MER.83.050

Denne rapport tilhører	O STATOIL
	OK. SENTER
L. NR. 302	87290032 131/2-12 nr 13
KODE Wel	1 31/2-12 Nr 13 Irneres etter bruk
incert	

EXTERN/

TNER.83.050

EXPLORATION AND PRODUCTION:

THE COMPOSITION OF NORWEGIAN GAS WELL TROLL 31/2-12

Req. No: Telex ref. HAG 181043 d. 18.5.83

Author : E.P. Knowles

Participants : R.G. Wilde, A.F. Sutton, and M.C. Macknay

Reviewed by : A.G. Dixon

SUMMARY

The Thornton split-phase sampling system has been used in the forwegian sector of the North Sea to perform a series of separation tests on as well 31/2-12, in the Troll field. The well-stream composition has been etermined from these tests, after recombining measured equilibrium phase ata obtained from controlled sequential separations at the well-head.

The experimental results are compared with downstream phase impositions and properties calculated using a computer program based on the edlich-Kwong equation of state. Although reasonable agreement is obtained etween respective data certain differences are present. These differences re attributed to the exclusion of a non-paraffinic contribution to the emposition description. Adjusting fractions upto C_{15} to allow for the pown aromatic/naphthenic nature of the "tent produced in imulations, an improved reflection of g for the behaviour.

The gas composition from cresponding lower liquid/gas rat # Troll field on wells 31/2-2, 3 tly leaner with a 1 previous tests in HYDROCARBON

THORNTON RESEAHUR CENTRE

Operations Equipment and Measurement Division

November 1983

MERR.83.050

EXTERNAL REPORT

TNER.83.050

EXPLORATION AND PRODUCTION:

THE COMPOSITION OF NORWEGIAN GAS WELL TROLL 31/2-12

Req. No: Telex ref. HAG 181043 d. 18.5.83

Author : E.P. Knowles

Participants : R.G. Wilde, A.F. Sutton, and M.C. Macknay

Reviewed by : A.G. Dixon

SUMMARY

The Thornton split-phase sampling system has been used in the Norwegian sector of the North Sea to perform a series of separation tests on gas well 31/2-12, in the Troll field. The well-stream composition has been determined from these tests, after recombining measured equilibrium phase data obtained from controlled sequential separations at the well-head.

The experimental results are compared with downstream phase icompositions and properties calculated using a computer program based on the icomposition equation of state. Although reasonable agreement is obtained ictween respective data certain differences are present. These differences are attributed to the exclusion of a non-paraffinic contribution to the icomposition description. Adjusting fractions upto C_{15} to allow for the invulations, an improved reflection of the well-streams true behaviour.

The gas composition from well 31/2-12 is slightly leaner with a corresponding lower liquid/gas ratio than was observed in previous tests in the Troll field on wells 31/2-2, 31/2-3 and 31/2-6.

THORNTON RESEARCH CENTRE

Operations Equipment and Measurement Division

November 1983

- and the second se

ļ

CONTENTS

Page

ىلىمىتىمىيەن بويۇن 1- ۋە دەرىغا <u>بالىمىن بىغانىگەلەرىتىنىن بەرمىمىيەن بەرمىمى</u>مەن <u>بەرىرىك بەرمىمى</u>مەن <u>مەرىك بەرمەمىيەت</u>ەر

1.	INTRODUCTION	•••	•••	•••	•••	•••	•••	•••	•••	•••	5
2.	EXPERIMENTAL	• • •	• • •	•••	•••	•••	•••	•••	•••	•••	5
3.	RESULTS	•••	•••	•••	•••	• • •	• • •	•••	•••	•••	6
4.	DISCUSSION	• • •	• • •	• • •	•••	•••	•••	• • •	• • •	•••	7
5.	REFERENCES	•••	• • •	• • •	•••	• • •	•••	• • •	• • •	•••	8
TAE	BLES 1-19	•••	•••	• • •	•••	•••	• • •	• • •	• • •	•••	9
FIG	URES 1-7										

EXPLORATION AND PRODUCTION:

THE COMPOSITION OF NORWEGIAN GAS WELL TROLL 31/2-12

Req. No: Telex Ref. HAG 181043 d.18.5.83

1. INTRODUCTION

In late July and early August 1983, Thornton carried out a series of well head tests on Troll well 31/2-12 during production testing of the gas zone by Norske Shell.

The objective of the Thornton work was to obtain a detailed, accurate well-stream composition and gas/liquid equilibrium data at precise temperature and pressure conditions.

Two sets of testing conditions were employed, (a) at temperatures and pressures designed to replicate previous Thornton 31/2 field test data^{1,2,3} and (b) at conditions requested by Norske Shell.

2. EXPERIMENTAL

The Thornton well head testing equipment consists of a heavy duty sampling manifold containing a mixing device in one leg (Figure 1) which is placed in the well-effluent flow line between the well-head and choke manifold. After passing through the phase mixing device a homogeneous side stream is directed isokinetically, via a sample probe, to a miniature laboratory housing a series of small scale separators (Figure 2). Each separator is controlled at a predetermined temperature and pressure. Condensates were collected at test pressure in the 5 dm² capacity vessel shown in Figure 2 and also in the 0.15 dm² treatment stage. These condensates were either flashed quantitatively to atmospheric pressure for the larger separation, or measured gravimetrically in the case of the 0.15 dm² stage. In both instances "tank oil" and test condition condensate/gas ratios were calculated and these are reported based on $1 \times 10^{\circ}$ m²(st) of gas passed through the Thornton equipment. Volumes of gas were measured by the gas meters shown in Figure 2.

All vented hydrocarbon phases were retained for subsequent compositional analysis using standard gas chromatographic techniques. The analytical data are recombined in the appropriate mole ratio for each separation which eventually yields a detailed description of the well-stream originally sampled. TNER.83.050

The conditions of the 2-stage separations performed during earlier Thornton work on this reservoir, were closely reproduced here, that is:

	1st stage		2nd stage		
	pressure, bar	temperature, °C	pressure, bar	temperature, °C	
Test 1	70.0	-3	35.5	-16	
Test 2	70.0	0	35.5	-7	
Test 3	70.0	1	35.5	-10	

Norske Shell requested these additional separations to be made.

Test 4 *	89.0	29	46.2	-12
Test 5	89.0	32	46.2	- 12
Test 6	60.0	-19		

* Note: Test 4 was performed for trial purposes only.

3. RESULTS

Details of the tests performed including CGR's, both at test conditions and when vented to atmospheric pressure, are given in Table 1.

Tables 2-6 show the gas liquid equilibrium data for each test. The analytical data gives an isomeric split for butane (C4) and pentane (C5) and also describes the molar percentage of benzene, toluene and xylene. The recombined well-head fluid, phase compositions and equilibrium data for each test are given in the tables. Also shown are the Gross Heating Values (GHV) for each gas phase. The resulting measured well-head fluids obtained from recombination calculations were used in computer flash calculations to predict theoretical phase compositions at the first stage experimental conditions and the gas composition so derived was then sequentially flashed to the second stage test conditions. The resulting data obtained are shown in Tables 7 to 11.

In addition, a second series of computer simulation calculations was performed using the same well-head fluids but after reclassifying the C6 and C7 n-alkane fractions as cylcohexane and methyl cylcohexane. The C9+ fraction was also modified to include a 60% aromatic/naphthene content (benzene toluene and xylene proportions were determined experimentally). The predicted data using these adjusted streams are shown in Tables 12 to 16.

