

STATOII

GEOLOGTCAL PROGNOSIS: DRILKING PROGRAM

WELL 31/3-1

TROLL

Den norske stats oljeselskap a.s

STATOIL

GEOLOGICAL PROGNOSIS; DRILLING PROGRAM

WELL 31/3-1

TROLL

WELL 31/3-1
 CONTENT

Well Prognosis 3
Location map 4
Introduction 5
purpose of test 5
Objectives 6
31/3-1 location considerations 6
Drilling hazards 7
Survey and positioning 7
Stratigraphic prognosis 8
Lithology 9
Geological well logging and sampling procedures 11
Well logging program, schematic 12
Coring program 13
Testing program 13
Base and responsibility 14
Communication procedure 15
Organization chart 16
Communication personnel, partners and NPD 17
Drilling program, general drilling 18
Mud progam 22
BOP testing 23
Casing program 25
Abnormal pressure detection 26
Kick limitation 31/3-1 28
20" casing design 32
13 3/8" casing design 36
9 5/8" casing design 40
$7{ }^{\prime \prime}$ liner design 45
Casing cement calculations 48
FIGURES
Pore pressure, fracture gradient and mud weight 30
20" casing design 35
13 3/8" casing design 39
9 5/8" casing design 44
Time versus depth 62
Well schematic 63

Block $31 / 3$ is one of the four "Troll-blocks", 31/2, 31/3, 31/5 and $31 / 6$. While block $31 / 2$ is operated by Norske Shell, the three others are operated jointly by Statoil, Norsk Hydro and Saga-petroleum. It is agreed that Saga will concentrate on exploring northern part of block $31 / 5$, while statoil and Norsk Hydro will jointly explore the eastern part of the "Troll- field" i.e. blocks $31 / 3,31 / 6$ and the eastern part of $31 / 5$.

Lateral extension of the Troll-field as mapped today is mainly based on the extension of the seismic flatspot in the area. This seismic event is regarded as a direct hydrocarbon indicator and represents a gas-liquid contact. A verification and calibration of this seismic event is provided by data from the $31 / 2$ wells.

So far only block $31 / 2$ is drilled; since 1979 ten wells have been completed on the Troll Field in 31/2. Each of the wells, except for well 31/2-10, which was water bearing, found gas underlain by an oil rim in sandstones of upper to middle Jurassic age.

PURPOSE OF TEST

31/3-1 is the first well to be drilled outside block $31 / 2$ on the Troll-field. It is a wildcat well designed to test possible gas and oil accumulations in sandstones of upper to middle Jurassic age.

The well will be drilled approximately 200 m into the Triassic to an estimated total depth of 2375 m (RKB). This should be sufficient to penetrate all interesting seismic horizons, test the complete reservoir sequence of upper to middle Jurassic age and also to test possible hydrocarbon accumulations on Brent, Statfjord and upper Triassic levels.

OBJECTIVES

The primary objective of well $31 / 3-1$ is the sandstone sequence of upper to middle Jurassic age. Secondary objectives are. sandstones of middle to lower Jurassic and also upper Triassic age.

31/3-1 LOCATION CONSIDERATIONS

Well 31/3-1 is located in an area where the seismic flatspot is recognized. It is believed that a communication to the reservoir in block $31 / 2$ exists both in the gas- and liquid phase. However, a break in communication may be present, and this is one of the main questions to be answered by well 31/3-1.

The well is located near the top of a yet untested fault block, which is tilted to the east. In this location the reservoir will be penetrated in a position close to the structurally highest level expected in the eastern part of the Troll-field. The gas column is estimated to be approximately 190 m and an approximately 10 m thick oil rim is expected to be found underneath. Gas-oil contact is expected at 1570 m (RKB), and the OWC at 1580 m (RKB), both in Fens Fm. (reservoir zone 3*), and this will enable gas-production tests from three different reservoir zones.

Well 31/3-1 is also located on a cross point between seismic lines from different surveys. This to enable seismic calibration for both surveys.

* Reservoir zonation is expected to be similar to block $31 / 2$, where four different, main zones are present.

DRILLING HAZARDS

The water depth at the planned drilling location is 335 m (MSL).

Seismic data from the site survey show no abnormal high reflection amplitudes at this location, and no debris were seen on the sea floor. In surrounding areas, however, weak reflection anomalies may be caused by gas in the interval 455 - 565 m (RKB). Boulders are probably present in the zone between 425 and 475 m (RKB) .

SURVEY AND POSITIONING

The rig will be navigated by Syledis and finally positioned by Satnav. Rig location accuracy is requested within a 100 m radius of the proposed location on s.p. 491 of seismic line sT8116-138.

UNIT
DEPTH (m) RKB

Top Nordland Gr.
$360 \mathrm{~m} \pm 5$
Top Hordaland Gr.
Top Eocene
Top Balder Fm.
Top Sale Fm.
Top List Fm.
Top Upper Cretaceous
Top Lower Cretaceous
Top Rim. Clay Fm.
Top Son Fm. (Zone 1)
Top Middle Heather Fm. (Zone 2)
GOD
Top Brent Coal
Top Cook Fm.
Top Statfjord Coal
Top Cormorant Em.

TAD.
$540 \mathrm{~m} \pm 10$
$710 \mathrm{~m} \pm 10$
$945 \mathrm{~m} \pm 20$
$1050 \mathrm{~m} \pm 20$
$1125 \mathrm{~m} \pm 20$
$1250 \mathrm{~m} \pm 20$
$1315 \mathrm{~m} \pm 20$
$1365 \mathrm{~m} \pm 20$
$1380 \mathrm{~m} \pm 20$
$1465 \mathrm{~m} \pm 40$
$1570 \mathrm{~m} \pm 20$
$1795 \mathrm{~m} \pm 40$
$1915 \mathrm{~m} \pm 40$
$2095 \mathrm{~m} \pm 40$
$2145 \mathrm{~m} \pm 40$

Approximately 200 m into Triassic, estimated at 2375 m .

LITHOLOGY

Tertiary

The sediments of the Nordland Gr. consist of grey soft clay interbedded with silt sand and gravel.

The Hordaland Gr. is dominated by grey and brown clay with some sandy and calcareous layers.

The Balder Fm. consists of multicoloured tuffaceous claystone while the Sele and Lista Fm. are dominated by uniform grey to brown, occasionally marly claystone.

Cretaceous

The Upper Cretaceous interval consist of grey, marly claystone at the top and glauconitic, chalky limestone at the base. These sediments are all believed to belong to the Shetland Group, but there is a possibility for a thin Maureen Formation at the top of the Shetland Group.

The lower Cretaceous Cromer Knoll Group has a chalky limestone at the top and a red to brown glauconitic marl at the base.

Jurassic

The Kimmeridge Clay Formation is believed to be thin and consists of black to dark brown, bitumenous shale.

It is thought that as in block $31 / 2$, the reservoir sequence may be divided in four main zones:

Zone 1, Sogn Formation consists of a grey, weakly consolidated sand with some bands of consolidated, micaceous sandstone and occasionally carbonate cemented bands.

Zone 2, Middle Heather Formation consists of a grey strongly micaceous and fine grained sandstone/siltstone.

Zone 3, Fens Formation (top not prognosed) is a sequence of grey sandstone with interbeds of micaceous sandstone/siltstone and carbonate cemented bands.

Zone 4 , Kross and Lower Heather Formation (top not prognosed) is dominated by fairly coarse sand with interbeds of fine sands and silts and some carbonate bands.

The Brent Group is composed of fine to coarse sandstones. Greygreen, micaceous siltstones and claystones and thin coals are interbedded with the sand.

The Dunlin Group consists of grey, silty claystones with some argillaceous sandstone intervals.

The Statfjord Formation is relatively thin and consists of white sandstones with coaly claystone and siltstone beds.

Triassic

The Upper Triassic is dominated by reddish claystone and sandstones of continental origin.

GEOLOGICAL WELL LOGGING AND SAMPLING PROSEDURES

Mud logging contractor: Exploration Logging
The Gemdas-unit will be employed to log the well for hydrocarbon shows, collect samples, prepare sample log and conduct certain other services throughout drilling operations.

Sampling interval

Samples will be collected at 10 meters intervals down to 900 meters. Thereafter at 3 meters intervals. Sampling intervals might be changed on request by the wellsite geologist.

Two sets of washed and dried samples will be collected at each interval.

Six sets of unwashed samples ($\frac{1}{2} \mathrm{~kg}$) will be collected at each interval.

One composite sample of unwashed cuttings will be canned at 30 meters intervals.

One or more mudsamples of 3 litres will be collected from the active pits when drilling through any hydrocarbon bearing interval. The number of samples will be at the discresion of the wellsite geologist. The sample should be properly marked with depth and sent to statoil Laboratories, Forus.

