# rison Recearch International Limited

SPECIAL CORE ANALYSIS STUDY FOR STATOIL DEN NORSKE STATS OLJESELSKAP 8.5. WELL: 31/3 - 1, TROLL FIELD NORWEGIAN SECTOR, NORTH SEA.

Denne rapport tilhører L&U DOK.SENTER L.NR. 30284500028 KODE Well 31/3-1 nr. 56 Returneres etter bruk



Lnr. See est Lor. Avd. Low S.b. THE Mott. 0  $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$ C Harkiv Liv ....v Ko SHST- PS-12.03-01 31/3-1 0. pa -.`**-**7. ..... Ę

نر

ł.

|

č Ļ

PAGE 1 of 55 FILE NO: SCAL-0211

#### CONTENTS

|   |                                                            | Page No. |
|---|------------------------------------------------------------|----------|
| 1 | INTRODUCTION                                               | 3        |
| 2 | SAMPLE AND TEST SUMMARY TABLE                              | 4        |
| 3 | AIR PERMEABILITY, POROSITY AND GRAIN DENSITY SUMMARY TABLE | 5        |
| 4 | SAMPLE PREPARATION                                         |          |
|   | 4.1 Test Procedures                                        | 7        |
|   | 4.2 Klinkenberg Permeability Data                          | 10       |
|   | 4.3 Brine Permeabilities                                   | 13       |
|   | 4.4 Irreducible Brine Saturations and Klinkenberg          |          |
|   | Fermeability at SWir                                       | 14       |
| 5 | RESIDUAL GAS SATURATION BY LOW RATE WATERFLOOD             | 16       |
|   | 5.1 Test and Calculation Procedures                        | 17       |
|   | 5.2 Summary of Results                                     | 18       |
| 6 | GAS - BRINE, RELATIVE PERMEABILITY, UNSTEADY-STATE         | 20       |
|   | 6.1 Test and Calculation Procedures                        | 21       |
|   | 6.2 Gas - Brine, Production Data                           | 22       |
|   | 6.3 Summary of Results                                     | 26       |
|   | 6.4 Gas - Brine, Relative Permeability Data                | 27       |
| 7 | RESIDUAL GAS SATURATION BY LOW RATE OILFLOOD AND RESIDUAL  |          |
|   | OIL SATURATION BY LOW RATE WATERFLOOD (in the presence of  |          |
|   | residual gas saturation)                                   | 37       |
|   | 7.1 Test Procedures                                        | 37       |
|   | 7.2 Summary of Results                                     | 38       |
|   |                                                            |          |

an in a state and the set

24

 $(122)_{\rm stars}$ 

ROBERTSON RESEARCH

ROBERTSON

RESEARCH

| 8 | WATER - OIL, RELATIVE PERMEABILITY, UNSTEADY STATE | 44 |
|---|----------------------------------------------------|----|
|   | 8.1 Test Procedures                                | 45 |
|   | 8.2 Water - Oil, Production Data                   | 46 |
|   | 8.3 Summary of Waterflood Test Results             | 50 |

#### APPENDICES

- and a state of the second

| Appendix | I          | Composition and Specification Summary for the |    |
|----------|------------|-----------------------------------------------|----|
|          |            | fluids used during the analyses               | 52 |
| Appendix | II         | Sample Dimensions                             | 53 |
| Appendix | III        | Summary of Pore Volume Data                   | 54 |
| Appendix | т <b>v</b> | Abbreviations                                 | 55 |

PAGE 3 of 55 FILE NO: SCAL-0211

ROBERTSO RESE<u>AR</u>C

#### 1 INTRODUCTION

This report presents the results of Special Core Analysis tests performed on a suite of samples from the Well 31/3-1 of the Troll field in the Norwegian sector of the North Sea.

The original specifications for the project were outlined in discussions between representatives of Robertson Research and Mr. Jon Ringen of Statoil during March 1984, and the final programme for tests was detailed in a letter from Messers Didrik Malthe Sorenssen and Jon Ringen of Statoil dated 26th March 1984.

| SPECIAL | CORE ANALYS | IS STUDY     |       |              |       |                 |            | PACE<br>FITE | 4 of 55<br>NO: SCAL-02 | 11         |       |
|---------|-------------|--------------|-------|--------------|-------|-----------------|------------|--------------|------------------------|------------|-------|
| WELL: 1 | 3/3-1       | FIELD: TROLL |       |              |       |                 |            |              |                        | : 1        |       |
|         |             |              |       | 2 SAMPLE A   | LT UN | EST SUMMARY TAP | LE         |              |                        |            |       |
| SAMPLE  | DEPTH       | FORMATION    | K + Ø | Klinkenberg  | Кw    | Klinkenberg     | L.R.       | Kg/Kw        | L.R. and               | d L.R.     | Kw/Ko |
| NUMBER  | (metres)    |              |       | Permeability |       | Permeability    | Waterflood |              | Oilflood               | Waterflood |       |
|         |             |              |       |              |       | SWir            |            |              |                        |            |       |
| 53.1    | 1375.75     | SET A        | ×     |              | 1     |                 |            |              |                        |            |       |
| 57.1    | 1376.75     | SET A        | ×     | ×            | ×     | х               | ×          | ۲            |                        |            |       |
| 81.1    | 1384.00     | SET A        | ×     |              |       |                 |            |              |                        |            |       |
| 89.1    | 1386.00     | SET A        | ×     |              |       |                 |            |              |                        |            |       |
| 99.1    | 1389.00     | SET A        | ×     |              |       |                 |            |              |                        |            |       |
| 350.1   | 1470.00     | SET A        | ×     |              | ×     | ×               | ×          | ×            |                        |            |       |
| 426.1   | 1494.20     | SET A        | ×     |              | ×     | ×               | ×          | Έų           |                        |            |       |
| 432.1   | 1500.00     | SET B        | ×     | ×            | ×     | ×               | ×          | ×            |                        |            |       |
| 435.1   | 1500.75     | SET B        | ×     | ×            | ×     | ×               | x          | F.           |                        |            |       |
| 444.1   | 1503.00     | SET B        | ×     |              |       |                 |            |              |                        |            |       |
| 445.1   | 1504.00     | SET B        | ×     | ×            | ļ£4   |                 |            |              |                        |            |       |
| 455.1   | 1507.00     | SET B        | ×     | ×            | ×     | ×               | ×          | ×            |                        |            |       |
| 587.1   | 1546.50     | SET C        | ×     |              |       |                 |            |              |                        |            |       |
| 593.1   | 1548.00     | SET C        | ×     | ×            | ×     | ×               |            |              | ×                      |            |       |
| 599.1   | 1550.00     | SET C        | ×     |              |       |                 |            |              |                        |            |       |
| 603.1   | 1551.00     | SET C        | ×     | ×            | ×     | х               |            |              | x                      |            |       |
| 605.1   | 1552.00     | SET C        | ×     | ×            | ×     | х               |            |              | ×                      |            |       |
| 647.1   | 1564.30     | SET D        | ×     |              |       |                 |            |              |                        |            |       |
| 654.1   | 1566.00     | SET D        | ×     |              |       |                 |            |              |                        |            |       |
| 665.1   | 1569.00     | SET D        | ×     | ×            | ×     | ×               |            |              |                        |            | ×     |
| 667.1   | 1570.00     | SET D        | ×     | ×            | ×     | ×               |            |              |                        |            | ×     |
| 671.1   | 1571.00     | SET D        | ×     | ×            | ×     | х               |            |              |                        |            | ×     |

....

-----

PAGE 5 of 55 FILE NO: SCAL-0211

ROBERTSON RESEARCH

#### 3 AIR PERMEABILITY, POROSITY AND GRAIN DENSITY SUMMARY TABLE

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION | AIR PERMEABILITY<br>Ka (mD) | POROSITY*<br>(per cent) | GRAIN DENSITY<br>(g/c.c.)        |
|------------------|-------------------|-----------|-----------------------------|-------------------------|----------------------------------|
| 53.1             | 1375.75           | SET A     | 1574                        | Sample not s<br>volume  | uitable for grain<br>measurement |
| 57.1             | 1376.75           | SET A     | 194                         |                         |                                  |
| 57.1             | 1376.75           | SET A     | 149                         | 36.7*                   | 2.66                             |
| 81.1             | 1384.00           | SET A     | Sampl                       | e failed during         | cleaning                         |
| 89.1             | 1386.00           | SET A     | Sampl                       | e failed during         | cleaning                         |
| 99.1             | 1389.25           | SET A     | 615                         | Sample not s            | suitable for grain               |
|                  |                   |           |                             | volume                  | measurement                      |
| 350.1            | 1470.00           | SET A     | 1229                        | 31.5*                   | 2.71                             |
| 426.1            | 1494.00           | SET A     | 439                         | 33.6*                   | 2.68                             |
| 432.1            | 1500.00           | SET B     | 3/                          |                         | 2.66                             |
| 432.1            | 1500.00           | SET B     | 34                          | 28.9*                   | <b>A (-</b>                      |
| 435.1            | 1500.75           | SET B     | 62                          | <b>AA A i</b>           | 2.65                             |
| 435.1            | 1500.75           | SET B     | 55                          | 32.8*                   |                                  |
| 444.1            | 1503.00           | SET B     | 11.8                        | 25.8                    | 2.64                             |
| 445.1            | 1504.00           | SET B     | 17                          |                         | 2.63                             |
| 445.1            | 1504.00           | SET B     | 13.9                        | 26.0                    |                                  |
| 455.1            | 1507.00           | SET B     | 16                          |                         | 2.65                             |
| 455.1            | 1507.00           | SET B     | 14.7                        | 27.2*                   |                                  |
| 587.1            | 1546.50           | SET C     | 1102                        | 32.8                    | 2.67                             |
| 593.1            | 1548.00           | SET C     | 215                         |                         | 2.67                             |
| 593.1            | 1548.00           | SET C     | 194                         | 32.1*                   |                                  |
| 599.1            | 1550.00           | SET C     | 695                         | 36.0                    | 2.65                             |
| 603.1            | 1551.00           | SET C     | 123                         |                         | 2.68                             |
| 603.1            | 1551.00           | SET C     | 103                         | 37.1*                   |                                  |
| 605.1            | 1552.00           | SET C     | 249                         |                         | 2.66                             |
| 605.1            | 1552.00           | SET C     | 210                         | 32.1*                   |                                  |
| 647.1            | 1564.30           | SET D     | 168                         | 31.9                    | 2.67                             |
| 654.1            | 1566.00           | SET D     | 1.05                        | 13.4                    | 2.69                             |
| 665.1            | 1569.00           | SET D     | 742                         |                         | 2.67                             |
| 665.1            | 1569.00           | SET D     | 672                         | 31.8*                   |                                  |
| 667.1            | 1570.00           | SET D     | 591                         |                         | 2.66                             |
| 667.1            | 1570.00           | SET D     | 509                         | 32.0*                   |                                  |
| 671.1            | 1571.00           | SET D     | 290                         | _                       | 2.66                             |
| 671.1            | 1571.00           | SET D     | 244                         | 31.6*                   |                                  |

