

. W. S.

	ANCHOR DRILLING FLUIDS AS	
		•
	WELL SUMMARY	
	A ANDRSKE SHELL EXPLORATION]
	$\frac{Nr.:}{WELL-31/2-2}$	
		4
	•	
	J	
l		38

GENERAL SUMMARY

OPERATOR

WELL NO.

A/S NORSKE SHELL EXPLORATION & PRODUCTION

31/2-2

OPERATOR'S REPRESENTATIVES

MR. P. HOLAN MR. J. CARLISLE

CONTRACTOR

RIG

SMEDVIG DRILLING CO.

WEST VENTURE

CONTRACTOR'S REPRESENTATIVES MR. B. MOHLMAN MR. H. BROCKMAN

MR. M. HOLGATE **ANCHOR ENGINEERS** MR. C. BLANCHARD 323 M WATER DEPTH 355 M SEABED to RKB -36" HOLE DRILLED TO 432 M 30" CASING SET AT 430 M· 26" HOLE DRILLED TO 812 M 20" CASING SET AT 800 M 171/2" HOLE DRILLED TO 1480 M 13%" CASING SET AT 1470 M 121/4" HOLE DRILLED TO 1858 M 9%" CASING SET AT 1849 M 81/3" HOLE DRILLED TO 2600 M 7" LINER SET AT

6" HOLE DRILLED TO

ANCHOR DRILLING FLUIDS AS

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS C. BLANCHARD

DATE	24.02.80	
	21.02.00	J
	Mived 115	0 bble of spud mud with 100t sec/at viscosity
	mixed 115	o pprs. or spud mida wren 100. sec/de viscostey.
	Materials	used: 12 m/t Wyoming Bentonite in bulk
		8 SXS Caustic Soda
	.	·
1		
	25.02.80	
	Prepare r	ig for spud-in.
	•	
		· ····································
DATE	26.02.80	
		-
	Prepare r	ig for spud-in.
	_	
		· · · · · · · · · · · · · · · ·

CARLY SUMMARY REPORT.

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS C. BLANCHARD

DATE 27.02.80

Spudded in. Drilling 36" hole, pumping 25-30 bbls. pills of spud mud at each connection.

DATE 28.02.80

Completed 36" section - filled hole with 400 bbls. spud mud. W.O.W. for casing.

Preparing spud mud for future use.

Problems with guide base.

DATE 29.02.80

1: -----

Made up 430 bbls. new spud mud.

Moved rig 25 off location. Reposition guide base. Spud in new hole.

ANCHOR DRILLING FLUIDS AS

DAILY SUMMARY REPORT

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS C. BLANCHARD

DATE 01.03.80

,

1º ett

Drilled new 36" hole. POOH after filling hole with 300 bbls. spud mud, plus 120 bbls. spud mud containing 5 sxs Mica and 5 sxs Nutplug.

(Spud mud, prehydrated Wyoming Bentonite).

DATE 02.03.80

R.I.H. and continue drilling. Drill with seawater and viscous slugs. Made up 150 bbls spud mud with 8 sxs Mica and 8 sxs Nutplug.

(Spud mud same as earlier).

DATE 03.03.80

POOH due to mechanical problem and weather. Filled hole with viscous mud. Made up new B.H.A., R.I.H. and drill ahead.

ip=		
- 1	ANCHOR DRILLING FLUIDS	AS
	OSLO STAVANGER	

DAILY SUMMARY REPORT

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

DATE	04.03.80
,	Drill ahead. Filled hole with 400 bbls. of spud mud plus 150 bbls. spud mud with L.C.M. POOH. Run casing. Cement casing.
DATE	05.03.80
	Repairing. Prepare to R.I.H. to clean out casing. Mixed 400 bbls. of weighted mud to 1.2 SG. Also mixed 400 bbls. of spud mud.
	· · · · · · · · · · · · · · · · · · ·
DATE	06.03.80
	Run riser. Made up B.H.A. Mixed 400 bbls. of spud mud. Prepare to R.I.H.

	NCHO	R DRILL	ing fluit	DS AS	DAILY SU	MIMARY REPC
CLD		OSLO – STA	WANGER		WELL NAME	31/2-2
					OPERATOR	A/S NORSKE SH
				·		
ENGINEE	RS M.	HOLGATE	····	<u> </u>	<u></u>	
DATE			· · · · · · · · · · · · · · · · · · ·			
DATE	07.03.80					•
	Lowered 17 1/2"	30". Te pilot ho	ensioned and ole - 625 n	nd connect m using h:	ed diverter igh visc. pi	. Drilled 11s - 40 bb1/30
	-					
DATE	08.03.80				<u></u>	
	Drilled R.I.H. (625 - 63 Brilled t at 615 m	34 m. Pow to 671 m. n. Wash a	er fail. Power fa nd ream t	Р́.О.О.Н. to il. Р.О.О.Н c 671 m - pr	shoe. . to shoe. R.I obably all fil
	Drilled	671 - 77	/5 m.			
	Drilled	671 - 77	/5 m.			
	Drilled	671 - 77	7 5 m.		· _	
	Drilled	671 - 77	5 m.		- <u>-</u> 	
	Drilled	671 - 77	5 m.			
DATE	09.03.80	671 - 77	, S IM .			
DATE	Drilled Drilled Drilled up. Win Ran Sch severe v clay 18	to 810 m per trip, lumberger wash out - 14".	n. Dumped , (max. 50 c Sonic, G to 650 m Logs held	100 bbls ,000 o/p amma, FDC (> 22"). up 780 m	. spud mud a - drag). Ot , CNL, LSS. Sand sectic	and circ. botto herwise good. Caliper showe on. Below this
DATE	Drilled 09.03.80 Drilled up. Wij Ran Sch severe v clay 18	to 810 m per trip, lumberger wash out - 14".	n. Dumped , (max. 50 c Sonic, G to 650 m Logs held	100 bbls ,000 o/p amma, FDC (>22"). up 780 m	. spud mud a - drag). Ot , CNL, LSS. Sand sectic	and circ. botto herwise good. Caliper showe on. Below this
DATE	Drilled Drilled Drilled up. Wij Ran Sch severe v clay 18	to 810 m per trip, lumberger wash out - 14".	n. Dumped , (max. 50 c Sonic, G to 650 m Logs held	100 bbls ,000 o/p amma, FDC (> 22"). up 780 m	. spud mud a - drag). Ot , CNL, LSS. Sand sectic	and circ. botto herwise good. Caliper showe on. Below this
DATE	Drilled 09.03.80 Drilled up. Wij Ran Sch severe v clay 18	to 810 m per trip, lumberger wash out - 14".	n. Dumped , (max. 50 c Sonic, G to 650 m Logs held	100 bbls ,000 o/p amma, FDC (> 22"). up 780 m	. spud mud a - drag). Ot , CNL, LSS. Sand sectio	and circ. botto herwise good. Caliper showe on. Below this

And the second second

1. 200

and the second second

ANCHOR DRILLING FLUIDS AS

DAILY SUMMARY REPORT

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS M. HOLGATE

DATE 13.03.80

Ream 444-456 m, 500-520 m, 706-812 m. Lots of trouble with bottom 3 connections. Circ. while mixing heavy pill- found baryte contained 50% gel. Circ. pill and displaced hole with 1200 bbls mud at 1.10 S.G. P.O.O.H. 744-735 and 475 tight. Pipe twisted off (on the way down through tight spot). Ctd. P.O.O.H.

DATE 14.03.80

R.I.H. with overshot and retrieved fish. Made up B.H.A. with 26" bit. R.I.H. but unable to stab into wellhead. P.O.O.H. and R.I.H. with utility guide frame. R.I.H. held up at 438 m, heavy reaming 438-454 m. Mud on conn.

Fluid loss reduced below 10 cc.

DATE 15.03.80

1. and

Ream 454-463 Spotting mud on conn. R.I.H. and ream 543-568, 705-740, 769-810 m. Displace OH with 1200 bbls at 1.30 S.G. P.O.O.H. 120-125 K O/P (drag) 746-740, 535-529, 494-488 m. Ream 438-463 m, 504-520 m. Spot 400 bbls 1.30 S.G. on bottom. P.O.O.H. Program called for wt 1.50 and displace hole. P.O.O.H. clean. Spot 200 bbls 1.50 S.G. in 30". R.I.H. clean, 2 m fill. Rig up and run 20".

come and the according

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS M. HOLGATE

DATE 16.03.80 Ran 20" casing. Slightly tight at 440 m but otherwise clean to bottom. Displaced mud in hole with s/w and cemented. No sign of cement at w/h. Backed off running string and P.O.O.H. Rig up to run riser. Mixing up gyp mud. DATE 17.03.80 Ran B.O.P. Mixing up new mud. DATE 18.03.80 Ran B.O.P Tested same. Repaired leaks on choke manifold.

/: ****

ANCHOR DRILLING FLUIDS AS

DAILY SUMMARY REPORT

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS M. HOLGATE

Rear

DATE	19.03.80
	Made up 17 1/2" B.H.A. Tagged cement at 761 m. Drilled cement with s/w. Displaced hole with mud. Drilled ahead to 817M Leak off 1.72 S.G. Drill ahead to 836M
	Lost 400 bbls during displacement - leaking slip joint and dump valve left open on shakers.
DATE	20.03.80
	P.O.O.H. Light ream to 836 m. Drill ahead 836-930 m. Survey. Drill ahead 930-965 m - flowline blocked. Drill ahead 965- 1025 m. Survey, flowline blocked.
	Watch for mud losses when flowline blocked
DATE	21.03.80
	Clean hole for survey - flowline plugged by clayball - drill 1066-1098 - circulate hole clean and survey. Wiper trip to shoe, R.I.H., no fill, drill to 1206 m.

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS C. BLANCHARD

ļ

1: ====

DATE	22.03.80	
	Drill to 1254-1349 P.O.O.H. R.I.H.	1254 m - survey at 1248 m (1/2 ⁰). Continue drilling), survey. Continue drilling to 1426 m. Survey and Tight hole from 1096-1077 m. Make up new bit and
	.ب	• ***
DATE	23.03.80	
	R.I.H., Wiper tri	drag at 1040-1250-1270. Drill to <u>1480</u> for 13 3/8" cso ip. Hole swabbing - R.I.H. No fill, P.O.O.H. for logs
DATE	24.03.80	
DATE	24.03.80 Unable to 820-905 R.I.H. w	o run logs past shoe. R.I.H. to clean out. Drag at (25,000 lbs). No fill. Log. Unable to pass bridge. ith open ended drillpipe.
DATE	24.03.80 Unable to 820-905 R.I.H. W.	o run logs past shoe. R.I.H. to clean out. Drag at (25,000 lbs). No fill. Log. Unable to pass bridge. ith open ended drillpipe.
DATE	24.03.80 Unable to 820-905 R.I.H. w	o run logs past shoe. R.I.H. to clean out. Drag at (25,000 lbs). No fill. Log. Unable to pass bridge. ith open ended drillpipe.
DATE	24.03.80 Unable to 820-905 R.I.H. W	o run logs past shoe. R.I.H. to clean out. Drag at (25,000 lbs). No fill. Log. Unable to rass bridge. ith open ended drillpipe.

