Denne rapport

L.NR. 12886070064

KODE leU 34/10-8 nr.24 Returneres etter bruk

statoil

Den norske stats oljeselskap a.s

050-P5.16. 10ST-evaluaring

WELL TEST REPORT

PL 050

WELL NO. 34/10-8

NOVEMBER 1980

CON	TENTS:	PAGE
1.	Introduction	1-1
2.	Objectives	2-1
3.	Conclusions	3-1
4.	Discussion	. 4-1
	4.1 DST analysis	4-1
	4.2 RFT analysis	4-2
	4.3 Reservoir temperature	4-2
	4.4 Sampling	4-3
	4.5 Fracture test	4-3
App	pendices	
A 1	Appendix A1	A1-1
	DST analysis	A1-2
	Pressure, choke and flowdiagram	A1-9
	Rate data	A1-10
	Layout of teststring	A1-11
	Gauge arrangement	A1-13
	Diary of events	A1-14
A2	Appendix A2	A2-1
	RFT data	A2-2
	RFT data plotted vs. depth	A2-3
	RFT data from well 34/10-8 compared	A2-4
	with data from previous drilled wells	
А3	Appendix A3	A3-1
	Reservoir temperature 34/10-Delta	A3-2

A4	Appendix A4	A4-1
	Surface sampling on separator	A4-2
	Bottom hole sampling	A4-2
	Wellhead samples	A4-3
A 5	Appendix A5	A5-1
	CPI log for well 34/10-8	A5-2
A 6	Appendix A6	A6-1
	34/10-8 Fracture test, operation report,	
	data and analysis	A6-2
	•	

٠,٠

r

WELL DATA

Operator : Den norske stats oljeselskap

Well name : 34/10-8

Location : 61° 09' 59.53"N

01° 12' 3.40"E

Classification: Exploration well

Drilling rig : Deep Sea Saga

Spudded: 8. March 1980

Completed: 26. May 1980

RKB elevation: 25 m

Water depth : 158 m

Total depth : 2215 m RKB

Objective : Jurassic sandstone

Status : Plugged and abandoned

2. OBJECTIVES

The objectives of testing well 34/10-8 were:

- 1. To test the Ness member of the Brent formation for productivity, pressure and temperature.
- 2. To obtain representative samples of the reservoir fluid.
- 3. To run the RFT to obtain a pressure profile in the Brent formation.
- 4. To get an estimate of the fracture pressure in the Brent formation.

3. CONCLUSIONS

- 1. RFT and DST data in the Brent formation indicate that well 34/10-8 represent the same pressure system as in wells 34/10-1, 3, 4, 5 and 6.
- 2. The drill stem test indicate a permeability thickness of $4363 \text{ md} \times \text{ft}$ in the tested part of the Brent formation.
- 3. The calculated permeability (78 md) is uncertain due to poor cement bond around the tested interval.
- 4. The DST analysis indicate no formation damage.
- 5. The samples taken indicate the same hydrocarbon system as in wells 34/10-1, 3, 4 and 5 in the Brent formation.
- 6. The gradient in the oil zone is estimated to 0.074 bar/m. In the water zone the gradient is estimated to 0.105 bar/m.
- 7. The maximum temperature recorded during the drill stem test was 73.2° C or 163.8° F at -1820 m MSL.
- 8. The fracture test indicate a fracturing pressure of approximate 5500 psig at -1820 m MSL (i.e. equivalent mudweight 2.07 g/cc).
- 9. No water was produced.
- 10. Sandslugs was observed at chokechanges.

4. DISCUSSION

4.1 DST analysis

One drill stem test was run in well 34/10-8. The Ness member of the Brent formation was perforated from 1869 m RKB to 1873 m RKB.

The DST analysis indicate a permeability thickness of 4363 md ft and a permeability of 78 md. However the cement bond log indicate poor formation bond in the tested interval. Therefore the formation thickness used in the calculations is not well defined. The calculated permeability is therefore uncertain. The calculated skin factor indicate the same. A negative skin factor is not realistic in these formation.