\* Calculated from saturated bulk volumes, all other porosities are screening values using the product of length and area as the sample bulk volume.

ی کوئی ک

ROBERTSON RESEARCH

#### 4 SAMPLE PREPARATION

- 4.1 Test Procedures
- 4.2 Klinkenberg Permeability Data

a sector a

- 4.3 Brine Permeabilities
- 4.4 Irreducible Brine Saturations and Klinkenberg Permeabilities at SWir

PAGE 7 of 55 FILE NO: SCAL-0211

ROBERTSO RESEARC

#### 4 SAMPLE PREPARATION

#### 4.1 TEST PROCEDURES

#### Sample cleaning

The test suite for this study comprised 20 plug samples of one and one half inches diameter. Upon receipt at Robertson Research an examination of the samples indicated that several of the samples, particularly those from Set A were friable and as a precautionary measure the samples were wrapped with PTFE tape prior to being trimmed into right cylinders. The samples were trimmed into right cylinders using a diamond tipped saw with brine as the coolant/lubricant.

All of the samples were cleaned of residual mobile reservoir and drilling fluids by solvent extraction. This was achieved by Soxhlet retorting of the samples using methanol, toluene and methanol again. The samples were deemed to be clean when the refluxing solvent showed no discolouration and tests for salt proved negative. The samples were then dried in a humidity controlled oven.

#### Permeability and porosity measurement techniques

A 'base' screening test for air permeability and porosity were attempted on all twenty samples, these data were reported to Statoil. Ten samples were then selected for gas permeability measurements with 4 point Klinkenberg correction. These measurements were made by flowing nitrogen gas through the samples after they had been loaded in Hassler core holders with an overburden stress of 200 psi applied. Differential pressure across the sample was measured with a manometer and back pressure was monitored with either a manometer or an electronic pressure transducer.

From these data a graph of gas permeability versus the reciprocal of mean pressure was plotted for each sample and Klinkenberg permeability was determined by extrapolation. A plot of Klinkenberg permeability versus porosity is presented on page 12.

Porosity values were determined indirectly. The grain volume of each sample was measured by the expansion of helium gas from standard volumes into the sample loaded in a matrix cup. Pressures in the system were monitored by electronic transducer and the grain volume was calculated by applying Boyle's law to the

PAGE 8 of 55 FILE NO: SCAL-0211

ROBERTSO

RESEARCH

data. Pore volume and subsequently porosity were calculated after saturating and immersing the samples in brine to derive the bulk volume.

At this stage two replacement samples from Set A were incorporated into the test schedule. Upon completion of the air permeability and grain volume measurements the samples were saturated with simulated formation brine. The process was achieved in two stages. Firstly the samples were carefully positioned in an air tight vessel and this vessel was then evacuated. De-aired simulated formation brine was then introduced and the system was pressured up to approximately 70 bars. This pressure was maintained overnight for approximately 16 hours.

The saturated pore volume of each sample was calculated by material balance and sample bulk volume was determined by immersing the samples in brine and applying Archimedes' principle. The helium pore volumes and the saturated pore volumes were compared and in all cases the levels of saturation were considered suitable for testing to continue.

#### Brine Permeabilities

The brine permeability of each sample was then determined. Measurements were performed by flowing brine at three different flow rates and a graph of flow rate versus brine permeability was plotted for each sample. The data was taken to be valid if a straight line could be drawn through the data points and the co-ordinate 0.00, 0.00.

During the measurement of brine permeability the following observations were made:

- 1. The brine volume expelled from the cores whilst the overburden was being applied was greater than is usually seen during this stage of testing. Unfortunately at this time no attempt had been made to measure the volume, however, later on in the test schedule volumes of the order of 2.5 c.c. were recorded as squeeze out.
- 2. Upon unloading the samples from the overburden cell after the brine permeability measurements the sample weight had decreased.

PAGE 9 of 55 FILE NO: SCAL-0211

ROBERTSO RESEARC

From the data above it was concluded that the sample porosity had decreased although the saturation remained at 100 per cent. The samples were then immersed in brine and the system was evacuated. Although the sample weights increased they did not reach the original 100 per cent saturated weight before the overburden had been applied.

The above information was telexed to Statoil ref telex 4853/DG on 10th June 1984. In reply Statoil requested us to proceed using the recalculated pore volume as the base value.

All of the samples were then loaded onto a brine saturated porous plate and desaturated in a single desaturation stage using humidified air at 200 psi. The time taken to reach SWir was approximately seven days, the desaturation profile of the sample being monitored periodically throughout this stage. Once irreducible brine saturation had been attained gas permeability measurements were performed using the techniques previously described. Air permeability (SWir) and Klinkenberg Permeability (SWir) were then calculated from these data.

PAGE 10 of 55 FILE NO: SCAL-0211

#### SPECIAL CORE ANALYSIS STUDY STATOIL WELL: 31/3-1 FIELD: TROLL

n .

. Canada

وطيرا متربيهم مرتوير مادر بتراسي

#### 4 SAMPLE PREPARATION

#### 4.2 KLINKENBERG PERMEABILITY DATA

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION | POROSITY<br>(per cent) | GAS<br>PERMEABILITY<br>(mD)               | MEAN PRESSURE<br>(bars)              | KLINKENBERG<br>PERMEABILITY<br>(mD) |
|------------------|-------------------|-----------|------------------------|-------------------------------------------|--------------------------------------|-------------------------------------|
| 57.1             | 1376.75           | SET A     | 36.7                   | 149<br>146<br>144<br>143                  | 1.28<br>1.58<br>1.78                 | 135                                 |
| 432.1            | 1500.00           | SET B     | 28.9                   | 142<br>34<br>30.9<br>30.1<br>29.5<br>29.2 | 2.05<br>1.73<br>2.36<br>3.02<br>3.72 | 28                                  |
| 435.1            | 1500.75           | SET B     | 32.8                   | 55<br>52<br>51<br>50<br>49                | 1.72<br>2.42<br>3.73<br>4.62         | 48                                  |
| 445.1            | 1504.00           | SET B     | 26.0                   | 13.9<br>12.0<br>11.3<br>11.0<br>10.8      | 1.77<br>2.55<br>3.21<br>3.87         | 9.7                                 |
| 455.1            | 1507.00           | SET B     | 27.2                   | 14.7<br>12.8<br>12.2<br>11.9<br>11.6      | 1.82<br>2.47<br>3.15<br>4.56         | 10.7                                |
| 593.1            | 1548.00           | SET C     | 32.1                   | 194<br>190<br>187<br>184<br>183           | 1.23<br>1.51<br>2.03<br>2.52         | 175                                 |
| 603.1            | 1551.00           | SET C     | 32.7                   | 103<br>101<br>100<br>99<br>99.5           | 1.26<br>1.50<br>1.76<br>2.03         | 94                                  |

