

AMOCO PRODUCTION COMPANY Tulsa, Oklahoma July 30, 1982

82211ART0168

FILE:

341.

2 AST DIW-COPY (1) A. TAUSO - CCPY @ RJC

TO:

R. L. Young, Amoco Europe

SUBJECT: Core Analysis, Hod 2/11-6 Well, Tor and Hod Formations, Norway,

North Sea

This transmits the results of routine core analyses completed by Keplinger Laboratories on cores recovered from the Tor and Hod Formations in the referenced well. The core analyses were requested by B. R. Schlup's letter of January 26, 1982 (File: NO-6051-400-EJS). Samples were selected for analysis from the preserved cores by Ian Ruddy of Amoco Norway.

As indicated in Keplinger's transmittal letter, accurate measurements of oil saturations could not be made because of abnormally high sample weight losses that occurred during the Dean-Stark extraction process. This may be due to actual loss of fine rock particles, rather than chemical dissolution as suggested by Keplinger. In any case, oil saturations for native-state cores have essentially no quantitative value since the cores are flushed with the oil filtrate. The problem of sample disintegration during the cleaning process could probably be eliminated during future analyses of chalk by encasing the core plugs in lead sleeves. Please refer to Research Department Report 82162ART0049 (341.), dated June 11, 1982.

Additional requested special tests for the Hod 2/11-6 cores include the following: (1) imbibition, (2) resistivity, (3) relative permeability, and (4) mercury injection. The Rock Properties Group of Production Research is currently awaiting samples to be selected for these tests by Amoco Norway personnel. Ian Ruddy has submitted cores to Terratek Core Services in Salt Lake City for compressibility tests.

Ted D. Autry

VJP:rlm Attachments

A. Bale cc:

M. Bishlawi

J. W. Brice

R. J. Cole

D. D. Fussell

C. E. Konen

B. R. Schlup

E. J. Skandsen

BP AMOCO

RECORDS MANAGEMENT AND LIBRARY

## KEPLINGER LABORATORIES, INC.



July 2, 1982

Amoco Production Company Research Center P. O. Box 591 Tulsa, Oklahoma 74102

Attention: Mr. Ian Ruddy

Re: Core Analysis Study
2/11-6 Well
Tor and Hod Formations
Hod Field, Norway
Job Number 82-1561-17

#### Gentlemen:

This report contains the results of the requested routine analysis on core samples from the 2/11-6 Well, Hod Field, Norway. In addition, effective oil permeabilities were measured on some of the preserved cores.

One inch diameter, native-state core plugs were received from Amoco for use in this project. On a selected group, oil permeabilities were performed before the routine tests. These were measured first due to the fact that some of the test samples were fracturing or disintegrating during the cleaning process, and we were unable to measure air permeabilities. Thus, these measurements insured that we could present a permeability (either for vertical or horizontal samples) for most of the samples submitted. With few exceptions, all the samples were placed in "Dean Stark" type toluene distillation equipment to obtain oil and water saturations.

In many cases, the saturation data indicated liquid saturations that were greater than 100 percent. We feel that in some cases this was due to an inaccurate oil density. But, in general, we think that there was possible chemical dissolution of the core samples during the Dean Stark test. This is supported by the fact that we boiled one sample (encased in filter paper) in water and determined a rock weight loss of 0.32 gm. Subtracting this value from the total weight loss of 1.44 gm. for the sample gives a new oil saturation of 28 percent rather than the 60 percent recorded in the table for Sample 47H. The sum of oil and water saturations is now 93.3 percent, a reasonable value.

Therefore, we conclude that, although the water saturations are accurate, the oil saturations in some cases are higher than the actual values. With regard to the reservoir, this is not unexpected, in any event since the cores were drilled with an oil-base mud.

The conditions under which this report is presented are described immediately following the text of this report. We request that the report be used in its entirety if reproductions are to be made. Please contact us if you have any questions, or if we can be of any further service.

Respectfully submitted,

KEPLINGER LABORATORIES, INC.

Keplinger Laboratories, Onc.

JML:mpw

KEPLINGER LABORATORIES, INC.

