Denne rapport tilhører	05	TATOIL	
LTEK DO	DK.SE	NTER	
124780	10010	1	
KODE Well	/9-3	pr. 4	
Return	ieres ette	er bruk	

WELL 1/9-3, PHASE II DRILLING PROGRAM 27. APRIL 1978

Den norske stats oljeselskap a.s

WELL 1/9-3, PHASE II DRILLING PROGRAM 27. APRIL 1978

the second states and the second states and the

.

Î

STATOIL

DRILLING PROGRAM

WELL 1/9-3 PHASE II

NOTE: This program is designed to supplement STATOIL'S WELL 1/9-3 DRILLING PROGRAM, issued July 7, 1977, JACK-UP DRILLING OPERATIONS MANUAL, and JACK-UP BLOWOUT PREVENTION MANUAL.

> The procedures as presented in this program will be followed in cases where differences exist between this program and the abovementioned procedures.

CONTENTS.

PAGE.

Drilling program	4
Drilling Considerations (Remarks)	6
Mud Program	7
Hydraulics/Bits	8
Casing Program	9
Abnormal Pressure Detection	10
Kick Control Calculations	12
Casing Calculations	13
Cement Calculations	22

Figures.

Fig. l.	<pre>1/9-3 Temporary Abandonment.Position of abandonment caps</pre>	25
Fig. 2.	Well 1/9-3 Position of Cement Plugs.	26
Fig. 3.	Kick Control Calculations	27
Fig. 4.	Depth vs. Drilling Time	28

مكالغليقة مكالمسادخ حدار وراكله

nat.

---- i

DRILLING PROGRAM.

Well Designati	on:	1/9-3
Vessel	:	Dyvy Beta
Air Gap	:	18.2 m
KBE to MSL	:	36 m
Water Depth	:	76.2 m
Depths	:	Referred to KBE except where specified otherwise.

I LOCATION.

See Geological Progam

II MOVE, NAVIGATING, POSITIONING AND RE-ENTRY.

See separate program.

III GEOLOGICAL PROGNOSIS.

See Geological Program.

IV GENERAL DRILLING.

Total (depth	Phase	I		:	2771	m
Estima	ted to	tal d	lepth	Phase	II:	5000	m

OPERATIONAL PHASE.

Stab and land the 36" casing with the 44" OD overshot onto the remaining cut off 36" casing at mudline as described in chapter 5.26, STATOIL PROCEDURE FOR RE-ENTRY OF WELL 1/9-3. Remove the 2" OCT Back Pressure Valves for the 20", 16" and 13 3/8" casings and tie the abovementioned casings back to surface (See fig. 1 p.25)

Drill out cement abandonment plugs from Phase I (See fig. 2 p.26)

Drill 12 1/4" hole to approx. 3800 m. Core and log as programmed.

NOTE: The 9 5/8" casing is to be set into the pressure transition zone in the Lower Cretaceous in order to drill the Jurassic Formations safely.

Drill 8½" hole to T.D. Core and log as programmed. 7" casing or liner is only to be run if needed for drilling or well testing purposes.

REMARKS (DRILLING CONSIDERATIONS).

The Danian and Maastrichtian formations are to be drilled with approx. 1.68 g/cm³ mud weight, which should provide sufficient overbalance. The formation pore pressures obtained from the 1/9-1 Drill Stem Tests varied from 0.156 bar/m to 0.160 bar/m (1.59 - 1.63 sp.gr.)

A pressure transition zone starting at Cenomanian/Lower Cretaceous can be expected. In order to obtain a sufficient formation integrity for drilling the Jurassic formations, the 9 5/8" casing is to be set into this transition zone. This should be safely accompplished within the allowable mud weight tolerance from 1.68 - 1.78 g/cm³ for this section of the hole (formation integrity $\frac{1}{2}$ 1.88 g/cm³equivalent).

For optimum drilling performance and for an easier detection of the expected pressure transition zone, it is recommended to drill the Cenomanian and Lower Cretaceous in one bit run with a rotary diamond bit (MD 311 or equivalent).

The formation integrity below the 9 5/8" casing is expected to be equivalent to $\frac{+}{-}$ 0.210 bar/m (2.14 g/cm³). The maximum expected pore pressure gradient for the Jurassic formations is $\frac{+}{-}$ 0.190 bar/m, which should be safely controlled by $\frac{+}{-}$ 200 g/cm³ mud weight. The 1/9-3 control wells 2/7-1, 2/7-9 and 2/8-3 all drilled Jurassic formations with mud weights less or equal to 2.00 g/cm³.

