Denne rapport © STATOIL tilhorer L\&U DOK. SENTER
 L.NR. 302873000001 KODE W/ $1131 / 2-4$ nc. 9
 Returneeres etter bruk

T.D.C FINAL REPORT

SHELIL 31/2-4

Compiled by:
Peter Roughead
Claude Tison
Jean Pierre Villain
Steve Want

Denne rapport © STATOIL tilhører L\&U DOK. SENTER

L. NR. 30287300001

KODE WEll 31/2-4 Nr. 9
Returneres etter bruk
T.D.C FINAL REPORT

SHETU 31/2-4

Compiled by:
Peter Roughead
Claude Tison
Jean Pierre Villain
Steve Want

T.D.C REPORT

- 1) Proposal and Objectives

2) Summary
-Progress chart and hole profile diagram
-Deviation print out and plots
3) General well discussion by intervals:
a) Spudding, 36^{n} hole ($30^{\prime \prime}$ casing)
b) $26^{\prime \prime}$ hole ($17.5^{\prime \prime}$ bit $+26^{\prime \prime} \mathrm{H} / \mathrm{O}$)
c) $17.5^{\prime \prime}$ hole (opened to $26^{\prime \prime}, 20 "$ casing) 17.5" hole (opened to 22" , 16" liner)
d) 12.25" hole(opened to 15.75", 13.375"casing) 12.25" hole(9.625" casing)
e) $8.5^{\prime \prime} \mathrm{hole}$ to TD ;
4) Pressure regime in the reservoir

- RFT report

5) Overpressure survey

1/ Proposal and Objectives :

To drill an exploration well on Block 31/2 approximately 117 kms NW of Bergen on the eastern side of the Norwegian Trench at location $60^{\circ} 51^{\prime} 23.5^{\prime \prime} \mathrm{N}, 03^{\circ} 30^{\prime} 45.5^{\prime \prime} \mathrm{E}$ positioned with a diametric tolerance of 75 m .

Six objectives were proposed for the well :
a) To test for the presence of hydrocarbons in the Paleozoic and /or early Triassic formations in the structurally highest fault block of a deep structure in Block 31/2.
b) To test reservoirs,seals and source rocks of pre-Jurassic age.
c) To determine the age of the mapped ' D ' horizon for a better understanding of the regional geological setting.
d) To test the Jurassic gas accumulation at a location of nearly maximum gross hydrocarbon column.
e) To test lateral veriations in Jurassic reservoir characteristics.
f) To test the level where oil shows were observed in well 31/2-1
$*$, in a potentially better reservoir section.
Spud to T.D was expected to take 120 dajs including an extensive coring program commencing in the Lower Cretaceous-Upper Jurassic shales and continuing until at least one core had been taken below the hydrocarbon/watee contact,additional coring to be carried out on occurence of good hydrocarbon shows elsewhere in the well, and one 18 m core to be taken at T.D.

A further 46 days were allocated for a production testing and abandonment programme.

The structure drilled is a tiłtad fault block lying between the Norwegian Platform and ther Viking Graben.

The general axis of the structure lies NNW - SSE with subsequent NW-SE fault patterns.

Movement took place during the Kimmerier tectonic phase and post Jurassic sediments are relatively undisturbed.

A thick TertiaFy and Quaternary sequence was expected to overlay a thin or possibly absent Cretaceous, with Kimmeridge clay covering the main Upper Jurassic reservoir.

Formation Tops

Seabed (Quaternary-
"Eocene
"Palaeocene
Late Kimmeri
L.Cretaceous
Jurassic Sandstone Group
Interval 4

Interval 3

Seismic Flatspot

- Interval 2

2

- "Interval 1

Dunlin Unit Equivalent

Organic shales
1355
Lithology

Clay, claystones with thin sands

Tuffaceous claystones 1195
Silty claystones
1225
1355

Coarse, unconsolidated 1360 sandstones

Fine-medium,micaceous sandstones
ine-coarse,massive sands

Sands,marls,claystones 1810
Claystones with thin 1905 sandstones/siltstones

Fine medium sandstones 2095 thin claystones Coals at base

- Statfjord Unit Equivalent

Statfjord Coals Marker Horizon
Triassic Red Beds
Claystones/thinsandstones

Palaeozoic ?
3425
+/-150
? TD 5025m BDF if Palaeozoic not penetrated before.
2) Summary

The semi- submersible drilling rig "Borgny Dolphin"(Aker H3) was positioned st the location on the 29th August 1980, and 31/2-4 was spudded on the 1st of September.

The well was suspended between the 10th of September and the 4 th of October whilst the "Borgny Dolphin". killed 34/10-10 for Statoil.

A total depth of 5035 m was reached on the $23 r d$ of March 1981, and the well took atotal of 180 days to drill.

54 bits were used
3 RFT's were taken
169 CST samples were recovered from 8 runs
The prediction of the formation tops from the seismic showed a fairly good degree of accuracy:
(actual depths) (seismic depths)

Balder (tuff)
top Jurassic sandstone
top Statfjord Unit equivalent
Statfjord Coal marker horizon top Triassic(picked on palaeo) Total Depth
1203m 1195m

1365m 1360m
2125m 2095m
2261m 2255m
2406m non-reflective
5035m

DEVIATION

The vertical depth, hole co-ordinates at the corresponding depth and dog-leg in degrees per $\because 30$ metres are computed using the "radius of curvature" method when the radius of curvature is not too large (ie: if drift is greater than 1.5°) and the "average angle" method otherwise. This is to avoid large errors when drift angles and bearing angles are equal or nearly equal for two consecutive survey points (ie: in those cases where the radius of curvature is infinite or at least extremely large.)

As well as the bit report printed out at the end of each bit run, a cost performance graph is plotted to enable a quick look interpretation of the bit's actual performance down hole.

Two curves are plotted for cost versus depth, one standard and including the total time that the bit was in the holedrilling plus connections. The other based on the actual onbottom ritating hours only!

The rate of penetration is arso plotted to determine whether a decrease in the drilling rate id due to bit wear or formation change. The minimum cost point for each curve is determined and noted with the time and depth at which it occurred.

The data is obtained directly from the on-line data tapes with the bit cost/ metre being computed according to the formula

$$
C=\frac{R C(T T+R T)+B C}{M}
$$

Where:- C : cost per metre in \sharp US
BC: bit cost in \$uS
RC: rig cost overall in \$US/ hour
TT: average time for the round trip at drilling depth in decimalised hours

RT: rotary time or elapsed time in decimalised hours
M : metrage drilled after elapsed time in metres
The cost per metre versus time follows a curve passing through a minimum. The assumed cost of the rig has been taken as $\$ 2708 /$ hour.

The rig is equipped with two Continental Emsco triplex pumps fitted with 6\%" liners. Pressure rating 3981 psi at a maximum of 120 spm. Output is 5.158 gallons/stroke at 100% efficiency,measured efficiency: 95%.
a) $35^{\prime \prime}$ Phase ($359-450 \mathrm{~m} 9$

Well 31/2-4 was spudded on the first of September 1980. This phase was drilled in one pass using a $25^{\prime \prime}$ OSC 3AJ bit with 3 22/32" jets, ahead of a $36^{\prime \prime}$ hole opener.

Spud Assembly:-
Bit
H/O
9\%"Monel DC
$26^{\prime \prime}$ Stabilizer
$59 \%^{\prime \prime}$ DC
X-0
$128^{\prime \prime}$ DC
X-0
$125^{\prime \prime H W D P}$
total length:278.71m

Sea bed was tagged at 359 m B.D.F.
Five magnetic single shot surveys were taken during the ring. The final survey result at 450 m was k° N5 $57^{\circ} \mathrm{W}$.

Mud: This section was drilled using seawater with high viscosity slugs of prehydrated bentonite purped before each survey. The hole was displaced to mud prior to pulling out to run the $30^{\prime \prime}$ conductor.

Hole Problems: No hole problems were encountered whilst $=$ drilling this section. The penetration rate slowed down at $\because 424 \mathrm{~m}$ from an average of 1.5 minutes/metre to $38 \mathrm{mn} / \mathrm{m}$ at 424 m and $14 \mathrm{mn} / \mathrm{m}$ thereafter, this was probably due to a lithological
variation in the formation as the cuttings were seen to change from a soft clay to a grey micaceous siltstone at approximately this depth.