During the PBU the APR-N valve was leaking in 4 - 5 minutes. The data taken after the leak was therefore not used in the analysis. The staight line observed after the leak is assumed to be affected by the leaking valve.

The reservoir pressure calculated from the PBU compare perfectly with the RFT data. Both tools indicate a pressure of 4461 psia at -1820 m MSL. In appendix A2 is the reservoir pressure calculated from the PBU plotted and compared with the RFT data.

An actual productivity index of 7.52 M3PD/bar is estimated from the DST. As discussed previously the formation height which is contributing to this index is uncertain. Therefore the value calculated should be used with care.

The drill stem test was analysed by using the Horner methode. No quantitative type curve analysis was possible. The type curve technique was only used to identify the semilog straight line. The analysis of the DST can be found in appendix A1.

A thickness of 17 m, and average porosity of 15% and a water saturation of 40% was used in the analysis. These values are estimated from the CPI log in appendix A5. PVT properties were taken from the Core lab. report no RFLA 79192 based on a sample taken during DST no. 2 in well 34/10-4.

4.2 RFT analysis

The repeat formation tester was run in the Brent formation and good data was obtained from -1798.5~m MSL to -1981~m MSL.

The data are listed and plotted versus depth in appendix A2, and compared with the DST analysis and RFT measurements in previous drilled wells. A gradient of 0.074 bar/m is estimated down to approximate -1940 m MSL. A gradient of 0.105 bar/m is estimated below -1940 m MSL. The RFT and DST data compare well with data from previous drilled wells in the Brent formation.

4.3 Reservoir temperature

The maximum temperature recorded during the drill stem test was 73.2°C or 163.8°F at -1820 m MSL. This temperature is compared with the maximum recorded temperatures in the Brent formation in previous drilled wells on the Delta structure in appendix A3. The data indicate a temperature gradient of $3.5^{\circ}\text{C}/100$ m.

4.4 Sampling

Surface samples, bottom hole samples and a RFT sample were taken in the Brent formation. In appendix A4 the samples taken are listed.

The samples taken indicate a similar hydrocarbon system as in wells 34/10-1, 3, 4 and 5. c)

4.5 Fracture test

A fracture test was performed by injecting water at five different injection rates. The rate, wellhead pressure and bottom hole pressure was recorded. The data collected indicate that the formation was fractured during the test. A fracturing pressure of approximated 5500 psig is estimated. (i.e. equivalent mudweight 2.07).

The data collected can be found in appendix A6.

A1-1

APPENDIX 1	PAGE
DST analysis	A1-2
Pressure, choke and flowdiagram	A1-9
Rate data	A1-10
Layout of teststring	A1-11
Gauge arrangement	A1-13
Diary of events	A1-14

BOTTOM HOLE PRESSURE REPORT

Well	34/10-8	
метт	34/10 0	

Test no. DST No. 1

Test Date 17.5 - 18.5.80

Date of analysis 17.11.80

Gauge no. LY-DMR314, 1206

SUMMARY OF THE RESULTS

	,	
Kh md·ft	4363	
K md	78	
S	-0.8	
P̄ (psia) at- 1820 ss	4461	

Max recorded Temp. 73.2°C

Remarks

The cement bond log indicate poor formation bond around the tested interval. Therefore the formation thickness used in the calculations is uncertain.

A formation thickness of 17 m (55.8ft) was used in the analysis. See CPI log page A5-2