One set of washed and dried samples will be retained on the rig until the well is finished. The remaining samples will be sent to GECO, Stavanger, periodically during drilling. Storage, washing and distribution will be handled by GECO as per instructions.

WELL LOGGING PROGRAM 31/3-1

STRATIGRAPHY
CASING
LOG RUN

MRKB

A minimum of one core will be cut in Jurassic sandstones, additional cores will be cut if significant hydrocarbon shows are encountered. The coring points, and the number of cores to be cut, will be at the discretion of the wellsite geologist, subject to review by the operation geologist.

All cores will be sent to GECO, stavanger, for analysis, storage and distribution.

TESTING PROGRAM

If hydrocarbon accumulations are present, testing will be requested. These tests may be FMT's and/or production tests through casing, depending on analysis of well potential at the time. A supplementary test program will be issued if necessary.

BASE

Statoil operations base at Agotnes will be utilized for the drilling of this well.

RESPONSIBILITY

a) Drilling Supervisor

The Statoil designated Drilling Supervisor will be immediately responsible for all operations on the rig in accordance with this program and drilling contracts. He will be advised by a Drilling Engineer and a Wellsite Geologist. The Drilling supervisor will report to the Statoil Drilling Superintendent.
b) Wellsite Geologist

The Wellsite Geologist will advise the Drilling Supervisor of any changes in the geological prognosis and of any shows of oil or gas as soon as encountered. He will supervise the mud loggers during sampling and coring operations and together with the logging/testing engineer be responsible for that the electrical logs are run properly and are of acceptable standard. He will recommend coring intervals. The Wellsite Geologist will report to the Statoil Operations Geologist.
c) Logging and Testing Engineer

The Wellsite Logging/Testing Engineer will assist the Drilling Supervisor in supervising the logging/testing operations. He will perform the necessary quality control of logging/testing/sampling data and ensure optimal data gathering during logging and testing operations.

Confidentiality

All data are considered confidential and will be released to third parties only by decision of Statoil.

Delivery to participants

A daily well report will be sent by telex by the operator (Statoil) to all partners and to the Norwegian Petroleum Directorate. All other wellsite data, including field prints of logs, will be sent by post or messenger.

A final well report will be prepared for distribution to partners and to the appropriate Norwegian Government agencies not later than six months after completion of the well.

STAFF

Staff of the Exploration and Drilling Department, Statoil, who are involved in the planning and drilling of the well:

TELEPHONE
NAME
TITLE
OFFICE HOME
MOBIL
Sund, T.
Bergseth, S.
Johnsen, I.
Røise, P.
Lie, E.
Kjeldstad, K.
HelgøY, T.S.
Aga, O.J.
Kræmer, R.
Riise, R. G.
Syrstad, S.O.

Vice President Expl. 04-578178 04-560235
Licence Manager, Troll 04-578180 04-559322
Drlg. Mngr. 04-541099 04-576125
Geol./Geof. Coordinator

Troll project

04-578168 04-550369
4314
Oper. Coord. Geol.
Expl. Drlg. Mngr.
Op.Tech. Coord.
District Manager
Area Supervisor
Oper.Techn.Supervisor
Oper.Geol.Supervisor

04-578162 04-667411
04-541099 04-591437
04-577297 04-661757
04-533180 04-534739
04-533180 04-620039
04-533180 04-591401
04-533180 04-587.429
ORGANIZATION CHART WELL 31/3-1
VICE PRESIDENT EXPL.
T.SUND

COMMUNICATION PERSONNEL, 31/3-1 TROLL

Norsk Hydro Produksjon A/S:

		TELEPHONE			
NAME	TITLE	OFFICE	HOME	MOBIL	
Oppebøen, K.A.	Expl. Manager	$02-543920$	$02-170206$	16274	
Sæbゅe, A.	Area Expl. Manager	$02-543920$	$02-543805$		
Egeberg, T.	Area Geologist	$02-543920$			
Leivestad, S.I.	Oper.Geol.Manager	$02-543920$	$02-121546$	16272	
Davies, A.	Oper. Geol.	$02-543920$	$02-563441$	33928	

Saga Petroleum A/S:
NAME TITLE OFFICE HOME MELEPHONE

Nysæther, E.	Expl. Manager	$02-120111$	$02-570154$
			$05-282563$
Høisæter, T.	Area Manager	$02-120111$	$02-792651$
Olsen, J.	Area Geologist	$02-120111$	$032-66409$
Gustavsen, B.	Oper.Geol.Supervisor	$02-120111$	$02-789640$

Contact in Norwegian Petroleum Directorate:
NAME TITLE \quad OFFICE \quad TELEPHONE \quad HOME \quad MOBIL

Aamodt, F.R. Section Manager 05-533160

DRILLING PROGRAM

Well designation	$: 31 / 3-1$
Vessel	$:$ Deep Sea Bergen
Type drilling rig	$:$ Aker H-3.2
Drilling draft	$: 22 \mathrm{~m}$ maximum
RKB to MSL	$: 25 \mathrm{~m}$
Air gap	$: 15,2 \mathrm{~m}$
Water depth	$: 330 \mathrm{~m}$
BOP system	$:$ NL-Schäffer $18-3 / 4 ", 10000$ psi stack.
Wellhead system	$:$ Vetco $18-3 / 4^{\prime \prime}, 10000$ psi, 3 hanger torque
	set system.

Depth are referred to RKB except were otherwise specified. The first following pages refers to Statoil's "Floating Drilling Operations Manual" and should be used as additional information.
2.0. General procedure
2.1.1. Location survey:

The water depth at the planned drilling location is approximately 330 m (MSL).

The seabed at location is flat.
The seabed is even, but number of pockmarks are distributed over the survey area. Pockmarks up to 6 m deep and $25-30 \mathrm{~m}$ across have been recorded.

The sequence from seabed to approximately 380 m (MSL) probably consists of soft and laminated clay and silt.
The sequence between $380-390 \mathrm{~m}$ probably consists of silt and sand is followed by sand and gravel down to 430 m MSL.

Seismic data from the site survey show no abnormal high aplitudes at this location, and no debris were seen on the sea floor.

In surronding areas, however, weak reflection anomalies may be caused by gas in the interval $540-600 \mathrm{~m}$ (RKB). Boulders are probably present in the zone between 430-475 (RKB).

2.2.1. Mooring

Rig heading 180 Deg.
3.0. General drilling
3.1.1. Drilling $36^{\prime \prime}$ hole

Drill $36^{\prime \prime}$ hole with $26^{\prime \prime}$ bit and $36^{\prime \prime}$ H.O. to +/- 420 m . A temporary guide base will be used if needed.
3.2.1. Drilling pilot hole and logging:

Prior to drill out $30^{\prime \prime}$ shoe, there should always be $50 \mathrm{~m}^{3}$ mud with density $1.23 \mathrm{~g} / \mathrm{cm}^{3}$ in reserve. Drill 12 1/4" pilot hole to 865 m . Quart/Tertiary will probably be normally pressured down to 1040 m where the top of the abnormal pressured transition zone may start.

Before deciding how to enlarge the pilot hole to 26", all the drilling data and logs should be carefully reviewed and discussed with the operations office. If the presence of gas bearing sand can't be excluded the hole should be underreamed.
3.2.5. Running 20" casing and cementing:

Fill 20" casing every joint after shoe has reached sealevel. After 1 st stand of landing string has been run, attach circulation head and fill $20^{\prime \prime}$ casing and landing string. Make sure not to exceed the pressure necessary to release sub sea plug. The landing string shall be filled every second stand using the mudhose. 20" casing shoe will be set at 850 m.
3.4.1. Drilling $171 / 2^{\prime \prime}$ and $121 / 4^{\prime \prime}$ hole:

The abnormal pressured zones may start at $+/-1040 \mathrm{~m}$ and increase to approximately $1.25 \mathrm{~S} . \mathrm{G}$. at 1160 m . The maximum pressure gradient is probably present in the lower Tertiary and Cretaceous formation.

The 13 3/8" casing should be set through the peak of the pore pressure in order to drill the reservoir sand without too much overbalance.

Drill into the top of limestone in Cretac, log and set casing. Mudweight should be as the well dictates, but the pressure prognosis indicates a mudweight from 1.13 to $1.45 \mathrm{~S} . \mathrm{G}$. including risermargin and a safety margin.

13 3/8" casing will be set at approximately 1285 m .
When drilling this section, there should always be $70 \mathrm{~m}^{3}$ mud with density $1.5 \mathrm{~g} / \mathrm{cc}$ in reserve.

12_1/4" hole: 1300 -_-1835_m:

Porepressures are expected to decrease continously below the $133 / 8^{\prime \prime}$ shoe, and may reach normally pressured at 1550 m .