Casing: Seven joints of $301 \mathrm{X} 1^{\prime \prime}$ wall conductor were run. The shoe was set at 444.7 m , and the top housing at 358 m . Cement: 838 sacks of class G with 0.36 gal/sack Econolite was used, with a slurry density of 13.2 ppg . This was tailed in with 659 sacks of class $G+3 \%$ calcium chloride, at a density of 15.8 ppg . The whole was displaced wity 72 bbls of seawater.
b) $26^{\prime \prime}$ Phase (450-455m)

The shoe of the $30^{\prime \prime}$ conductor and . 17% " pilot hole were drilled out using a $17 k^{\prime \prime}$ OSC 3 AJ (bit no. 2) and a $26^{\prime \prime}$ hole opener on the third of September. The riser was run to a diverter and tensioned up on the fourth of September.
c) 17k" Phase (455-815m)

This phase was completed in one pass using bit number 2 again fitted with 2 x 18 and one 22/32" jets. Assembly:-

Bit
Bit sub
9\%" DC
9\%"Monel DC
Stabilizer
9\%" DC
Stabilizer
3 9\%" DC
X-0
$128^{\prime \prime}$ DC
X-0
12 5"HWDP
total length:278.69m

Mud:This section was drilled using seawater with prehydrated bentonite viscous slugs.

Nole Problems: No problems were encountered whilst drilling this section of the hole.
Deviation: Four magnetic single shot surveys were run at 552 m , $637 \mathrm{~m}, 721 \mathrm{~m}$ and 815 m. The results of all of them were 0°.

17\%" HOLE LOGGING(before $26^{\prime \prime}$ enlarging)

From the results of the caliper log this $17 k^{\prime \prime}$ hole can be divided into 4 parts:

- From
to
445693 caliper completely open $\left(\varnothing>23^{\prime \prime}\right)$
$\therefore 693$
$760 \cong 21$ "
$760 \quad 790 \cong 20^{\prime \prime}$
$790 \quad 815 \stackrel{N 19}{ }$
From this it can be seen that the hole was washed out over it's entire lenght which would explain the ease with which it was drlled; it also shows the increesing compaction of the formation with depth.'
Comparison of the otner lofis fives more interesting information ; it demonstrates a good correlation with results obtained from the cuttings.

This is a table showing comparative average values

Depth met	Ray RIPI	Resistivity $\Omega ⿴$	Sonic Δt	Bulk density gr/cm3
$450-490$	$45-50$	$\simeq 2$	160	$\simeq 1.65$
$490-530$	$10-20$	$\simeq 0.7$	210	$\simeq 1.50$
$530-815$	$55-70$	$\simeq 2.5$	140	$\simeq 2.10$
$715-815$	$45-50$	$\simeq 1.5$	160	$\simeq 1.75$

From the cuttings these four sections were :
a) Claystone
b) Sandy - silty claystone
c) Silty Claystone
d) Claystone

Resistivity log values of $\simeq 2 \Omega \mathrm{~m}$ are T Ypical of claystone whilst a value of $0.7 \Omega_{m}$ is typical of sand or a very sandy claystone. The Gamma Ray results agree with this (ie 10-20 API units are typical of
a sand and 45-50 denotes a claystone)whilst the sonic log indicates in interval b) an increase in t so less velocity therefare a less compact formation (e;g; sand).
It is interesting to note that SFISIDL in $k \neq x$ some points of the first intervl ($450-490 \mathrm{~m}$) so there is a crossing of curves which also occurs in some points of the 3rd interval(530-715m). This crossing is the typical result of the presence of salt water in the formation. This may explain the gas shows in drilling.
The most interesting thing revealed from these logs is the presence of a remarkable shift at $+/-715 \mathrm{mt}$.
This tells us that the interpretation of the "d"exponentix is correct. As it is explained better in the proper section "d" exponent shows a remarkable shift at $+/-724 m t$ and this shift is typical of a change in the litology of the formation.

Opening 17\%" hole to 25":- (455-815m)

The 17% " hole was pened out to $26^{\prime \prime}$ on $8 / 9 / 80$ using a $26^{\prime \prime}$ holeopener behind Bit no. 2 (OSC 3AJ) fitted with 24-24-22 jets. The upening was completed in one run with reaming at each connection. Assembly:-

17\%"Bit
26"H/O
9% float sub
9\%"Monel
26"stab
$9 \%{ }^{\prime \prime}$ DC
26"stab
49% "DC
X-0
9817 DC
mech jar
hydr jar
5810 DC
X-0
$125^{\prime \prime} \mathrm{HWDP}$
total length 311.27m

Mide:- As with the 17% " pilot hole seawater was used with 20 bbl prehydrated bentonite slugs pumped at each connection. Casing:- 36 joints of 20" Vetco $1331 b s / f t$ K55 casing were run. The shoe was setv at 807 m . The casing was pulled back from 768m to surface to remove rigid centralizer which was damaged when entering the wellhead. The casing stood up at 778 m and was worked and circu.ated down to 807m.
Cement:- 1031 sacks of Class G with $14.6 \mathrm{gals} / 80$ bbls econolite were used with an average slurry density of 13.4 ppg . This was tailed in with 762 sacks of cement $+2 \%$ calcium chloride at a density of 15.8 ppg . The whole was displaced with 88.5 bbls of seawater.

After cementing the casing the riser was rerun,before landing the BOP operations were suspended at $12.3010 / 9 / 80$ to move to block 34 to "kill 34/10-10 for Statoil.
Borgny Dolphiq returned to Block 31 and re-entered 31/2-4 on M_{P} nday Sth October.
$17 \%{ }^{n} \mathrm{Hole}(815-1280 \mathrm{~m})$
Bit no 3 was used to drill the casing shoe and formation from $815-818 \mathrm{~m}$. The bit was then pulled to be replaced by a 12.25" bit because of the possibility of shallow gas.

Bit no 3 (OSC 3AJ) was run with no jets. Assembly:

```
Bit
                    Bit sub
                    Float sub
                    X-0
                    18 8" DC
                    Down Jar
                    Up Jar
                    2 8" DC
                    X-0
    作 5" HWDP
                        total length : 307.89 m
```

Mud :
This section was drilled using a KCl polymer system. Average mud properties were : PV : 25

YP ; 20
Gel: 3
MW : 1.28 Sg
At 818 m a ledk -off test was performed, the result of which was 1.71 Sg equivalent mud density -

12.25" Pilot Hole:

Bit no 4 was a $12.25^{\prime \prime}$ X3A with $322 / 32^{\prime \prime}$ jets. This bit drilled a pilot hole for the $17 \mathrm{kn} \mathrm{\prime}$ bit in one pass from 818m to 1050 m .

Remarks: No drilling data was recorded between 842 m to 937 m due to the geolograph cable being broken.

Assembly:
Bit
Bit sub
8" Monel
$18{ }^{\prime \prime} \mathrm{DC}$
12" Stab
$18^{\prime \prime}$ DC
12" Stab
16 8"DC
Down Jar

$$
\begin{aligned}
& \text { Up Jar } \\
& 28^{\prime \prime} \text { DC } \\
& \text { X-0 } \\
& 125^{\prime \prime} \text { HWDP } \\
& \text { Dart Sub } \\
& \text { total length: } 318.36 \mathrm{~m}
\end{aligned}
$$

A survey was carried out at 900 m ，the result was $1^{\circ} \mathrm{S} 58^{\circ} \mathrm{E}$ ． The bit was pulled at 1050 m ．However on pulling four stands the hole began swabbing necessitating running back to bottom and circulating bottoms up， 22% C1 was circulated out．

The penetration rate was $3 \mathrm{~mm} / \mathrm{m}$ with an average weight on bit of 17000 lbs and rotary speed of 126 RPM ．

Streaks of harder silstone slowed down the drilling rate at 1000 malthough a soft marly element may have increased the drilling rate from 950 m to 1050 m ．

The hole was enlarged to 17% using Bit no3（ OSC 3AJ ）again with 2 22／32＂and 1 20／32＂nozzles．This bit opened the nole from 818 m to 1050 m and drilled to 1280 m.

Remarks：No drilling data was recorded between $853-971 \mathrm{~m}$ due to the geolograph cable being broken．

```
Assembly:
```

3it
Bit sub
$9 k^{n}$ Monel
$19 \%{ }^{n} \mathrm{DC}$
17\%" Stab
1 民ぞ DC
17k" Stab
X-0
108^{n} DC
Jar
2 8" $^{\prime \prime}$ DC
$\mathrm{X}-0$
9 5" HwDP
Dart Sub
total lengin : 237.06 m

At 1131 m the gas rose to 36% so drilling was interrupted until tinis gas was circulated out. The gas rose at 1140 m to 80% and was again circulated out.