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS C. BLANCHARD

DATE 25.03.80

ļ

ļ

Clean out hole with visc. pill. P.O.O.H. Run logs, hole tight at 1040 m and 1310 m. Logging depth 1479,5 m. Unable to run CNL. R.I.H. with bit and clean hole with 100 bbl hi vis pill. Increased mud weight to 1.35. Lost circulation - mix LCM pill containing 20 sxs Mica and 16 sxs Nutplug and 20 sxs Cellophane and spot on bottom.

DATE 26.03.80

Pull to 900 m and reduce mud weight to 1.30 S.G. Run in hole to reduce all mud in hole to 1.30 S.G. P.O.O.H. and log (FDG, GR, CNL). Log stopped at 1343 m. Run in hole and ream 1342-1351 m. Continue R.I.H. and tag 3 m fill, clean out.

Telex from Norske Shell, Stavanger, requiring certain mud properties and treatment to stabilize hole. After mud properties had been changed the mud and the hole looked very much better.

DATE 27.03.80

P.O.O.H. No.drag. Run logs, no problem. R.I.H. to clean out for casing.

:/ r . -	ARCHO		IDS AS		31/2-2	
		OSLO - STAVANGER		WELL NAME	51/2-2	<u> </u>
				OPERATOR	A/S NORSK	E SHELL
ENGIN	IEERS C	. BLANCHARD	······································			
DATE	<u></u>	T		· · · · · · · · · · · · · · · · · · ·		
· · · ·	28.03.80	J				,
	Clean ho	le - run 13 3/8"	casing. Ce	ment + cas:	ing.	
	Lost 50	bbls of mud duri	ng displacem	ent.		
		•				
DATE					·····	
	29.03.80					
	29.03.80					
	29.03.80 Prepare	BOPs - run seal	assembly - u	nable to g	o through h	ydril.
	29.03.80 Prepare Displace	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a	nable to g ssembly. T	o through h est BOPs.	ydril.
	29.03.80 Prepare Displace	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a	nable to g ssembly. T	o through h est BOPs.	ydril.
	29.03.80 Prepare Displace	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a	nable to g ssembly. T	o through h est BOPs.	aydril.
	29.03.80 Prepare Displace	BOPs - run seal riser with H ₂ O.	assembly – u Run seal a	nable to g ssembly. T	o through h est BOPs.	ydril.
	29.03.80 Prepare Displace	BOPs - run seal riser with H ₂ O.	assembly – u Run seal a	nable to g	o through h est BOPs.	ydril.
	29.03.80 Prepare Displace	BOPs - run seal riser with H ₂ O.	assembly – u Run seal a	nable to g	o through h est BOPs.	ydril.
DATE	29.03.80 Prepare Displace 30.03.80	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a	nable to g	o through h est BOPs.	aydril.
DATE	29.03.80 Prepare Displace 30.03.80	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a	nable to g	o through h est BOPs.	aydril.
DATE	29.03.80 Prepare Displace 30.03.80 Test BOP	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a 42 m. Drill	float, ce	o through h est BOPs. ment, shoe.	ydril.
DATE	29.03.80 Prepare Displace 30.03.80 Test BOP Drill to	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a 42 m. Drill k off test.	float, ce Drill ahe	o through h est BOPs. ment, shoe. ad.	ydril.
DATE	29.03.80 Prepare Displace 30.03.80 Test BOP Drill to	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a 42 m. Drill k off test.	nable to g ssembly. T float, ce Drill ahe	o through h est BOPs. ment, shoe. ad.	aydril.
DATE	29.03.80 Prepare Displace 30.03.80 Test BOP Drill to	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a 42 m. Drill k off test.	nable to g ssembly. T float, ce Drill ahe	o through h est BOPs. ment, shoe. ad.	aydril.
DATE	29.03.80 Prepare Displace 30.03.80 Test BOP Drill to	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a 42 m. Drill k off test.	float, ce Drill ahe	o through h est BOPs. ment, shoe. ad.	aydril.
DATE	29.03.80 Prepare Displace 30.03.80 Test BOP Drill to	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a 42 m. Drill k off test.	float, ce Drill ahe	o through h est BOPs. ment, shoe. ad.	aydril.
DATE	29.03.80 Prepare Displace 30.03.80 Test BOP Drill to	BOPs - run seal riser with H ₂ O.	assembly - u Run seal a 42 m. Drill k off test.	float, ce Drill ahe	o through h est BOPs. ment, shoe. ad.	aydril.

ł

Į

1:===

ł

ş

; `

ļ

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS C. BLANCHARD

DATE 31.03.80 Drill to 1515, bit balling. Circulate bottoms up. Make up core barrel. Core no. 1 from 1515-1522 m. DATE 01.04.80 Finish core no. 1 at 1525 m. P.O.O.H. Check hang off tool. R.I.H. to cut core no. 2. DATE 02.04.80 Cut core to 1535 m, barrel jammed, 20% recovery on core no. 2. R.I.H. with bit to clean out hole. P.O.O.H. for core no. 3.

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS C. BLANCHARD

DATE 03.04.80 Cut core no. 3 to 1553 m. 70% recovery. Cut core no. 4 to 1560 m. DATE 04.04.80 P.O.O.H. for core no. 4, 100% recovery. Cut core no. 5 to 1569 m. Barrel jammed P.O.O.H., 100% recovery for core no. 5. R.I.H. to cut core no. 6. DATE 05.04.80 Cut core no. 6 to 1578 m. P.O.O.H., 100% recovery. R.I.H. for core no. 7. Cut core to 1585 m, barrel jammed, 36% recovery for core no. 7. R.I.H. to cut core no. 8.

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS C. BLANCHARD

DATE 06.04.80 Cut core no. 8 at 1598 - barrel jammed - 100% recovery. R.I.H. and cut core no. 9 to 1604 - P.O.O.H. with 100% recovery - cut core no. 10 to 1608 m. DATE 07.04.80 P.O.O.H. core no. 10 - 60% recovery on core no. 10 - R.I.H. held up at 1592. Ream. Cut core no. 11 to 1617 - barrel jammed - 40% recovery - R.I.H. and cut core no. 12 to 1626 -78% recovery. DATE 08.04.80 Make up new core assembly - 8 15/32" core bit - cut core no. 13 to 1635 m - P.O.O.H. with 72% recovery. Rig down core barrel test B.O.P.s.

蠹

1 i 1 i 1

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS C. BLANCHARD, M. HOLGATE

Test B.O	.P.s. Ma	ke up dri	lling assem	bly. R	un in hol	e to	drill.
Ream 161	7-1635.	Screens. b	locked with	sand.	Lost 130	bbls	mud.
DIII to	1022 11.	change s	creens on B	ranut s.	laker, our	5 X OU	D.
.		· ·					
		· · · · · · · · · · · · · · · · · · ·				<u> </u>	
10.04.80							
Drill ah	ead. 165	5-1858 wi	th surveys.	Circ.	bottoms	up.	P.O.O.
for wipe	r trip.	Clean.					
_	-						
DATE							
DATE 11.04.80							
DATE 11.04.80 B. J. H.	Clean N	o fill	Papilogs				
DATE 11.04.80 R.I.H.	 Clean. N	o fill.	Ran logs.	;			
DATE 11.04.80 R.I.H.	Clean. N	o fill.	Ran logs.				
DATE 11.04.80 R.I.H.	Clean. N	o fill.	Ran logs.	, <u>, , , , , , , , , , , , , , , , </u>			
DATE 11.04.80 R.I.H.	Clean. N	o fill.	Ran logs.				
DATE 11.04.80 R.I.H.	 Clean. N	o fill.	Ran logs.				
DATE 11.04.80 R.I.H.	Clean. N	o fill.	Ran logs.				
DATE 11.04.80 R.I.H.	Clean. N	o fill.	Ran logs.				
DATE 11.04.80 R.I.H.	 Clean. N	o fill.	Ran logs.				
DATE 11.04.80 R.I.H.	Clean. N	o fill.	Ran logs.				
DATE 11.04.80 R.I.H.	Clean. N	o fill.	Ran logs.				
DATE 11.04.80 R.I.H.	Clean. N	o fill.	Ran logs.				
DATE 11.04.80 R.I.H.	Clean. N	o fill.	Ran logs.				
DATE 11.04.80 R.I.H.	Clean. N	o fill.	Ran logs.				

WELL NAME 31/2-2

•

OPERATOR A/S NORSKE SHELL

1

ENGINEERS M. HOLGATE

/: ====

marine - Sec

12.04.80						
Logging. 3 x RFT.			1			
DATE 13.04.80						
Logging.	2 x RFT. R.I	.H. Wash 1	844-1858 m.	Circula	te.	
			•		·	
DATE 14.04.80						
DATE 14.04.80 P.O.O.H. CST no 1 a	Clean. Compl and 2.	eted RFT'S.				
DATE 14.04.80 P.O.O.H. CST no 1 a	Clean. Compl and 2.	.eted RFT'S.				
DATE 14.04.80 P.O.O.H. CST no 1 a	Clean. Compl and 2.	eted RFT'S.				
DATE 14.04.80 P.O.O.H. CST no 1	 Clean. Compl and 2.	eted RFT'S.				
DATE 14.04.80 P.O.O.H. CST no 1	Clean. Compland 2.	eted RFT'S.				
DATE 14.04.80 P.O.O.H. CST no 1	Clean. Compl and 2.	eted RFT's.				

and the second second

WELL NAME 31/2-2

2.00

بأوحب ويستعارك

Caller & C. Matthe march

OPERATOR A/S NORSKE SHELL

ENGINEERS M. HOLGATE

1: ***

	15.04.80
	R.I.H. Clean no drag - no fill. Circ. hole. P.O.O.H. clean. Rig up and run 9 5/8" casing + cement with
	200 sxs 'G' 1.62 + additives 650 sxs G 1.84 + additives
	Displaced cement with 376 bbls 1.26 S.G. Bumped plug with 1600 psi.
	E 16.04.80
	Pressure test csg. to 4000 psi. Release running tool circ. bottoms up - no cement. Lay down dp. W.O.C. Run temp survey and chl
	Kun temp survey and cor.
DAT	E 17.05.80
DAT	Mix 1200 bbls of mud for start of 8 ½" section (1.20 S.G.). Position rig amdset anchors. Materials mixed
TAC	E 17.05.60 Mix 1200 bbls of mud for start of 8 ½" section (1.20 S.G.). Position rig amiset anchors. Materials mixed 9 sxs Wyoming Bentonite 3 sxs Caustic Soda 90 sxs CMS Low Vie
DAT	E 17.05.80 Mix 1200 bbls of mud for start of 8 ½" section (1.20 S.G.). Position rig and set anchors. Materials mixed 9 sxs Wyoming Bentonite 3 sxs Caustic Soda 90 sxs CMS Low Vis 150 sxs Lignosulfonate
DAT	E 17.05.80 Mix 1200 bbls of mud for start of 8 ½" section (1.20 S.G.). Position rig and set anchors. Materials mixed 9 sxs Wyoming Bentonite 3 sxs Caustic Soda 90 sxs CMS Low Vis 150 sxs Lignosulfonate

	DAILY SUMMARY REPORT
OSLO - STAVANGER	WELL NAME_ 31/2-2
	OPERATOR A/S NORSKE SHELL
ENGINEERS C. BLANCHARD, M. HOLGATE	
DATE 18.05.80	
Mix mud for 8½" section. Continue t	o set anchors.
DATE	
19.05.80	
Set anchors. Total of 1300 bbls 1,2 mud mixed.	0 S.G. gel/lignosulfonate
· · · ·	· · · ·
DATE 20.05.80	
Set anchors.	