### CONDITIONS AND QUALIFICATIONS

Keplinger Laboratories, Inc. will endeavor to provide accurate and reliable laboratory measurements of the cores provided by the client. The results of any core analysis are necessarily affected by the condition in which the core is received and the selection of the samples to be analyzed. In the absence of direction by the client, Keplinger Laboratories, Inc. will utilize their best geological and engineering judgment in selecting the samples to be analyzed. It should be recognized that most cores do not have uniform properties and that selection of truly representative samples is rarely possible. Unless otherwise directed, the samples will normally be selected from the highest quality segments. Thus, use of the properties measured in this report in reservoir calculations could result in an overestimation in reservoir volume and/or deliverability. Keplinger Laboratories, Inc. assumes no responsibility nor offers any guarantee of the productivity or performance of any oil or gas well or hydrocarbon recovery process based upon the data presented in this report.



Page 4 of 7 File 82-1561-17

### ROUTINE CORE ANALYSIS TEST RESULTS

# AMOCO PRODUCTION COMPANY 2/11-6 WELL HOD FIELD TOR AND HOD FORMATIONS NORWAY

|             |          | Permeability, (md) |      | Porosity    | Saturation |             | Grain      |
|-------------|----------|--------------------|------|-------------|------------|-------------|------------|
| Sample      | Depth    |                    |      |             | Percent 1  | Pore Volume | me Densite |
| Number      | (Meters) | Air                | 011  | (Percent)   | 011        | Water       | (gm/cc)    |
| 1H          | 3694.1   | 1.76               |      | 33.1        | 98.0       | 8.4         | 2.71       |
| 2H          | 3694.85  | *                  |      | 32.0        | 93.2       | 12.0        | 2.71       |
| 3н          | 3695.1   | 0.67               |      | 32.9        | 92.3       | 17.0        | 2.70**     |
| 4 H         | 3695.35  | 0.29               |      | 29.4        | 80.0       | 24.5        | 2.70       |
| 5H          | 3696.6   | *                  |      | 28.8        | 72.4       | 31.7        | 2.70       |
| 6н          | 3702.2   | *                  | •    | 32.3        | 73.1       | 29.4        | 2.70       |
| 6V          | 3702.2   | 1.71               |      | 30.4        | 74.3       | 31.2        | 2.70**     |
| 7H          | 3702.4   | 0.94               |      | 29.1        | 66.7       | 35.8        | 2.69       |
| 7 <b>V</b>  | 3702.4   | 0.32               |      | 30.5        | 74.7       | 29.2        | 2.69       |
| 8н          | 3702.65  | *                  |      | 31.0        | 73.3       | 28.9        | 2.69**     |
| 8H-1        | 3702.65  | * .                | .074 | 32.2        |            |             | 2.70       |
| 8V          | 3702.65  | 0.46               |      | 32.2        | 82.1       | 22.7        | 2.70       |
| 9н          | 3702.85  | 1.53               |      | 41.9        | 81.9       | 13.4        | 2.70       |
| 9H-1        | 3702.85  | 1.05               | .41  | 42.0        |            |             | 2.69       |
| 9V          | 3702.85  | 3.61               |      | 33.8        | 81.6       | 22.7        | 2.70**     |
| 10H         | 3703.1   | 0.34               |      | 32.7        | 79.9       | 22.9        | 2.70       |
| 10H-1       | 3703.1   | 0.41               | .101 | 33.0        |            |             | 2.70       |
| 10V         | 3703.1   | 0.50               |      | 34.6        | 89.3       | 15.9        | 2.70       |
| 11H         | 3703.35  | 0.28               |      | 32.8        | 75.1       | 29.6        | 2.70       |
| 12H         | 3703.6   | 0.36               |      | 34.4        | 78.9       | 23.2        | 2.69       |
| 12V         | 3703.6   | 0.33               |      | 35.3        | 78.2       | 23.8        | 2.70       |
| 13H         | 3703.85  | 2.20               |      | 34.9        | 78.8       | 24.2        | 2.70**     |
| 13V         | 3703.85  | 0.38               |      | 35.1        | 76.6       | 25.1        | 2.70       |
| 14H         | 3704.1   | 0.70               |      | 34.6        | 72.7       | 28.4        | 2.70**     |
| 14H-1       | 3704.1   | 0.45               | .063 | 35.3        |            |             | 2.70       |
| 14V -       | 3704.1   | 0.77               |      | 34.9        | 73.5       | 29.0        | 2.69**     |
| 15H         | 3704.35  | 0.26               |      | 34.4        | 72.6       | 25.4        | 2.70       |
| 15H-1       | 3704.35  | 0.25               | .058 | 34.5        |            | •           | 2.70       |
| 15V         | 3704.35  | 0.27               |      | 34.3        | 76.8       | 24.1        | 2.69       |
| 16H         | 3705.1   | 0.45               | .132 | <b>36.4</b> | 81.8       | 19.3        | 2.69       |
| 16H-1       | 3705.1   | 0.38               | .072 | 36.4        |            |             | 2.71       |
| 16V         | 3705:1   | 0.51               | .153 | 970 Cale    | 83.0       | 18.6        | 2.70       |
| 17H         | 3705.6   | 0.36               | .087 | 37.2        | 77.1       | 24.1        | 2.70       |
| 17 <b>V</b> | 3705.6   | 0.48               | .073 | AL COL      | 80.5       | 20.3        | 2.70       |