The 12 1/4" hole will be drilled through Upper and Middle Jurassic. The 9 5/8" casing will be set after drilling into Brent coal, approximately at 1820 m 。

The primary objectives are sandstones of Upper to Middle Jurassic age.

Mudweight used should be dictated by well conditions, but the pressure prognosis indicates a mudweight from 1.18 - 1.32 S.G. including risermargin and a safety margin.

8_1/2"_hole:_-1835_=_2350_m:

The pressure gradient in this section is believed to be normal.

The 8 1/2" hole is planned to be drilled 200 m into Triassic, and drilled with a mudweight of 1.1 S.G.

If it is decided to test Lower Jurassic/Triassic sandstones a 7" liner will be set at TD.
4.0 MUD PROGRAM

Interval M RKB	Hole size	Mud type	$\begin{aligned} & \text { Weight } \\ & (\mathrm{g} / \mathrm{cc}) \end{aligned}$	PV	YP	Fluid loss API/HTHP	PH
355-420	$36^{\prime \prime}$	spud mud					
420-865	$26^{\prime \prime}$	Bent./ligno			+ 20	N/C	9,5-10,5
865-1300	17-1/2"	KCL-polymer	1,13-1,45	ALAP	15-30	6-8	8,5-9,5
1300-1835	12-1/4"	Bent./ligno	1,18-1,32	"	15-20	6-10/20	9,5-10,5
1835-2350	8-1/2"	Bent./ligno	1,1	"	12-15	4-6/15	9,5-10,5

[^0]- Maintain drill solids content at minimum by means of the desander, desilters/mud.
cleaner (using $120-150$ mesh screens).
- Utilize the centrifuge for viscosity control and for baryte salvage.
See separate mUD PROGRAM for details.

4.4.1. BOP TESTING

| BOP test
 pressures: | Pipe rams | BagsChoke and
 kill valves |
| :--- | :--- | :--- | :--- |
| On surface
 Initial and subse-
 quent installation
 on wellhead. | 690 bar bar | 241 bar |

Close shear ram with the accoustic system and test shear ram against casing.

2b. Weekly test with 20" casing set 103 bar

103 bar
103 bar

3a. After 13 3/8" seal
assembly is tested
with no leak 150 bar 150 bar 150 bar

3b. Weekly test with
$133 / 8^{\prime \prime}$ casing set 150 bar 150 bar 150 bar

4a. After 9 5/8" seal
assembly is tested
172 bar
172 bar
172 bar

4b. Weekly test with
$95 / 8^{\prime \prime}$ casing set 172 bar 172 bar: 172 bar

Casing and seal assembly test pressure (see note below)

$20 "$ casing	-90 bar
$133 / "^{\prime \prime}$ casing	-150 bar
$95 / 8^{\prime \prime}$ casing	-172 bar
$7 "$ liner	-172 bar

The given test pressure should be the pressure measured at surface.

NOTE: When testing casing: If cement has been brought up inside the previous casing shoe, observe pressure and volume pumped carefully to ensure that the seal assembly is not leaking.

Safety factors:	Collapse:	Burst:
$20 "$	1.30	1.18
$133 / 8^{\prime \prime}$	1.30	1.18
$95 / 8 "$	1.25	1.18
$7 "$	1.25	1.18

SIZE	DEPTH (m)	WEIGHT	GRADE	CONNECTION
$30^{\prime \prime}$	355-420	1jnt $1 \frac{1}{2} " w t$. 4"1" wt.	B B	Vetco ATD/RB
$20^{\prime \prime}$	355-850	133	K-55	Vetco LS
13 /8"	355-1285	68	K-55	Buttress
9718 10	$\begin{aligned} & 355-820 \\ & 820-1820 \end{aligned}$	47 43.5	$\mathrm{N}-80$	Buttress "
$7{ }^{\prime \prime}$ +	1670-2350	29	$\mathrm{N}-80$	Buttress

See "Casing program"

+ optional

4.8.1. Abnormal pressure detection:

The most effective abnormal pressure detection operation will be the result of team effort involving the Drilling Supervisor, Drilling Engineer, Wellsite Geologist and Mud Logging Engineer. Pressure indicators will be monitored continously and any deviation investigated immediately. The reliavility of each abnormal pressure indicator will have to be established during the course of operation.

A mud Logging Unit will be utilized below the 30 " casing shoe to collect and monitor abnormal pressure parameters. This unit will be programmed to record the following parameters relating to abnormal pressure:

1. Mud weight
2. Drilling rate
3. Weight on bit
4. RPM
5. Torque
6. "d" exponent
7. Mud gas
a) Background gas
b) Connection gas
c) Trip gas
8. Mud temperature at flowline
9. Mud flow
10. Pit volume

In addition, shale density and chloride content in the mud will be measured manually.

Manual plots will be recorded and reviewed continously by the Drilling Engineer and Drilling Supervisor. These plots will include drilling rate, lithology, mud weight on bit, "d" exp., gas units, mud temperature and shale density, together with bit and hydraulics data.

Input parameters (weight on bit, RPM, hydraulics) should be hold fairly constant. This is especially important in the pressure transition zone. Abnormal pressure detection data will be forwarded to the Stavanger Operation Office twice daily on routine basis and more frequently if drilling a suspect transition zone. Any change in abnormal pressure detection parameters will be immediately reported by the rig to the Stavanger Operation Office.

4.9.1. Formation evaluation:

The mud returns will be monitored continously to detect $\mathrm{H}_{2} \mathrm{~S}$. Also check the hole for $\mathrm{H}_{2} \mathrm{~S}$-content in 100 m intervals, (or when background gas exceed 1%) by means of Garret Gas Train (use fresh filtrate from the filter press only).

A detailed testing program will be issued prior to test.

4.11.1 Plug and Abandonment:

A detailed P and A program will be issued prior to P and A.

Approved

Vice President Exploration Statoil

Drilling below 20" casing:

Abstract

The genral procedure is: Not to shut in a well with only $2^{\prime \prime}$ casing set. Consult with the operations office on permission to close the BOP after the leak off test is finished. Maximum porepressure is expected to be $1.25 \mathrm{~S} . \mathrm{G}$. in this interval. Formation integrity below $20^{\prime \prime}$ casing shoe is expected to be $1.49 \mathrm{~S} . \mathrm{G}$. A mud weight of 1.45 should be sufficient to control the well. If the well kicks with a mudweight and porepressure of 1.25 S.G. at 1300 m a kick height of approx. 163 m can be controlled by closing the BOP. (See fig. 1). This is equal to a volume of $20 \mathrm{~m}^{3}$ influx.

Drilling below 13 3/8" casing:

Formation integrity below the $133 / 8^{\prime \prime}$ casing shoe is expected to be 1.58 S.G. The maximum considered porepressure is 1.17 S.G. in this interval. If the well kicks with a mudweight and porepressure of 1.17 at 35 m , a kick height of 450 m can be controlled by closing BOP. (See fig. 1). This is equal to a volume of $25 \mathrm{~m}^{3}$ influx.

Drilling below 9 5/8" casing:

Formation integrity below the $95 / 8^{\prime \prime}$ shoe at 1820 m is estimated to be $1.66 \mathrm{~S} . \mathrm{G}$. The porepressure gradient at TD is expected to be $1.03 \mathrm{~S} . \mathrm{G}$. A mudweight of $1.1 \mathrm{~S} . \mathrm{G}$. should be sufficient to control the well.

If the well kicks at 2350 m with a mudweight and porepressure equivalent to $1.03 \mathrm{~S} . \mathrm{G}$. , there is no limit for the kickheight. (See fig. 1).