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

and the second second second

ENGINEERS C. BLANCHARD, M. HOLGATE

ļ

JÌ

j

	Repair rete	ort thermostat - proper solids content 6 % by volume.
	Rig setting	g anchors.
	-	·
		1
	22.05.80	J
	Mud enines	r but on stand-by Drobloms with
	B.O.P. sta	ck. Mud in tanks to be kept agitated at all times
	to keep ba	rite suspended.
		-
	22 - 24 -	25 - 26 Engineers on CP
	23 - 24 -	25 - 26 Engineers on SB.
	23 - 24 -	25 - 26 Engineers on SB.
	23 - 24 -	25 - 26 Engineers on SB.
	23 - 24 -	25 - 26 Engineers on SB.
	23 - 24 -	25 - 26 Engineers on SB.
DATE	23 - 24 -	25 - 26 Engineers on SB.
DATE	23 - 24 -	25 - 26 Engineers on SB.
DATE	23 - 24 - 27 <u>.05.80</u> Rig up gui	25 - 26 Engineers on SB.
DATE	23 - 24 - 27.05.80 Rig up guid control eq	25 - 26 Engineers on SB.
DATE	23 - 24 - 27.05.80 Rig up guid control eq	25 - 26 Engineers on SB.
DATE	23 - 24 - 27.05.80 Rig up guid control eq	25 - 26 Engineers on SB. delines. Condition mud in pits. Check solids uipment.
DATE	23 - 24 - 27 .05.80 Rig up guid control eq	25 - 26 Engineers on SB. delines. Condition mud in pits. Check solids uipment.
DATE	23 - 24 - 27.05.80 Rig up guid control eq	25 - 26 Engineers on SB. delines. Condition mud in pits. Check solids uipment.
DATE	23 - 24 - 27 .05.80 Rig up guid control eq	25 - 26 Engineers on SB. delines. Condition mud in pits. Check solids uipment.
DATE	23 - 24 - 27.05.80 Rig up gui control eq	25 - 26 Engineers on SB. delines. Condition mud in pits. Check solids uipment.
DATE	23 - 24 - 27 .05.80 Rig up guid control eq	25 - 26 Engineers on SB. delines. Condition mud in pits. Check solids uipment.
DATE	23 - 24 - 27 .05.80 Rig up guid control eq	25 - 26 Engineers on SB.

ma . while i Sid

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

.

ENGINEERS M. HOLGATE

DATE 28.05.80				
Wait on gui	delines.		·	
Check chemi	cal inventory.			
				·
-	•			
DATE 29 05 80				· · · · · - · · · · · · · · · · · ·
Stab last o	uideline. R.I.H.	to retrieve	corrosion ca	p.
	· · · · · · · · · · · · · · · · · · ·		·····	
30.05.80				
Attempt to	retrieve corrosio	n cap.		

And a constant of souther a constant of souther and the souther and the souther and the souther and the souther

	ANCHOR DRILLING FLUIDS	AS
TEP	OSLO — STAVANGER	

WELL NAME 31/2-2

OPERATOR NORSKE SHELL

ENGINE	Michael Holgate.
DATE	31.5.80
,	
	Retrieve corrosion cap. run riser.
	1.6.80
	Pressure test bop. Displace riser with mud. Lost 60BBLS through slip jo t.
DATE	2.6.80
	Retrieve csg. Plug on IND. attemt. R.I.H. Drill cement to 1863M. Water back to 1.15 s.g. (Shell orders). Balanue & stabilise column at 1.16 s.g. P.O.O.H. fok packer to run leak off.
Ļ	

and a state of the second of the

6 . Sv2

WELL NAME 31/2-2

OPERATOR A/S NORSKE SHELL

ENGINEERS M. HOLGATE

DATE 03.06.80 R.I.H. with packer. Pressure up to 1.65 S.G. Equiv. W/O leaking off. P.O.O.H. R.I.H. with bit. Drill ahead 1863-1942. Treat with prehydrated gel at 40 ppb + 6 ppb Lignosulfonate for rheology. Worked well. DATE 04.06.80 Drill ahead 1951-1961 m. P.O.O.H. Bit change, hole clean. R.I.H. Ream 1951-1961 (bit was underguage). Drill ahead 1961-2073 m. Som mud losses over screens due to blinding of sand. DATE 05.06.80 P.O.O.H. tight 2070-1875. R.I.H. clean wash 2059-2073 m. Drill ahead 2073-2170 m. P.O.O.H. wiper trip. 2061-1948 80-100 K overpull, remainder (30-50 K). R.I.H. clean. Drill ahead 2170-2208. 4 % gas on bottoms up - swabbing. Mud weight to 1.18 S.G.

	DAILY SUMMARY REPORT
OSLO - STAVANGER	WELL NAME 31/2-2
	OPERATOR A/S NORSKE SHELL
INGINEERS C. BLANCHARD, M. HOLGATE	
	·
06.06.80	
Drill from 2208-2380 m. Tight hol	e on wiper trips.
· · ·	
DATE 07.06.80	
Make up new bit - drill to 2457.	Tight hole on wiper trips.
DATE 08.06.80	
Drill from 2457-2504 m - wiper tr: Tight hole on wiper trips.	up - drill ahead to 2570 m.

I

....

OSLO - STAVANGER	WELL NAME 31/2-2		
	OPERATOR A/S NORSKE SHELL		
NGINEERS C. BLANCHARD, M. HOLOHID			
DATE 09.06.80	······		
Drill to T.D. 2600. Circulate hol and c irculate hole with viscous pi	e clean. Run wiper trip ll. Rig up for logging.		
- · ·			
DATE 10.06.80			
Run logs.			
······································			
DATE 11.06.80	·		
Run logs.			

SAUGENERNENUUS IS

ANCHOR	DRILLING FLUIDS AS	
, E+*	OSLO — STAVANGER	WELL NAME 31/2-2
		OPERATOR A/S NORSKE SHELL
GINEERS C	. BLANCHARD, M. HOLGATE	
12.06.80		
Plug hole	e with 5 cement plugs to]	L600 m
	No. 1 2595-2395 2 2165-2139 3 2135-1935 4 1905-1705	· ·
-	5 1675-1600	
ATE 13.06.80		
Test B.O Dress to	.P.s. Run in hole with so p of plug.	craper – tag cement.
Test B.O Dress to	.P.s. Run in hole with so p of plug.	craper – tag cement.
Test B.O Dress to	.P.s. Run in hole with so p of plug.	craper - tag cement.
Test B.O Dress to	.P.s. Run in hole with so p of plug.	craper - tag cement.
Test B.O Dress to	.P.s. Run in hole with so p of plug.	craper - tag cement.
DATE 13.06.80 Test B.O Dress to DATE 14.06.80	.P.s. Run in hole with so p of plug.	craper - tag cement.
ATE 13.06.80 Test B.O Dress to ATE 14.06.80	.P.s. Run in hole with so p of plug.	craper - tag cement.
Test B.O Dress to Dress to Dress to Displace 1100 bbl to displ	.P.s. Run in hole with so p of plug. mud system with seawater s of mud. Schlumberger ra acement.	craper - tag cement. Fill pits with 1.18 S.G. an bridge plug at 1595 prior
ATE 13.06.80 Test B.O Dress to ATE 14.06.80 Displace 1100 bbl to displ	.P.s. Run in hole with so p of plug. mud system with seawater s of mud. Schlumberger ra acement.	. Fill pits with 1.18 S.G. an bridge plug at 1595 prior
DATE 13.06.80 Test B.O Dress to DATE 14.06.80 Displace 1100 bbl to displ	.P.s. Run in hole with so p of plug. mud system with seawater s of mud. Schlumberger ra acement.	. Fill pits with 1.18 S.G. an bridge plug at 1595 prior
Test B.O Dress to Dress to Displace 1100 bbl to displ	<pre>.P.s. Run in hole with so p of plug. mud system with seawater s of mud. Schlumberger ra acement.</pre>	. Fill pits with 1.18 S.G. an bridge plug at 1595 prior

1 ~~

	ANCHOR DRILLING FLUIDS AS		WELL NAME 31/2-2
			OPERATOR A/S NORSKE SHI
ENGINE	ERS C.	BLANCHARD, M. HOLGATE	
DATE	15.06.80		· · · · · · · · · · · · · · · · · · ·
	Circulate	hole clean with seawate:	r. Displace hole with
	CaCl ₂ wat	er. Begin test program.	Mud engineer on stand by.
	-		
		r	
		}	
DATE			
		J	
·			······

•

OPERATOR: A/S NORSKE SHELL EXPLORATION & PRODUCTION

WELL NO. 31/2-2

______HOLE/_____CASING INTERVAL (30" CONDUCTOR SET AT 430 m)

Prior to spudding of the well, 1150 BBLS high- viscosity (100+ secs./ qt.) were mixed in the mud pits using approx. 35 p.p.b. prehydrated Bentonite.

The well was spudded in February 27th, 1980 and drilling commenced with 26" bit and 36" hole opener using seawater and 30-40 BBLS hivis. pills to assist hole cleaning as required.

The hole was drilled to 433 m and displaced with 400 BBLS of prehydrated Bentonite prior to running conductor.

Due to problems with Guide base, the rig was moved 25 m and a new 36" hole was drilled as above.

Prior to running 30" conductor the hole was displaced with 300 BBLS prehydrated Bentonite and 120 BBLS mud containing 5 sxs Mica and 5 sxs Nutplug.

The 30" conductor was run and cemented with shoe at 430 m.

OPERATOR: A/S NORSKE SHELL EXPLORATION & PRODUCTION

WELL NO. 31/2-2

26" HOLE/ 20", CASING INTERVAL (20" CASING SET AT 800 m)

The 17¹/₂" pilot hole was drilled with seawater using 25-30 BBLS hi-vis pills on connections.

T.D. (810 m) for the pilot hole was reached with few problems, and the hole was displaced with non flocculated prehydrated Bentonite with a fluid loss less than 15 cc API. However, Schlumberger logs were held up at 780 m.

Ran in the hole with 26" hole opener and encountered high torque problems below shoe. The bit was pulled to check and change stabelizers, but torque problems prevailed to 455 m. Sands and clays were drilled to 812 m.

The hole was very tight on subsequent wiper trips (see chart.1) with three troublesome sections at:

438 m - 450 m 500 m - 550 m 710 m - 812 m

all of which required reaming before connections could be made.

In order to keep the hole open, 1200 BBLS 1.3 S.G. mud was spotted at bottom, but hole was still tight.

