

SHELL INTERNATIONALE PETROLEUM MAATSCHAPPIJ B.V. - THE HAGUE

. . .

a statistica de la compañía de la c

EXPLORATION AND PRODUCTION

٠,

·• · · · · · · · · ·

PRODUCTION TEST NORWAY - WELL 31/2-3 SAMPLING AND ANALYSIS OF GAS AND CONDENSATE

SUMMARY

The Thornton well-head testing equipment has been used to determine the wellhead fluid composition and equilibrium data by split phase sampling, of well 31/2-3. Both the micaceous and clean sand zones were evaluated during the production test period on the Borgny Dolphin.

المراجعة فيصفحه والمرام المالية

SAMPLING AND ANALYSIS OF GAS AND CONDENSATE NORWAY- WELL 31/2-3

1. INTRODUCTION

In June/July 1980 Thornton carried out a series of gas tests using the Thornton well-head testing equipment on Well 31/2-3, during the production testing period. The object of the Thornton tests was to obtain detailed gas/liquid equilibrium data for use in designing production streams.

2. EXPERIMENTAL AND RESULTS

The Thornton well-head testing equipment consists of two main pieces of equipment comprising a large heavy-duty sampling manifold (ref. Figure 1) containing a mixing device to ensure that a fully representative sample of well-head fluid is obtained for testing. The latter sample is fed by means of a probe into the second piece of equipment, which is a miniature laboratory containing a series of separators controlled at selected conditions of temperature and pressure (ref. Figure 2).

The Thornton manifold is placed next to the well-head Christmas tree, upstream of the Flopetrol choke manifold and test separator.

After preliminary evaluation of the gas, two stage separations were selected for treating the gas at specific times during the production test. The conditions chosen were:

		psig		°F	-	
lst	stage	1000		32	+	42*
2nd	stage	500	Minus	3	+	12*

Gases and condensates obtained from these tests were recombined to reproduce a well-head fluid composition. In addition condensate/gas ratios (CGRs) were determined for both separations at test conditions and also vented to atmosphere.

* Constant temperature between these limits.

The series of gas tests carried out using the Thornton equipment on Well 31/2-3 during production testing are reported as follows:

Micaceous gas zone

Test no.	Approximate flow	Results of phase compositions
ND:	MMSCF/D	Table no.
1	5	1
1	5	2
2	5	2
3	10	3
4	18	4
<u>Clean sand zone</u>		
5	10	5
6	20	6
7	30	7

The results of these tests are reported in Tables 1-7.

The experimentally measured liquid/gas ratios at test conditions and also vented to atmosphere are reported in Table 8. Schematic separation diagrams together with condensate/gas ratios (CGR) are shown in Figures 3-9. The schematic diagram is in effect, two diagrams in one. The upper figures in each box show the molar split of the reservoir fluid throughout the separation sequence, whilst the lower figures show the related quantities of liquids and gas involved in each separation resulting in an end volume of IMMSCF. The two sets of figures are not equivalent.

A comparison of well-head fluid compositions from all tests is given in Table 9.

<u>Table 1</u>

<u>Test ND1</u>

<u>Compositions (mol%)</u> - Experimentally determined

Component	Feed	Separation l 1000 psig/40°F		Separation 2 500 psig/5°F		
	composition	Liquid	Gas	Liquid	Gas	
Cl 2 3 i4 n4 i5 n5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	92.510 3.946 0.332 0.369 0.049 0.055 0.015 0.170 0.199 0.056 0.036 0.029 0.012 0.005 0.004 0.002	26.953 5.296 2.117 3.192 0.711 2.320 0.534 12.356 21.650 7.591 5.337 4.558 1.949 0.905 0.600 0.290 0.135 0.050 0.029 0.025 0.009	92.899 3.938 0.321 0.352 0.045 0.042 0.012 0.098 0.072 0.012 0.005 0.002	20.518 6.479 2.120 6.200 1.162 2.467 1.000 19.839 28.787 6.175 2.488 0.946 0.116	93.035 3.933 0.318 0.341 0.043 0.037 0.010 0.061 0.018	
Benzene Toluene Xylene N ₂ CO ₂	0.002 0.018 1.613 0.578	0.022 0.228 2.640 0.079 0.424	- 0.002 1.622 0.578	0.044 0.157 1.111 0.089 0.302	- - 1.625 0.579	
- Mole ratio CGR bbl/MMSCF		0.0059 5.01 (4.15)*	0.9941	0.0019 1.50 (1.37)*	0.9981	

* Vented to 1 atmos.