X	=	Casing setting depth (m)
W_{d}	=	Drilling depth for next section (m)
G_{i}	$=$	Mudweight when cementing casing (bar/m)
$\mathrm{G}^{\prime}{ }_{i}$	=	Mudweight at w_{d} bar/m)
$G^{\prime \prime}{ }_{i}$	$=$	Mudweight while testing (bar/m)
G_{P}	=	Seawater (normal) gradient (bar/m)
$G^{\prime}{ }^{\prime}$	=	Porepressure, reservoir (bar/m)
$G^{\prime \prime} P$	=	Porepressure at $W_{d}(b a r / m)$
G_{f}	$=$	Fracture gradient (bar/m)
$G_{\text {gas }}$	=	Gas gradient (bar/m)
$\mathrm{G}_{\mathrm{Cl} 1}$	$=$	Lead cement slurry (bar/m)
$\mathrm{G}_{\mathrm{C} 2}$	$=$	Tail in cement slurry (bar/m)
L	=	Length from shoe to float collar (m)
Z	$=$	Length from RKB to wellhead (m)
Z_{1}	=	Length from mean sea level to wellhead (m)
Y	$=$	Length RKB - Mudlevel in csg. (m)
${ }^{M} \mathrm{C}$	=	Casing mass gradient (kg/m)
${ }^{P}$	=	Collapse load (bar)
P_{B}	=	Burst load (bar)
RES_{B}	=	Burst resistance (bar)
${ }^{\text {RES }}$ C	=	Collapse resistance (bar)
RES_{T}	$=$	Tension strength (tons)
S.F.C	=	Safety factor, collapse
S.F.B	=	Safety factor, burst
S.F.m	=	Safety factor, tension

20" Casing Design 31/3-1

$\mathrm{X}=$	850 m
$\mathrm{~W}_{\mathrm{d}}=$	1300 m
$\mathrm{Z}=$	355 m
$\mathrm{Z}_{1}=$	330 m
$\mathrm{~L}=$	12 m
$\mathrm{G}_{\mathrm{p}}=$	$0,101 \mathrm{bar} / \mathrm{m}$

G_{f}	$=0,146 \mathrm{bar} / \mathrm{m}$
G_{i}	$=0,108 \mathrm{bar} / \mathrm{m}$
G^{\prime}	$=0,142 \mathrm{bar} / \mathrm{m}$
G_{gas}	$=0,01 \mathrm{bar} / \mathrm{m}$
G_{Cl}	$=0,153 \mathrm{bar} / \mathrm{m}$
$G_{\mathrm{C} 2}$	$=0,187 \mathrm{bar} / \mathrm{m}$

Design Criteria:

BURST : Entire casing filled with light gas. Burst load when testing casing.

COLLAPSE : Collapse load during cementing.

TENSION : Tension load when bumping plug.

Calculations:

BURST:

If the well is filled with gas (well closed in or flow diverted) the maximum casing pressure will be limited by formation fracture pressure at the casing shoe. Max. burst load at wellhead:

$$
\begin{aligned}
P_{B 1} & =\times \times G_{f}-(X-z) G_{g a s}-Z_{1} \times G_{p} \\
& =850 \times 0,146-(850-355) \times 0,01-330 \times 0,101=85.8 \text { bar }
\end{aligned}
$$

Burst load at casing shoe.

$$
\begin{aligned}
P_{B 2} & =x \times\left(G_{f}-G_{p}\right)+\left(z-Z_{1}\right) x G_{p} \\
& =850 \times(0.146-0.101)+(355-330) \times 0.101=40.8 \mathrm{bar}
\end{aligned}
$$

Max burst load while testing casing:
(90 bar test)
$P_{B 3}=90+(X-L) \times G_{i}-\left(X-Z+Z Z_{1}-L\right) \times G_{p}$
$=90+(850-12) \times 0.108-(850-355+330-12) \times 0.101=98.4$ bar

COLLAPSE:

Maximum collapse load at float collar depth during cementing Volume of tail in slurry is : $10 \mathrm{~m}^{3}$ Inside 20 casing $: L=12 \mathrm{~m}$ eq. to $2.2 \mathrm{~m}^{3}$ Annular capasity $=0.140 \mathrm{~m}^{3} / \mathrm{m}$ which leaves 55 m in annulus.

```
\(P_{C}=(55-L) G_{C 2}+(X-55-Z) G_{C 1}+Z_{1} X G_{p}-(X-L) G_{p}\)
\(=(55-12) \times 0,187+(850-55-355) \times 0,153+330 \times 0,101-(850-12) \times 0,101\)
    \(=24.1\) bar
```

Collapse load is zero at wellhead.

Select: $355-850 \mathrm{~m}: 20^{n}, 197.5 \mathrm{~kg} / \mathrm{m}(133 \mathrm{lb} / \mathrm{ft}), \mathrm{K}-55$, vetco LS

$$
\begin{aligned}
\operatorname{RES}_{B} & =211 \text { bar } \\
\operatorname{RES}_{C} & =103 \text { bar } \\
\operatorname{RES}_{T} & =926 \text { tons }
\end{aligned}
$$

Safety factor: Collapse:

S.F. $C=\frac{\operatorname{RES}}{P_{C}} C=\frac{103}{24.1}=\underline{4,27}$

Safety factor: Burst:
S.F. ${ }_{B}=\frac{\text { RES }}{P_{B 3}} B=\frac{211}{98.4}=\underline{2,14}$

TENSION:

Weight of casing string in air:

$$
(X-z) \times M_{c}=(850-355) \times 197.5 \times 10^{-3}=97.8 \text { tons }
$$

Casing inside diameter: $I D=47.6 \mathrm{~cm}$

Extra tensile load when bumping plug with 55 bar:
(neglecting steel buoyancy for extra safety)
$\left(55-P_{c}\right) \times 0,98 \times\left(\frac{I D}{2}\right)^{2} \times 3.14 \times 10^{-3}$
$(55-24.1) 0.98 \times\left(\frac{47,6}{2}\right)^{2} \times 3.14 \times 10^{-3}=53.9$ tons

Total weight load at wellhead $:(97.8+53.9)$ tons $=151.7$ tons Safety factor: Tension

- 35 -
20° CASING DESIGN
WELl: $313-1$

13 3/8" Casing Design 31/3-1

W_{d}	$=1835 \mathrm{~m}$
X	$=1285 \mathrm{~m}$
L	$=24 \mathrm{~m}$
Z	$=355 \mathrm{~m}$
Z_{1}	$=330 \mathrm{~m}$
G_{i}	$=0,142 \mathrm{bar} / \mathrm{m}$
$\mathrm{G}^{\prime}{ }_{\mathrm{i}}$	$=0,130 \mathrm{bar} / \mathrm{m}$

Design Criteria:

BURST : Entire casing filled with gas. Burst load when testing casing
COLLAPSE: Collapse load during cementing.
TENSION : Tension load, when bumping plug.

BURST:

Burst load at wellhead if the entire casing is filled with gas.

$$
\begin{aligned}
& P_{B 1}=W_{d} \times G_{p}^{\prime}-(1835-z) \times G_{g a s}-Z_{1} \times G_{p} \\
& =1835 \times 0,101-(1835-355) \times 0,02-330 \times 0,101=122.4 \text { bar }
\end{aligned}
$$

Burst load (at shoe):

```
\(P_{B 2}=P_{B 1}+(X-2) \times G_{g a s}-(X-850) \times G_{p}-(850-2) \times G_{i}\)
\(\mathrm{P}_{\mathrm{B} 2}=122.4+(1285-355) \times 0.02-(1285-850)\)
x 0.101-(850-355) \(\times 0.142=26.8 \mathrm{bar}\)
```

Max burst load at shoe while testing casing: (150 bar test):

```
P B3 = 150 + X x G Gi
= 150 + 1285 x 0.142-(1285-850 + 330) x 0.101 - (850-355)
x 0.142 = 184.9bar
```


COLLAPSE

Max allowable load while cementing:
$P_{C}=(X-L) \times\left(G_{f}-G_{i}\right)=(1285-24) \times(0,155-0,142)=16.4$ bar

Max. collapse load at float collar during cementing. (cement 100m into $20^{\prime \prime}$ casing).
$P_{C}=\left(G_{C}-G_{i}\right) \times(X-850-L+100)=$
$(0.187-0.142) \times(1285-850-24+100)=\underline{23 \mathrm{bar}}$

SELECT: 355 - $1285 \mathrm{~m}: 13 \mathrm{3} / 8^{n}, 68 \mathrm{lb} / f t, \mathrm{~K}-55$, buttress. $\operatorname{RES}_{C}=134 \mathrm{bar}$ RES $_{B}=238$ bar RES $_{T}=466$ tons

Safety factor burst:

S.F. ${ }_{B}=\frac{\text { RES }}{P_{B 3}} B=\frac{238}{184.9}=1.29$

Reduced $\mathrm{RES}_{\mathrm{C}}$ on top casing due to biaxial stress:

Weight load in air: $(X-Z)$ x $M c=(1285-355) m x$ $100.0 \mathrm{~kg} / \mathrm{m}=93$ tons
$\frac{\text { Weight load }}{\text { RES }_{T}}=\frac{93 \text { tons }}{466 \text { tons }}=\underline{0,20}$

From the Ellipse of biaxial yield stress, this gives 12 of reduction in collapse resistance.