After discussions with Shell Representative, it was decided to spot another 400 BBLS of 1.3 S.G. mud at bottom and also 200 BBLS of 1.5 S.G. mud inside 30" conductor.

Ran 20" casing to 800 m and cemented same.

All pits were cleaned out and work started on the Gyp./Lignosulfonate system to be utilized in the $17\frac{1}{2}$ " section.

OPERATOR: A/S NORSKE SHELL EXPLORATION & PRODUCTION

WELL NO.	31/	2-3		
26"	_HOLE/	20"	CASING INTERVAL	

CHART 1.

BIT SIZ	BIT NO	TRIP NO	REMARKS
17 ½"	3	1	Drilled from 433M - 634M Power failure - Pulled to shoe.
		2	R.I.H. tight at 615M wash and to 671 M Drill ahead to 810M Circulated bottoms up Logging.
26"	H/O	1	R.I.H. 433M - 456M high torque No Progress P.O.H.
26"	н/о	2	R.I.H. to 445M, Held up. ream to 456M. Open up to 812M. Circulated bottoms up and spotted 100 bbls mud P.O.O.H. tight off bottom 200,000 O/P pumped 400 bbls mud. Circulated out from 707M to 648M - 629M. P.O.O.H. to 430 M.
26"	н/о	3	R.I.H. ream 444M - 456M 500M - 520M 706M - 812M Increase mud weight to 1.10 s.g. P.O.O.H. tight at 744M - 735M 475M - 455M
26"		· 5	R.I.H. Held up 438M Ream. 438M - 463M 543M - 568M 705M - 740M 769M - 810M Displace mud with 1.30 s.g. P.O.O.H.Tighe at:- 746M -740M 535M -529M 492M -488M

an and the state of the second states and the

يحجر والمتحج والمراجع

and the second

100.000

ł.

••

OPERATOR: A/S NORSKE SHELL EXPLORATION & PRODUCTON

WELL NO. 31/2-2

<u>17}" HOLE/ 13 3/8" CASING INTERVAL (17 3/8" CASING SET AT 1470 m)</u>

The cement and shoe were drilled with seawater and displaced with a Gyp./Lignosulfonate system S.G. 1.20, at 798 m.

Due to a leaking slip joint and dump valve left open when displacing, 400 BBLS. was lost.

The Gyp./Lignosulfonate mud was prepared following the mud program with 9 p.p.b. Gyp. The soluble Ca++ levels were higher than expected. This was due to lack of pretreatment of the saltwater used. This will be corrected in future operations. The excessive calcium levels in combination with high MBT resulted in high gel strengths which in turn adversly effected flow properties.

Soluble Ca++ level was reduced with Soda Ash to 1600 p.p.m. and excess gyp. increased to 6 p.p.b. on Shell's instructions. This gradually improved hole conditions.

Before logging mudweight was raised to 1.3 S.G. logs were unable to get past shoe on first attempt, and hole had to be cleaned out. On second attempt the mud weight was increased to 1.35 S.G. and viscous pills of 150 BBLS. circulated around. Circulated with partial returns, lost returns. A L.C.M. pill was mixed and mud weight reduced to 1.30 S.G. which enabled logs to be run. Made another wiper trip and finished logging.

Ran 13 3/8" casing and cemented same. Lost approx. 50 BBLS. of mud to the formations during displacement.

OPERATOR: A/S NORSKE SHELL EXPLORATION & PRODUCTION

WELL NO. 31/2-2

<u>12 1/4"</u> HOLE/ <u>9 5/8"</u> CASING INTERVAL (9 5/8" CASING SET AT 1849 m)

The 13 3/8" shoe was drilled out with 1.26 S.G. mud. 13 cores were cut from 1515 m to 1635 m. This section reached T.D. at 1858 m and logged.

9 5/8" Casing was run and cemented with shoe at 1849 m.

The hole was then secured; mud dumped and the rig taken into yard for repairs.

The mud properties were stable in this section of the hole and the mud required minimum chemical treatment.

OPERATOR: A/S NORSKE SHELL EXPLORATION & PRODUCTION

WELL NO. 31/2-2

81 HOLE/ CASING INTERVAL

On arrival back on location, 1300 BBLS. of aGel/Lignosulfonate mud at 1.20 S.G. was mixed for the $8\frac{1}{2}$ " section. Drilling was delayed by problems retrieving the corrosion cap. This time was spent on stripping down and checking all Solids removel equipment.

Nippled up and ran in the hole. Old mud in the hole was watered back and Bentonite was added to the system to maintain a Bentonite content of 17.5 p.p.b. mud balanced out at 1.16 S.G.

A packer was set in the 9 5/8" Casing and P.I.T. test performed equivalent to 1.65 S.G.

Drilling proceeded without problems although tight hole was experienced on trips. No satisfactory explanation was given for this as there was little evidence of swelling clays. Breaking over to a Gyp. system was discussed but hole conditions improved after a few trips.

Mud losses over the shaker screens (60 x 40) were controlled by changing to a finer mesh screen (80 x 80), thus preventing screens to be plugged by sand.

The 8½" section was drilled to 2600 m, Schlumberger logs were run, and the hole was plugged back to 1600 m. Bridge plug was set at 1595 m and the hole circulated clean with seawater before displaceing with CaCl₂ fluid.

Test program started.

Achor engineer released.

OPERATOR

<u>ک</u>

WELL NO. 31/2-2

MATERIAL CONSUMPTION & COST ANALYSIS

36" HOLE DRILLED	TO 432 Met	lers xx 30"	CASING SET AT	430	Meters
ACTUAL AMOUNT OF HOLE	DRILLED 77	Meters Feet	DAYS ON IN	TERVAL	11
DRILLING FLUID SYSTEM	SPUD MUD -	GEL	· · · · · · · · · · · · · · · · · · ·		

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
WYOMING BENTONITE	M/T	21	' 35	+14	\$ 9.450.00
CAUSTIC SODA	25 KG	26	18	- 8	189.00
MICA	25 KG	0	18	+18	238.50
WALNUT	25_KG	0	18	+18	238.50
LIME	25 KG	0	7	+ 7	29.75
CHROME LIGNOSULF.	25 KG	0	1	+ 1	15.00
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
-			· · ·	<u>.</u>	·
	· · · · · · · · · · · · · · · · · · ·				
	; 				· ·
	<u> </u>		l		
COST/DAY \$ 923	.70 тс	DTAL COST FO	DR INTERVAL	\$ 10	.160.75

COST/Mt.	or	F

Ft.

ENGR. COST

1: -----

	Ψ.	923.10	
	\$	131.95	
ŧ	3.	850.00	

PROG. COST FOR INTERVAL

\$ 10.160.75

\$ 5.398.00

COST VARIANCE FOR INTERVAL

and the second second

\$ 4.762.75 OPERATOR A/S NORSKE SHELL EMPLOYATION & PRODUCTION

WELL NO. 31/2-2

1

.

Ţ

Ţ

MATERIAL CONSUMPTION & COST ANALYSIS

26" HOLE		TO 812		Meters 20'	CASI		800 Meters	
ACTUAL AMOUNT OF HOLE DRILLED 380 Meters DAYS ON INTERVAL 10								
DRILLING FLUID	SYSTEM	SPUD	– M	UD - GEL ·	- WEIGHTED)	·	
MATERI	AL	UNIT SIZ	ZE	PROG.	USED	VARIANCE ±	COST	
BARYTE		M/T		20	273	+253	\$ 30.576.00	
WYOMING BEN	TONITE	' M/T		16	99	+ 83	24.730.00	
CHROME LIGN	OSULF.	25 KG			29		435.00	
CMC HI VIS		25 KG			40		2.120.00	
CMC LO VIS		25 KG		·	10		500.00	
CAUSTIC SOD	A	25 KG		38	24	- 16	252.00	
SODA ASH	······································	50 KG			19		313.50	
LIME		25 KG			14		• 59.50	
		•						
							· · · · · · · · · · · · · · · · · · ·	
COSTIDAY			~~~				· · · · · · · · · · · · · · · · · · ·	
CUST/DAY	\$ 6.098	8.60	то	TAL COST FC	RINIERVAL	\$ 60.9	986.00	
COST/Mt. or Ft.	\$ 160	0.49	PR	OG. COST FO	RINTERVAL	\$ 12.	622.00	
ENGR. COST	\$ 3,500	COST VARIANCE FOR INTERVAL				AL \$ AR	364 00	

1:20

\$ 3.500.00

and the second of the

and a star for the star of the

\$ 48.364.00

OPERATOR 2/S NOISHE SHELL EXPLORATION & PRODUCTION

WELL NO. 31/2-2

Kirkin I

MATERIAL CONSUMPTION & COST ANALYSIS

17 2" HOLE DRILLED TO 1480	Meters	13 3/8"	CASING SET AT 1476	Meters Fxiex
ACTUAL AMOUNT OF HOLE DRILLED	668	Meters FeXIX	DAYS ON INTERVAL	13

DRILLING FLUID SYSTEM

GYP-LIGNOSULFONATE

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
WYOMING BENTONITE	М/Т	23	· 7	- 16	\$ 1.890.00
BARITE	· M/T	242	210	- 32	23.520.00
CMC HI VIS	25 KG		15		795.00
CMC LO VIS	25 KG	42	125	+ 83	6.250.00
MICA	25 KG		20		265.00
WALNUT FINE	25 KG		23		304.75
CAUSTIC SODA	25 KG	32	265	+233	2.782.50
GYP	50 KG	145	520	+375	4.420.00
CHROME LIGNOSULF.	25 KG	288	520		7.800.00
XC-POLYMER	50 LB		33		9.236.70
SODA ASH	50 KG		51		841.50
DRILLING DETERGENT	200 L	10	9	- 1	1.575.00
IDFLO	25 KG	85	30	- 55	945.00
AL. STEARATE	25 KG		2		100.00
CELLOPHANE	25 KG		25		442.50

COST/DAY	\$ 4.705.23	TOTAL COST FOR INTERVAL	\$ 61.167.95
COST/Mt. or Ft.	\$ 91.57	PROG. COST FOR INTERVAL	\$ 46.120.00
ENGR. COST	\$ 4.550.00	COST VARIANCE FOR INTERVAL	\$ 15.047.95

GERAIOR A/S NORSKE SHELL EXPLORATION & PRODUCTION

WELL NO. 31/2-2

Î

MATERIAL CONSUMPTION & COST ANALYSIS

12 1/4" HOLE DRILLED	TO 1858	Meters	9 5/8"	CASING SET AT	Meters Fortx
ACTUAL AMOUNT OF HOLE	DRILLED	378	Meters	DAYS ON INTERVAL	19
DRILLING FLUID SYSTEM	GYPSUM	- LIGNC	SULFONATE		

VARIANCE ± PROG. USED COST MATERIAL UNIT SIZE M/T 184 48 BARYTE - 136 \$ 5.376.00 25 KG 24 97 + 73 CAUSTIC SODA 1.018.50 CHROME LIGNOSULF. 25 KG 218 67 - 191 1.005.00 GYPSUM 50 KG 110 100 10 850.00 -CMC LO VIS 25 KG 66 133 67 6.650.00 + CMC HI VIS 25 KG 0 16 16 848.00 + 0 16 ----0.00 DRILLING DETERGENT DRM 11 STARCH 25 KG 66 120 +54 3.780.00 XC-POLYMER 25 KG 0 13 + 13 3.638.70 SODA ASH 50 KG 0 52 + 52 858.00 WALNUT 25 KG 0 32 32 + 424.00 MICA 52 52 25 KG 0 + 689.00

COST/Mt. or Ft.