Signature

Well 34/10-8	Test date 17.5-18.5, 1980
Reservoir Parameters	
Perforations 1869 - 1873 m RKB	Zone(s) Vess
	Wellbore radius O.llm
	RKB Elev 25m
Midpoint Production — 1846 m ss Bomb at 1845 m RK	B <u> </u>
Pressure Functions Evaluated at —ss	Datum Depth —ss
Delta P required to correct to datum	Gradientpsi/ft
Estimated Average Pressure	
Formation Volume Factor 1.253 vol/vol	Viscosity 1.21 cp
Thickness 17 %	Drainage Areaacres
Oil Saturation 60 % Oil Compressibility	8.37 × 10 ⁻⁶ psi -1
1. 4	3.0 × 10-6 _{psi} -1
Gas Saturation	10 ⁻⁶ psi -1
Formation Compressib	oility
System Compressibility $C_t = S_0C_0 + S_wC_w + S_gC_g + C_f$	
Ct = 0. 6 x 8.37 x 10-6 + 0. 4 x 3.0 x 10-6 + - x - 10	-6 ₊ 3.0x ₁₀ -6
C _t = 9.2 x ₁₀ -6 _{psi} -1	
Rates Reported on Test.	
Choke 32 / LH inches Oil Rate 3135 STBPD Gas	Rate 1.196 MMSCFD
FTP Water Rate O BWD GOI	381 SCF/STB
OAPI 29.5 Gas Spec. Gra	vO. 622
Cumulative Production Oil 785.5 STB Gas	
Water	

Weil 34/10 - 8 Test Date 17.5-18.5, 1980 Horner Analysis Effective Production Time tp = Cumulative Production / Rate Reported on Test. /(3135) × (24) × (66) = 361 min Slope 177.126 psi/cycle Straight line starts at ____ P. 3447.7 psia P1hr _4311.1 psia p* 4461.0 psia Calculated Values $Kh = \frac{162.6 \text{ O Bu}}{M} = \frac{162.6 (3135)(1.263)(1.21)}{177.124} = \frac{4363}{177.124}$ K = Kh/h = 4363 /((17)(3.28) = 78.3 md. S = 1.1513 $\left[\frac{\text{P1hr} - \text{Pwf s}}{\text{M}} \right] + \text{Log} \left[\frac{\text{tp+1}}{\text{tp}} \right] - \text{Log} \left[\frac{\text{K}}{\emptyset \, \mu \, \text{Ct rw}^2} \right] + 3.2275$ $S = 1.1513 \left[\frac{431! - 3498}{177.126} + Log \left[\frac{361+60}{361} - Log \left[\frac{78.3}{(.15)(1.21)(9.2 \times 10^{-6})(.35)^2} \right] + 3.2275 \right]$ $t_{DA} = \frac{0.000264 \text{ Kt}}{\emptyset \text{ LC- A}} = \frac{0.000264}{0.000264}$ P_{DMBH} _ O P=P-PDMBH 2303 = 4461 psic @ - 1820 m ss PIa = Q = 3135 = 3.76 STBPD/psi = 7.52 M3PD/van PT₅₌₀ = Q₀ 3135 3.0 STBPD/psi = 6.92 M3PD/var

	BUILDUP	-10-8 NUMMER NES 1206	DST# 1	Anticipation of the Control of the Control
	NR.	TID	TRYKK	distance of the last
	منحد نبيد بنيد	15.39	3497.700	and or de
	å	15.43	4007.000	-
	3	15.45	4133.900 4157.700	-
	Š	15.51	4190.700 4202.700	-
	6 7	15.53 15.55	4213.400	-
	ġ	15559 15559 1566 166	4231.200	1
	10	16.03	4238.300 4245.40 0	engle in editor
	11	16.07 16.09	4257.100 4262.100	-
	įą	16.11	4267.000	
	15	16.15 16.17	4275.600 4279.800	
	16	16.19	4283.400 4290.300	
	îģ	16.25	4202 400	
	19 20	16.27	4296.300 4302.000	
	1274567890123456789012	16.35	4307.000	
	23	16.43	4296.300 4302.000 4307.000 4311.600 4315.500 4319.900	
	24 25	16.47	4319.900	
	26	16.55	4326.600	
	27 28	16.59 17.05	4323.100 4326.600 4330.200 4334.400 4338.400	
	29	17.11	4338.400	and a second
	30 31	17.27	4347.700	-
	32	79357159377159551975311975315975319	4378.400 4347.700 4352.000 4355.600 4359.100 4367.000 4367.000 4372.000 4372.000	
	34	17.51	4359.100	-
	36 36	18.11	4363.100 4367.000	-
	37 38	18.19 18.27	4369.500	-
	39	18.35	4374.500	
	71	18.51	4379 200	
	42 43 44	18.59	4381.300 4383.500	
	44	19.15	4385.300	
	45 46	19.31	4398.800	
	47 48	19.39	4390.600 4392.300	
Appeal of the	49	19.55	4393.800	
	50 51	20.03	4395,200 4396,600	
1	52	26.17	4337.788	
-	54	21:13	4464.500	
وأستعمد فأستندن كالمجار والمجاورة والما	87900000 879000000	21.21 21.31	4397.700 4402.700 4404.500 4406.600 4407.500 4407.500	
	57	21.43	4409.300 4411.500 4413.600 4415.400	
1	55	22.15	4413.600	
	60	22.31	4415.400 4417.200	
	es	23.63	4419.000	
	64	23.39	4422.600	-
	65 66	0.03 0.31	4424.700 4426.800	-
	67	0.59	4428.900	-
	69	1.47	4432.200	Charlest Street
	70	2.07	4415.400 4417.200 4419.700 4422.600 4424.700 4426.800 4428.900 4430.400 4432.200 4433.600 4435.000 4437.800	Chicago No.
	Żź	3.05	4436.400	-
	34567890123456789012345	21.01.01.01.01.01.01.01.01.01.01.01.01.01	4437.800 4438.500 4439.200	T showard
	75	3.59	4439,200	1

