D-16

WELL 1/9-3

GEOLOGICAL PROGGOSIS
drilling program
DRILLING CONSIDERATIONS
DATE: 7 JULY 1977
Den norske stats oljeselskap a.s

WELL 1/9-3
GEOLOGICAL PROGWOSIS
dRILLING PROGRAM
DRILLING CONSIDERATIONS
DATE: 7 JULY 1977

STATOIL
DRILLING PROGRAM
WELL 1/9-3

NOTE: This program is designed to supplement Statoil's JACK-UP DRILLING OPERATIONS MANUAL and JACK-UP BLOWOUT PREVENTION MANUAL .

The procedures as presented in this program will be followed in cases where differences exist between this program and the abovementioned procedures.

```
P H I L L I P S P E T R O L E U M
GEOLOGIC WELL PROGNOSIS
WELL NO. 1/9-3 (Obligatory .Jurassic Test)
PROSPECT: Block l/9 Alpha structure

GENERAL DATA

\section*{LOCATION}


Seismic: Shotpoint No. 476 Line No. 404-404


All depths are given with reference to K.B.E. unless otherwise specified

\section*{CONTRACTORS}

Drilling Contractor
Drilling Rig
Mud Logging Contractor
Type Logging Unit
Electric Logging
Contractor
Rig Positioning
Contractor
Bottom Survey
Contractor
Helicopter Service
Supply Boats
Core Analysis
Velocity Survey
Paleontology
MUD
CEMENTING

Devi Drilling Co.
"Dyvi - Gamma"
Exploration Logging
GEMDAS

Dresser-Atlas

Decca

Bliksem
Helicopter Service A/S
Phillips
Stated or Core Lab.

Robertson Research
Baroid
ftanioukton

\section*{Contents}

Page
Geological Program ..... 5
Stratigraphic Prognosis ..... 6
Drilling Program. ..... 10
Drilling Considerations (Remarks) ..... 11
Mud Program ..... 13
Hydraulics/Bits ..... 14
Casing ..... 15
Abnormal Pressure Detection ..... 16
Kick Control Calculations ..... 18
Casing Calculations ..... 19
Cement Calculations ..... 35
Figures
Fig. 1 Comparison between the wells 1/9-1 and 1/9-3 ..... 47
Fig. 2 Well 1/9-1 Formation Pore Pressure and Fracture Pressure Evaluation ..... 48
Fig. 3 Formation Temperature Profile ..... 49
Fig. 4 Kick Control Calculations ..... 50

GEOLOGICAL PROGRAM
WELL NO, 1/9-3

\section*{PURPOSE OF TEST}

Well 1/9-3 is an obligatory Jurassic test to evaluate the Jurassic structure at Alpha. The well will be drilled through the Jurassic into older formations or to \(5,000 \mathrm{~m}\), which-ever is shallower. It is planned to do this in a 2 stage operation. Phase \(\frac{1}{1}\) will drill and set \(95 / 8^{\prime \prime}\) casing in the Lower Cretaceous. Phase 2 will drill to proposed depth of \(5,000 \mathrm{~m}\).

\section*{OBJECTIVES}

The primary objective is to drill, evaluate and test the Jurassic sandstones if hydrocarbon shows are encountered. The secondary objective is to confirm and further evaluate the hydrocarbon bearing zones encountered in 1/9-1 in the Danian-Maastrichtian.

\section*{DRILLING HAZARDS}

Swelling clays are expected from 400 m down to top of Danian. Drilling rate should be controlled to avoid mud rings and sticking problems. Increasing formation pore pressures can be expected in the lower Cretaceous shales with further increases in the Jurassic.

Bright spots found on the site survey and on the seismic could indicate high pressured gas-pockets at \(\sqrt{547 \mathrm{~m}}\) and \(\sqrt{1750 \mathrm{~m}}\) we can expect small gas pockets throughout this interval as seen in 1/9-1. These depths are subject to \(a \pm 50 \mathrm{~m}\) error. Changes in the casing program due to pore pressure or other reasons will be at the discretion of the Drilling Superintendent with consultation and agreement from Statoil.

\section*{SURVEY AND POSITIONING}

Rig will be positioned by Satnav. Rig location accuracy is requested within a 50 m radius of shot point location. Preferred direction of error is SE.

STRATIGRAPHIC PROGNOSIS

UNIT

Upper Miocene
Mid. Miocene
Lower Miocene
Oligocene
Eocene
Lower Eocene
Paleocene
Danian Marl
Danian Limestone Pay
Maastrichtian
Cenomanian
Lower Cretaceous

DEPTH
(Meters sub-sea) 960
1140
1710
1800
2360
2710
2880
3020
3050
3105

Jurassic

3665 3745
\(3870( \pm 50 \mathrm{~m})\) - could be as low as 4175 m due to poor seismic correlations.

All depths are in an accuracy of \(\pm 30 \mathrm{~m}\) down to the Mastrichtian. The above structural depths have been derived from seismic line 404-404, and results from well 1/9-1. The Cenomanian and Lower Cretaceous depths may be in error by \(\pm 50 \mathrm{~m}\). The top Triassic and top salt are believed to be below proposed \(T D\) but could be as high as 4175 m .


GEOLOGICAL WELL LOGGING AND SAMPLING PROGRAM.
Mud logging Contractor: Exploration Logging. A GEMDAS Logging Unit will be employed to log the well for hydrocarbon shows, collect samples, prepare sample logs and conduct certain other services throughout drilling operations.

Samples will be collected at 10 m intervals down to 2500 m . Thereafter 3 m intervals or less will be collected. Sample interval could be changed at the discretion of the well site geologist.

At each sample point there will be six sets of washed and dried samples collected and three sets of unwashed samples ( \(\frac{1}{2} \mathrm{~kg}\) ).

One composite sample of unwashed cuttings, for petrochemical studies, will be canned at 30 m intervals from the top of Lower Cretaceous (Est. 3745 m ) to T.D. of well.

One set of washed and dried samples will be retained on the rig until the well is finished. On the wellsite geologist's instructions the remaining samples will be sent to Statex, Stavanger, periodically during drilling. Storage and distribution to partners and N.P.D. will be handled by Statex as per instructions from Phillips.
\begin{tabular}{|c|c|c|}
\hline RUN & HOLE SIZE & TYPE LOG \\
\hline 1. & 17 1/2" & IES, Integrated Acoustic-GR. \\
\hline 2. & 17 1/2" & IES, Integrated Acoustic-GR, CDL-GR-CAL \\
\hline 3 & 14 3/4" & IES, Integrated Acoustic-GR, CDL-GR-CAL \\
\hline 4. & \(12 \mathrm{l} 4^{\prime \prime}\) & IES, Integrated Acoustic-GR, CDL/CNL-GR-CAL, DLL/MLL, Dipmeter SWC*, Velocity Survey \\
\hline 5. & \(81 / 2 "\) & IES, Integrated Acoustic-GR, CDL/CNL-GR-CAL, DLL/MLL, Dipmeter, SWC*, Velocity Survey \\
\hline
\end{tabular}
* Approximately 30 SWC total required, primarily for paleontological shale cores in L. Cretaceous and Jurassic shales. Velocity Survey will be run at \(95 / 8^{\prime \prime}\) casing depth and T.D.

Open hole logs must be quality checked and approved by the field geologist prior to his signing of the service order.

CORING PROGRAM
A minimum of one 18 m core will be cut if sands are encountered in the Jurassic. If Jurassic sands indicate hydrocarbons, the coring will be extended throughout the pay zone. A minimum of one 18 m core will be taken in the Danian and in the Mastrichtian zones.

\section*{TESTING PROGRAM}

Prior to any Drill Steam Tests/Production Tests a seperate testing program will be forwarded, but testing is planned in intervals with substantial shows.

\section*{COMMUNICATION PROCEDURE}

Confidentiality:

All data are considered confidential and will be released to third parties only by decision of Statoil.

Delivery to participants:

A daily well report will be sent by telex by the operator (Stacoil) to all partners and to the Norwegian Petroleum Directorate. All other wellsite data, including field prints of logs, will be sent by post or messenger.

A final well report will be prepared for distribution to Statoil, partners and to the appropriate Norwegian Government agencies no later than six months after completion of the well.

\section*{ATTACHMENTS}

No l. Seismic Profile, Line 404-404

No. 2 Structure Map: Top Danian and Jurassic

No. 3. Anticipated Lithology Log

DRILLING PROGRAM
Well Designation : 1/9-3
Vessel
Air Gap
KBE to MSL
Water Depth
Depths
\begin{tabular}{ll}
\(:\) & \(1 / 9-3\) \\
\(:\) & Dyvi Gamma \\
\(:\) & 18.2 m \\
\(:\) & 35 m \\
\(:\) & 76 m \\
\(:\) & \begin{tabular}{l} 
Referred to KBE except where speci- \\
fied otherwise.
\end{tabular}
\end{tabular}

\section*{I LOCATION}

See Geological Program
II MOVE, PRELOADING AND JACKING UP
As per general procedures
III GEOLOGICAL PROGNOSIS
See Geological Program
IV GENERAL DRILLING
Estimated total depth Phase \(I\) : 3800 m
Estimated total depth Phase 2 : 5000 m

Operational phase for Phase 1:

Drill \(44^{\prime \prime}\) hole with \(26^{\prime \prime} \times 44^{\prime \prime}\) H.O. to 160 m . Run \(36^{\prime \prime}\) casing.

Drill out \(36^{\prime \prime}\) casing with \(17 \frac{1}{2} "\) bit to 445 m . Log and open hole with \(26^{\prime \prime}\) H.O. (26" underreamer in case of gas problems). Set 20" casing.

Drill \(17 \frac{1}{2} "\) hole to 1365 m . Log and open with \(19 \frac{1}{2}\) " underreamer. Set \(16^{\prime \prime}\) casing.

