Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

BP AMOCO RECORDS MANAGEMENT AND LIBRARY

Location: NOCS 7/12-6 W41.11

D: 100083-2

BP Pet. Dev. Ltd.,
Norway, Stavanger
DEVELOPMENT DIVISION
LIBRARY PEP 08

RESERVOIR FLUID STUDY

for

B.P. Petroleum Development Limited

Well: 7/12-6 DST 2

North Sea, Norway.

Please return to BP Pet. Dev. Ltd., Norway, Stavenger OPERATIONS LIBRARY 1D: 49710

CORE LABORATORIES UK LTD. Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

12th October 1981

B.P. Petroleum Development Limited Sorflateveien 11 P.O. Box 3077 Mariero 4001 Stavanger Norway

Subject: Reservoir Fluid Study

Well: 7/12-6 DST 2

Field: Ula

North Sea, Norway. Our File Number: RFIA 81169

Attention: Mr. T. N. D. Hares.

Gentlemen,

On the 16th July 1981 samples of single phase reservoir fluid were collected from the subject well and forwarded to our Aberdeen laboratory for analysis. The results of these analyses as requested by a representative of B.P. Petroleum Development Limited are presented in the following report.

Prior to analysis the room temperature bubble point pressures of the three samples were determined as 1552 psig, 1547 psig and 1562 psig for cylinders 9214-377, 9214-179 and 9214-168. Since these figures were in good agreement, the samples were blended and the resulting fluid used for the entire study.

The hydrocarbon composition of the reservoir fluid though nonanes was determined by the use of both low and high temperature fractional distillation. This composition may be found on page two.

A portion of reservoir fluid was placed in a high pressure visual cell and pressure-volume relations performed at the requested temperatures of 60°F, 180°F and 290°F. During these tests bubble point pressures of 1554 psig, 2019 psig and 2334 psig respectively were observed. The results of the pressure-volume relations and the associated compressibility data may be found on pages three through eight.

A large volume of the fluid was then subjected to differential vaporization at the reservoir temperature of 290°F resulting in the liberation of a total of 882 standard cubic feet of gas per barrel of residual oil with an associated relative oil volume of 1.728 barrels of saturated oil per barrel of residual oil. The test was performed over a series of eleven steps during which oil density, gas gravity and gas deviation factor were monitored. These data are presented on page nine.

The viscosity of the reservoir fluid was determined over the full range of pressures in a rolling ball viscosimeter. The viscosity ranged from a minimum 0.224 centipoise at saturation pressure to a maximum of 1.037 centipoise at atmospheric pressure. These data are presented on page twelve. The gas viscosity data was calculated using the correlation of Burrows and Edwards.

Continued Over/.....

A single stage flash separation test was performed at zero psig and 60°F and the oil and gas collected and analysed for hydrocarbon composition. The factors and data derived from this test may be found on page fourteen.

The hydrocarbon composition of the separator gas to decanes plus was determined by gas chromatography. The hydrocarbon composition of the separator liquid to decanes plus was determined by both low and high temperature fractional distillation.

Utilising the experimentally determined hydrocarbon compositions of the separator products in conjunction with the measured gas—oil ratio, a wellstream composition was calculated. These compositions are presented on page fifteen.

At conditions specified by B.P. Petroleum Development Limited two multistage flash separations were performed in the laboratory. The factors and data derived from these tests may be found on pages sixteen and eighteen.

The gas evolved at each stage of separation was collected and analysed for hydrocarbon composition. These data may be found on pages seventeen and nineteen.

It has been a pleasure to be of service to B.P. Petroleum Development Limited. Should any questions arise concerning data presented in this report, or if we can be of further assistance, please do not hesitate to contact us.

Yours very truly

Core Laboratories UK Limited Reservoir Fluid Analysis

Les K. Sebborn

Laboratory Manager

LKS/STB 15cc/Addressee

ADDENDUM

Following are the correlations used in the attached report.