Surveys were teken at 1167 m ($\%^{\circ} \mathrm{S} 34^{\circ} \mathrm{W}$) and at 1280 臬 (09)
Mud: Average $\begin{gathered}\text { I } l u e s ~ f o r ~ m u d ~ p r o p e r t i e s ~ f o r ~ t h i s ~ s e c t i o n ~ w e r e: ~\end{gathered}$
PV: 25
YP: 24
Gel 4
MW: 1.28 Sg
Hole Problems:
Overpull of 96000 lbs was experienced at 1200 m and 125000 lbs between 968 - 921 m so this section was reamed and also the section 1260 m 1280 m prior to finally pulling out for logging b
$17 \%^{\prime / 2}$ hole prior to opening to $22^{\prime \prime}$

Caliner :

From the results of the caliper log this hole section can be divaded into 6 parts;

$1 _810-910$	$17 k^{\prime \prime}$
2_910-912	$22^{\prime \prime}$
3_ 914-966	$18^{\prime \prime}-20^{\prime \prime}$
4_ $966-1146$	$17 k^{\prime \prime} 618^{\prime \prime}$
5_ 1146-1158	$18^{\prime \prime}-20^{\prime \prime}$
6_ $1158-1270$	$17 k^{\prime \prime}-18^{\prime \prime}$

From this it can be seen that the hole was in guage over most of it's length, beeing only slightly oversize over three short lengths.

Gamma ray :

$810-910$	70 api
$910-1025$	$80-100$
$1025-1205$	$60-70$
$1205-1233$	$50-60$
$1233-1270$	$60-70$

These resuts suggest that the formatin is claystone over most of it's length with a varing silt content.The relatiqely high values between 910-1025 are probably the result of the claystone in this section being micaceous

SOMIC:

$810-1180$	$140-150 \mu \mathrm{sec} / \mathrm{ft}$
$1180-1230$	$110-130$

Evidence of a harder formation was seen between 1180 m tnd 1230 m from data derived from the cuttings this appeared to be a Limestone Marl found around 1200 m .

RESISTIVITY :

For the most part both shallow and deep resistivity logs follow approximately the same trace.

Occasionelly a brief divergence occurs indicating the possi--bility of the presence of small quantities of hydrocarbon.

DENSITY :
This follows a normal compaction trend to 1033 where it decreases from $2.25 \mathrm{~g} / \mathrm{cc}$ to 2 until 1165 m.At 1165 m the trace comes back to $2.25 \mathrm{~g} / \mathrm{cc}, f 0 r$ a short sectian between 1199 -1208 m the density decreases to $2.1 \mathrm{~g} / \mathrm{cc}$ which correlates with the 140000 lbs overpull experienced at 1200 m whistt pulling out of the hole after runs no 5 and no 8 possibly due to a slight overpressime in this section.

POROSITY :

Forosity values from the neutron log of 30 to 50 remain constant through the logged section.

The hole was enlarged to $22^{\prime \prime}$ using bit $n^{\circ} 5$ OSC IGJ, as pilot bit with a $22^{\prime \prime}$ underreamer from 807-1280m.

```
Assembly:
    Bit
    22" under reamer
    bit sub
    9k" monel
    2-9%"DC
    X-0
    10-8" DC
    down jar
    up jar
2-8"DC
    X-0
    12-5"HWDP
    dart sub
        total length:264.62m
        average drilling parameters:
```

 WOB: 10 KLBS
 RPM: 125
 FR:985gpm
 SPP:2600psi
 The maximum gas reading whilst drilling was 5.5%
Hole problems:
The bit opened the hole from 807 m to 1184m.After pulling one stand overpull of $44 K L B S$ was experienced due to the under reamer being jammed in an open position by cuttings, this problem occured again at the shoe.

The hole was reamed from 934-1184m then under reameing continued to1278m when the bit was pulled. During pulling out overpull of 140 KL BS occured at 1200 m .

A survey was carried out at 1167 m , the resutt of which - was $\%^{\circ} \mathrm{S} 34^{\circ} \mathrm{W}$.

Liner:
44 joints of $16{ }^{\prime \prime}$
109 lodift K55 vasific were ruis on the 22nd of October.The string stood up at 1269 m and was washed down to 1272 m . The top of the liner was set at 719.5 m and the shoe at 1272m. were used with 490 gollons of ecolonite and 245 gallons of HRGL giving a slurry density of 14.5 ppg . No losses occured during the cement job.THE cement was displaced with $4070 b l s$ of mud. Comments:

Whilst running the liner hang up at 912m due to the setting sleeve being larger than the $B O P$ hanger.

Setting sleeve:17.75"
BOP

$$
17.625^{\pi}
$$

The collar on the liner was damaged when trying to break out the setting setting sleeve.An attempt to back off the running tool was unccesful.After having washed the string the jumped in the rotary table and backed off at a HWDP connection leaving one stand of HWDP plus $X-0,16^{\prime \prime}$ running tool and $16^{\prime \prime}$ liner in the hole. This was succesfully fished at the first attempt with an overshot.The liner was pulled and rerun and finally landed at 1272m

During displacment 180 bbl of mud were lost; 150 bbl while chasing cement and a further 30 bbls had to be dumped

The dart was dropped when displacing started,but there was no sign of the dart hitting the plug after 43 bbls as it should.At the end of displacement the was pulled clear of the casing and reverse circulation was attempt without succes The pipe was pulled wet and the dart was found in the running tool.SOme cement was on top of the running tool and the stinger below the running tool was full of cement.

Drilline the cement:
Bit $n^{\circ} 3$ OSC 3AJ, was used again to drill the cement from 603-720II where t the top of the liner was tagged.

Assembly:
17\%"Bit
bit sub
2 9"DC
X-0
4. $8^{\prime \prime} D C$

X-0
$125^{\mathrm{n}} \mathrm{HWDP}$
total length: 167.8m

WOB: 9 KLBS
RPN:100
FR : $465^{\circ} \mathrm{gpm}$
SPP:565psi
After testing the pressure for the seal between the $20^{\prime \prime}$ casing and the $16^{\prime \prime}$ liner top to1000psi for 15 mn the bit was pulled out.
Mud:average values for mud properties:
PV: 40
YP: 17
Gel: 5
MW: 1.35

12'!" phase (1280-1285m)
Bit $n^{\circ} 6, a \operatorname{HTC} X V ? w a s$ used to drill out the cement, 16^{n} liner shoe and formation to 1285 m which all took approximately 9 hours.

Assembly:

$$
\begin{aligned}
& \text { Bit } \\
& \text { 12 } 2^{\frac{1}{4}} \\
& \text { junk sub }
\end{aligned}
$$

bit sub
98 "DC
down jar
up jar
$28^{n \prime D}$
X-0
12 5"HiNDP
total lengtin: 225.63 m
Average drilling parameters:

> WOB: 20 KIBS
> $\mathrm{RPM}: 50$
> $\mathrm{PR}: 695 \mathrm{gmm}$
> $\mathrm{SPP}: 1400 \mathrm{psi}$

Mud:
Average values for the mud properties in this section
were
FV:33
YP:17
Gel: 8
MW: 1.32sg
Bit $n^{\circ} 6$ was replaced by new bit $n^{\circ} 7$ a $14 "^{\prime \prime}$ Smith F2 with a $14 \%{ }^{\prime \prime}$ mill.this was used to ream out to $14 k^{n}$.

Assembly:
Bit
X-0
junk sub
bit sub
14/2"mill
$98^{\text {n DC }}$
down jar
up jar
2 8"DC
x -0
$125^{\text {n }}$ EVDP
total length:227.70m

Average drilling parameters:
WOB:2OKLBS
RPM:110
FR ; 860 gpm
SPP:1700psi
, Leak off test was performed prior to pulling out, the result of which was 1.51 sg ,expressed as an equivalent mud density.

After pulling Bit no. 7 a Cement Bond $L_{G} \mathcal{C}_{G}$ was run which showed that the cementation of the $16^{\prime \prime}$ liner was inadequate necessitating whe performance of a squeeze job.

On the 26 th of October 400 sacks of neat Class'G' cement were pumped and displaced with 65 bbls of mud. The string was pulled to 1073m and reverse circurated out. The cement was squeezed to 750 psi for 4 hours after whim ch the pressure was bled off. After pulling out and running in with a $14^{\prime \prime}$ gbit soft cement was tagged at 1235m. The ce -ment was left a further $4 / 2$ hours to harden, and was then drilled out to 1280m. 23 bbls were lost over the whole cementing operation.

New bit no. 8 was run on the 27 th of October to drill down to coring point. The bit was a $12.25^{\prime \prime}$ HTC . X3A fitted with 3 14/32" jets and drilled down to 1320m before being pulled for coring.

Assembly:-
Bit
junk sub
bit sub
8"monel
12.25"stab

2 8"DC
12.25"stab

9 8"DC
up jar
down jar
5 8"DC
X-0
$125^{n H W D P}$
dart sub
total length: 292.64m
Average drilling parameters: WOB:35-40klbs
RPM:102
FR: 600 gpm
SPP:2400psi
At 1280m aleak off test was carried out, the result of which was
2.0 sg equivalent mud weight. (See on-line file, $12 ; 25^{\prime \prime}$ hole sextion.)