<sup>\*</sup> Fractured sample, no permeability possible

<sup>\*\*</sup> Sample with possibly closed fractures

<sup>+</sup> Stylolitic

<sup>++</sup> Permeabilities not requested



### ROUTINE CORE ANALYSIS TEST RESULTS

AMOCO PRODUCTION COMPANY 2/11-6 WELL TOR AND HOD FORMATIONS HOD FIELD, NORWAY

| Sample    | Depth           | Permeability, (md) |        | Damadau               | Saturation<br>Percent Pore Volume |         | Grain                      |
|-----------|-----------------|--------------------|--------|-----------------------|-----------------------------------|---------|----------------------------|
| Number    | (Meters)        | Air                | 011    | Porosity<br>(Percent) | 0il                               | Water   | <pre>Density (gm/cc)</pre> |
| 1,0112061 | (Hecers)        |                    |        | (rercent)             |                                   | Marci   | (gm/cc)                    |
| 18H       | 3705.85         | 0.60               | .133   | 99.4                  | 84.8                              | 17.4    | 2.68                       |
| 18V       | 3705.85         | 0.34               | .089   | 35.5                  | 79.4                              | 22.1    | 2.70                       |
| 19H       | 3708.1          | 1.54               | .069   | 35.7                  | 85.6                              | 17.9    | 2.70+                      |
| 19V       | 3708.1          | 2.21               | .085   | 37.8                  | 79.4                              | 23.3    | 2.69+                      |
| 20H       | 3708.6          | 0.54               | .080   | 33.5                  | 80.3                              | 22.6    | 2.70                       |
| 21H       | 3709.6          | 0.63               | .108   | 33.5                  | 83.3                              | 22.3    | 2.69**                     |
| 22H       | 3710.05         | 0.15               | .0118  | 13.0                  | 58.7                              | 47.1    | 2.71**                     |
| 23H       | 3710.1          | 10.1               | .182   | 15.7                  | 60.6                              | 41.5    | 2.71**                     |
| 24H       | 3710.35         | *                  | *      | 23.8                  | 80.2                              | 27.8    | 2.70                       |
| 25H       | <b>3</b> 716.05 | 4.16               | .331   | 32.7                  | 81.0                              | 21.5    | 2.70                       |
| 26H       | 3716.35         | 0.65               | .109   | 30.0                  | 86.8                              | .18.0   | 2.70                       |
| 27H       | 3720.1          | 0.18               | .00767 | 9.3                   | 72.4                              | 35.5    | 2.71                       |
| 27V       | 3720.1          | 0.033              | <.0001 | 7.0                   | 43.8                              | 65.3    | 2.70                       |
| 28        | 3693.1          | ++                 |        | 33.1                  | 94.7                              | 13.4    | 2.69                       |
| 29        | 3693.6          | ++                 |        | 34.6                  | 93.1                              | 13.9    | 2.69                       |
| 30        | 3694.35         | ++                 |        | 32.4                  | 92.0                              | 10.2    | 2.69                       |
| 31        | 3695.75         | ++                 |        | 30.6                  | 85.8                              | 29.0    | 2.69                       |
| 32        | 3697.4          | ++                 |        | 24.2                  | 61.8                              | 50.3    | 2.67                       |
| 33        | 3704.85         | ++                 |        | 27.7                  | 95.0                              | 7.0     | 2.68                       |
| 34        | 3708.85         | ++                 |        | 31.5                  | 70.4                              | 31.3    | 2.70                       |
| 35        | 3717.35         | ++                 |        | 13.2                  | 36.3                              | 66.6    | 2.72                       |
| 36        | 3719.0          | ++                 |        | 4.1                   | Equipment                         | Failure | 2.70                       |
| 37        | 3722.6          | ++                 |        | 10.9                  | 33.9                              | 26.8    | 2.70                       |
| 38        | 3733.2          | ++                 |        | 30.1                  | 45.9                              | 29.2    | 2.68                       |
| 39        | 3734.35         | ++ -               |        | 27.7                  | 19.9                              | 54.1    | 2.69                       |