Safety factor collapse:

TENSION:

Extra tensile load when bumping plug (neglecting steel buoyancy for extra safety) with 150 bar. Casing inside diameter: $I D=31,53 \mathrm{~cm}$.
$\left(150-P_{C}\right) \times 0.98 \times\left(\frac{I D}{2}\right)^{2} \times 3.14 \times 10^{-3}$
$=(150-23) \times 0.98 \times\left(\frac{31,53}{2}\right)^{2} \times 3,14 \times 10^{-3}=\underline{97.1 \text { tons }}$
Total weight load $=(93+97.1)$ tons $=190.1$ tons
S.F.T $=\frac{\text { RES }_{T}}{\text { load }}=\frac{466}{190.1}=\underline{2.45}$

X	1820 m	G_{f}		0.163	$3 \mathrm{bar} / \mathrm{m}$
$\mathrm{W}_{\mathrm{d}}=$	2350 m	$\mathrm{G}_{\text {i }}$		0.129	bar/m
2	355 m	$\mathrm{G}^{\prime}{ }^{\text {i }}$		0.108	$8 \mathrm{bar} / \mathrm{m}$
Z_{1}	330 m	$\mathrm{G}^{\prime \prime}{ }_{i}$		0.113	$3 \mathrm{bar} / \mathrm{m}$
L	24 m	G ${ }_{\text {ga }}$		0.023	$3 \mathrm{bar} / \mathrm{m}$
Gp	$0.101 \mathrm{bar} / \mathrm{m}$			0.187	7 bar/m
$G^{\prime}{ }_{p}=$	$0.101 \mathrm{bar} / \mathrm{m}$	+23			

Design Criteria:

BURST : Tubing leak while testing. Burst load when testing casing

COLLAPSE : Collapse load during cementing.

TENSION : Tension load when bumping plug.

Burst:

Burst load at wellhead if there is a tubing leak just below the wellhead while testing at 2350 m .
$P_{B 1}=G^{\prime}{ }_{p} \times 2350-G_{g a s} \times(2350-Z)-Z_{1} \times G_{p}$
$=0.101 \times 2350-0.023 \times(2350-355)-330 \times 0.101=158.1$ bar

Burst load at $7^{\prime \prime}$ liner top depth if tubing leak at wellhead. (liner top 150 m above $95 / 8^{\prime \prime}$ shoe depth)
$P_{B 2}=P_{B 1}+(1670-Z) \times G^{\prime \prime}{ }_{i}-(1285-Z) \times G_{i}$

- (1670-1285) $\times G_{p}=158.1+(1670-355) \times 0.113$
- (1285-355) x 0.129-(1670-1285) x $0.101=147.8$ bar

Max. burst load at shoe while testing casing:
(172 bar test)

$$
\begin{aligned}
P_{B 3}= & 172+X \times G_{i}-\left(X-1285+Z_{1}\right) \times G_{p}-(1285-Z) \times G_{i} \\
= & 172+1820 \times 0.129-(1820-1285+330) \times 10.45 \mathrm{bar}
\end{aligned}
$$

Collapse:

During cementing (cement 100 m into 13 3/8" casing)

$$
\begin{aligned}
P_{C} & =\left(G_{c}-G_{i}\right) \times(X-(1285-100)-L) \\
& =(0.187-0.129) \times(1820-(1285-100)-24)=35.4 \mathrm{bar}
\end{aligned}
$$

Select: 355-820 m, 9 5/8",N-80, $47 \mathrm{lb} / \mathrm{ft}$, buttress

$$
\begin{aligned}
& \mathrm{RES}_{C}=328 \text { bar } \\
& \mathrm{RES}_{\mathrm{B}}=474 \text { bar } \\
& \mathrm{RES}_{\mathrm{T}}=472 \text { tons }
\end{aligned}
$$

Burst loaded at 820 m when testing casing:
(Test pressure, 172 bar).

$$
\begin{aligned}
\mathrm{P}_{\mathrm{B} 3^{\prime}} & =172+820 \times G_{i}-(820-Z) \times G_{i}-355 \times G_{p} \\
\mathrm{P}_{\mathrm{B} 3^{\prime}} & =172+820 \times 0.129-(820-355) \times 0.129-355 \times 0.101 \\
& =181,9 \text { bar }
\end{aligned}
$$

Safety factor burst

S.F. $B=\frac{\operatorname{RES}_{B}}{P_{B 3}{ }^{\prime}}=\frac{474}{181,9}=\underline{2.61}$

Select: 820-1820m, 9 5/8", N-80, 43,5 lb/ft, buttress

$$
\begin{aligned}
\operatorname{RES}_{C} & =263 \text { bar } \\
\operatorname{RES}_{\mathrm{B}} & =436 \text { bar } \\
\operatorname{RES}_{\mathrm{T}} & =436 \text { tons }
\end{aligned}
$$

Safety factor burst:

S.F. ${ }_{B}=\frac{\text { RES }_{B}}{\mathrm{P}_{\mathrm{B} 3}}=\frac{436}{199,45}=2,19$

Tensile load at wellhead

$\mathrm{W}=\mathrm{W}_{1}+\mathrm{W}_{2}=(\mathrm{X}-\mathrm{Z}) \times \mathrm{Mc}$
$=(820-355) \mathrm{m} \times 70 \mathrm{~kg} / \mathrm{m}+(1820-820) \mathrm{m} \times 64,8 \mathrm{~kg} / \mathrm{m}$
$=(32,6+64,8)$ tons
$=97,4$ tons
$\frac{\text { Weight load }}{\operatorname{RES}_{T}}=\frac{\mathrm{W}}{\operatorname{RES}_{T}}=\frac{97,4}{472}=\underline{0,21}$

From the Ellipse of biacial yield stress, this gives 12% reduction in collapse resistance.
$\underbrace{\text { Weight load }}_{\text {RES }_{T}}=\frac{W_{2}}{\operatorname{RES}_{T}}=\frac{64,8}{436}=0.15$

From the Ellipse of biaxial yield stress, this gives 8% reduction in collapse resitance.

Safety factor collapse:
S.F. ${ }_{C}=\frac{\text { RES }}{P_{C}} \times 0,88=\frac{328 \times 0,88}{35.4}=8.2$
$\mathrm{S} . \mathrm{F} \cdot{ }_{\mathrm{C}}=\underset{\mathrm{P}_{\mathrm{C}}}{\mathrm{RES}_{\mathrm{C}} \times \underline{0,92}}=\frac{263 \times 0,92}{35,4}=\underline{6,8}$

Tension:

Weight load in air (casing used as running string):
$\mathrm{X} \times \mathrm{M}_{\mathrm{c}}=820 \mathrm{~m} \times 70 \mathrm{~kg} / \mathrm{m}+1000 \mathrm{mx} 64,8 \mathrm{~kg} / \mathrm{m}=122,2$ tons

Extra tensile load when bumping plug at 172 bar (neglecting buoyancy of steel): Casing inside diameter : $I D=22,24 \mathrm{~cm}$
$\left(172-P_{C}\right) 0.98 \times\left(\frac{I D}{2}\right)^{2} \times 3,14 \times 10^{-3}$
$=(172-35,4) 0,98 \times\left(\frac{22,24}{2}\right)^{2} \times 3,14 \times 10^{-3}=52$ tons
Weight load of 7 " liner: $\left(W_{d}-X+150\right) \times M_{c}$
$=(2350-1820+150) \mathrm{m} \times 43,15 \mathrm{~kg} / \mathrm{m} \quad=29,3$ tons

Total weight load: $(122,2+52+29.3)=203,5$ tons
S.F. ${ }_{T}=\frac{\text { RES }_{T}}{203,5}=\frac{436}{203,5}=\underline{2,14}$
$95 / 8^{\circ}$ CASING DESIGN

7" liner 31/3-1

W_{d}	$=2350 \mathrm{~m}$	G_{p}	$=0.101 \mathrm{bar} / \mathrm{m}$
x	$=2350 \mathrm{~m}$	$\mathrm{G}^{\prime} \mathrm{p}$	$=0.101 \mathrm{bar} / \mathrm{m}$
2	$=355 \mathrm{~m}$		(Test at 2350 m)
z_{1}	$=330 \mathrm{~m}$	$\mathrm{G}_{\text {gas }}$	$=0.023 \mathrm{bar} / \mathrm{m}$
G_{i}	$=0.108 \mathrm{bar} / \mathrm{m}$	G_{C}	$=0.187 \mathrm{bar} / \mathrm{m}$
$\mathrm{G}^{\prime}{ }_{i}$	$=0.108 \mathrm{bar} / \mathrm{m}$	$\mathrm{G}^{\prime \prime}{ }_{i}$	$=0.113 \mathrm{bar} / \mathrm{m}$

Design criteria:

BURST : Tubing leak while testing Testing liner
COLLAPSE: Collapse load while cementing
TENSION : Tension load when bumping plug

Burst:

Max burst load at packer setting depth if there is a tubing leak just below the wellhead and the pressure build-up in the annulus is not bled off when testing at 2350 m . (Packer at 2320 m).

$$
\begin{aligned}
P_{B}= & G^{\prime}{ }_{\mathrm{P}} \times 2350+(2350-Z) \times\left(G_{i}-G_{g a s}\right)-(1285-Z) \times 0.142 \\
& -\left(2320-1285+Z_{1}\right) \times G_{p} \\
= & 0.101 \times 2350+(2350-355)(0.113-0.023)-(1285-355) \times 0.142
\end{aligned}
$$