Average values for mud propertiest PV:35
YP:23
Gel:9
Mud weight:1.32sg

Core $n^{01}(1320-1326)$

Core no1 ras cut with a CB 303 core head in a conventinnal barrel,giving an average penetration rate of $32.5 \mathrm{mins} / \mathrm{m}$. It was decided that the borrel be pulled after a remarkable drop in pump pressure from $1340-7000 \mathrm{si}$, and an increase in torque at 1326m.After atemptying the core fram the core barrel a large quantity of junk fell out, consisting mostly of bit tee th and casing shoe fragments. 96% of the core was recovered.

A ssembly:
8.42" core head
core barrel
X—0
$8^{\prime \prime}$ monel
12.25stab
$28^{\circ n} D C$
12.25stab
$98^{\prime \prime D C}$
down jar
up jar
5 8"DC
X-0
$125^{\text {M }}$ HIWD
dzrt sub
Average parameters whilst coring:

> WOB: 22 KLBS
> RPM: 93
> FR $: 265 \mathrm{gpm}$
> SPP: 1340 psi

Comments: The core head showed significant junk damage, . primarily tothe shank of the bit but also to the diamonds.

Core no.2: (1326-1334m)
A CB 17 core head was run which cut 8 m of which half a metre was recovered. The barrel was pulled. due to the core he ad having ceased to cut.

Core no. 3 (1338-1347):
Three attempts were made at cutting core no.3. The first time a CB 303 was run but no core was cut so this run was disregarded. The second time a Stratapax core head was run, a supposedly more aggressive bit, in an attempt to cut the shaly formation. The barrel was pulled due to the bit not cutting,several of the stratapax themselves being found to be junk damaged. On pulling the barrel was empty. Again this run was disregarded.

A reverse circulation junk basket was run next in an attempt to clean up the hole because of the significant amount of shoe fragments and bit teeth which came up with the first two cores and the junk damage to each core head.

On pulling the junk basket was empty so a $12.25^{\prime \prime}$ bit was run to clean the hole.

Core no. 3 was finally cut from 1338m to 1347m with a CB 303.
Cores number $2-21$ were cut in a glass fibre sleeve. From core number 4 to the end of the cored interval no significant problems were encountered, usually the barrel was pulled due to bands of strongly cemented sandstone or "doggers" preventing the core head from cutting.

Cores number 22-28 were cut in a conventional barrel.
A Navi drill was used for cores number 10 and 26. Coring was intermpted between cores 4 ahd 5 for a day and a half to wait on weather.

Core CB CH In Ou

1	303	1	1320	1326	6	96	3.253	32.5	
2	17	2	1326	1334	8	5.5	11.58	86.1	
3	303	4	1338	1347	9	100	4.873	32.5	
4	303	5	1347	1365	18	55.5	8.66	28.9	
5	303	5	1365	1379	14	93	3.64	15.6	
6	STPX	4	1379	1397	18	100	2.46	8.2	GGlass fibre
7	STPX	4	1397	1410.5	13.5	100	5.63	25	sleeve
8	17	6	1410	1415.5	5.5	91	4.164	45.4	
9	303	7	1415.5	7426.5	11	86	9.13	49.8	
10	STPX	8	1426.5	1443.5	17	1	113	38.8	Navi Drill
11:	303	9	1443.5	1452.5	9	100	4.3	28	
12	17	10	1452.5	1454.5	2	90	3.149	94	no progress rop Poh
\% ${ }^{\text {c }}$	303	9RR	1454.5	(1472.5	18	77	11.6	39	
14	303	9RR	1472.5	1482.5	10	70	5.3131	31.9	
15	303	9RR	1482.5	1484.5	2	33	2.236	69	
16	303	9RR	1484.5	1490	5.5	100	$3.17 \quad 3$	34.6	
17	303	7RR	1490	1508	18	91	6.56	21.9	Fibre glass
18	303	PRRR	1508	1526	18	92	7.63	25.4	sleeve
19	303	7RR	1536	1544	18	96	8.45	28.2	
20	303	7RR	1544	1562	18	100	10.5	35	
21	303	7RR	1562	1567	5	97	3.66	43.9	
22	303	TRR	1587	1585	18	87	10.3	34.4	Taken out of fiber
23	303	7RR	1585	1603	18	79	113	36.7	
24	303	7 RR	1603	1607	4	89	5.75	86.3	
25	STRX	11	1607	1621	14	100	$5 \quad 2$	25.7	Steel barrel
26	STPX	11	1621	1627	6	85	2.97	29.7	Navi Drill
27	303	12	1627	1645	18	36.5	10.283	34.3	
28	303	12RR	1645	1663	18	99	8.75	29.2	

Clst gy-grn slt non swl non calc sft-mod hd oco py mmic lam
Clst g.7-brn(slt) non calc sft-mod hd lam fis Mrl wh-gy sft
Lst mod hd micrxln Clst gy non calc-(calc) mod hd fis

Clst/Sh(dk)gy-gn sIt n dn swl non calc mod hd mmic (carb)v pygy/grn lam Clst/Sh dk gn sit non fol non calc mod hd mmic (carb) py

Clst/Sh dk grn((slt))(slt)non swl non calc(calc)) mod hd mmic (carb) lam
Clst/Sh dk gy-grn slt((slt)) non swl non cald - (calc) mod hd mmic (cart (1an)
Clst/irl lt हir-grn sit non swl-(hture)calc mon hd mmic (carb)) (lam)

Clst/Trl lt gr-grn sit (hturg)calc sft-mod hd mmic carb gn min lam fd Sst gy atz transp\&with incl sltfsl-crssu(srt.) srt ang-(rnd)elong-(snh) cons fri non calc-(calo mic eapb py \& gn mins Sst gy atz transp occ incl slt fsu-crssu srt ang-(rnd)elone-(soh)cors ((calc))-calc fri(mic) (carb)

Sst gy qtz clr occ incl
fsl-msu occ crssu ang-
(ang)(elong)-(sph)cons non calc-calc fri-hd (mic) carb shell frags

Sst gy atz clr fsi-msl srt-srt ang-(ang)cons ((calc))fri mic carb Sst lt gy qtēchr lithil fraes sit fsu-crssu ocd gran srt ang-(rnd)elona -(sph)(cons)-cmt non cal -calc ise-hd ((mic)) oy (carb))
Sst limy gy fsu(fsu-gran) (ang)-(rnd) (sph) $\overline{\text { calc }}$ hd
((mic) mostly transIus qtz

st/s gy fsu-msu(fsu-grfn)

 srt-srt (ang)-(rnd) (elom) -(sph)mainlytranslusc gtz(smokeatz))((fsp)) ((rseqtz)) (((mic))) (((calc)))-calc lsc-fri Sst gy ms srt cons-fri Sst Ey ms(fsl-crssu srt dom transl quz((fsn))(calc) (((mic))) mostly cons-fri
Sst ge fsl/fsu srt mic (carb)(calc)fri=modnd (lam)
Sst(dk) 5.7 fsu(slt-fsi) srt mic carb(calc)mod nd 1 am Coorser(slt-aran) shellm dedosit in midd. Sst(dk)gy fsu/fsl srt mic carb mod hd wavy bedding
Sst(dk)g fsl/fsu(sltfsl)srt mic carb cons mod id lam calcified at btm
Sst(dk)Ey fsl/fsu(sltfsl)srt mic carb frimod hat(calc))-(calc) lam calc at top

Sst(dk)gy fsl/fsu(sit-rsl)srt-srímic carb fri-mod hd (calc)) lam occ limy just aiove btm bec Sst g. fs-ms srt ((mic))lse-cons gtz ((fsp))

After coring the hole was reamed out from $1338-1663 \mathrm{~m}$ to $12.25^{\prime \prime}$ and then drilled to 1950m using four bits in four passes. The hole was noticed to be tight between : 443 -1446m after the first bit run with overpull of $88-99,000$ lbs,and tight between 1522-1776m after the third bit run with $80-100,000$ lbs of overpull.
assembly used for reaming:
bit
bit sub
8"Monel
8"DC
12.25"Stab

8"DC
12.25"Stab
$138^{\prime \prime} D C$
down jar
up jar
$38^{\prime \prime} D C$
X-0
12 5"تWDP
dart sub
Bit number 10 (HTC X1G) and bit number 11 (HTC J22) were used for reaming, the average drilling parameters were:

WOB: 10-18,000 lbs
RPM: 122-126
FR: $600 \mathrm{~g} / \mathrm{m}$
SPP: 2700 Dsi

Assembly used for drilling:

The same as for reaming except each stabiliser was moved down the assembly by one collar.