Test ND2

<u>Compositions (mol%)</u> - Experimentally determined

Component	Feed	Separation 1 1000 psig/40°F		Separation 2 500 psig/5°F		
	composition	Liquid	Gas	Liquid	Gas	
Cl 2 3 i4 n4 i5 n5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	93.179 3.558 0.421 0.356 0.046 0.078 0.015 0.168 0.182 0.051 0.032 0.025 0.010 0.005	26.113 5.388 1.961 3.667 0.711 2.470 0.578 12.115 21.853 7.702 5.484 4.724 1.949 0.961 0.494 0.275 0.108	93.499 3.549 0.414 0.340 0.043 0.066 0.012 0.110 0.077 0.014 0.006 0.002	20.656 5.839 2.727 5.964 1.108 3.867 1.000 18.270 28.881 6.493 2.597 0.947 0.094 -	93.656 3.544 0.409 0.328 0.041 0.058 0.010 0.071 0.015	
Benzene Toluene Xylene	- 0.001 0.016	0.015 0.158 2.916	- _ 0.002	0.021 0.089 1.157		
N2 CO2	1.455 0.402	0.050 0.358	1.462 0.403	0.080 0.210	1.465 0.403	
Mole ratio CGR bbl/MMSCF		0.0048 4.13 (3.40)*	0,9952	0.0021 1.72 (1.54)*	0.9979	

* Vented to 1 atmos.

٠

Test ND3

<u>Compositions (mol%)</u> - Experimentally determined

Component	Feed	Separation 1 800 psig/38°F		Separation 2 250 psig/-3°F		
-	composition	Liquid	Gas	Liquid	Gas	
C1 2 3 . i4 n4 15 n5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	92.852 3.627 0.436 0.376 0.050 0.092 0.020 0.195 0.236 0.069 0.047 0.038 0.018 0.009 0.004 0.002 0.001	23.145 4.915 1.899 3.730 0.731 2.563 0.598 12.624 22.912 7.908 5.866 5.004 2.417 1.194 0.610 0.275 0.147	93.370 3.617 0.425 0.351 0.045 0.074 0.015 0.103 0.067 0.011 0.004 0.001	11.761 4.249 2.358 5.914 1.162 4.786 1.625 22.702 33.140 6.973 2.716 0.964 0.099 -	93.492 3.616 0.422 0.343 0.043 0.067 0.013 0.069 0.017	
Benzene Toluene Xylene N ₂ CO ₂	0.001 0.023 1.381 0.523	0.016 0.143 2.902 0.068 0.333	- 0.002 1.391 0.524	0.025 0.092 1.223 0.038 0.173	- - 1.393 0.525	
Mole ratio CGR bbl/MMSCF		0.0074 6.57 (5.63)*	0.9926	0.0015 1.31 (1.24)*	0.9985	

* Vented to 1 atmos.