A1-10

FLOW DATA 34/10-8 DST no. 1. All pressure data from Lynes

Γ					1		_								_		Г								<u> </u>	Γ	Ī		7
		H2S			ned.	neg.	neg.	neg.			neg.				neg.						neg.								
	at	Co2			1.2%	1.0%	1.0%	1.2%			1.0%				1.2%						2%								
	Liq. and gas analysis at goos neck	oil S.G.			.882			.881						.881		.883													
	and gas ana goos neck	Sedim. %			.25	=		=	•15	0	0			 • 25	0	0	0	0	0		0								
	Liq	ЬН																											
		Water %																											
-		Gas S.G.			.645		=	.622	=	=	-			.622	=	=		=	=		=								1
		oil S.G.			8807	Ξ.	=	E	.8814	=	=			.8814	=	=	 	.8793	=		=								
1100	data	GOR scf/stb				361	383	377		3.74	371				387	370			351		401							٠	
rrow my nes	Separator data	Oil rate stb/d				1331	1269	1333	1284	1330	1335				3110	3234	3124	3153	3186		3000								
ממנמ		Gas rat. mscf/d			505	480	486	502	498	497	496			1142	1205	1195	1205	1202	1119		1202								
- 1		Temp.			09	64	89	89	70	71	74			80	85	90	93	96	96		96								
pressur		Press. Psia			355	353	352	356	348	350	350			380	397	397	391	390	367		401								
776	ses	Heater																		increased									
	Chokes	Manifold		ator	24/64	=	=	=	=	=	=		4"	32/64	=	=	=	=	=		32/64								
	nead	Temp.		separator	71		73	72	71	72	74		:0 32/64"	80	94	92	93	95	98	seal, WHTD	98	tor.							
Well head	Well	Press. Psia		hrough	1992	1990	1992	1985	1983	1982	1980		choke t	1346	1372	1370	1361	1356	1413	noke se	1364	separator.							
	n hole	Temp.		Lowed t		160.5	160.8		161.0	161.3	161.3	1 1	Changed c	162.8	163.0	163.0	163.3	163,3	163.3	Broken ch	163,3	Bypassed							
	Bottom hole	Press. Psia		FI	4053			4038	4034	4032	4030		Ch	3535	3529	3533	3519	3507	3509	Brc	3500	BY							
	į	Date/ I Ime	17.5.80	08.11	00.60	08.80	10.00	10.30	11,00	11,30	12,00		12.07	12,30	13,00	13,30	14.00	14.30	15.00	15.00	15,30	15,34	-						