Bit number 12 (Smith SDGH) and bit number 13 (HTC XV) were used for drilling, the average drilling parameters were:

WOB: 60-65,000 lbs

RPM: 120-130
FR/ 550-590 g/m
SPP؛ 2850-3100 psi
For this section average mud properties were:
PV: 26
YP: 15
gel: 2
mud weight: 1.32 sg
A check trip was made prior to pulling out of the hole for logging6

Deviation :

Surveys were run at

1380 m	$3 / 4^{\circ}$	N	20 E
1558 m	$1 / 2^{\circ}$	S	5 E
1820 m	1°	S	55 E
1950 m	$3 / 4^{\circ}$	S	22 E

Galiper: Down to 1360 m the hole is overguage showing signs of caving. From 1360m to 1938m the hole is in guage.

FDC/CNL and ISF/Sonic/GR:
The low GR reading,high itt and cuttings evidence show a small marly horizon between 1360 and 1365m.

At 1365m the deep resistivity increase sharply indicating the presence of hydrocarbon. The GR also increases,this does not indicate a shale because a shale is unlikely to be hydrocarbon bearing so it is probably due to the sand stone being micaceous. By looking at the $F D C / C N L$ log this hydrocarbon can be identified as gas, the FDC shows a sharp decrease in density jet the CNL shows a decrease in porosity. The mica content of the sandstone varies, shown by the fluctuations of the gamma ray trace.

Deeper into the reservoir porosity decreses due to compaction and the presence of mica so hydrocarbon saturation is poorer therefore resistivity is lower, at 1460m the resistivity base-line drops, simultaneously the GR increases due to an increase in the mica content.

In many cases the high resistivity peaks are due to limestone stringers, that is, where the peak coincides with a low GR and a high Sonit reading, for example at; 1550,1554,1565,1587m etc. Many of these limestone stringers occur at the base of samdstone sections.

The gas/fluid contact can be seen at 1567 m , the FDC shows a decrease in density wheras the CNL shows a decrease in porosity due to their being less hydrogen molecules in gas than in water or oil. Below 1567m the FDC/CNL traces follow each other more closely, they are slightly offset due to the CNL being calibrated to read limestone porosity.

At 1582 m the $G R$ is fairly constant but the resistivity trace dives,also the Sonic shows a significant shift ally of x which denote the oil/water contact.

At 1668m the GR increases probably due to the sandstone becoming more argillaceous, perhaps a sandy siltstone, and micaceous with frequent limestone stringers.

The sandstone becomes cleaner at 1784m shown br a decrease ". in gamma ray, resistivity and sonic.

The very high GR readings at 1727,1738,1757, and 1817m are due to the presence of glauconite in the formation.

Between 1809 and 1814 m , and $1856-1864 \mathrm{~m}$ the $F D C$ values are very low coinciding with very low Sonic and low GR which is due to the occurrence of coal bands up to a metre wide interspersed
with shales.
The top of the Dunlin can be seen at approximately 1902m by a marked increase in the GR due to the Dunlin shales, this is supported by cuttings evidence. These shales are interspersed by limestone stringers, shown by the Sonic peaks, resistivity peaks and fluctuations of the GR trace.

Reaming 12.25" hole to 15.75" (1280-1944m)
This section was completed in 13 passes with a Servco hydraulic under reamer.

The hole was initially reamed to 1944 m usming seven under reamer.A subsequent BGT showed that the hole was underguage along its complete length necessitating re-reaming.

Assembly:
Bit
15.75" under reamer
bit sub
shock sub
8" monel
$8^{\prime \prime} D C$
12.25stab

14 8"DC
1.2.25stab
$148^{\prime \prime}$ DC
12.25 STab
down jar
up jar
$38^{\prime \prime} \mathrm{DC}$
X-0
9 HFDP
dart sub
total length: 278.91m
The second time the hole was reamed, three under reamers were used an the subsequent BGI showed that the hole was again under guage in a few spots.It had been reamed too fast causing the hole to be corkscrewed open.
Two under reamer were used the third time, theBGT showed that it was opened satisfactorily,only a few spots at the bottom being down to 14.25 "so $22 j 0 i n t s$ of casing were mun before new orders; : necessary for the hole to be reamed for a - fourth time, this was done wtith an under reamer, the following

「. BGT showed the hole to be over 15" all the way down.

Casing:

134 joints of $133 / 8^{\prime \prime}$ OD L-80 $721 \mathrm{bs} / \mathrm{ft}$ casing were run on the 14 th December. The shoe was set at 1928m.

Cementation:

A 75 bbl cushion of 1.1 sg mud was pumped to reduce the annular hydrostatic head. The casing was cemented with 85 sacks of Class 'G' "scavenger slurry" and 1034 sacks of "main slurry",both being mixed , with freshwater. An extra 155 sacks were mixed because the wemget of the first part of the cement slurry was too low.

Average "scavenger slurry" weight : 13.5 ppg (1.62sg)
" "main slurry" \quad " : 15.2ppg (1.82sg)

Cement Additives:

$16.6 \mathrm{gals} / 10 \mathrm{bbl} \mathrm{CFR}-2 L$ (cement friction reducing liquid)
$7.5 \mathrm{gals} / 10 \mathrm{bbl}$ econolite
$34 \mathrm{gals} / 70 \mathrm{bbl}$ gIX -248 (Halliburton experimental liquid)

Comments:

The cement was left for $91 / 2$ hours, the top was tagged at 1859 m and drilled out to 1920m before a CBL was run.
*. The CBL log run was followed by a $12.25^{\prime \prime}$ bit (bit no. 15 re-run - $\because \mathrm{HIC}$ X3) with a junk sub which was used to drill out the rest of the cement and to ream on junk down to 1950m. Between 5 and 101 bs of - -junk were recovered from this run. The junk was run again, this time approximately 3 lbs of junk were recovered.

After a breaj of several days to work on the stack and pods bit no. 15 was run again with a junk sub, and used to drill from 1950-1980m. Ten pounds of jünk were recovered from this run.

BHA:

Bit
junk sub
bit sub
17 8"DC
down jar
up jar
$28^{\prime \prime} D C$
X-0
12 joints HWDP
dart sub
total length: 306.47m

Average drilling parameters:
WOB 25-30 klbs
RPM 135
FR $650 \mathrm{~g} / \mathrm{m}$
SPP 2800 psi
The mud weight was cut back during this run to 1.26 sg .

- For the next bit run (bit no. 16 , Smith SDGH) three stabilisers were added to give a stiff assembly. The junk sub was run again and a furtherv five pounds of junk were recovered.

Assembly:

Bit

junk sub
12.25" stabiliser

8"Monel DC
12.25" stabiliser $8^{\text {n DC }}$
12.25" stabiliser

19 8"DC
down jar
up jar
$28^{\prime \prime} D C$
X-O
12 joints HWDP
dart sub
total length: 337.17m

Average drilling parameters used during this run:
WOB 50 klbs
RFM 130
FR $\quad 640 \mathrm{~g} / \mathrm{m}$
SPP 2950 psi

Comments:

On running in the hole was found to be tight at 1950m so was reamed down to 1980 m . Adrilliqig break at 2012 m indicated the top of the Cook Sand Unit of the Dunlin Formation. The bit bit was pulled due to the torque becoming excessive.

- For the next run another Smith SDGY was used with the same 3ssembly. This bit was pulled due to excessive torque too after cutting 122m.

This milled tooth bit was followed by an insert bit, a Smith 3JS, which cut only 9m due to junk in the hole, as a result of which a 12 3/16" mill and junk sub were run. Five and a half hours were spent milling on junk before the string was pulied. Once the

24 runs using 18 bits. T.D. for the $12.25^{\prime \prime}$ hole was originally 3991m but it was decided that as a wiper trip was being made it would be more economical to drill with the bit that was run in. Bit NQ. 37 , an XV, gas used to drill to 4027 m before being

- pulled due to a saspected washout.

Average drilling parameters:
WOB: 48 klbs
RPM: 106
FR: $580 \mathrm{~g} / \mathrm{m}$
SPP: 3020 psi
liud Properties:
PV: 25
YF: 12
Gel: 2
MW: 1.23 sg

Deviation:

22 Magnetie Single Shot surveys were run in this hole section. The maximum drift angle was 4° at 2668m. The last survey at 3904 mave a result of $1^{\circ} \mathrm{N} 18^{\circ} \mathrm{E}$.

Comments:
Before running Bit No. 37 the hole was logged (see following page).

IOGGING (12.25" hole)

Logs Run:-
ISF/BHCS
FDC/CNL
HDT
RFT
CST (3 runs- 60 shots)
CBL (misrun)
Casing Caliper

These runs were made between the 11 th and 17 th of February.

LOGGIMG (12.25" hole)
The Gamma Ray shows the Dunlin to be sand and shale with a few tight limestone stringers which stand out due to their low porosity and high density readings on the FDC and CNL logs. and fast Δt, for example at 1935 m and 1947 m .