$-(2320-1285+330) \times 0.101$

$$
=147 \mathrm{bar}
$$

Max burst load when testing $7^{\prime \prime}$ liner/9 5/8" casing to 172 bar:

$$
\begin{aligned}
P_{B 2} & =172+G_{i} \times \mathrm{X}-(1285-Z) \times 0.142-\left(\mathrm{X}-1285+\mathrm{Z}_{1}\right) \times \mathrm{G}_{\mathrm{p}} \\
& =172+2350 \times 0.108-(1285-355) \times 0.142-(2350-1285+330) \times 0.101 \\
& =152.8 \text { bar }
\end{aligned}
$$

From 1670 - 2350 m select : 7", $29 \mathrm{lb} / \mathrm{ft}, \mathrm{N}-80$, Buttress $\mathrm{RES}_{\mathrm{C}}=484$ bar
$\operatorname{RES}_{B}=563$ bar
$\operatorname{RES}_{\mathrm{T}}=294$ tons
S.F. ${ }_{B}=\frac{\mathrm{RES}_{B}}{\mathrm{P}_{\mathrm{B} 2}}=\frac{563}{152.8}=\underline{3.68}$

Collapse:

7" liner is set at bottom with 150 m overlap in 9 5/8" casing. Collapse load during cementing:
$P_{C}=\left(G_{C}-G_{i}\right) \times(X-1670)=(0.187-0.108) \times(2350-1670)$
$=53.7$ bar

Minimum flowing bottom hole pressure when testing at 2350 m $\mathrm{P}_{\mathrm{WF}} \min =2350 \times \mathrm{G}^{\prime}{ }_{\mathrm{p}}-\frac{\mathrm{RES}_{\mathrm{C}}}{1.25}$
$P_{W F} \min =2350 \times 0.101-\frac{484}{1.25}=\leq 0$

Tension:

Weight load in air:
$(x-1670) \times M_{c}=(2350-1670) \mathrm{m} \times 43,15 \mathrm{~kg} / \mathrm{m}=29.3$ tons

Liner I.D. $=15,71 \mathrm{~cm}$

Extra tensile load when bumping plug with 172 bar:
$(172-53.7) \times 0.98 \times\left(\frac{15.71}{2}\right)^{2} \times 3.14 \times 10^{-3}=22.5$ tons

Total tensile load $=(22.5+29.3)$ tons $=51.8$ tons
$=S . F \cdot T=\frac{\text { RES }_{T}}{51.8}=\frac{294}{51.8}=5.68$

GENERAL: The cement volume is calculated at the basis of the theoretical hole volume and the casing to be cemented to sea bed with 150% excess volume in open hole.

WELL DATA:

Depth kb-sea bed	355 m
Depth kb-last shoe	
Depth kb-casing set point	420 m
Open hole dia..	36'

Annulus capacity, cased hole..: - \quad l/m
Annulus capacity, open hole......: $200.01 / \mathrm{m}$
Internal capacity, $30^{\prime \prime}$ casing $1.0^{\prime \prime}$ thickness $397.0 \mathrm{l} / \mathrm{m}$
Mud weight
$\begin{array}{cl}1.10 & \mathrm{~g} / \mathrm{cm}^{3} \\ 27 \mathrm{O}_{\mathrm{Car}}^{\mathrm{C}} \\ 27 & \mathrm{O}_{\mathrm{C}} \\ -\quad \mathrm{bar} / \mathrm{m}\end{array}$
Est. bottom hole static temp. (BHST)........: 27
Est. bottom hole circulating temp. (BHCT).: 27
Est. formation integrity

CEMENT SLURRY COMPOSITION
Mix water
Total liquid
Slurry weight
Slurry yield
TEST DATA AT BHC
Thickening time
Crit. Turb. Flow
Fluid loss, ml/30
TEST DATA AT BHS
Compr. Strength,
REMARKS:
Fann VG Readings
$600 / 300 / 200 / 100$

Volume calculations ($30^{\prime \prime}$ casing) :
Annular volume $\quad: 0.200 \mathrm{~m}^{3} / \mathrm{m} \mathrm{x}(420-355) \mathrm{m} \quad=13.0 \mathrm{~m}^{3}$ 3 m plug at shoe $\quad: 0.397 \mathrm{~m}^{3} / \mathrm{m} \times 3 \mathrm{~m}$
$=1.2 \mathrm{~m}^{3}$
150% excess in open hole :
Total volume
$=19.5 \mathrm{~m}^{3}$
$=33.7 \mathrm{~m}^{3}$

Lead slurry : Class G-cement + 3.2L econolite/100 kg cement mixed with seawater at $1.56 \mathrm{~g} / \mathrm{cm}^{3}$

18500 kg cement equivalent to $23.7 \mathrm{~m}^{3}$ slurry
Tail-in slurry : Class G-cement mixed with seawater at $1.90 \mathrm{~g} / \mathrm{cm}^{3}$ 13000 kg equivalent to $10.0 \mathrm{~m}^{3}$ slurry.

Chemicals needed: Total volume of econolite needed: 590L

20" CASING CEMENT DATA AND CALCULATIONS, 31/3-1:

GENERAL: The cement volume is calculated at the basis of the theoretical annulus volume and the casing to be cemented to the sea bed with 100% excess volume in open hole.

WELL DATA:

Depth kb-sea bed................................... : 355 m
Depth kb-last shoe.............................. 420 m
Depth kb-casing set point..................... 850 m
Open hole dia......................................
Annulus capacity, cased hole..: $194.0 \mathrm{l} / \mathrm{m}$
Annulus capacity, open hole...... : $139.4 \mathrm{l} / \mathrm{m}$
Internal capacity, 20 "casing $133 \mathrm{lbs} / \mathrm{ft}: 177.8 \mathrm{l} / \mathrm{m}$
Mud weight
Bottom hole hydrostatic pres. (BHHP).......: 92
Est. bottom hole static temp. (BHST)...... :
Est. bottom hole circulating temp. (BHCT).
42
Est. formation integrity

TAIL IN SLURRY

CLASS "G"cement
CLASS "G"cement

CEMENT SLURRY COMPOSITION

Mix water	$1 / 100 \mathrm{~kg}$
Total liquid	$1 / 100 \mathrm{~kg}$
Slurry weight	$8 / \mathrm{cm}^{3}$
Slurry yield	$1 / 100 \mathrm{~kg}$

Mix water Total liquid Slurry yield
$1 / 100 \mathrm{~kg}$
$\mathrm{g} / \mathrm{cm}^{3}$
$1 / 100 \mathrm{~kg}$
+2.7 kg prehydrated bentonite/100 kg cement

TEST DATA AT BHCT
$\begin{array}{ll}\text { Thickening time at BHHP, hr:min 6:00 } & 4: 30\end{array}$
Crit. Turb. Flow rate:m/s (l/min)
Fluid loss, ml/30 min, 70 bar
TEST DATA AT BHST, BHHP
Compr. strength, bar $\begin{array}{r}12 \\ \text { br } \\ 24 \mathrm{hr}\end{array}$

93.6 fresh	45.0 fresh
94.8	45.0
1.55	1.90
126.5	76.5

REMARKS: 2.7 kg prehydrated bentonite $/ 100 \mathrm{~kg}$ cmt.
2.7% by weight of cmt, corresponds to
28.8 kg bentonite pr 1000 liter mixingwater

Volume calculations ($20^{\prime \prime}$ casing) :
Annular volume $\quad: 0.1394 \mathrm{~m}^{3} / \mathrm{m} \times(850-420) \mathrm{m}$
$=59.9 \mathrm{~m}^{3}$
Volume between csg's: $0.194 \mathrm{~m}^{3} / \mathrm{m} \times(420-355) \mathrm{m}$
$=12.6 \mathrm{~m}^{3}$
12 m plug at shoe $: 0.1778 \mathrm{~m}^{3} / \mathrm{m} \times 12 \mathrm{~m}$
$=2.1 \mathrm{~m}^{3}$ 100% excess in open hole:
$=59.9 \mathrm{~m}^{3}$

Total volume
$=134.5 \mathrm{~m}^{3}$

Lead slurry : Class "G"-cement +2.7 kg prehydrated bentonite/ 100 kg cmt mixed with fresh water at $1.55 \mathrm{~g} / \mathrm{cm}^{3}$

98500 kg cement equivalent to $124.5 \mathrm{~m}^{3}$ slurry

Tail-in slurry: Class "G"-cement mixed with fresh water at $1.90 \mathrm{~g} / \mathrm{cm}^{3}$.

13100 kg equivalent to $10.0 \mathrm{~m}^{3}$ slurry.