\$ 1.323.01

TOTAL COST FOR INTERVAL

\$ 25.137.20

\$ 36.279.00

ENGR. COST

1:

Ş 66.50

\$ 6.650.00

COST VARIANCE FOR INTERVAL

10 Alexandre

Sin the states have

PROG. COST FOR INTERVAL

\$ 11.141.80

OPERATOR

1/12 MORSKE SHELL EXPLORATION & PRODUCTION

WELL NO. 31/2-2

MATERIAL CONSUMPTION & COST ANALYSIS

ACTUAL AMOUNT OF HOLE DRILLED 742 Meters DAYS ON INTERVAL 26	8 3" HOLE DRILLED TO 2600	Meters	OPEN HOLE	CASING SET AT	Meters Feet
	ACTUAL AMOUNT OF HOLE DRILLED	742	Meters	DAYS ON INTERVAL	26

DRILLING FLUID SYSTEM

GEL-LIGNOSULFONATE

MATER		LINIT SIZE	PROG	USED	VABIANCE +	COST
WYOMING BEI	NTONITE	M/T		· 18.5		\$ 4.995.00
BARYTE -		· M/T		73		8.176.00
CMC HI VIS		25 KG		90		4.770.00
CMC LO VIS		25 KG		105		5.250.00
CAUSTIC SO	DA	25 KG		102		1.071.00
CHROME LIG	NOSULF.	25 KG		250		3.705.00
XC-POLYMER		50 LB		28		7.837.20
SODA ASH		50 KG		9		148.50
AL. STEARA	ГЕ	25 KG		2		100.00
IDFO		25 KG		31		976.50
·				:		
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			
	-	· · · · · · · · · · · · · · · · · · ·				
L				<u> </u>	l	<u> </u>
COST/DAY	\$ 1.425	.93 T	OTAL COST F	OR INTERVAL	\$ 37.0	74.20
COST/Mt. or Ft.	\$ 49	.96 F	ROG. COST FO	OR INTERVAL	-	
ENGR. COST	\$ 9,100		COST VARIANCE FOR INTERVAL -			

OPERATOR A/S NORSKE SHELL EXPLORATION & PRODUCTION

WELL NO. 31/2-2

TOTAL CONSUMPTION & COST ANALYSIS

TOTAL DEPTH

2600 Meters

TOTAL HOLE DRILLED

2245

Meters

TOTAL DAYS

79

,	•	

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE \pm	COST
BARYTE	M/T	455	604	+ 149	\$ 67.648.00
WYOMING BENTONITE	M/T	96	159.5	+ 48.5	43.065.00
CAUSTIC SODA	'25 KG	120	506	+ 386	5.313.00
CHROME LIGNOSULF.	25 KG	506	867	+ 360	13.005.00
GYPSUM	25/50 KG	255	620	+ 365	5.270.00
CMC LO VIS	25 KG	108	373	+ 265	18.650.00
CMC HI VIS	25 KG		161		8.533.00
LF-5	25 KG	151	181	+ 30	5.701.50
DRILLING DETERGENT	DRUM	16	9	- 7	1.575.00
XC-POLYMER	25 KG		74		20.712.60
SODA ASH	50 KG		131		2.161.50
LIME	25 KG		21		89.25
MICA	25 KG	2	90		1.192.50
WALNUT	25 KG		73		967.25
AL. STEARATE	25 KG		4		200.00
CELLOPHANE	25 KG		25		442.50

COST/DAY

法語

Ĩ

\$ 2.462.35

TOTAL COST FOR INTERVAL

\$ 194.526.10

COST/Mt. or Ft.

\$ 86.64

\$ 27.650.00

PROG. COST FOR INTERVAL

COST VARIANCE FOR INTERVAL

\$ 100.419.00

ENGR. COST

\$ 94.107.10

ļ

		:				•			:				
	NCHO	R DRILLING		DS AS									
rilling Fl	uid & Ma	aterial Consum MUD, GYP LI	ption Rej GNOFULE	port 'ONATE				OPERATOR	A/S NORS	SKE SHE) CHARD, I	M. HOTC	ATE	VENTURE
MY DATE		ESTIMATED DAILY MUD VOLUMES	MATER	IALS M	SACK	7	M	TERIALS ADDED T	O CONTROL P	RORENTIES			
	DSSES SUB	LURFACE VOLUMET	BARITE	ONITE			POLY POLY	MERS	AUSTIC	IME		ALNUT	
1 24.2		1150	12						8			 	
2 25.2									 	3			
3 26.2													
4 27.2	150												
5 28.2	570	300 .	3 ²						N				
6 29.2	30	460	43						N				
7 1.3	670	700	6						4		л л	л	
2.3	20										8	8	
ت س •	570	600	6		ч				H	7			
10_1	800									 - -	ر س	ഗ	
11 5.3		400	ω			36" HOLE					- ; -		
12 6.3		400	15 5/	12×					N	ω			
13 7.3		300	თ						N	N		· · ·	
14, 8.2		300	27 4						ч				
FORWARD							 						
I STINIATED	2810	4710	42 61		L				23	12	18	8 18	
REMARKS:	- XA		TON										
		11 C.C						灣					

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5 29 15^{4} 113 $7x$ 1 4 5 17 17 17 1 4 11 1 25 1 25 1 0 13 30 20 20 2 20 2 6 38 2 70 2 20 2 2 6 61 23 12 325 18 2 2 1 26 230 37 21 325 25 2 2			85 525	126	ALS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					ESTIMATED
Anctor Desconstruction Fulling Fuld & Material Consumption Report $31/2-2$ Note $31/2-2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	61	4710 42	2810	I ORWARD
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70 2		792 12		28 22.3
ANCHOR DRILLING FUIDS AS OBLO = STRANGER INITING Fluid & Material Consumption Report INITING Fluid & Material Consumption INITING Fluid	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	65		85 400 13		27 21.3
ANCHOR DRILLING FLUIDS AS Unling Fluid & Material Consumption Report In SYSTEM SEED MUD Set A Set	5 29 15 ^x 113 7x 1 4 11 1 25 1	45	×	00 559 47	110 1	
ANCHOR DRILLING FLUIDS AS WELLNME 11/2-2 Net Note that the port of the po	5 29 15 ^x 113 7x 1 5 5 17 1 1	51	:	00 659 25	50 4	25.19.3
ANCHOR DRILLING FLUIDS AS Well NME 31/2-2 NOT ONTER Selo = STRANGER NOT Selo = STRANGER Meter Note: Selo = STRANGER NOT ONTER SELING FLUIDS AS Well NME 31/2-2 NET OPTER SELING & STRANGER MELENCE SHEEL on Exponents NOT SET NOT STRANGER MELENCE ASD MELENCE ASD NET SET NOT STRANGER MELENCE SHEEL on Exponents SET NOT STRANGER SET NOT STRANGER MELENCE SHEEL on Exponents SET NOT STRANGER MELENCE SATE NOT STRANGER MELENCE SATE SET NOT STRANGER MELENCE SATE NOT STRANGER SET NOT STRANGER SET NOT STRANGE	5 29 15 ^x 113 7 ^x 1					24 18.3
ANCHOR DRILLING FLUIDS AS WELL NAME 31/2-2 Note Note of the state of the st		167		375		23 17.3
ANCHOR DRILLING FUUDS AS Milling Fluid & Material Consumption Report $SPUD MUD STEM SPUD MUD STEM SPUT SPUD MUD STEM SPUD MUD STEM SPUD MUD STEM SPUT SPUD MUD STEM SPUD MUD STEM SPUT SPUT SPUT SPUT SPUT SPUT SPUT SPUT$	14	75 8	4		260	22 10.3
$ \begin{array}{c} \text{av} \\ \text{ANCHOR DRILING FLUIDS AS} \\ \text{inling Fluid & Material Consumption Report} \\ inling State Structure Structu$	8	26" HOLE	15	2160 134	0061	21 15.3
ANCHOR DRILLING FLUIDS AS OSLO – STANAGER HIIIng Fluid & Material Consumption Report ID SYSTEM SPUD MUD			15	1200 97	1600	1.1.3
ANCHOR DRILLING FLUIDS AS OSLO - STAVANGER Well NAME <u>31/2-2</u> ARE <u>NOP</u> OPERATOR <u>A/S NORSKE SHELL</u> RG. <u>NEST</u> NOPERATOR <u>A/S NORSKE SHELL</u> RG. <u>NEST</u> NATERALS ADDED TO CONTROL PROPERTIES NATERALS <u>ADDED TO CONTROL PROPERTIES</u> NATERALS <u>ADDED TO CONTROL PROPERTIES</u> NOT <u>ADDED TO CONTROL PROPE</u>		29 25 10		1000	1430	1913.2
ANCHOR DRILLING FLUIDS AS OSLO - STAWANGER NUITING Fluid & Material Consumption Report IND SYSTEM	5 11 5	15	13×	620		18 12.3
ANCHOR DRILLING FLUIDS AS OSLO – STAVANGER Infiling Fluid & Material Consumption Report Infiling Fluid & Materi	1 4		x ⁵ t	600	1130	7 11.3
ANCHOR DRILLING FUIDS AS OSLO - STAVANGER VIIIing Fluid & Material Consumption Report ID SYSTEM SPUD MUD SUB - STAVANGER VIII D SYSTEM SPUD MUD SUB - STAVANGER MATERIALS SUB - STAVANGER MATERIALS SUB - STAVANGER MATERIALS SUB - STAVANGER MATERIALS SUB - SUB	1 2 4		4	350	80	16 10.3
ANCHOR DRILLING FLUIDS AS OSLO - STAVANGER Villing Fluid & Material Consumption Report IID SYSTEMSPUD_MUD_ Day DATE	3 2		13	800	897.	15 9.3
ANCHOR DRILLING FLUIDS AS OSLO - STAVANGER Villing Fluid & Material Consumption Report IND SYSTEM SPUD MUD DATE STIMATED DAILY MATERIALS MATERIALS AGOED TO CONTROL PROPERTIES MUD VOLUMES MATERIALS MATERIALS AGOED TO CONTROL PROPERTIES MATERIALS AGOED TO CONTROL PROPERTIES	CAUSTA AUSTA		BARIT	SURFAC	LOSSES, SURFAC	
ANCHOR DRILLING FLUIDS AS OSLO - STAVANGER VIIIing Fluid & Material Consumption Report VIII SYSTEM SPUD MUD UD SYSTEM SPUD MUD MATERIALS MATERIALS MATERIALS MATERIALS ADDED TO CONTROL PROPERTIES MATERIALS ADDED TO CONTROL PROPERTIES	POLYMERS /U OTHERS S	THINNERS 6		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SUB	
ANCHOR DRILLING FLUIDS AS OSLO - STAVANGER Vrilling Fluid & Material Consumption Report HD SYSTEM	MATERIALS ADDED TO CONTROL PROPERTIES	ALS	MATERIALS MATER	ESTIMATED DAILY MUD VOLUMES		Day DATE
ANCHOR DRILLING FLUIDS AS OSLO - STAVANGER WELL NAME <u>31/2-2</u> AREA NOF	ENGINEERS C. BLANCHARD, M. HOLGATE					THE SYSTE
	WELL NAME 31/2-2 AREA DEC WES		ER FLUIDS AS	R DRILLING		
						נ