At 2008m the Gamma Ray and the FDC drop suddenly and the porosity from the CNL increase as the formation changes to a sandstone, probably the top of the Cook Sand. This appears from the Gamma Ray to be divisible into three fining downward sequences which are also discernable to some extent on the increasing divergence of the FDC and CNL traces as the porosity
decreases and the density increases with the increasing shaliness whilst passing down through each of the sequences. The Cook Sand also has scattered limestone stringers through it.

At 2126 m there is another formation change where the traces of the $G R, F D C$, and resistivity all show marked shifts. This is probably the top of the Statfjord, a clean sand with limestone stringers which remains clean down to 2190 m at which point it can be seen from the $G R, F D C$, and $C N$ that the sand begins a finin g downards interval until 2250m.

At 2190 m there is a thin horizon, a pproximately 1-2m thick, which shows very high density and low porosiŁy and a relatively high sonic reading with a low GR which is probably caused by a very tight stringer of limestone or maybe dolomite.

From 2250-2250m the formation appears to revert rapidly to a clean sand before a sudden change at 2260-61m. The sonic, GR, FDC and resistivity all increase suddenly at this point which looks like a shaly formation, probably caused by the seat-earth of the Statfjord Coal marker horizon which showed up in the cuttings as a slightly carbonaceous kaolinitic claystone but there was no actual coal and none appears here on the logs. This seat-earth has sand directly above and below it.

Below this marker the formation becomes a continuous series of alternating sands and shales which from the cuttings can be seen to be multicoloured in the upper part, beginning to become red ix from approximately 2315m.

In the cuttings the sands occasionarly contained a black heavy mineral which produces an exceptionally higin $G R$ reading, for example at: 2562-67m, 2725-26m, 3727-32m. From the logs it can be seen that this heavy mineral is often occurring in the bottom of the seni ous possiviy suggestigng channel sand denosits.

From 3200 r the cuttings showed an increase in potash feldspar content which has made the Gamea Saj produce a trace which is less easy to distinguish between claystone and sand.

From the cuttings evidence it is quite possible that below the Statfjord the resistivity peaks associated with high sonic and relatively low Gamma Ray readings are due to concretions or tight cemented sands rather than to limestone stringers.

DEPTH RECOVERY(mm) DESCRIPTION		
3976.8	25	SANDSTONE:light grey,fine grained
. 3969.4	35	CLAYSTONE:red brown, with SST:grey-orange, arkose
3961.4	30	CLAYSTONE: red-brown,micaceous
- 3941.8	35	CLAYSTONE:red brown-grey green, mottled, \approx. $\%$ sandy
3884.2	20	SANDSTONE:red-brown,fine grained,argillaceous
- 3856.2	40	CLAYSTONE:red-brown, silty
3832.0	20	SANDSTONE:mottled, :-medium grained,arkosic, argillaceous
3810.8	30	SANDSTONE: mottled,fine-medium grained,arkosic, argillaceous
3756.5	20	CONGLOMERATE:mottled,arkosic,abundant claystone grains
3649.4	15	CLAYSTONE:red-brown, o-mer
3590.0	15	CLAYSTONE:red-brown,occasionally grey green,silty
3538.5	15	SILTSTONE: red-brown, argillaceous
3471.6	15	CLAYSTONE:red-brown,silty,micaceous
3419.4	20	CLAYSTONE:red-brown,micaceous
3327.4	20	CLAYSTONE: as above
-3323.0	15	CLAYSTONE: a/a
. 3323.1	10	CLAYSTONE: $a^{\text {a }}$
3313.8	20	CLAYSTONE: a/a
3308.2	20	CLAYSTONE:red-brown,mottled,grey green,silty
3296.4	15	CLAYSYONE: redi-brown,silty,micaceous
3289.6	20	CLAYSTONE:red-brown,grey green spots,micaceous
3255.2	15	CLAYSTONE:red-brown,silty,micaceous
3219.4	20	CLAYSTONE: red-brown,miceceous
3202.0	20	SILTSTONE: red brown-grey green,mottled
3184.8	15	CLAYSTONE:red brown,silty
3120.2	25	SILTSTONE:red brown,micaceous, argillaceous
3071.8	30	CLAYSTONE:red brown, silty,micaceous
3054.0	25	CLAYSTONE:Iight red brown
3033.2	40	CLAYSTONE:red brown,micaceous
3011.6	35	CLAYSTONE: red brown, very micaceous
2983.8	30	CLAYSTONE:red brown,micaceous
-2963.8	30	CLAYSTONE:red brown,occasionally grey green spots, silty, very micaceous
2950.8	20	CLAYSTONE: red brown,silty, micaceous
2931.4	30	CLAYSTONE:light red brown,silty,micaceous
2905.2	40	CLAYSTONE:red brown,micaceous
2887.7	25	CLAYSTONE:red brown,grey green spots,micaceous, silty

(Sidewall Samples continued)

- 2870.0	30	SILTSTONE:red brown,micaceous, very argillaceous
. 2843.8	35	CLAYSTONE: red brown, micaceous, with silty laminations
2808.6	40	CLAYSTONE:red brown,occasional concretions
- 2782.4	50	CLAYSTONE:red brown, silty,micaceous,oceasional
.		concretions
- 2766.0	40	CLAYSTONE: red brown, silty,micaceous, with concretions
'2751.8	50	SHALE:red brown,micaceous
2728.0	50	CLAYSTONE:red brown;micaceous
2675.6	50	CLAYSTONE: as above
2642.6	50	CLAYSTONE: red brown,occasionally mottled grey green micaceous
2609.4	60	CLAYSTONE: redbrown,grey green spots,abundant concretions
2591.7	40	CLAFSTONE:red brown,micaceous
2569 ; 5	56	CLAYSTONE: as above
2545.0	35	CLAYSTONE: a/a
2529.5	50	CLAYSTONE: a/a
$: 2439.0$	65	CLAYSTONE:red brown,mottled Erej green,micaceous
2418.0	35	SILTSTONE: grey green, micaceous, sandy
2413.4	50	SILTSTONE: grey green, very argillaceous,micaceous
2398.8	45	CLAYSTONE: red brown,mottled grey green,micaceouz
2343.4	20	CLAYSTONE: grey green-yellow green,mottled,hard fragments in soft matrix
2330.0	45	SANDSTONE:IIght grey green,fine grained,kaolinitic
2322.5	60	CLAYSTONE: red brown, dark grey, dark yellow brown,grey green,mottled,micaceous
2308.2	65	CLAYSTONE:mottled, grey green, yellow brown, red,red brown in places,hard fragments in a soft matrix
2296.9	30	CIAYSTONE:dark grey, carbonaceous
2260.2	25	SILTSTONE:light grey brown,micaceous,slightly carbonaceous
2246.6	30	CLAYSTONE:medi um grey, sandy
2124.0	30	CLAYSTONE:medium grey with sandy laminations
.2114 .7	35	CLAYSTONE: as above
2075.5	35	SHALE:medium grey, pyritic, with sandy laminations
2059.5	30	SANDSTONE: \because finc grained, argillaceous, laminated,
-		

(Sidewall Samples continued)

2028.5	25	CLAYSTONE:medium grey with sandy cross laminatioys
2005.9	25	SHALE:medium grey,micaceous
.1999 .7	30	SHALE: as above
1991.8	50	CLAYSTONE:medium grey,micaceous
.1982 .5	35	CLAYSTONE:medium grey,micaceous, sandy
1968.0	40	CLAYSTONE: as above
1942.5	25	CLAYSTONE:medium grey,micaceous
1929.4	45	CLAYSTONE:medium grey,micaceous,sandy laminations

Casing:
276 joints of 9 5/8" OD C-95, 53.5 lbs/ft casing were run on the 18 th and 19 th of February. The shoe was set at 3982.6 m .

- Cementation:

The casing was cemented with a x lead slurry composed of 817 sacks of class'G' mixed with 6916 gallons of freshwater giving an average slurry density of $13.5 \mathrm{ppg}(1.62 \mathrm{sg})$.
Lead slurry additives: 245 gallons of Econolite, 123 gallons of CFR-2I, 57 gallons of ER-12I.

The tain slurry was made up of 534 sacks of class'G' mixed with 1981 gallons of freshwater giving an average slurry weight of $15.8 \mathrm{ppg}(1.89 \mathrm{sg})$.
-Tail slurry additives: 155 gallons of CFR-2I,4 480 gallons of . HIX c248,91 gallons of $\mathrm{HR}-12 \mathrm{I}$.

Comments:
The tail slurry had to be made 22 bols less than programmed (108 sacks of cement) due to a problem with the bulk supply system.

The cement was displaced with 925 bbls of mud.

