

GRAVEL PACK OPERATION
OF
WELL 31/3-1 ON THE TROLL FIELD

BRØNNTEKNIKK OG UNDERVANNSKOMPLETTERING

```
ROY RUSA OG VIDAR FJELLSTAD
```

I. 1984

Oppdragsgiver
LET, ROALD RIISE

Undertittel

```
GRAVEL PACK OPERATION OF WELL 31/3-1
```

Tittel

GRAVEL PACK OPERATION
 OF

WELL 31/3-1 ON THE TROLL FIELD

BRØNNTEKNIKK OG UNDERVANNSKOMPLETTERING

ROY RUSA OG VIDAR FJELLSTAD

JAN. 1984

Utarberdet	Kontrollert		Goakjent	
$\begin{array}{\|l} \hline \text { Dato } \\ 1 / 84 \end{array}$	iliclac ficilact12/-84	$\overbrace{\text { Toy }}^{\text {Gruppoter }}$	Dato	Soksjonsteder
Rencert	Kontroliert		Godkien	
Dato	Dato	Gruppeteder	Dato	Seksionsteder

This report points primarily on highlights from the gravelpack completion of the two zones in well 31/3-1: 1519.0 to 1529.0 m and 1373.0 to 1383.0 m .

A brief review of the gravelpack operation is given in "Sequence Of Events" followed by Dowells 4 pump chart used in the actual operation.

Detailed drawings of the two gravelpack assemblies used, sieve analysis and volume calculation of the slurries follow next.

The report ends off with gas flow data from the two zones after having gravelpacked.

WELL31/3-1 GRAVEL PACK OPERATION (1b1.0-1529.0,)

SEQUENCE OF EVENTS

13 SEPTEMBER 1983

Operation: Perforating and testing the well.
11.25 Dropped the bar
11.28 Guns detonated. Perforated the test interval and commerced to back-surge
11.29 Fecoverec $1.6 \mathrm{~m}^{3}$. Reduced choke to $28 / 64^{\prime \prime}$
11.40 Gas to surface
12.05 Shut in. Leak in chiksan
12.34 Recpeneci on 28/64" choke
12.26 Shut in. Leak in chiksan
13.56 Reopened well using heater chokes
14.00 Flowed through separator, Adjusted choke sizes to obtain $28000 \mathrm{~m}^{3} / \mathrm{D}$
15.32 Adjustea choke to obtain $42000 \mathrm{~m}^{3} / \mathrm{D}$
16.00 Shut in at PCT and choke manifold
18.00 Filled the string with 1.16 SG brine. Opened the PCT valve and bull headed the well back to the formation. Opened the SSARV valve and reversed out.
22.00 Unseated the packer. Bull headed the gas below the packer back to the formation. observed the well for 10 min. OK.
23.00 Circultated the long way until the brine was cleaned and the gas circulated out.

Pulled out of the hole with the test string.
12.00 Laid down the test tocl.
14.30
18.00
21.30
21.47 Tested Dowell lines to low torque valve on circulating head to 207 BARG. for 10 min. OK!
22.02 Tested upper and lower closed kelly cock to 207 barg. for 10 min . OK.
22.12 Start to run into the hole, test two stands. Down weight: 88000 DaN Up weight : 88000 DaN
22.50 Located the $F-1$ packer at 1533.0 m .1000 DaN to push through the collet. 4000 DaN to pull out. Landed in the $F-1$ packer and spaced out the drill pipe to ca. 4 m above drillfloor.
23.05 Broke the circulation by pumping down drill pipe, taking returns through the crossover tool. Circulated $6.4 \mathrm{~m}^{3}$ at $0.28 \mathrm{~m}^{3} / \mathrm{min} .14$ BARG pump pressure. OK.
23.25 Opened upper kelly cock and dropped packer setting ball (17/16" OD.).
00.11

Pressured drill pipe in 35 BARG increments. Hydraulic setting tool sheared at 62 barg. The seat sheared at 124. BARG.

Pulled with 11000 DaN to check packer setting.

Closed lower annular valve. Opened Dowell connection at the rig floor. Pressureized to 34 BARG, regative. Opened annular valve. Pumped $1.6 \mathrm{~m}^{3}$ down choke line to flush lines. Closed lower annular valve. Pressured to 34 BAKG. for 6 min. OK. Started to mix 77 sacks of gravel into padde mixer tank.

Desconnected flexihose at circulating head. Rotated 12 turrs to the right. Releasea crossover tool from the packer.
Sat down with 15000 DaN to locate position 1, squeeze position.
Picked up 1.5 m from neutral point.
Came down and located position 2, circulating position, 0.9 m above squeeze position.

Pushec the collet through at 11500 DaN. Picked up 3.5 m.

Came down and located position 3, reverse postion, 2.7 m above position 2.
Pushed collet through at 7000 DaN and relocated positior. 2, circulating position.
Made up flexihose to circulating head.
Tested surface lines to kelly cock valves 207 BAFG for 5 min. OK.
Started circulating slowly and stabilized at $0.16 \mathrm{~m}^{3}$ per min. at 14 BARG. Total 3.5 min . Attempted to increase rate to $0.24 \mathrm{~m}^{3}$ per min. but the pressure rose to 32

BARG. See pump chart nr. 1.
Stopped pumping. The pressure dropped slowly. Total $0.32 \mathrm{~m}^{3}$ pumped. Decided to reestablish the gravel pack
positions. Bled the pressure and relocated postion 1., Squeeze. The pressure increased to ca. 34 BARG when lowering the string. Picked up into position 3, reverse position to check for open work string. (pumping down the drill pipe, out the crossover tool and up the annulus).
Pumped $1.4 \mathrm{~m}^{3}$. The returns taken over shaker. Lines found OK. Moved into position 1 , squeeze to achieve injection and remove eventual plugging of the lower screen. Increased the pressure slowly to 71 BARG. Negative, and bled back immediately in order not to fracture the formation. The valve was closed at the pump outlet and the pressure dropped slowly. Picked up 3 m (past position 3, reverse) and moved down into position 2, circulating in order to assure that the closing sleeve was oper. (closing sleeve closes when moving up trom position 2 to 3 and opens when moving in the opposite direction. Broke circulation at low rate and maintained $0.13 \mathrm{~m}^{3}$ per min circulating rate at ca. 9 BARG. Circulated totally for ca. 10 min . Attempted siowly to incrase the rate, but pressure immediately bullt to 46 BAKG. Total volume pumped $0.4 \mathrm{~m}^{3}$. Pressure blea ott. Picked up into position 3 , reverse and fumped $1.6 \mathrm{~m}^{3}$ per min. (pumped down drill pipe, out crossover tool and up annulus).
03.15 Pumped $0.8 \mathrm{~m}^{3} 1.25 \mathrm{SG}$ pill in the drili pipe. Prepared to pull out of the hole. Spotted new pill since the well was unbalanced.

RIH w bit and scraper, condition brine.
03.25 Opened upper cock and dropped the ball.
03.55 Pressureized the drill pipe slowly with brine in 34 BAKG (500 PSIG) increments holding each increment for 1 min . The seat sheared at 203 BARG (2950 PSIG). Pulled 11000 DaN on packer to check setting. OK.