Drill 14 3/4" hole to 2800 m . Log and open with \(17 \frac{1}{2}\) " underreamer. Set 13 3/8" casing.

Drill 12 l/4" hole to \(3800+4\). (T.D. Phase 1 ). Core and log as programmed. The \(95 / 8^{\prime \prime}\) casing is to be set into the pressure transition zone in the Lower Cretaceous in order to drill the Jurassic formations safely (Phase 2).

\section*{REMARKS (DRILLING CONSIDERATIONS)}

The nearest off-set well is \(1 / 9-1\) which was drilled on the same structure as the proposed well 1/9-3. Mud weights used, casing depths, and formation lithology for the well 1/9-1 and the prognosis for the deliniation well 1/9-3 are shown in Fig. 1 p. 47

The formation pore pressure - and the formation integrity plot for the well \(1 / 9-1\) versus depth is shown in Fig. 2 p. 48. Since the well 1/9-3 is on the same level on the structure, the pore pressures are expected to be essentially the same. Additional informations will be gained from the well 1/9-2 before the well 1/9-3 is spudded.

> TT When drilling out the \(20^{\prime \prime}\) casing, the mud weight should be approx. \(1.30 \mathrm{~g} / \mathrm{cm}^{3}\). From the seismic a possible gas zone is indicated at 557 m .

The \(16^{\prime \prime}\) casing is to be set into the pressure transition zone in order to obtain the best possible formation integrity below the \(16^{\prime \prime}\) casing shoe (approx. 0.20 bar \(/ \mathrm{m}\) or \(2.04 \mathrm{~g} / \mathrm{cm}^{3}\) equiv.) 16.0 gry
The \(16^{\prime \prime}\) casing is to be drilled out with approx. \(1.70 \mathrm{~g} / \mathrm{cm}^{3} \mathrm{mud} \mathrm{m} \mathrm{m}\). weight, which is to be increased to \(1.80-1.84 \mathrm{~g} / \mathrm{cm}^{3}\) at 1725 m .15 . f 7 y On the seismic there is a bright spot, indicating possible gas pocket at 1760 m .

It is an absolute necessity that the yield point of the mud is kept under control to minimize the equivalent circulating density in order to avoid lost circulation.

The \(133 / 8^{\prime \prime}\) casing point at 2800 m is may be reduced somewhat, due to lost circulation problems encounted at this depth.

The underreaming from \(17 \frac{1}{2} \frac{1}{2}^{\prime \prime}\) to \(19 \frac{1}{2} "\) hole and from \(143 / 4\) " to l7 \(\frac{1}{2}\) " hole is to be done under the supervision and quidance of a trained operator.

The Danian and Maastrichtian formations are to be drilled with approx. \(1.68 \mathrm{~g} / \mathrm{cm}^{3}\) mud weight, which should provide sufficent overbalance. The formation pore pressures obtained from the 1/9-1 Drill Stem Tests varied from \(0.156 \mathrm{bar} / \mathrm{m}\) to \(0.160 \mathrm{bar} / \mathrm{m}\) (1.59-1.63 sp.gr.)

A pressure transition zone starting at Cenomanian/Lower cretaceous can be expected. In order to obtain a sufficient formotion integrity for drilling the Jurassic formations, (Phase 2), the \(95 / 8^{\prime \prime}\) casing is to be set into this transition zone. This should be safely accomplished within the allowable mud weight tolerance from \(1.68-1.78 \mathrm{~g} / \mathrm{cm}^{3}\) for this section of the hole.

Ha
The single shot directional survey will be run every bit run slap below the \(20^{\prime \prime}\) casing shoe, and every 90 m after setting the \(16^{\prime \prime}\) casing if hole conditions permit.

The mud is to be checked for \(H_{2} \mathrm{~S}\) content at intervals of 100 m below the 13 3/8" casing shoe, using the \(H_{2} S\) Gas Train.
gienum unidiogger.'
sjekke systenet periodisk.

VI HYDRAULICS/BITS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Interval (m) & \begin{tabular}{l}
Hole \\
size
\end{tabular} & Bit type & \begin{tabular}{l}
Nozzles \\
(32 nds)
\end{tabular} & \[
\begin{gathered}
\text { WOB } \\
\text { (tons) }
\end{gathered}
\] & RPM & \[
\begin{gathered}
\text { Circ. } \\
\left(\mathrm{m}^{3} / \mathrm{min}\right)
\end{gathered}
\] & Pump press (bars) \\
\hline 111 - & \(44^{\prime \prime}\) & H. O & & 0-5 & 50-70 & & \\
\hline 160-445 & 1731" & DSJ & \(3 \times 16\) & 2.5-7.5 & 50-110 & 3.8 & \\
\hline 160-445 & 26" & H.O. & & 0-7.5 & 110 & 3.8 & \\
\hline \(445-1365\) & 17192 \({ }^{\prime \prime}\) & DSJ & \(3 \times 18\) & 0-13 & 130 & 3.2 & 205 \\
\hline \(445-1365\) & 19 \({ }^{\frac{1}{2}}{ }^{\prime \prime}\) & Underreamer & & & & & \\
\hline 1365-2800 & \(143 / 4\) " & DSJ,S4j4,OSC1GJ,WVJ & \(3 \times 16\) (15) & 2.5-25 & 120-140 & 2. - 2 . & 205 \\
\hline 1365-2800 & 17192 & Underreamer & & & & & \\
\hline 2800-3800 & 12( \(\frac{1}{2}\) " & XlG, XV, J 22 & \(3 \times 16\) (15) & 15-120 & 80-120 & 2.4-2.1 & 205 \\
\hline
\end{tabular}
Hydraulics and Drilling Parameters will be optimized on the rig according to actual mud properties and hole conditions. Underreaming parameters will be optimized by the service company operator at the rig site.

Set casing as per general procedures

Casing Program:
\begin{tabular}{|c|c|c|c|c|}
\hline Size (inches) & Depth (m) & \begin{tabular}{l}
Weight \\
(lbs/ft)
\end{tabular} & Grade & Tread \\
\hline 36 & 0-160 & 1娄" wall & X-52 & Vetco ALT \\
\hline 20 & 0-430 & 133 & K-55 & Buttress \\
\hline 16 & 0-1350 & 75 & N 80 & Buttress \\
\hline 13 3/8 & 0-2800 & 72 & N 80 & Buttress \\
\hline \(95 / 8\) & 0-2950 & 47 & N 80 & Buttress \\
\hline & 2950-3300 & 53.5 spec & N 80 & Buttress \\
\hline & 3300-3800+ & 478.50 & N 80 & Buttress \\
\hline
\end{tabular}

Note:-9 5/8", N 80, 53.5lb/ft with special drift 8.50". \(-95 / 8^{\prime \prime}\), Casing is to be set into the pressure transition zone above the Jurassic formations, Depth: \(3800 \mathrm{~m}+\).

\section*{IX CEMENTING}

As per general procedures. See "cement Calculations" for slurry composition and slurry amounts. A cement bond log will be run to check the quality of the cement for the \(16^{\prime \prime}\) 13 3/8" and 9 5/8" casings.

\section*{X BOP TESTING}

As per general procedures

\section*{XI PRESSURE INTEGRITY TESTS}

As per general procedures
+!
\[
\begin{aligned}
& 525,020 \\
& 110,000 \\
& 415,000
\end{aligned} 0.25
\]
 42
\[
\begin{aligned}
& 729, \\
& \frac{69.9}{1581}
\end{aligned}
\]
 nócling ferition.

A20ikn:
is i/8 Ny raticis cipmetin yo th



\[
\begin{aligned}
& \text { Did }-9 y^{18}-55 \\
& 8.181 \\
& 95
\end{aligned}
\]


\section*{XIII ABNORMAL PRESSURE DETECTION}

The most effective abnormal pressure detection operation will be the result of team effort involving the Drilling Supervisor, Drilling Engineer, Wellsite Geologist, and Mud Logging Engineer. Pressure indicators will be monitored continuously and any deviation investigated immediately. The reliability of each abnormal pressure indicator will have to be established during the course of operation.

A Mud Logging Unit will be utilized below the 30 inch casing shoe to collect and monitor abnormal pressure parameters. This unit will be programmed to record and plot the following parameters relating to abnormal pressure:
a) On a depth scale:
1. Drillability
2. ROP
3. "d" exponent
b)

On a time scale
1. Rotary torque
2. Mud temperature in
3. Mud temperature out
4. Lagged differential temperature
5. Mud flow in
6. Mud flow out
7. Mud weight in
8. Mud weight out
9. Pit volume
10. Pit volume total change
11. Mud gas

In addition, below the \(20^{\prime \prime}\) casing shoe, manual plots will be recorded and reviewed continuously by the Drilling Engineer and Drilling Supervisor. These plots will include ROP, "d"-exp., Gas Units, and Shale Density.

Abnormal pressure detection data will be forwarded into the Stavanger Operations Office twice daily on a routine basis and more frequently if drilling a suspect transition zone. Any change in abnormal pressure detection parameters will be immediately reported by the rig to the Stavanger Operations Office.

\section*{XIV PRODUCTION TESTS}

As per production test manual. A detailed testing program will be issued prior to each production test.

XV PLUG AND ABANDONMENT

As per general procedures.

Approved:

\section*{CALCULATIONS}

\section*{KICK CONTROL}

20" Casing: The normal procedure of not shutting in the well will be used.

16" Casing: Setting depth: 1350 m . Formation integrity: equiv. \(0.20 \mathrm{bar} / \mathrm{m}\) : From Fig. 4 p. 50 it can be seen that all06 m column of gas (equiv. volume \(10.3 \mathrm{~m}^{3}\) ) is the maximum that can be circulated out at the \(16^{\prime \prime}\) casing shoe if the required mud weight increase is \(0.05 \mathrm{~g} / \mathrm{cm}^{3},(1.84+0.05) \mathrm{g} / \mathrm{cm}^{3}\).