Experimental well-head fluid compositions from all tests are summarised in Table 17. Compositional data for tests 1-3 are very similar and Table 18 compares the well stream composition from test 2 with examples from the previous 31/2 gas well tests.

Schematic presentations of the gas/liquid equilibrium data for each test are given in Figures 3 to 7. Table 19 gives conversion factors for SI to FPS units.

4. DISCUSSION

Tests 1 to 3 (Tables 2-4) were performed to confirm results obtained during earlier work on 31/2 wells. The individual well-head fluid compositions compare well with each other. The corresponding 1st and 2nd stage phase compositions for tests 2 and 3 are also in general agreement as expected for nominally the same conditions of separation. Overall only minor variations were evident and these concern the second stage liquid data. The condensate gas ratio for test 1 is higher than in tests 2 and 3 but is to be expected in view of the first stage treatment temperature used during these tests. Similarly the test 3 first stage liquid yield is less than test 2 in line with the slightly higher temperature of test 3.

It is usual when performing computer flash calculations to assume that the feed composition is predominantly paraffinic in nature and that the boiling range of individual fractions fall within the bounds described by the preceeding n-paraffin and that used to identify the group. Such a procedure was employed for the flash calculations shown in Tables 7 to 11. Inspection of this data shows that whilst first stage gas compositions are in reasonable agreement with experimental figures some variation occurs in the 1st stage liquid compositions notably the C1, C6, C7 fractions.

It is known that the Troll fluid compositions are relatively low in n-hydrocarbon species and high in naphthenes and some aromatic groups. particularly in the C6 and C7 liquid fractions. For experimental phase behaviour to be reproduced realistically by flash calculations it is clearly necessary to allow for aromatic nature in the input data. It has been found that by the trial inclusion of various levels of aromaticity in the C9 to C16+ fractions, closer agreement can be achieved between measured and calculated results. Consequently a second series of flash calculations were carried out using feeds modified to include cyclohexane, methyl cyclohexane as the characteristic component for the C6 and C7 fractions respectively, and by inserting 60% aromaticity in the C9 to C16+ fractions. From the original analysis the C16+ fraction has been ascribed the properties of a C17 n-hydrocarbon. Tables 12 to 16 show that closer agreement is achieved between measured and predicted data by adjusting the well-stream characterisation in the above manner. Experimentally determined well-head fluid composition data for tests 1-3, 5 and 6 are summarised in Table 17.

TNER.83.050

It was requested for the final test (test 6) that the following conditions should be employed viz., 1st stage 126.8 bar/29°C, second stage 60 bar/-34°C. It was pointed out that the first stage conditions were approximately those at the well head and so the test was modified to a single stage at 60 bar/-34°C. In the event a temperature of -19°C was all that could be achieved with the time and materials available. The experimental well-fluid composition and LGR data are in satisfactory agreement with that predicted by computer calculations.

It is noted that the Troll 31/2-12 well composition and associated equilibrium data confirm previous work carried out in the Troll field.

Testing under similar conditions to those used previously produced comparable data but yielded a slightly leaner gas composition. A comparison of the data obtained under test 2 conditions is shown in Table 18. This table indicates that some variation in composition occurs across the formation and is illustrated by inspection of the respective carbon dioxide levels established by Thornton and independent determinations performed at the same time (see Table 18).

Test 5 was performed using separation conditions requested by Norske Shell. In this case the observed mol ratios and LGR data (Table 5) differ from those obtained in tests 1-3 (Tables 2-4) in line with the higher pressure and temperature in the first stage and lower temperature in the second stage.

5. REFERENCES

- 1. N. Coleclough, Exploration and Production: Gas tests offshore Norway, North West Venture, TNTR.81.021, March 1981.
- 2. N. Coleclough, Exploration and Production: Gas tests offshore Norway, Borgny Dolphin, TNTR.81.014, March 1981.
- E.P. Knowles, Exploration and Production: Gas tests offshore Norway, Gas Well 31/2-6, TNER.82.029, May 1982.

Summary of condensate gas ratios determined in Thornton tests

		Well <u>f</u> lowrate	Test	Condens m ³ /1	ate gas ratio 0 ⁶ m ³ (st)
Test	Date/ Time	$\frac{10^{6} \text{m}^{3} (\text{st})/\text{d}}{(\text{MMscf/d})^{(1)}}$	conditions, bar/°C	At test conditions	At atmospheric ⁽²⁾ conditions
1	29.7.83 08.30 h	0.576 (20.33)	stage 1 70/-3 stage 2 35.5/-16	29.46 6.60	24.40 5.82
2	1.8.83 22.37 h	0.540 (19.06)	stage 1 70/0 stage 2 35•5/ - 7	26.12 4.56	21.22 3.70
3	2.8.83 07.29 h	0.546 (19.28)	stage 1 70/1 stage 2 35.5/-10	25.80 5.39	21.18 4.55
5	2.8.83 14.34 h	0.546 (19.28)	stage 1 88.9/32 stage 2 46.2/-12	11.52 23.06	9•37 19•40
6	2.8.83 18.00 h	0.523 (18.47)	stage 1 60/ - 19	36.63	29.03

Note (1) Flopetrol data

Note (2) Amount of liquid at atmospheric conditions relative to separation gas

ļ.

TABLE 2

lest l	Exper	imental i	enase con	nposition	ns (mo1%)
Component	Well-head fluid	Separa 70.(-3	ator 1) bar °C	Separa 35.1 -16	ator 2 5 bar °C
	TIUIU	Liq.	Gas	Liq.	Gas
C1 C2 C3 IC4 NC4 IC5 NC5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 BENZ TOL XYL N2 C02	93.287 3.435 0.309 0.263 0.026 0.038 0.007 0.136 0.169 0.052 0.042 0.033 0.015 0.013 0.015 0.013 0.007 0.004 0.003 0.002	$\begin{array}{c} 25.820\\ 4.624\\ 1.745\\ 3.318\\ 0.652\\ 1.580\\ 0.415\\ 12.459\\ 19.701\\ 6.960\\ 6.139\\ 4.998\\ 2.342\\ 2.342\\ 2.133\\ 1.034\\ 0.653\\ 0.438\\ 0.332\\ 0.078\\ 0.063\\ 0.044\\ 0.012\\ 1.568\\ 2.326\\ 0.195\\ 0.371\\ \end{array}$	93.705 3.428 0.300 0.244 0.022 0.029 0.005 0.060 0.047 0.008 0.004 0.002	20.787 5.893 2.121 4.667 0.618 1.857 0.444 21.202 29.965 5.885 3.003 1.227 0.318 0.142 0.058 0.043 0.007 0.021 0.233 1.124 0.085 0.300	93.811 3.424 0.297 0.238 0.021 0.026 0.004 0.029 0.004
	0.330				
Mol.ratio		0.0062	0.9938	0.0014	0.9924
Mol.mass kg/kmol	17.576	80.250	17.184	73.918	17.102
C7+	0.366	48.809	0.063	42.005	0.004
GHV MJ/m³(st)	39.26		38.48		38.36
T/C LGR m ³ /10 ⁶ m ³ (st)		29.46		6.60	

Test 1 Experimental Phase Compositions (mol%)

Compositions on a water free basis.