ROBERTSON RESEARCH SPECIAL CORE ANALYSIS STUDY

STATOIL WELL: 31/3-1 FIELD: TROLL

PAGE 11 of 55 FILE NO: SCAL-0211

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION | POROSITY<br>(per cent) | GAS<br>PERMEABILITY<br>(mD) | MEAN PRESSURE<br>(bars) | KLINKENBERG<br>PERMEABILITY<br>(mD) |
|------------------|-------------------|-----------|------------------------|-----------------------------|-------------------------|-------------------------------------|
| <u> </u>         | 1552.00           |           | <br>22 1               |                             | <del></del>             | 106                                 |
| 003+1            | 1332.00           | SEI C     | 52.1                   | 210                         | 1 27                    | 190                                 |
|                  |                   |           |                        | 207                         | 1.2/                    |                                     |
|                  |                   |           |                        | 205                         | 1.51                    |                                     |
|                  |                   |           |                        | 204                         | 1.//                    |                                     |
|                  |                   |           |                        | 203                         | 2.25                    |                                     |
| 665.1            | 1569.00           | SET D     | 31.8                   | 672                         |                         | 643                                 |
| 005.1            | 1909100           | 021 0     | 5110                   | 666                         | 1.23                    | 010                                 |
|                  |                   |           |                        | 662                         | 1.49                    |                                     |
|                  |                   |           |                        | 659                         | 1.74                    |                                     |
|                  |                   |           |                        | 657                         | 2 01                    |                                     |
|                  |                   |           |                        |                             | 2.01                    |                                     |
| 667.1            | 1570.00           | SET D     | 32.0                   | 509                         |                         | 480                                 |
|                  |                   |           |                        | 503                         | 1.24                    |                                     |
|                  |                   |           |                        | 499                         | 1.49                    |                                     |
|                  |                   |           |                        | 496                         | 1.75                    |                                     |
|                  |                   |           |                        | 494                         | 2.01                    |                                     |
|                  |                   |           |                        | 424                         | 2.01                    |                                     |
| 671.1            | 1571.00           | SET D     | 31.6                   | 244                         |                         | 285                                 |
|                  |                   |           |                        | 240                         | 1.23                    |                                     |
|                  |                   |           |                        | 237                         | 1.49                    |                                     |
|                  |                   |           |                        | 235                         | 1.76                    |                                     |
|                  |                   |           |                        | 234                         | 2.01                    |                                     |
|                  |                   |           |                        | ~J7                         | <b>4</b> • • • 1        |                                     |

Ser . Se ......

ن,

· \_ \_ ·

Page. 12 of 55

File No. SCAL-0211

| COMPANY | STATOIL | FORMATION: SETS A, B, C, AND D |
|---------|---------|--------------------------------|
| WELL:   | 31/3-1  | LOCATION: NORWEGIAN NORTH SEA  |
| FIELD:  | TROLL   | COUNTRY: NORWAY                |

KLINKENBERG PERMEABILITY Versus POROSITY



KLINKENBERG PERMEABILITY (mD)

PAGE 13 of 55 FILE NO: SCAL-0211

ROBERTSON RESEARCH

## 4 SAMPLE PREPARATION

#### 4.3 BRINE PERMEABILITIES

| SAMPLE | DEPTH    | FORMATION | KLINKENBERG PERMEABILITY | BRINE PERMEABILITY |
|--------|----------|-----------|--------------------------|--------------------|
| NUMBER | (metres) |           | (mD)                     | (mD)               |
|        |          |           | <u> </u>                 |                    |
| 57.1   | 1376.75  | SET A     | 135                      | 46                 |
| 350.1  | 1470.00  | SET A     | 1179*                    | 953                |
| 426.1  | 1494.20  | SET A     | 409*                     | 174                |
| 432.1  | 1500.00  | SET B     | 28                       | 9.8                |
| 435.1  | 1500.75  | SET B     | 48                       | 7.6                |
| 455.1  | 1507.00  | SET B     | 10.7                     | 4.1                |
| 593.1  | 1548.00  | SET C     | 175                      | 144                |
| 603.1  | 1551.00  | SET C     | 94                       | 19                 |
| 605.1  | 1552.00  | SET C     | 196                      | 67                 |
| 665.1  | 1569.00  | SET D     | 643                      | 402                |
| 667.1  | 1570.00  | SET D     | 480                      | 299                |
| 671.1  | 1571.00  | SET D     | 225                      | 63                 |

Samples 350.1 and 426.1 were replacement samples and the 4 point Klinkenberg Permeability test was not performed. Klinkenberg Permeability taken from standard graphs.

PAGE 14 of 55 FILE NO: SCAL-0211

#### 4 SAMPLE PREPARATION

#### 4.4 IRREDUCIBLE BRINE SATURATIONS

#### AND

#### KLINKENBERG PERMEABILITIES AT SWIT

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION | IRREDUCIBLE<br>BRINE<br>SATURATION<br>(per cent) | GAS<br>PERMEABILITY<br>SWir (mD)     | MEAN<br>PRESSURE<br>(bars)   | KLINKENBERG<br>PERMEABILITY<br>SWir (mD) |
|------------------|-------------------|-----------|--------------------------------------------------|--------------------------------------|------------------------------|------------------------------------------|
| 57.1             | 1376.75           | SET A     | 16.6                                             | 120<br>117<br>116<br>115<br>114      | 1.40<br>1.64<br>1.91<br>2.21 | 109                                      |
| 350.1            | 1470.00           | SET A     | 8.7                                              | 1092<br>1086<br>1078<br>1075<br>1072 | 1.16<br>1.68<br>1.97<br>2.25 | 1059                                     |
| 426.1            | 1494.20           | SET A     | 8.5                                              | 309<br>307<br>305<br>304<br>302      | 1.17<br>1.45<br>1.72<br>2.22 | 297                                      |
| 432.1            | 1500.00           | SET B     | 39.8                                             | 15<br>14.3<br>13.9<br>13.7<br>13.5   | 1.50<br>2.11<br>2.80<br>3.49 | 12.9                                     |
| 435.1            | 1500.75           | SET B     | 24.3                                             | 15<br>14.5<br>14.1<br>13.8<br>13.7   | 1.37<br>1.94<br>2.64<br>3.25 | 13                                       |
| 455.1            | 1507.00           | SET B     | 43.8                                             | 6.4<br>5.8<br>5.6<br>5.5<br>5.4      | 1.73<br>2.32<br>3.02<br>3.61 | 5.0                                      |
| 593.1            | 1548.00           | SET C     | 26.1                                             | 183<br>178<br>176<br>175<br>174      | 1.40<br>1.66<br>1.92<br>2.21 | 167                                      |

ROBERTSON RESEARCH

SPECIAL CORE ANALYSIS STUDY STATOIL

WELL: 31/3-1 FIELD: TROLL

Т

PAGE 15 of 55 FILE NO: SCAL-0211

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION | IRREDUCIBLE<br>BRINE<br>SATURATION<br>(per cent) | GAS<br>PERMEABILITY<br>SWir (mD) | MEAN<br>PRESSURE<br>(bars) | KLINKENBERG<br>PERMEABILITY<br>SWir (mD) |
|------------------|-------------------|-----------|--------------------------------------------------|----------------------------------|----------------------------|------------------------------------------|
| 603.1            | 1551.00           | SET C     | 31.8                                             | 54                               |                            | 49                                       |
|                  |                   |           |                                                  | 53                               | 1.13                       |                                          |
|                  |                   |           |                                                  | 52                               | 1.54                       |                                          |
|                  |                   |           |                                                  | 51                               | 2.28                       |                                          |
|                  |                   |           |                                                  | 50                               | 4.85                       |                                          |
| 605.1            | 1552.00           | SET C     | 23.0                                             | 194                              |                            | 178                                      |
|                  |                   |           |                                                  | 189                              | 1.42                       |                                          |
|                  |                   |           |                                                  | 187                              | 1.68                       |                                          |
|                  |                   |           |                                                  | 186                              | 1.94                       |                                          |
|                  |                   |           |                                                  | 185                              | 2.22                       |                                          |
| 665.1            | 1569.00           | SET D     | 16.9                                             | 623                              |                            | 589                                      |
|                  |                   |           |                                                  | 618                              | 1.15                       |                                          |
|                  |                   |           |                                                  | 613                              | 1,39                       |                                          |
|                  |                   |           |                                                  | 609                              | 1.64                       |                                          |
|                  |                   |           |                                                  | 607                              | 1.90                       |                                          |
| 667.1            | 1570.00           | SET D     | 16.6                                             | 449                              |                            | 422                                      |
| 00701            | 1970000           |           | 2000                                             | 445                              | 1,15                       |                                          |
|                  |                   |           |                                                  | 441                              | 1.39                       |                                          |
|                  |                   |           |                                                  | 438                              | 1.65                       |                                          |
|                  |                   |           |                                                  | 434                              | 2.19                       |                                          |
| 671.1            | 1571.00           | SET D     | 23.4                                             | 213                              |                            | 201                                      |
|                  |                   |           |                                                  | 211                              | 1,17                       |                                          |
|                  |                   |           |                                                  | 210                              | 1.40                       |                                          |
|                  |                   |           |                                                  | 209                              | 1.67                       |                                          |
|                  |                   |           |                                                  | 208                              | 3.38                       |                                          |

ROBERTSON RESEARCH

والمتحديث وستعديد متشاقطين

#### 5 RESIDUAL GAS SATURATION BY LOW RATE WATERFLOOD

و <mark>کمو کار زیری در</mark> به محمد میں

- 5.1 Test and Calculation Procedures
- 5.2 Summary of Results



PAGE 17 of 55 FILE NO: SCAL-0211

OZTREEUCI DRAEER

#### 5 RESIDUAL GAS SATURATION BY LOW RATE WATERFLOOD

#### 5.1 Test and Calculation Procedures

The samples scheduled for this test had been driven to irreducible brine saturation in a single desaturating phase as described in Section 4.1. Each sample was then individually loaded into a specially prepared overburden cell. The cell containing the sample and the gas collection system were then pressurised until the core was sustaining approximately 20 bars pore pressure and 20 bars net overburden pressure.

The residual gas saturation of the samples was established by performing a low rate 4 c.c./hr constant rate waterflood. The differential pressure across the sample and downstream back pressure were monitored using electronic transducers.

The floods were continued until there was no more removal of gas and then the permeability to brine was measured.

Upon unloading the samples it was discovered that three of the samples had fractured during the test. The three samples 57.1 and 426.1 from Set A and 435.1 from Set B were excluded from further testing.