13 3/8" Casing: Setting depth: 2800 m . Formation integrity: equiv. \(0.185 \mathrm{bar} / \mathrm{m}\). From Fig. 4 p .50 . it can be seen tiat a 78 m column of gas (equiv. volume: \(5 \mathrm{~m}^{3}\) ) is the maximum that can be circulated out at the \(133 / 8^{\prime \prime}\) casing shoe if the required mud weight increase is \(0.05 \mathrm{~g} / \mathrm{cm}^{3},(1.78+0.05) \mathrm{g} / \mathrm{cm}^{3}\).

Note: The pore pressure in the Danian/Maastrichtion pays is known to be \(0.157-0.160\) bars \(/ \mathrm{m}\). The only place kick could possibly occure with a \(1.78 \mathrm{~g} / \mathrm{cm}^{3}\) mud weight is in the transition zone above Jurassic.

9 5/8" Casing: Setting depth: \(3800+\mathrm{m}\). Formation integrity: \(0.210 \mathrm{bar} / \mathrm{m}\). From Fig. 4 p .50 it can be seen that a 170 m column of gas (equiv. volume: \(4.1 \mathrm{~m}^{3}\) ) is the maximum that can be circulated out at the \(95 / 8^{\prime \prime}\) casing shoe if the required mud weight increase is \(0.05 \mathrm{~g} / \mathrm{cm}^{3},(2.00+0.5) \mathrm{g} / \mathrm{cm}^{3}\).

Note: The control wells \(2 / 7-1,2 / 7-9\) and \(2 / 8-3\) all drilled Jurassic with mud weights less or equal to 2.00 sp . gravity. There is no reason to believe that a higher mud weight than 2.00 sp . gravity should be necessary for this well.

CASING CALCULATIONS
\begin{tabular}{|c|c|}
\hline Co & Collapse load (bars) \\
\hline Co' & Collapse load at top of fluid column (0') (bars) \\
\hline Co" & = Collapse load at seat while cementing (bars) \\
\hline Gf & Fracture gradient (bars/m) \\
\hline G gas & \(=\) Gas gravity gradient ( bars/m) \\
\hline Gi & \(=\) Mud gradient at casing setting depth (bars \(/ \mathrm{m}\) ) \\
\hline G'i & Maximum mud gradient below casing shoe (bars/m) \\
\hline Gp & \(=\) Normal pore pressure gradient (burst) \(=0.1 \mathrm{bars} / \mathrm{m}\) \\
\hline G'p & Normal pore pressure gradient (collapse) (bars/m) \\
\hline G"p & Actual pore pressure gradient (bars/m) \\
\hline Mc & \(=\) Casing mass-gradient (coupled) ( \(\mathrm{kg} / \mathrm{m}\) ) \\
\hline Pbs & = Burst load at seat (bars) \\
\hline Pbw & = Burst load at well-head (bars) \\
\hline RESb & = Burst resistance (bars) \\
\hline RESc & = Collapse resistance (bars) \\
\hline RESt & \(=\) Tension resistance ( \(10^{3} \mathrm{daN}\) ) \\
\hline S.F.b. & \(=\) Safety factor, burst \(=1.10\) \\
\hline S.F.C. & \(=\) Safety factor, collapse \(=1.25\) ( 1.30 for 13 3/8" CSG) \\
\hline S.F.t. & \(=\) Safety factor, tension \(=1.50\) \\
\hline T & \(=\) Tension ( \(10^{3}\) daN) \\
\hline T\% & \(=\) Longitudinal tension stress \% of YSm \\
\hline To' & \(=\) Tensile stress at \(0^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)\) \\
\hline wd & = Well depth (m) \\
\hline X & = Casing seat depth (m) \\
\hline Y & \(=\) Depth ( m ) to top of fluid column if mud is lost to a formation at the bit \\
\hline YSm & \(=\) Min. yield strength ( \(\mathrm{n} / \mathrm{mm}^{2}\) ) \\
\hline
\end{tabular}

\section*{16" CASING}
```

 Wd = 2800
 Wd* = 2l00m (max pore pressure'gradient)
 x = 1350m
 Gp = 0.10 bar/m (sea water)
 G"p,2100= 0.177 bar/m (l.80 sp.gr.)
Gi = 0.140 bar/m (l.43 sp.gr.)
G'i = 0.181 bar/m (1.84 sp.gr.)
Gf = 0.204 bar/m (2.08 sp.gr.)

```

\section*{BURST}

A design kick of \(15 \mathrm{~m}^{3}\) volume necessitating 0.10 sp.gr. mud weight increase is assumed at Wd. Maximum casing burst pressure is equal to the internal pressure at the mud/gas interface when circulating out the kick, less the hydrostatic pressure of sea water (back-up).

Select \(\mathrm{N} 80,75 \mathrm{lbs} / \mathrm{ft}\) casing which has the following properties:
\[
\begin{aligned}
\mathrm{RES}_{\mathrm{C}} & =70 \text { bars } \\
\operatorname{RES}_{\mathrm{b}} & =264 \text { bars } \\
\mathrm{RES}_{\mathrm{t}} & =762 \cdot 10^{3} \mathrm{daN} \\
\mathrm{Mc} & =110.39 \mathrm{~kg} / \mathrm{m}
\end{aligned}
\]

Annular Capacity 14 3/4" hole-5" DP: 98 1/m

Height of kick: \(\left(\mathrm{H}_{\mathrm{k}}\right)\) :
\(\mathrm{Hk}=\frac{15 \mathrm{~m}^{3}}{0.098 \mathrm{~m}^{3} / \mathrm{m}}=\underline{153 \mathrm{~m}}\)

BHP after kick: \(P p=\left(G^{\prime} i+0.01\right) \cdot W d^{*}\)
\[
\begin{aligned}
& =(0.18+0.01) \cdot 2100 \\
& =401 \text { bars }
\end{aligned}
\]

Determination of internal casing pressure while circulating out the kick using equations from the BOP-manual.
1. \(\mathrm{Pg}+\left(\mathrm{Wd}^{*}-\mathrm{Hg}\right) \cdot \mathrm{G}^{\prime} \mathrm{i}=\mathrm{Pp}\)
2. \(\frac{\mathrm{Pp}_{\mathrm{p}} \cdot \mathrm{V}_{1}}{\mathrm{~T}_{1} \cdot \mathrm{Z}_{1}}=\frac{\mathrm{Pg} \cdot \mathrm{Vg}}{\mathrm{T}_{2} \cdot \mathrm{Z}_{2}}\)
where
\(\mathrm{P}_{\mathrm{g}} \quad=\) pressure of gas bubble at surface (bars)
\(H_{g}=\) height of gas bubble at surface (m)
\(V_{g}^{g}=V o l u m e\) of gas bubble at surface \(\left(m^{3}\right)\)
\(v_{1}=\) Volume of influx \(=15 \mathrm{~m}^{3}\)
\(\mathrm{T}_{1}=\) Bottom hole temp: \(72^{\circ} \mathrm{C}\left(345^{\circ} \mathrm{K}\right)\)
\(\mathrm{T}_{2}=\) Surface temp. \(: 25^{\circ} \mathrm{C}\left(298^{\circ} \mathrm{K} 9\right.\)
\(\mathrm{Z}_{1}=\) Gas compr. factor at bottom: 1.06
\(Z_{2}=\) Gas compr. factor at surface: 0.83

Equation 2:
\[
\frac{401 \cdot 15}{345 \cdot 1.06}=\frac{\frac{\mathrm{P}}{\mathrm{G}}_{\cdot \mathrm{V}_{\mathrm{g}}}^{298 \cdot 0.83}}{}
\]
where \(\mathrm{V}_{\mathrm{g}}=\mathrm{H}_{\mathrm{g}} \cdot 0.098\)
\(H_{g}=\frac{401^{\bullet} 15 \cdot 298 \cdot 0.83}{345^{\cdot 1.06} \cdot \mathrm{P}_{\mathrm{g}} \cdot 0.098}\)
\(=\frac{41513}{\mathrm{P}_{\mathrm{g}}}\)

Substitute for \(H_{g}\) in equation \(l\)
\(p_{g}+\left(2100-\frac{41513}{P_{g}}\right) \cdot 0.18=401\)
\(P_{g}{ }^{2}-20.9 P_{g}-7514=0\)
\(\mathrm{P}_{\mathrm{g}} \simeq 98 \mathrm{bars}\)
\(\mathrm{H}_{\mathrm{g}}=\frac{41513}{98}=\underline{424 \mathrm{~m}}\)
From graphical solution \(\mathrm{P}_{\mathrm{b}} \max =173\) bars at 1350 m
\[
\begin{aligned}
\mathrm{SFb} & =\frac{\mathrm{RESb}}{\mathrm{~Pb}} \\
& =\frac{264}{173}=1.52(>1.10)
\end{aligned}
\]

\section*{Collapse}

Maximum collapse load:
\[
\begin{aligned}
C_{o} & =x \cdot\left(G_{i}-G_{p}\right) \\
& =1350(0.140-0.10) \\
& =54 \text { bars }
\end{aligned}
\]
\[
\begin{aligned}
S F_{C} & =\frac{\operatorname{RES}_{C}}{C_{O}} \\
& =\frac{70}{54}=1.30(\geq 1.30)
\end{aligned}
\]

Tension
\[
\begin{aligned}
T & =M_{C} \cdot x \cdot \frac{0.98}{1000} \\
& =110.39 \cdot 1350 \cdot \frac{0.98}{1000} \\
& =146.2 \cdot 10^{3} \mathrm{daN} \\
S F_{\mathrm{t}} & =\frac{\text { RESt }}{\mathrm{T}} \\
& =\frac{762 \cdot 10^{3}}{146.2 \cdot 10^{3}} \\
& =5.2(>1.50)
\end{aligned}
\]

\section*{Result:}

The selected casing \(N 80,751 b / f t\) full fills all requirements.