7

 $(x,y) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$

• • •

່ "**ເ**

<u>Test ND4</u>

<u>Compositions (mol%)</u> - Experimentally determined

Component	Feed	Separation 1 1000 psig/32°F		Separation 2 500 psig/6°F		
	composition	Liquid	Gas	Liquid	Gas	
C1 2 3 i4 n4 i5 n5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	92.470 3.562 0.428 0.375 0.051 0.112 0.020 0.219 0.248 0.079 0.057 0.052 0.026 0.015 0.012 0.006 0.003 0.001	25.166 5.703 2.079 3.868 0.734 3.022 0.541 11.408 19.618 7.088 5.487 5.356 2.710 1.636 1.310 0.677 0.347 0.053 0.066	93.094 3.542 0.413 0.342 0.044 0.085 0.015 0.114 0.067 0.014 0.006 0.003 0.001	20.558 5.829 2.727 6.054 1.135 5.133 1.300 13.610 26.829 8.221 4.004 1.889 0.345 0.035	93.212 3.538 0.409 0.333 0.042 0.077 0.013 0.093 0.025 0.001	
Benzene Toluene Xylene	- - 0.026	- 0.112 2.552	- 0.003	0.021 0.143 1.799	- - -	
N ₂ CO ₂	1.715 0.523	0.064 0.403	1.731 0.525	0.095 0.273	1.733 0.525	
Mole ratio CGR bbl/MMSCF		0.0093 8.16 (6.86)*	0.9907	0.0015 1.26 (1.13)*	0.9985	

* Vented to atmos.

<u>Table 5</u>

Test ND5

Compositions (mol%) - Experimentally determined

Component	Feed	Separatic 1000 psig/	Separation 1 1000 psig/30°F		Separation 2 500 psig/12°F		
	composition	Liquid	Gas	Liquid	Gas		
Cl 2 3 i4 n4 i5 n5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	92.827 3.576. 0.428 0.372 0.052 0.120 0.022 0.251 0.188 0.057 0.042 0.038 0.018 0.011 0.007 0.006 0.001	27.388 6.049 2.227 4.191 0.793 2.589 0.587 11.385 19.155 6.812 5.163 4.896 2.409 1.489 0.916 0.732 0.134 0.049	93.327 3.557 0.414 0.343 0.045 0.102 0.018 0.166 0.043 0.006 0.003 0.001	20.607 5.855 2.740 6.091 1.162 6.200 1.600 38.099 9.239 4.102 1.753 0.374 0.037	93.431 3.554 0.441 0.335 0.043 0.093 0.016 0.112 0.030		
Benzene Toluene Xylene N ₂ CO ₂	- 0.001 0.021 1.436 0.526	- 0.105 2.425 0.077 0.429	- 0.002 1.446 0.527	0.025 0.094 1.669 0.079 0.274	- - 1.448 0.527		
Mole ratio CGR bbl/MMSCF		0.0076 6.38 (5.24)*	0.9924	0.0014 1.09 (1.00)*	0.9986		

<u>-</u>,

ά,

* Vented to 1 atmos.

<u>Table 6</u>

Test ND6

<u>Compositions (mol%)</u> - Experimentally determined

•

†.:

Component	Feed	Separation 1 1000 psig/37°F		Separation 2 500 psig/7°F		
	composition	Liquid	Gas	Liquid	Gas	
C1 2 3 i4 n4 i5 n5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	92.851 3.528 0.420 0.363 0.047 0.112 0.024 0.199 0.227 0.070 0.051 0.046 0.022 0.013 0.009 0.005 0.003 0.001	25.013 5.356 1.936 3.620 0.693 2.304 0.527 11.280 20.060 7.473 5.829 5.663 2.808 1.651 1.218 0.655 0.399 0.126 0.042 0.032	93.378 3.513 0.409 0.338 0.042 0.095 0.020 0.113 0.072 0.013 0.006 0.002	20.912 5.800 3.829 5.945 1.081 5.600 1.700 16.026 26.270 6.643 2.959 1.245 0.197 0.017	93.518 3.509 0.402 0.327 0.040 0.084 0.017 0.082 0.022	
Benzene Toluene Xylene	- 0.001 0.024	0.007 0.120 2.728	- - 0.003	0.020 0.103 1.341		
N ₂ CO ₂	1.560 0.424	0.061 0.399	1.571 0.425	0.088 0.224	1.574 0.425	
Mole ratio CGR bbl/MMSCF		0.0077 6.89 (5.84)*	0.9923	0.0019 1.54 (1.39)*	0.9981	

* Vented to 1 atmos.