- A) Pages 4, 6, 8. "Y" Function is calculated internally by the computor based on the <u>actual volumes</u> measured by the mercury pump. Thus, using the relative volume figures there will still be some variations to the "Y" data quoted.
- B) Page 9. Calculation of Bg (Gas formation volume factor). The following equation is used by the computor to calculate these data:

For each pressure

$$Bg = \frac{\text{Reservoir temp (°R) x atmospheric pressure x compressibility}}{520 \text{ (°R) x Pressure (Psia)}}$$

i.e. Rearrangement of
$$\frac{P_1V_1}{T_1Z_1} = \frac{P_2V_2}{T_2Z_2}$$
 to give $\frac{P_2T_1Z_1}{P_1T_2} = \frac{V_1}{V_2} = Bg$

C) Gas Viscosity - calculated using the correlation of Burrows and Edwards which utilises the gas compressibility, gas gravity, absolute pressure and reservoir temperaure.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

		Page 1	of19
		File <u>RFI</u>	A 81169
Company B.P. Petroleum Development Ltd	Date Sampled_	16th July 1	.981
Well 7/12-6 DST 2	State	North Sea	
Field Ula	Country	Norway	
FORMATION CHAR	ACTERISTICS		
Formation Name	Ula		
Date First Well Completed			, 19
Original Reservoir Pressure	7009	PSIG @	
Original Produced Gas-Oil Ratio			SCF/Bb1
Production Ratio Separator Pressure and Temperature	-	PSIG	Bbl/Day °F.
Oil Gravity at 60°F.			API
Datum		· · · · · · · · · · · · · · · · · · ·	Ft. Subsea
Original Gas Cap			
WEIL CHARAC	TERISTICS		
Elevation			Ft.
Total Depth			Ft.
Producing Interval	3434-35		M.
Tubing Size and Depth		In. to	Ft.
Productivity Index Last Reservoir Pressure	6859	Bbl/D/PSI @ PSIG @	
Date			3425 M.
Reservoir Temperature	290*	°F. @	Ft.
Status of Well			
Pressure Gauge			
Normal Production Rate		- · · · · · · · · · · · · · · · · · · ·	Bbl/Day
Gas-Oil Ratio			SCF/Bbl
Separator Pressure and Temperature		PSIG, _	°F.
Base Pressure Well Making Water	************		PSIA % Cut
Hear hading mater			o cac
SAMPLING CO	NDITIONS		
Sampled at	CHOKE		
Status of Well	- 320		GOD (D) 1
Gas-Oil Ratio	339 620	DCTC	SCF/Bbl 152 °F.
Separator Pressure and Temperature Tubing Pressure	3216	PSIG,	PSIG
Casing Pressure		****	PSIG
Sampled by	FLOPETR	OL	
Type Sampler			

REMARKS: *Requested analysis temperature.

Those analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

			Page 2 of 19	
			File RFLA 81169	
Company	B.P. Petroleum Development Ltd	_ Formation_	Ula	
Well	7/12-6 DST 2	_ County	North Sea	
Field	Ula	State	Norway	_

HYDROCARBON ANALYSIS OF RESERVOIR FLUID SAMPLE

COMPONENT	MOL PERCENT	WEIGHT PERCENT	DENSITY	API	MOL WEIGHT
Hydrogen Sulfide	NIL	NIL			
Carbon Dioxide	1.16	0.48			
Nitrogen	1.92	0.51			
Methane	29.03	4.42			•
Ethane	7.24	2.07			
Propane	6.92	2.90			
iso-Butane	1.30	0.71			
n-Butane	4.79	2.64			
iso-Pentane	1.88	1.29			
n-Pentane	3.30	2.26			
Hexanes	3.52	2.88			
Heptanes	4.45	4.18	0.7232	64.0	99
Octanes	5.13	5.12	0.7434	58.7	105
Nonanes	3.60	4.04	0.7639	53.6	119
Decanes plus	25.76	66.50	0.8644	32.0	272
	100.00	100.00			

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page	3of	19
File_	RFLA 81169	
Well	7/12-6 DST	2

