by

F.M. van der Veen and J. Posthuma

This CONFIDENTIAL report is made available subject to the condition that the recipient will neither use or disclose the contents except as agreed in writing with the sponsoring party.

October 1984
RKER. 84.162

GEOCHEMICAL ANALYSIS OF TWO KIMMERIDGE CLAY ROCK SAMDLES AND OF TNO CRUDE OILS FROM WELL 2/5-7, NORNAY

by
F.M. van der Veen and J. Posthuma

Investigation 9.5.5091

with co-operation from R.F. Stuifzand

This CONFIDENTIAL report is made available subject to :ne condition that the recipient will neither use or disclose the contents except as agreed in writing with the sponsoring party.

Neither the whole nor any part of this document may be reproduced, stored in any retrieval system or transmitted in any form or by any means leiectronic, mechanical, reprographic, recording or otherwise) without the prior written consent of the copyright owner.

Neither Royal Dutch Petroleum Company nor The "SHELL" Transport and Trading Company p.I.c. nor any company of the Royal Dutch/Sheil Group will accept any liability for loss or damage originating from the use of the iniormation contained therein.

Although SHELL companies have their own separate identities the expressions "SHELL" and "GROUP" are used for convenience to refer to companies of the Royal Dutch/Shell Group in general, or to one or more such companies as the context may require.

COMTENTS

Pace
1

1. Introduction
2. Results and Discussion 1
3. Conclusions
Tables 1 Geochemical data of crude oils
2 Geochemical data of extracts
3 Maceral description
Figures 1-4 Gas chromatograms of saturated hydrocarbons 5 C7 distributions of crude oils 6 C 15 and C30 ringdistributions
7-10 Sterane and triterdane fragmentograms

Abstract

GEOCHEMICAL ANALYSIS OF TWO KIMMERIDGE CLAY ROCK SAYPLES AND OF TWO CRUDE OILS FROM WEJL ?./5-7, NORWAY.

$\therefore \quad \because: \because R O D U C T I O N$
geochemical analysis have been carried out on the following :n $)$ rock samples and two crude oil sample from well 2/5-7
=rarlest telex for 240229 of 24.02 .94 and 070502 of 7.05 .94):

- Crude oil sample. OMC 3250, 3300-3335 m, PT-1.
- Crude oll sample, OMC 3295, 3263-3287 m, PT-2.
- Sidewall sample, Kimmeridge clay formation, 4112.5 m _ Sidewall sample, Kimmeridge clay formation, 4113.5 m

Since the sidewall samples were only of limited size not all $\because \because o n g$ parameters could be determined.

2 2 2 SULTS AND DISCUSSION

The results, which are given in Tables 1-3 and Figs. 1-10 :nsicate the following:

Eude ofl samples
The gas chromatograms of the saturated hyarocarbons ($\operatorname{Fig} .1-2$) 3nd the C7 alkane distributions (Fig.5) indicate that both crude $:$: samples have not been bacterially degraded.

The relatively low intensity of the non-n-alkanes in the $C 3 n$ -aiton of the gas chromatograms (Fig.1-2) and the C29 DOM values ○: 70 (VR/E =1.0) point to expulsion from (a) mature source :ock(s). It should be kept in mind that the C29 DOM has only been :ailbrated between 56-66 (VR/E= 0.5-0.85) and that values above 2.:1 below this range has been obtained by extrapolation.

The shape of the gas chromatogram (Fig.1-2) and the Cl5- and :3) ringdistribution (Fig. 6) indicate that both oils were ranerated from a source rock containing structureless organic -atter (S.O.M.). The sterane and triterpane fragmentograms (Figs. - - $)$ indicate that the S.O.M. is probably of bacterially reworked =.jちoolanktonic origin.

The C7 alkane/naphthene distribution (Fig.5) points to a \therefore ?y environment of deposition of the source matter of these ruie oils.

All data indicate that both crude oils have been expeljed $\therefore 0 m$ the same or a similar type of source rock.

Exさracts of Kimmeridge clay formation
All data indicate that the extracts of both samples (4112.5 and 4113.5 m) are very similar.

The relatively low intensity of the non-n-alkanes in the 030 resion of the gas chromatogram (Figs. 3-4) and the C29 DOM values o: 68 (VR/E= 0.9) indicate that these extracts are mature. This is in agreement with the estimated DOM values of 65-68 (VR/E= $0.9-0.9$) obtained by a fluorescence measurement of lintinites. (Table 3).