WELL 34/10-8 DST 1 1869 - 1873 m RKB

I.D.	O.D.	Description	Length (m)	Depth (m)
		:		, ,
				, , , , , , , , , , , , , , , , , , ,
		Above rotary table	150 44	4.34
		SSTT String (sea bed)	158.44	154.10
		4½" Acme Pin x 3½" TDS Box	.16	154.26
2 712	4 00	3½"TDS Pin x Pin	.38	154.64
2.712		3½" TDS Tubing	1439.91	1594.55
2.50	4.50	X-Over 3½" TDS Box x 3½" IF Pin	.29	1594.84
2.25	5.00	Slip Joint (Open)	5.53	1600.37
2.25	5.00	Slip Joint (Closed)	4.01	1604.38
2.25	4.75	Drill Collars	158.34	1762.72
2.25	4.75	X-Over 3½" IF Box x 27/8" EUE Pin	.21	1762.93
2.44	4.87	7" RTTS Circ.Valve	.98	1763.91
2.75	4.75	X-Over 2 7/8" EUE Box x $3\frac{1}{2}$ " IF Pin	.20	1764.11
2.25	4.75	1 Stand Drill Collars	28.34	1792.45
2.25	5.00	Slip Joint (Closed)	4.01	1796.46
2.25	5.00	Slip Joint (Closed)	4.01	1800.47
2.25	4.75	l Stand Drill Collars	28.33	1828.80
2.25	5.03	5" APR-A Circ. Valve	.92	1829.72
2.25	5.00	5" APR-N Tester Valve	3.85	1833.57
2.37	4.63	4 5/8" Big John Jars	1.52	1835.09
2.44	4.87	7" RTTS Circ. Valve	•97	1836.06
2.44	5.00	7" RTTS Safety Joint	.85	1836.91
2.185	5.75	7" RTTS Packer from Top to Bottom of Rub	bers .59	1837.50
2.185	5.75	7" RTTS Packer Below Rubbers	.74	1838.24
2.25	2.875	2 7/8" EUE Pin x 2 7/8" Non upset Pin	1.05	1839.29
		2 7/8" Non upset Box x 2 3/8" Pin VAM	.15	1839.44
		2 3/8" VAM Box x 2 7/8" Non upset Box	.16	1839.60
2.25	2.875	2 7/8" Sand Screen (127 micron meter)	2.87	1842.47
3.50	2.00	X-Over 2 7/8" EUE Box x 2 3/8" EUE Pin	.16	1842.63
1.81	3.00	Baker R-Nipple w/Lynes gauges	.23	1842.86
		X-Over 2 3/8" EUE Box x 2 7/8" EUE Pin	.20	1842.06
		2 7/8 Tubing	9.28	1852.34
		Inside top of tubing joint		
		hanger for Sperry Sun gauges		
		2 7/8" EUE Tubing Joint	9.38	1861.72
		2 7/8" EUE Box x 3 1/8" 8 N Pin	.085	1861.80
		APBT Case 8000 psi Gauge	1.50	1862.30

A1-12

WELL 34/10-8
DST 1 1869 - 1873 m RKB

.D.	O.D.	Description	Length	Depth
		3 1/8" 8 N Box x 2 3/8" Pin	.29	1863.59
		2 3/8" EUE Box with a flat shoe		
		w/a 1 1/4" hole	.10	1863.69

WELL NO.: 34/10-8 DST NO.: 1 DATE: 16.5.80

	WIRELINE NIPPLE 1843 m		
广门	GAUGE TYPE AND NUMBER: DMR 314, S/N	1206	
1	DEPTH, PRESSURE ELEMENT: 1845.1 m RKB		RANGE: 5000 psi
	MODE: 2 minutes	DELAY:	7 hours
	ACTUATED: time 14:00	date:	16.5.80
	WILL RUN OUT: time 07:08	date:	18.5.80
西	GAUGE TYPE AND NUMBER: DMR 312, S/	N 1136	
1 1	DEPTH, PRESSURE ELEMENT: 1847.0	m RKB	RANGE: 10,000 psi
	MODE: 2 minutes	DELAY:	7 hours
	ACTUATED: time: 14:01	date:	16.5.80
	WILL RUN OUT: time: 07:08	date:	18.5.80
11			