Closed lower annular valve and opened tor observation point at rig floor. Pressurized annulus and tested packer element sealing for 34 BARG (500 PSIG) for 10 min. Opened annular valve. Rotated 10 turns to the right and released the crossover tool form the pakcer. Sat back down and located scueeze position 1 . Picked up ca 1.5 m from neutral and located circulating position 2. Ficked up further ca. 3.0 m and located reverse postion $3 \mathrm{ca}$.3000 and 4000 DaN squeezed to push through collets. Relocated circulating position 2.
05.00 Established criculation rates versus pump pressure $6.08 \mathrm{~m}^{3} / \mathrm{min}(0.5 \mathrm{BPM})-3.45 \mathrm{BARG}(50 \mathrm{PSI}) 4 \mathrm{BBL}$ $0.16 \mathrm{~m}^{3} / \mathrm{min}(1.0 \mathrm{BPM})-7.5$ BARG $(100 \mathrm{PSI}) 6 \mathrm{BBL}$ $0.32 \mathrm{~m}^{3} / \mathrm{min}(2.0 \mathrm{BPN})-17 \quad$ BARG $(250 \mathrm{PSI}) 8 \mathrm{BBL}$ $0.48 \mathrm{~m}^{3} / \mathrm{min}(3.0 \mathrm{BPM})-31$ BARG $(450 \mathrm{PSI}) 11 \mathrm{BBL}$ $0.56 \mathrm{~m}^{3} / \mathrm{min}(3.5 \mathrm{EPM})-37 \quad$ BARG (540 PSI$) 21 \mathrm{BBL}$

Started cutting sand. See pump chart nr. 2. Fumped $15 \% \mathrm{HCL}$ at $0.56 \mathrm{~m}^{3} / \mathrm{min}$. $(3.5 \mathrm{BPM})$ at 36 BARG $(520$ PSIG). The pressure increased to 50 BARG (720 PSIG) after having pumped $6.5 \mathrm{~m}^{3}$ (41 BBL). Stopped circulating and closed lower annular valve. Closed the choke. Started to inject $15 \% \mathrm{HCL}$ at $0.16 \mathrm{~m}^{3} / \mathrm{min}$. (1 BPM). The pressure stabilized at 9.3 BARG (135 PSIG) after having pumped $7.0 \mathrm{~m}^{3}(44 \mathrm{BBL})$ at $0.16 \mathrm{~m}^{3} / \mathrm{min}$. The pressure increased to 40 BARG $(580$ PSIG) after having pumped $8.43 \mathrm{~m}^{3}(53 \mathrm{BBL})$. Stopped pumping and located position 1, squeeze. The pressure immediately bled off to the formation. Soaked 15% HCL for 10 min. Pumped additional $0.32 \mathrm{~m}^{3}(2 \mathrm{BBL})$ and the pressure increased. Soaked for 10 min , and the pressure immediately bled off. Pumped additional $1.0 \mathrm{~m}^{3}(6 \mathrm{BBL})$, totally $9.7 \mathrm{~m}^{3}$ (61 BBL) at $0.35 \mathrm{~m}^{3} / \mathrm{min}(2.2 \mathrm{BPM})$. Shut-in and soaked tor 5 min. Maximum pressure of 65 BARG (950 PSIG) before shut in. The pressure immediately bled off. Pumped to total of $11.0 \mathrm{~m}^{3}(69 \mathrm{BBL})$. Maximum pressure of 69 BARG (1000 PSIG).
07.15 Repositioned valves. Closed annular and repressurized annulus to 38 BARG (550 PSIG). Picked up into reverse position, but unable to break circulation. Increased to 52 EARG (750 PSIG) and broke circulation at $0.14 \mathrm{~m}^{3}$ (0.9 BPM). Increased to $62 \mathrm{BARG}(900 \mathrm{PSIG})$ and reversed at $0.41 \mathrm{~m}^{3} / \mathrm{min}$. (2.6 BPM) . Stabilizea the flowrate at $0.57 \mathrm{~m}^{3} / \mathrm{min}(3.60 \mathrm{BPM})$. Reversea a total of $17.0 \mathrm{~m}^{3}(107$ $E B^{I} S$). During the reversing operation, the packer setting ball released and plugged the tubing. Pumped down the drill pipe and reversed again. OK. Started to pull out of the hole.

Pulled out the bottom hole assembly. Removed the packer setting ball. Replaced the G-22 locator seal assembly with $27 / 8$ pup joint (ca 3 m). See fig. 4. Checked the crossover tool seals. OK. Ran into the hole with the bottom hole assembly. Made up $2.3 \mathrm{~m}^{3}$ (15 BBL) high vis. pad in one of the paddle mixer tanks and $2.07 \mathrm{~m}^{3}(13$ BBL) slurry base.
17.50
18.05
18.05
18.40
18.55
19.05
19.35
19.40
19.45
19.5
20.20

Tested the circulating head kelly cock to 207 BARG 13000 PSIG) for 10 min. OK. Made up the circulating head and stabbed into the Baker $S C-1$ packer with both the kelly valves open.

Located positions 1,2 and the with the crossover tool. Relocated position 3.

Pumped $14.3 \mathrm{~m}^{3}(90 \mathrm{BBL}) 1.16 \mathrm{SG}$ brine down the dri 11 pipe. Average $0.72 \mathrm{~m}^{3} / \mathrm{min}(4.5 \mathrm{BPM})$ at $52 \mathrm{BARG}(750$ PSIG). See pump chart nr. 3.

Stcpped pumping and located postion 2 , circulation. Closed lower annular preventor and opened the choke fulis.

Established circulation through the main screen 0.16 $\mathrm{m}^{3} / \mathrm{min}$. (1 BPM) at ca $10 \mathrm{BARG}(150 \mathrm{PSIG})$. The total of $0.64 \mathrm{~m}^{3}(4 \mathrm{BBI}) .0 .32 \mathrm{~m}^{3} / \mathrm{min}(2 \mathrm{BPM})$ at ca 20.7 BARG (300 PSIG). A total of $1.6 \mathrm{~m}^{3}(10 \mathrm{BBL})$.

Mixed the gravel slurry, 1438 KG gravel per m^{3} carryinc fiuia, totally 65 sack added.

Opened lower annular preventor and relocated position 3, reverse. Closed lower arnular prevetor.

Pumped $1.6 \mathrm{~m}^{3}(10 \mathrm{BBL})$ pre-pad.

Stopped pumping and located position 2 , circulating Continued pumping $2.7 \mathrm{~m}^{3}(17 \mathrm{BBL})$ of 1.16 SG gravel slurry followed by 5 BBL of post pad and displaced by 1.16 SG brine (15 BBL)

Pumped with $0.16 \mathrm{~m}^{3} / \mathrm{min}$. (1 BPM) at $17.2-20.7$ BARG (250-300 PSIG). The pressure increased after $7.8 \mathrm{~m}^{3}$ (49 BBL) pumped (total volume). The pressure built up to 65.5 BARG (950 PSIG) two times.
20.35 Bled off the pump pressure and repositioned the valves at the surface. Maintained 34.5 BARG (500 PSIG) in the annulus and picked up into reverse position 3.
20.45 Ca. $1.0 \mathrm{~m}^{3}$ (6.3 BBL) slurry reversed out.
21.15 A total of $16 \mathrm{~m}^{3}(100 \mathrm{BBL})$ was reversed out.
22.00 Started to circulate the long way.

18 SEPTEMBER 1983
02.00 Relocated position 2, circulating. Checked the gravel pack by pumping $0.5 \mathrm{BBL}\left(0.08 \mathrm{~m}^{3}\right)$ at (500 PSIG$) 35 \mathrm{BARG}$. The pressure built up rapidly between $0.4-0.5 \mathrm{BBL}$ pumped. The pressure blec off to (200 PSIG) 14 BARG. Bled of 200 PSIG at the Dowell unit.
02.15 Pulled out of the hole.

WELL: 31/3-1 GRAVEL PACK OPERATION (1373-1383 m)

SEqUENCE OF EVENTS

24 SEPTEMBER 1983
07.00 Fan into the hole with stinger on $31 / 2$ in drill pipe. 09.30 Squeeze cemented the test zone 1519-1529mwith $2 \mathrm{~m}^{3}$ slurry. Left $1 \mathrm{~m}^{3}$ above and below the packer. Pulled out to 1437 m .
11.30 Feverse circulated.
i2.00 Circulated the long way.
14.00 Pressure tested the casing to 100 BAR.
14.30 Lisplaced the hole with 1.3 SG brine.