\section*{13 3/8" CASING}
```

$\mathrm{W}_{\mathrm{d}}=3800 \mathrm{~m}$
$\mathrm{X}=2800 \mathrm{~m}$
$G_{p}=0.10 \mathrm{bar} / \mathrm{m}$ (sea water)
$\mathrm{G}_{\mathrm{p}}^{\mathrm{p}}$ Danian $=0.157 \mathrm{bar} / \mathrm{m}$ (1.60 sp.gr.)
G gas Danian $=0.027 \mathrm{bar} / \mathrm{m}\left(\overline{\mathrm{p}}=440 \mathrm{bar}, \gamma=0.70, \overline{\mathrm{~T}}=80^{\circ} \mathrm{C}\right)$
$G_{i}=0.180 \mathrm{bar} / \mathrm{m}(1.83 \mathrm{sp} . \mathrm{gr}$.
$G_{i}=0.175 \mathrm{bar} / \mathrm{m}(1.78 \mathrm{sp} . \mathrm{gr}$.
$G_{f}=0.185 \mathrm{bar} / \mathrm{m}(1.88 \mathrm{sp} . \mathrm{gr}$.

```

\section*{Burst}

A design kick of \(15 \mathrm{~m}^{3}\) volume necessitating a 0.10 sp . gr. mud weight increase is assumed at wd. Maximum casing burst pressure is equal to the internal pressure at the mud/gas interface when circulating out the kick, less the hydrostatic pressure of sea water (back-up).

Select N80, \(72 \mathrm{lb} / \mathrm{ft}\) Buttress casing which has the following properties:
\[
\begin{aligned}
\mathrm{RES}_{\mathrm{C}} & =184 \text { bars } \\
\mathrm{RES}_{\mathrm{b}} & =371 \text { bars } \\
\mathrm{RES}_{\mathrm{t}} & =738^{\circ} 10^{3} \mathrm{daN} \\
\mathrm{M}_{\mathrm{C}} & =107.42 \mathrm{~kg} / \mathrm{m}
\end{aligned}
\]

Annular capasity \(12 \frac{1}{2}\) " hole-5 "DP: \(63.41 / m\)
Height of kick: \(H_{k}=\frac{15 \mathrm{~m}^{3}}{0.0634} \mathrm{~m}^{3} / \mathrm{m}\)
\(\qquad\)

BHP after kick: \(P_{p}=\left(G^{\prime}{ }_{i}+0.01\right) \cdot W d\)
\[
=(0.175+0.01) \cdot 3800
\]
\[
=703 \mathrm{bars}
\]

Determination of internal casing pressure while circulating out the kick using equations from the BOP-manual.
1. \(P_{g}+\left(W_{d}-H_{g}\right) \cdot G_{i}^{\prime}=P_{p}\)
2. \(\frac{{ }_{P} \cdot{ }_{p} V_{1}}{T_{1} \cdot Z_{1}}=\frac{P_{g} \cdot V_{g}}{T_{2} \cdot Z_{2}}\)
where \(\mathrm{P}_{\mathrm{g}}=\) pressure of gas bubble at surface (bars)
\(\mathrm{H}_{\mathrm{g}}=\) height of gas bubble at surface (m)
\(v_{g}=\) volume of gas bubble at surface ( \(\mathrm{m}^{3}\) )
\(v_{1}=\) volume of influx ( \(15 \mathrm{~m}^{3}\) )
\(\mathrm{T}_{1}=\) Bottom hole temp: \(130^{\circ} \mathrm{C}\left(403^{\circ} \mathrm{K}\right)\)
\(\mathrm{T}_{2}=\) Surface temp.: \(45^{\circ} \mathrm{C}\left(318^{\circ} \mathrm{K}\right)\)
\(\mathrm{Z}_{1}=\) Gas compr. factor at bottom: 0.80
\(\mathrm{Z}_{2}=\) Gas compr. factor at surface: 1.44

Equation 2:
\[
\frac{712 \cdot 15}{403 \cdot 1.44}=\frac{\mathrm{P}_{\mathrm{g}} \cdot \mathrm{~V}_{\mathrm{g}}}{318 \cdot 0.80}
\]
where \(\mathrm{V}_{\mathrm{g}}=\mathrm{H}_{\mathrm{g}} \cdot 0.0634\)
\[
\begin{aligned}
\mathrm{H}_{\mathrm{g}} & =\frac{712 \cdot 15 \cdot 318 \cdot 0.80}{403 \cdot 1.44 \cdot \mathrm{P}_{\mathrm{g}} \cdot 0.0634} \\
& =\frac{73847}{\mathrm{P}_{\mathrm{g}}}
\end{aligned}
\]

Substitute for \(H_{g}\) in equation 1 .
\(P_{g}+\left(3800-\frac{73847}{P_{g}}\right) \cdot 0.175=703\)
\(P_{g}^{2}-38 P_{g}-12923=0\)
\(\mathrm{P}_{\mathrm{g}} \approx 134\) bars
\(H_{g}=\frac{73847}{134}=551 \mathrm{~m}\)
From graphical solution \(\mathrm{P}_{\mathrm{b}} \max =303\) bars at 2800 m
\[
\begin{aligned}
\mathrm{SF}_{\mathrm{b}} & =\frac{\mathrm{RES}_{\mathrm{b}}}{\mathrm{P}_{\mathrm{b}}} \\
& =\frac{371}{303}=1.22(>1.10)
\end{aligned}
\]

\section*{Collapse}

Top of fluid column if circulation is lost to a formation with pore pressure equal to the Danian reservoir pressure gradient.
\[
\begin{aligned}
& \mathrm{Y}=\mathrm{W}_{\mathrm{d}}-\frac{\mathrm{W}_{\mathrm{d}} \cdot \mathrm{G}_{\mathrm{p}} \text { Danian }}{\mathrm{G}^{\prime}{ }_{i}} \\
& \mathrm{Y}=3800-\frac{3800 \cdot 0.157}{0.175}
\end{aligned}
\]
\[
=391 \mathrm{~m}
\]

The collapse load at 391 m
\[
\begin{aligned}
C_{0} ; & =G_{i} \cdot Y \\
& =0.180 \cdot 391 \\
& =70.4 \text { bars }
\end{aligned}
\]

Tension in casing at depth \(0^{\prime}\) (casing set in 1.83 sp.gr. mud)
\[
\begin{aligned}
T_{O^{\prime}} & =M_{c} \cdot(X-y) \cdot \frac{0.98}{1000} \cdot 0.77 \\
& =107.42(2800-391) \cdot \frac{0.98}{1000} \cdot 0.77 \\
& =195 \cdot 10^{3} \mathrm{daN}
\end{aligned}
\]
\[
\begin{aligned}
T \% & =\frac{T_{O}^{\prime}}{R_{E S}} \\
& =\frac{195}{738}=26 \%
\end{aligned}
\]

Bjaxial stress curve gives collapse reduction by \(17 \%\) i.e. \(\mathrm{RES}_{\mathrm{C}}=171 \cdot 0.83\)
\(=142\) bars
\(S F_{C}=\frac{\text { RES }_{C}}{C_{o}{ }^{\prime}}\)
\[
=\frac{142}{70.4}=2.01 \quad(>1.25)
\]

Tension

Weight of casing in air:
\[
\begin{aligned}
T & =M_{c} \cdot x \cdot \frac{0.98}{1000} \\
& =107.42 \cdot 2800 \cdot \frac{0.98}{1000} \\
& =295 \cdot 10^{3} \mathrm{daN}
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{SF}_{\mathrm{t}} & =\frac{\operatorname{RES}_{t}}{\mathrm{~T}} \\
& =\frac{738 \cdot 10^{3}}{295 \cdot 10^{3}} \\
& =2.50(>1.50)
\end{aligned}
\]

The selected 13 3/8" N80, \(72 \mathrm{lb} / \mathrm{ft}\) casing fullfils all requirements.


9 5/8" CASING
Wd \(=3800 \mathrm{~m}\) and 5000 m
\(\mathrm{X}=3800 \mathrm{~m}\)
\(\mathrm{Gp}=0.10 \mathrm{bar} / \mathrm{m}\) (sea water)
G" p Danian \(=0.157 \mathrm{bar} / \mathrm{m}\) (l.60 sp.gr:)
G gas Danian \(=0.027\) bar \(/ \mathrm{m}\left(\overline{\mathrm{p}}=440\right.\) bars, \(\gamma=0.70, \overline{\mathrm{~T}}=80^{\circ} \mathrm{C}\)
\(G_{i}=0.175 \mathrm{bar} / \mathrm{m}\) (1.78 sp.gr.)
\(\mathrm{G}_{\mathrm{i}}=0.196 \mathrm{bar} / \mathrm{m}(2.00 \mathrm{sp.gr}\).
\(G_{f}, 3800=0.210 \mathrm{bar} / \mathrm{m}(2.14 \mathrm{sp} . \mathrm{gr}\).
G"p, Jurassic \(=0.190 \mathrm{bar} / \mathrm{m}(1.94 \mathrm{sp} . \mathrm{gr}\).

The \(95 / 8\) casing calulations are done for two cases:
a) Production casing for Danian/Maastrichtian.
b) Intermediate casing for drilling the Jurassic formations.
a) Production casing for the Danian/Maastrichtian pays

Select the following 9 5/8" production casing: 0-2 \(950 \mathrm{~m}, \mathrm{~N} 80\) \(47 \mathrm{lb} / \mathrm{ft}, 2950-3300 \mathrm{~m}, \mathrm{~N} 80,53.5 \mathrm{lb} / \mathrm{ft}, 3300-3800 \mathrm{~m}, \mathrm{~N} 80\) 47 lb/ft, all Buttress.