VOLUMETRIC DATA OF RESERVOIR FLUID SAMPLE

1. Saturation pressure (bubble-point pressure)

1554 PSIG @ 60 °F.

2. Thermal expansion of saturated oil @ 5000 PSIG = $\frac{\text{V @ 60 °F.}}{\text{V @ 60 °F.}} = 1.$

3. Compressibility of saturated oil @ reservoir temperature: Vol/Vol/PSI:

From 8000 PSIG to 6000 PSIG = 5.42 x 10-6

From 6000 PSIG to 4000 PSIG = 6.20×10^{-6}

From 4000 PSIG to 2000 PSIG = 7.25×10^{-6}

From 2000 PSIG to 1554 PSIG = $8.23 \times 10-6$

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page	4 of 19
File_	RFLA 81169
Well	7/12-6 DST 2

PRESSURE-VOLUME RELATIONS AT 60°F.

Pressure PSIG	Relative Volume(1)	Y Function(2)
8000 7000 6000 5000 4000 3000 2000 1900 1800 1700 1600 1554 Saturation Pressure	0.9592 0.9643 0.9697 0.9755 0.9819 0.9888 0.9963 0.9972 0.9980 0.9988 0.9966 1.0000	
1522 1439 1389 1309 1187 1046 917 791 696 624 549 480 384 299 219	1.0059 1.0232 1.0351 1.0571 1.0990 1.1651 1.2503 1.3658 1.4957 1.6257 1.7990 2.0157 2.4556 3.1063 4.1962	3.520 3.408 3.351 3.241 3.085 2.900 2.731 2.588 2.434 2.326 2.230 2.136 2.015 1.898 1.785

The analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, inc. (all errors and omissions excepted); but Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

⁽¹⁾ Relative Volume: V/Vsat is barrels at indicated pressure per barrel at saturation pressure.

⁽²⁾ Y Function = $\frac{(Psat-P)}{(Pabs)(V/Vsat-1)}$

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page	5	_of	_19	
File	RFLA	81169		
Well	7/12-	-6 DST	2	

VOLUMETRIC DATA OF RESERVOIR FLUID SAMPLE

1. Saturation pressure (bubble-point pressure) 2019 PSIG @ 180 °F.

2. Thermal expansion of saturated oil @ 5000 PSIG = $\frac{\text{V @ 180 °F.}}{\text{V @ 60 °F.}} = 1.06761$

3. Compressibility of saturated oil @ reservoir temperature: Vol/Vol/PSI:

From 8000 PSIG to 6000 PSIG = 7.61 x 10-6

From 6000 PSIG to 4000 PSIG = 9.20 x 10-6

From 4000 PSIG to 2019 PSIG = $11.50 \times 10-6$

Petroleum Reservoir Engineering
ABERDEEN, SCOTLAND

Page	6 of 19
File_	RFLA 81169
Well	7/12-6 DST 2

PRESSURE-VOLUME RELATIONS AT 180°F.

Pressure PSIG	Relative Volume(1)	Y <u>Function(2)</u>
8000 7000 6000 5000 4000 3000 2500 2400 2300 2200 2100 2019 Saturation	0.9446 0.9517 0.9592 0.9677 0.9772 0.9877 0.9938 0.9950 0.9963 0.9976 0.9989	
Pressure 1991 1945 1894 1840 1714 1576 1415	1.0047 1.0128 1.0226 1.0336 1.0634 1.1039 1.1646	2.979 2.942 2.902 2.870 2.781 2.681 2.567
1255 1062 958 833 720 570 442 325	1.2457 1.3676 1.4899 1.6528 1.8566 2.2677 2.8799 3.9047	2.448 2.323 2.226 2.142 2.063 1.954 1.836 1.715

(2) Y Function = (Psat-P) (Pabs) (V/Vsat-1)

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

⁽¹⁾ Relative Volume: V/Vsat is barrels at indicated pressure per barrel at saturation pressure.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page	7	_of	19	
File	RFLA	81169	·	
Well	7/12-	-6, DST	2	