25 EEPTEMBER 1983
17.30 Circulated and conditioned the brine.

C0. 30 Pulled out of the hole and laid down the stinger.

U2.00 Dresser Atlas ran gauge ring and junk basket.
03.00 Dresser Atlas ran and sat Baker $\mathrm{F}-1$ sump packer at 1388.5 m . (top packer)

Picked up and ran test string bottom hole assembly with Geovann conveyed pertoration gun. Landed the string in the sump packer at 1385.5 m .

Perforated casing for DST no. $21373-1383 \mathrm{~m}$. Flowed the well and shut it in for build up. Opened PCT-valve and bullheaded $3,5 \mathrm{~m}^{3}$ brine into the formation. Opened SSARV. Released the packer. Attempted to bullhead down the annulus. Picked up the string. Lanced string in the wellhead. Started to loose fluid to annulus, a tctai of $2.8 \mathrm{~m}^{3}$. Bullheaded $1,5 \mathrm{~m}^{3} \mathrm{CaCO}_{3}$ - pill and 1.1 m^{3} trine. Squeezed $4.1 \mathrm{~m}^{3}$ brine and observed the well OK.

Pulled out of the hole and laid down the test tools and the packer. Lost approxemately a total of $25 \mathrm{~m}^{3}$ to the formation from time annulus was open until LCM-pill was in place.

Packer condition:
Packer collapsed position ok.
Upper packer element: OD: 8 3/64"
Middle packer element: Missing
Lower packer element: OD: 8/64"

Lower packer element almost splitted all around. Upper spacer ring partly bent. Lower spacer ring (below
M.P.-element) found to be in a moved up position close to U.F element. Partly bent.
Lowe slips collapsed OK. bypass poirts OK.

U6.00 Circulated through the choke line. Filtered the brine and dumped the CaCO_{3} pill.
09.00 Opened annular preventer and circulated up the riser and filtered the brine.

Started to pick up the gravel pack bottom hole assembly. See fig. 5

Eroke out the short Tell tale screen and replaced it by 3.12 m screen. Ran $21 / 8^{\prime \prime}$ tubing through 3.25 sealbore receptacle. (The G-22 seal assembly was not used.) See fig. 8

29 SEPTEMBER 1983

Gi.05 Ran into the hole with 8 stands $43 / 4^{\prime \prime}$ drill collar and $31 / 2^{\prime \prime}$ drill pipe. Spaced out the tool joint. The circulating head approximately 5 m above the rig floor. The $E-1$ packer was located and 2500 DaN was applied to push through the collet. 5000 DaN required to pull off. Landed in the packer with approx. 3000 DaN.
06.35 Made up the circulating head. Tested the kelly cocks Valves to 210 BARG (3050 PSIG) tor 10 min . OK. Pumped $6.3 \mathrm{~m}^{3}(40 \mathrm{BBL})$ at $0.24 \mathrm{~m}^{3} / \mathrm{min}(1.5 \mathrm{BPM})$ at 17.2 EARG (250 PSIG).
07.20 Dropped the 1 7/16" packer setting ball.
07.50

Pressurised in 34 BARG (500 PSIG) increments to set the packer. The seat sheared at 131 BARG (1900 PSIG)

Tested the packer slips setting by 11.000 DaN overpull. OK. Flushed the choke line with $1.6 \mathrm{~m}^{3}(10 \mathrm{BBL})$. Tested the packer element sealing with 34 BARG (500 PSIG) for 10 min. down the annulus. Gpened the kelly cocks. OK.
08.30 Fctated 12 turns to the right to come free from the packer.
Located position 1 , squeeze by 15000 DaN weight set on the SC-1L packer. Picked up approx. 1.5 m above neutral and located position 2 , circulating. Picked up further approx. 3 m and located position 3, reverse. 8000 Dan was required to push through the coliet in the reverse position. Relocated position 2 , circulating and closed the annulus preventer.
08.50 Broke the circuiation and established following cırculating rates.

Starced to mix gravel into the slurry basis. Pumped 15 $\% \mathrm{HCL}$ at $0.37 \mathrm{~m}^{3} / \mathrm{min}(2.3 \mathrm{BRM})$. See pump chart no. 4 . Initial pressure was 29.3 BARG (425 PSIG). The pressure increased steadily to 56.9 BARG (325 PSIG) when having puniped $4.4 \mathrm{~m}^{3}(27.5 \mathrm{BBL})$. The return was lost at $5.6 \mathrm{~m}^{3}$ (35 HBL) pumped. Started to choke back on the surface. Both chokes were closed at $6.5 \mathrm{~m}^{3}(41 \mathrm{BBL})$ pumped. Irjected at $0.37 \mathrm{~m}^{3} / \mathrm{min}$. (2.3 BPM) at 50 EARG $(725$ PSIG). Started to open the chokes after $0.56 \mathrm{~m}^{3}(3.5$ BBL) squeezed. Both chokes were open when the total of $7.5 \mathrm{~m}^{3}(47 \mathrm{BBL}) 15 \% \mathrm{HCL}$ was pumped. Started immediately to pump $0.8 \mathrm{~m}^{3} 1.3 \mathrm{SG}$ brine.
09.30

Started to pump $2.4 \mathrm{~m}^{3}(15 \mathrm{BBL})$ pre-pad at $0.16 \mathrm{~m}^{3} / \mathrm{min}$ (1.0 BBM) and 31.0 BARG (450 PSIG). The pressure increased steadily and levelled off at approx. 51.7 BARG (750 PSIG) and $2.4 \mathrm{~m}^{3}$ (15 BBL) pumped. Started to pump 1.61 SG gravel slurry (1437.8 KG gravel/m ${ }^{3} 1.05 \mathrm{SG}$ base fluid). The pressure increased slowly after $3.5 \mathrm{~m}^{3}(22$ BBL) slurry pumped (all slurry) to approx. 58.6 BARG (850 PSIG). Started to pump $0.8 \mathrm{~m}^{3}(5 \mathrm{BBL})$ post-pad.

The pressure increased rapidly to 62.0 BARG (900 PSIG) after $0.5 \mathrm{~m}^{3}(3 \mathrm{BBL})$ postpad pumped. Regained return. Stopped pumping and located position 1, squeeze. Squeezed $0.16 \mathrm{~m}^{3}(1.0 \mathrm{BBL})$. The pressure remained constant at 31.0 BARG (450 PSIG). Relocated position 2 , circulation, and pumped at $0.02 \mathrm{~m}^{3} / \mathrm{min}(0.1 \mathrm{BPM})$ at approx. 38 BARG (550 PSIG). Displaced the postpad with $1.2 \mathrm{~m}^{3}(7.5 \mathrm{BBL}) 1.30 \mathrm{SG}$ brine. Stopped pumping and relocated position 1 , squeeze. Pressurised slowly. The pressure was stable at 38 BARG $(550$ PSIG) and increased to 52 BARG. Stopped pumping and observed the pressure drop. Pressurised the pack twice. The total of $1.4 \mathrm{~m}^{3}$ (9.0 BBL) 1.3 SG brine was pumped.