Bentonite needed: 2660 kg

Hydrostatic pressure at $20^{\prime \prime}$ csg. shoe
Height of tail-in slurry $:(10.0-2.1) \mathrm{m}^{3} / 0.1394 \mathrm{~m}^{3} / \mathrm{m}=57 \mathrm{~m}$ Hydrostatic head of lead slurry :
$0.152 \mathrm{bar} / \mathrm{m} \times(850-355-57) \mathrm{m}$
66.6 bar

Hydrostatic head of tail-in slurry :
$0.187 \mathrm{bar} / \mathrm{m} \times 57 \mathrm{~m} \quad 10.7 \mathrm{bar}$

Hydrostatic head of sea-water :
$0.101 \mathrm{bar} / \mathrm{m} \times(355-25) \mathrm{m} \quad 33.3 \mathrm{bar}$

Total hydrostatic pressure
110.6 bar

Equivalent pressure gradient at $20^{\prime \prime}$ shoe :
$\frac{110.6 \mathrm{bar}}{850 \mathrm{~m}}=0.130 \mathrm{bar}$

Estimated formation integrity
13 3/8" CASING CEMENT DATA AND CALCULATIONS, 31/3-1:
GENERAL: The cement volume is calculated at the basis of thetheoretical annulus volume and the casing to becemented 100 m into the $20^{\prime \prime}$. casing.
WELL DATA:
Depth kb-sea bed 355 m
Depth kb-last shoe 850 m
Depth kb-casing set point 1285 m
Open hole dia 17娄"
Annulus capacity, cased hole. 87.0 1/m
Annulus capacity, open hole. $64.41 / \mathrm{m}$
Internal capacity, 13 3/8"casing $68 \mathrm{lb} / \mathrm{ft}$ 78.1 1/m
Mud weight $1.45 \mathrm{~g} / \mathrm{cm}^{3}$
Bottom hole hydrostatic pres. (BHHP) 183Est. bottom hole static temp. (BHST).48
Est. bottom hole circulating temp. (BHCT). 38
Est. formation integrity $0.155 \mathrm{bar} / \mathrm{m}$

Mix water $\quad 1 / 100 \mathrm{~kg}$	93.6 fresh	45.0 fresh
Total liquid $\quad 1 / 109 \mathrm{~kg}$	94.8	45.0
Slurry weight $\quad \mathrm{g} / \mathrm{cm}^{3}$	1.55	1.90
Slurry yield $\quad 1 / 100 \mathrm{~kg}$	126.5	76.5
TEST DATA AT BHCT		
Thickening time at BHHP, hr:min	5:00 +	3:26
Crit. Turb.Flow rate:m/s (1/min)		
Fluid loss, ml/30 min, 70 bar		
TEST DATA AT BHST, BHHP		
Compr. strength, bar 16 hr	24	107

REMARKS:
Remarks: 2.7 kg prehydrated bentonite per 100 kg cmt or 2.7% by weight of cmt, corresponds to 28.8 kg bentonite per 1000 liter mixing water.

Volume calculations (13 3/8' casing):

Annular volume
$: 0.0644 \mathrm{~m}^{3} / \mathrm{m} \mathrm{x}(1258-850) \mathrm{m}$
$=28.0 \mathrm{~m}^{3}$
Volume between csg's: $0.0870 \mathrm{~m}^{3} / \mathrm{m} \mathrm{x} 100 \mathrm{~m}$
$=8.7 \mathrm{~m}^{3}$
24 m plug inside casing $: 0.0781 \mathrm{~m}^{3} / \mathrm{m} \times 24 \mathrm{~m}$
$=1.9 \mathrm{~m}^{3}$
Total cement slurry volume
$=38.6 \mathrm{~m}^{3}$

Lead Slurry : Class G-cement +2.7 kg perhydrated bentonite per 100 kg cement mixed with fresh water at $1.55 \mathrm{~g} / \mathrm{cm}$

22600 kg cement equivalent to $28.6 \mathrm{~m}^{3}$ slurry

Tail-in slurry: Class G-cement mixed with fresh water at $1.90 \mathrm{~g} / \mathrm{cm}^{3}$

13100 kg cement equivalent to $10 \mathrm{~m}^{3}$ slurry.

NOTE: Amount of excess cement should be based on evaluation of the hole conditions and caliper log to give the top of cement 100 m into $20^{\prime \prime}$ csg. The amount of excess should be discussed with the operation office before any decision are made.

Chemicals needed:

Bentonite needed : 610 kg

Remarks: Adequate samples of cement, additives and drillwater should be forwarded to Statoil's Mud and Cement Lab, Forus, for testing prior to the cement job.

Hydrostatic pressure calculations:
$\begin{array}{lll}\text { Height of mud: } & (850-100) \mathrm{m} & =750 \mathrm{~m} \\ \text { Height of lead slurry : } & (1285-850-126+100) \mathrm{m} & =409 \mathrm{~m}\end{array}$
Height of tail-in slurry : (10.0-1.9) $\mathrm{m}^{3} / 0.644 \mathrm{~m}^{3} / \mathrm{m}=\quad 126 \mathrm{~m}$

Hydrostatic head from mud: 0.142 bar/m x 750m $=106.5$ bar

Hydrostatic head from lead slurry : $0.152 \mathrm{bar} / \mathrm{m} \times 409 \mathrm{~m}=62.2$ bar

Hydrostatic head from tail-in slurry : $0.187 \mathrm{bar} / \mathrm{m} \times 126 \mathrm{~m}=23.6 \mathrm{bar}$

Total hydrostatic head at $13 \mathrm{3} / 8^{\prime \prime}$ shoe
$=192.3 \mathrm{bar}$

Equivalent pressure gradient at $13 \mathrm{3} / 8^{\prime \prime}$ shoe :
$192.3 \mathrm{bar}=0.150 \mathrm{bar} / \mathrm{m}$ 1285 m

Estimated formation integrity at 13 3/8" shoe :
$=0.155 \mathrm{bar} / \mathrm{m}$

Hydrostatic head at $20^{\prime \prime}$ shoe:
106.5 bar + $0.152 \mathrm{bar} / \mathrm{m} \times 100 \mathrm{~m}=121.7 \mathrm{bar}$

Equivalent pressure gradient at $20^{\prime \prime}$ shoe : $\frac{121.7 \mathrm{bar}}{850 \mathrm{~m}}=0.143 \mathrm{bar} / \mathrm{m}$

Estimated formation integrity at $20^{\prime \prime}$ shoe
$=0.146 \mathrm{bar} / \mathrm{m}$

9 5/8" CASING CEMENT DATA AND CALCULATIONS, 31/3-1:

GENERAL: The cement volume calculations is based on the theoretical hole volume and the casing should be cemented 100 m into the $133 / 8^{\prime \prime}$ casing.

WELL DATA:
Depth kb-sea bed...................................... 355 m
Depth kb-last shoe............................... 1285 m
Depth kb-casing set point................... 1820 m
Open hole dia.. 12 1/4"
Annulus capacity, cased hole..: $31.01 / \mathrm{m}$
Annulus capacity, open hole......: $28.9 \mathrm{l} / \mathrm{m}$
Internal capacity, 9 5/8"casing $43.5 \mathrm{lbs} / \mathrm{ft}: 39.0 \mathrm{l} / \mathrm{m}$
Mud weight... $1.32 \mathrm{~g} / \mathrm{cm}^{3}$
Bottom hole hydrostatic pres. (BHHP)......: 236 bar
Est. bottom hole static temp. (BHST).
Est. bottom hole circulating temp. (BHCT).: $47{ }^{\circ} \mathrm{C}$
Est. formation integrity....................: $0.163 \mathrm{bar} / \mathrm{m}$
LEAD SLURRY TAIL-IN
SLURRY
CEMENT SLURRY COMPOSITION Class "G" cement Class "G" cement

$$
\begin{aligned}
&+1.33 \mathrm{l} / 100 \mathrm{~kg} \text { CFR-2L }+1.951 / 100 \mathrm{~kg} \\
&+ \text { CFR-2L } \\
& \\
& \text { bentonite per per } 100 \mathrm{~kg}+\begin{array}{l}
1.781 / 100 \mathrm{~kg} \\
\text { cement }
\end{array} \\
& \text { Halad-10L }
\end{aligned}
$$

Mix water
Total liquid Slurry weight
Slurry yield
$1 / 100 \mathrm{~kg}$
$1 / 100 \mathrm{~kg}$
$\mathrm{g} / \mathrm{cm}^{3}$
$1 / 100 \mathrm{~kg}$
93.5 fresh 96.0 1.55
127.7
45.5
1.90
77.07

TEST DATA AT BHCT
Thickening time at BHHP, hr:min
$4: 30$
Crit. Turb. Flow rate:m/s (l/min)
Fluid loss, ml/30 min, 70 bar
TEST DATA AT BHST, BHHP
Compr. strength, bar 16 hr
49
474

REMARKS:
Fann VG-readings
20/14/12/10
51/23/16/9
600/300/200/100
REMARKS: 2.7 kg prehydrated bentonite per 100 kg cement or 2.7% by weight of cmt, corresponds to 28.8 kg bentonite per 1000 liter mising water.