VOLUMETRIC DATA OF RESERVOIR FLUID SAMPLE

- 1. Saturation pressure (bubble-point pressure) 2334 PSIG @ 290 °F.
- 2. Specific volume at saturation pressure = $\frac{0.02465}{\text{V @ 290 °F}}$ at $\frac{290}{\text{V @ 290 °F}}$.
- 3. Thermal expansion of saturated oil @ 5000 PSIG = V @ 60 °F. = 1.14040
- 4. Compressibility of saturated oil @ reservoir temperature: Vol/Vol/PSI:

 From
 8000
 PSIG to
 6000
 PSIG =
 10.26 x 10-6

 From
 6000
 PSIG to
 4000
 PSIG =
 13.44 x 10-6

 From
 4000
 PSIG to
 3000
 PSIG =
 17.74 x 10-6

 From
 3000
 PSIG to
 2334
 PSIG =
 20.22 x 10-6

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page	8 of 19
File	RFLA 81169
Well	7/12-6 DST 2

PRESSURE-VOLUME RELATIONS AT 290°F.

Pressure	Relative	Y	
PSIG	Volume(1)	Function(2)	
			,
8000	0.9236	7000ing = 7115	V - 0.9316.
7000	0.9326	Tonoping: 7115	Visit
6000	0.9430		
5000	0.9550		
4000	0.9690		
3000	0.9865		
2800	0.9903		
2700	0.9924		
2600	0.9944		
2500	0.9965		
2400	0.9988		
2334 Saturation	1.0000		
Pressure			
. •			
2296	1.0065	2.522	
2247	1.0154	2.502	
2154	1.0337	2.464	
2029	1.0619	2.412	
1889	1.0997	2.345	
1720	1.1564	2.263	
1543	1.2322	2.187	
1376	1.3271	2.106	
1223	1.4411	2.034	
1070	1.5933	1.964	
931	1.7837	1.893	
740	2.1724	1.801	
578	2.7443	1.698	
429	3.6955	1.592	

(2) Y Function = $\frac{\text{(Psat-P)}}{\text{(Pabs)}}$ (V/Vsat-1)

⁽¹⁾ Relative Volume: V/Vsat is barrels at indicated pressure per barrel at saturation pressure.

analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume so responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Page 9 of 19

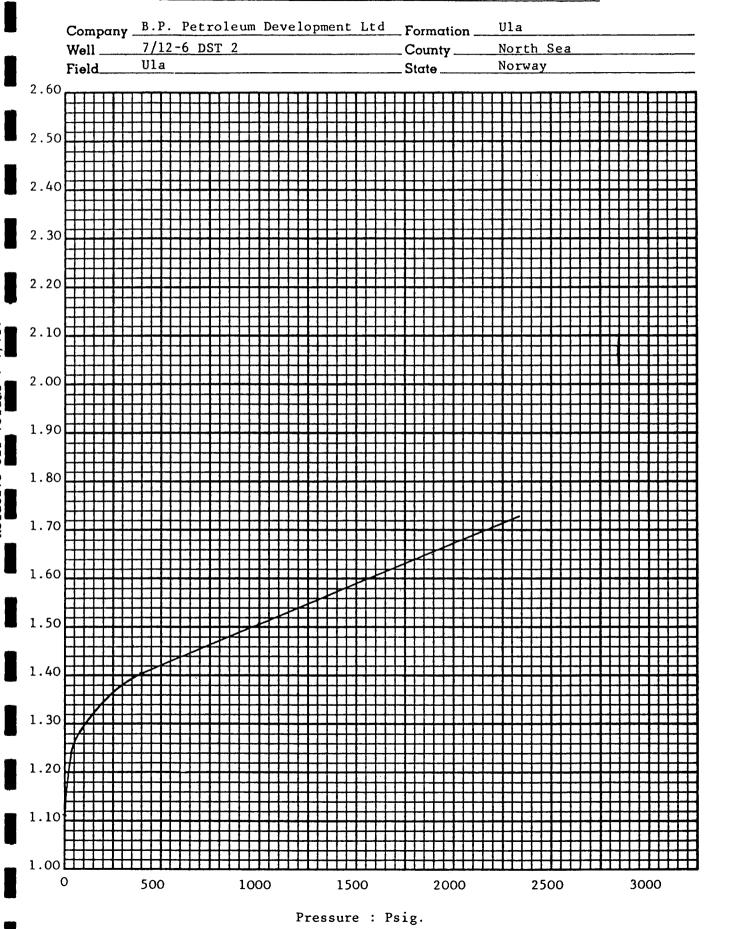
File RFIA 81169

Well 7/12-6 DST 2

DIFFERENTIAL VAPORIZATION AT 290°F.

