Petroleum Reservoir Engineering
DALLAS, TEXAS 75207
November 25, 1970

RESERVOIR FLUID ANALYSIS

Phillips Petroleum Company - Norway P. O. Box 72 Stavanger, Norway

Attention: Mr. P. W. Reynolds

Subject: Reservoir Fluid Study

2/4-4AX Well (8000 Feet) Ekofisk Field Offshore, Norway

Our File Number: RFL 6656

Gentlemen:

A subsurface fluid sample was collected from the subject well on August 10, 1970 by a representative of Core Laboratories, Inc. The sample was taken at a depth of 8000 feet after the well was shut in for one and one-half hours from DST No. 1. The bottom-hole sample was forwarded to our Dallas laboratory for use in a reservoir fluid study and the results of this study are presented in the following report.

At the reservoir temperature of 266° F. the fluid was found to have a bubble point pressure of 5539 psig. During differential pressure depletion the fluid evolved a total of 1966 standard cubic feet of gas per barrel of residual oil at 60° F. The formation volume factor associated with this test was determined to be 2.190 barrels of saturated fluid per barrel of residual oil. The viscosity test was performed under conditions similar to those of the differential pressure depletion and the fluid was found to have a minimum viscosity of 0.219 centipoise at the saturation pressure.

A multi-stage separator test was performed using separation conditions as follows: 1000 psig at 150° F. to 250 psig at 80° F. to 0 psig at 60° F. The data from this test are presented on page six of the report. In addition,

Phillips Petroleum Company - Norway 2/4-4AX Well

the primary separator gas from the multi-stage separator test was collected and analyzed for hydrocarbons. The results of this analysis are presented on page seven. The hydrocarbon analysis of the reservoir fluid sample was performed by means of low temperature, fractional distillation and may be found on page eight of the report.

Thank you for the opportunity to perform this reservoir fluid study for Phillips Petroleum Company - Norway. If we may assist you further in any manner, please feel free to contact us.

Very truly yours,

Core Laboratories, Inc. Reservoir Fluid Analysis

P. L. Moses

P. L. Moses

Manager

PLM:JF:dl

Petroleum Reservoir Engineering DALLAS, TEXAS

	DALLA	AS, TEXAS	Dom 1 of 11	
			Page01	
	Phillips Petroleum		File RFL 6656	
Company	Company - Norway	Date Sampled	August 10, 1970*	
Well	2/4-4AX (8000 Feet)	Province	Offshore	
Field	Ekofisk	Country	Norway	
	FORMATION (CHARACTERISTI	CS	
Formation			Danian	
Date First	Well Completed	_		
Original Re	eservoir Pressure		PSIG @	_Ft.
Original Pr	oduced Gas-Oil Ratio	_	SCF/	/Bbl
_	luction Rate	. · · · <u>-</u>	Bbl/	Day
Sepa	arator Pressure and Temperature		PSIG	_°F.
	Gravity at 60° F.	· -	0	API
Datum	•		Ft. Sul	bsea
Original Ga	as Cap	_		
	WELL CHA	RACTERISTICS		
Elevation		<u></u>	322**	_Ft.
Total Dept	h	<u>-</u>	10894	_Ft.
Producing	Interval	· <u>-</u>	10380-10510	_Ft.
Tubing Size	e and Depth		3-1/2 In. to 10319	_Ft.
Productivit	ty Index	_	Bbl/D/PSI @Bbl/	Day
Last Reser	voir Pressure	· -	PSIG @	
Date	e			
Rese	ervoir Temperature	_	266 ∘F. @ 10445	_Ft.
	cus of Well	· ·	. ()	
Pres	ssure Gauge	_		
	oduction Rate		Bbl/	Dav
	-Oil Ratio		SCF	
Sepa	arator Pressure and Temperature	_	PSIG,	
	e Pressure		ŕ	SIA
Well Makir	ng Water	_		Cut
	SAMPLING	G CONDITIONS		
Sampled at		_	8000	Ft.
Status of V		_	Shut in 1-1/2 hours	
Gas	-Oil Ratio		SCF	/Bbl
Sep	arator Pressure and Temperature		PSIG,	
	ing Pressure	_	•	SIG
	ing Pressure			SIG
	ratories Engineer	_	RFB	
Type Samp	•		Wofford	

REMARKS:

^{*} Sample taken at 10:45 A.M.