This section was completed in 19 passes using 17 bits, two - runs were fishing operations. The first bit, an $H T C$ X1G, was used to drill out the cement and $95 / 8^{\prime \prime}$ casing shoe and to drill formation to 4034 m . This was followed by a formation leak-off test which gave a result of $1.8 \mathrm{~g} / \mathrm{cc}$ expressed as an equivalent mud weight. Bit number 40, an HTC WPR2DJ, also a tooth bit was used to drill to 4059m. Bit number 41, an HTC J44, drilled 125 m but on pulling was found to have only two cones necessitating a fishing run with a reverse circulation junk basket which was unsuccesful. An HTC WR7 was used to drill on junk and cut 6m to ensure that the hole was clear for the diamond bit and turbine which was to follow. 41m were cut and on pulling the diamond bit showed excessive wear so it was followed by ani nsert bit,another ETC J44. Another turbine - rin was attempted after the $J 44$ but only 33 m were made. This was followed by another insert bit, a J33, which cut 105m. A third diamond bit and turbine were run next but only 42 m were made. The bit was pulled due to high torque and replaced by a Diamond Boart SDO1 which cut 74 m .

This last turbine run was followed by a J22 which only had two cones when pulled out necessitating another run with a reverse circulation junk basket, the cone was successfully ぁetrieved.

The section was completed with 5 insert bits and one core head; one J33, one J44, one J55, two F4's and a CB 303 core head. . Prior to the last bit run the pipe sheared just below the \because rotary tabwe and the string dropped 16 m to the bottom of the
hole making it necessary to change out a large proportion of the drill-string due to bent pipe.

Average Drilling Assembly:
Bit
junk sub
stabiliser
shock sub
stabiliser
monel drill collar
stabiliser
$15 \% / 2$ drill collar
stabiliser
$196 \nless "$ drill collars
down jar
up jar
$26 \% "$ drill collars
6 joints HWDF
dart sub

Hole problems:

The hole was found to be tight at 4534 m when running in with sit number 48 so it was reamed from 4518 m to 4547 m before drilling ahead.

Deviation:

Nagnetic single shot surveys were taken at:
4021m 0.75° drift 308.5° bearing
$4049 \mathrm{~m} \quad 0.75^{\circ} \quad 4^{\circ}$
$.4779 \mathrm{~m} \quad 1.0^{\circ} \quad 348.5^{\circ}$

H 280 m	1.5°	303.5°
4419 m	1.75°	308.5°
4528 m	2.5°	288°
4694 m	3.5°	273.5°

Mud:
The lower part of the $121 / 4^{\prime \prime}$ hole was seen from the caliper 'log to be extensively washed out, so in anticipation of active .shale sections in the $81 / 2 "$ hole it was decided that the mud system be changed to a Gypsum-Lignosulphonate system to inhibit any possible shale hydration.

Average mud properties for the section were:

Mud Weight: 1.2sg
PV: 23-25
YP: 12-15
Gel: 2-6
pH: 10.7
Calcium: 800ppm
Chlorides: 11000-17000ppm
Solids: 11\%

Drilling was stopped at 5025 m and an 18m core barrel with a CB 303 core head was run into the hole for the TD core. 10m were cut of which 8.4 m were recovered.

Coring Assembly:

Core head
core barrel
26% drill collars
stabiliser
$95 \nLeftarrow n$ drill collars
16 joints HWDP
down jar
up jar
5 joints HWDP
dart sub
A total depth of 5035 m was reached on the 23 rd of March 1981.

Repeat formation test

```
    RFT run 1 ( 26/11/1980)
```

RUN 1	Depth m	Corrected final build up pressure (psi)	Corrected hydrostatic pressure (psi)	
			before	after
1.1	1396.5	2244	2638	2639
1.2	1420	2249	2682	2685
1.3	1455.5	2255	2751	2751
1.4	1486.5	2262	2810	2813
1.5	1551.5	2273	2933	2934
1.6	1548.5	2273	2928	2928
1.7	1568.5	2277	2964	2966
1.8	1566	2277	2962	2964
1.9	1573.5	2282	2978	2977
1.10	1578	2289	2983	2986
1.11	1581.5	2301	3991	2992
1.12	1585.5	3214	3000	3002
1.13	1595	2301	3018	3019
1.14	1585.5	3208	3001	3002
1.15	1590.5	2329	3011	3012

no hole problems during logging anomaly repeated : Formation slightly supercharged .
tool: Violet RFT modified
probe: long
chokes : 8×0.015

SHELL 31/2-4

REPEAT FORMATION TEST REPORT SRESERVOIRS

f 225s (1. 0e8)
t 2202 1.8803

$13288(1.417)$
$+3214(1.415)$
$+2320(1.018)$

Repeat formation test

Pretest results ($13 / 2 / 1981$)

RUN	Depth m	Corrected final build up pressure (psi)	Corrected hydrostatic pressure (psi)	
			BEFORE	AFTER

```
tool : RFT 2 x blue
    standard probe
    standard filter
    strain gauge 51349.1
    spacers for 11 inch to 13.5 inches ;hole diameter: 14.1"
```


Repeat Formation Test

Pretest results ($24 / 3 / 81$)

RUN	Depth	Coprected final build up	Corrected hydrostatic	
	m	pressure (psi)	pressure (psi)	
			BEFORE	AFTER
1.3	4303	6528	7500	7503
1.4	4423.3	6702	7704	7707
1.8°	4966.8	7545	8610	8619

tool: RPT $2 \times$ blue

- Formation collapsing

5) Overpressure Survey:

General information:

In addition to hole conditions,gas shows nd other physical indicators of overpressure,two statistical methods wére insed to quantatively define formation pore pressure. D-exponent is the prime driver fior the On-line system and has been used in the main to assignialues to the pore pressure. Sigmalog has been used off-line as a back up, with data stored at 1m intervals on magnetic cartridge.

Theory:

Sigmalog is based on a method of processing drilling parameters to calculate the formation pressure gradient. The calculated Sigmalog is in effect a rock strength parameter.

New interpretation procedures can overcome such traditional probinems as changes in lithology,faulting and the effects of poor bit efficiency and hydraulies. Only the measurable drillint parameters re used for Sigmalog,such factors as bit wear and type are not taken into account. Determination of overpressure, as with d-exponent is by comparing the measured value with a reference value, the difference between the two representing the amplitude of the formation pressure.

If a right envelope of the raw curve were to be drawn (ie:passing through the average maximum values), the difference between this 'envelope and the reference (trend) line shows overpressure, and the difference between the envelope and the raw data indicates porosity. Dquations (metric):

$$
\sqrt{\sigma_{t}}=\frac{w_{0} \delta^{\circ .5} R R P M^{0.25}}{\operatorname{Dn} \times R O P_{0.25}}-0.028(7-0.001 \times T V D)
$$

Where $: \mathrm{HOB}=$ weight on bit in tonnes
RPM=rotary speed
Dh=bit diameter
ROP=rate of penetration in m / hr
TVD=true vertical depth
Where $\sqrt{\sigma_{t}} \leqslant 1 \quad n=3.25 / 640 \sqrt{\sigma_{t}}$

$$
\sqrt{\sigma_{t}}>1 \quad n=1 / 640\left(4-\frac{.75}{\sqrt{\sigma_{t}}}\right)
$$

n is a function of the time required to equalize the differential pressure between mud and the formation $\ddagger 0$ cutting height.

Rock strength parameter(plotted value):
$\cdot \sqrt{\sigma_{0}}=F \times \sqrt{\sigma_{t}} \quad F=1+\frac{\left.1-\sqrt{\left(1+n^{2} \Delta p^{2}\right.}\right)}{n \Delta p}$
Where $\Delta_{p=d i f f e r e n t i a l ~ p r e s s u r e ~ b e t w e e n ~ m u d ~ a n d ~ f o r m a t i o n=.1(M W-H) D e p t h ~}^{\text {(}}$ $\because \quad M W=$ mud weight in $\mathrm{kg} / 1$

* H=normal hydrostatic gradient in kg / l

Used is the Geoservices development of the d-exponent which computes a normalized rate of penetration to highlight anomalies I formation compaction.

An expression may be found for a compaction trend in normally pressured shales. Negative departures from this trend will indicate undercompaction and potential overpressures.

Equations:
The original equation for d-exponent was developed by
Jordan and Shirley in 1966, mud weight correation applied by REFM and McClendon and bit wear/type correction applied by Geoservices.

$$
d c s=\frac{\log \left(\frac{Q P R O P}{6 O R P M}\right)}{\log \left(\frac{12 \omega O B}{10^{6} D h}\right)} \times \frac{H}{\epsilon C D}
$$

Where $E C D=$ the equivalent circulating density and a a bit wear correction $a=.93 T^{2}+6 T+1$

```
\(T=x \frac{-31 F B \omega^{2}+3 F B \omega+1}{3\left(x^{2}+3 x+1\right.}\)
    \(\mathrm{x}=\mathrm{FBW}((T D-I D) / L)\)
    \(p=a\) parameter of bit type (diamond to soft mill tooth)
    \(T D=t o t a l\) depth
    ID=initial run depth
    I=run length
FBW=final bit wear(n/8)
```

The des trend line may be expressed as a straight line with an equation such as:

$$
\log (d x)=a 2+6
$$

The trend may be given manually through the CRT keyboard or the computer may find it's own trend within predetermined limits over a particular interval.