Pressure PSIG	Solution Gas/Oil Ratio(1)	Relative Oil Volume(2)	Relative Total Volume(3)	Oil Density gm/cc	Deviation Factor Z	Gas Formation Volume Factor(4)	Incremental Gas Gravity
2334	882	1.728	1.728	0.6499			
2200	841	1.705	1.768	0.6541	0.916	0.00879	0.903
1900	748	1.652	1.894	0.6643	0.912	0.01012	0.900
1600	660	1.602	2.078	0.6739	0.914	0.01202	0.902
1300	575	1.554	2.367	0.6840	0.921	0.01489	0.913
1000	492	1.507	2.864	0.6941	0.933	0.01953	0.940
700	409	1.458	3.831	0.7048	0.948	0.02817	1.001
400	317	1.401	6.388	0.7175	0.968	0.04956	1.133
220	236	1.353	11.557	0.7255	0.981	0.08869	1.332
130	193	1.317	19.081	0.7344	0.988	0.14476	1.656
87	162	1.285	27.781	0.7416	0.992	0.20662	1.920
0	0	1.111		0.7694			2.772

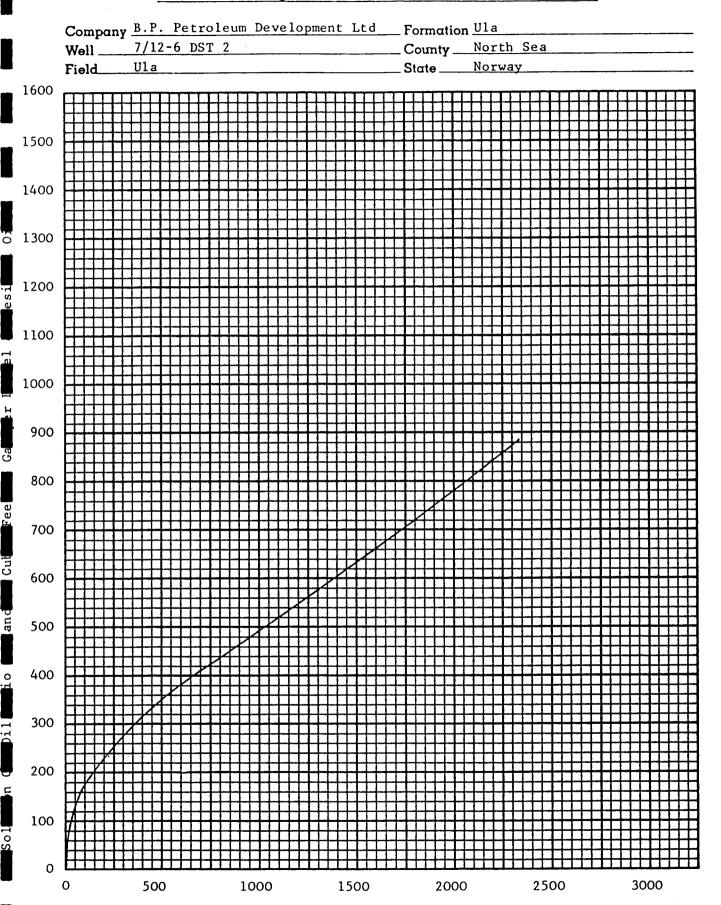
At $60^{\circ}F = 1.000$


Gravity of Residual Oil = 33.9°API at 60°F.

- (1) Cubic feet of gas at 14.73 psia and 60°F. per barrel of residual oil at 60°F.
- (2) Barrels of oil at indicated pressure and temperature per barrel of residual oil at 60°F.
- (3) Barrels of oil plus liberated gas at indicated pressure and temperature per barrel of residual oil at 60°F.
- (4) Cubic feet of gas at indicated pressure and temperature per cubic foot at 14.73 psia and 60°F.