Due to the close tolerance between loosing and gaining mud, it is an absolute necessity to optimize solids removal (mud cleaners and centrifuge) and to apply high temperature thinners in order to prevent mud gelation and excessive mud circulating density.

A single shot directional survey will be run every 90 m if hole conditions permit.

Check the mud for H_2S content in 100 m intervals by means of Garrett's H_2S Gas Train (use fresh filtrate from the filter press only!).

V MUD PROGRAM.

Interval (m)	Hole size	Muđ type	Weight (g/cm ⁾)	ΡV	ŶР	Н.Т.Н.Р. W.L.	Нd
2771 - ± 3800	12 1/4"	Seawater - Surfactant - HT - Thinners	1.65-1.75	low	8-15	15 or less	10-11
± 3800 - 5000	8 5 "	Seawater - Surfactant - HT - Thinners	1.85-2.00	low	8-15	15 or less	10-11

Remarks: - See separate Mud Program for details.

- Rheological properties will be tested and reported at 50⁰C. Reported mud weight is to be measured using a "Pressurized Mud Balance." I
- Maintain drill solids content at minimum by means of "mud cleaners" (150 120 mesh screens)
- Utilize the centrifuge for viscosity control.

- 7 -

i

ł

VI HYDRAULICS/BITS.

			i				
Interval (m)	Hole size	Bit type	Nozzles (32nds)	WOB (tonne)	RPM	Circ. (m ³ /min)	Pump Pressure (bar)
2771 - ± 3800	12 1/4"	XIG, XV, MD 311	3x16(15)	15-25	80-140	2.4-2.0	200
3800 - 5000	85° 87	MD 311	ł	10-20	+ 150	1.5-1.0	150 - 200

mud properties and hole conditions. Surface pressure is to be recorded at different - Hydraulics and Drilling Parameters will be optimized on the rig according to actual circulating rates before pulling the bit. Remarks:

8 -

-

- Bit type does not necessarily indicate actual make of bit. Equivalent bit types may be used. VII WELL LOGGING PROGRAM.

See Geological Program.

VIII CASING.

Set casing as per general procedures.

Casing program: (phase I and II):

Size	Depth (m)	Weight (lb/ft)	Grade	Thread	Operational phase
36" 20" 16" 13 3/8"	$0 - 162 \\ 0 - 434 \\ 0 - 1345 \\ 0 - 2761$	1½" wall 133 75 72	B K 55 N 80 N 80	Vetco ALT Buttress Buttress Buttress	Phase I
9 5/8" If require	0 - 2950 2950 - 3300 3300 - + 3800	47 53.5 47	N 80 N 80 N 80	Buttress Buttress Buttress	Phase II
7" liner		29 or 32	P 110	X-line or BDS	
7" tie back		32	P 110	BDS	

NOTE: - 9 5/8" casing is to be set into the pressure transition zone above the Jurassic formations. Estimated setting depth + 3800 m.

- 9 5/8" N 80, 53.5 lb/ft with special drift 8.50"

- See "Casing Calculations" for casing properties.

IX CEMENTING.

As per general procedures. See "Cement Calculations" for slurry composition and slurry amounts. A cement bond log will be run to check the quality of the cement for the 9 5/8" and 7" (if run) casings.

X BOP TESTING.

As per general procedures.

XI PRESSURE INTEGRITY TESTS.

As per general procedures.

XIII ABNORMAL PRESSURE DETECTION.

The most effective abnormal pressure detection operation will be the result of team effort involving the Drilling Supervisor, Drilling Engineer, Wellsite Geologist, and Mud Logging Engineer. Pressure indicators will be monitored continuously and any deviation investigated immediately. The reliablility of each abnormal pressure indicator will have to be established during the course of operation.