^{**} From RKB to sea bed.

Petroleum Reservoir Engineering
DALLAS, TEXAS

Pa ge _	of		11	
File_	RFL 66	556		<u> </u>
Well_	2/4-4A	X (8	000	<u>Fe</u> et)

VOLUMETRIC DATA OF Reservoir Fluid SAMPLE

1. Saturation pressure (bubble-point pressure)

<u>5539</u> PSIG @ <u>266</u>°F.

2. Thermal expansion of saturated oil @ $\frac{7000}{V}$ PSI = $\frac{V @ 266 \text{ °F}}{V @ 72 \text{ °F}} = \frac{1.14217}{1.000}$

3. Compressibility of saturated oil @ reservoir temperature: Vol/Vol/PSI:

From 7000 PSI to 6500 PSI = 18.25×10^{-6}

From 6500 PSI to 6000 PSI = 21.41×10^{-6}

From 6000 PSI to 5539 PSI = 24.60×10^{-6}

4. Specific volume at saturation pressure: ft $^3/lb$

<u>0.02769</u> @ 266 ∘F.

Petroleum Reservoir Engineering
DALLAS, TEXAS 75207

Page_	<u>3</u> o	f1]	<u> </u>
File	RFL 6	6656	
Well	2/4-4.	AX (80	00 Feet)

Reservoir Fluid SAMPLE TABULAR DATA

PRESSURE PSI GAUGE @ 266 °F., RELATIVE VOLUME OF OIL AND GAS, V/Vsat. RELATIVE VOLUME OF CENTIPOISES RELATIVE VOLUME OF RESIDUAL OIL GAS/OIL RATIO IN SOLUTION PER BARREL OF RESIDUAL OIL	RELATIVE OIL VOLUME, V/VR
	2.123
	2.123
7000 0.9691 0.243	
0.238	
6500 0.9781	2.142
0.232	
0.227	2.1//
6000 0.9887	2.166
5900 0.9909	2.170
5800 0.9933 0.222	2.176
5700 0.9956	2.181
5600 0.9983	2.187
5539 1.0000 0.219 0 1966	2.190
5492 1.0023	
5454 1.0043	
5355 1.0094	
5300 0.235 215 1751	2.065
5186 1.0188	
4900 0.260 477 1489	1.920
4868 1.0391	
4478 1.0699	
4400 0.295 718 1248	1.791
4069 1.1115	
3900 0.330 914 1052	1.692
3603 1.1744	
3400 0.368 1075 891	1.612
3159 1.2588	
2900 0.407 1214 752	1.546
2727 1.3755	
2400 0.457 1343 623	1.483
2152 1.6209	
1900 0.500 1462 504	1.428
1613 2.0358	

v = Volume at given pressure

VSAT. = Volume at saturation pressure and the specified temperature.

 V_R = Residual oil volume at 14.7 PSI absolute and 60° F.

Petroleum Reservoir Engineering
DALLAS, TEXAS 75207

Page_	4of	11
File	RFL 6656	
Well_	2/4-4AX (8	3000 Feet)

Reservoir Fluid SAMPLE TABULAR DATA

	PRESSURE-VOLUME RELATION	VISCOSITY	VISCOSITY DIFFERENTIAL		266 °F.
PRESSURE PSI GAUGE	@ 266 °F., RELATIVE VOLUME OF OIL AND GAS, V/Vsat.	OF OIL @ 266 °F CENTIPOISES	GAS/OIL RATIO LIBERATED PER BARREL OF RESIDUAL OIL	GAS/OIL RATIO IN SOLUTION PER BARREL OF RESIDUAL OIL	RELATIVE OIL VOLUME, V/VR
1400		0.577	1571	395	1.376
1184	2.6779				
900		0.667	1678	288	1.325
821	3.7378				
400		0.821	1786	180	1.267
125			1861	105	1.215
0		1.182	1966	0 @ 60°:	1.097 F. = 1.000

Gravity of residual oil = 32.5° API @ 60° F.

v = Volume at given pressure

VSAT. - Volume at saturation pressure and the specified temperature.

 v_R = Residual oil volume at 14.7 PSI absolute and 60° F.