<sup>\*</sup> Fractured sample, no permeability possible

<sup>\*\*</sup> Sample with possibly closed fractures

<sup>+</sup> Stylolitic

<sup>++</sup> Permeabilities not requested



### ROUTINE CORE ANALYSIS TEST RESULTS

AMOCO PRODUCTION COMPANY 2/11-6 WELL TOR AND HOD FORMATIONS HOD FIELD, NORWAY

| Sample         | Depth    | Permeat<br>(mo |                  | Saturation<br>Percent Pore Volume |       | Grain                                   |         |
|----------------|----------|----------------|------------------|-----------------------------------|-------|-----------------------------------------|---------|
| Number         | (Meters) | Air            | •                | Porosity                          |       |                                         | Density |
| <u>.18m5e1</u> | (Heretz) | AII            | 011              | (Percent)                         | 011   | Water                                   | (gm/cc) |
| 40             | 3734.85  | ++             |                  | 28.1                              | 14.9  | 46.9                                    | 2.69    |
| 41             | 3736.1   | ++             |                  | 29.4                              | 42.9  | 32.8                                    | 2.69    |
| 42             | 3737.6   | ++ ,           |                  | 34.4                              | 55.1  | 26.6                                    | 2.69    |
| 43             | 3738.3   | ++             |                  | 32.7                              | 27.2  | 45.8                                    | 2.71    |
| 44             | 3739.35  | ++             |                  | 37.9                              | 62.2  | 21.8                                    | 2.67    |
| 45H            | 3705.0   | 0.46           | .147             | 38.9                              | 83.7  | 13.4                                    | 2.71    |
| 46H            | 3717.85  | · *            | *                | 13.6                              | 45.3  | 66.7                                    | 2.71    |
| 47H            | 3720.35  | 0.013          | <.0001           | 8.2                               | 60.0  | 65.3                                    | 2.71    |
| 48H            | 3720.7   | 0.0023         | < .0001          | 5.8                               | 63.9  | 55.3                                    | 2.71    |
| 49H            | 3721.1   | 0.00040        | <.0001           | 4.8                               |       | t Failure                               | 2.71    |
| 49V            | 3721.1   | 0.002          | <.0001           | 4.9                               |       |                                         | 2.71    |
| 50H            | 3721.35  | 0.0001         | <.0001           | 4.0                               | 21.7  | 90.2                                    | 2.70    |
| 50V            | 3721.35  | 0.0008         | <.0001           | • •                               |       | • • • • • • • • • • • • • • • • • • • • |         |
| 51H            | 3721.7   | 0.0012         | <.0001           | 5.1                               | 40.2  | 87.7                                    | 2.71    |
| 51V            | 3721.7   | 0.0007         | <.0001           | 4.5                               |       | ••••                                    | 2.71    |
| 52H            | 3721.85  | 0.0014         | <.0001           | 4.8                               | 58.6  | 66.4                                    | 2.71    |
| 52V            | 3721.85  | 0.17           | .117             | 5.4                               | 30.0  |                                         | 2.72    |
| 53Н            | 3722.0   | 0.0076         | <.0001           | 5.6                               | 33.3  | 87.6                                    | 2.71    |
| 53V            | 3720.0   | 0.001          | <.0001           | 4.8                               | 33.3  | 07.0                                    | 2.71    |
| 54H            | 3722.35  | 0.58           | .112             | 23.9                              | 79.1  | 27.6 °                                  | 2.70    |
| 54V            | 3722.35  | 0.045          | .0090            | 10.7                              | ,,,,, | 27.0                                    | 2.71    |
| 55H            | 3723.1   | *              | *                | 27.2                              | 87.9  | 21.1                                    | 2.70    |
| 56H            | 3724.8   | *              | *                | 32.5                              | 94.8  | 17.9                                    | 2.70    |
| 56V            | 3724.8   | *              | .41              | 28.0                              | 74.0  | 17.9                                    | 2.71    |
| 57H            | 3725.1   | 0.58           | .221             | 24.3                              | 88.6  | 18.1                                    | 2.71    |
| 57V            | 3725.1   | 0.56           | .24              | 24.9                              | 00.0  | 10.1                                    | 2.71    |
| 58H            | 3725.5   | *              | *                | 23.3                              | 91.2  | 16.2                                    | 2.71    |
| 58V            | 3725.5   | 0.48           | .17              | 23.3                              | 71.2  | 10.2                                    | 2.70    |
| 59H            | 3725.6   | 0.83           | .213             | 30.4                              | 88.4  | 15.9                                    | 2.70    |
| 59V            | 3725.6   | 0.58           | .23              | 26.8                              | 00.4  | 17.7                                    | 2.70    |
| 60H            | 3726.1   | 1.62           | .438             | 33.6                              | 86.5  | 18.0                                    | 2.70    |
| 60V            | 3726.1   | 1.02<br>*      | .438             |                                   | 00.3  | 10.0                                    |         |
| <b>50 7</b>    | 3/20.1   | -              | • J <del>J</del> | 33.0                              |       |                                         | 2.70    |