	FSTIM	FORW	13 13		0		8	37 3	ι <u>ω</u> ω	5 5 10	<u>ہد :</u> ج <u>ہ :</u> ج	3322	12 2	31 2	30 2	29 2		-	÷ ×	illin vs sv	Í		<u> </u>
RKS	ATED	ARD]	5.4	4.4	ω •4	2.4	1.4	μ ω			α ω	'7• <u></u> ω	6 .u	5 •ω	4 • 3	ω ω			INTE	IG FIL		À	-
	10693	10267									50		375				LOSSES			uid &		CH	
	2 2 2 4	7 585		4	<u>(п</u>	. 60		135	278	121	638	55			125	200	CACE LO		ES	Mater	Ç	OR	
	5 1 5 6	5 146														4	SURFAC	SE	TIMATE	ial C		DRI	
	536	525	6	 			,ភ ភ		<u> </u>	 			00			50	MUD BUI	NET.	DDAILY	onsur NOSU	SIAVAD		
	518	370	4	4	2	N	9	12 ^x	Ν		Ν	4	4	31	12	- 00	BARITA	\neg	\square	nptio	GER	GH	i
	141	141		 													BENTON		BUU	n Rep IATE			
					 				 									TE	ALS	port)S A	
									<u> </u>						i 				MATER			<u>ن</u> ہ	
	600	503		10			17	21	N		175		10	4	12	21	LIGNO						
			<u> </u>				 	·			" но						,	\square					
			<u> </u>			 			 		LE							THIN					
		 		 														VERS					
	60	48				თ			 					N	ர		CMC HI VT	$\left \right $					
	183	71	9	6	 	 	15	18			N	μ	24	ò	01	21	CMC LO VI						
	40	26	N		N	N	ч				N	Ν		ω			*C	POLYM	MAT	ΨO	٤		
												 				 		ERS	ERIALS	PERATO	ELL NA		
			 																	RS C	Sm Lu		
	ω 55	230	თ	ц Ш Ш	 	10	<u>н</u>	19				4	22	л	16	29	CAUSTI SODA	1c	TO CON	l. BI	31/2-		
	114	37		20				ļ 	24	 	 		မ ယ				SODA ASH		TROL PR	JORSI	2)	
ļ	21	21															LIME		IOPERTI	AARD			
	580	325		30				30	1		<u> </u>		125	30		40	GYP		ES	M.	- 		
	41	25							·				 	16		 	WALNU	017		НОГ	>		
	2	N							.							 	AL. STEARA	IERS D		HG GATE	REA -		
	9 1	N					 				<u> </u>	-	4	4	2	ω	D.D.			MES.L	NOK		
	40	30	-				<u></u> თ	18.	25		 		<u> </u>				DFLO	7		VEN	C H.I		
	38	18	<u> </u>				<u> </u>			ļ				20		.	MICA			LOKE	EA		
4.	5			.	ļ		and the state	J						25	-	1	CATE						

NN	CHOR DRILLING	FLUIDS A	S					C/ LC	J			•	NORT	Ч SE	A	
Uing Flui	d & Material Consumpt GYP - LIGNOSULFON	ion Report ATE					OPERATOR -	A/S C. E	NORSI SLANCI	KE SH HARD,	ELL M. }	- AHEA	WEST	, VEN	TURE	
, DATE	ESTIMATED DAILY	BULK	SACK SACK			z	ATERIALS ADDE	D TO CONT	ROL PRO	PERTIES		E				
	3 mos rocomes			THINNERS		POL	YMERS	170				OTHERS	TE			
	LOSSES SURFACE SURFACE SURFACE SURFACE VOLUMIN	BENTONI	LIGNO		CMC HI VIS	NC KIS	¢ /	CAUST	SODA ASH	LIME	CP1	AL. STEAR	D. D.	IDFLO	MICA	WALNIN
3 6.4	7 4					0		7						10		
4 7.4	7 6				N 	6 2		9						 		
5 8.4	45 1				x ⁶	ω		υ								
6 9.4	133					ω		5		40						
7 10.4	171 2		6			18		14	00							1
8 11.4	140						 			 	+			<u> </u>		
19,12.4			 			ω	 		- <u>-</u>							
50 13.4																
· · · · · · · · · · · · · · · · · · ·			15					0		4						
			4	12 1/4"	HOLE			2							52×	
17.4	451) (1480) 1200	9	150		06			ω						<u> </u>		
5 18	100 42					4		27	ω			+				
5619.5			NO MAJ	ERIALS USE	Ü											
L OHMAND T	0692 224515136 518	141	600		1 09	83 40		355	114 2	1 580	25	N	9	140	38	4
TOTALS 1	1143 399816666 573	3 150	767		161 2	68 47		434	125 2	1 620	25	2	9	150	90	Li.
ALL DARKS	NVE. RY JUS M		MUCHUMPE	DUE TO RE	PAIR	OF R	IG IN BER	GEN.								
										Ì	Ţ		Ì		Annual State	Ę

	NCHO	OSLO -	- STAVAN		UIDS	AS										•	NO C)RTH	SEA	
rilling FI	uid & M	aterial (- STAVAN Consur	nption	Report						0PI	ERATOR .	31/2-2 A/S N)RSKE	SHELI		REA NC	DRTH	SEA	Ê
D SYSTEM	1 GYP	- LIGI	NOSULI	FON. TI	ניז						EN	GINEERS	C. BL/	NCHAF	Ю, м.	HOL	GATE			
		ESTIMAT MUD V	OLUMES	~	BULK	MATERI					MATE	AIALS ADDI			TIES	WE	E			
	SSES SUE	CSSES IRFACE	POLUME DEULT	34.3 . 2	NTONITE		IGNO			L VIS		Ĵ	IUSTIC SODA	SH ME	'P	LLOPH	E. EARAT	·D.	F-5 MIC	1
	22		4		8	\uparrow				204		• 		L	G		s	_		3
														_			_			
21.5																				
9 22.5											-						_	_	+	
27.5											ŀ							_		
1 28.5									+		ω		4							
2 29.5			 		 	 														
3 30.5			 	 								 	2		<u> </u>					
5 31.5		160	400		6		40					 	11 1				 		 	
		20	19	· ·							7					 	<u> </u>		 	<u> </u>
7 3.6			4	0[2					30					- <u> </u> 	 			 	<u> </u>
8 4.6	21	20		<u></u>	 		15						10			 				
5.6	25	5 ა					15			15	9		თ თ							
0 6.6		30	45	4						45			10							
1 7.6		64		ω ¥							ω		9			 				
FORWARD	111433	1 8668	6666	573]	50		767		16	1 268	47		43:4 12	5 21	620	25	N	9 1:	50 90	73
STIMATED	11189,	1345 1	7176	595]	58		837		16	1 358	70		48513	1 21	620	25	4	1	51 90	73
REMARKS:																				

										Sunta Sunta							11. 12. 7 (m) 4				
A	NCHO	V DR	- STAVA	IC FL	UIDS	AS								ר כ ר כ ו כ	0			-	JORTH	SHA	
illing Flu	uid & Ma GEL	terial (- LIC	Consu	mption LFONA	n Repor	~+						OPERA		A/S NO	<u>ORSKE</u> ANCHAF	SHELI ND, M.	HOLO	ATE	ST VEI	N. LOIK	
		ECTIMAT			R I	<>						MATERIA		TO CONTR	OL PROPE	ATIES					
	18	MUD V	OLUMES		MATERIALS	MATE	FIALS		HINNERS		י ר	OLYMERS		12			OHINE				i L
	OSSES SI SURFACE	LOSSES SURFACE	NOLUMI 100 BUIL	BARITE	RENTONI		IGNO			MC HI V	CMC O VIS	¥C	DIASE	CAUST SODA	ODA ISH IMP	AL.	ELLOP	TEARA	LF-5	MICA	IAT
2 8.6			70	ი	£۲		30				12	ω		15					30		
3 9.6			50	N								Ч	100 ^X	6			80x				107%
410.6																					-
511.6																					
612.6		17	 	N					 									+			
713.6		.19		35×							 					120			293		
814.6	7	62	-																-		
915.6			. 			-		-													
016.6			 																-		
117.6				:	 									_				-			
218.6		 	 		-																La
31.9.6			 		- 		-								<u> </u>						1
4120.6	f																				
5 21.6				-																	
FORWAND	11189 4	345 1	7176	595-	158 8	37				161	358	70		485 1	31 2	L 620	25	4	9 151	90	73
STIMATED TOTALS	111894	345 1	7296	604	159,5 8	37				161	373	74		506 1	31 2	1 6.2.0	25	4	9 181	90	73
AEMARKS:	MAT	AL	ACK	- SAI	N. NO	N															

	AZ	СНС		°−s		FIL	IDS	A.S										C/ LC	I 3			, 1		NORT	H Se	>
Drillin	g Mu	d Prop	Derties	D, C	ord L	IGNO	SULFO) NATE							<u>n</u> o \$		אָ _ש אָ 	A/S	NORS	KE S	HELL		MES ATE	T VE	NTUR	F
		DEPTH												OPERT	IES											ار متد ا
2 0 				×o		VISCO:	SITY		IELS	in _{cc's}				iltrate A	nalysis		TORT		¹⁸ 81	81						the second
		ETERS X	DENSITY PO	SG G	A.V.	P.V. Cos	Y.P. #/100 50	10 4.M.	LUIDLOSS 301	CAKE 32 nds	H.T.H.P. CC's	PH	+ FOBBM	Ca. ++ ppm	PIIME	% OIL % SO	% SA	BENTONIT	POTASH	XC CYP			op	ERATIC	NU REM	ARKS
<u>5</u>		018	1.06	95			40 30	- R	ິດ ພ		F	<u>2</u> , 5	60	0 0 • 2		N		20				Ч	oggin	ġ		
6 10	ω ω	445	1.061	0 0 1+			-	N	ဂဲ									204				0	penin	g ho	1e 2	6=
17	ω	812	1.061	0 0 1+				N	<u>ò</u> ·		Ц	œ					N	2.5			 			 = 		
8 12	2.3	812	1.061	0 0 +													N	2.5				W	0.W			
。 1	ω	812	1.10					16	ັ <u>ບ</u> ນ									2.5				ß	leani	ng u	oų d	le.
, T 0	ω	812	1.30	75	33.5	25	27 22	8	0 1	•	F	6 2 .	5 TR	0.2			N	õ						1 = 		
	ω	812	1.50	60	39.5 5	29	21 2	5	2.9 1		н Н	9					- <u></u>	7.5						 = 		
	ω	008			AIXIN	ፍ																Ra	in 20	.=		- Same _
	7.3	800		7	AIXIN	ດ 																Ra	n BC	Ф		and see
	ω 	800	1.22	41	Г6.5 5	17	ω 	N (17	8 1		9.	.68) 2.6	0.2		8		ហ	ω	ن <u>ب</u>		Н.	ested	BOL	•	
25 - 19	ω	823	1.20	44	18.5	14	9	сс <u></u>	5.8 2		9.	.66	2.]	. 0.2		9		ပ်ာ	ω	•		ק	cilli	ng 1	75"	hol
26 20	ο. 3 1	025	1.22	49	23	17	12 5	12 8	2		01	12	2.2	0.2		10	<u> </u>	20	ω	ω	 			 = 		
77 2	ι. 3	176	1.21	5 5	29	20			9.5		10	14	24	• 15		10	1/4	24	3	0		D W	iper cill	trip ahea	d.	
2.8 2	2.3]	1425	1.22+	5 0	22	16	12 5	8	9.0		10.	8 14	18	• • •		12	1/4	9	ω	• 25		<u>а</u>	<u>.111</u>	ahea	d 17	- Ju
REMA	SXE																									
															-		1000 1000 1000 1000 1000 1000 1000 100									
1	Sec. 1	- 19 TO 10		- 2 -	e.	ŗ	i	• · ·										1. Suidhtur		Contraction of the	A . Same					THE REAL OF

