(R), POLYSPHAERIDIUM SPP.(R), PTERODINIUM SPP.(C), SPINIFERITES SPP.(C), SYSTEMATOPHORA CEMPLICATA(VR), TANYOSPHAERIDIUM SPP.(VR).

ALISPORITES GRANDIS(VR), A. SPP.(R), GLEICHENIIDITES SPP.(R), PODUCARPIDITES BIFORMIS(R), SPORES INDET.(VR), TAXODIACEAEPOLLENITES SPP.(VR), VITREISPORITES SPP.(VR),

15400 - 15500 -

ACHEMOSPHAERA NEPTUNII(VR), CHLAMYDOPHORELLA SPP.(R), CYCLONEPHELIUM SPP.(R). DINOFLAGELLATES(A), GUNYAULACYSTA CLADOPHORA***(VR),

		APPENDIX		
PPC	1603 2/7 E	-19X •B• ROBERTSON	NORWAY	PAGE 3 May 1981
KI M O(O) P	LEITHRIAS ICRHYSTRI DCNTOCHIN LIGOSPHAE TERODINIU	DIUM SPP.(R), N A OPERCULATA(R) RIDIUM PULCHERR M SPP.(R), SIRM	*(R), LICISPINUM***(VR), ELCHINOPSOS KOSTROMIENSI , ODONTOCHITINA STRIATOP IMUM(R), POLYSPHAERIDIUM IODINIUM GROSSI(VR), EPHANELYTRON REDCLIFFENS	ERFORATA(VR). SPP.(VR).
Sf	PORES IND	NITES SPP.(VR). ET.(C), UNDULAT ITES SPP.(VR),	PODOCARPIDITES SPP.(VR) ISPORITES SPP.(VR),	•
1550015600.				
	ELCHINOPS LIGOSPHAE	OS KOSTROMIENSI	• MICRHYSTRIDIUM SPP•(VR S***(R), IMUM(VR), POLYSPHAERIDIU	• •
	LEICHENII PORES IND		PINUSPOLLENITES SPP.(C)	•
1560015700.				
	INOFLAGEL CCISUCYST	LATES(C), MICRH A SPP.(VR), OLI	CYCLONEPHELIUM COMPACTU YSTRIDIUM SPP.(R). GOSPHAERIDIUM ASTERIGERU M(VR), SPINIFERITES SPP.	M(VR).
		NITES SPP.(VR), DRITES SPP.(R),	SPORES INDET.(VR).	
1570015800-				
DI GC H1 NE OL PC	INDFLAGEL DNYAULACY YSTRICHOS ELCHINDPS LIGOSPHAE DLYSPHAER	LATES(A), EXOCH STA HAPLODERMA* Phaeridium Cook Os Kostromiensi: Ridium Asterigei	SONI(VR), MICRHYSTRIDIUM S***(R), RUM(VR), G. SPP.(VR), PTERODINIUM SPP.(R),	VR).
			PORES INDET.(VR). VITREISPORITES SPP.(R).	
		LIUM SPP.(VR). (RIDIUM ASTERIGE)	DINOFLAGELLATES(C), RUM(VR),	
AL	_ I SPOR I TE	S SPP. (R), UNDU	ATISPORITES SPP.(P).	

PPC	1603	2/7-19X	NORWAY
		E.B. ROBERTSON	

PAGE 4 MAY 1981

15900.-16000.

ACHOMOSPHAERA SPP.(VR), BALTISPHAERIDIUM SP.(R), CYCLONEPHELIUM COMPACTUM(VR), C. SPP.(R), DINOFLAGELLATES(R), GONYAULACYSTA FASTIGIATA***(VR), HYSTRICHODINIUM VOIGTII***(R), POLYSPHAERIDIUM SPP.(VR), PTERODINIUM SPP.(R), SPINIFERITES SPP.(R),

ALISPORITES SPP.(R), SPORES INDET.(C).

LEGEND:

(VA)	=	VERY ABUNDANT	(RW)	=	REWORKED
(A)	Ξ	ABUNDANT	(?)	3	QUESTIONABLE
(C)	Ξ	CCMMON			CAVINGS
(R)	Ξ	RARE			CLOSE AFFINITY
(VR)	-	VERY RARE			