Petroleum Reservoir Engineering
DALLAS. TEXAS

Page_	5 of 11
File	RFL 6656
Well	2/4-4AX (8000 Feet)

Differential Pressure Depletion at 266° F.

Pressure PSIG	Oil Density Gms/Cc	Gas Gravity	Deviation Factor
			*
5539	0.5784		
5300	0.5912	0.977	1.049
4900	0.6082	0.933	0.986
4400	0.6270	0.885	0.943
3900	0.6419	0.840	0.917
3400	0.6564	0.801	0.907
2900	0.6690	0.783	0.903
477 24 00	0.6824	0.771	0.904
1900	0.6952	0.765	0.915
1400	0.7080	0.775	0.926
900	0.7211	0.809	0.949
400	0.7364	0.932	0.977
125	0.7511	1.268	
0	0.7855	2.231	

Petroleum Reservoir Engineering
DALLAS, TEXAS

Page_	_6of
File _	RFL 6656
Well	2/4-4AX (8000 Feet)

SEPARATOR TESTS OF Reservoir Fluid SAMPLE

SEPARATOR PRESSURE, PSI GAUGE	SEPARATOR TEMPERATURE, • F.	GAS/OIL RATIO	GAS/OIL RATIO	STOCK TANK GRAVITY, * API @ 60* F.	Formation Volume Factor (3)	Separator Velume Factor (4)	SPECIFIC GRAVITY OF FLASHED GAS
1000	150	1057	1233			1.166	0.691
to 250	80	132	141			1.068	0.706
to 0	60	115	115	37.7	1.853	1.000	1.110

(2) Gas/Oil Ratio in cubic feet of gas @ 60° F. and 14.7 PSI absolute per barrel of stock tank oil @ 60° F.

(3) Formation Volume Factor is barrels of saturated oil @ 5539 PSI gauge and 266° F. per barrel of stock tank oil @ 60° F.

(4) Separator Volume Factor is barrels of oil @ indicated pressure and temperature per barrel of stock tank oil @ 60° F.

⁽¹⁾ Gas/Oil Ratio in cubic feet of gas @ 60° F. and 14.7 PSI absolute per barrel of oil @ indicated pressure and temperature.

Petroleum Reservoir Engineering
DALLAS. TEXAS

			Page of11
			File RFL 6656
	Phillips Petroleum		
Company Company - Norway		Formation	Danian
Well	2/4-4AX (8000 Feet)	Province_	Offshore
Field	Ekofisk	Country	Norway
	HYDROCARBON ANA	LYSIS OF Separa	tor GAS SAMPLE
	COMPONENT	MOL PER CENT	GPM
Hydrog	gen Sulfide		
-	n Dioxide	1.22	
Nitroge	en	0.35	
Methar	ne	84.04	
Ethane		8.43	2.124
Propan	ne	3.27	0.898
iso-But	ane	0.43	0.140
n-Buta		0.97	0.305
iso-Pen		0.24	0.088
n-Penta		0.30	0.108
Hexane		0.23	0.094
Heptan	nes plus	0.52	0.235
		100,00	3.992

Calculated gas gravity (air = 1.000) = 0.691

Calculated gross heating value = 1188 BTU per cubic foot of dry gas at 14.696 psia at 60° F.

Collected at 1000 psig and 150 °F.