9 5/8" Casing properties:
\begin{tabular}{lcc} 
& \(\mathrm{N} \mathrm{80,47lb/ft}\) & \(\mathrm{~N} 8053.5 \mathrm{lb} / \mathrm{ft}\) \\
\hline RESC, bars & 328 & 456 \\
RESb' bars & 474 & 547 \\
RESt, \(10^{3}\) daN & 482 & 552 \\
Mc, \(\mathrm{kg} / \mathrm{m}\) & 69.89 & 79.74
\end{tabular}

\section*{Burst}

The casing is designed to withstand the static wellhead burst pressure over the entire length, i.e.
```

Pbw = (G"p, Danian - Ggas, Danian)}\cdot\textrm{X Danian

```
\[
=(0.157-0.027) \cdot 3070=399 \text { bars }
\]
\(\mathrm{SFb}=\frac{\mathrm{RESb}}{\mathrm{PbW}}=\frac{474}{399}=1.19(>1.10)\)

\section*{Collapse}

The part of the casing above a production packer is designed to withstand the hydrostatic difference between mud and sea water.

Co, \(2950 \mathrm{~m}=\left(\mathrm{G}_{\mathrm{i}}-\mathrm{G}_{\mathrm{p}}\right) \cdot \mathrm{X},(\mathrm{N} 80,47 \mathrm{lb} / \mathrm{ft})\)
\(=(0.175-0.01) \cdot 2950=221\) bars
\(\mathrm{SFC}=\frac{\mathrm{RESC}}{\mathrm{CO}, 2950}=\frac{328}{221}=1.48(>1.25)\)

The part of the casing between a production packer and the plug back depth (2 \(950-3300 \mathrm{~m}\) is designed for a minimum allowable flowing pressure for \(\mathrm{N} 80,53.5 \mathrm{lb} / \mathrm{ft}\) casing).

Pwf, min \(=\) Pmud \(-\frac{\mathrm{RESC}}{\mathrm{SF}^{\mathrm{F} C}}=\)
\(0.175 \cdot 3300-\frac{45 b^{F C}}{1.25}=\)
213 bars which is equivalent to 275 bars drawdown at 3200 m

\section*{Tension}
\[
\begin{aligned}
& \mathrm{T}=\mathrm{Mc} \cdot \mathrm{X} \cdot \frac{0.981}{1000} \\
& =69.89 \cdot(2950-0)+(3800-3300) \cdot \frac{0.981}{1000} \\
& +79.74(3300-2950) \cdot \frac{0.981}{1000} \\
& =236.5+27.4 \\
& =264 \cdot 10^{3} \mathrm{daN}
\end{aligned}
\]
\[
\text { SFt }=\frac{\text { RESt }}{T}(N 80,47 \mathrm{lb} / \mathrm{ft})
\]
\[
=\frac{482 \cdot 10^{3}}{264 \cdot 10} 3
\]
\[
=1.38(>1.50)
\]

The proposed 9 5/8" production casing:
\(0-2950 \mathrm{~m}, \mathrm{~N} 80,47 \mathrm{lb} / \mathrm{ft}\) Buttress
\(2950-3300 \mathrm{~m}, \mathrm{~N} 80,53.5 \mathrm{lb} / \mathrm{ft}\), Buttress
\(3300-3800 \mathrm{~m}, \mathrm{~N} 80,47 \mathrm{lb} / \mathrm{ft}\), Buttress
fullfills all requirements.

\section*{Burst}

A design kick of \(15 \mathrm{~m}^{3}\) volume necessitating a 0.10 sp .gr. mud weight increase is assumed at T.D. Maximum casing burst pressure is equal to the internal pressure at the mud/gas interface when cirdulating out the kick less the hydrostatic pressure of the mud the casing was set in. (in this case the danian pore pressure gradient \(0.157 \mathrm{bar} / \mathrm{m}\) or 1.60 sp.gr. is used)

Annular capacity 8.5" hole - 5" DP: \(24 \mathrm{l} / \mathrm{m}\)
Height of kick: \(H_{K}=\frac{15 \mathrm{~m}^{3}}{0.024} \mathrm{~m}^{3} / \mathrm{m}=625 \mathrm{~m}\)
BHP after kick: \(P p=\left(G_{i}^{\prime}+0.01\right) \cdot W d\)
\[
\begin{aligned}
& =(0.196+0.01) \cdot 5000 \\
& =1030 \text { bars }
\end{aligned}
\]

Determination of internal casing pressure while circulating out the kick using equations from the BOP Mannual:
1. \(\mathrm{Pg}+(\mathrm{WD}-\mathrm{Hg}) \cdot \mathrm{G}^{\prime} \mathrm{i}=\mathrm{Pp}\)
2. \(\frac{\mathrm{Pp} \cdot \mathrm{V}_{\mathbf{1}}}{\mathrm{T}_{1} \cdot \mathrm{Z}_{1}}=\frac{\mathrm{Pg} \cdot \mathrm{Vg}}{\mathrm{T}_{2} \cdot \mathrm{Z}_{2}}\)

Where \(\mathrm{Pg}=\) pressure of gas bubble at surface, bars
\(\mathrm{Hg}=\) heigh of gas bubble at surface, m
\(\mathrm{Vg}=\) volume of gas bubble at surface, \(\mathrm{m}^{3}\)
\(\mathrm{Pp}=\) pressure of gas bubble at bottom, 1020 bars
\(\mathrm{V}_{1}=\) volume of influc, \(15 \mathrm{~m}^{3}\)
\(\mathrm{T}_{1}=\) bottom hole temperature, \(170^{\circ} \mathrm{C}\), \(\left(443^{\circ} \mathrm{K}\right)\)
\(\mathrm{T}_{2}=\) surface temperature, \(50^{\circ} \mathrm{C},\left(323^{\circ} \mathrm{K}\right)\)
\(\mathrm{z}_{1}=\) gas compr. factor at bottom, 1.55
\(\mathrm{Z}_{2}=\quad " \quad\) surface, 0.85
Equation 2: \(\frac{1030 \cdot 15}{443 \cdot 1.55}=\frac{\mathrm{Pg} \cdot \mathrm{Vg}}{323 \cdot 0.85}\)
where \(\mathrm{Vg}=\mathrm{Hg} \cdot 0.024\)
\(\mathrm{Hg}=\frac{1030 \cdot 15 \cdot 323 \cdot 085}{443 \cdot 1.55 \cdot \mathrm{Pg} \cdot 0.024}\)
\(=\frac{257397}{\mathrm{Pg}}\)

Substitute for Hg in equation 1 :
\(\mathrm{Pg}+\left(5000-\frac{257397}{\mathrm{Pg}}\right) \cdot 0.196=1030\)
\(P g^{2}-50 \mathrm{Pg}-50450=0\)
\(\underline{\mathrm{Pg}}=251\) bars
\(\mathrm{Hg}=\frac{257393}{\mathrm{Pg}}=\frac{257397}{251}=1025 \mathrm{~m}\)
From graphical solution, \(p\).
\(\mathrm{Pb} \max =310\) bars at 3800 m
\(\mathrm{SFb}=\frac{\mathrm{RESb}}{\mathrm{Pbmax}} \quad(\mathrm{N} 80,47 \mathrm{lb} / \mathrm{ft})\)
\(=\frac{474}{310}\)
\(=1.53(>1.10)\)

\section*{Collapse}

See collapse calculations for production casing p. 31 which is stricter than for an intermediate casing.

\section*{Tension}

See calculations for production casing p. 31 which are the same af for an intermediate casing.

\section*{Result}

The prososed 9 5/8" casing:
\(0-2950 \mathrm{~m}, \mathrm{~N} 80,47 \mathrm{lb} / \mathrm{ft}\), Buttress
\(2950-3300 \mathrm{~m}, \mathrm{~N} 80,53.5 \mathrm{lb} / \mathrm{ft}\), Buttress
\(3300-3800 \mathrm{~m}, \mathrm{~N} 80,47 \mathrm{lb} / \mathrm{ft}\), Buttress
Full fills all requirements for Danian/Maastrichtian production casing and for an intermediate casing for drilling the Jurassic formations to T.D. ( 5000 m ) .


36" CASING CEMENT CALCULATIONS

The cement volume is calculated on the basis of theoretical hole volume, the casing beeing cemented to the surface with 150 \% excess volume.
The ratio between dry-mixed and prehydrated gel is taken to be 4:1 when using fresh water for hydrating.

Data
\(\begin{array}{lll}\text { Depth KB- Seabed } & : & 111 \mathrm{~m} \\ \text { Depth } \mathrm{KB}-36 " \text { shoe } & : & 160 \mathrm{~m} \\ \text { Hole size } & : & 44^{\prime \prime}\end{array}\)
Annulus capasity \(44^{\prime \prime}\) hole - \(36^{\prime \prime}\) csg: 324 l/m
Mud weight : \(\quad 1.09 \mathrm{~g} / \mathrm{cm}^{3}\)
BHST
: \(\quad 10^{\circ} \mathrm{C}\)

Cement data using sea water
\begin{tabular}{cl}
\begin{tabular}{c} 
Class \(\mathrm{G}+8 \%\) \\
equiv.gel \(+2 \% \mathrm{CaCl}_{2}\)
\end{tabular} & \begin{tabular}{c} 
Class G \\
\(+3 \% \mathrm{CaCl}_{2}\) \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline mix water, \(1 / 100 \mathrm{~kg}\), (gal/sx) & 88 (10.0) & 44 (5.0) \\
\hline Slurry weight, \(\mathrm{g} / \mathrm{cm}^{3}\) (ppg) & 1.58 (13.2) & 1.92 (16.0) \\
\hline Slurry yield, \(1 / 100 \mathrm{~kg}\left(\mathrm{ft}^{3} / \mathrm{sx}\right)\) & 120 (1.82) & 77 (1.16) \\
\hline Thickening time, hrs & 4+ & 3+ \\
\hline 8 hr compr. strength, bars (psi) & - & 17 (250) \\
\hline \(24 \mathrm{hr}\). " " "bars (psi) & 7 (100) & 28 (450) \\
\hline
\end{tabular}

Note: For prehydrating Wyoming bentonite, \(50 \%\) of the total mixing water volume of fresh water is needed to hydrate the bentonite. Once hydrated, the other \(50 \%\) of the water to be added can be sea water. Add the Calcium Chloride to the total volume after hydrating the bentonite.