A Mud Logging Unit will be utilized below the 30 inch casing shoe to collect and monitor abnormal pressure parameters. This unit will be programmed to record and plot the following parameters relating to abnormal pressure:

- states

- a) On a depth scale:
 - 1. Drillability
 - 2. ROP
 - 3. "d" exponent
- b) On a time scale:
 - 1. Rotary torque
 - 2. Mud temperature in
 - 3. Mud temperature out
 - 4. Lagged differential temperature
 - 5. Mud flow in
 - 6. Mud flow out

- 7. Mud weight in
- 8. Mud weight out
- 9. Pit volume
- 10. Pit volume total change
- ll. Mud gas

In addition, below the 20" casing shoe, manual plots will be recorded and reviewed continuously by the Drilling Engineer and Drilling Supervisor. These plots will include ROP, "d"-exp., Gas Units, and Shale Density.

Abnormal pressure detection data will be forwarded into the Stavanger Operations Office twice daily on a routine basis and more frequently if drilling a suspect transition zone. Any change in abnormal pressure detection parameters will be immediately reported by the rig to the Stavanger Operations Office.

XIV PRODUCTION TESTS.

A detailed testing program will be issued prior to each production test.

XV PLUG AND ABANDONMENT.

As per general procedures.

Approved:

Expl. Manager Statoil

Drilling and Production Manager.

CALCULATIONS.

KICK CONTROL.

<u>13 3/8" Casing:</u> Setting depth: 2761 m. Estimated formation integrity: equiv. 0.185 bar/m. From Fig.3 p.27 it can be seen that a 78 m column of gas (equiv. volume:5.0 m³) is the maximum that can be circulated our at the 13 3/8" casing shoe if the required mud weight increase is 0.05 g/cm³, (1.78 + 0.05) g/cm³.

Note: The pore pressure in the Danian/Maastrichtion pays is known to be 0.157 - 0.160 bar/m. The only place kick control possibly occure with a 1.78 g/cm³ mud weight in the transition zone above Jurassic.

<u>9 5/8" Casing</u>: Setting depth: $\frac{+}{-}$ 3800 m. Estimated formation integrity: 0.210 bar/m. From Fig. 3 p.27 it can be seen that 170 m column of gas (equiv. volume: 4.1 m³) is the maximum that can be circulated out at the 9 5/8" casing shoe if the required mud weight increase is 0.05 g/cm³, (2.00 + 0.5) g/cm³.

Note: The control wells 2/7-1, 2/7-9 and 2/8-3 all drilled Jurassic with mud weights less or equal to 2.00 sp.gr. There is no reason to believe that a higher mud weight than 2.00 sp.gr. should be necessary for this well.

- 12 -

CASING CALCULATIONS.

Co	= Collapse load (bar)
Gf	= Fracture gradient (bar/m)
G gas	= Gas gravity gradient (bar/m)
Gi	= Mud gradient at casing setting depth (bar/m)
G'i	<pre>= Maximum mud gradient below casing shoe (bar/m)</pre>
Gp	= Normal pore pressure gradient - 0.1 bar/m
G'p	<pre>= Normal pore pressure gradient (collapse) (bar/m)</pre>
G"p	= Actual pore pressure gradient (bar/m)
Mc	<pre>= Casing mass-gradient (coupled) (kg/m)</pre>
Pb	= Burst load (bar)
Pbw	= Burst load at wellhead (bar)
RESb	= Burst resistance (bar)
RESC	= Collapse resistance (bar)
RESt	= Tension resistance (10 ³ daN)
S.F.b.	= Safety factor, burst = 1.10
S.F.c.	= Safety factor, collapse = 1.25
S.F.t.	= Safety factor, tension = 1.50
Т	= Tension (10^3 daN)
Wd	= Well depth (m)
Х	= Casing seat depth (m)
Y	= Depth (m) to top of fluid column if mud is lost
	to a formation at the bit

and a second and a second state of the second and a second second second second second second second second se

9 5/8" CASING.

The following parameters are used: Wd = 5000 m X = 3800 m Gp = 0.10 bar/m (sea water) G"p Danian = 0.157 bar/m (1.60 sp.gr.) G gas Danian = 0.027 bar/m (\bar{p} = 440 bar, γ = 0.70, \bar{T} = 80^oC Gi = 0.175 bar/m (1.78 sp.gr. mud) G'i = 0.196 bar/m (2.00 sp.gr. mud) G_f, 3800 = 0.210 bar/m (2.14 sp.gr) G"p, Jurassic = 0.190 bar/m (1.94 sp.gr.)

The 9 5/8" casing calculations are done for two cases:

- Production casing for Danian/Maastrichtian.