As previously mentioned in Section 4.1 these samples were subject to a reduction in pore volume when under overburden conditions. The data from these tests have therefore been calculated using the saturated pore volume calculated from the sample weights after the brine permeabilities, this pore volume although not determined at 20 bars would be more appropriate than the value determined before desaturation to SWir.

| SPECIAL (            | CORE ANALYSIS | STUDY             |                      |               |                     |                     | цр    | PAGE 18 of    | 55<br>0211 |
|----------------------|---------------|-------------------|----------------------|---------------|---------------------|---------------------|-------|---------------|------------|
| STATOIL<br>WELL: 31/ | ′3−1 F        | IELD: TROLL       |                      |               |                     |                     | 4     | TLE NU: SUAL- | 1170-      |
|                      |               |                   |                      |               |                     |                     |       |               |            |
|                      |               |                   | 5 RESIDUAL CAS       | SATURATION BY | LOW RATE WATER      | (FLOOD              |       |               |            |
|                      |               |                   | 5.2                  | SUMMARY OF R  | ESULTS              |                     |       |               |            |
| SAMPLE               | 1)EPTH        | FORMATION         | KLINKENBEKG          | POROSITY      | ${\sf SW}_{\tt ir}$ | Kg SW <sub>ir</sub> | Kw    | Sgr(W)        |            |
| NUMBER               | (metres)      |                   | PERMEABILITY<br>(md) | (per cent)    | (per cent)          | (Un)                | (III) | (per cent)    | ( (Im)     |
|                      |               |                   |                      |               |                     |                     |       |               |            |
| 57.1                 | 1376.75       | SET A             | 135                  | 34.5          | 18.7                | 120                 | 46    | 52.0          | 8.3        |
| 350.1                | 1470.00       | SET A             | 1229*                | 29.1          | 14.5                | 1092                | 847   | 34.8          | 32         |
| 426.1                | 1494.00       | SET A             | <b>439</b> *         | 29.6          | 16.6                | 309                 | 174   | 46.8          | 16         |
| 432.1                | 1500.00       | SET B             | 28                   | 27.8          | 40.8                | 15                  | 9.8   | 43.2          | 0.6        |
| 435.1<br>0.45        | 1500.75       | SET B             | 48                   | 30.2**        | 24.3                | 15                  | 7.6   | 52.9          |            |
| 455.1<br>0.58        | 1507.00       | SET B             | 10.7                 | 26.4          | 44.6                | 6.3                 | 4.1   | 38.9          |            |
| +<br>-<br>-          | ar dorderod f | rom / rotor / mor | tubanharu taat       |               |                     |                     |       |               |            |

\* Data not derived irom 4 point Klinkenberg test

\*\* Sample had fractured during Kw. Statuil advised that testing should proceed, but porosity is only calculated from a bulk volume that is the product of length and area, and assuming that the original sample was homogeneous.

Page. 19 of 55 File No. SCAL-0211

| COMPANY: | STATOIL | FORMATION: | SETS A AND B        |
|----------|---------|------------|---------------------|
| WELL:    | 31/3-1  | LOCATION:  | NORWEGIAN NORTH SEA |
| FIELD:   | TROLL   | COUNTRY:   | NORWAY              |



LOW RATE WATERFLOOD



I

ļ

T.

.....

- . ...

#### 6 GAS - BRINE, RELATIVE PERMEABILITY, UNSTEADY-STATE

| 6.1 | Test and Calculation Procedures         |
|-----|-----------------------------------------|
| 6.2 | Gas - Brine, Production Data            |
| 6.3 | Summary of Results                      |
| 6.4 | Gas - Brine, Relative Permeability Data |



ICOBERTSOI RESEARC

#### 6 GAS - BRINE, RELATIVE PERMEABILITY, UNSTEADY-STATE

#### 6.1 Test and Calculation Procedures

The samples scheduled for testing had previously been used for residual gas saturation determination. The samples were restored for further testing by immersion in brine and evacuating, and then by flooding with brine. Brine permeability was then measured. At this stage it was noticed the brine permeabilities were lower than those previously determined after the initial saturation. From these data, plots of flow rate versus differential pressure were drawn. The graph indicated that the test was performed at laminar flow conditions and the presence of residual gas was not suspected. These conclusions were duly reported to Statoil. The sample permeability to brine was then remeasured whilst flowing against back pressure, again graphs of flow rate versus differential pressure indicated laminar flow and no gas was seen in the effluent. However, in all cases the brine permeability had decreased further, as had the sample weight. We concluded that the samples must have been subject to a further reduction in pore volume and therefore the recalculated saturated pore volume and the brine permeability determined directly prior to the flood were used as the base data for the relative permeability calculations.

The gas flocds were performed using a constant differential pressure against a back pressure of approximately 20 bars. The tests were continued until approximately 1000 pore volumes of gas had been flooded through each sample. Throughout the test gas volume was monitored by the displacement of oil in a pressurised, calibrated 'sight glass' cell and as the flow rate increased the gas was flowed through a wet test meter. The brine recovered was also monitored within the 'sight glass' system. Elapsed time, differential and back pressure were recorded at each salient point. From these data, the change in sample saturation and individual gas and brine relative permeabilities were calculated.

ROBERTSON RESEARCH

#### 6 GAS - BRINE, RELATIVE PERMEABILITY, UNSTEADY-STATE

6.2 Gas - Brine Production Data

PAGE 23 of 55 FILE NO: SCAL-0211

ROBERTSON RESEARCH

#### GAS - BRINE PRODUCTION DATA

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION | BRINE PERMEABILITY<br>Kw (mD) | PORE VOLUME<br>(c.c.) |
|------------------|-------------------|-----------|-------------------------------|-----------------------|
|                  |                   |           |                               | <u>=</u> _            |
| 350.1            | 1470.00           | SET A     | 315                           | 18.68                 |

| CUMULATIVE | CUMULATIVE      | CUMULATIVE    | DIFFERENTIAL | BACK     |  |
|------------|-----------------|---------------|--------------|----------|--|
| TIME       | BRINE RECOVERED | GAS RECOVERED | PRESSURE     | PRESSURE |  |
| (seconds)  | (c.c.)          | (c.c.)        | (bars)       | (bars)   |  |
|            |                 |               |              |          |  |
| 204.6      | 5.71            | 40.2          | 0.186        | 20.47    |  |
| 311.4      | 6.51            | 104.9         | 0.192        | 20.46    |  |
| 882.3      | 8.16            | 678.2         | 0.209        | 20.46    |  |
| 1495       | 8.72            | 1459          | 0.209        | 20.46    |  |
| 2519       | 9.03            | 2871          | 0.187        | 20.46    |  |
| 3087       | 9.14            | 3702          | 0.179        | 20.47    |  |
| 3739       | 9.21            | 4686          | 0.187        | 20.46    |  |
| 4633       | 9.27            | 6073          | 0.188        | 20.48    |  |
| 5660       | 9.33            | 7686          | 0.189        | 20.47    |  |
| 6857       | 9.37            | 9603          | 0.187        | 20.45    |  |
| 8350       | 9.39            | 12023         | 0.187        | 20.50    |  |
| 9967       | 9.41            | 14645         | 0.187        | 20.52    |  |
| 11778      | 9.42            | 17621         | 0.187        | 20.53    |  |
| 15317      | 9.44            | 23470         | 0.187        | 20.58    |  |
|            |                 |               |              |          |  |

iÌ

| | | PAGE 24 of 55 FILE NO: SCAL-0211

ROBERTSON RESEARCH

#### GAS - BRINE PRODUCTION DATA

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION | BRINE PERMEABILITY<br>Kw (mD) | PORE VOLUME<br>(c.c.) |
|------------------|-------------------|-----------|-------------------------------|-----------------------|
|                  |                   |           |                               |                       |
| 432.1            | 1500.00           | SET B     | 3.9                           | 19.72                 |

| CUMULATIVE | CUMULATIVE      | CUMULATIVE    | DIFFERENTIAL | BACK     |  |
|------------|-----------------|---------------|--------------|----------|--|
| TIME       | BRINE RECOVERED | GAS RECOVERED | PRESSURE     | PRESSURE |  |
| (seconds)  | (c.c.)          | (c.c.)        | (bars)       | (bars)   |  |
|            |                 | <u> </u>      | <u> </u>     | <u></u>  |  |
| 187.2      | 1.40            | 9.01          | 4.52         | 20.74    |  |
| 306.8      | 2.25            | 37.6          | 4.51         | 20.74    |  |
| 762.0      | 3.48            | 188           | 4.52         | 20.74    |  |
| 1214       | 4.23            | 512           | 4.39         | 20.74    |  |
| 2115       | 4.76            | 1351          | 4.40         | 20.74    |  |
| 2683       | 5.06            | 1905          | 4.52         | 20.75    |  |
| 3204       | 5.24            | 2491          | 4.55         | 20.77    |  |
| 3995       | 5.47            | 3431          | 4.63         | 20.77    |  |
| 4878       | 5.66            | 4732          | 4.49         | 20.78    |  |
| 6127       | 5.90            | 6152          | 4.49         | 20.78    |  |
| 7508       | 6.03            | 8067          | 4.38         | 20.78    |  |
| 9415       | 6.17            | 10757         | 4.46         | 20.83    |  |
| 11340      | 6.29            | 1 <b>3545</b> | 4.53         | 20.83    |  |
| 13279      | 6.37            | 16404         | 4.82         | 20.86    |  |
| 15477      | 6.45            | 19777         | 4.55         | 20.86    |  |
| 17109      | 6.50            | 22306         | 4.51         | 20.86    |  |