Test ND7

<u>Compositions (mol%)</u> - Experimentally determined

Component	Feed	Separation 1 1000 psig/42°F		Separation 2 500 psig/12°F		
	composicion	Liquid	Gas	Liquid	Gas	
C1 2 3 i4 n4 i5 n5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	92.630 3.641 0.438 0.383 0.051 0.097 0.020 0.199 0.234 0.075 0.055 0.055 0.051 0.025 0.015 0.011 0.007 0.004 0.001 0.001 -	25.016 5.612 2.052 3.842 0.733 2.408 0.551 11.121 19.558 7.264 5.673 5.566 2.802 1.719 1.235 0.784 0.492 0.147 0.062 0.030 0.009	93.216 3.624 0.424 0.353 0.045 0.077 0.015 0.105 0.067 0.013 0.006 0.003 0.001	20.587 5.965 2.800 6.236 1.162 4.600 1.300 15.018 27.030 7.589 3.587 1.664 0.300 0.028	93.339 3.621 0.420 0.343 0.043 0.069 0.013 0.080 0.022	
Benzene Toluene Xylene ^N 2 CO ₂	- 0.001 0.026 1.497 0.537	0.114 2.673 0.074 0.407	- 0.003 1.510 0.538	0.021 0.114 1.636 0.083 0.280	- - 1.512 0.538	
Mole ratio CGR bbl/MMSCF		0.0086 7.71 (6.48)*	0.9914	0.0016 1.34 (1.20)*	0.9984	

* Vented to 1 atmos.

.