	D.S.T. HANGER 1852 m	ı				
Γ^{++}	GAUGE TYPE AND NUMBER:	MRPG	0012			
	DEPTH, PRESSURE ELEMENT:	1855.	5 m RKB	RANGE:	0 - 10	,000 psi
	MODE: 2 minutes		DELAY:			
	ACTUATED: time: 13:49		date:	16.5.80		
	WILL RUN OUT: time: 21:	49	date:	18.5.80		
工						\
	GAUGE TYPE AND NUMBER:	MRPG	0020			
	DEPTH, PRESSURE ELEMENT:	1858	.4 m RKB	RANGE:	0 - 1	0,000 psi
	MODE: 4 minutes ACTUATED: time: 13:47		DELAY:	_		
	ACTUATED: time: 13:47		date:	16.5	.80 	
L	WILL RUN OUT: time: 05:	47	date:	21.5.80		
	GAUGE TYPE AND NUMBER:	Halli	burton APE	T		
	DEPTH, PRESSURE ELEMENT:	1863	. 0 m RKB	RANGE:	0008 - C	psi
l	MODE:		DELAY:			
	ACTUATED: time:		date:			
	WILL RUN OUT: time:		date:			

DIARY OF EVENTS		WELL No. 34/10-8 DST No. 1			
		ZONE TESTED BRENT PERFS. 1869 - 73 m RKB			
DATE TIME		OPERATIONS			
		PERFORATING			
16.5.	1045	Rigged up Schlumberger, ran 4" CGEL, 4 shots pr. foot.			
	1240	Perforated 1869 - 73 m RKB			
	1315	Rigged down Schlumberger.			
		RAN TEST-STRING			
	1330	Started picking up test string			
17.5.	0233	Sat packer at 1837 m RKB			
		·			
	2572	FIRST FLOW PERIOD			
	0610	Opened APR-N valve, annulus pressure 1500 psi			
	0612	Opened on 3/4" fixed choke on manifold			
	0641	Switched to 24/64" fixed on manifold			
	0630	Mud to surface			
	0640	Gas to surface			
	0646	Lighted flare			
	0815	Flowed through separator			
	1000	Flowed to tank 21,6 bbl.			
		Metered 22 bbl., meter factor = 0.982 *			
	1110	Started taking PVT - set no. 1.			
	1135	Finished taking gas sample			
	1140	Finished taking oil sample			
	1207	Changed choke to ½" fixed on manifold			
,	1245	Small sand slug to surface			
	1300	Well cleaned up again, solids less than ½%			
	1412	Started taking PVT set no. 2.			
	1440	Finished taking gas sample			
	1445	Finised taking oil sample			
	1455	WHP increased due to broken ceramic choke seal			
		BUILD-UP PERIOD			
	1539	Shut in at choke manifold			
	1540	Bled off annulus pressure, APR-N valve closed			
	2018	APR-N valve leaked 4 - 5 minutes, reason unknown.			

COMMENTS:

Shrikage: 3%

Factor used by Flopetrol: $1.026 \times 0.97 = .995$

^{*} Meter factor with water before test: 1.026

DIARY OF EVENTS		WELL No34/10-8 DST No1 ZONE TESTEDBrent			
DATE	TIME	OPERATIONS			
		BOTTOM HOLE SAMPLING			
18.5.	0400	Opened APR-n valve			
	0401	Openéd choke manifold on 10/64" choke, flowed to stock tank			
	0415	Sat clocks on bottom hole samplers and picked up lubricator			
	0438	Estimated flow rate 550 STB/D			
	0444	Closed choke manifold			
	0448	Closed master valve, bled off pressure through choke			
		manifold and installed samplers			
	0510	Tested lubricator to 5000 psi			
	0516	Ran in hole with samplers			
	0520	Opened choke manifold on 10/64" choke			
	0610	Samplers at bottom.			
	0645	Samplers closed			
	0715	Closed choke manifold and pulled out of hole			
	0745	Samplers on rig floor, OK!			
DISPLACE TUBING W/WATER					
	0800	Displaced the tubing with water, only 35 bbls. injected.			
		ATTEMPTED TO PULL GAUGES			
	0900	Rigged up wireline for pulling Lynes gauges			
		Unable to pass APR-n valve			
	1010	Opened and closed choke to check that APR-n open.			
	1013	Indication of open APR-n valve			
1020 Unable to pass 1		Unable to pass 1837 m (Packer)			
	1030	Wireline unit broke down			
		Unit repaired			
	1150	Wireline out of hole, rigged down lubricator.			
	•				