- Intermediate casing for drilling the Jurassic formations.

Production casing for the Danian/Maastrichtian pays.

Select the following 9 5/8" production casing: 0 - 2950 m, N 80
47 lb/ft, 2950 - 3300 m, N 80 , 53.5 lb/ft, 3300 - 3800 m,
N 80, 47 lb/ft, all Buttress.

9 5/8" casing properties:

	N 80, 47 lb/ft	N 80, 53.5 lb/ft
RESc, bar	328	456
RESb, bar	474	547
RESt, 10 ³ daN	482	552
Mc, kg/m	69.89	.79.74

Address of a month

Burst.

The casing is designed to withstand the static wellhead burst pressure over the entire length, i.e.

Pbw = (G"p, Danian - Ggas, Danian) • X Danian

 $= (0.157 - 0.027) \cdot 3085 = 401$ bar

Safety against burst (N 80, 47 lb/ft:

SFb = $\frac{\text{RESb}}{\text{Pbw}}$ = $\frac{474}{401}$ = 1.18 (> 1.10)

Collapse.

The part of the casing above a production packer is designed to with stand the hydrostatic difference between mud and sea water.

Co, 2950 m = $(G_i - G_p) \cdot X, (N \ 80, \ 47 \ lb/ft)$ = $(0.175 - 0.01) \cdot 2950 = 221 \ bar$

 $SFc = \frac{RESc}{Co, 2950} = \frac{328}{221} = 1.48 (> 1.25)$

The part of the casing between a production packer and the plug back depth (2950 - 3300 m) is designed for minimum allowable flowing pressure for N 80, 53.5 lb/ft casing).

Pwf, min = Pmud -
$$\frac{\text{RESC}}{\text{SFC}}$$

= 0.175 · 3300 - $\frac{456}{1.25}$
= 213 bar (\approx 3100 psi)

This is equivalent to approx. 277 bar drawdown at 3200 m

 $\frac{\text{Tension.}}{\text{T} = \text{Mc} \cdot \text{X} \cdot \frac{0.981}{1000}} \qquad (10^3 \text{ daN})$ $= 69.89 \cdot (2950 - 0) + (3800 - 3300) \cdot \frac{0.981}{1000}$ $+ 79.74 (3300 - 2950) \cdot \frac{0.981}{1000}$ $= 264 \cdot 10^3 \text{ daN}$ $\text{SFt} = \frac{\text{RESt}}{\text{T}} (\text{N} 80, 47 \text{ lb/ft})$ $= \frac{482 \cdot 10^3}{264 \cdot 10^3}$ = 1.83 (> 1.50)

The proposed 9 5/8" production casing:

0 - 2950 m, N 80, 47 lb/ft Buttress 2 950 - 3300 m, N 80, 53.5 lb/ft, Buttress 3 300 - 3800 m, N 80, 47 lb/ft, Buttress

fulfils all requirements.

Intermediate casing for drilling the Jurassic formations.

Burst.

A design kick of 15 m³ volume necessitating a 0.10 sp.gr. mud weight increase is assumed at T.D. Maximum casing burst pressure is equal the internal pressure at the mud/gas interface when circulating out the kick less the hydrostatic pressure of the mud the casing was set in. (in this case the danian pore pressure gradient 0.157 bar/m or 1.60 sp.gr. is used).

Annular capacity 8.5" hole - 5" DP: 24 1/m

BHP after kick: $Pp = (G'i + 0.01) \cdot Wd$ = (0.196 + 0.01) \cdot 5000 = 1030 bar

Determination of internal casing pressure while circulating our the kick using equations from the BOP Mannual:

1. $Pg + (WD - Hg) \cdot G'i = Pp$

².
$$\frac{Pp \cdot V_1}{T_1 \cdot Z_1} = \frac{Pg \cdot Vg}{T_2 \cdot Z_2}$$

Where Pg = pressure of gas bubble at surface, bar
Hg = heigh of gas bubble at surface, m
Vg = volume of gas bubble at surface, m³
Pp = pressure of gas bubble at bottom, 1020 bars
V₁ = volume of influx , 15 m³
T₁ = bottom hole temperatur,
$$170^{\circ}C$$
, $(443^{\circ}K)$
T₂ = surface temperatur, $50^{\circ}C$, $(323^{\circ}K)$
Z₁ = gas compr. factor at bottom, 1.55
Z₂ = "surface, 0.85

