Denne rapport tilhører

STATOIL

L&U DOK. SENTER

L. NR. 30285320019

KODE Way 31/2-3

nr30

Returneres etter bruk

Reservoir Fluid Study

For

Norske Shell Exploration & Production

Well: 31/2-3

North Sea, Norway

CORE LABORATORIES UK LTD. Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Reservoir Fluid Study
For
Norske Shell Exploration & Production
Well: 31/2-3
North Sea, Norway

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

5th January, 1981

Norske Shell Exploration & Production, Damsle Ferusuei 43, P.O. Box 10, 40-33 Forus, Stavanger, Norway.

Attention: Mr. Dave Jolly

Subject: Reservoir Fluid Study

Well: 31/2-3 North Sea, Norway

Our File Number: RFLA 80091

Gentlemen,

On 8th May, 1980, an RFT subsurface fluid sample was collected during testing on the subject well and forwarded to our Aberdeen laboratory on 14th May, 1980, for use in a reservoir fluid study. In accordance with analyses requirements, the tests were performed and the results presented in this report.

The hydrocarbon composition through hexanes of the subsurface fluid was determined by low temperature fractional distillation. Due to the nature of the fluid we were unable to determine the hydrocarbon composition of the heptanes plus through eicosanes, by high temperature fractional distillation and consequently high temperature chromatography was utilized. The results of these tests in form in terms of both mol percent and weight percent through eicosanes plus are presented on page two.

The subsurface reservoir fluid was examined in a visual cell at the reservoir temperature of 122°F and found to exhibit a retrograde dew point at 1838 psig for RFT 6.11. The pressure-volume relations of the reservoir fluid are shown on page three.

The wellstream composition was used to calculate the cumulative stock tank liquid and sales gas recovery using normal temperature two-stage separation. Also calculated are the plant liquid products on the primary and second stage gas separator gases. The total plant products in the wellstream are also shown on this page. All recoveries are based on a one MMSCF of original reservoir fluid. It must be remembered in applying these data that the recoveries are based on 100 percent plant efficiency. These results are presented on page four.

Continued/...

Petroleum Reservoir Engineering

ABERDEEN, SCOTLAND

Norske Shell Exploration & Production

Continued/...

Page Two

In view of these results, the reservoir fluid would usually be considered a dry gas system. Consequently, we would normally not perform a "step-wise" equilibrium (constant volume) depletion to simulate well-stream production below the dew point. We will retain the samples in our laboratory pending further instructions from Norske Shell Exploration & Production.

It has been a pleasure to be of service to Norske Shell Exploration & Production. If you have any questions concerning the data presented in this report, or if we may be of further assistance, please do not hesitate to contact us.

Very truly yours, Core Laboratories U.K. Ltd.,

LKS/HG 15 cc addressee L. K. Sebborn, Laboratory Manager - RFL

Petroleum Reservoir Engineering

ABERDEEN, SCOTLAND

Page1 of4.....

	FileFile 00091
Company Norske Shell	Date Sampled 8th May, 1980
Well 31/2-3 RFT 6.11	CountyNorth Sea
Field	State Norway
FORMATION CH	ARACTERISTICS
Formation Name	
Date First Well Completed	, 19
Original Reservoir Pressure	PSIG @Ft.
Original Produced Gas-Liquid Ratio	SCF/Bbl
Production Rate	Bbl/Day
Separator Pressure and Temperature	PSIG° F.
Oil Gravity at 60°F.	° API
Datum	Ft. Subsea
Original Gas Cap	
WELL CHARA	ACTERISTICS
Elevation	Ft.
Total Depth	Ft.
Producing Interval	Ft.
Tubing Size and Depth	In. toFt.
Productivity Index	Bbl/D/PSI @Bbl/Day
Last Reservoir Pressure	2268 PSIG @ 1543.5 m
Date	19
Reservoir Temperature	. 122 • F. @ Ft.
Status of Well	
Pressure Gauge	
Normal Production Rate	Bbl/Day
Gas-Oil Ratio	
Separator Pressure and Temperature	PSIG° F.
Base Pressure	PSIA
Well Making Water	% Cut
SAMPLING O	,•
Sampled at	1543.5 ш
Status of Well	
Gas-Oil Ratio	SCF/Bbl
Separator Pressure and Temperature	PSIG° F.
Tubing Pressure	PSIG
Casing Pressure	PSIG
Sampled by Type Sampler	Schlumberger RFT 23 Gallon
REMARKS: * Requested operating temperating	

Sample Cylinder SS 663

Petroleum Reservoir Engineering

ABERDEEN, SCOTLAND

		File	RFLA 80091
Company Norske Shell Well 31/2-3	County	North Sea	
Field	State	Norway	

Page2... of4......