<sup>\*</sup> Fractured sample, no permeability possible

<sup>\*\*</sup> Sample with possible closed fractures

<sup>+</sup> Stylolitic

<sup>++</sup> Permeabilities not requested

Page 7 of 7 File 82-1561-17

## ROUTINE CORE ANALYSIS TEST RESULTS

AMOCO PRODUCTION COMPANY 2/11-6 WELL TOR AND HOD FORMATIONS HOD FIELD, NORWAY

| Sample     | Depth              | Permeability, (md) |               | Porosity     | Saturation Percent Pore Volume |              | Grain<br>Density |
|------------|--------------------|--------------------|---------------|--------------|--------------------------------|--------------|------------------|
| Number     | (Meters)           | Air                | 011           | (Percent)    | 011                            | Water        | (gm/cc)          |
| 61H        | 3726.6             | *                  | *             | 32.3<br>29.8 | 89.7                           | 25.3         | 2.68<br>2.70     |
| 61V<br>62H | 3726.6<br>3727.0   | *<br>0.55          | .17           | 27.0         | 87.2                           | 17.4         | 2.71<br>2.70     |
| 63H        | 3727.5             | 0.43<br>0.53       | .111          | 27.0<br>27.8 | 84.8                           | 19.1         | 2.70             |
| 63V<br>64H | 3727.5<br>3727.75  | * *                | * ,           | 27.0         | 96.8                           | 20.9         | 2.68             |
| 64V<br>65H | 3727.75<br>3728.5  | *<br>0.52          | .36<br>.122   | 28.6<br>27.5 | 83.3                           | 21.0         | 2.71             |
| .65V       | 3728.5             | 0.54               | .15<br>.038   | 29.1<br>32.1 | 75.2                           | 29.1         | 2.70<br>2.70     |
| 66H<br>66V | 3733.35<br>3733.35 | 0.24<br>0.24       | .049          | 30.9         |                                |              | 2.70<br>2.71     |
| 67H        | 3733.6<br>3734.1   | *                  | .070<br>.023  | 32.2<br>31.3 | 71.1<br>75.6                   | 31.8<br>31.8 | 2.70             |
| 68H<br>69H | 3735.1             | 1.00               | .061          | 33.1         | 82.1<br>85.9                   | 22.6<br>18.9 | 2.71<br>2.70     |
| 70H<br>71H | 3736.35<br>3738.85 | 0.27<br>0.64       | .0084<br>.129 | 37.1<br>38.4 | 85.1                           | 18.6         | 2.69             |
| 71V        | 3738.85            | 0.36               | .036          | 35.7         |                                | •            | 2.69             |

<sup>\*</sup> Fractured sample, no permeability possible

<sup>\*\*</sup> Sample with possible closed fractures

<sup>+</sup> Stylolitic

<sup>++</sup> Permeabilities not requested