ANCHC	OR DRILLING FLUIDS AS	NORTH SEA
rilling Mud Prop 30 SYSTEM <u>SYR</u>	perties Record P/LIGNOSULFONATE	OPERATOR A/S NORSKE SHELL RIG. WEST VENTURE ENGINEERS C. BLANCHARD, M. HOLGATE
DATE DEPTH	MUD	DPROPERTIES
		Filtrate Analysis / RETORT / A / A / A /
METLAS U	DENSITY PPG C Sec.qu A.V. Cps P.V. Cps Y.P. #100 Sq.11. UID LOSS 30 Min CAKE 32 nos H.T.H.P. CC'S PH 18000m	Ca ++ PDM PI MI SOLIDS SAND STATE HIE BOUNT COPERATION REMARKS
23.31481	1.3052251814409.6111101720	.25 Raise pH-wiper tri 000.55 10 1/4 28 3.25 for logs
) 24.3 1481	1.30 51 27 20 14 40 9.5 1 11.0 15 20	.3 Run logs, unable a 000.6 10 1/4 30 3.0 pass.shpc
1 25.3 1481	1.35 53 35 28 14 35 9.8 1 10.8 18 20	000.6 11 1/4 29 2.5 logs Incr. mwl.35
2 26.3 1481	1.30 ⁺ 45 28 19 17 13 8.5 1 10.8 18 16	600.6 11 TR 22 4.5 Loss circ. reduce
3 27.3 1481	1.31 45 27 19 15 14 9.5 1 11.0 18 15	500.7 11 TR 25 6.0 Log clean out for casing
1 28.3 1481	1.31 45 23 16 14 14 9.5 1 10.8 17 18	800.7 11 TR 25 6.0 Run+cement+ casing
	1.30 45 24 17 13 14 9.5 1 10.6 18 18	.2 Problems with seal 800.6 11 TR 25 5.0 .2
30.31501	1 26 47 28 20 16 20 4 9 1 11 2 18 12	•5 2001.0 10 TR 25 4.0 Displ. riser w/mud
/ 31.3 1523	1.25 45 29 22 14 15 5.0 1 11.5 18 16	6001.5 10 TR 23 5.0 Req. 1111 1055 CO
1.4.1535	1.25 45 27 20 13 10 4.7 1 10.9 18 16	.7 POOH jammed barrel 6001.4 10 TR 25 5.0 RIH, core
1536	1.26 50 31 23 15 10 4.8 1 11.0 17 16	.55 20 % recovery Core 6801.2 10 TR 25 5.0 no. RIH with bit
3.4 1560	+ 4 4 12 4 9 1 11 0 17 16	.5 70 % recovery core 6201.0 10 - 25 5.0 no-RIH continue
4.4 1577	1.26 47 32 23 17 12 4.9 1 11.0 17 10	0001.6 11 - 24 6.0 IDd for core no-4
5.4 1591	1.26 45 29 21 15 12 4.7 1 10.9 15 12	.45 .45 .45 2001.0 11 .3 23 5.3 .3 201.0 .3 .3
-EMALKS		Аталозат в ос

	ហហហ	1 1 1 1 1		
2 2 2		5.18 5.18		ANC
858 935 208 380	358 1 358 1	858 1 1 1 1		CHO
	2 2 1 1	· 2 1 + +	DENSITY PPO	R D osto
48 2 52 3 52 3 52 3	- 5 5 5 - 5 2 Η - 3 3 3 3 3	5 5 5 3 5 3 3 3 3 3	SG G D Sec.	D – STI Reco
			A.V. cps	I EONI
229 1 20 1 21 1 226 1 226 1 225 1		30 1 30 1 26 1	P.V. COS	
			Y.p. #100 59.1	DS
				AS
		N 0 0 4	UIDLOSS 30 Min	
9		ω ω	CAKE 32 nds	
10 10 10	10,10,10,10,10,10,10,10,10,10,10,10,10,1	10.10.10.1	20001 A F.CC'S	
		10 3:10 3:10	DH IMF	
400 400 360 320	280 300 240 240	300 300 300 240		
		1.4 1.4 1.4 1.4 1.6 1.6	DPERTIE Irate An DR	
			alysis	m OP K
0 0 0 0 0	8 8 2 2 1	8 6 9	% SOL	ERATOF GINEER
			SAALS	S C.
	<u>, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</u>	13 13 13 2.5	A CONTRACTOR	/2-2 S NOJ BLAJ
			POTASH #10	RS KE N CHAI
		7	POLYMER #10	SHEL
		8.2	z z	· F HO
	Rut	9 Set 9 Set		- AREA - RIG. LGATI
ght h le in S.	riev	t Anc tort d eng	OPE	NORT
nole rlp.	ν τ τ τ τ τ τ τ τ τ τ τ τ τ	:hors repa :hors jinee y	RATION	VEN
wt. wt.		r pu	REMAN	TURE

TECHNICAL REPORT FOR SHELL EXPLORATION NORWAY ON SHALE ANALYSIS . FROM WELL 31/2-2

MAY 1980

PREPARED BY: RESEARCH AND DEVELOPMENT DEPT. ANCHOR DRILLING FLUIDS A/S

de

RUNE LARSEN TECH. SERVICE

CONTENT:

ANALYSIS OF SHALE SAMPLES SHELL EXPLORATION WELL 31/2-2 750 m. - 1475 m.

TESTS PERFORMED :

The second second second

Í.

- 1) MINERALOGICAL ANALYSIS OF BULK SAMPLES
- 2) MINERALOGICAL ANALYSIS OF SHALE FRACTIONS
- 3) DETERMINATION OF ION EXCHANGE CAPACITY. CEC.

and in the sector with the first sector with the

See. 5. 64

4) SHALE HYDRATION TESTING

INTRODUCTION

Shale cutting samples have been collected from Shell Exploration Well 31/2 - 2. The samples have been taken by 25 m. and 50 m. intervals of depth between 750 m. and 1475 m. The shale samples were subjected to both physical and chemical tests attempting to characterize the properties of the shales as fully as possible.

In the light of this analysis the problems of the tight hole at 880 m., will be examined and related to the mud system that would be recommended for this area. Ref. Appendix section.

MINERALOGICAL ANALYSIS

The mineralogical composition of the shale samples, was determined using the X-ray Powder Diffraction method.

The samples from Well 31/2-2 were washed, dried and milled to reduce the material to μ 74.

The XRD-method gives a good qualitative determination for minerals that exists in concentrations more than 5%, but the quantitative determination is less accurate and must be looked upon as semi-quantitative.

By the XRD-method the minerals were identified as follows:

SMECTITE :	17 Å
ILLITE / MUSCOVIT :	10 Å
CHLORITE / KAOLINITE :	7 Å
BLANSKIKT : MIXED MINERALS	10-14 Å
QUARTZ :	4,26 Å
FELSPAR :	3,24 '
PLAGIOKLAS :	3,18 Å
CALCITE :	3,03 Å
PYRITE :	2,73 Å
RALITE :	2,82 Å
AMFIBOL :	8,5 Å

From 1000 m. of depth 9Å minerals were noted. These minerals were not anticipated, but were recognized as possible ceolite.

The amounts of Halite and Barite will be referred to as additives to the drilling fluid, not 100% wahsed out of the test sample.

SAMP LE DEPTH	SMECTITE	ILLITE MUSCOVIT	CHLORITE CAOLINITE	BLAN- SKIKT	9 Å CLAY MINERALS	QUARTZ	FELSPAR/ PLAGIO_KLAS	CALCIT
750 M	30	45	15	5-10	0	TR	21 E	0 - 5
M 008	45-50	25-30	20	0	0	TR	TR	ΓI
850 M	5 5	25-30	01	σ	0	TR	TR	0
M 006	85-90	01	տ	0	0	TR	TR	0
950 M	06	5	5	0	0	TR	TR	0
975 M	80	01	5	0	0	TR	TR	0
1000 M	70	15	01	0	0	TR	TR	ΤH
1025 M	80	01	5-10 -	0	0	TR	TR	0
1050 M	85	5-10	5-10	0	TR	ΤR	TR	0
1075 M	80	10	10	0	ΤR	TR	TR	0
1100 M	80	10	10	0	TR	TR	TR	0
1125 M	80	10	10	0	TR	TR	TR	0
1120 M	06	5	5	0	TR	TR	TR	0
1.175 M	06	თ	<u>5</u>	0	TR	TR	TR	0
1200 M	06	ഗ	<u>لي .</u>	0	TR	TR	TR	0
225 M	85	5-10	ហ្	0	TR	0-5	0-5	0
	85	5-10	ர	0	TR	0-5	0-5	0
	75	10	ர	0	0	ഗ	σ	0
M ()	75	10	ர	0	0	ഗ	0-5	0-5
- 2 . 5 M	75-80	15	ர	0	0	0-5	0-5	0
13:0 M	80	01	თ	0	0	0-5	0-5	0
1.3. N	80	01	ர	0	0	0-5	0-5	0
М (т	80	10	Ū	0	0	0-5	0-5	0-5
	08	01	0 - 5	0	0	0-5	0-5	ഗ
	65	20	൱	თ	0	0-5	0-5	ы
- 17 - M	6 5	15-20	ហ	ഗ	0	0 1 5	015	ഗ

h

:

	1450 M	N L	M and	1	· · · · · · · · · · · · · · · · · · ·	-	-										เมืองไป	025 M	000 M	975 M	950 M	υὐΟ Μ	ະນັບ M	C ¹⁰ .1	D:T	
	0T	0T	0-5	თ	0-5	5-10	υ	თ	'I'R	15	0-5	0-5	ហ	0-5	S	5-10	0-5	0-5	თ	0-5	0-5	ர	ர	0-5	10	SMECTITE
.0	50	30	35	40	15	40	35	25	01	15	10-15	5-10	15	20-25	30-35	25-30	15-20	15-20	20	35-40	50	25	40	15	20	ILL/TE MUSCOVIT
	5-10	თ	5-10	0T-5	01	10	5-10	5-10	10	ர	5-10	տ	10	15	15	10	10-15	10	10-15	οτ	5-10	10-15	25	10-15	10	CHLORITE
-10	10-15	ο	Ծ	5-10	15	10-15	10-15	20	10	10-15	10	10	5-10	ப	5-10	10	5-10	25	5-10	ர	5-10	თ	0-5	0-5	5-10	BLAN- SKIKT
	σ	25-30	30-35	25	35-40	25	25-30	30-35	40	25	25	35	35	25	20-25	30	40	30	35-40	25	10	20-25	15	15	30-35	QUARTZ
	0-5	5-10	თ	ហ	5-10	0-5	σ	ъ	10	თ	10	თ	თ	ហ	თ	0-5	ហ	0-5	თ	თ	0-5	თ	წ	15	5-10	FELSPAR
	0-5	ர	0-5	0-5	5-10	0-1 5	0-5	0-5	თ	ហ	ហ	ហ	0-5	0-5	0-5	0-5	0-5	0-5	0-5	5	0-5	σ	0-5	10	0-5	PLAGIO KLAS
	5-10	15.	თ	0-5	0-5	ĬŖ	0	0	0T	10	10-15	20	თ	თ	IR	0	0	ഗ	ហ	თ	5	თ	TR	10-15	თ	CALCITE
192	TR	TR	'I'R	TR	ŢŖ	IJŖ	IR	IJ	TR	0-5	0-5	IR	0-5	ΤR	17R	ĬŖ	D	IR	ŢŖ	TR	0-5	0-5	0-5.	0	0-5	PYRTTE
	0	0	0	0	0	0	0	0	0	0	0	տ	თ	თ	თ	ர	ர	0	Ę	0-5	0-5	ហ	თ	ர	0	HALTE
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	თ	0	0	IR	0	AFTBOL.
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	IR	TR	ர	0-5	TR	0	BARL'15
	TR	1R	TR	0	0-5	0	IR	:	0-5	თ	თ	0-5	0-5	0-5	0-5	0-5	0-5	ΪR	0-5							CLAY MINE
	1	1				L	l	L	ي. ا	L	la da	1 ~~	I	J	Lincia		-	a distant	-	: تا تعط			1 .		1	R

The significant feature throughout the section is a fairly low concentration of Smectite which contains the swelling clay Montmorillonite.

There is high concentration of Illite/Muscovite combined, with presence of Chlorite/Cholinite and 10 - 14 Å clay minerals, which can either be Illite/Chlorite or Illite/Smectite.

In this case it is Illite/Smectite clays in combination with Smectite due to its swelling nature.

At 850 M - 900 M the Smectite concentration does not correlate to the problem of tight hole, experienced in 31/2-2though the shale hydration test and cation exchange capacity gives a positive value for a swelling clay situation. A further investigation to the clay fraction will assist to evaluate this situation.

Methylene Blue Index

This test on the shale is identical to the on performed on the drilling mud and is designed to measure the surface area and cation exchange of the sample.

Rigorous treatment of the results is difficult since the samples are a complex mixture of minerals of ill-defined particle size. However, a correlation can be established between the Methylene Blue Index (M.B.I.), clay contents, shale hydration and mineralogy.

The Methylene Blue Index determination is carried out on dried ground shale samples as follows:-

A sample of dried shale (1.0g) was titrated with 0.01N methylene blue solution after pre-treatment with 3% hydrogen peroxide (15 mls) and sulphuric acid (1 ml of 5N) for 10 minutes on a boiling water bath. The end point was determined when a drop of slurry on to a filter paper formed a light blue halo. The reaction should be reproduced after leaving the solution stirring for 1 minute. The Methylene Blue Index (M.B.I.) is the milli-equivalent of methylene blue absorbed per 100 grms of dry shale.

Generally, values of 0-5 indicate inactive shales, of 5-10 moderately active shales, possibly requiring inhibition, and of 10-15 highly active shales containing montmorillonite. TABLE 3.

DEPTH M. INACTIVE ACTIVE	HIGHLY ACTIVE
750	
800	
850 2,5	
900	12,5
950 8,5	
975 4,5	
. 1000 8,0	
1025 4,0	
1050 9,0	
1075 6,5	
1100 8,5	
1125 6,0	
1150 ,5	
1175 5,0	
1200 3,5	
1225 3,5	
1250 4,5	
1275 7,5	
1300 6,5	
1324 3,5	
1350 4,5	
1400 3,5	
1425 8,0	
1450 2,0	
1475 2,5	

The results given in Table 3 show a decrease in cation exchange capacity with depth. The CEC value from 850 -950 M. can be directly related to the type and quantity of the clays provided in the X-ray Diffraction analysis of the shales. This shows the presence of a combination of highly active clay minerals.

SHALE HYDRATION TESTING

This test is designed to show the hydratability of the shale when it is put in water, and also the effect of a KCl combination in preventing and reducing the hydration.

The shale hydration test was carried out on a dried ground sample.

A sample of 10 ml. material was carefully put into a 50 ml. cylinder containing 45 ml. destilled water. The hydration is, that volume the material takes after swelling, expressed in per cent of the original volume of 10 ml. dried material.

To determine which effect the different cations have upon the hydration properties, the samples can be treated with the ion wanted, and thereafter make a hydration test to obtain a comparison to the different results.

The samples from Well 31/2-2 were dried out and milled. This material was shared into two equal parts, one of them was treated with KCl. Hydration test was executed on both samples.

The KCl solution was prepared with a concentration of 25 PPB KCl. The test showed these values:

TABLE 4

DEPIH M.	Non-treated sample	K ⁺ treated sample	% Reduction
750	_	_	-
800	-	-	-
850	125	. 90	35
900	170	115	55
950	155	109	46
975	140	90	50
1000	120	87	43
1025	105	90	15
1050	130	93	37
1075	140	105	35
1100	145	90	55
1125	130	100	30
- 1150 ·	100	87	13
1175	120	90	30
1200	125	80	45
1225	115	92	22 ,
1250	130	93	27
1275	150	90	60
1300	150	110	40
1325	110	85	25
1350	150	103	47
1375	145	103	42
1400	140	100 .	40
1425	140	105	35
1450	105	94	11
1475	115	95	20

SHALE HYDRATION CHART % SWELLING

The results in Table 4 shows the high levels of swelling in the 17½" hole. The swelling percentage at 900 M. must be related to the problem of tight hole.

The test solution containing 25 PPB KCl, will indicate that a large concentration of K+ environment assisted with an encapsulating polymer, will provide inhibition. The inhibitor concentration levels will be dependant on the drilling rate and the nature of formation being drilled, due to the fact that this is a dynamic situation where newly drilled cuttings continously are being injected to the circulating drilling field. In the dynamic drilling situation levels encode in ibiters should be maintained, to ensure that the inhibition proceeds at the desired rate.

DISCUSSION

The results from the bulk sample $(74 \times \text{grind})$ show low levels of smectite averaging 5.2%. This fraction is mainly comprised of the swelling clay, montmorillonite. Some montmorillonite may also be present in the Blanskikt or mixed layer fractions; this averaged 8.7% of the bulk sample. However, about 45% of the bulk fraction is made up of non-clay minerals.

The 2# grind is designed to exclude the non-clay minerals and thus give a more realistic figure of the clay constituents. Here we see that below 900m, smectite and mixed layer minerals make up 80% of the clay fraction. The Thite/muskovite fraction is greatly reduced, indicating that it is largely made up of muskovite (mica), which fits in well with the geological data.

The accompanying graph has been prepared to check the correlation between the XRD data and the methylene blue index or shale factor. The shale factors determined by the logging crews at the rigsite, are included together with the hole caliper and lithology.

No clear correlation can be made between the clay content, shale hydration and shale factors, although there is some evidence that the mixed layer clays below 1275m are more bentonitic. This is disappointing because the laboratory analysis were carried out on the same samples which were all prepared using identical techniques.

However, XRD is only a semi-quantitative method. With the $74 \,\text{M}$ grind the larger non-clay minerals tend to shadow the reflections of the smaller clay particles, while with the $2 \,\text{M}$ grind there is a possibility that they will be some enrichment of the smectite fraction as these are the smallest particles, though the $2 \,\text{M}$ grind is now generally accepted as being the clay fraction. In addition, there are errors in relating the size of the deflections to the amount present in the sample. This is true to a much lesser extent with the $2 \,\text{M}$ fraction, when the absence of other minerals make calibration much simpler.

The differences between the field and laboratory shale factor results are probably best explained by different washing procedures. If the sample is washed very virgorously;, then the finer, fragile hydrateable montmorillonite clays tend to get washed away leaving the sample artificially enriched with less reactive clays. Values from the rig tended to be 2-3 times greater than those from the laboratory for samples caught from the same depths.

Another reason why the set offer fraction in the bulk sample is so low, is that the cuttings with the highest smectite concentrations were dispersed into the multiple they reached the shakers. The following calculations were made to see whether an estimate of this could be made from the cation exchange capacity measurements on the mud which rose dramatically in this section, despite a large amount of dilution.

cont'd ./..

cont'd ...

e.g. -20.3.80 Amount drilled 834 - 1025 m Volume drilled at 0.1522 $m^3/m = 29.6 m^3$ Assume shale density of 2.2 S.G. = 63.9 m/t1776 bbls. Volumes : Start (total): Mud in circulation : 1366 11 ... Water added : 560 - 11 Final volume : 2206 15 ppb. Initial CEC : Final CEC : 20 Thus the mud in circulation was increased by 5 ppb to 20 ppb. Amount of bentonite required : 1366 x 5 lb 6830 lb = 3.09 m/t= Amount of bentonite required to raise the concentration to 20 ppb in the water added is : 559 x 20 lb = 11180 lb = 5.07 m/tAssume that $\overline{5}$ of the increase in CEC readings is due to smectite Total smectite in mud : 4(5.07 + 3.09)5 = 6.53 m/t% of bulk sample containing smectite in mud = 6.53 63.9 10% = Similar calculations carried out on intervals 1025 - 1176 m and 1176 - 1425 m showed that at least 11% of the total amount of rock drilled was smectite dispersed into the mud.

CONCLUSION

In view of the methodological problems discussed above, we feel that this approach lends itself to qualitative rather than quantitative analysis. Thus no attempt has been made to correlate these results directly with the more troublesome sections of the hole.

cont'd ./..

cont'd ...

The results from the clay fraction $(20_{\mathcal{H}})$ clearly show that smectite is the predominant clay mineral and this confirms the feeling on the rig, that the section was a typical gumbo shale. In view of this, the more inhibitive KCL-Polymer mud system should substantially improve hole conditions generally, but should not be relied upon to stop the trouble caused by mud rings.

- 3 -

الاست م<u>ر ، ، مع</u> بالاستثناء الأل<u>اسا</u>ت سريب