COMMENTS:

APPENDIX	A2	PAGE
RFT data		A2-2
RFT data	plotted vs. depth	A2-3
RFT data	from well 34/10-8 compared	
with data	from previous drilled wells	A2-4

34/10-8 RFT data

The repeat formation tester was run in the Brent sand and good data was obtained from -1708.5 m MSL to -1981 m MSL. Seventeen tests were performed in the well and fifteen of these tests were successful. In the Ness zone fluid sample was taken at -1925 m MSL.

The data listed below are corrected for pressure and temperature effects.

Depth	Corr. pressure	Remarks
m MSL	psig	
ON THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERT		
1798.5	4426	
1801	4425	
1803	4430	
1806	4433	
1809	4434	
1820	4446.	
1827	4455	
1837	4464	
1862.5	4495	
1888	4519	
1925	4558	Sampling
1950	4593	
1954	4598	
1959	4605	•
1981	4633	

A3-	1
-----	---

APPENDIX A3		PAGE
Reservoir temperature	34/10-Dolta	7/3-2

APPENDIX A4	PAGE
Surface sampling on separator	A4-2
Bottom hole sampling	A4-2
Wellhead samples	A4-3

1. INTRODUCTION

Well 34/10-8 is the seventh well drilled on the Delta structure in block 34/10. The well penetrated the Brent and Dunlin formation and was drilled to a total depth of 2215 m RKB.

SURFACE SAMPLING ON SEPARATOR DST no. 1 (1869 - 1873 m RKB)

DATE/TIME	SAMPLE NO.	TYPE OF SAMPLE	TRANSFER TIME	BOTTLE NO.
17. May				
11:10	1	Oil	25 min	20475-22
11:10	1	Gas	25 min	A 7697
14:12	2	Oil	28 min	2268-18
14:12	2	Gas	33 min	A 10473

BOTTOM HOLE SAMPLING

DATE/TIME	BOTTLE NO.	OPENING PRESSURE	ESTIMATED $P_{\overline{B}}$ AT RES. COND. (From Flopetrol on rig)
18. May 06:45 06:45	13266/139 14068/45	2210 psig 2210 psig	3180 psig 3200 psig

Well no. 34/10-8 Test no.: 1

Interval: 1869 - 73 m RKB Date: 17.5.80

WELLHEAD SAMPLES

09:30 - 10:30 6 oil samples from goose neck

14:30 - 15:00 6 oil samples from goose neck

1 bbls from separator

2 jerry cans

APPI	ENDIX A5	PAGE
CPI	log	A5-2

DIARY OF EVENTS		ł	DST No1 PERFS 1869 - 73 m RKB		
DATE	TIME	OPERATIONS			
		INJECTION TEST	2		
	1200	Started injection test, WHP	exceeded max allowable pressur		
	1209	Opened choke manifold on 32/6	64" choke, flowed to tank		
	1211	Changed to 10/64"			
	1213	Closed choke manifold			
	1220	Injected 10 bbls, WHP exceeds	ed the allowable.		
	1230	Bled back 5 - 6 bbls to cemer	nting unit.		
		Called base, decided to break	k formation to establish		
		injection.			
	1235	Pressure on cementing unit pe	eaked to 3300 psi, injection		
		established at 2500 psi			
	1240	Started injection test			
		DATA FROM INJ	ECTION TEST		
		Rate(bbls/min)	WHP (psi) from Lynes		
		1.0	2600		
		1.5	2900		
		2.2	3150		
		2.8	3300		
		3.4	3420		
	1330	Started bullheading w/mud			
		Gauges to surface, all worked	i ok.		
		Test ended.			
		2000 0			
		•			
	•				

COMMENTS:

PE:

APPENDIX A6 PAGE

34/10-8 Fracture test, operation

report, data and analysis A6-2

Injection test

Rigged up for displacement of tubing w/water after finished bottom hole sampling. Displaced 35 bbls of water (total ca. 45 bbls in tubing)before WHP exceeded max. estimated bottom hole fracture pressure. Attemted to pull Lynes gauges on wireline, unsucceded. Tried to establish injection again without fracturing the formation, impossible.