30 SEPTEMEER 1983 (328 BBL) was circulated.

Repositioned valving and picked up into position 3, reverse with 41 BARG (600 PSIG) on the annulus. Gained the return at 127 BAFG (1850 PSIG). Reversed at approx. $1.24 \mathrm{~m}^{3} / \mathrm{min}(1.5 \mathrm{BPM})$ at $22 \mathrm{BARG}(325 \mathrm{PSIG})$. Reversed the total of 3580 KG was pumped. Approx 1100 KG was reversed out. (Measured in desander pit). No HCL detected. Repositioned the valving and circulated the long way through the choke line. The total of $52 \mathrm{~m}^{3}$

Relocated position 2 , circulating. Checked the packing and pressurised the pack to 38 BARG (550 PSIG) - OK.
13.45
13.30

Displaced $1.6 \mathrm{~m}^{3}(10 \mathrm{BBL})$ what size CaCO pad and $1.6 \mathrm{~m}^{3}$ (10 BBL) high-vis pad with $4.6 \mathrm{~m}^{3}(29 \mathrm{BBL})$. Pulled out of the hole with 3 stands very slowly.

COMMENTS AND CORRECTION OF THE ORIGINAL TEST PROGRAM

INTERVAL: $1515.0-1529.0 \mathrm{~m}$
6. b Pumped 10 bbls prepad 1.16 SG
4. C
d
5. The outer blank pipe was connected to the lower indicating coupling.
1.4 .2
a)
2.

Mix $0.41 \mathrm{~m}^{3}(2,5 \mathrm{bbl}) 1.30 \mathrm{SG}$ brine and $2.03 \mathrm{~m}^{3}(12.8$ bbl) 1.00 SG filtered drillwater to give $2.03 \mathrm{~m}^{3}(15.3$ bbl) 1.05 SG brine.

Adaed $23.3 \mathrm{~kg}(53 \mathrm{lbs}) 1-164$ (HEC) to the brine.

Closed the annualar preventer and opened the choke fully. With the work string in position 2 , circulation was established with brine through the Tell-tale screen and the $27 / 8^{\prime \prime}$ washpipe to a maximum of 400 psig.
3.

Mixed 12 lbs/gal gravel into the gravel slurry basis. Totally 79 sacks to give $3.78 \mathrm{~m}^{3}$ (23.8 bbl) of 1.58 SG gravel slurry density.

Note:- Max pressure with slurry in the string is equivalent to 1.56 SG .
4. a Pumped $7.2 \mathrm{~m}^{3}(45 \mathrm{bbl})$ of the acid at high rate max 400 psig/3BPMwith the string in the circulating position (2).
b Stopped pumping. Choke return. Pumped additionaly 0.8 m^{3} (5bbl) of acid.

Note:
The pre-pad, gravelslurry and post pad will lead to maximum imbalance between the heavy drillpipe fluid and light annulus fluid of $+/-35$ barg (500 psig) while the fluids are in the drillpipe.
(See Sequence of Events!)

DST no. 1 (1519,0-1529,0 m RKB), Run no. 2, Run no. 3

SC-IL setting tool	0.82	1468.05	8.15	
$\begin{aligned} & \text { SC-IL packer (96-60) } \\ & \text { w } 175 / 8^{\prime \prime} 8 R 0 \text { box down } \end{aligned}$	1.27	1468.87	8.44	6.00
$\begin{aligned} & 75 / 8^{\prime \prime} \text { GP extension } \\ & \text { w/75/8" } 8 R D \text { pin } \times \text { pın } \end{aligned}$	1.43	1470.14	8.44	
Closing sleeve wi75/a" 8RD box up $\times 71658$ stub ACME pin	0.65	1471.57	8.18	
Lower seal bore sub w/7.165 8 stub ACME box x 7" 8RD box	0.52	1472.22	8.27	6.00
7" Lower extension w/7" 8RD pin \times pin	5.93	1472.74	7.00	
$\begin{aligned} & 7^{\prime \prime} \times 5^{1} \frac{12 \prime \prime \prime}{\prime \prime} \text { crossover sub } \\ & \text { w. } 7^{\prime \prime} 8 R D \text { box up x } 5^{1 / 2 " \prime} 8 R D \text { pin down } \end{aligned}$	0.23	1478.67	8.33	4.95
Size 4.5 model "A" ind sub w $5 \frac{1}{1 / 2}$ " 8RD box xpin	0.23	1478.90	6.05	4.50
Size $51 / 2$ shear out safety it w. rot.lock w $5^{1 / 2 "}$ " 8RD box x pin (43000 lbs shear)	0.32	1479.13	6.05	4.95
Size $51 / z^{\prime 2} 15 \mathrm{lbs} / \mathrm{Ht}$. J. 55 casing. w/ $5^{1 / 2} 2^{-8 R D}$ box x pin $w / 3 \times 0.030 \mathrm{~m}$ centr.welded lugs at center and 016 m from pin and box	9.20	1479.45	6.05	4.95
Size $51 / 2^{\prime \prime}, 15$ ibsift. J-55 casing w/51/2" 8RD box x pin $w / 3 \times 0.030 \mathrm{~m}$ centr. welded iugs at center and 0.16 m from pin and box	9.20	1488.65	$\begin{gathered} 6.05 \\ +\quad \text { lugs } \end{gathered}$	4.95
Size $51 / 2^{\prime \prime}, 15 \mathrm{los} / \mathrm{H}$. J-5 5 casing w/5 ${ }^{1 / 2 "}$ 8RD boxx pin w/ $3 \times 0.030 \mathrm{~m}$ centr welded lugs at center and 0.16 m from pin and box.	9.20	1497.85	$\begin{gathered} 6.05 \\ + \text { lugs } \end{gathered}$	4.95
Size $51 / 2,15 \mathrm{lbsift} . \mathrm{J} .55$ casing w/51/2" 8RD box x pin $w / 3 \times 0.030 \mathrm{~m}$ centr. weided lugs at center and 0.16 m from pin and box	9.20	1507.05	$\begin{gathered} 6.05 \\ +\quad \text { lugs } \end{gathered}$	4.95
Size $5^{1 / 2 \prime \prime} \times$ U. 012 gauge screen w/51/2" 8 RD box x pin	7.08	1516.25	6.10	4.95
Pipe base: $5^{1} / 2^{\prime \prime} .15 \mathrm{lbs}$ th, J-55				
Size $5^{1 / 2 \prime} \times 0.012$ gauge screen W/5 $5^{1 / 2 " ~ 8 R D ~ b o x ~ x ~ p i n ~}$	7.08	1523.33	6.10	4.95
Pipe base: $5^{1} / 2^{\prime \prime}, 15 \mathrm{lbs} / 4 . \mathrm{J}-55$				
Size $5^{1} / 2^{\prime \prime} \times 3.25^{\prime \prime}$ sealbore sub w/5 $1 / 2^{\prime \prime}$ 8RD box x pin	0.78	1530.41	6.05	3.25
Size $51 / 2^{\prime \prime} \times 0,012$ gauge screen w/51/2" 8RD box x pin	1.89	1531.19	6.10	4.95
Prpe base: 51/2". $15 \mathrm{lbs} / \mathrm{ft}, \mathrm{J}-55$				
Size 190-60 Model "B" ind seal assy. $w / 5^{1 / 2 "} 8$ RD box up x muleshoe w/kickover lug.		1533.08	6.50	4.88
NOTE: Top SC-IL packer: 1468,87m Top F-1 packer: 1533.24 m		1536.40		

Volumes of slurry pumped during the squeeze high density GP.