PAGE 25 of 55 FILE NO: SCAL-0211

ROBERTSON RESEARCH

#### GAS - BRINE PRODUCTION DATA

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION | BRINE PERMEABILITY<br>Kw (mD) | PORE VOLUME<br>(c.c.) |
|------------------|-------------------|-----------|-------------------------------|-----------------------|
|                  |                   |           |                               |                       |
| 455.1            | 1507.00           | SET B     | 22                            | 21.49                 |

| CUMULATIVE | CUMULATIVE      | CUMULATIVE    | DIFFERENTIAL | BACK     |  |
|------------|-----------------|---------------|--------------|----------|--|
| TIME       | BRINE RECOVERED | GAS RECOVERED | PRESSURE     | PRESSURE |  |
| (seconds)  | (c.c.)          | (c.c.)        | (bars)       | (bars)   |  |
| <u> </u>   |                 |               | ·            |          |  |
| 441        | 4.38            | 3.62          | 7.28         | 13.66    |  |
| 651        | 6.18            | 6.01          | 7.42         | 13.74    |  |
| 837        | 6.73            | 53.3          | 7.28         | 13.76    |  |
| 931        | 7.01            | 91.7          | 7.21         | 13.66    |  |
| 2065       | 8.35            | 786           | 7.28         | 13.64    |  |
| 2824       | 8.91            | 1403          | 7.28         | 13.67    |  |
| 3782       | 9.33            | 2292          | 7.21         | 13.72    |  |
| 6179       | 9.92            | 4880          | 7.21         | 13.69    |  |
| 7502       | 10.16           | 6464          | 7.21         | 13.74    |  |
| 9035       | 10.36           | 8396          | 7.21         | 13.74    |  |
| 10531      | 10.53           | 10366         | 7.21         | 13.69    |  |
| 12260      | 10.69           | 12723         | 7.21         | 13.73    |  |
| 14100      | 10.84           | 15312         | 7.21         | 13.74    |  |
| 16083      | 10.96           | 18171         | 7.21         | 13.72    |  |
| 17814      | 11.05           | 20720         | 7.21         | 13.74    |  |
| 18721      | 11.09           | 22074         | 7.21         | 13.72    |  |

| of 55<br>SCAL-0211                |                               |               | BRINE<br>RECOVERED<br>(per cent)    | 50.5    | 33.0    | 51.6    |                                                        |
|-----------------------------------|-------------------------------|---------------|-------------------------------------|---------|---------|---------|--------------------------------------------------------|
| PAGE 26<br>FILE NO: 1             |                               | 1 Conditions  | GAS<br>PERMEABILITY<br>(mD)         | 106     | 1.22    | 0.53    | performed.                                             |
|                                   | DY-STATE                      | Termina       | BRINE<br>SATURATION<br>(per cent)   | 49.5    | 67.0    | 48.4    | ty test was not                                        |
|                                   | ABILITY, UNSTEAN<br>RESULTS   | lons          | BRINE<br>PERMEABILITY<br>(mD)       | 315     | 3.9     | 2.2     | berg Permeabili                                        |
|                                   | ELATIVE PERME<br>3 SUMMARY OF | nitial Condit | POROSITY**<br>(per cent)            | 25.7    | 25.8    | 26.0    | point Klinken<br>ph.                                   |
|                                   | 5 GAS – BRINE, R              | I             | KLINKENBERG<br>PERMEABILITY<br>(mD) | 1179*   | 28      | 10.7    | sample and the 4<br>from standard gra<br>rior to Kg/Kw |
| STUDY<br>TFLD: TROLL              |                               |               | FORMATION                           | SET A   | SET B   | SET B   | t replacement s<br>bility taken f                      |
| CORE ANALYSIS                     |                               |               | DEPTH<br>(metrcs)                   | 1470.00 | 1500.00 | 1507.00 | : 350.1 was a<br>mberg Permea<br>ted porosity          |
| SPECIAL (<br>STATOIL<br>WELL: 31/ |                               |               | SAMPLE<br>NUMBER                    | 350.1   | 432.1   | 455.1   | * Sample<br>Klinke<br>** Satura                        |

#### 6 GAS - BRINE, RELATIVE PERMEABILITY, UNSTEADY-STATE

فهوريجين والمراجع شطقت مراميته سراج

6.4 Gas - Brine Relative Permeability Data



#### GAS-BRINE RELATIVE PERMEABILITY DATA

| SAMPLE<br>NUMBER             | DEPTH<br>(metres) | FORMATION                                | POROSITY<br>(per cent)        | BRINE PE<br>Kw       | RMEABILITY<br>(mD)   |                                                |
|------------------------------|-------------------|------------------------------------------|-------------------------------|----------------------|----------------------|------------------------------------------------|
| 350.1                        | 1470.00           | SET A                                    | 25.7                          | 3                    | 115                  |                                                |
| BRINE SATURA<br>(per cent)   | TION              | GAS-BRINE RELATIVE<br>PERMEABILITY RATIO | * RELATIVE PERM<br>TO GAS, FR | EABILITY<br>ACTION   | * RELATIVE<br>TO BRI | PERMEABILITY                                   |
| 100<br>67.3<br>60.7<br>54.8  |                   | 1.38<br>5.89<br>23.7                     | 0.12                          | 34<br>22             |                      | 1.00<br>0.098<br>0.038                         |
| 52.5<br>51.4<br>50.9         |                   | 77.2<br>128<br>239                       | 0.30                          | 24<br>34             |                      | 0.004<br>0.003<br>0.001                        |
| 50.8<br>50.2<br>50.0<br>49.8 |                   | 485<br>807<br>1997                       | 0.32<br>0.34<br>0.35<br>0.35  | 44<br>48<br>55<br>59 |                      | 0.0009<br>0.0008<br>0.0004<br>0.0002           |
| 49.7<br>49.6<br>49.5         |                   | 2248<br>5207<br>5237                     | 0.35<br>0.36<br>0.36          | 59<br>54<br>56       | <                    | 0.0002<br>10 <sup>-4</sup><br>10 <sup>-4</sup> |

\* Relative to brine permeability determined prior to the test.

. . . . . . .

فيتعار ويعرف معتنين وألاعف والمتنافي والمتناد والمراد

#### GAS-BRINE RELATIVE PERMEABILITY DATA

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION                                | POROSITY<br>(per cent)   | BRINE PE<br>Kw         | RMEABILITY<br>(mD)         |                        |
|------------------|-------------------|------------------------------------------|--------------------------|------------------------|----------------------------|------------------------|
|                  |                   |                                          |                          | •                      |                            |                        |
| 432.1            | 1500.00           | SET B                                    | 25.8                     | 3                      | .9                         |                        |
| BRINE SATUR      | RATION<br>t)      | GAS-BRINE RELATIVE<br>PERMEABILITY RATIO | * RELATIVE PE<br>TO GAS, | RMEABILITY<br>FRACTION | * RELATIVE PE<br>TO BRINE, | RMEABILITY<br>FRACTION |
| 100              |                   |                                          |                          |                        | 1.00                       |                        |
| 90.8             |                   | 0.528                                    | 0.                       | 146                    | 0.276                      |                        |
| 85.5             |                   | 1.91                                     | 0.2                      | 201                    | 0.104                      |                        |
| 80.5             |                   | 6.78                                     | 0.4                      | 436                    | 0.064                      |                        |
| 77.2             |                   | 24.9                                     | 0.                       | 567                    | 0.023                      |                        |
| 75.1             |                   | 29.0                                     | 0.                       | 594                    | 0.021                      |                        |
| 73.9             |                   | 51.1                                     | 0.6                      | 586                    | 0.013                      |                        |
| 72.8             |                   | 64.2                                     | 0.1                      | 724                    | 0.011                      |                        |
| 71.8             |                   | 90.9                                     | 0.                       | 760                    | 0.008                      |                        |
| 70.7             |                   | 106                                      | 0.1                      | 791                    | 0.007                      |                        |
| 69.8             |                   | 231                                      | 0.8                      | 845                    | 0.004                      |                        |
| 69.1             |                   | 302                                      | 0.8                      | 860                    | 0.003                      |                        |
| 68.4             |                   | 365                                      | 0.8                      | 382                    | 0.002                      |                        |
| 67.9             |                   | 562                                      | 0.8                      | 399                    | 0.002                      |                        |
| 67.5             |                   | 935                                      | 0.9                      | 935                    | 0.001                      |                        |
| 67.2             |                   | 794                                      | 0.9                      | 945                    | 0.001                      |                        |

\* Relative to brine permeability determined prior to the test.