Annular volume: \(0.324 \mathrm{~m}^{3} / \mathrm{m} \cdot(160-111) \mathrm{m}=\frac{15.88 \mathrm{~m}^{3}}{0}\)
Shoe joint volume
Total
Volume \(+150 \%\) excess: \(\quad 39.7 \mathrm{~m}^{3}\)

Use:
Preflush: \(3 \mathrm{~m}^{3}\) sea water

Lead: Class G \(+8 \%\) equiv. gel \(+2 \% \mathrm{CaCl}_{2}: 25000 \mathrm{~kg}(586 \mathrm{sx})\). equal to \(30.0 \mathrm{~m}^{3}\) slurry.
Tail in: Class \(G+3 \% \mathrm{CaCl}_{2}: 13000 \mathrm{~kg}(305 \mathrm{sx})\) equal to \(10.0 \mathrm{~m}^{3}\) slurry.

The cement volume is calculated on the basis of theoretical annulus volume, the casing beeing cemented to the mudline with \(10 \%\) excess volume. The ratio between dry mixed and prehydrated gel is taken to be \(4: 1\). The bentonite is prehydrated in fresh water and sea water is added as required.

\section*{DATA}
\begin{tabular}{|c|c|c|}
\hline Depth KB - sea bed & & 111 m \\
\hline Depth KB - \(36^{\prime \prime}\) shoe & & 160 m \\
\hline Depth KB - \(20^{\prime \prime}\) shoe & & 430 m \\
\hline Annulus capacity \(36 "-20^{\prime \prime}\) & & \(349 \mathrm{l} / \mathrm{m}\) \\
\hline Annulus capacity 26 "-20" & & \(140 \mathrm{l} / \mathrm{m}\) \\
\hline Internal capacity 20",133 lb/ft & & 178 1/m \\
\hline Mud weight & & \(1.09 \mathrm{~g} / \mathrm{cm}^{3}\) \\
\hline Formation intergrity at & & \\
\hline \(20 "\) shoe & & \(0.150 \mathrm{bar} / \mathrm{m}\) \\
\hline BHST & & \(27^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Cement data using sea water.
\begin{tabular}{|c|c|c|}
\hline Class G+8\% & & Class G \({ }^{+}\) \\
\hline equiv.gel+ \(2 \%\) & \(\mathrm{CaCl}_{2}\) & \(1 \% \mathrm{CaCl}_{2}\) \\
\hline
\end{tabular}
\begin{tabular}{lrrl} 
1ix water, \(1 / 100 \mathrm{~kg}(\mathrm{gal} / \mathrm{sx})\) & \(88(10.0)\) & \(44(5.0)\) \\
Slurry weight, \(\mathrm{g} / \mathrm{cm}^{3}(\mathrm{ppg})\) & \(1.58(13.2)\) & \(1.92(16.0)\) \\
Slurry yield, \(1 / 100 \mathrm{~kg}\left(\mathrm{ft}^{3} / \mathrm{sx}\right)\) & \(120(1.82)\) & \(77(1.16)\) \\
Thickening time, \(\mathrm{hr} .:\) min & \(3: 00+\) & \(3: 10\) \\
8 hr compr. strength, bars (psi) & - & \(30(450)\) \\
24 hr compr.strength, bars (psi) & \(20(450)\) & \(100(1500)\)
\end{tabular}

Volume calculations
Open hole : \(0.140 \mathrm{~m}^{3} / \mathrm{m} \cdot(430-160)=37.8 \mathrm{~m}^{3}\)
Open hole excess: \(150 \% \quad=56.7 \mathrm{~m}^{3}\)
Cased annulus: \(0.349 \mathrm{~m}^{3} / \mathrm{m}(160-111)=17.1 \mathrm{~m}^{3}\)
\(\begin{aligned} 12 \mathrm{~m} \text { shoe joint vol: } 0.178 \mathrm{~m}^{3} / \cdot 12 & =\frac{2.1 \mathrm{~m}^{3}}{\text { Total slurry volume }}\end{aligned}\)

Use:

Preflush: \(3 \mathrm{~m}^{3}(20 \mathrm{bbl})\) mud flush
Lead : Class \(\mathrm{G}+8 \%\) equiv. gel \(+2 \% \mathrm{CaCl}_{2}\) : \(80000 \mathrm{~kg}(1833 \mathrm{sx})\) equal to \(96 \mathrm{~m}^{3}\) slurry.
Tail in : Class \(\mathrm{G}+\mathrm{l} \frac{\mathrm{f}}{\mathrm{f}} \mathrm{CaCl}_{2}: 22000 \mathrm{~kg}(5 \mathrm{l} 6 \mathrm{sx})\) equal to \(15.94 \mathrm{~m}^{3^{2}}\) slurry.
Displacement: \(0.178 \mathrm{~m}^{3} / \mathrm{m} \cdot(430-12) \mathrm{m}=74.4 \mathrm{~m}^{3}\)

Pressure gradient at the \(20^{\prime \prime}\) shoe
Pressure of tail in: \(0.189 \mathrm{bar} / \mathrm{m} \cdot \frac{(17.0-2.1) \mathrm{m}^{3}}{0.140 \mathrm{~m}^{3} / \mathrm{m}}=20.0 \mathrm{bars}\)
Pressure of lead: \(0.155 \mathrm{bar} / \mathrm{m}(430-106) \quad=50.2\) bars
Pressure at 20" shoe
\(=70.2\) bars
Pressure gradient: 70.2 bars/430m
\(=0.163 \mathrm{bar} / \mathrm{m}\)
Estimated formation integrity
\(0.150 \mathrm{bar} / \mathrm{m}\)
Note: There is a possibility to loose cement to the formation.

\section*{16" .CASING CEMENT CALCULATIONS}

The cement volume is calculated on the basis of theoretical annulus volume, the casing beeing cemented 100 m into the \(20^{\prime \prime}\) casing shoe with \(50 \%\) excess for the open hole section. The ratio dry-mixed/ prehydrated gel is 4:l.
```

Data
Depth KB - sea bed : lll m
Depth KB - 20" shoe : 430 m
Depth KB - 16" shoe : 1350 m
Annulus capacity 20" csg-16"
csg. : 48 l/m
Annulus capacity 19\frac{1}{2}}\mp@subsup{}{}{\prime\prime}\mathrm{ hole-16"
csg. : 63 1/m
Internal capacity 16" csg. : 116 1/m
Mud weight:
= 1.40 g/cm}\mp@subsup{}{}{3
Formation integrity 16" shoe : 0.20 bar/m
BHST
45 C

```

Cement data using fresh water for the gel cement and sea water for the neat cement.
\begin{tabular}{ll} 
Class \(G+8 \%\) equiv. & Class G+1\% CFR-2 \\
gel \(+0.5 \% \mathrm{CFR}-2\) & +0.1 \% \(\mathrm{HR}-7\) \\
\hline
\end{tabular}
mix water , \(1 / 100 \mathrm{~kg}\) (gal/sx)
Slurry weight, \(g / \mathrm{cm}^{3}\) (ppg)
Slurry yield, \(1 / 100 \mathrm{~kg} \mathrm{( } \mathrm{ft}^{3} / \mathrm{sx}\) )
Thickening time (hr:min)
16 hr . comp. strength \(45^{\circ} \mathrm{C}\), bars (psi)
88 (10.0) fresh
1.58 (13.2)

120 (1.82)
5:00

24 " " " " " " " "
": 35 (500)

44 (5.0) sea 1.89 (15.8) 76 (1.15)

4:00
100 (1500)
170 (2500)

Volume calculations
Open hole: \(0.063 \mathrm{~m}^{3} / \mathrm{m} \cdot(1350-430) \mathrm{m}\)
\[
\text { Open hole excess } 50 \%
\]
\[
\text { Cased hole annulus: } 0.048 \mathrm{~m}^{3} / \mathrm{m}^{\cdot} 100 \mathrm{~m}
\]
\[
24 \mathrm{~m} \text { shoe joint: } 0.116 \mathrm{~m}^{3} \cdot 24 \mathrm{~m}
\]
Total slurry volume
\[
\begin{aligned}
& =58.0 \mathrm{~m}^{3} \\
& =29.0 \mathrm{~m}^{3} \\
& =4.8 \mathrm{~m}^{3} \\
& =\frac{2.8 \mathrm{~m}^{3}}{=} \frac{94.6 \mathrm{~m}^{3}}{}
\end{aligned}
\]

Use:

Preflush: \(1.5 \mathrm{~m}^{3}\) sea water.

Lead: Class G \(+8 \%\) equiv. gel \(+0.5 \%\) CFR-2 \(: 65000 \mathrm{~kg}\) (1525sx) equal to \(78.0 \mathrm{~m}^{3}\) slurry

Tail in: Class \(G+1 \%\) CFR2 \(+0.1 \%\) HR7: 22000 kg ( 516 sx ) equal to \(16.7 \mathrm{~m}^{3}\) slurry

Displacement: \(0.116 \mathrm{~m}^{3} / \mathrm{m}(1350-12) \mathrm{m}=155.2 \mathrm{~m}^{3}\)

Pressure gradient at the \(16^{\prime \prime}\) shoe.
Pressure of tail in: \(0.186 \mathrm{bar} / \mathrm{m} \cdot \frac{(16.7-2.8) \mathrm{m}^{3}}{0.063 \mathrm{~m}^{3} / \mathrm{m}}=41.1\) bars
Pressure lead: \(0.155 \mathrm{bar} / \mathrm{m} \cdot(1350-221) \mathrm{m}=175.0\)
Pressure at \(16^{\prime \prime}\) shoe
Pressure gradient at \(16^{\prime \prime}\) shoe: 216.1 bar/1350m
\[
=0.150 \mathrm{bar} / \mathrm{m}
\]

Estimated formation integrity: \(0.20 \mathrm{bar} / \mathrm{m}\)

\section*{13 3/8" CASING CEMENT CALCULATIONS}

The casing is to be cemented in two stages, 2800 - 1450 m and 1450 - 850 m . The cement volumes are calculated on the basis of theoretical annulus volume with \(25 \%\) excess.