Equation 2:
$$\frac{1030 \cdot 15}{433 \cdot 1.55} = \frac{Pg \cdot Vg}{323 \cdot 0.85}$$

where $Vg = Hg \cdot 0.024$

$$Hg = \frac{1030 \cdot 15 \cdot 323 \cdot 085}{443 \cdot 1.55 \cdot Pg \cdot 0.024} = \frac{257397}{Pg}$$

Substitute for Hg in equation 1:

 $Pg + (5000 - \frac{257397}{Pg}) \cdot 0.196 = 1030$

Pg = 251 bar

 $Hg = \frac{257397}{Pg} = \frac{257397}{251} = \frac{1025 \text{ m}}{1025 \text{ m}}$

From graphical solution, p. Pb max = 310 bar at 3800 m

 $SFb = \frac{RESb}{Pbmax} \quad (N \ 80, \ 47 \ lb/ft)$ $= \frac{474}{310}$

= 1.53 (> 1.10)

Collapse.

See collapse calculations for production casing p. which is stricter than for an intermediate casing.

Tension.

See calculations for production casing p. which are the same as for an intermediate casing.

Sector Conversion

Result.

The prososed 9 5/8" casing:

0 - 2950 m, N 80, 47 lb/ft, Buttress 2950 - 3300 m, N 80, 53.5 bl/ft, Buttress 3300 - 3800 m, N 80, 47 lb/ft, Buttress

Fulfill all requirements for Danian/Maastrichtian production casing and for an intermediate casing for drilling the Jurassic formations T.D. (5000 m).

800 A 4

and the second second

7" CASING.

A 7" casing/liner will only be run in case it should become necessary for drilling or well testing purposes.

7" liner.

The liner will either be Pll0, 29 lb/ft, X-line or Pll0, 32 lb/ft, Mannesmann BDS with special clearance couplings, (OD = 7.37") depending upon acutal conditions (well depth, drilling or testing liner etc.)

7" liner properties:

	29 lb/ft, Pll0, X-line	32 lb/ft, Pl10, BDS sp. clearance
RESc, bar	587	742
RESb, bar	774	859
RESt, 10 ³ daN	401	277
Mc, kg/m	42.87	47.07

7 tieback.

In case it should become necessary to tie back a 7" liner to surface for well testing purposes, the tieback string will be P110, 32 lb/ft, Mannesmann BDS threads, which has the following properties:

	7" P110, 32 lb/ft, BDS
RESc, bar	742
RESb, bar	859
RESt, 10 ³ daN	441
Mc, kg/m	47.50

NOTE: All of the proposed 7" casing strings have a burst resistance above 690 bar (10000 psi) with a 1.1 safety factor.

9 5/8" CASING CEMENT DATA AND CALCULATIONS, WELL 1/9-3.

GENERAL: The casing is to be cemented 500 m above the 13 3/8" casing shoe with 25% excess on theoretical volume.

WELL DATA:

Î

I

Depth kb-sea bed	112	m
Depth kb-last shoe	2761	m
Depth kb-casing set point	3800	m
Open hole dia	12 1/4	"
Annulus capacity, cased hole	30.14	l/m
Annulus capacity, open hole	28.94	l/m
Internal capacity, "casing	38.19	l/m
Mud weight, max	1.78	g/cm ³
Bottom hole hydrostatic pres. (BHHP)	665	bar
Est. bottom hole static temp. (BHST)	140	oC
Est. bottom hole circulating temp. (BHCT)	100	c
Est. formation integrity	0.210	bar/m

CEMENT SLURRY DATA, STAGE: ONE OF ONE

	/ <u></u>	<u></u>
	SLURRY	SLURRY
CEMENT SLURRY COMPOSITION	CLASS (G+ 30% Silica Sand	CLASS G+ 30% Silica Sand
Mix water 1/100 kg Total liquid 1/100 kg Slurry weight g/cm ³ Slurry yield 1/100 kg <u>TEST DATA @ BHCT</u> Thickening time @ BHHP, hr:min Crit. Turb.Flow rate: m/s (1/min) Fluid loss, m1/30 min, 70 bar <u>TEST DATA @ BHST, BHHP</u> Compr. strength, N/mm ² , hr N/mm ² , hr <u>SPECIAL TESTS:</u> Additives specified later.	55 <u>fresh</u> 1.88 100 Test data not complete	(6.22 gal/sx) (15.7 ppg) (1.504 ft ³ /sx)

- 22 -

Volume calculations.