Wash pipe requirements

FIG 4

STATOIL GRAVEL PACK ASSY, INTERVAL 1373,0-1383,0 m RKB DST\#2

31/3-1

SC-IL setting tool

SC-IL packer (96-60)
w/75/g" 8RD box down

75/8" GP extension
w: 75/8" 8RD pin x pin
Closing sleeve
w/75/8" 8RD box up $\times 7.1658$ stub ACME pin
Lower seal bore sub
w. 71658 stub ACME box $\times 7$ 8RD box

7" Lower extension
wi7" 8RD pin x pin
$7^{\prime \prime} \times 5^{1 / 2 "}$ crossover sub
wi $7^{\prime \prime} 8 R D$ box up $\times 5^{1} / 2$ 8RO pin down
Size 4.5 model "A" ind sub
w $51 / 2^{\prime \prime}$ 8RD box x pin
Size $51 / 2$ shear out safety it wrot.lock
w $5: 2^{\prime \prime} 8$ RD box x x (43000 lbs shear)
Size $51 / 2^{\prime \prime}, 15 \mathrm{lbs}: \mathrm{ft} \mathrm{J} .55 \mathrm{casing}$
w/51/2" 8RD box x pin
$w .3 \times 0.030 \mathrm{~m}$ welded centr lugs at center and 0.16 m from pin and box

Size $5^{1 / 2 \prime 2}$. 15 lbsitt.. J-55 casing
w $5^{1 / 2} 2^{\prime \prime}$. 8RD box x pin
w' $3 \times 0.030 \mathrm{~m}$ welded centr.lugs at center and 0.16 m from pin and box

Size $5^{1 / 2 "}$, 15 lbsift J-55 casing
w/ $5^{1 / 2}$ 8RO box x pin
w/3 $\times 0.030 \mathrm{~m}$ welded centr tugs at center and 0.16 m from pin and box

Size $5^{1 / 2 " \prime} \times 0.012$ gauge screen
w/ $5^{1 / 2 "} 8$ RD box x pin
Pipe base: $\mathbf{5}^{1 ⁄ 2 \prime \prime}$. 15 Ibs tt . J-55

Size $5^{1 / 2 \prime} \times 0.012$ gauge screen w/ $5^{1 / 2 "}$ 8RD box x pin

Pipe base: $5^{1 / 2} 2^{\prime \prime} .15$ lbs tt. J. 55

Size $51 / 2^{\prime \prime} \times 3.25^{\prime \prime}$ sealbore sub wis $1 / 2$ " 8RD box x pin
Size $5 \frac{1 / 2 "}{} \times 0.012$ gauge screen
w/ $5^{1 / 2 "}$ 8RD box x pin
Pipe base: $5^{1 / 2 \prime \prime}, 15$ lbs ft, J-55

Size 190-60 Model "B" ind. seal assy w/51/2" 8 RD box up \times muleshoe w/kickover lug.

Top F-1: 1388.5 m RKB
TOD SC-IL: $1332,10 \mathrm{~m}$ RKB

Item Igth (m)	$\begin{gathered} \text { Depth } \\ \text { (m RKB) } \end{gathered}$	$\begin{aligned} & \text { OD } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & \text { ID } \\ & \text { (in) } \end{aligned}$
0.82	1331.28	8.15	
1.27	1332.10	8.44	6.00
1.43	1333.37	8.44	
0.64	1334.80	8.18	
0.52	1335.44	8.27	6.00
5.97	1335.96	7.00	
0.24	1341.93	8.33	4.95
0.24	1342.17	6.05	4.50
0.32	1342.41	6.05	4.95
9.21	1342.73	$\begin{aligned} & 6.05 \\ & + \text { lugs } \end{aligned}$	4.95
9.20	1351.94	$\begin{gathered} 6.05 \\ + \text { lugs } \end{gathered}$	4.95
9.13	1361.14	6.05 lugs	4.95
7.07	1370.27	6.10	4.95
7.08	1377.34	6.10	4.95
0.78	1384.42	6.05	3.25
3.12	1385.20	6.10	4.95
3.32	1388.32	6.50	4.88
	1391.64		

FIG 5

$95 / 8^{\prime \prime}$ csg, $43.5 \mathrm{lbs} / \mathrm{ft}: 8.755^{\prime \prime} \mathrm{ID} .38 .85 \cdot 10^{-3} \mathrm{~m}^{3} / \mathrm{m}$
FIG 6

Volumes of slurry pumped during the squeeze high density GP.

Washpipe requirements

FIG 8

Sieve Analysis, 31/3-1

DST\#1.,interval 1519.0-1529.0 mRKB

Sieve Analysis, 31/3-1
DST\#2, interval 1373.0-1383.0 mRKB

Hole Volume, surf. - top $F-1$ packer, no pipe: $112.39544 \mathrm{~m}^{3}=708.15 \mathrm{bbl}$
Hole Volume, surf. - top SC-1L packer, no pipe: $110.39536 \mathrm{~m}^{3}=694.31 \mathrm{bbl}$

Hole volume, surf. - top SC-1L Dacker, $31 / 2 " D P+43 / 4 " D C \cdot 105.17392 \mathrm{~m}^{3}$ bbl=661.47 bbl

Ann. vol., surf. - top SC-1 L packer, $31 / 2^{\prime \prime} D P+43 / 4 " D C: \quad 100.81100 \mathrm{~m}^{3}=634.03 \mathrm{bbl}$
DP/DC vol, surf. - too SC-1 L packer
$4.36292 \mathrm{~m}^{3}=27.44 \mathrm{bbl}$
DP/DC vol, surf. - $\mathrm{X}-\mathrm{O}$ ports

Ann. vol, $x-0$ ports - top $\mathrm{F}-1$ packer (not incl. perfs.):

$$
1.14214 \mathrm{~m}^{3}=7.22 \mathrm{bbl}
$$ $+0.5 \mathrm{ft}^{3} / \mathrm{ft}$ perfs.

$$
\begin{aligned}
& 0.46452 \mathrm{~m}^{3}=2.92 \mathrm{bbl} \\
& \begin{array}{l}
1.61266 \mathrm{~m}^{3}=10.14 \mathrm{bbl} \\
0.64506 \mathrm{~m}^{3}= \\
\frac{2.25772 \mathrm{~m}^{3}}{} 1: 79.73 \mathrm{ft}^{3} \rightarrow 80 \text { sacks }
\end{array}
\end{aligned}
$$

Remarks:

```
1: \(\frac{\text { ibs }}{\text { gal }}\) slury conc. \(=1317.98\) kg gravel/m \({ }^{3}\) base flyld
    \(=880.21 \mathrm{ka}\) grave \(1 / \mathrm{m}^{3}\) slurry
    \(=1 . j 8\) SG slurry dens. (1.05 sG base flutd)
```

Dowell padcile mixer tank: $\quad 1000$ gal $=23.8 \mathrm{bbl}=3.79 \mathrm{~m}^{3}$

Amount of cravel in $3.79 \mathrm{~m}^{3}(23.8$ bbl) tank when 11 lbsical slarr $\because:$

$$
880.21 \mathrm{~kg} / \mathrm{m}^{3} \times 3.79 \mathrm{~m}^{3}=3332.22 \mathrm{~kg} \triangleq
$$

3332.22 ka qravel is equivalent to:

$$
\frac{3332.22 \mathrm{ka}}{2650 \mathrm{~kg} / \mathrm{m}^{3} \times 0.6\left(0.3048 \mathrm{~m}^{3}\right)}=74.01 \mathrm{ft}^{3} \hat{=} \underline{74 \text { sacks }}
$$

Total slurrv: $3.78 \mathrm{~m}^{3}(23.8 \mathrm{bbl})$
Amount of 1.05 base fluid, using 74 sacks: $23.8 \times 0.159-\frac{74 \times 100 \times 0.453592}{2650}=2.52 \mathrm{~m}^{3}(15.8 \mathrm{bbl})$
Mix ratio 1.30 SG brine and 1.00 SGfiltered drillwater: to give 1.05 SG base fluid 2

$12 \frac{\mathrm{lbs}}{\text { gal }}$ slurry conc. $=1437.8 \mathrm{~kg}$ gravel $/ \mathrm{m}^{3}$ base fluld
$=932.08 \mathrm{~kg}$ grave $1 / \mathrm{m}^{3}$ slurry
$=1.61 \mathrm{SG}$ slurry dens. (1.05 SG base Eluıd)