#### GAS-BRINE RELATIVE PERMEABILITY DATA

|   | SAMPLE<br>NUMBER       | DEPTH<br>(metres) | FORMATION                                | POROSITY<br>(per cent)   | BRINE PE<br>Kw         | RMEABILITY<br>(mD)   |              |
|---|------------------------|-------------------|------------------------------------------|--------------------------|------------------------|----------------------|--------------|
|   | 455.1                  | 1507.00           | ) SET B                                  | 26.0                     | 2                      | .2                   |              |
|   | BRINE SATU<br>(per cen | RATION<br>t)      | GAS-BRINE RELATIVE<br>PERMEABILITY RATIO | * RELATIVE PE<br>TO GAS, | RMEABILITY<br>FRACTION | * RELATIVE<br>TO BRI | PERMEABILITY |
|   | 100                    |                   |                                          |                          |                        |                      | 1.00         |
|   | 75.4                   |                   | 0.018                                    | 0.                       | .006                   |                      | 0.374        |
| ł | 70.0                   |                   | 1.17                                     | 0.                       | 151                    |                      | 0.129        |
|   | 68.0                   |                   | 1.86                                     | 0.                       | 242                    |                      | 0.122        |
|   | 64.3                   |                   | 7.04                                     | 0.                       | . 363                  |                      | 0.051        |
|   | 59.8                   |                   | 15.0                                     | 0.                       | 482                    |                      | 0.032        |
|   | 57.6                   |                   | 28.8                                     | 0.                       | .550                   |                      | 0.019        |
|   | 55.2                   |                   | 36.0                                     | 0.                       | .640                   |                      | 0.011        |
|   | 53.3                   |                   | 89 <b>.</b> -                            | 0.                       | 710                    |                      | 0.007        |
|   | 52.3                   |                   | 131                                      | 0.                       | ,748                   |                      | 0.006        |
|   | 51.4                   |                   | 157                                      | 0.                       | ,781                   |                      | 0.005        |
|   | 50.6                   |                   | 200                                      | 0.                       | ,808                   |                      | 0.004        |
|   | 49.9                   |                   | 234                                      | 0.                       | 834                    |                      | 0.004        |
|   | 49.3                   |                   | 324                                      | 0.                       | .855                   |                      | 0.003        |
|   | 48.8                   |                   | 385                                      | 0.                       | .873                   |                      | 0.002        |
|   | 48.5                   |                   | 461                                      | 0.                       | 886                    |                      | 0.002        |

\* Relative to brine permeability determined prior to the test.

وأنعد جنبوب الشعال



File NOSCAL-0211

RESEARC

기님

| COMPANY: | STATOL                                           | FORMATION: SET A                                 |
|----------|--------------------------------------------------|--------------------------------------------------|
| WELL:    | 31./3-1                                          | LOCATION: NORWEGIAN NORTH SEA                    |
| FIELD:   | TROLL                                            | COUNTRY: NORWAY                                  |
| SAMPLE N | <b>5.:</b> 350.1                                 | PERMEABILITY md: 315K+                           |
|          |                                                  | SAMPLE DEPTH: 1470-00 m                          |
|          | GAS-BRINE RELATIVE<br>Unsteady State, Restored S | PERMEABILITY<br>State, Increasing Gas Saturation |
| 1.0      |                                                  |                                                  |



File No. SCAL-0211

| COMPANY: STATOIL     | FORMATION: SET A              |  |  |
|----------------------|-------------------------------|--|--|
| WELL:                | LOCATION: NORWEGIAN NORTH SEA |  |  |
| FIELD: TROLL         | COUNTRY: NORWAY               |  |  |
| SAMPLE NUMBER: 350-1 | PERMEABILITY md : 315 Kw      |  |  |
|                      | SAMPLE DEPTH: 1470.00 .       |  |  |

#### GAS-BRINE RELATIVE PERMEABILITY Unsteady-State, Restored-State, Increasing Gas Saturation



Page. . 3.3 . . of 55 .

ROBERTSO

RESEARCH

File NOSCAL = 0211

| COMPANY: STATOIL  | FORMATION: SET B.             |
|-------------------|-------------------------------|
| WELL: 31./3~1     | LOCATION: NORWEGIAN NORTH SEA |
| FIELD: TROLL      | COUNTRY: NORWAY               |
| SAMPLE No.: 432.1 | PERMEABILITY md:              |
| •                 | SAMPLE DEPTH: 1500.00 .       |
|                   |                               |

GAS-BRINE RELATIVE PERMEABILITY Unsteady State, Restored State, Increasing Gas Saturation



man in the second s

Page 34 of 55

File No. SCAL-0211

| COMPANY: STATOIL     | FORMATION: SET B              |
|----------------------|-------------------------------|
| WELL: 31./3-1        | LOCATION: NORWEGIAN NORTH SEA |
| FIELD: TROLL         | COUNTRY: NORWAY               |
| SAMPLE NUMBER: 432.1 | PERMEABILITY md : 3.25        |
|                      |                               |

SAMPLE DEPTH: 1500.00 m





File No6CAL-0211

| COMPANY: STATOIL                                                                             | FORMATION:SET B.              |  |  |  |  |
|----------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|
| WELL: 31./3-1 · · · · · · · · · · · · ·                                                      | LOCATION: NORWEGIAN NORTH SEA |  |  |  |  |
| FIELD: TROLL                                                                                 | COUNTRY: NORWAY               |  |  |  |  |
| SAMPLE No.:                                                                                  |                               |  |  |  |  |
|                                                                                              | SAMPLE DEPTH: 1507.00 m       |  |  |  |  |
| GAS-BRINE RELATIVE PERMEABILITY<br>Unsteady State, Restored State, Increasing Gas Saturation |                               |  |  |  |  |



File No. SCAL-0211

| COMPANY: STATOIL     | FORMATION: SET. B             |  |  |
|----------------------|-------------------------------|--|--|
| WELL: 31/3-1         | LOCATION: NORWEGIAN NORTH SEA |  |  |
| FIELD: TROLL         | COUNTRY: NORWAY               |  |  |
| SAMPLE NUMBER: 455.1 | PERMEABILITY md : 2.2 Kw      |  |  |
|                      | SAMPLE DEPTH: 1507.00 m       |  |  |

#### GAS-BRINE RELATIVE PERMEABILITY Unsteady-State, Restored-State, Increasing Gas Saturation



ROBERTSO

RESEARCH

### 7 RESIDUAL GAS SATURATION BY LOW RATE OILFLOOD <u>AND</u> RESIDUAL OIL SATURATION BY LOW RATE WATERFLOOD (in the presence of residual gas saturation)

#### 7.1 Test Procedures

The samples had been preconditioned for this test as outlined in Section 4.1. At the start of the test the samples were at irreducible brine saturation as determined during single point desaturation achieved using the porous plate method.

The low rate oilflood was performed at a constant rate of 4 c.c./hr whilst the sample was mounted in an overburden cell/'sight glass' system similar to that used during the low rate waterflood described in Section 5.1. The floods were continued until no gas was produced and permeability to oil was then measured.

Without unloading the sample or altering the pressure of the collection system the flood was continued using brine as the injection fluid. The flow rate was maintained at 4 c.c./hr and the flood was continued until there was no more production of oil. At this point the permeability to brine was determined.

All of the changes in saturation have been based on the recalculated pore volume measured after the initial Kw measurement.

| 0211                                  |           |                  | tions            | Ko(Sgr)<br>(mD)             | 41      | 8.4     | 33      |  |
|---------------------------------------|-----------|------------------|------------------|-----------------------------|---------|---------|---------|--|
| PAGE 38 of 55<br>FILE NO: SCAL-       |           |                  | Terminal Condi   | Sgr(0)<br>(per cent)        | 27.2    | 35.6    | 32.0    |  |
|                                       |           | E OILFLOOD       | U.S.             | Swir<br>(per cent)          | 27.6    | 33.0    | 22.9    |  |
|                                       | F RESULTS | ATION BY LOW RAT | Initial Conditio | Kg SW <sub>ir</sub><br>(mD) | 183     | 54      | 194     |  |
|                                       | SUMMARY 0 | SIDUAL GAS SATUR |                  | POROSITY<br>(per cent)      | 31.9    | 31.0    | 31.6    |  |
| TROLL                                 |           | 7.2a. RF         |                  | FORMATION                   | SET C   | SET C   | SET C   |  |
| E ANALYSIS STUDY<br>1 FIELD:          |           |                  |                  | DEPTH<br>(metres)           | 1548.00 | 1551.00 | 1552.00 |  |
| SPECIAL COR<br>STATOIL<br>WELL: 31/3- |           |                  |                  | SAMPLE<br>NUMBER            | 593.1   | 603.1   | 605.1   |  |

| SPECIAL CORE     | ANALYSIS STUDY    |                     |                      |                 |                         | PAGE 39 0<br>FILE NO: | £ 55<br>SCAL-0211   |
|------------------|-------------------|---------------------|----------------------|-----------------|-------------------------|-----------------------|---------------------|
| WELL: 31/3-1     | FIELD: 1          | rroi.l              |                      |                 |                         |                       |                     |
|                  |                   |                     | SUMMARY OF           | RESULTS         |                         |                       |                     |
|                  |                   | 7.2b. RES<br>(in th | IDUAL OIL SATURAT    | ION BY LOW RAT  | E WATERFLOOD<br>ration) |                       |                     |
|                  |                   |                     | Initial Condi        | tions           | Te                      | rminal Conditions     |                     |
| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION           | Sgr(O)<br>(per cent) | Ko(Sgr)<br>(mD) | Sgr(O-W)<br>(per cent)  | Sor<br>(per cent)     | Kw(Sor-Sgr)<br>(mD) |
| 543.1            | 1548.00           | SET C               | 27.2                 | 41              | 27.2                    | 6.3                   | 2.7                 |
| 603.1            | 1551.00           | SET C               | 35.6                 | 8.4             | 34.7                    | 7.0                   | 4.5                 |
| 605.1            | 1552.00           | SET C               | 32.0                 | 33              | 31.6                    | 5.9                   | 11.7                |
| ·                |                   |                     |                      |                 |                         |                       |                     |

لمتعادد

1

ļ

÷

ł

| .

Page. 40 of.....55....