24 m plug at shoe: $0.03819 \text{ m}^3/\text{m} \cdot 24 \text{ m} = 0.92 \text{ m}^3$ 12 1/4" hole - 9 5/8" csg: $0.02894 \text{ m}^3/\text{m} \cdot (3800-2761) = 30.07 \text{ m}^3$ 13 3/8" csg. - 9 5/8" csg: $0.03014 \text{ m}^3/\text{m} \cdot 500 \text{ m} = 15.07 \text{ m}^3$ Theoretical volume 46.06 m^3 25% open hole excess: $30.07 \text{ m}^3 \cdot \frac{25}{100} = \frac{7.52 \text{ m}^3}{53.58 \text{ m}^3}$

USE.

Class G + 30% Silica Sand:

54 000 kg cement 1266 sx) + 16 200 kg silica sand equal to 54.0 m³ slurry requiring 29.7 m³ (187 bbl) liquid (fresh water + additives) to mix the cement slurry.

Note: Amount of additives (retarder, dispersant and fluid loss control) will be specified when the cement slurry test data are available.

Estimated time for cement mixing and cement displacement.

 Mixing:
 $54\ 000\ kg/1000\ kg/min$ =
 $54\ min$

 Displacing:
 $54.0\ m^3/1.1\ m^3/min$ =
 $49\ min$

 Total
 103\ min\ or\ 1\ hr\ 43\ min

Formation pressure integrity.

The critical interval is thought to be Paleocene sands, approx 100 m below the 13 3/8" casing shoe. Hydrostatic pressure at this point:

Pressure of mud:	0.175 bar/m • 2000 m	= 350 bar
Pressure of cement:	0.185 bar/m • 850 m	= 157 bar
Hydrostatic pressure	at 2850 m	507 bar
Pressure gradient:	507 bar/2850 m =	0.178 bar/m
Estimated formation	integrity.	0.185 har/m

- 23 -

7" CASING/LINER CEMENT DATA AND CALCULATIONS.

Will be issued in a separate program in case 7" casing is run.

Figure 2. Well 1/9-3 Cement Plugs.