Tuble B

•

-

3,

Liquid/gas ratios for well-head tests

	Well	0.10	Converse line		Measured Itqu	id/gas ratio	
Test no.	flow-rate (approx.),		conditions,	At test c	ond it tons	At 1 atu	osphere*
	MMSCF/D		* /Rrad	kg/MM Nu ³	bb1/fmSCF	kg/MM Na ³	bb1/MMSCF
-		16.6.80	1. 1000/40	20063	10.2	17404	4.15
	· ·	12-00	2. \$00/5	6051	1.50	5531	1.37
c	u	18.6.80	1. 1000/40	16497	61.4	, 14218	3.40
7	<u> </u>	13-50	2. 500/5	6906	1.72	6089	1.54
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¢	20.6.80	1. 800/38	26528	6.57	23409	5.63
n	2	11-40	2. 250/-3	5380	16.1	5036	1.24
		23.6.80	1. 1000/32	34947	8.16	30425	6.86
t	0	02-08	2. 500/6	5120	1.26	4672	1.13
	5	7.7.80	1. 1000/30	25736	6. JB	21861	5.24
n	2	22-40	2. 500/12	4314	60.1	3913	00.1
4	ç	8.7.80	1. 1000/37	27915	6.89	24527	5.84
<b>.</b>	2	00-20	2. 500/7	6156	1.54	5665	1.39
r	ç	8.7.80	1. 1000/42	1093	11.1	27163	6.48
````	07	03-40	2. 500/12	5386	1.34	4904	. 1.20

* kefer to Flgurce 3 - 9 for flash temperature

Ta	Ь1	e	9
_	-	-	

Test ND	1	2	3	4	5	6	7
C1 2 3 i4 n4 i5 n5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	92.510 3.946 0.332 0.369 0.049 0.055 0.015 0.170 0.199 0.056 0.036 0.029 0.012 0.005 0.004 0.002	93.179 3.558 0.421 0.356 0.046 0.078 0.015 0.168 0.182 0.051 0.032 0.025 0.010 0.005	92.852 3.627 0.436 0.376 0.050 0.092 0.020 0.195 0.236 0.069 0.047 0.038 0.018 0.009 0.004 0.002 0.001	92.470 3.562 0.428 0.375 0.051 0.112 0.020 0.219 0.248 0.079 0.057 0.052 0.026 0.015 0.012 0.006 0.003 0.001	92.827 3.576 0.428 0.372 0.052 0.120 0.022 0.251 0.188 0.057 0.042 0.038 0.018 0.011 0.007 0.006 0.001	92.851 3.528 0.420 0.363 0.047 0.112 0.024 0.199 0.227 0.070 0.051 0.046 0.022 0.013 0.009 0.005 0.003 0.001	92.630 3.641 0.438 0.383 0.051 0.097 0.020 0.199 0.234 0.075 0.055 0.055 0.051 0.025 0.015 0.011 0.007 0.004 0.001 0.001
Benzene Toluene Xylene N ₂ CO ₂	0.002 0.018 1.613 0.578	_ 0.001 0.016 1.455 0.402	0.001 0.023 1.381 0.523	- 0.026 1.715 0.523	_ 0.001 0.021 1.436 0.526	_ 0.001 0.024 1.560 0.424	0.001 0.026 1.497 0.537

Comparison of well-head fluid compositions (mol%)



•

~ . :

FIG. 1 - Thornton sample manifold and mixing device



-

7

<del>،</del> م



÷

۰ •

•

**ر** • •

FIG. 3

ì

FIQ. 4

•

نه. •



ļ

51AGE 1

Staur 4

.00 AhL 178459. SCF/BBL <---/ / Vchi U DEC F -----1 .UADO AULES .UO AUL 124 0 4)448 000. 24738 0006. i..i.k. ∓ ..... .00 BML .0000 POLES \ 0 P.S.I 6 D.F.G F LNAV V STAGE 1 ----/ 1.24 EhL \ 250 PSI \ -1 DFG F VERT .0015 MOLES 1.31 NOLES .9911 NOLES 1.000 MMSCF > STACE 2 .0025 AULTS .003 ANSCF 11111 V 1 ATM / 55 DEG F 1 111 N 800 PSI N 36 0EG F ....................... FLASH .9926 MOLES 1.001 MMSCF *** STAGE 1 ............... ******** .0049 m01.ES 5.61 EUL 1 1 1111 1.0000 MALES --1.009 MMSCF WELL NEAD

1

FIG. 5

.

TEST ND3

57 Aur 4

•

-

- 3



4.6.k. = 146439 aCr/nPL

<u>PIO. 6</u>

TEST NO4

FIO. 7

- i

TEST ND5



~ **.** .

.00 EML ~---/ V VEAL 0 1240 F ---------U P51 .0000 FLEES .00 FBE .UUU MOLES .UUU MMSCF ........ > STACE 1 1111 1 .00 ANL 0 PSI 0 6FG F V VENT ----------.0000 PALES .00 AAL . QUUV AULES . QUU MASCE > STACE 3 ----/ / 16:1 26.1 VENT 7 446 4 ......... 1 500 FS1 .0019 MOLES 1.54 hAL .9404 NULES 1.000 AMSCF STAGE 2 V 1 ATH / 59 DEG F .0077 KOLES \ 6.89 ABL * 6 8 8 8 8 8 8 8 8 8 8 8 8 8 .9923 MOLES 1.002 MMSCF N FI ASH STAGE 1 ----1 HELL HEAD TEST NUG

171904. SCF/hBI 1. U. K. =

.0028 KOLES .003 MMSCF

. 0049 MULES

1

**FIG. 8** 

•

·'.

.

- ;,

•

**Tili 09**. TSSULA, SULZBEL <---/ 0 151 0 0 154 6 V VEAF ----i .UUUU MOLES .UUU MMSCF .0000 -61 ES 111111 7.ju na. STAUF 4 ; i.t.K. = -----/ .tun mit. V VENT u DEG F 1111 124 0 . 9000 AUL43 6000 HULLS . UUD MASCE > .00 BBL STAUE J 1.20 cbh TNENT . \ 500 F51 \ 12 DEG F .0016 MOLES 1.34 NAL ................... .9496 MOLES 1.000 MMSCF STACE 2 .0032 MULES .003 AMSCF 1 1 1 V 1 ATH / 58 0EG F \1000 PS1 \ 42 DEG F ********* .0086 MOLES 7.71 BEL .9914 MULES 1.002 MMSCF FLASH 1 1 1 1 1 STAGE 1 ------.0054 MDLES \ ----1 / ļ NELA NEAD

Ì

FIG. 9

TEST NUT