Dowell paddle mixer tank: 1000 çal $=23.8 \mathrm{dbl}=3.79 \mathrm{~m}^{3}$

Amount of gravel in $3.79 \mathrm{~m}^{3}(23.8 \mathrm{bbl})$ tank when 12 lbs/aal slurry:

$$
932.08 \mathrm{~kg} / \mathrm{m}^{3} \times 3.79 \mathrm{~m}^{3}=3532.60 \mathrm{~kg}
$$

3532.60 kg gravel is equivalent to:

$$
\frac{3532.60 \mathrm{~kg}}{2650 \mathrm{~kg} / \mathrm{m}^{3} \times 0.6 \times\left(0.3048 \mathrm{~m}^{3}\right)}=78.46 \mathrm{ft}^{3} \hat{=} 79 \mathrm{sacks}
$$

This corresponcs to (see calc. for 11 lisiqal conc.): $2.43 \mathrm{~m}^{3}(15.3 \mathrm{bbl}) 1.05$ SG base fluid made ip of $0.41 \mathrm{~m}^{3}(2.5 \mathrm{bbl}) 1.30 \mathrm{SG}$ brane and $2.03 \mathrm{~m}^{3}(12.8 \mathrm{bbl}) 1.0 \mathrm{SG}$ filtered drillwater.

Note: Due to the viscous nature of the slurry, only ca. $3.34 \mathrm{~m}^{3}-3.50 \mathrm{~m}^{3}(21-22$ bbl) may be "sucked" out of the paddle mixer before air is "sucked". A slurry concentration before of 11 ibsiga: gives the optimum siurry density. However, the amount of gravel is in the lower range. If a smaller slurry volume is used lless than the paddle mixer capacity of $3.79 \mathrm{~m}^{3}(23.8 \mathrm{bbl})$ due to air being sucked a somewhat hagher slurry concentration is recommended. Consequently, 12 lbs/gal is recommended.

Assuming 12 ibs/aal and $3.79 \mathrm{~m}^{3}(23.8$ bbl) slurry volume (1003 tank cap.),
the max pressure equivalent is

$$
\begin{aligned}
& =c: \quad 226.87 \mathrm{~m}=0.58306 \mathrm{~m}^{3} \\
& 50: \frac{13.79-0.58306) \mathrm{m}^{3}}{3.43 . \times 10^{-3} \mathrm{~m}^{3} / \mathrm{m}}=335.0 \mathrm{~m} \\
& \frac{(227.0+935.0) \times 1.61+(1373.0-227.0-935.0) \times 1.30}{1373.0}=1.56 \mathrm{SG}
\end{aligned}
$$

Thus, the max pressure 15 equivalent to 1.56 SG. If less than $3.79 \mathrm{~m}^{3}(23.8 \mathrm{bbl})$ is sucked, the equivalent pressure will be less also.

Volumes of slurry pumped during the squeeze high density GP.

FIG. 3

```
Sec=ion 1: Slurry conc./not packed
    S!irry volume: 11.76 x 10 3 m
Section 2: Packed
    47.95 < 10 m m}\times0.6\times2650 k:/m m = 76.24 kg jravel
    \frac{76.24 kg}{932.08 kg/m}}=0.08\mp@subsup{\textrm{m}}{}{3
    Slurgy volume: 
Section 3: Slurry conc./ not packed
    Slurry volume: }68.65\times1\mp@subsup{0}{}{-3}\mp@subsup{\textrm{m}}{}{3}(0.43\textrm{bbl}
```


Section 4: Packed

```
Not incl. perfs.: \(237.56 \times 10^{-3} \times 0.6 \times \frac{2650}{932.08}=405.24 \times 10^{-3} \mathrm{~m}^{3}(2.55\) bbl) slurr Incl. perfs.: \(\quad 702.08 \times 10^{-3} \times 0.6 \times \frac{2650}{932.08}=\underline{197.65 \times 10^{-3} \mathrm{~m}^{3}(7.53 \mathrm{bbl}) \text { slurre. }}\)
```

Section 5: Slurry conc./not packed
Siurry volume: $782.22 \times 10^{-3} \mathrm{~m}^{3}(4.92 \mathrm{bbl})$

Amount of gravel required to pack the volume below top of the main screen section to the $F-1$ packer: (See fig. 3.)

	Sectron nо.	$\begin{aligned} & \text { slurry vol. } \\ & \left(\times 10^{-3} \mathrm{~m}^{3}\right) \end{aligned}$	Gravel cont. (kq)	Total slurry $\left(\times 10^{-3} m^{3}(b b 1)\right)$	Total Gravel (kg)
Incl. perfs.	1	11.76	10.96		
	2	81.80	76.24	1359.86	1267.50
	3	68.65	63.99	(8.55)	
	4	1197.65	1116.31		
Not incl. perfs.	1	11.76	10.96	567.45	528.91
	2	81.80	76.24	(3.57)	
	3	68.65	63.99		
	4	405.24	377.72		

79 sacks $\hat{=}$

Pump in sequence:
$2.39 \mathrm{~m}^{3}(15 \mathrm{bbl}) 1.30 \mathrm{SG}$ prepad
$3.78 \mathrm{~m}^{3}(23.8 \mathrm{bbl}) 1.61 \mathrm{SG}$ slurry containing 79 sacks gravel
$0.80 \mathrm{~m}^{3}(5 \mathrm{bbl}) \dot{1} .30 \mathrm{SG}$ postpad
$x \mathrm{~m}^{3}$ (as necessary) 1.30 SG brine

Individual fluid volumes m^{3} (bbl)	Cummulative volume, calculated, m^{3} (bbl)	Remarks
$2.39 \mathrm{~m}^{3}(15 \mathrm{bbl})$ prepad $1.99 \mathrm{~m}^{3}(12.5 \mathrm{bbl})$ slurry $3.13 \mathrm{~m}^{3}(19.7 \mathrm{bbl}) \mathrm{slurry}$ $3.78 \mathrm{~m}^{3}(23.8$ bbl) slurry $0.59 \mathrm{~m}^{3}(3.7 \mathrm{bb} 1)$ postpad $0.80 \mathrm{~m}^{3}(5.0 \mathrm{bbl})$ postpad $0.94 \mathrm{~m}^{3}\{5.9$ bbi\} brine Pazied perEs.: \quad Nor parket persu:	$\begin{aligned} & 2.39 \mathrm{~m}^{3}(15 \mathrm{bbl}) \\ & 4.38 \mathrm{~m}^{3}(27.5 \mathrm{bb} 1) \\ & 5.52 \mathrm{~m}^{3}(34.7 \mathrm{bbl}) \\ & 6.17 \mathrm{~m}^{3} \\ & (38.8 \mathrm{bb} 1) \\ & 6.67 \mathrm{~m}^{3} \\ & (42.5 \mathrm{bbl}) \\ & 6.97 \mathrm{~m}^{3} \\ & (43.8 \mathrm{bbl}) \\ & 5.77 \mathrm{~m}^{3} \\ & (44.7 \mathrm{bbl}) \end{aligned}$ 	All prepad pumped Prepad at $x-0$ ports Prepad at tell tale screen All slurry pumped Slurry at $X-0$ ports All post pad pumped Slurry at tell tale screen, sand out
		Ernal sand out Postpad to surface Excess slurry to surface Prepad to surface Excess acid to surface