Page 10 of 19 File RFLA 81169

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND


Differential Vaporisation of Reservoir Fluid at 290°F.

Page 11 of 19 File RFLA 81169

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Differential Vaporisation of Reservoir Fluid at 290°F.

Pressure : Psig.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page_	12	_of	19
File_	RFLA	81169	
Well_	7/12-	-6 DST	2

VISCOSITY DATA AT 290°F.

Pressure PSIG	Oil Viscosity Centipoise	Calculated Gas Viscosity Centipoise	Oil/Gas Viscosity <u>Ratio</u>
8000 7000 6000 5000 4000 3000 2600 2334 Satu Pres	0.395 0.365 0.335 0.305 0.275 0.245 0.233 ration 0.224 sure		
2200 1900 1600 1300 1000 700 400 220 120 87 0	0.242 0.288 0.334 0.385 0.445 0.515 0.600 0.668 0.710 0.742 1.037	0.0189 0.0179 0.0170 0.0161 0.0153 0.0144 0.0134 0.0124 0.0113 0.0106	12.80 16.09 19.65 23.91 29.08 35.76 44.78 53.87 62.83 70.00

Viscosity of Reservoir Fluid at 290°F.

	C	R.P. Pet	roleum D	evelopment	Ltd	Formation	Ula		
	Well	7/12-6 D	ST 2	<u>cveropmene</u>		Comtr	North Sea		
	Well	7722 0 2				County	Norman		
0.0	Field	Ula				State	Norway		
2.0					ППТ				m
		╁╁╁╂╁		*****	#####				
				 	 				
-									
1.8				 	11111				
1.8									
_				#######					
									\boxplus
									
1 6									
1.6									

					╁╁╁╁╁╁	 	╁╁╁╁╁╁╂╂╂╁┼┼┼	1111111	###
1.4					╁╂╂╂╁				###
٠ ٠ 4					 	**********			###
pot				 	 				HH
4			 		*****				$\Pi\Pi$
			 	*****	 				$\Pi\Pi$
ن • ـ 1.2					 				$\overline{\Pi}$
1.2					 				
• 1					####				
iso									Ш
. .	 								
1.0									###
1.0									###
_					!!!!!!	 			###
					 	11111			##
		╁╂╂╂╂	 		 				###
_0.8		 			 	****			$\Pi\Pi$
		 			 				$\Pi\Pi$
		 			 				
	HN1111		1111111		$\Pi\Pi\Pi$				
	HINH								
0.6	HINII								
									####
									###
		}	Saturat	ion	 	********			+++
0.4			Pressu	ıre	 				##
_		####			 				###
		 	 		 				###
	<u> </u>	 	*******]]]]]]	+++++	 		
		 			11111	 			
0.2	F+++++++								
	H H H H H H								###
						++++++		╏╏╏╏╏╏	###
					╁╂╁╂╁┋	}}}}<u></u>	╏┇╏┇┇	┆┇╏┇┇┇	###
		╁╂╁╂╂╂╂	 		 	+++++++	╏┇╏╏╏╏	 	###
- 0									
	0 1	.000	2000	3000	4000	5000	6000	7000	8000

Pressure : Psig.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page	14	of	19	
File_	RFLA	81169		
Well	7/12	-6 DST	2	

SINGLE STAGE FLASH OF RESERVOIR FLUID SAMPLE

Separator Pressure, LI Gauge	Separator Temperature °F.	Gas/Oil	Gas/Oil	Stock Tank Gravity °API @ 60°F.	Shrinkage Factor,	Formation Volume Factor Vsat/Vr(3)	Specific Gravity of Flashed Gas
1 0	60	672		38.8*	0.661	1.513	0.998+

* Oil collected and analysed for hydrocarbon composition.

+ Gas collected and analysed for hydrocarbon composition.