When the observed dcs is lower than the trend:

$$
\mathrm{Ff}+\mathrm{S}=(\mathrm{S}-\mathrm{H}) \frac{\mathrm{dcs}}{\mathrm{ndcs}} 1.2
$$

Where $S=o v e r b u r d e n$ gradient
Equivalent circulating density is the effective pressure of the mud in circulation, taking inti account the back pressure of the mud in the annulus.

To estimate local fracture gradient, appropriate values of vertical (overburden) and horizontal stress coefficients must be found.

The variation of overburden with depth may be approximated by the thime order polynomial:

$$
\text { where } \begin{aligned}
S= & a \ln ^{2} Z+b \ln Z+c \\
S= & \text { overburden } \\
Z= & \text { depth } \\
a, b, c= & \text { coefEicients computed usin } \quad \text { a curve fitting } \\
& \text { regressinn from local density or sonic data. }
\end{aligned}
$$

Similarly, the horizontal stress components of the fracture gradient may be approximated by the 2nd order polynomial:

$$
\begin{aligned}
& K=-n \underline{n u} \\
& 1-n u \\
&=a \ln Z+b
\end{aligned}
$$

(nu/k-nu) is known as Poisson's Ratio, and

$$
n u=\frac{\text { Frac }}{\text { Frac }+S f}=-2 P f
$$

where \quad Pf $=$ formation pore pressure

$$
\text { Frac }=\text { fracture gradient from leak off test }
$$

a and b are derived from a best fit regression curve of the variation of poissons coefficients with depth.

The overburden coefficients used inthis well were:

$$
\begin{aligned}
& a=0.01304 \\
& b=-0.017314 \\
& c=1.435
\end{aligned}
$$

These coefficients are standard soft rock (Gulf Coast)
However, local coefficients were derived using both sonic and

FDC data . The following results were obtained:

SONIC

$a=-0.04117$
$b=0.86935$
$c=-3.57759$
$a=-0.03292$
$b=0: 7555$
$c=-3.26652$

These three curves are plotied in the mainfile, the latter curves illustrate the influence of the water cilumn. Also drawn are, three curves representing Poissons Ratio versus depth; thier coefficients are given below.
(1) North Sea
(2) Local
(from L.O.T's)
(3) Conventional Soft
$a=0.277$
$a=-0.02579$
$a=0.266$
$b=-2.977$
$b=2.06819$
$b=-2.667$

The regression curve computed from sonic derived overburden is apparently anomalous. Which is due to an integration of low density (from high sonic transit time in the wet tertiary shales) and high leak off pressure fracture values in these plastic sediments. With increasing formation competence, the shales will have a lower sonic transit time, but at the same time will fracture more readily than the immature sediments above.

The local coefficients of the curve fitting equation of Poissons "nu: with depth also reflect the anomaly of low density Tertiary plastic shales as discussed above.

ShELL 31/2-4 FAF ICC EATA

SHELL 31/2-4 RAW LCG DATA

SHELL 31/2-4 FAV LCG DATA

after comoletion of the t.d. logging programme in 31/2-4, (to be advised by separate telex) and assuming nd nydrocarbons encountered in the a $^{\prime \prime} / 2$ ', hole section it is proposed to suspeñ well 31/2-4 for testing in 1931/82. the suspension procedure proposed is as follows:-

1. rin with ca. 250 m of $27 / 8^{\prime \prime}$ tubing on $5^{\prime \prime} \mathrm{dp}$ to 5000 m . circulate and condition mud and then set a 200 m cement plug using the following slurry:
norcem cláss ' g ' cement
+0.90 galls/sk nlx-c248 (5 0/0 solution)
$+0.2 j$ galls/sk hr-12l
+3.97 galls/sk fresh water
density 15.8 ppg
yield $1.16 \mathrm{cu} . \mathrm{ft} / \mathrm{sk}$
(thickening time +/- 2.75 nours at 287 deg f)
pump 10 bols mix water ahead and 9 Dol mix water Denind the
cement slurry
2. set 4 additional cement plugs,.using the same slurry as above, over the following intervals:-

4770-4570 m
4540-4340 m
4310-4110 m
4030-3330 m
(thickening time $+/-4.5$ hours at 229 deg f)
 +/- 30 m above each cement plug and reverse circulate the $27 / 8^{\prime \prime}$ tubing and $J^{\prime \prime}$ do clean, prior to. setting the next plug. care should be taken not to exceed the equivalent mud gradient of 1.80 s.g. at the 9 5/8', shoe as determined in the leak off test of 22.2.81.
3. Woc for $+/-12$ nours. meanwnile pon and rin with an 8 1/2'' Dit and tag toc with 15-20,000 los. (if toc 1 s below 3950 m , another plug will have to set to oring the toc to ca. 3880 m). if toc is ok, pull back one stand and pressure test. the cement plug to 4500 psi surface pressure (this is 1000 psi above the $95 / 8^{\prime \prime}$, shoe strength of $1.80 \mathrm{~s} .9 .$, assuming $1.19 \mathrm{~s} . g$. mud in the nole) if test is ok, pon.
4. rin witn 9 5/8' casing cutter: cut the $95 / 8^{\prime \prime}$ casing at 1920 m and check for any equalizing flow due to gas trapped in the 9 5/8', $x 13$ 3/3" annulus. if no increase in flow is observed then proceed and retrieve the casing, having the diverter closed when lifting. the kanger/seal assy to divert possiole trapped gas. if an increase in flow is observed when cutting.the $95 / 8^{\prime \prime}$ casing, then call basea proceed as follows:-
4.1 close in the well and observe the pressure build up. allow the pressure to equalize and circulate out any gas cut mud. continue to circulate until the mud is conditioned to an uniform weight of 1.19 s .9. or increase the mud weight as reauired.
4.2 observe the well. static for 10 mins 'and proceed as per then advised program.
5. rin witn ca. $250 \mathrm{~m}, 27 / 8^{\prime \prime}$ tubing on $5^{\prime \prime} \mathrm{dp}$ to 2100 m and spot a 35 bols viscous mud pill (150 secs mf). pon to 2000 m . circulate and condition mud and then set a 200 m cement plug using the following slurry:
norcem class 'g' cement
+0.30 galis/sk nlx-c243 (5 0/0 solution)
+4.73 galls/sk fresh water
density 15.8 pog
tield $1.15 \mathrm{cu} . f \mathrm{f} / \mathrm{sk}$
(tnickening time $+/-3.0$ nours)
pump 10 obls mixwather anead and 1 bDl mixwater denind the cement slurry. poh to $+/-30 \mathrm{~m}$ above the calculated toc and reverse círculate clean. pon.

6: woc for $+i-3$ nours (or until surface samples are nard) meanwhile rin with an $81 / 2$, bit and tag toc with 15-20,000 los. (if toc is below 1390 m , another plug will have to be set to bring the toc to ca, 1300 m) if toc is ok. pon.
7. rin with a rtts packer on 5" op and set same at 1770 m . pressure test the cement plug to 2500 psi surface pressure (this is 1000 psi above. $13 \mathrm{3} / \mathrm{B}^{\prime}$ ' shoe strength of $9.72 \mathrm{s.g.}$, assuming $1.19 \mathrm{s.g}$. mud in the nole). if test is ok, pon.
3. rin with ca $250 \mathrm{~m}, 27 / 8^{\prime \prime}$ tubing on $5^{\prime \prime}$ dp to 1400 m and spot 75 bols viscous mud pill (150 sec mf). pon to 1300 m . circulate and condition mud and then set a 150 m cement plug using the following slurry:-
norcem class ''g'" cement
+2.08 galls/sk fresh water
density y 15.8 ppg
yield $1.1 j$ cu.ft/sk
(thickening time $+/-3.0$ nours)
pump 90 obls fresnwater anead and 1 Dol freshwater benind the cement slurry. poh to $+1-30 \mathrm{~m}$ above the calculated toc and reverse circulate clean. pon.
9. woc for $+/-6$ hrs (or until the surface samples are hard). then rin with an 12 1/4\% Dit. and tag 4oc with 15-20,000 los if toc is ok, pon, laying down dp and oisplacing the riser to seawater.
10. pull the bop stack and riser. jump divers and make a video record of the wellnead.
19. run and install cameron corrosion cap (with udi transponder and simrad. beacon installed). check Deacon and transponder operation.
12. Jump divers and a make video record of the wellhead
(with the corrosion cap installed) and surroundings. cut and retrieve guidelines.
13. commence pulling anchors