ROBERTSO

RESEARCH

ᆌ

File No. SCAL-0211

| COMPANY: STATOIL | FORMATION: SET . C.           |
|------------------|-------------------------------|
| WELL:            | LOCATION: NORWEGIAN NORTH SEA |
| FIELD: TROLL     | COUNTRY: NORWAY               |
| SAMPLE NUMBER:   | PERMEABILITY md :             |

#### RESIDUAL GAS SATURATION versus INITIAL GAS SATURATION



005 · 4/9 · 79

L

## RESIDUAL GAS SATURATION BY LOW RATE OILFLOOD and

RESIDUAL OIL SATURATION BY LOW RATE WATERFLOOD Page 41 of 55 (in the presence of residual gas saturation)

File No. SCAL-0211

| COMPANY:    | STATOIL | FORMATION:   | SET C                |
|-------------|---------|--------------|----------------------|
| WELL:       | 31/3-1  |              | NORWEGIAN NORTH SEA  |
| FIELD:      | TROLL   | COUNTRY:     | NORWAY               |
| SAMPLE No.: |         | PERMEABILITY | 'md:133.(Kg.at.SWir) |
|             |         | SAMPLE DEPT  | H• 1548 00 m         |



LIQUID PERMEABILITY (Relative to Kg at SWir)

## RESIDUAL GAS SATURATION BY LOW RATE OILFLOOD and

RESIDUAL OIL SATURATION BY LOW RATE WATERFLOOD (in the presence of residual gas saturation) **Page**. 42....**of** 55...

File No. SCAL-0.211

RES

 $\Delta$ 

| COMPANY: STATOIL  | FORMATION: SET C.                 |
|-------------------|-----------------------------------|
| WELL: 31/3-1      | LOCATION: NORWEGIAN . NORTH . SEA |
| FIELD:            | COUNTRY: NORWAY                   |
| SAMPLE No.: 603.1 | PERMEABILITY md: 54 (Kg at SWir)  |
|                   | SAMPLE DEPTH: 1551.00 m           |



LIQUID PERMEABILITY (Relative to Kg at SWir)

#### RESIDUAL GAS SATURATION BY LOW RATE OILFLOOD and RESIDUAL OIL SATURATION BY LOW RATE WATERFLOOD

(in the presence of residual gas saturation) Page. 43 .. of

File No. SCAL-0211

55

| COMPANY:    | STATOIL |              | SET C                 |
|-------------|---------|--------------|-----------------------|
| WELL:       | .31/3-1 |              | NORWEGIAN NORTH SEA   |
| FIELD:      | TROLL   | COUNTRY:     | NORWAY                |
| SAMPLE No.: | .6051   | PERMEABILITY | md: 194. (Kg.at.SWir) |
|             |         | SAMPLE DEPTI | 1. 1552 00 m          |



ı.

1

Ì

L

ROBERTSON RESEARCH

#### 8 WATER - OIL, RELATIVE PERMEABILITY, UNSTEADY-STATE

يبد المرهد بحم

----

يها فيقف وال

a.a. - - - - ----

| 8.1 | Test Procedures              |
|-----|------------------------------|
| 8.2 | Water - Oil, Production Data |
| 8.3 | Summary of Results           |

PAGE 45 of 55 FILE NO: SCAL-0211

ROBERTSO DAABER

#### 8 WATER - OIL, RELATIVE PERMEABILITY, UNSTEADY-STATE

#### 8.1 Test Procedures

The three samples from Set D that were specified for Kw/Ko were cleaned and restored for the test as described in Section 4.1. After the irreducible brine saturation had been established the voided pore space was filled with a light mineral oil of approximately 4 cP viscosity. This process was acheived in two stages. Firstly the sample was chilled to a few degress above the freezing point of the brine and then immersed in the oil and evacuated. Complete saturation was then achieved by pressuring the sample and leaving the system overnight. The sample saturation was then calculated by mass balance.

The oil permeability of each sample was then measured, this data was to be used as the base value for the relative permeability ccalculations. It was noticable at this point that the weight of the samples before and after the Ko remained constant (except for a small change in sample 5D). Therefore the pore volume calculated prior to the single point resaturation was used as base value for the saturation calculations performed on data from the Kw/Ko's.

The brine floods were performed using a constant flow rate of 4 c.c./hr. The flow rate being maintained using positive displacement metering pumps. Throughout the test the effluent was collected in precision graduated glassware and the two phases were allowed to separate. The time interval over which each increment was collected was recorded and differential pressure was recorded at each salient point.

The floods were continued until approximately 10 pore volumes of brine had been pumped through each sample. At this point the permeability to brine was determined.

The three tests performed during this phase of the study were characterised by piston like displacement of the oil and consequently the calculation of relative permeability characteristics was not possible. - I

#### 8 WATER - OIL, RELATIVE PERMEABILITY, UNSTEADY-STATE

8.2 Water - Oil, Production Data



PAGE 47 of 55 FILE NO: SCAL-0211

ROBERTSON RESEARCH

٠

#### WATER - OIL PRODUCTION DATA

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION | OIL PERMEABILITY<br>Ko (mD) | PORE VOLUME<br>c.c. |
|------------------|-------------------|-----------|-----------------------------|---------------------|
|                  |                   | ~         |                             | <del></del>         |
| 665.1            | 1564.00           | SET D     | 620                         | 23.14               |

| CUMULATIVE | CUMULATIVE | CUMULATIVE  | DIFFERENTIAL |
|------------|------------|-------------|--------------|
| TIME       | OIL        | BRINE       | PRESSURE     |
| (seconds)  | (c.c.)     | (c.c.)      | (bars)       |
|            |            | <del></del> |              |
| 9899       | 10.78      | -           | 0.0249       |
| 11690      | 10.80      | 2.02        | 0.0244       |
| 17058      | 10.82      | 7.92        | 0.0239       |
| 26044      | 10.85      | 17.2        | 0.0235       |
| 49074      | 10.88      | 41.5        | 0.0189       |
| 93283      | 10.90      | 92.6        | 0.0182       |
| 178701     | 10.95      | 189         | 0.0152       |
| 267315     | 10.96      | 291         | 0.0171       |

l

See ....

PAGE 48 of 55 FILE NO: SCAL-0211

ROBERTSON RESEARCH

In the second second

يرفى الاير مرور ال

<u>h -</u>

#### WATER - OIL PRODUCTION DATA

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION | OIL PERMEABILITY<br>Ko (mD) | PORE VOLUME<br>c.c. |
|------------------|-------------------|-----------|-----------------------------|---------------------|
|                  |                   |           |                             |                     |
| 667.1            | 1570.00           | SET D     | 470                         | 20.73               |

| CUMULATIVE | CUMULATIVE | CUMULATIVE | DIFFERENTIAL |
|------------|------------|------------|--------------|
| TIME       | OIL        | BRINE      | PRESSURE     |
| (seconds)  | (c.c.)     | (c.c.)     | (bars)       |
| <u> </u>   |            |            |              |
| 7963       | 8.52       |            |              |
| 9540       | 8.52       | 1.76       | 0.0407 -     |
| 14910      | 8.56       | 7.67       | 0.0390       |
| 23382      | 8.57       | 17.0       | 0.0295       |
| 46787      | 8.59       | 41.3       | 0.0362       |
| 92108      | 8.62       | 90.6       | 0.0361       |
| 181842     | 8.70       | 188        | 0.0306       |
| 191838     | 8.70       | 199        | 0.0300       |

ł.

PAGE 49 of 55 FILE NO: SCAL-0211

ROBERTSON RESEARCH

#### WATER - OIL PRODUCTION DATA

| SAMPLE<br>NUMBER | DEPTH<br>(metres) | FORMATION | OIL PERMEABILITY<br>Ko (mD) | PORE VOLUME |
|------------------|-------------------|-----------|-----------------------------|-------------|
| <del></del>      |                   |           |                             | ·           |
| 671.1            | 1571.00           | SET D     | 207                         | 25.08       |

| CUMULATIVE | CUMULATIVE                                                                                                                  | DIFFERENTIAL                                                                                                                                                                                                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OIL        | BRINE                                                                                                                       | PRESSURE                                                                                                                                                                                                                        |
| (c.c.)     | (c.c.)                                                                                                                      | (bars)                                                                                                                                                                                                                          |
|            |                                                                                                                             |                                                                                                                                                                                                                                 |
| 8.69       | -                                                                                                                           | 0.070                                                                                                                                                                                                                           |
| 8.86       | 0.25                                                                                                                        | 0.073                                                                                                                                                                                                                           |
| 8.90       | 1.33                                                                                                                        | 0.067                                                                                                                                                                                                                           |
| 8.94       | 2.80                                                                                                                        | 0.064                                                                                                                                                                                                                           |
| 8.97       | 5.07                                                                                                                        | 0.064                                                                                                                                                                                                                           |
| 9.00       | 8.09                                                                                                                        | 0.064                                                                                                                                                                                                                           |
| 9.02       | 14.0                                                                                                                        | 0.064                                                                                                                                                                                                                           |
| 9.06       | 24.1                                                                                                                        | 0.069                                                                                                                                                                                                                           |
| 9.13       | 50.0                                                                                                                        | 0.056                                                                                                                                                                                                                           |
| 9.20       | 101                                                                                                                         | 0.053                                                                                                                                                                                                                           |
| 9.24       | 202                                                                                                                         | 0.039                                                                                                                                                                                                                           |
| 9.25       | 308                                                                                                                         | 0.049                                                                                                                                                                                                                           |
|            | CUMULATIVE<br>OIL<br>(c.c.)<br>8.69<br>8.86<br>8.90<br>8.94<br>8.97<br>9.00<br>9.02<br>9.06<br>9.13<br>9.20<br>9.24<br>9.25 | CUMULATIVECUMULATIVEOILBRINE $(c.c.)$ $(c.c.)$ $(c.c.)$ $(c.c.)$ $8.69$ $ 8.86$ $0.25$ $8.90$ $1.33$ $8.94$ $2.80$ $8.97$ $5.07$ $9.00$ $8.09$ $9.02$ $14.0$ $9.06$ $24.1$ $9.13$ $50.0$ $9.20$ $101$ $9.24$ $202$ $9.25$ $308$ |