- (1) Separator and Stock Tank Gas/Oil Ratio in cubic feet of gas at 14.73 psia and 60°F. per barrel of stock tank oil at 60°F.
- (2) Shrinkage Factor: Vr/Vsat is barrels of stock tank oil at 60°F. per barrel of saturated oil at 2334 psig and 290°F.
- (3) Formation Volume Factor: Vsat/Vr is barrels of saturated oil at 2334 psig and 290°F. per barrel of stock tank oil at 60°F.

e analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page_	15 of 19	
File_	RFLA 81169	
Well	7/12-6 DST 2	

HYDROCARBON ANALYSES OF SEPARATOR PRODUCTS AND CALCULATED WELLSTREAM

Component	Separator Liquid Mol Percent	Separat Mol Percer		Wellstream Mol Percent
Hydrogen Sulphide	NIL	NIL		NIL
Carbon Dioxide	0.02	2.26		1.22
Nitrogen	0.01	3.38		1.82
Methane	0.48	55.93		30.23
Ethane	0.63	13.53		7.55
Propane	2.01	11.83	3.254	7.28
iso-Butane	0.78	1.88	0.615	1.37
n-Butane	3.30	5.99	1.888	4.74
iso-Pentane	2.14	1.40	0.512	1.74
n-Pentane	4.40	1.92	0.695	3.07
Hexanes	5.63	1.21	0.494	3.26
Heptanes	8.27	0.46)	4.08
Octanes	10.12	0.10) 0.304	4.74
Nonanes	7.57	0.06)	3.54
Decanes plus	54.64	0.05)	25.36
_	100.00	100.00	7.762	100.00
Properties of Decanes	Plus			
API gravity @ 60°F. Sepcific gravity @ 60 Molecular Weight	/60°F 32.0 0.8642 272			0.864

Calculated separator gas gravity (air=1.000) = 0.998Calculated gross heating value for separator gas = 1590 per cubic foot of dry gas @ 14.73 psia and 60°F.

°F. Primary separator gas collected @ 0 60 psig and Primary separator liquid collected @ 0 60 psig and

Primary separator gas/separator liquid ratio 672 SCF/Bbl @ 60°F.

se analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, inc. (all errors and omissions excepted); but the Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page	16 of 19
File	RFLA 81169
Well	7/12-6 DST 2

SEPARATOR TESTS OF RESERVOIR FLUID SAMPLE

Separator Pressure PSI Gauge	Separator Temperature °F.	Gas/Oil Ratio (1)	Gas/Oil Ratio (2)	Stock Tank Gravity °API @ 60°F.	Volume		Specific Gravity of Flashed Gas
520	255	399	475			1.190	0.917*
to 140 to	215	89	102			1.150	1.078*
30 to	195	52	57			1.099	1.500*
0	60	7	7	39.6	1.469	1.000	+

+ Insufficient gas for analysis.

analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

^{*} Gas collected and analysed for hydrocarbon composition.

⁽¹⁾ Gas/Oil Ratio in cubic feet of gas at 14.73 psia and 60°F. per barrel of oil at indicated pressure and temperature.

⁽²⁾ Gas/Oil Ratio in cubic feet of gas at 14.73 psia and 60°F. per barrel of stock tank oil at 60°F.

⁽³⁾ Formation Volume Factor is barrels of saturated oil at 2334 psig and 290°F. per barrel of stock tank oil at 60°F.

⁽⁴⁾ Separator Volume Factor is barrels of oil at indicated pressure and temperature per barrel of stock tank oil at 60°F.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page	<u>17</u> 0	£ 19
File	RFLA 8	1169
Well	7/12-6	DST 2