Checked that APR-n valve was open, pumped 2 - 3 bbls, stopped on max. WHP, bled back pressure again. From WHP we got positive indication of open APR-n valve (which is confirmed by BHP). Decided to fracture formation to establish injection. Pressure on cementing unit peaked to 3300 psi (Lynes surface gauge showed max. 2837 at 12.20 18. May. Injection rate was established, WHP = 2300 psi on cementing unit. Estimated volume injection/displaced: 35 - 40 bbls.

Data from injection test:

Real time	Cum. injection (bbls)	Rate (bbls/min)	WHP (Lynes) (psia)	BHP (Sperry Sun (psig)
Rate no. 1.		The second secon	$P_{avg} = 2571$	P = 5061
12.43	0	-	2556	4962
12.45	2	1.0	2643	5117
12.47	4	1.0	2560	5007
12.49	6	1.0	2602	5072
12.51	8	1.0	2557	5057
12.53	10	1.0	2588	5095
12.55	12	1.0	2615	5130
	Stopped injection	n		
13.00	12.6	-	2001	
13.01	13.6	1.0	2514	5018
13.02	14.6	1.0	2538	
13.03	15.6	1.0	2539	5088

Real time	Cum. injection (bbls)	Rate (bbls/min)	WHP (Lynes) (psia)	BHP (Sperry Sun) (psig)
			$P_{avg} = 2872$	P = 5377
Rate no. 2.			avy	avy
13.04	16.8	-	2535	
13.05	18.3	1.5	2781	5279
13.06	19.8	1.5	2812	
13.07	21.4	1.6	2849	5351
13.08	22.9	1.5	2868	
13.09	24.5	1.6	2922	5413
13.10	26.0	1.5	2923	
13.11	27.6	1.6	2948	5466
Rate no. 3.			$P_{avg} = 3138$	$P_{avg} = 5550$
13.12	29.6	_	3141	-
13.13	31.8	2.2	3129	5547
13.14	34.0	2.2	3140	
13.15	36.2	2.2	3135	5553
13.16	38.4	2.2	3147	
Rate no. 4.			P _{avg} = 3291	P _{avg} = 5600
13.17	40.4	_	3231	5575
13.18	43.2	2.8	3260	
13.19	46.0	2.8	3355	5593
13.20	48.8	2.8	3302	
13.21	51.7	2.9	3306	5633
13.22	54.6	2.9	3291	
Rate no. 5.	5 7 0		p = 3422 avg	P = 5645
13.23	57 . 9	-	3420	5639
13.24	61.2	3.3	3423	F.C.F.O.
13.25	64.6	3.4	3424	5650

From page A6-4 , estimated fracture pressure is 5500 psi, i.e. equivalent mudweight 2.07.

WHP and BHP from bottom hole sampling, displacement of tubing w/water and injection test.

GRAPHICAL LOG-PRESENTATION DEPTH INTERVALL : 1820.00-2055.00 (METER) ENGINEER : THY SCALE 1: SUMMARY LOG 34/10-8 DATE: 13.15.57 : 0KT0BER 1980 KLOCH PHIF 0.50 a. 0.50 .. DKH .. OKH .. 1850 2050 OCT. : 1980 KB ELEVATION = 25 m STATUS: LOCATION : PE/EVALTEK DST 1 SPUDDED: 8/3-1980 WATER DEPTH = 158 m 61°09′59,53″N INTERVAL: 1869 - 1873 RIG RELEASED: 26/5-80 02° 12' 3.4" E CHOKE : 1/2" THZAM PLUGGED AN ABANDONED : 3135 STB/D OIL 1.2·10⁶ SCF/D