RKB - MSL: 36.1 m

Abandonment cement

		· · · · · · · · · · · · · · · · · · ·	
	\bullet		PS 11 20
7"	CASING CEMENT DATA AND CALCULAT	IONS. WELL 1/9-3	ABKIV:
		AVD	(S.9)1:
WE	Л. ДАТА :	18.00E:	
	Depth kh-sea bed	: ····.):	<u>1 1 2 m</u>
	Depth kb-last shoe		3830m
	Depth kb-casing set point	. 4	4500m
	Open hole dia	····· · · · · · · · · · · · · · · · ·	8 15/3
		••••••	0 13/ 34
	Open hole capacity		36.61/m
	Annulus capacity, cased hole, 9	15/8"-7" csg	13.31 1/m
	Annulus capacity, open hole, 81	3/8"-7" csq	11.7 1/m
	Internal capacity, 7" casing, 3	2 lb/ft	18.82 1/m
	Internal capacity, 5" drill pip	e, 19.50 lb/ft	9.16 1/m
			·
	Mud weight	• • • • • • • • • • • • • • • •	2.04 g/cm ³
	Bottom hole hydrostatic pre. (B	HHP) 4500m:	900 bar
	Est. bottom hole circulating te	mp. (BHCT):	110 ⁰ C (4200m
	Est formation integrity	-	0 201 haw/m
	PRELIMINARY SLURRY DATA The following data were calcula	ted for a setting d	lepth of 4200m
•	PRELIMINARY SLURRY DATA The following data were calcula (BHCT=110 ^O C). A setting depth which will reduce the thickening	ted for a setting d of 4500m gives a BH g time to a more de	lepth of 4200m ICT of 11 8 ⁰ C cirable value.
•	<u>PRELIMINARY SLURRY DATA</u> The following data were calcula (BHCT=110 ^O C). A setting depth which will reduce the thickening CEMENT SLURRY COMPOSITION	ted for a setting d of 4500m gives a BF g time to a more de D-&C CLASS G+30% D-&C R6+1.5% D3	lepth of 4200m ICT of 118°C cirable value.
•	PRELIMINARY SLURRY DATA The following data were calcula (BHCT=110°C). A setting depth which will reduce the thickening CEMENT SLURRY COMPOSITION Mix water 1/100 kg	ted for a setting d of 4500m gives a BF g time to a more de D-80 CLASS G+30% D-60 R6+1.5% D3 Ferskvann 40 Fruk	lepth of 4200m ICT of 118°C cirable value.
•	PRELIMINARY SLURRY DATA The following data were calcula (BHCT=110 ^O C). A setting depth which will reduce the thickening CEMENT SLURRY COMPOSITION Mix water 1/100 kg Total liquid 1/100 kg Slurry weight g/cm ³	ted for a setting d of 4500m gives a BF g time to a more de CLASS G+30% D-80 R6+1.5% D3 Ferskvann 40 Fruk	1201 Bal/m lepth of 4200m ICT of 118°C ecirable value. +1.5% R11+0.3% 1 4.51
•	PRELIMINARY SLURRY DATA The following data were calcula (BHCT=110 ^O C). A setting depth which will reduce the thickening CEMENT SLURRY COMPOSITION Mix water 1/100 kg Total liquid 1/100 kg Slurry weight g/cm ³ Slurry yield 1/100 kg	ted for a setting d of 4500m gives a BF g time to a more de CLASS G+30% D-80 R6+1.5% D3 Ferskvann 40 Fruk 2.04 85.28	lepth of 4200m ICT of 118°C ecirable value. +1.5% R11+0.3% 1 17.0 pp 1.28ft
•	PRELIMINARY SLURRY DATA The following data were calcula (BHCT=110 ^O C). A setting depth which will reduce the thickening CEMENT SLURRY COMPOSITION Mix water 1/100 kg Total liquid 1/100 kg Slurry weight g/cm ³ Slurry yield 1/100 kg TEST DATA SBHCT (110 ^O C)	ted for a setting d of 4500m gives a BF g time to a more de CLASS G+30% D-80 R6+1.5% D3 Ferskvann 40 Fruk 2.04 85.28	lepth of 4200m ICT of 118°C ecirable value. +1.5% R11+0.3% 1 17.0 pp 1.28ft
•	PRELIMINARY SLURRY DATA The following data were calcula (BHCT=110°C). A setting depth which will reduce the thickenin CEMENT SLURRY COMPOSITION Mix water 1/100 kg Total liquid 1/100 kg Slurry weight g/cm ³ Slurry yield 1/100 kg <u>TEST DATA @BHCT (110°C)</u> Thickening time @BHHP, hr:min Crit. Turb.Flow rate: 1/min Fluid_loss, m1/30 min. 70 bar	ted for a setting d of 4500m gives a BH g time to a more de D-&CLASS G+30% D-&C R6+1.5% D3 Ferskvann 40 Fruk 2.04 85.28 5:10 1372	lepth of 4200m ICT of 118°C ecirable value. (+1.5% R11+0.3% 17.0 pp 1.28ft 13x2 1.m
•	PRELIMINARY SLURRY DATA The following data were calcula (BHCT=110 ^O C). A setting depth which will reduce the thickening CEMENT SLURRY COMPOSITION Mix water 1/100 kg Total liquid 1/100 kg Slurry weight g/cm ³ Slurry yield 1/100 kg <u>TEST DATA @BHCT (110^OC)</u> Thickening time @BHHP, hr:min Crit. Turb.Flow rate: 1/min Fluid_loss, m1/30_min, 70_bar TEST DATA @BHST, BHHP	ted for a setting d of 4500m gives a BH g time to a more de D-& CLASS G+30% D-& R6+1.5% D3 Ferskvann 40 Fruk 2.04 85.28 5:10 1372	1372 1.01
•	PRELIMINARY SLURRY DATA The following data were calcula (BHCT=110°C). A setting depth which will reduce the thickening CEMENT SLURRY COMPOSITION Mix water 1/100 kg Total liquid 1/100 kg Slurry weight g/cm ³ Slurry yield 1/100 kg <u>TEST DATA @BHCT (110°C)</u> Thickening time @BHHP, hr:min Crit. Turb.Flow rate: 1/min Fluid_loss, m1/30 min, 70 bar <u>TEST DATA @BHST, BHHP</u> Campr. strength, N/mm ² , 12hr N/mm ² , hr	ted for a setting d of 4500m gives a BH g time to a more de D-& CLASS G+30% D-& R6+1.5% D3 Ferskvann 40 Fruk 2.04 85.28 5:10 1372	13221 Bar/m lepth of 4200m ICT of 118°C ecirable value. 11.5% R11+0.3% 11.28ft 1372 1.m 2-3000 ps
•	PRELIMINARY SLURRY DATA The following data were calcula (BHCT=110 ^O C). A setting depth which will reduce the thickening CEMENT SLURRY COMPOSITION Mix water 1/100 kg Total liquid 1/100 kg Slurry weight g/cm ³ Slurry yield 1/100 kg <u>TEST DATA @BHCT (110^OC)</u> Thickening time @BHHP, hr:min Crit. Turb.Flow rate: 1/min Fluid_loss, ml/30_min, 70_bar <u>TEST DATA @BHST, BHHP</u> Compr. strength, N/mm ² , 12hr N/mm ² , hr	ted for a setting d of 4500m gives a BH g time to a more de D-& CLASS G+30% D-& R6+1.5% D3 Ferskvann 40 Fruk 2.04 85.28 5:10 1372	1372 1 m 1372 1 m 2-3000 ps
	PRELIMINARY SLURRY DATA The following data were calcula (BHCT=110°C). A setting depth which will reduce the thickening CEMENT SLURRY COMPOSITION Mix water 1/100 kg Total liquid 1/100 kg Slurry weight g/cm ³ Slurry yield 1/100 kg <u>TEST DATA @BHCT (110°C)</u> Thickening time @BHHP, hr:min Crit. Turb.Flow rate: 1/min <u>Fluid_loss, ml/30 min, 70 bar</u> <u>TEST DATA @BHST, BHHP</u> Compr. strength, N/mm ² , 12hr N/mm ² , hr <u>SPECIAL TESTS</u> : Fann Readings @93°C (200°F)	ted for a setting d of 4500m gives a BF g time to a more de CLASS G+30% D-80 R6+1.5% D3 Ferskvann 40 Fruk 2.04 85.28 5:10 1372	200 10 200 10 200 10 200 10 200 10 200 10 200 10 200 10 200 10