HYDROCARBON ANALYSES OF SEPARATOR GAS SAMPLES

Separator Conditions:	520 PSIG @ 2	255°F. 140 PSIG @		@ 215°F.	30 PSIG (195°F.
Component	Mol Percent	GPM	Mol Percen	t GPM	Mol Percer	nt GPM
Hydrogen Sulfide Carbon Dioxide Nitrogen Methane Ethane Propane iso-Butane n-Butane iso-Pentane n-Pentane Hexanes Heptanes Octanes Nonanes Decanes plus	NIL 2.28 4.63 62.79 12.19 8.47 1.20 3.75 0.93 1.43 1.06 0.83 0.34 0.07 0.03 100.00	2.330 0.392 1.182 0.340 0.518 0.432 0.577	NIL 2.32 1.69 49.08 17.22 14.57 2.11 6.52 1.56 2.32 1.48 0.70 0.22 0.07 0.14 100.00	4.008 0.690 2.055 0.571 0.840 0.604))) 0.513	NIL 1.49 0.36 20.86 18.95 25.21 4.38 14.25 3.54 5.20 2.97 1.95 0.63 0.10 0.11 100.00	6.935 1.432 4.490 1.295 1.883 1.211))) 1.262)
Calculated gas gravity (Air=1.000):	0.917	7	1.0	78	1.50	00
Calculated gross heati value (BTU per cubic f of dry gas at 14.73 ps and 60°F.):	∞t		174	1	244	1

analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page_	<u>18</u> c	of	19	
File_	RFLA 8	3116	9	
Well_	7/12-6	DS	т 2	

SEPARATOR TESTS OF RESERVOIR FLUID SAMPLE

Separator Pressure PSI Gauge	Separator Temperature °F.	,	Gas/Oil Ratio (2)	Stock Tank Gravity °API @ 60°F.	Volume	11	Specific Gravity of Flashed Gas
520	255	400	476			1.191	0.919*
to 125	160	79	86			1.091	0.981*
to 0	60	53	53	40.5	1.441	1.000	1.315*

(1) Gas/Oil Ratio in cubic feet of gas at 14.73 psia and 60°F. per barrel of oil at indicated pressure and temperature.

(2) Gas/Oil Ratio in cubic feet of gas at 14.73 psia and 60°F. per barrel of stock tank oil at 60°F.

(3) Formation Volume Factor is barrels of saturated oil at 2334 psig and 290°F. per barrel of stock tank oil at 60°F.

(4) Separator Volume Factor is barrels of oil at indicated pressure and temperature per barrel of stock tank oil at 60°F.

anelyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential user, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

المناز المتحاد العباد الهدف ليهالها الهارات

^{*} Gas collected and analysed for hydrocarbon composition.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Page	0f19
File	RFLA 81169
Well	7/12-6 DST 2

HYDROCARBON ANALYSES OF SEPARATOR GAS SAMPLES

Ser	parator Conditions:	520 PSIG @	255°F.	125 PSIG @	160°F.	0 PSIG @	60°F.
Con	mponent	Mol Percent	GPM	Mol Percent	<u>GPM</u>	Mol Percent	GPM
Car Nit Met Pro isc n-H isc n-H Her Oct	drogen Sulfide cbon Dioxide trogen thane nane opane o-Butane Butane o-Pentane Pentane xanes otanes tanes nanes canes plus	NIL 2.26 4.64 62.72 12.11 8.47 1.20 3.83 0.96 1.48 1.07 0.82 0.34 0.07 0.03 100.00	2.330 0.392 1.207 0.351 0.536 0.436 0.572	NIL 2.53 1.98 56.23 16.51 11.78 1.54 4.62 1.03 1.51 0.98 0.80 0.34 0.11 0.04 100.00	3.241 0.504 1.456 0.377 0.547 0.400 0.586	NIL 1.79 0.03 28.65 21.54 25.35 3.75 10.87 2.12 2.67 1.45 1.25 0.26 0.15 0.12 100.00	6.974 1.226 3.425 0.776 0.967 0.591 0.808
	lculated gas gravity ir=1.000):	0.9	19	0.98	L	1.315	5
va. of	lculated gross heating lue (BTU per cubic for dry gas at 14.73 ps d 60°F.):	oot	8	1582		2151	

 $(\mathbf{x}^{(k)}, \mathbf{x}^{(k)}, \mathbf{x$

e analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, inc. (all errors and omissions excepted); but Core Laboratories, inc. and its officers and employees, assume so responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

ABERDEEN, SCOT

B.P. PETROLEUM DEVELOPMENT LIMITED (NORWAY) Well: 7/12-6 DST 2

RFLA 81169

Core Laboratories UK Limited Reservoir Fluid Analysis

Les. K. Sebborn Laboratory Manager