HYDROCARBON ANALYSIS OF ... Reservoir Fluid ... GAS SAMPLE

COMPONENT	MOL PERCENT	Weight Percent
Hydrogen Sulfide	NIL	NIL
Carbon Dioxide	0.57	1.43
Nitrogen	1.61	2.56
Methane	93.16	84.98
Ethane	3.47	5.93
Propane	0.39	0.98
iso-Butane	0.30	0.99
n-Butane	0.05	0.17
iso-Pentane	0.05	0.21
n-Pentane	0.03	0.08
Hexanes	0.02	0.29
Methycyclopentane	0.03	0.17
Benzene	NIL	NIL
Cyclohexane	0.04	0.23
Heptanes	0.09	0.64 0.27
Methylcyclohexane	0,04}	0.27
Toluene	TRACE 0.06 \	0.48
Octanes	TRACE	0.48
Ethylbenzene	0.01	0.07
Meta and Para Xylene Orthoxylene	TRACE	0.01
Nonanes	0.03	0.27
1, 2, 4 Trimethybenzene	TRACE	0.01
Decanes	0.01	0.10
Undecanes	0.01	0.07
Dodecanes	TRACE	0.01
Tridecanes	TRACE	0.01
Tetradecanes	TRACE	0.01
Pentadecanes	TRACE	0.01
Hexadecanes	TRACE	TRACE
Heptadecanes	TRACE	TRACE
Octadecanes	TRACE	TRACE
Nonadecanes	TRACE	TRACE
Eicosanes plus	TRACE	TRACE
	100.00	100.00

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Petroleum Reservoir Engineering

ABERDEEN, SCOTLAND

Page	of
File	RFLA 80091
***-11	31 /2-3

Pressure-Volume Relations at °F.

Pressure PSIG		Relative Volume (1)	Compressibility Factor Z
			
2500		0.7290	0.848
2400		0.7583	0.847
2300		0.7911	0.847
2286		0.7959	0.847
2200		0.8278	0.848
2100		0.8679	0.849
2000		0.9142	0.852
1900		0.9654	0.855
1838	Dew Point	1.0000	0.857
1800	Pressure	1.0221	
1700		1.0880	
1600		1.1621	
1400		1.3432	
1200		1.5874	
1000		1.9321	
		2.4487	
800			
600		3.3083	

(1) Relative Volume: V/Vsat is barrels at indicated pressure per barrel at saturation pressure.

Petroleum Reservoir Engineering

ABERDEEN, SCOTLAND

rage	
File	RFLA 80091
Well	31/2-3

CALCULATED RECOVERY PER MMSCF OF ORIGINAL FLUID

Wellstream MSCF	1000
Normal Temperature Separation*	
Stock Tank Liquid - Barrels Primary Separator Gas - MSCF Second Stage Gas - MSCF Stock Tank Gas - MSCF	3.82 994.13 1.74 1.10
Total Plant Products in Primary Separator Gas - Gallons**	
Propane Butanes (Total) Pentanes Plus	104 108 68
Total Plant Products in Second Stage Gas - Gallons**	
Propane Butanes (Total) Pentanes Plus	0.24 0.22 0.10
Total Plant Products in Wellstream - Gallons**	
Propane Butanes (Total) Pentanes Plus	107 114 226

^{*} Recovery Bases: Primary separation at 1250 psig and $40^{\circ}\mathrm{F}$ Second Stage at 500 psig and $40^{\circ}\mathrm{F}$ Stock Tank at 0 psig and $27^{\circ}\mathrm{F}$

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and onsistions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations or relied upon.

^{**} Recovery assumes 100% plant efficiency

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Norske Shell Exploration & Production RFLA 80091

Core Laboratories U.K. Ltd., Reservoir Fluid Analysis,

L. K. Sebborn,

Laboratory Manager - RFL