| of 55              | 1170-790      |              |                   |               | ERED         | per cent | il in place    |           |            | 55.7    | 49.9    | 48.4    |  |
|--------------------|---------------|--------------|-------------------|---------------|--------------|----------|----------------|-----------|------------|---------|---------|---------|--|
| PAGE 50            | C : ON 3711 J |              |                   |               | OIL RECOV    | per cent | ore space o    |           |            | 46.3    | 41.6    | 36.9    |  |
|                    |               |              |                   | TE            | CONDITIONS   | WATER    | PERMEABILITY I | ( (Im)    |            | 49.6    | 21.5    | 21.1    |  |
|                    |               | RATE         | ST RESULTS        | UNSTEADY-STA  | TERMINAL     | OIL      | SATURATION     | per cent  | pore space | 36.8    | 41.8    | 39.3    |  |
|                    |               | ONSTANT FLOW | WATERFLOOD TE     | PERMEABILITY, | L CONDITIONS | 011      | PERMEABILITY   | ( (Im)    |            | 620     | 470     | 207     |  |
|                    |               | 4 c.c./hr C  | <b>SUMMARY OF</b> | IL, RELATIVE  | IIIII        | WATER    | SATURATION     | per cent  | pore space | 16.9    | 16.6    | 23.8    |  |
|                    |               |              | 8.3               | WATER - C     |              | POROSITY | per cent       |           |            | 31.9    | 31.7    | 31.2    |  |
| ISIS STUDY         | FIELD: TROLL  |              |                   |               |              | AIR      | PERMEABILITY   | ( (IIII ) |            | 732     | 580     | 291     |  |
| CORE ANALY         | 1/3-1         |              |                   |               |              | DEPTH    | (metres)       |           |            | 1569.00 | 1570.00 | 1571.00 |  |
| SPECIAL<br>STATOIL | WELL: 3       |              |                   |               |              | SAMPLE   | NUMBER         |           |            | 665.1   | 667.1   | 671.1   |  |

I

i

#### APPENDICES

| Appendix | I   | Composition and Specification      |
|----------|-----|------------------------------------|
|          |     | Summary for the fluids used during |
|          |     | the analyses                       |
|          |     |                                    |
| Appendix | II  | Sample Dimensions                  |
|          |     |                                    |
| Appendix | III | Summary of Pore Volume Data        |
|          |     |                                    |
| Appendix | IV  | Abbreviations                      |



i.

ļ

PAGE 52 OF 55 FILE NO: SCAL-0211

#### Appendix I

#### Composition and Specification Summary for the fluids used during the analyses

#### 1. Simulated Formation Brine

| Salt                                 | <u>g/litre</u> |       |
|--------------------------------------|----------------|-------|
| NaCl                                 | 47             |       |
| KCl                                  | 0.9            |       |
| CaCl <sub>2</sub> .6H <sub>2</sub> 0 | 10.6           |       |
| MgC12.6H20                           | 4              |       |
| Density at 20°C                      | 1.0385         | g/c.c |
| Viscosity at 20°C                    | 1.094          | cP    |

#### 2. Oil used during Water - Oil, Relative Permeability tests

| Density at 20°C   | 0.8089 | g/c.c. |
|-------------------|--------|--------|
| Viscosity at 20°C | 4.214  | cP     |

#### 3. Oil used during low rate oilflood

| Density at 20°C   | 0.7882 | g/c.c. |
|-------------------|--------|--------|
| Viscosity at 20°C | 1.920  | cP     |



k.

PAGE 53 OF 55 FILE NO: SCAL-0211

ROBERTSON RESEARCH

#### Appendix II

#### SAMPLE DIMENSIONS

| SAMPLE        | DEPTH    | FORMATION | SAMPLE | SAMPLE   |
|---------------|----------|-----------|--------|----------|
| NUMBER        | (metres) |           | LENGTH | AREA     |
|               |          |           | (cm)   | $(cm^2)$ |
|               |          |           |        |          |
| 53.1          | 1375.75  | SET A     | 4.106  | 9.842    |
| 57.1          | 1376.75  | SET A     | 6.364  | 10.406   |
| 99.1          | 1389.25  | SET A     | 4.960  | 10.179   |
| 350.1         | 1470.00  | SET A     | 7.526  | 10.492   |
| 426.1         | 1494.00  | SET A     | 7.962  | 11.074   |
| 432.1         | 1500.00  | SET B     | 7.064  | 11.222   |
| 435.1         | 1500.75  | SET B     | 7.756  | 11.341   |
| 444.1         | 1503.00  | SET B     | 7.170  | 11.163   |
| 445.1         | 1504.00  | SET B     | 7.330  | 11.282   |
| 455.1         | 1507.00  | SET B     | 7.448  | 11.252   |
| 987.1         | 1546.50  | SET C     | 7.464  | 10.521   |
| <b>593.</b> 1 | 1548.00  | SET C     | 7.158  | 10.839   |
| 599.1         | 1550.00  | SET C     | 6.974  | 10.752   |
| 603.1         | 1551.00  | SET C     | 7.000  | 11.045   |
| 605.1         | 1552.00  | SET C     | 7.440  | 10.927   |
| 647.1         | 1564.30  | SET D     | 7.352  | 10.810   |
| 654.1         | 1566.00  | SET D     | 7.242  | 10.986   |
| 665.1         | 1569.00  | SET D     | 6.944  | 10.810   |
| 667.1         | 1570.00  | SET D     | 6.156  | 10.839   |
| 671.1         | 1571.00  | SET D     | 7.440  | 10.927   |

منتجر منتحكم الفراحتان

PAGE 54 of 55 FILE NO: SCAL-0211

1

:

ļ

! ...

SPECIAL CORE ANALYSIS STUDY STATOIL WELL: 31/3-1 FIELD:TROLL Appendix Ill

Summary of Pore Volume Data

| SAMPLE | DEPTH    | FORMATION | Pore Volume        | Pore Volume        | Pore Volume         | Pore Volume         |
|--------|----------|-----------|--------------------|--------------------|---------------------|---------------------|
| NUMEER | (metres) |           | calculated after   | calculated after   | calculated prior to | calculated prior to |
|        |          |           | initial saturation | brine permeability | desaturation to     | Kg/Kw (c.c.)        |
|        |          |           | (c.c.)             | test (c.c.)        | SWir (c.c.)         |                     |
| 57.1   | 1376.75  | SET A     | 24.81              | 22.09              | 24.37               |                     |
| 350.1  | 1470.00  | SET A     | 22.91              | 22.09              | 22.1                | 18.68               |
| 426.1  | 1494.00  | SET A     | 27.37              | 25.67              | 26.11               |                     |
| 432.1  | 1500.00  | SET B     | 23.58              | 21.88              | 22.2                | 19.72               |
| 435.1  | 1500.75  | SET B     | 29.6*              | 15.10              | 14.2                |                     |
| 455.1  | 1507.00  | SET B     | 23.46              | 22.08              | 22.29               | 21.49               |
| 593.1  | 1548.00  | SET C     | 25.03              | 24.44              | 24.70               |                     |
| 603.1  | 1551.00  | SET C     | 25.28              | 22.48              | 24.03               |                     |
| 605.1  | 1552.00  | SET C     | 24.33              | 23.27              | 23.58               |                     |
| 665.1  | 1569.00  | SET D     | 24.15              | 23.19              | 23.64               |                     |
| 667.1  | 1570.00  | SET D     | 21.40              | 20.73              | 20.89               |                     |
| 671.1  | 1571.00  | SET D     | 26.08              | 25.08              | 25.08               |                     |

T

-

| | |

.

.

I.

5

#### Appendix IV

#### Abbreviations

| K + Ø | Base Air Permeability and Porosity                              |
|-------|-----------------------------------------------------------------|
| Ka    | Air Permeability                                                |
| Kg    | Gas Permeability                                                |
| Krg   | Gas Permeability relative to Brine Permeability                 |
| Kw    | Brine Permeability                                              |
| Krw   | Brine Permeability relative to Brine Permeability at 100% brine |
|       | saturation                                                      |
| Ko    | Oil Permeability                                                |
| Kw/Ko | Water - Oil, Relative Permeability                              |
| Kg/Kw | Gas - Brine, Relative Permeability                              |
| mD    | Millidarcies                                                    |
| SW    | Irreducible Brine Saturation                                    |
| Sgr   | Residual Gas Saturation                                         |
| Sor   | Residual Gas Saturation                                         |
| L.R.  | Low Rate                                                        |
| g     | grams                                                           |
| c.c.  | cubic centimetres                                               |
| cm    | centimetres                                                     |
| cP    | Centipoise                                                      |
| hr    | hour                                                            |

\_\_\_\_ه مد توقع ا

. .

- 10-40 ·

لنته دمه حقق