£

The additive? R11, R6, D31 must be prehydrated, in fruch Watter.

The following additives are used:

F. MIL

R11	High temperature retarder
R6	High temperature retarder
D31	Dispersant
D-8C	Silica Sand (preblended with "Norcem G")

KOMMENTAR TIL GEOLOGISK PROGNOSE

I vår søknad om tillatelse til å bore 1/9-3 (fase 1) ble vedlagt "Geological Prognosis, Drilling Program, and Drilling Considerations, Date: 7 July 1977".

WELLFILE

Vedlegg a)

Den geologiske delen av dette programmet ble prognosert til en total dybde av 5000 m (dvs. fase 2 inkludert).

Resultatene av fase 1 ga oss ingen grunn til endringer av denne prognosen. Vi henviser derfor til den tidligere innleverte geologiske delen av boreprogrammet for 1/9-3 som geologisk vedlegg til søknad om boretillatelse for 1/9-3(fase 2 og anfører endringer med henvisning til nevnte program, som følger:

Side 3:

Drilling Contractor	-	k/s Dyvi Drilling II A/S
Drilling Rig	-	"Dyvi Beta"
Mudlogging Contractor	-	NEC GAS
Type Logging Unit	-	NEC GAS Standard Unit

Side 6:

Bare forandring i Mudlogging Contractor og Logging Unit.

Side 7:

"Velocity Survey will be run at TD". (Ikke ved 9 5/8" foringsrør dyp.)

Side 8:

Tillegg: STAFF:

Staff of the Exploration Department, Statoil who are involved on the planning and drilling of well 1/9-3 (phase 2):

		TE			
Name	Title	Office	Home	Mobile	
P.H. Halstead Ki. Helle	Expl.manager Area Geolo-	33180	32466	62515	
D.I. Milton	gist Chief. Ex-	**	25556	-	
	ploit.Geol.	41	51264	62513	
S.G. Larsen S.O. Syrstad	Sen.Geol. Well-site-	18	25374	36340	
1	geologist	11	-	5 7905	

SGL/GjI 27 April 78