Petroleum Reservoir Engineering DALLAS, TEXAS

				Pag	re8 o	f <u>ll</u>
701-111				File	RFL	6656
~ -	Petroleum			Dania	_	
Company Compan	y - Norway		. Formation_	Daniar	1	
Well 2/4-4A3	(8000 Feet)		_ County	Offsho	re	
Field Ekofisk			. State	Norwa	У	
HYDRO	CARBON AN	NALYSIS OF	Reservoi	r Fluid	_SAMPL	E
COMPONENT	MOL PER CENT	WEIGHT PER CENT	GRAMS F	@ 60° F. PER CUBIC IMETER	° API @ 60° F.	MOLECULAR WEIGHT
	·					
Hydrogen Sulfide						
Carbon Dioxide	0.93	0.60				
Nitrogen	0.21	0.09				
Methane	58.77	13.82				
Ethane	7.57	3.34				
Propane	4.09	2.64				

0.78

1.77

0.82

1.22

2.20

72.72

100.00

0.91

2.09

0.77

1.15

1.75

21.76

100.00

iso-Butane

n-Butane

iso-Pentane

Heptanes plus

n-Pentane

Hexanes

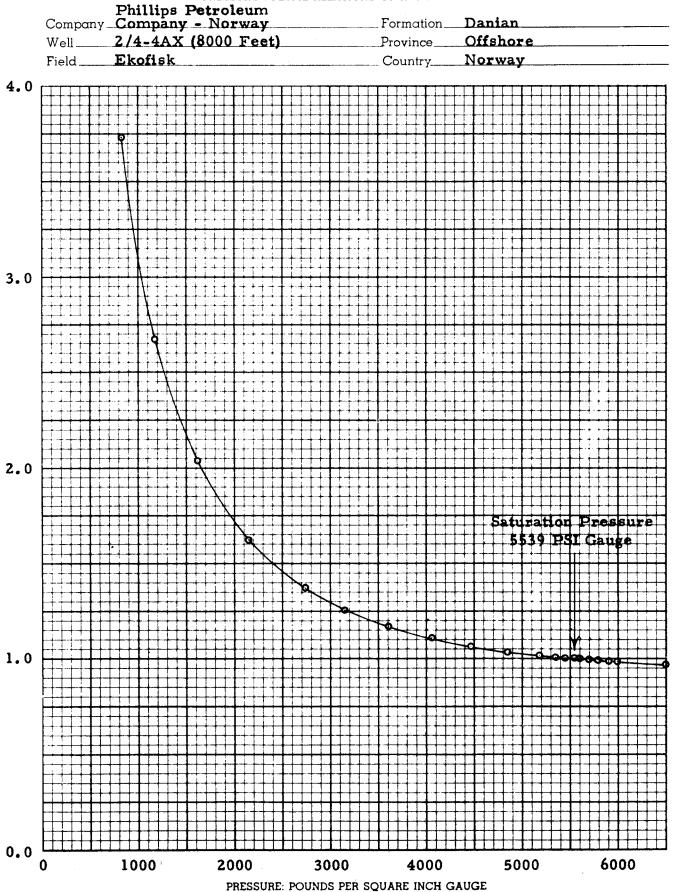
Core Laboratories, Inc. Reservoir Fluid Analysis

P.L. Moses (04)