T

i

i

Table 3

Component		Separa 70.0 0		Separa 35.5 -7	
	fluid	Liq.	Gas	Liq.	Gas
C1 C2 C3 IC4 NC4 IC5 NC5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 BENZ TOL XYL N2 CO2	93.146 3.435 0.313 0.266 0.026 0.038 0.007 0.119 0.146 0.045 0.038 0.029 0.014 0.012 0.006 0.004 0.003 0.002 0.001 0.001 0.001 0.009 0.014 1.763 0.563	$\begin{array}{c} 25.208\\ 4.613\\ 1.674\\ 3.082\\ 0.608\\ 1.483\\ 0.399\\ 12.111\\ 19.972\\ 7.151\\ 6.374\\ 5.235\\ 2.480\\ 2.169\\ 1.086\\ 0.696\\ 0.479\\ 0.367\\ 0.102\\ 0.105\\ 0.052\\ 0.013\\ 1.586\\ 2.381\\ 0.221\\ 0.353\end{array}$	93.515 3.428 0.305 0.251 0.022 0.030 0.005 0.055 0.040 0.007 0.004 0.002	$18.744 4.911 1.708 3.701 0.489 1.526 0.417 19.688 31.724 7.658 4.390 1.901 0.468 0.178 0.099 0.075 0.026 0.019 0.297 1.634 0.089 0.258 \\ 0$	93.579 3.427 0.304 0.248 0.022 0.029 0.005 0.037 0.012
Mol.ratio		0.0053	0.9947	0.0009	0.9938
Mol.mass kg/kmol	17.544	81.584	17.203	78.497	17.148
C7+	0.324	50.235	0.054	48.450	0.012
GHV MJ/m ³ (st)	39.09		38.40		38.33
T/C LGR m ³ /10 ⁶ m ³ (st)		26.12		4.56	

Test 2 Experimental Phase Compositions (mol%)

Compositions on a water free basis.

TABLE 4

Test 3

Experimental Phase Compositions (mol%)

Component	Well-head fluid	Separa 70.0 1	ator 1 0 bar °C	Separa 35.1 - 10	
	IIIIU	Liq.	Gas	Liq.	Gas
C1 C2 C3 IC4 NC4 IC5 NC5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 BENZ TOL XYL N2 C02	93.429 3.421 0.305 0.261 0.025 0.037 0.008 0.120 0.149 0.045 0.038 0.030 0.014 0.013 0.006 0.004 0.003 0.004 0.003 0.002 0.001 0.001 0.001	$\begin{array}{c} 25.896\\ 4.464\\ 1.623\\ 3.038\\ 0.603\\ 1.491\\ 0.397\\ 11.975\\ 19.705\\ 6.995\\ 6.289\\ 5.262\\ 2.488\\ 2.359\\ 1.196\\ 0.794\\ 0.556\\ 0.433\\ 0.120\\ 0.556\\ 0.433\\ 0.120\\ 0.126\\ 0.057\\ 0.013\\ 1.243\\ 2.343\\ 0.169\\ 0.365\end{array}$	93.791 3.415 0.298 0.246 0.022 0.029 0.006 0.057 0.045 0.008 0.004 0.002	19.680 5.251 1.816 3.967 0.512 1.588 0.455 20.332 31.117 6.886 3.825 1.683 0.435 0.204 0.106 0.087 0.032 0.032	93.875 3.413 0.296 0.242 0.021 0.027 0.005 0.034 0.010
Mol.ratio		0.0053	0.9947	0.0011	0.9936
Mol.mass kg/kmol	17.511	81.763	17.169	76.830	17.102
C7+	0.327	49.966	0.061	46.032	0.010
GHV MJ/m ³ (st)	39.19		38.50		38.41
T/C LGR m ³ /10 ⁶ m ³ (st)		25.80		5.39	

Compositions on a water free basis.

،**همیند** ...

L

i

> ; |

TABLE 5

Test 5	Exper:	imental H	Phase Con	nposition	ns (mol%)
Component	Well-head fluid	Separa 88.9 32		Separa 46.2 -12	
	TTUTA	Liq.	Gas	Liq.	Gas
C1 C2 C3 IC4 NC4 IC5 NC5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 BENZ TOL XYL N2 CO2	$\begin{array}{c} 92.953\\ 3.583\\ 0.326\\ 0.278\\ 0.027\\ 0.038\\ 0.008\\ 0.133\\ 0.172\\ 0.047\\ 0.039\\ 0.030\\ 0.013\\ 0.012\\ 0.006\\ 0.004\\ 0.003\\ 0.002\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.001\\ 0.002\\ 0.015\\ 1.722\\ 0.585\\ \end{array}$	$\begin{array}{c} 29.055\\ 4.346\\ 1.260\\ 1.949\\ 0.328\\ 0.740\\ 0.204\\ 6.803\\ 13.730\\ 6.059\\ 7.215\\ 8.057\\ 4.324\\ 5.032\\ 2.566\\ 1.735\\ 1.203\\ 0.907\\ 0.242\\ 0.236\\ 0.089\\ 0.008\\ 0.581\\ 2.746\\ 0.238\\ 0.347\\ \end{array}$	93.092 3.581 0.324 0.275 0.026 0.036 0.007 0.119 0.143 0.034 0.023 0.013 0.004 0.002 0.001	24.139 6.404 2.128 4.379 0.590 1.647 0.455 16.427 26.467 6.760 4.574 2.501 0.706 0.308 0.114 0.099 0.023 0.023 0.016 0.079 1.716 0.113 0.355	93.443 3.567 0.315 0.254 0.023 0.028 0.005 0.036 0.009
Mol.ratio		0.0022	0.9978	0.0050	0.9928
Mol.mass kg/kmol	17.608	88.998	17.454	73.143	17.171
C7+	0.347	54.722	0.229	43.347	0.009
GHV MJ/m ³ (st)	39.22		38.89		38.38
T/C LGR m ³ /10 ⁶ m ³ (st)		11.52		23.06	

Test 5 Experimental Phase Compositions (mol%)

Compositions on a water free basis.

میکند. با در می از این از میشند میشند در این از این از این این این این از در این از در این این از در این این م

CONFIDEN'CIAL

TABLE 6

Fest (5
--------	---

Experimental Phase Compositions (mol%)

Component	Well-head fluid	Sepa: 60.0 -19	rator D bar C
	IIUIG	Liq.	Gas
C1 C2 C3 IC4 NC4 IC5 NC5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 BENZ TOL XYL N2 C02	$\begin{array}{c} 92.867\\ 3.429\\ 0.316\\ 0.269\\ 0.028\\ 0.042\\ 0.008\\ 0.143\\ 0.182\\ 0.048\\ 0.041\\ 0.033\\ 0.015\\ 0.041\\ 0.033\\ 0.015\\ 0.014\\ 0.007\\ 0.005\\ 0.003\\ 0.005\\ 0.003\\ 0.002\\ 0.001\\ 0.015\\ 1.977\\ 0.545\\ \end{array}$	$\begin{array}{c} 26.647\\ 6.035\\ 2.397\\ 4.621\\ 0.882\\ 2.079\\ 0.519\\ 13.093\\ 19.187\\ 5.900\\ 5.003\\ 4.047\\ 1.869\\ 1.749\\ 0.887\\ 0.583\\ 0.403\\ 0.299\\ 0.072\\ 0.056\\ 0.013\\ 1.258\\ 1.870\\ 0.122\\ 0.409 \end{array}$	93.411 3.408 0.299 0.233 0.021 0.025 0.004 0.036 0.025
Mol.ratio		0.0082	0.9918
Mol.mass kg/kmol	17.643	75.554	17.165
C7+	0.376	43.183	0.025
GHV MJ/m ³ (st)	39.16		38.21
T/C LGR m ³ /10 ⁶ m ³ (st)		36.63	

Compositions on a water free basis.