The shape of the gas chromatograms (Figs. 3-4), the Cl5- and C30 ringdistributions (Fig.6) and the sterane and triterpane Eragmentograms (Figs. 9-10) indicate that these samples contain structureless organic matter of probably bacterially reworked ciytoolanktonic origin.

Correlation
All data indicate that both crude oils and the two extracts are rather similar.
3. CONCLUSIONS

Both crude oil samples (Well 2/5-7, $3300-3335 \mathrm{~m}$ and 32533287 m) have been expelled from the same or similar type of source rock. They have not been bacterially degraded and were expelled from a mature (shaly) source rock containing structureless orjanic matter of bacterially reworked phytoplanktonic origin.

Both rock samples (4112.5 and 4113.5 m), are rather similar End can be regarded as mature source rocks.
They contain structureless organic matter probably of bacterially reworked phytoplanktonic origin.

The Kimmeridge Clay Formation as represented by the two samples investigated may well be the source of the crudes found in this well.

Table-1 GEOCHEMICAL DATA OF CRUDE OILS, WELI 2/5-7

API
specさミic gravity
\%W. boil. $120^{\circ} \mathrm{C}$ \% sulphur
ppm V as metals
ppm Ni as metals
Pristane/phytane
Pristane/ncl7
Phytane/ncl8
3300-3335 M

$$
\mathrm{PT}-1, \mathrm{OMC} 3250
$$

$$
41.8
$$

$$
0.8162
$$

$$
15.5
$$

0.1

0
0
1.4
1.4
0.5
0.5
0.5

C7-distribution C7-2lkane

$$
\mathrm{nC7}
$$

36
monobranched

$$
37
$$

nC7 29 29
naphthenes 46 46
aromatics 11 11
32 3-ring 12

54

$$
10
$$

$$
10
$$

C7-alk/naphthene
branched alkanes 26 25

25
C7-alk/napinth/arom
n:7 48
naphthenes 41 41 48
Cl5-distribution l-ring 56 612415
030-distribution
3-ring 3329
5-ring 25 46C29 DOM7070
J asphaltenes
saturates7 aromatiosheterocompoundsPest
$\therefore 1300 / 00$

3263-3287 M DT-2, OMC 3295 40.7
12.6 0.1
0.2 0.7 0.6

10 0.9219

```
    Table-2 GEOCHEMICAL DATA OF EXTRACTS
    Kimmeridge Clay F:i
    Well 2/5 - 7
    Sidewall samples
4112.5 m 4113.5 m
% ethyl acetate extract 2.0 2.6
% organic carbon after extraction 7.0
ND
6.6
ND
ppm V as metals
ND
ND
ppm Ni as metals
ND
ND
Pristane/phytane
Pristane/nc17
1.5
0.6
1.5
0.6
Phytane/nC18
0.5
0.5
C15 distribution
1-ring
54
5j
2-ring 32
30
3-ring
14
15
C30 distribution
3-ring 24
32
4-ring 5132
40
5-ring
25
28
C29 DOM 68
6 8
% saturates
4 3
% aromatios
39
40
% heterocompounds 15 17
\begin{tabular}{lll}
\(\delta 1300 / 00(\) extract \()\) & ND & -29.8 \\
\(\delta 13 \mathrm{C} 0 / 00\) (kerogen) & -28.7 & -29.3 \\
extract/carbon & 0.28 & 0.39
\end{tabular}
ND = Not detectable due to the small amount of material
```


$4112.5 \mathrm{M}:$ S. D.M. FARTLY MICFINISEI FOSSIL REMAINS IIAFK FLUORESCENT LIFTINITES (MATURE) DOM ABOUT 65-68?

FIG. 1. NCRWAY, 2/5-7. 3300-3335M. ©MC 3250. PT-1

gas chromatogram of saturated hydrocarbons
FIG. 2. NORWAY 2/5-7 3263-3287 FT OMC 3295

CAS CHROMATOGRAM OF SATURATED HYDROCARBONS
FIC. 3 NORWAY 2/5-7 4112 . 5 M KIMM. CLAY, SWS

FIC. 4 NORWAY 2/5-7 4113. 5M KIMM. CLAY, SWS
.1 N1i.t $111 \therefore 11111111110$

FOIY SGANCHED AI K

STGMCHED RIK

C_{13}-RINGDISTRIBUTION

C_{30}-RINGDISTPIBUTIUN

1. Lqndplant-derived crudes with substantial resin contribution to source matter " crudes of mixed oricin
III Crudes dfrived from som and/or hl gal maiter

5 coopies	Shell Forus EP
3 copies	SIPM-EP/11