33.3

228

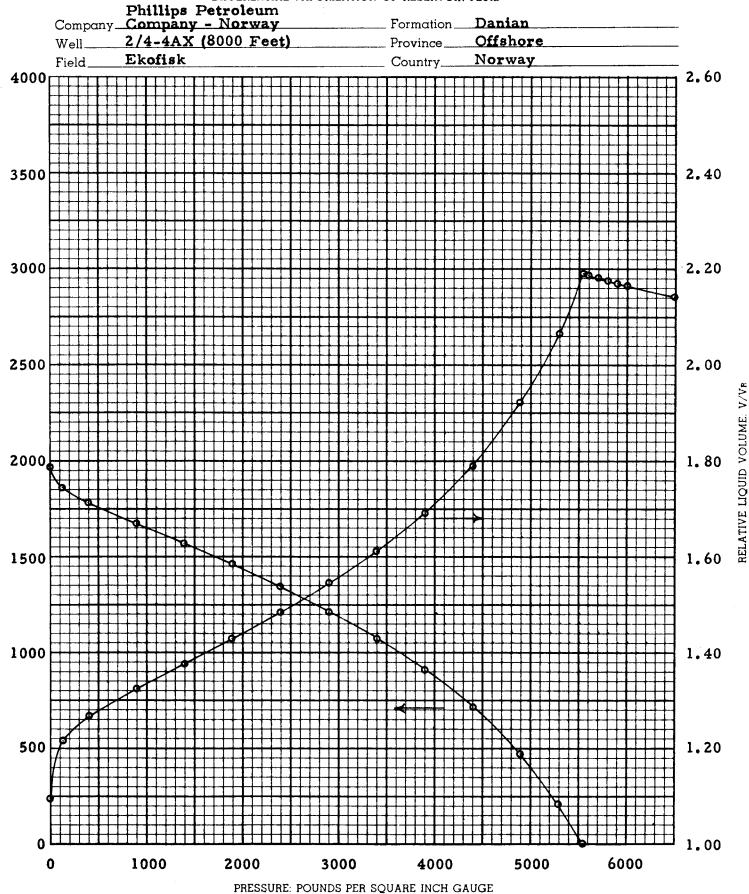
P. L. Moses


Manager

0.8578

Petroleum Reservoir Engineering DALLAS, TEXAS

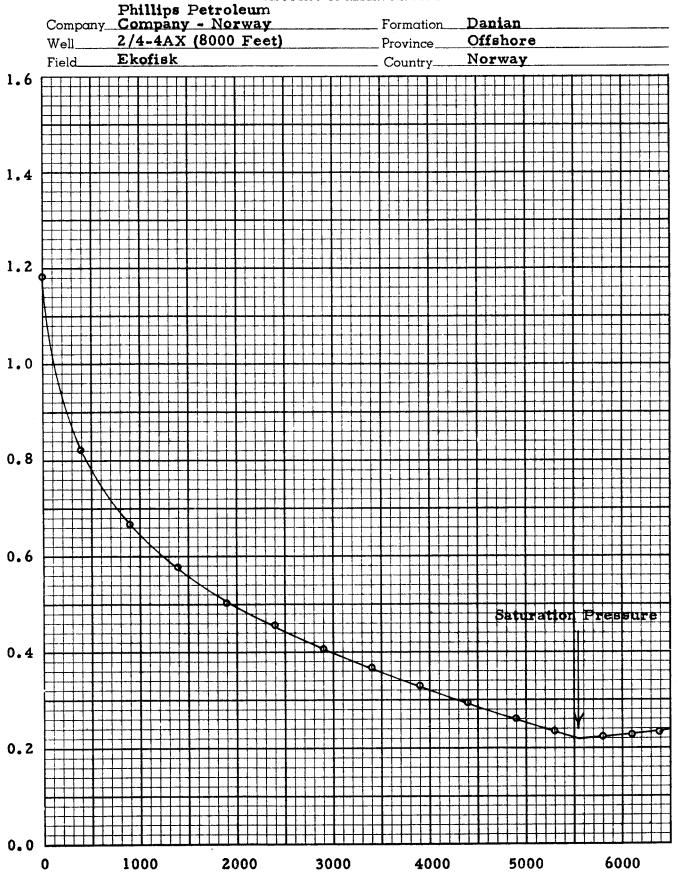
Page 9 of 11 File RFL 6656


PRESSURE-VOLUME RELATIONS OF RESERVOIR FLUID

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

Page 10 of 11 File RFL 6656

DIFFERENTIAL VAPORIZATION OF RESERVOIR FLUID



SCOSITY CENTIPOISES

CORE LABORATORIES. INC. Petroleum Reservoir Engineering DALLAS, TEXAS

Page 11 of 11 File RFL 6656

VISCOSITY OF RESERVOIR FLUID

Distribution of Final Reports

7 Copies

Mr. P. W. Reynolds
Phillips Petroleum Company - Norway
P. O. Box 72
Stavanger, Norway

1 Copy

Mr. B. M. Boyce Phillips Petroleum Company Frank Phillips Building Bartlesville, Oklahoma 74003

1 Copy

Mr. T. J. Jobin
Phillips Petroleum Company
Portland House, Stag Place
London SW1, England

1 Copy

Mr. Fred Kumpf
Phillips Petroleum Company
Portland House, Stag Place
London SWl, England