•••••

Table 7

		Separa 70.0 bai		Separa 35.5 ba	tor 2 r/-16°C
Component	Well-head fluid	Liquid	Gas	Liquid	Gas
C1	93.287	31.74	93.706	20.84	93.773
C2	3.435	6.09	3.417	5.88	3.415
C3	0.309	1.66	0.300	2.12	0.298
IC4	0.263	2.99	0.244	4.73	0.240
NC4	0.026	0.40	0.023	0.68	0.023
IC5	0.038	1.08	0.031	2.12	0.029
NC5	0.007	0.26	0.005	0.55	0.005
C6	0.136	9.97	0.070	21.58	0.050
C7	0.169	17.95	0.048	29.76	0.020
C8	0.052	6.75	0.006	5.73	0.001
C9	0.042	5.88	0.002	2.28	
C10	0.033	4.78	0.001	0.73	
C11	0.015	2.20		0.15	
C12	0.013	1.92		0.05	
013	0.007	1.03		0.01	
C14	0.004	0.59			
C15	0.003	0.44			
C16	0.002	0.30			
C17		ļ			
C18					
C19					
C20					
BENZ	0.040	1 00	0.000		
TOL	0.010	1.22	0.002	1.34	
XYL	• 0.016	2.21	0.001	1.06	4 500
N2	1.577	0.16	1.587	0.09	1.588
C02	0.556	0.38	0.557	0.30	0.557
Mol. ratio		0.0068	0.9932	0.0009	0.9923
Mol. mass kg/kmol	17.576	74.29	17.18	72.89	17.13
		+	· · · · · · · · · · · · · · · · · · ·		
C7+	0.366	45.27	0.06	41.11	0.03
$\frac{T/C LGR}{m^3/10^6 m^3 (st)}$		29.59		4.23	

Test 1 - Computer predicted phase compositions (mol %)

Compositions on a water free basis

	Well-head	Separa 70.0 ba	ator 1 ar/0°C		ator 2 ar/-7°C
Component	fluid	Liquid	Gas	Liquid	Gas
C1	93.146	30.86	93.489	18.82	93.529
C2	3.435	5.86	3.422	4.90	3.42'
C3	0.313	1.61	0.306	1.71	0.305
IC4	0.266	2.92	0.251	3.71	0.250
NC4	0.026	0.39	0.024	0.52	0.024
IC5	0.038	1.06	0.032	1.66	0.03
NC5	0.007	0.26	0.006	0.43	0.005
C6	0.119	9.15	0.069	17.23	0.060
C7	0.146	17.45	0.050	31.78	0.034
C8	0.045	6.91	0.007	8.77	0.003
C9	0.038	6.44	0.003	4.46	
C10	0.029	5.14	0.001	1.54	
C11	0.014	2.52		0.34	
C12	0.012	2.18		0.11	
C13	0.006	1.09		0.02	
C14	0.004	0.73		0.01	
C15	0.003	0.55			
C16	0.002	0.37			
C17	0.001	0.18			
C18	0.001	0.18			1
C19					
C20					
BENZ			ļ		
TOL	0.009	1.28	0.002	1.78	0.00'
• XYL	0.014	2.32	0.001	1.86	
N2	1.763	0.18	1.772	0.09	1.773
C02	0.563	0.37	0.564	0.26	0.564
Mol. ratio		0.0055	0•9945	0.0005	0.9940
Mol. mass kg/kmol	17•544	77.00	17.22	78.38	17.187
C7+	0.324	47.34	0.064	50.67	0.038
T/C LGR m ³ /10 ⁶ m ³ (s ²)		25.31	1	2.49	

Test 2 - Computer predicted phase compositions (mol %)

Compositions on a water free basis

1

Table 9

	Well-head	Separa 70.0 ba		Separa 35.5 ba	tor 2 r/-10°C
Component	fluid	Liquid	Gas	Liquid	Gas
C1	93.429	30.70	93.772	19.59	93.827
C2	3.421	5.76	3.408	5.21	3.407
C3	0.305	1.55	0.298	1.81	0.297
IC4	0.261	2.80	0.247	4.01	0.244
NC4	0.025	0.37	0.023	0.56	0.023
IC5	0.037	1.02	0.032	1.79	0.030
NC5	0.008	0.30	0.006	0.55	0.006
C6	0.120	9.09	0.071	18.84	0.057
C7	0.149	17.71	0.053	32.02	0.029
C8	0.045	6.93	0.008	. 7.48	0.002
C9	0.038	6.49	0.003	3.47	
C10	0.030	5.37	0.001	1.19	
C11	0.014	2.55		0.25	
C12	0.013	2.39		0.09	ļ
C13	0.006	1.11		0.02	
C14	0.004	0.74			ł
C15	0.003	0.55			
C16	0.002	0.37			
C17	0.001	0.18	!		
C18	0.001	0.18			
C19					
C20					
BENZ					
TOL	0.007	0.99	0.002	1.28	0.001
XYL	0.014	2.34	0.001	1.50	
N2	1.521	0.15	1.528	0.08	1.530
C02	0.546	0.36	0.547	0.26	0.547
Mol. ratio		0.0054	0.9946	0.0008	0.9938
Mol. mass kg/kmol	17.511	77.68	17.18	76.35	17.138
C7+	0.327	47.90	0.068	47.3	0.032
T/C LGR m ³ /10 ⁶ m ³ (st)		24.94		3.56	

Test 3 - Computer predicted phase compositions (mol %)

Compositions on a water free basis

		Separa 88.9 ba			ator 2 ar/-12°C
Component	Well-head fluid	Liquid	Gas	Liquid	Gas
C1	92.953	30.20	93.114	24.95	93.394
C2	3.583	4.57	3.581	6.43	3.568
C3	0.326	1.06	0.324	2.13	0.317
IC4	0.278	1.71	0.274	4.44	0.257
NC4	0.027	0.22	0.027	0.62	0.024
IC5 NC5	0.038 0.008	0.55 0.15	0.037	1.74	0.030
C6	0.133	5.46	0.008	16.18	0.053
C7	0.172	13.71	0.137	26.68	0.028
C8	0.047	6.77	0.030	6.76	0.002
C9	0.039	8.32	0.018	4.22	
C10	0.030	8.46	0.008	2.02	
C11	0.013	4.24	0.002	0.52	
C12	0.012	4.30	0.001	0.24	ł
C13	0.006	2.25		0.06	
C1 4	0.004	1.53		0.02	
015	0.003	1.16		0.01	
C16	0.002	0.78			
C17	0.001	0.39	1	}	
C18 C19	0.001	0.38	l	Į	ļ
C20					
BENZ					
TOL	0.002	0.24	0.001	0.29	
XYL	0.015	3.03	0.007	1.72	
N2	1.722	0.20	1.726	0.12	1.733
C02	0.585	0.32	0.586	0.35	0.587
Mol. ratio		0.0026	0.9974	0.0045	0.9929
Mol. mass kg/kmol	17.61	88.12	17.427	73.12	17.20
C7+	0.347	55.56	0.204	42.54	0.03
T/C LGR m ³ /10 ⁶ m ³ (st)		13.45		16.28	