\section*{Data}
\begin{tabular}{llll} 
Depth KB - sea bed & \(:\) & 111 m & \\
Depth KB - \(16^{\prime \prime}\) shoe & \(:\) & 1350 m & \(i 345^{-}\) \\
Depth KB \(-D V-t o o l\) & \(:\) & 1450 m & \\
Depth KB \(-13 \mathrm{3} / 8^{\prime \prime}\) Shoe & \(:\) & 2800 m &
\end{tabular}

Annulus capacity : \(17 \frac{1}{2}\) " hole -
13 3/8" csg. : \(64.5 \mathrm{l} / \mathrm{m}\)
Annulus capacity: \(16^{\prime \prime} \mathrm{csg}\).
- 13 3/8" csg. : \(25.2 \mathrm{l} / \mathrm{m}\)

Internal capacity \(133 / 8^{\prime \prime} \mathrm{csg} \quad 77.2 \mathrm{l} / \mathrm{m}\)
Mud weight:
\(1.84 \mathrm{~g} / \mathrm{cm}^{3}\)
BHST:
\(110^{\circ} \mathrm{C}\)

Cement data

Class \(G+0.7 \%\) CFR-2 Class \(G+0.7 \% \mathrm{CFR}-2\)
\(+0.1 \% \mathrm{HR}-7+0.2 \% \mathrm{HR}-7\)
\(i 06-2000+1+7\)
\(14-5 \%\)

Mix water, fresh, \(1 / 100 \mathrm{~kg}, 44\) (5.0)
44 (5.0)
(gal/sx)
Slurry weight, \(\mathrm{g} / \mathrm{cm}^{3}\) (ppg) 1.89 (15.8) 1.89 (15.8)
Slurry Yield, \(1 / 100 \mathrm{~kg}\left(f t^{3} / \mathrm{sx}\right.\) ) 76 (1.15)
76 (1.15)
Thickening time, hr: min
12 hrs compr. strength, bars
4:00+ (psi)
\(70(1000), 45^{\circ} \mathrm{C}\)
4:00+ 240(3500) , \(110^{\circ} \mathrm{C}\)
24 hrs compr. strength, bars (psi)
\(150(2200), 45^{\circ} \mathrm{C}\)
\(255(3700)\),
\(110^{\circ} \mathrm{C}\)
radio telex from dyvi gamma / bfqx 3.10.77
to: telex no 33349 statoil base, stavanger
attn. ed diamond and paul gautreaux
re: \(13-3 / 8^{\prime \prime}\) cementing job.
we have rewiewed the coming \(\mathrm{cmt},-j o b\), and have the following comments:

1: would like to have a telex stating what prosentages of additives should be used on each stage.

21 atso nead the new thickening times stated. suppose fresh water only being used for this job.
3i first stage seems to be rather unrealistic in volume.
a: mixing time for 3300 sx of cmt will be at least \(1,5 \mathrm{hrs}\). b: displacind this stage at 8 bbt/min with take about 3 hrs . we consider this pumping rate being close to maximum.
c: conclusion: need at least 4,5 hirs to do this job if everything works tine.
d: we do not recomment pumping top of cement up to \(d . v\). tool, as thitinmay create problems with the latter.
suggestions:
first stage: bring ceit 500 m above shoe of \(13-3 / 8\) " csg . no additional cmt.
second stage: use calculated volume to bring cmt 500 m above 16': csg shoe. no excess cmt to be added.
re: balling of drillpipe and drillcollars.
due to excessive balling on the drillstring which may create problems for the underreaming, we would like to try to reduce this by adding a chemical to the mud.
suggest: magcobar: lub-coat, 4 ppb .
this is a graphite product.
regards

ISGB QUVL CIRMMA.
Cementing program \(13 / 5^{\prime \prime}\) casing
Bddition to chilling propram.

VOLUME REGVIVEMENTS,
First stage 2750-2250 m
Assinme \(18^{\prime \prime}\) hole (aned in caliper frow \(143^{\circ}\) hote)
Opin hole: \(0.02 \mathrm{~m}^{3} / \mathrm{m} \times(2750-2250) \mathrm{s} 34.2 \mathrm{~m}^{3}\) open hole excess \(25 \%\)
24 m shoe joint: \(0.0722 \mathrm{~m}^{3} / \mathrm{m} \times 24\) - 86

Total shirrey whime stage one:
\(\qquad\) 19 Total orn cement requirement: 60000 ky ( 1390 sx )

Second shage \(1450-25^{3} 0 \mathrm{~m}\)
Open hole: \(0.02 \mathrm{~m} / \mathrm{m} \times(1450-1845)=2.3 \mathrm{~m}^{3}\)
Warhount: \(0.16 \mathrm{~m}^{3} / \mathrm{m} \times 15 \mathrm{~m}, 2.3 \mathrm{~m}\)
Cased anmilis \(=0.0282 \times(1845-245) \ldots 27.7 n\)
Excens cement: \(0 \%\)
0.0 .

Total rlierry wolvime slage hurr: \(\qquad\)
Fikt dey amout reqüirement: 50 ono kg ( \(1 / 555 x\) )

CHEMICQCS:
Fint stage:
\[
\begin{gathered}
0.7 \%, C F B+Z \\
\% \\
H C 7
\end{gathered}
\]

Fuond shap: \(0.7 \%\) CFE-2
\[
\% \quad H P
\]

Wote! With red CFRR add depamer NFI to mix wator at a concentration of 2 pint NFT \(/ 10\) bils ani inater. Brar W. Cunitenic
 Cib: 1/6:tt


"1 the F Thich s. 38 un.
2H his ,SHORZ p3: Yrou ki
\[
\frac{-41822}{1}
\]

Ind shay :D:CP pol He
S. Paub/ suri

\[
241 \mathrm{C}=1002525 \mathrm{pr} \quad \begin{array}{rl}
614 & 90 \\
51 t 20 & \sim
\end{array}
\]
ta - 3, - ottor Gignta

Vs－3 Dyat Sigung
Cementancy \(13^{3} / 8^{\circ} \mathrm{cy}\)
V＇ivinus fuin cálípor．
lof shage 2250－ 2750 m
\[
\begin{aligned}
& 7250-2800 \\
& \text { 270:-2650: } \\
& 155^{\circ} \\
& 2050 \text { 200 } \therefore \quad 15.205^{-4} \\
& 2600 \text { - } 2550,1503 \\
& 2550-2500 \text { 15 D }{ }^{-4} \\
& \text { 2500 - 24550: } \because 55 \\
& \text { द4⿸厂 - } 440 \quad 166^{n} \\
& \text { c4a, -12354 : } 16 \\
& 23501-23_{0} \quad 165 \\
& \text { leo Pry } 1 \\
& \text { Guernoe } 16{ }^{\text {² }}
\end{aligned}
\]

Eud sogekopen hicte）
\[
\begin{array}{ll|l}
1450-1400 & 17 & \\
1400-1365 & 17^{4} & \\
1365-1345^{-1} & \text { Dssume } 30^{\circ} \text { Facho } 40 .
\end{array}
\]

Kíniven iecinirements.
1.shage
\[
2250-2250
\]

Dssinime \(18^{" ~ h o l e ~}\)
ifunhole \(0.0645\left(\frac{18}{12.5}\right)^{2} \times(2750-7250)=34.2 \mathrm{~m}^{3}\)


C4 on shere jonit: \(0.0782 \mathrm{~m}^{3} \mathrm{~m} \times 14\)
Tokl slirery wivine shage on:
\[
\frac{1.9}{\times 442 \mathrm{~m}^{3}}
\]
2. stage
'Man hall: \(0.0645\left(\frac{18}{18} 5\right)^{2} \times 100 \quad 6.998 \mathrm{~m}^{3}\)
laked annikis: \(00252 \cdot(137 / 5-245) \therefore 27.7\)
Fecens cement: \(0 \%\)
Tobal stivre, iotione siage ber:
's:
Fint itaze: ciement griontity: (io 000 by ( 1390 ses) Kan \(G+0.8 \%(+P-) \%\) ORF.

Second shage apiantion ciount werght: is oroky ( 10 Jo sus). Clans \(\mathrm{G}+0.2 \%(F R-2, \quad \%\) HPZ

4) Stage
open hole: \(0.0045 \mathrm{~m}^{3} / \mathrm{m} \cdot 500 \quad 532.25 \mathrm{~m}^{3}\)
open hole excess, \(25 \%\) - 8.00 i
24 m shoe joint: \(0.0722 \mathrm{~m} / \mathrm{m} \cdot 24=1,9\)
Total shivery for stge on: \(\quad 42.2 \mathrm{~m}^{3}\)
\[
=2588815
\]
2. Stage

Ifs before:
\[
\begin{array}{r}
\frac{23,85 \mathrm{~m}^{3}}{145} 881 \mathrm{~s} \\
\hline
\end{array}
\]

USE:
1. stage: 56000 kg
\[
\text { ( } 1302 \text { s es equal to } 42.2 \mathrm{~m}^{3} \text { ) }
\]
2. Stage: as before.

Deframes NFT. W/ red CFR? : 2 piuts/lodbls mix water
\[
\begin{gathered}
1542-34 \\
1574-125 \\
1620-35 \\
1666-74 \\
1327-40 \\
1380-84 \\
2186-82 \\
2552-56 \\
2402-10 \\
2580-32 \\
2523-27 \\
2680-83 \\
=227-40 \\
2442-51
\end{gathered}
\]

Am Mith : An An
Giamast fid dnat
irunet her irimiat.