Volumes:
Hole volume, surf. - top $E-1$ packer, no pipe: $118.22713 \mathrm{~m}^{3}=743.6 \mathrm{bbl}$
Hole volume, surf. - top SC-1i packer, no pipe: $115.72713 \mathrm{~m}^{3}=728.1 \mathrm{bbl}$
بole volume, surf. - top SC-iL packer, $31 / 2^{\prime \prime} D P+43 / 4 " D C: 112.44533 \mathrm{~m}^{3}=707.20 \mathrm{bbl}$
Ann. volume, surf. - top SC-1L packer, $31 / 2$ " DP + 4 3/4" DC: $107.60203 \mathrm{~m}^{3}=676.74 \mathrm{bbl}$
$D P / D C$ volume, surf. - top SC-1L packer, : $4.84319 \mathrm{~m}^{3}=30.5 \mathrm{bbl}$
DP/DC volume, surf. - x -O ports:
$4.85293 \mathrm{~m}^{3}=30.5 \mathrm{bbl}$
Ann. volume, $X-0$ pores - top $E-1$ packer (not $2 n c l$. perfs.): $\quad 1.333 .81 \mathrm{~m}^{3}=8.39 \mathrm{bbl}$
$+0.5 \mathrm{ft}^{3} / \mathrm{ft}$ perfs.
$403 \frac{0.71933 \mathrm{~m}^{3}}{2.51766 \mathrm{~m}^{3}}$
$20-40$ mest gravel: $88.91 \mathrm{ft}^{3}=89$ sacks

Volumes of slurry pumped during the squeeze high density GP.

| Bulk volume
 associated with
 each section
 $\left(\times 10^{-3} \mathrm{~m}^{3}\right)$ |
| :--- | :--- | :--- |

FIG. 7

Section 1: Tool position: 2, circulation
The gravel in section ? will remain $1 n$ the slurry concentration (no dehydration)
Slury? yolime required for section $1: 11.76 \times 10^{-3} \mathrm{~m}^{3}(0.07 \mathrm{bbl})$

Section 2: Tool position: 2, circulation
The gravel in section 2 will be dehydrated/packed.
$24.38 \times 10^{-3} \mathrm{~m}^{3}$ is conseq. the bulk volume of packed gravel:
$24.38 \times 10^{-3} \mathrm{~m}^{3} \times 0.6 \times 2650 \mathrm{~kg} / \mathrm{m}^{3}=38.76 \mathrm{~kg}$ gravel
where $\hat{\psi}_{\text {gravel }}^{\sim} 408$
Slurry volume required to pack section 2 , assuming $1437.8 \mathrm{~kg} / \mathrm{m}^{3}(12 \mathrm{lbs} / \mathrm{gal})$ gravel conc.:

$$
\frac{38.76 \mathrm{~kg}}{2650 \mathrm{~kg} / \mathrm{m}^{3}}+\frac{38.76 \mathrm{~kg}}{1437.8 \mathrm{~kg} / \mathrm{m}^{3}}=41.58 \times 10^{-3} \mathrm{~m}^{3}(0.26 \mathrm{bbl})
$$

Section 3: Tool position: 2, circulation
Theoretically, at sand out for the tell tale screen, the volume in section 3 will be filled with gravel still in the slurry concentration. Thus, section 3 will not be packed/dehydrated. (In practice, however, part or all of section 3 will probably be packed/dehydrated.) Assuming no pack:

Slurry volume required for section $3: \underline{68.65 \times 10^{-3} \mathrm{~m}^{3}(0.43 \mathrm{bbl})}$

Following the reasoning for section 2 : $117.1 \times 10^{-3} \mathrm{~m}^{3}(0.74 \mathrm{bbl})$ is required if section 3 packs off

Section 4: Tool position: 1, squeeze
Section 4 is considered to pack off/dehydrate completely from the lower perf. and
until top of the main screen.

Bulk volume to be packed: $702.08 \times 10^{-3} \mathrm{~m}^{3}$
The amount of gravel in this volume is:

$$
702.08 \times 10^{-3} \mathrm{~m}^{3} \times 0.6 \times 2650 \mathrm{~kg} / \mathrm{m}^{3}=1116.31 \mathrm{~kg}
$$

where $\mathbb{G}^{\text {gravel }} \sim 40 \%$
Slurry volume required to pack section 4 , assuming $1437.8 \mathrm{~kg} / \mathrm{m}^{3}(12 \mathrm{lbs} / \mathrm{gal})$ slurry conc.:

$$
\frac{116.31 \mathrm{~kg}}{2650 \mathrm{~kg} / \mathrm{m}^{3}}+\frac{1116.31 \mathrm{~kg}}{1437.8 \mathrm{~kg} / \mathrm{m}^{3}}=\underline{1197.65 \times 10^{-3} \mathrm{~m}^{3}(7.5 \mathrm{bbl})}
$$

If the perforatıons are not packed off, the following slurry volumes is required:

$$
\frac{237.56 \times 10^{-3} \times 0.5 \times 2650}{2650} \cdot \frac{237.56 \times 10^{-3} \times 0.6 \times 2650}{1437.8}=\frac{405.24 \times 10^{-3} \mathrm{~m}^{3}(2.55 \mathrm{bbl})}{(2)}
$$

Section 5: Tool position: 1, squeeze
At the moment of sand out of the main screen (section 4) the volume in section 5 will be filled with gravel still in the slurry concentration.

Slurry volume required for section $5: \underline{991.46 \times 10^{-3} \mathrm{~m}^{3}(6.2 \mathrm{bbl})}$

The amount of aravel der unit volume slurry is:

$$
\frac{1437.3 \frac{\mathrm{~kg} \text { gravel }}{\mathrm{m}^{3} \text { base fluid }}}{\frac{1437.8}{2650} \mathrm{~m}^{3} \text { gravel matrix }+1 \mathrm{~m}^{3} \text { base fluid }}=932.08 \frac{\mathrm{~kg} \text { gravel }}{\mathrm{m}^{3} \text { slurry }}
$$

Consequently, the amount of gravel associated with $991.46 \times 10^{-3} \mathrm{~m}^{3}$ slurry is: $932.08 \frac{\mathrm{~kg} \text { gravel }}{\mathrm{m}^{3} \text { slurry }} \times 991.46 \times 10^{-3} \mathrm{~m}^{3}$ slurry $=924.12 \mathrm{~kg}$

Thus, after the breaker activates, this amount of gravel will give the following neight of reserve above the top screen

$$
\frac{924.12 \mathrm{~kg}}{2650 \mathrm{~kg} / \mathrm{m}^{3} \times 0.6 \times 23.51 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{m}}=24.7 \mathrm{~m}
$$

Note: 24.7 m is theoretical. Due to the roping effect when the slurry passes through the $\mathrm{x}-\mathrm{O}$ ports, only the following slurry volume may be trapped across the blank pipe at the moment of sand out:

$$
\begin{aligned}
& \text { Assuming a) } 0.04(1.6 \mathrm{in}) \text { "rope", b) blank pif length plus } 30 \% \\
& \frac{\Pi}{4}(0.04 \mathrm{~m})^{2} \times(9.20 \times 4 \times 9.3)=61.93 \times 10^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

This gives the following height of reserve gravel:

$$
\frac{61.93 \times 10^{-3} \times 932.08}{2650 \times 0.6 \times 23.51 \times 10^{-3}}=1.54 \mathrm{~m}
$$

The final amount of reserve gravel will be 1 n between 1.5 m and 24.7 m

Amount of gravel required to pack the volume below top of the main screen sectio F-1 packer: (See fig. 7.)