Test 5 - Computer predicted phase compositions (mol %)

Compositions on a water free basis

	Well-head	Separa 60.0 ba:	
Component	fluid	Liquid	Gas
C1 C2 C3 IC4 NC4 IC5 NC5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 BENZ	92.867 3.429 0.316 0.269 0.028 0.042 0.008 0.143 0.182 0.048 0.041 0.033 0.015 0.014 0.007 0.005 0.003 0.002 0.001	32.540 7.48 2.31 4.37 0.62 1.65 0.40 11.45 17.72 5.06 4.42 3.59 1.64 1.53 0.77 0.55 0.33 0.22 0.11	93.422 3.392 0.298 0.231 0.023 0.027 0.004 0.039 0.020 0.002 0.001
TOL XYL N2 CO2	0.010 0.015 1.977 0.545	1.03 1.61 0.19 0.43	0.001 1.994 0.546
Mol. ratio		0.0091	0.9909
Mol. mass kg/kmol	17.643	69.069	17.163
C7+	0.376	43.196	0.024
T/C LGR m ³ /10 ⁶ m ³ (st)	, ,	37.70	

Test 6 - Computer predicted phase compositions (mol 7)

Compositions on a water free basis

.....

	Well-head		eparation at r/-3°C	
Component			Gas	
C1 2 3 i4 n4 15 n5 *6 *7 8 9 9A 10 10A 11 11A 12 12A 13 13A 14 14 14A 15 15A 16+	93.287 3.435 0.309 0.263 0.026 0.038 0.007 0.136 0.169 0.052 0.017 0.025 0.013 0.020 0.005 0.005 0.009 0.005 0.008 0.003 0.004 0.002 0.002 0.002 0.002	28.73 5.67 1.59 2.92 0.40 1.08 0.26 12.45 18.95 6.80 2.36 3.60 1.91 2.89 0.88 1.32 0.77 1.15 0.41 0.62 0.24 0.35 0.18 0.27 0.30	93.726 3.420 0.300 0.245 0.023 0.031 0.005 0.053 0.041 0.006 0.001 0.001	
Benzene Toluene Xylene ^N 2 CO ₂	0.01 0.016 1.577 0.556	1.22 2.21 0.14 0.33	0.002 [.] 0.001 1.587 0.557	
Mol. ratio		0.0068	0.9932	
Mol. mass kg/kmol	17.558	75.38	17.163	
C7+		46.43	0.049	
$\frac{T/C}{m^3/10^6}$ $\frac{LGR}{m^3}$ (st)		30.04		

Test 1 - Computer predicted phase compositions assuming 60% aromatic content in C9 to C16+ fractions (mol %)

Compositions on a water free basis

* C6 as cyclohexane, C7 as methyl cyclohexane.

TNER.83.050

Table 13

	Well-head	1st stage s 70 ba:	eparation at r/0°C
Component	fluid	Liquid	Gas
C1 2 3 i4 n4 -15 n5 *6 *7 8 9 9A 10 10A 11 11A 12 12A 13 13A 14 14 15 15A 17 Bannana	93.146 3.435 0.313 0.266 0.026 0.038 0.007 0.119 0.146 0.045 0.015 0.023 0.012 0.017 0.006 0.008 0.005 0.007 0.002 0.004 0.002 0.002 0.001 0.002 0.004	$\begin{array}{c} 27.97\\ 5.47\\ 1.54\\ 2.84\\ 0.38\\ 1.06\\ 0.26\\ 11.74\\ 18.49\\ 6.89\\ 2.56\\ 3.92\\ 2.03\\ 3.08\\ 1.00\\ 1.50\\ 0.86\\ 1.29\\ 0.43\\ 0.65\\ 0.29\\ 0.43\\ 0.65\\ 0.29\\ 0.43\\ 0.22\\ 0.32\\ 0.72\end{array}$	93.510 3.424 0.306 0.252 0.024 0.032 0.006 0.054 0.044 0.007 0.001
Benzene Toluene Xylene ^N 2 CO ₂	0.009 0.014 1.763 0.563	1.27 2.30 0.16 0.33	0.002 0.001 1.772 0.564
Mol. ratio		0.0056	0.9944
Mol. mass kg/kmol	17.535	77.86	17.198
C7+		48.25	0.055
T/C LGR m ³ /10 ⁶ m ³ (st)		25.99	

Test 2 - Computer predicted phase compositions assuming 60% aromatic content in C9 to C16+ fractions (mol %)

Compositions on a water basis

* C6 as cylcohexane, C7 as methyl cyclohexane

		1st stage s 70 ba:	eparation at r/1°C
Component	Well-head fluid	Liquid	Gas
C1 2 3 14 n4 15 n5 *6 *7 8 9 9A 10 10A 11 11A 12 12A 13 13A 14 14A 15 15A 17	93.429 3.421 0.305 0.261 0.025 0.037 0.008 0.120 0.149 0.045 0.015 0.023 0.012 0.018 0.006 0.008 0.005 0.008 0.005 0.008 0.002 0.004 0.002 0.002 0.001 0.002 0.001 0.002 0.004	$\begin{array}{c} 27.82\\ 5.36\\ 1.47\\ 2.73\\ 0.36\\ 1.01\\ 0.29\\ 11.72\\ 18.78\\ 6.90\\ 2.57\\ 3.95\\ 2.12\\ 3.22\\ 1.01\\ 1.51\\ 0.94\\ 1.41\\ 0.44\\ 0.65\\ 0.29\\ 0.44\\ 0.22\\ 0.33\\ 0.73\end{array}$	93.792 3.410 0.299 0.247 0.023 0.032 0.006 0.056 0.046 0.007 0.001 0.001
Benzene Toluene Xylene N ₂ CO ₂	0.007 0.014 1.521 0.546	0.99 2.30 0.13 0.31	0.002 0.001 1.529 0.547
Mol. ratio		0.0055	0.9945
Mol. mass kg/kmol	17.497	77.975	17.162
C7+		48.8	0.058
$\frac{T/C LGR}{m^3/10^6 m^3 (st)}$		25.60	

<u>Test 3 - Computer predicted phase compositions assuming 60% aromatic</u> <u>content in C9 to C16+ fractions (mol %)</u>

Compositions on a water basis

* C6 as cylcohexane, C7 as methyl cyclohexane

L

Table 15

	17-17 No. 1	1st stage s 88.9 ba:	
Component	Well-head fluid	Liquid	Gas
C1	92.952	27.32	93.148
2	3.583	4.23	3.581
3	0.326	1.00	0.324
i4	0.278	1.64	0.274
n4	0.027	0.21	0.026
15	0.038	0.54	0.037
n 5	0.008	0.15	0.008
*6	0.133	8.00	0.110
*7	0.172	15.81	0.126
8	0.047	6.66	0.028
9	0.016	3.20	0.006
9A 10	0.023	5.53	0.007
104	0.012	3.17	0.003
11	0.005	5.23	0.001
11A	0.008	1.56	0.001
12	0.005	1.56	
124	0.007	2.37	
13	0.002	0.81	1
13A	0.004	1.22	
14	0.002	0.55	
14A	0.002	0.82	
15	0.001	0.41	
15A	0.002	0.62	
17	0.004	1.39	
Benzene			
Toluene	0.002	0.24	0.001
Xylene	0.015	2.87	0.007
N ₂	1.722	0.18	1.726
co ₂	0.585	0.28	0.586
Mol. ratio		0.0029	0.9961
Mol. mass kg/kmol	17.596	87.512	17.394
C7+		56.45	0.180
T/C LGR m ³ /10 ⁶ m ³ (st)		14.96	

Test 5 - Computer predicted phase compositions assuming 60% aromatic content in C9 to C16+ fractions (mol %)

Compositions on a water basis

* C6 as cylcohexane, C7 as methyl cyclohexane

23

•

.

.

		.	
	Well-head		eparation at :/-19°C
Component	fluid	Liquid	Gas
C1	92.867	29.53	93.429
2	3.429	7.01	3.397
3	0.316	2.23	0.299
i4	0.269	4.32	0.233
n4	0.028	0.62	0.023
15 	0.042	1.67	0.004
n5 *6	0.008	0.41	0.027
*0 * 7	0.143 0.182	13.25	0.017
8	0.048	18.72 5.27	0.001
9	0.016	1.84	
9A	0.025	2.77	
10	0.013	1.49	
10A	0.020	2.25	
11	0.006	0.68	
11A	0.009	1.02	
12	0.006	0.64	
12A	0.008	0.95	
13	0.003	0.32	
13A	0.004	0.48	
14	0.002	0.23	-
14A	0.003	0.34	
15	0.001	0.14	
15A	0.002	0.20	
17	0.003	0.34	
Benzene			
Toluene	0.010	1.07	0.001
Xylene	0.015	1.67	
N ₂	1.977	0.16	1.993
co ₂	0.545	0.38	0.546
Mol. ratio		0.0088	0.9912
Mol. mass kg/kmol	17.625	70.763	17.153
C7+		40.42	0.019
T/C LGR m ³ /10 ⁶ m ³ (st)		35.55	

Test 6 - Computer predicted phase compositions assuming 60% aromatic: content in C9 to C16+ fractions (mol %)

Table 16

Compositions on a water basis

÷ C6 as cylcohexane, C7 as methyl cyclohexane

Summary of experimentally determined well head fluid compositions (mol%)

Component	Test 1	Test 2	Test 3	Test 5	Test 6
C1 2 3 i4 n4 i5 n5 6 7 8 9 10 11 12 13 14 15	93.286 3.435 0.309 0.263 0.026 0.038 0.007 0.137 0.169 0.052 0.042 0.033 0.015 0.013 0.007 0.004 0.003	93.146 3.435 0.313 0.266 0.026 0.038 0.007 0.119 0.146 0.045 0.038 0.029 0.014 0.012 0.006 0.004 0.003	93.429 3.421 0.305 0.261 0.025 0.037 0.008 0.120 0.149 0.045 0.038 0.030 0.014 0.013 0.006 0.004 0.003	92.952 3.583 0.326 0.278 0.027 0.038 0.008 0.133 0.172 0.047 0.039 0.030 0.013 0.012 0.006 0.004 0.003	92.867 3.429 0.316 0.269 0.028 0.042 0.008 0.143 0.182 0.048 0.041 0.033 0.015 0.014 0.007 0.005 0.003
16 17 18 Benzene Toluene N ₂ C ⁰ 2	0.002 0.010 0.016 1.577 0.556	0.002 0.001 0.009 0.014 1.763 0.563	0.002 0.001 0.001 0.007 0.014 1.521 0.546	0.002 0.001 0.001 0.002 0.015 1.722 0.585	0.002 0.001 0.010 0.015 1.977 0.545
C7+	0.366	0.324	0.327	0.347	0.376

Compositions on a water free basis

.

TNER.83.050

Table 18

Component		We	ll test number	
	*31/2 - 2(T3)	*31/2 - 3(T6)	* 31/2 - 6(T1)	*31/2-12 (Т2)
C1	92.141	92.851	92.569	93.146
2	3.868	3.528	3.437	3•435
3	0.395	0.420	0.304	0.313
i4	0.362	0.363	0.342	0.266
n4	0.063	0.047	0.029	0.026
i5	0.081	0.112	0.090	0.038
n5	0.004	0.024	0.014	0.007
6	0.181	0.199	0.203	0.119
7	0.242	0.227	0.212	0.146
8	0.060	0.070	0.051	0.045
9	0.040	0.051	0.050	0.038
10	0.034	0.046	0.039	0.029
11	0.014	0.022	0.021	0.014
12	0.007	0.013	0.012	0.012
13	0.004	0.009	0.008	0.006
14	0.002	0.005	0.006	0.004
15	0.001	0.003	0.004	0.003
16		0.001	0.002	0.002
17				0.001
18				0.001
Benzene				
Toluene	0.001	0.001	0.005	0.005
Xylene	0.020	0.024	0.009	0.014
N ₂	1.903	1.560	1.702	1.763
-	0.577		0.896	0.563
°°2	(0.400)	0.424	(1.000)	(0.600)
Mol. ratio	0.0064	0.0076	0.0068	0.0053
LGR m ³ /10 ⁶ m ³ (st)	30.83	35.89	31.84	26.10

Comparison of Troll 31/2-12 Test 2 with examples of previous test results from Troll 31/2 gas wells (mol %)

* Troll 31/2-2 Test 3, 21/9/80, Ref. TNTR.81.021¹ Troll 31/2-3 Test 6, 8/7/80, Ref. TNTR.81.014² Troll 31/2-6 Test 1, 7/10/81, Ref. TNER.82.029³ Troll 31/2-12 Test 2, This report

Note: CO2 values in parenthesis measured independently using Draeger tube

ļ

Table 19

Conversion factors

 $psig = \frac{bar - 1.01325}{0.06895}$

$$bb1 = \frac{m^2}{0.15899}$$

$$bbl/MMscf = \frac{m^3/10^6 m^3 (st)}{5.6254}$$

$$F = C \times \frac{9}{5} + 32$$

scf = $\frac{m^3 (st)}{0.02826}$

$$Btu/scf = \frac{MJ/m^{2} (st)}{37.3307 \times 10^{-3}}$$

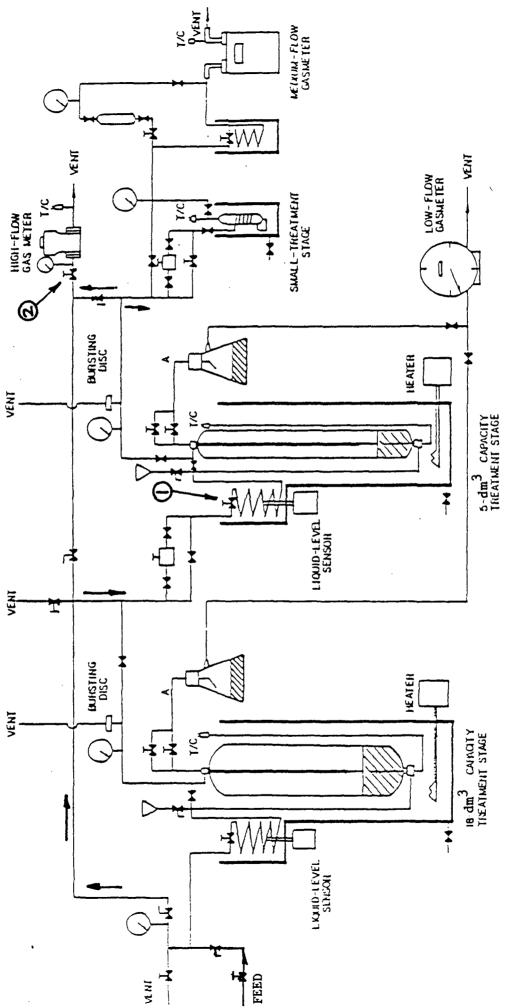
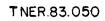



FIG.1-Well-head testing unit

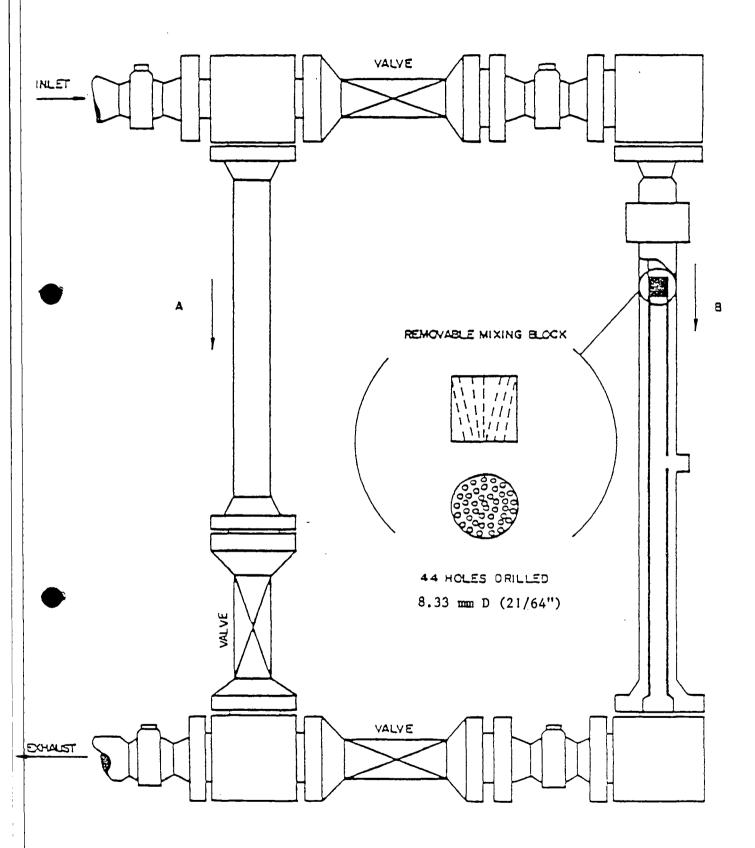
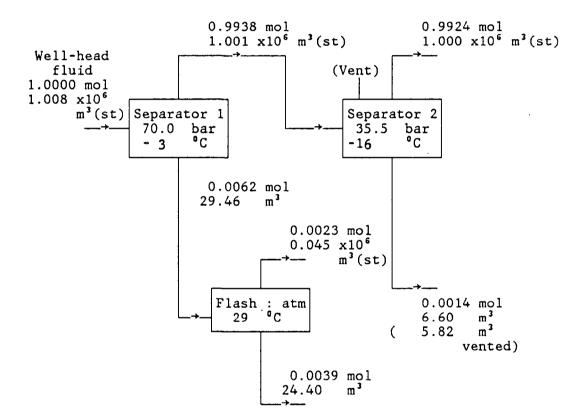


FIG. 2-Mixing manifold

se s<u>in</u> e i

•••••

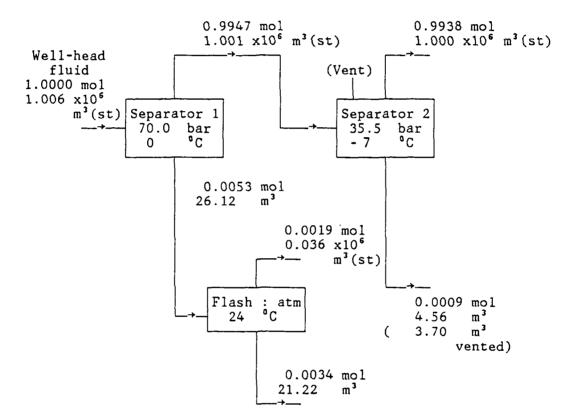
...


•

-

FIGURE 3

Mass and Volume Balance

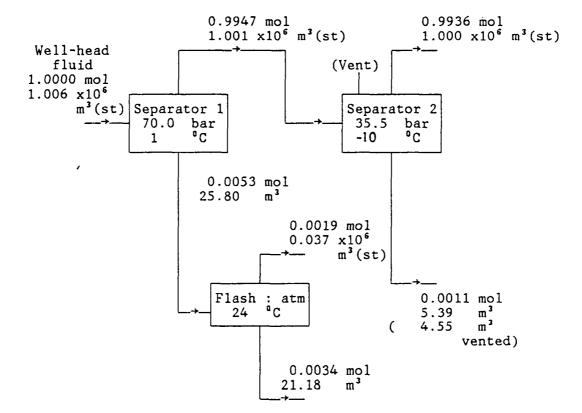

Test 1

NOTE. The mass and volume balances, based on 1 mol of input fluid and 10⁶ m³(st) of final gas respectively, are not equivalent.

FIGURE 4

Test 2 Mass and Volume Balance

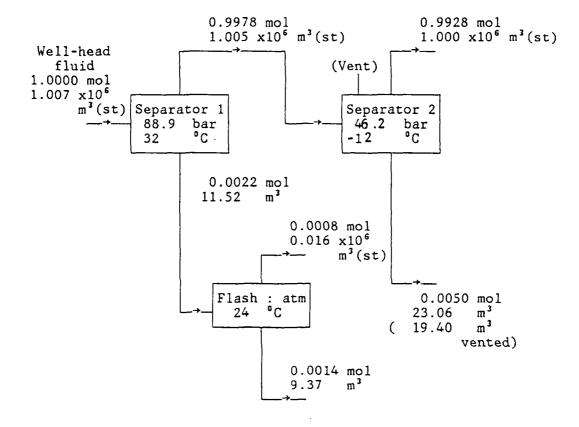
NOTE. The mass and volume balances, based on 1 mol of input fluid and 10⁶ m³(st) of final gas respectively, are not equivalent.


1

Į.

FIGURE 5

Test 3 Mass and Volume Balance



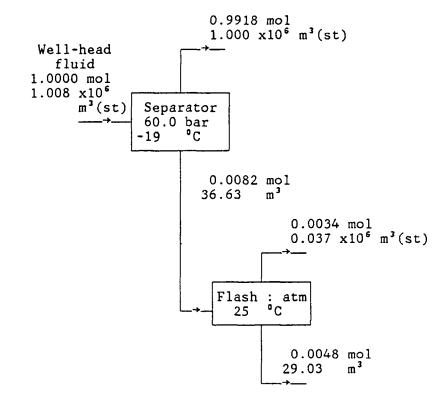
NOTE. The mass and volume balances, based on 1 mol of input fluid and 10⁶ m³(st) of final gas respectively, are not equivalent.

FIGURE 6

Test 5 M

Mass and Volume Balance

NOTE. The mass and volume balances, based on 1 mol of input fluid and 10⁶ m³(st) of final gas respectively, are not equivalent.


i.

CONFIDENT LAL

FIGURE 7

Test 6

Mass and Volume Balance

NOTE. The mass and volume balances, based on 1 mol of input fluid and 10⁶ m³(st) of final gas respectively, are not equivalent.

AMER.83.052

EXPLORATION AND PRODUCTION TEST ON GAS FROM WELL 31/2-12 IN OFFSHORE TROLL FIELD, NORTH SEA, NORWAY.

Sampling and analysis of gas and condensate

bу

M.J. Scheele and D. Boon

Approved by: M.E. van Kreveld

.

SUMMARY

928222S

During a production test in the offshore Troll field, North Sea, Norway, sampling and analysis of gas and condensate have been carried out. The present report describes the sampling and the analytical procedures applied, and presents the results obtained.

September 1983

AMER.83.052

L

ŧ

C O N T E N T S

		Page
1.	INTRODUCTION	1
2.	EXPERIMENTAL	1
3.	RESULTS	2
	2 TABLES	

EXPLORATION AND PRODUCTION TEST ON GAS FROM WELL 31/2-12 IN OFFSHORE TROLL FIELD, NORTH SEA, NORWAY.

Sampling and analysis of gas and condensate

1. INTRODUCTION

A production test was carried on gas from the 31/2-12 well in the offshore Troll field, North Sea, Norway. Detailed information about the following trace components was obtained:

In the gas: Hydrogen sulphide, other sulphur components, mercury, radon-222, carbon dioxide, helium and nitrogen.

In the condensate: Mercury, total sulphur and polonium-210.

The present report describes briefly the sampling procedures followed and presents the results obtained.

2. EXPERIMENTAL

The gas/condensate mixture coming from the well was separated in a high-pressure test separator. The gas samples were taken from the gas outlet of the separator. The hydrogen sulphide, mercury, radon and carbon dioxide contents were determined on the rig. Separate gas samples were sent to a research laboratory for the determination of other sulphur compounds, helium and nitrogen. Since no water was produced in the separator, no water analyses have been performed.

The condensate samples, originating from the first stage of the separator were collected in glass bottles. The mercury content was determined on the rig. The total sulphur and polonium contents were determined at a research laboratory.

Table I summarizes the analytical methods used and Table II gives a survey of the results obtained.

3. RESULTS

The results obtained during the production test are presented below. Throughout this section volumes of gas are considered at standard conditions (15 $^{\circ}$ C, 1.01325 bar). SI-units or SI-accepted units are used as far as possible.

3.1. Flow period 1

Well open: 26/7/1983, 11.00 - 18.00 hr. Separator conditions: temperature : 115 °F (46 °C) pressure : 40 bar (580 psig) rate : 12 MMSCF (0.33 x 10⁶ m³)

Well open: 26/7/1983, 18.00 - 21.30 hr. Separator conditions: temperature: $136 {}^{\circ}F$ (59 ${}^{\circ}C$) pressure : 29 bar (420 psig) rate : 23 MMSCF (0.65 x 10⁶ m³)

a. Gas

	Content	Sampling time, h
H ₂ S	$< 0.01 \times 10^{-6} m^3/m^3$	16.45
-	$< 0.01 \times 10^{-6} \text{ m}^3/\text{m}^3$	17.10
	$< 0.01 \times 10^{-6} m^3/m^3$	20.05
со ₂	0.75 % (v/v)	17.00
	0.70 % (v/v)	20.00

3.2. Flow period 2

Well open: 29/7/1983, 00.00 - 12.00 hr.

Separator conditions: temperature: 136 ${}^{\circ}F$ (59 ${}^{\circ}C$) pressure : 29 bar (420 psig) rate : 24 MMSCF (0.68 x 10 ${}^{\circ}m$)

States and the second second second

a. Gas

	Content	Sampling time, h
H ₂ S	$0.01 \times 10^{-6} \text{ m}^3/\text{m}^3$	03.00
-	$0.02 \times 10^{-6} \text{ m}^3/\text{m}^3$	04.00

Other sulphur compounds	$0.04 \times 10^{-6} \text{ m}^{3}/\text{m}^{3}$ $0.05 \times 10^{-6} \text{ m}^{3}/\text{m}^{3}$ $0.06 \times 10^{-6} \text{ m}^{3}/\text{m}^{3}$ $0.04 \times 10^{-6} \text{ m}^{3}/\text{m}^{3}$ $0.05 \times 10^{-6} \text{ m}^{3}/\text{m}^{3}$ $< 0.1 \times 10^{-6} \text{ m}^{3}/\text{m}^{3}$	06.30 07.10 08.35 09.30 11.05
Mercury	0.23 µg/m ³ 0.28 µg/m ³ 0.29 µg/m ³ 0.27 µg/m ³ 0.26 µg/m ³ 0.22 µg/m ³	04.35 - 05.00 05.30 - 06.00 07.35 - 07.55 08.05 - 08.30 09.50 - 10.20 10.30 - 11.00
Rn-222	28.5 Bq/m ³	04.30
co ₂	0.6 % (v/v) 0.6 % (v/v) 0.6 % (v/v) 0.6 % (v/v) 0.6 % (v/v) 0.6 % (v/v) 0.6 % (v/v)	03.00 04.00 06.20 07.05 08.45 09.45 11.30
He	$150 \times 10^{-6} m^3/m^3$	11.30
N ₂	1.53 % (v/v)	11.30

b. <u>Condensate</u>

Ì

ł

	Content	Sampling time, h	
Mercury	<0.001 g/m ³	10.00	
Total sulphur	58 g/m ³	10.00	
Po-210	<1 kBq/m ³	10.00	

and a contract sector

3

Amsterdam, September 1983 (HH)/RHP - 3 -

AMER.83.052

TABLE I

SURVEY OF THE ANALYTICAL METHODS USED

1. Gas phase

Hydrogen sulphide (H₂S) Dräger tube No. CH 298 Other sulphur compounds GC with microcoulometric detection Flameless atomic absorption Mercury (Hg) spectrophotometry Radon-222 (Rn) Radiochemical analysis Carbon dioxide (CO₂) Dräger tube No. CH 25101 Helium (He) GC with thermal conductivity detection Nitrogen (N2) GC with thermal conductivity detection 2. Condensate

Mercury (Hg)Flameless atomic absorption
spectrophotometryTotal sulphurMicrocoulometric analysisPolonium-210 (Po)Radiochemical analysis

82 A.L

2.5

TABLE II

SURVEY OF FINAL RESULTS

	Gasphase		
1.	^H 2 ^S ,	$10^{-6} \text{ m}^3/\text{m}^3$	0.05
2.	Other sulphur compounds,	$10^{-6} \text{ m}^3/\text{m}^3$	<0.1
3.	Hg,	µg/m ³	0.26
4.	Rn,	Bq/m ³	28.5
5.	^{co} 2,	%(v/v)	
6.	He,	$10^{-6} \text{ m}^3/\text{m}^3$	150
7.	^N 2,	%(v/v)	1.53
	Condensate		
1.	Hg,	g/m ³	<0.001
2.	Total sulphur,	g/m ³	58
3.	Po,	kBq/m ³	< 1