1810
\[
1950
\]

1990

2100
\(2220-2300\)

2870
\[
? \quad 2400-2410
\]

2580
\(26: 5\)

2815 35

SD or Lmestone pissisle petuegrilify. Logs not clear, but inctication. Max. \(4 \pi\) units

So desenbed on lith dexriblim.
No indication molags ple perm ontitt. LS-streats fy Max. 665 units PCOSARLE PEPM. No unctiatim on lons Max 280 unith. prosgici.
No so inchictions on top
calianims shale.
Max: 980 änits. PROBAGLE
Incicition of so mitro
Ccalijer 'tamma man)
Nothmis on lith.
some so. Shaly prodebis Max 20 units.

SOME CIMEStform LITh.?
Mar 200 n

Limeshru, : sith,?

Lumest. Inlig. gas.
17x. 180."
Persarle
LS 1SO , Com lo,


1/a-3. TEMPORAKY BRBNOUNMENT. OPEN HOLE PLVGS

\[
\begin{aligned}
& \text { 1/a-3. IEMPOREEY RPRYDONEMINI. OPEN: HOLE PLUGS. } \\
& \text { : } \\
& \begin{array}{llll}
280 & \leftarrow & \operatorname{Man} 280 \\
280 & \leftarrow & \operatorname{Rv} 200
\end{array} \begin{array}{l}
1815 \\
1865
\end{array} \\
& 480 \leqslant 1720 \mathrm{~m}
\end{aligned}
\]
\[
\begin{aligned}
& 200 \longleftarrow 2320 \mathrm{~m}: \\
& 170 \longleftarrow 2020 \mathrm{~m}
\end{aligned}
\]

\section*{Volume calculations:}

\section*{1. stage}

Open hole: \(0.0645 \mathrm{~m}^{3} / \mathrm{m} \cdot(2800-1450) \mathrm{m}\)
\[
\begin{aligned}
& =87.1 \mathrm{~m}^{3} \\
& =21.8 \mathrm{~m}^{3} \\
& =\frac{1.9 \mathrm{~m}^{3}}{110.8 \mathrm{~m}^{3}}
\end{aligned}
\]

Open hole excess, \(25 \%\)
24 m shoe joint: \(0.0772 \mathrm{~m}^{3} / \mathrm{m}^{\cdot} 24 \mathrm{~m}\) Total slurry for stage one:

\section*{2. stage}

Open hole: \(0.0645 \mathrm{~m}^{3} / \mathrm{m}\) • (1450-1350) m
\[
\text { Cased annulus: } 0.0252 \mathrm{~m}^{3} / \mathrm{m} \cdot 500 \mathrm{~m}
\]
\[
\text { Excess cement: } 25 \%^{\circ}(6.45+12.6)
\]

Total slurry for stage two:
\[
\begin{aligned}
& =\quad 6.45 \mathrm{~m}^{3} \\
& =\quad 12.6 \mathrm{~m}^{3} \\
& =\quad 4.8 \mathrm{~m}^{3} \\
& =\quad 23.85 \mathrm{~m}^{3}
\end{aligned}
\]

\section*{Use:}

\section*{First stage}

Preflush: \(3.0 \mathrm{~m}^{3}\) weighted spacer, \(1.87 \mathrm{~g} / \mathrm{cm}^{3}\)

Cement: Class G + 0.7 \(\underset{\sim}{\text { CFR-2 }+0.2 \% ~ H R 7: ~} 146000 \mathrm{~kg}\)
(3425 sx) equal to \(111 \mathrm{~m}^{3}\) slurry

Turbulent rate: \(0.65 \mathrm{~m}^{3} / \mathrm{min}(4 \mathrm{bbls} / \mathrm{min})\)
Displacement: \(0.0772 \mathrm{~m}^{3} / \mathrm{m}(2800-24) \mathrm{m}=214.3 \mathrm{~m}^{3}\)

\section*{Second stage}

Preflush: \(1.5 \mathrm{~m}^{3}\) weighted spacer, \(1.87 \mathrm{~g} / \mathrm{cm}^{3}\)
Cement: Class g+ 0.7\% CIR-2 \(+0.1 \%\) HR-7: \(32000 \mathrm{~kg}(750 \mathrm{sx})\) equal to \(24.2 \mathrm{~m}^{3}\) slurry.

Turbulent rate: \(0.65 \mathrm{~m}^{3} / \mathrm{min}(4 \mathrm{bbls} / \mathrm{min})\)

Displacement: \(0.0772 \mathrm{~m}^{3} / \mathrm{m} \cdot 1450 \mathrm{~m}=112 \mathrm{~m}^{3}\)

Estimated formation integrity for the open hole section:0.20 bar \(/ \mathrm{m}\) which is greater than \(0.186 \mathrm{bar} / \mathrm{m}\) cement gradient.

The casing is to be cemented 500 m above the \(13 \mathrm{3} / 8^{\prime \prime}\) casing shoe. The cement volume is calculated on the basis of theoretical annulus volume with \(20 \%\) excess.

\section*{Data}
\begin{tabular}{|c|c|c|}
\hline Depth KB - 13 3/8" shoe & & 2800 m \\
\hline Depth KB - 9 5/8" shoe & & 3800 m \\
\hline Annulus capacity \(121 / 4 "\) hole - 9 5/8" csg & : & 29.1 1/m \\
\hline \(" \quad 133 / 8^{\prime \prime} \mathrm{csg}-95 / 8^{\prime \prime} \mathrm{csg}\) & : & 30.3 \\
\hline Internal capacity \(95 / 8^{\prime \prime} \mathrm{csg} .47 \mathrm{lb} / \mathrm{ft}\) & : & 38.2 \\
\hline \(95 / 8^{\prime \prime} \mathrm{csg} .53 .5 \mathrm{lb} / \mathrm{ft}\) & & 36.9 \\
\hline Mud weight & & 1.68-1.78 \\
\hline BHST & & \(135{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Cement data}

Class G + 35\% SSA - 1
\(+0.7 \% \mathrm{CFR}-2,+0.5 \% \mathrm{Halad} 9\)
\(+0.1 \% \mathrm{HR} 12\)
\begin{tabular}{lcl} 
Mix water, fresh, \(1 / 100 \mathrm{~kg}(\mathrm{gal} / \mathrm{sx}):\) & 46 & (5.2) \\
Slurry weight, \(\mathrm{g} / \mathrm{cm}^{3}(\mathrm{ppg}):\) & 1.90 & \((15.86)\) \\
Slurry yield, \(1 / \mathrm{lookg}\left(\mathrm{ft}^{3} / \mathrm{sx}\right):\) & 102 & \((1.53)\) \\
Fluid loss, \(\mathrm{cm}^{3} / 30 \mathrm{~min}:\) & \(120-150\) & \\
Thickening time, \(\mathrm{hr}: \mathrm{min}:\) & \(4: 30+\) \\
l2 hr compr. strength at \(135^{\circ} \mathrm{C}\), bars & & \\
(PSI): & 225 & (3250)
\end{tabular}

\section*{Volume calculations}

Open hole:
Cased annulus:
20\% excess:
24 m shoe joint:
\[
\begin{aligned}
0.0291 \mathrm{~m}^{3} / \mathrm{m}(3800-2800) \mathrm{m} & =29.1 \mathrm{~m}^{3} \\
0.0303 \mathrm{~m}^{3} / \mathrm{m} \cdot 500 \mathrm{~m} & =15.2 \mathrm{\prime} \\
(29.1+15.2) \cdot 0.20 & =8.9 \mathrm{\prime} \\
0.0382 \mathrm{~m}^{3} / \mathrm{m} \cdot 24 & =0.9 \mathrm{\prime} \mathrm{\prime} \\
& =54.1 \mathrm{~m}^{3}
\end{aligned}
\]

Total slurry volume

\section*{Use:}

Preflush: \(3.0 \mathrm{~m}^{3}\) weighted spacer, \(1.80 \mathrm{~g} / \mathrm{cm}^{3}\)
```

Cement: Class G + 35% SSA - 1 + 0.7% CFR - 2
+0.5% Halad 9 + 0.1% HR 12:
53 000 kg (1243 sx) equal to 54.1 m}\mp@subsup{}{}{3}\mathrm{ slurry

```

Turbulent rate: \(\quad 1.1 \mathrm{~m}^{3} / \mathrm{min}\). ( \(7 \mathrm{bbls} / \mathrm{min}\) )

\section*{Formation pressure integrity}

The critical interval is Paleocene, approx. 100 m below the \(13 \mathrm{3} / \mathrm{B}^{\prime \prime}\) casing shoe. Pressure while cementing at this point:
\begin{tabular}{|c|c|c|}
\hline Pressure of mud: & \(0.175 \mathrm{bar} / \mathrm{m} \cdot 2300 \mathrm{~m}\) & \(=403\) bars \\
\hline Pressure of cement: & \(0.187 \mathrm{bar} / \mathrm{m} \cdot 600 \mathrm{~m}\) & \(=112\) \\
\hline Pressure at 2900 m : & & 515 bars \\
\hline Pressure gradient: & 515 bars/2900 m & \(=0.178\) \\
\hline Estimated formation & ntegrity: & 0.185 \\
\hline
\end{tabular}

NOTE

The following additives from Halliburton are used:
\begin{tabular}{ll} 
CFR - 2 & \(:\) Friction reducer/water loss control additive \\
\(H R-7\) & \(:\) Cement retarder \\
\(H R-12:\) & Cement retarder \\
Halad - \(12:\) & Water loss control additive \\
SSA - 1 & \(:\) Silica Flour
\end{tabular}


Fig.2. Well 1/9-1 Formation Pore Pressure and Fracture Pressure Evaluation.

Depth
KB (m)

\(\qquad\) Specific Gravity \(-9 / \mathrm{cm}^{3}\)


```