	Section no.	Slurry vol. $\left(x 10^{-3} \mathrm{~m}^{3}\right)$	Gravel cont. (kg)	Total Siurry $\left(\times 10^{-3} \mathrm{~m}^{3} / \mathrm{bb}\right.$
Inlcud perfs.	1	11.76	10.96	
	2	41.58	38.76	
	3	68.65	63.99	1399.64 (8.
	4	1197.65	1116.31	
Not incl perfs.	1	11.76	10.96	
	2	41.58	38.76	
	3	68.65	63.99	527.73 13.3.
	4	405.24	377.72	

As planned:

Pump in sequence:
$0.8 \mathrm{~m}^{3}(\mathrm{~s}$ bbl) 1.16 SG Spacer
$2.39 \mathrm{~m}^{3}(15 \mathrm{bbl}) 1.16 \mathrm{SG}$ prepad
$3.8 \mathrm{~m}^{3}(23.8$ bbI) 1.61 SG slurry containing 77 sacks $20-40$ mesh gravel
$0.8 \mathrm{~m}^{3}(5 \mathrm{bbl}) 1.16 \mathrm{SG}$ Spacer
$X \mathrm{~m}^{3}$ (as necessary) 1.16 SG brine

Volume pumped: $\left(0.8 \mathrm{~m}^{3}(5 \mathrm{bbl})\right.$ spacer assumed taken on acid "flowmeter")

Individual Eluid volumes m^{3} (bbl)	Cummulative m^{3} (bbl)	Remarks
$2.39 \mathrm{~m}^{3}(15 \mathrm{bbl})$	$2.39 \mathrm{~m}^{3}(15 \mathrm{bbl})$	All prepad pumped
$2.46 \mathrm{~m}^{3}(15.5 \mathrm{bbl})$ slurry	$4.85 \mathrm{~m}^{3}(30.5 \mathrm{bbl})$	Prepad at X-over tool
$3.78 \mathrm{~m}^{3}(23.8 \mathrm{bbl})$ slurry	$6.17 \mathrm{~m}^{3}(38.8 \mathrm{bbl})$	All slurry pumped
$0.02 \mathrm{~m}^{3}(0.1 \mathrm{bbl})$ postpad	$6.19 \mathrm{~m}^{3}(38.9 \mathrm{bbl})$	Prepad at tell tale screen
$0.80 \mathrm{~m}^{3}(5.0 \mathrm{bbl})$ postpad	$6.99 \mathrm{~m}^{3}$ (44.0 bbl)	All postpad pumped
$0.27 \mathrm{~m}^{3}(1.7 \mathrm{bbl})$ brine	$7.26 \mathrm{~m}^{3}$ (45.7 bbl)	Slurry at X-O ports
$1.61 \mathrm{~m}^{3}(10.1 \mathrm{bbl})$ brine	$8.60 \mathrm{~m}^{3}(54.1 \mathrm{bbl})$	Slurry at tell tale screen
$1.63 \mathrm{~m}^{3}(10.3$ bbl) brine	$8.62 \mathrm{~m}^{3}(54.2 \mathrm{bal})$	Tell tale screen packed. (Sand Out I)
$2.13 \mathrm{~m}^{3}(13.4 \mathrm{bbl})$ brine	$9.12 \mathrm{~m}^{3}(57.4 \mathrm{bbl})$	Main screen packed (Sand Out II) assuming perf. packed.
Reversing out :		
$2.13 \mathrm{~m}^{3}(13.4 \mathrm{bbl})$ brine	$2.13 \mathrm{~m}^{3}(13.4 \mathrm{bbl})$	Postpad to surface
$2.93 \mathrm{~m}^{3}(18.4 \mathrm{bbl})$ brine	$2.93 \mathrm{~m}^{3}(18.4 \mathrm{bbl})$	Slurry to surface
$4.86 \mathrm{~m}^{3}(30.6 \mathrm{bbl}) \mathrm{brine}$	$4.86 \mathrm{~m}^{3}$ (30.6 bbl)	Prepad to surface
$7.25 \mathrm{~m}^{3}(45.6 \mathrm{bbl})$ brine	$7.25 \mathrm{~m}^{3}(45.6 \mathrm{bbl})$	Brine to surface

Pump in sequenc:

$1.75 \mathrm{~m}^{3}$ (11 bbl) 1.16 SG prepad
$2.70 \mathrm{~m}^{3}$ (17 bbl) 1.61 SG slurry containing 65 sacks $20-40$ mesh gravel
$0.80 \mathrm{~m}^{3}(5 \mathrm{bbl}) 1.16 \mathrm{SG}$ postpad
$X \mathrm{~m}^{3}$ (as necessäry) 1.16 SG brine

Volume pumped:

Individual Fluid Volumes m^{3} (bbl)	Cummulative volume, calculated, m^{3} (bbl)	Remarks	Cumul.vol. obser: m^{3} (bbl)
$1.75 \mathrm{~m}^{3}(11 \mathrm{bbl})$ prepad	$1.75 \mathrm{~m}^{3}(11.0 \mathrm{bbl})$	All prepad pumped	
$2.70 \mathrm{~m}^{3}(17 \mathrm{bbl})$ slurry	$4.45 \mathrm{~m}^{3}(28.0 \mathrm{bbl})$	All slurry pumped	
$0.40 \mathrm{~m}^{3}(2.4 \mathrm{bbl})$ postpad	$4.85 \mathrm{~m}^{3}(30.5 \mathrm{bbl})$	Prepad at X-O tool	
$0.80 \mathrm{~m}^{3}(5.0 \mathrm{bbl})$ postpad	$5.25 \mathrm{~m}^{3}(33.0 \mathrm{bbl})$	All postpad pumped	
$0.94 \mathrm{~m}^{3}(5.9 \mathrm{bbl})$ brine	$6.19 \mathrm{~m}^{3}(38.9 \mathrm{bbl})$	prepad at tell tale screen	
$2.68 \mathrm{~m}^{3}(16.9 \mathrm{bbl})$ brine	$7.93 \mathrm{~m}^{3}(49.9 \mathrm{bbl})$	Sluryy at tell tale screen	$7.79 \mathrm{~m}^{3}$ (49 bbl
$2.86 \mathrm{~m}^{3}(18.0 \mathrm{bbl}) \mathrm{brine}$	$8.11 \mathrm{~m}^{3}(51.0 \mathrm{bbl})$	Pack completed (Sand Out)	$8.03 \mathrm{~m}^{3} 150.56$:
Reversing out:			
$2.86 \mathrm{~m}^{3}(18.0$ bbl) brine	$2.86 \mathrm{~m}^{3}(18.0 \mathrm{bbl})$	Postpad to surface	
$3.66 \mathrm{~m}^{3}(23.0 \mathrm{bbl})$ brine	$3.65 \mathrm{~m}^{3}(23.0 \mathrm{bb}-1$	Excess slursy to surface	
$4.85 \mathrm{~m}^{3}(30.5 \mathrm{bbl})$ brine	$4.85 \mathrm{~m}^{3}(30.5 \mathrm{bbl})$	Prepad to surface	
$6.44 \mathrm{~m}^{3}(40.5 \mathrm{bbl})$ brine	$6.44 \mathrm{~m}^{3}$ (40.5 bbl)	Brine to surface	

The amount of gravel required to pack the volume below top of the main screen to the F-1 packer is 491.4 kg when neglecting the perforations were packed.

The amount of slurry reversed out was $1.11 \mathrm{~m}^{3}(7.0 \mathrm{bbl})$ (measured). After settlement. it was measured a ca. 5 cm layer in a $4.15 \times 2.0 \mathrm{~m}$ pit. indicatıng ca. 400 kg reversed out. However, $1.11 \mathrm{~m}^{3}(7.0 \mathrm{bbl})$ is mixed to contaln 1035 kg gravel. Gravel was also observed in the reversed out prepad and the brine used during the reversing process. The measured 400 kg is thus to small, but the amount to small is unknown. Consequently, the minimum of gravel left in the hole is ca. 1485 kg , since the $2.70 \mathrm{~m}^{3}(17 \mathrm{bbl})$ slurry contained 2520 kg .