Volume calculations (9 5/8" casing):

Annular volume $: 0.0289 \mathrm{~m}^{3} / \mathrm{m} \mathrm{x}(1820-1285) \mathrm{m}$	$=15.5 \mathrm{~m}^{3}$
Volume between csg's: $0.0301 \mathrm{~m}^{3} / \mathrm{m} \mathrm{x}^{3} 100 \mathrm{~m}$	$=3.1 \mathrm{~m}^{3}$
24 m plug inside casing $: 0.0390 \mathrm{~m}^{3} / \mathrm{m} \times 24 \mathrm{~m}$	$=0.9 \mathrm{~m}^{3}$
Total cement slurry volume	$=19.5 \mathrm{~m}^{3}$

Cement Slurry : Class G-cement + $1.331 / 100 \mathrm{~kg}$ CFR-2L +2.7 kg prehydrated bentonite per 100 kg cmt mixed with fresh water at $1.55 \mathrm{~g} / \mathrm{cm}^{3}$

7500 kg cement equivalent to $9.5 \mathrm{~m}^{3}$ slurry

Tail-in slurry: Class G-cement $+1.95 \mathrm{l} / 100 \mathrm{~kg}$ CFR-2L $+1.781 / 100 \mathrm{~kg}$ Halad 10 L mixed with fresh water at $1.90 \mathrm{~g} / \mathrm{cm}^{3}$

13000 kg cement equivated to $10 \mathrm{~m}^{3}$ slurry.

NOTE : Amount of excess cement should be based on evaluation of the hole conditions and the caliper log to give the top of cement 100 into $133 / 8^{\prime \prime}$ csg. The amount of excess should be discussed with t operation office before any dicision are made.

Chemicals needed: Total volume of CRF-2L needed: 3551
Total volume of HR-10L needed: 230 l
Bentonite : 203 kg

The Statoil supervisor is responsible for sending in cement,drillwater and additives from the rig. The operation office is responsible for making arrangements to have the slurry composition tested before the cement job.

Hydrostatic pressure calculations:

Height of mud : (1285-100) m $=1185 \mathrm{~m}$

Height of lead slurry :(1820-1285-315 + 100)) m $=320 \mathrm{~m}$
Height of tail-in slurry: ($10.0-0.9) \mathrm{m}^{3} / 0.0289 \mathrm{~m}^{3} / \mathrm{m}=315 \mathrm{~m}$

Hydrostatic head from mud : $0.130 \mathrm{bar} / \mathrm{m} \times 1185 \mathrm{~m}=154.1 \mathrm{bar}$

Hydrostatic head from lead slurry : $0.152 \mathrm{bar} / \mathrm{m}$ x $320 \mathrm{~m}=48.6 \mathrm{bar}$

Hydrostatic head from tail-in slurry: $0.187 \mathrm{bar} / \mathrm{m} \times 315 \mathrm{~m}=58.9$ bar

Total hydrostatic head at 9 5/8" shoe
$=261.6 \mathrm{bar}$

Equivalent pressure gradient at $95 / 8^{\prime \prime}$ shoe :
$\frac{261.6 \mathrm{bar}}{1820 \mathrm{~m}}=0.144 \mathrm{bar} / \mathrm{m}$

Estimated formation integrity at 9 5/8" shoe
$=0.163 \mathrm{bar} / \mathrm{m}$

Hydrostatic head at $133 / 8^{\prime \prime}$ shoe:
154.1 bar $+0.152 \mathrm{bar} / \mathrm{m} \times 100 \mathrm{~m}$
$=169.3 \mathrm{bar}$

Equivalent pressure gradient at $13 \mathrm{3} / 8^{\prime \prime}$ shoe :
$\frac{169.3 \mathrm{bar}}{1285 \mathrm{~m}}=0.132 \mathrm{bar} / \mathrm{m}$

Estimated formation integrity at 13 3/8" shoe

7" LINER CEMENT DATA AND CALCULATIONS, 31/3-1:

GENERAL: The cement volume is calculated at the basis of the theoretical annulus volume and the liner to be cemented 150 m into the $95 / 8^{\prime \prime}$ casing.

WELL DATA:

Annulus capacity, cased hole..: $14.1 \mathrm{l} / \mathrm{m}$
Annulus capacity, open hole...................... $11.7 \mathrm{l} / \mathrm{m}$
Internal capacity, $30^{\prime \prime}$ casing $1.0^{\prime \prime}$ thickness $19.41 / \mathrm{m}$

Mud weight....................................	$1.1 \mathrm{~g} / \mathrm{cm}^{3}$
Bottom hole hydrostatic pres. (BHHP)......	254 bar
Est. bottom hole static temp. (BHST)......	$82{ }^{\text {C }}$
Est. bottom hole circulating temp. (BHCT).:	$56{ }^{\circ} \mathrm{C}$
Est. formation integrity.	

SLURRY
CLASS "G"

COMPOSITION

Mix water	$1 / 100 \mathrm{~kg}$	40.0 fresh
Total liquid	$1 / 100 \mathrm{~kg}$	45.5
Slurry weight	g / cm	1.90
Slurry yield	$1 / 100 \mathrm{~kg}$	77.1

TEST DATA AT BHCT

Thickening time at BHHP, hr:min $4: 34$ Crit. Turb. Flow rate:m/s (1/min)
Fluid loss, ml/30 min, 70 bar
TEST DATA AT BHST, BHHP
Compr. strength, bar 12 hr bar 16 hr 365

Volume calculations (7" liner):

Annular volume

$$
: 0.0117 \mathrm{~m}^{3} / \mathrm{mx}(2350-1820)=6.2 \mathrm{~m}^{3}
$$

Volume between csg's $\quad: 0.0133 \mathrm{~m}^{3} / \mathrm{m} \times 150$
$=2.1 \mathrm{~m}^{3}$
24 m plug inside casing : $0.194 \mathrm{~m}^{3} / \mathrm{m} \times 24 \mathrm{~m}$
$=0.5 \mathrm{~m}^{3}$
Total cement slurry volume
$=8.8 \mathrm{~m}^{3}$

Slurry : Class G-cement + 1.95 1/100kg CFR-2L + $3.551 / 100 \mathrm{~kg}$ Halad-10L mixed with fresh water at $1.90 \mathrm{~g} / \mathrm{cm}$

11500 kg cement equivalent to $8.8 \mathrm{~m}^{3}$ slurry

NOTE: Amount of excess cement should be based on evaluation of the hole conditions and caliper log to give the top of cement at the liner hanger (150 m into $95 / 8^{\prime \prime} \mathrm{csg}$). The amount of excess should be discussed with the operation office before before any decision are made.

Chemicals needed:

Total volume of CFR-2 needed $:=225$
Total volume of Halad-10L needed $:=408$

Adequate samples of cement, additives and drillwater should be forwarded to Statoil's Mud and Cement Lab, Forus, for testing prior to the job.

Hydrostatic pressure calculations:

Height of mud : (1820-150) m	$=1670 \mathrm{~m}$
Height of slurry : $(2350-1820+150) \mathrm{m}$	$=680 \mathrm{~m}$
Hydrostatic head from mud : $0.108 \mathrm{bar} / \mathrm{m} \times 1620 \mathrm{~m}$	$=180.4$ bar
Hydrostatic head from slurry : $0.187 \mathrm{bar} / \mathrm{m}$ x 680 m	$=127.2 \mathrm{bar}$
Total hydrostatic head at 7 " shoe :	$=307.6 \mathrm{bar}$
Equivalent pressure gradient at $7^{\prime \prime}$ shoe :	
$\frac{307.6 \mathrm{bar}}{2350}=0.131 \mathrm{bar} / \mathrm{m}$	
Estimated formation integrity at $7^{\prime \prime}$ shoe :	$=0.171 \mathrm{bar} / \mathrm{m}$
Hydrostatic head at $95 / 8^{\prime \prime}$ shoe :	
180.4 bar + $0.187 \mathrm{bar} / \mathrm{m} \times 150 \mathrm{~m}$	$=208.5$ bar
Equivalent pressure gradient at $95 / 8^{\prime \prime}$ shoe :	
$\frac{208.5 \mathrm{bar}}{1820}=0.115 \mathrm{bar} / \mathrm{m}$	
Estimated formation integrity at $95 / 8^{\prime \prime}$ shoe	$=0.163 \mathrm{bar} / \mathrm{m}$

[^0]: Reported mud weight is to
 $0^{\circ} \mathrm{C}$

 Remarks:

