WELL 7/8-3 NORWAY

DRILL STEM TEST REPORT DECEMBER 1983

- CONOCO NORWAY INC. -- CENTRAL FILES -- LIBRARY · -Gģ

.

J. S. MacDonald PES Houston

CONOCO INC. PRODUCTION ENGINEERING SERVICES BOX 2197 HOUSTON, TEXAS 77001

FROM: J. S. MacDonald

DATE: March 29, 1984

SUBJECT: WELL 7/8-3 NORWAY DRILL STEM TEST REPORT

INTRODUCTION

Two drill stem tests were performed in separate intervals of the Upper Jurassic Sandstone section of Well 7/8-3 in the Norwegian sector of the North Sea. The purpose of this report is to document the test data and results, and give an analysis and interpretation of these results.

CONCLUSIONS

- The moveable formation fluid from the interval 12342-12359 ft. (3762-3767m) is 29° API oil.
- The tested interval from 12342-12359 ft contained a higher permeability layer, of limited extent, within a tight matrix rock. The zone will not give up sustained commercial oil flowrates.
- 3. The moveable formation fluid from the interval 12252-12272 ft (3734.5 3740.6m) was proven to be 30° API oil. The interval will not give up commercial oil flowrates.
- . 4. The Upper Jurassic Sandstone has a formation pressure gradient of 0.701 psi/ft ± 0.001 psi/ft with an equivalent mud weight of 13.48 ppg through the tested interval.

J.S. Mar and.

Jeffery S. MacDonald Senior Production Engineer Production Engineering Services

DISTRIBUTION:

R. Koenig	Conoco Norway (10 copies)
R. K. Hammond	Conoco Norway (2 copies)
D. W. Pitchford	Conoco Norway
A. G. Gordon	Conoco Houston
PES Report File	

WELL 7/8-3 SUMMARY OF TEST RESULTS

1. Drill Stem Test No. 1

Date of Test Formation Type Perforated Interval Initial Flow Period Initial Buildup Final Flow Period Final Buildup 1st - 3rd December 1983
Upper Jurassic
12342 - 12359 ft. (3762-3767m)
7 mins.
60 mins.
10 hrs 10 mins (610 mins)
13 hrs 24 mins (804 mins)

Flow Period

Oil Flowrate (final 5 hours) Gas Flowrate	1340 declining to 1275 BOPD 230 M SCF/D				
Gas-Oil-Ratio (separator conditions)	177 SCF/BBL				
B.S.W.	1%				
Flowing BHP (final 5 hours)	3788 psig declining to 3736 psig				
Flowing WHP (final 5 hours)	->57 psig				
Flowing Pressure Gradient	0.299 psi/ft.				
Oil Gravity - specific	0.882				
°API	29°				
Gas Gravity	0.880				
H ₂ S Content	0				
CO2 Content	4.5%				

Pressure Buildup Analysis

Initial Formation Pressure (mid-perfs) 8602 psig ± 5 psi. 0.701 psi/ft ± 0.001 psi/ft. → /3.5 PPG Formation Pressure Gradient Mud Weight Equivalent 13.48 ppg \pm 0.02 ppg. 312°F. Formation Temperature (mid-perfs.) 2.314°F/100 ft. Temperature Gradient (ref. mudline) 120 md-ft. Permeability-Thickness (as tested) 7 md. Permeability (average) 355 md-ft. Permeability thickness (high perm layer) Permeability 120 md. (high perm layer) Skin Effect - 3.2. 0.27 bb1/d/psi. Productivity Index (actual) Radius of Investigation ±250 ft.

COMMENTS

This is a valid test. The well produced 29° API gravity oil with a separator gas-oil-ratio of 177 SCF/BBL. Log data indicated high water saturations through this interval with a possible oil-water contact. The test was undertaken to try and determine the existence of the potential contact. However as the zone produced clean oil with no formation water,

it is not possible to prove an oil-water contact, or that the interval is or is not in the start of a transition zone.

Based on the log, core and test data it is concluded that the zone of interest contained a high permeability layer, of limited areal extent, within a tight matrix. Depletion of this limited high permeability layer was the reason for the slowly declining flowrates during the test. This does not imply depletion of a limited reservoir, only of this particular high permeability layer. 2. Drill Stem Test No. 2

4th - 6th December 1983 Date of Test Formation Type Upper Jurassic Sandstone Peforated Interval 12252 - 12272 ft (3734.5-3740.6m) Initial Flow Period 5 mins 40 mins Initial Buildup Period Final Flow Period 9 hrs 17 mins (557 mins) Final Buildup Period 10 hrs 10 mins (610 mins) Flow Period Results 415 BOPD Average Oil Flowrate Unable to measure Gas Flowrate Gas - Oil Ratio Unable to measure Flowing BHP final 4446 psig → 20 psig Flowing WHP 0.362 psi/ft. Flowing Pressure Gradient (final) ± 0.876 Oil Gravity - Specific - °API 30° API 0.880 Gas Gravity H_oS 0 cΰ, 4.5% Pressure Buildup Analysis Initial Formation Pressure (mid-perfs) 8586 psig ± 5 psi 0.700 psi/ft ± 0.001 psi/ft → 13.5 PPG Formation Pressure Gradient Mud Weight Equivalent $13.46 \text{ ppg} \pm 0.02 \text{ ppg}$ Formation Temperature (mid-perfs) 310°F Temperature Gradient (ref mudline) 2.313 °F/100 ft 260 Permeability - thickness 260 md-ft 18 md. Permeability 3.2800 Skin Factor +8.1 2001 psi Drawdown Due to Skin % DD Due to Skin 55% ±200 ft Radius of Investigation Lateral extent of shale barrier ±100 ft P.I. (actual) 0.12 bb1/d/psi P.I. (S = 0)0.24 bb1/d/psi

COMMENTS

This was a valid test of the interval. The moveable formation fluid was proven to be 30° API gravity oil. The pressure buildup analysis indicates that the shale barrier separating the perforated interval from additional oil bearing pay extends approximately 100 ft. from the wellbore. Beyond this the pressure transients were expanding in a vertical as well as horizontal direction. WELL 7/8-3 NORWAY

.

DRILL STEM TEST NO. 1

DATE: 1st - 3rd December 1983

WELL DATA DST NO. 1

Well Location	57° 15' 31.2" N. 2° 32' 45.8" E.					
Depth RKB (to MSL)	82 ft (25m).					
Water Depth	266 ft (81m).					
Total Depth	14174 ft (4320m).					
Plugback Depth	12457 ft (3797m).					
Perforated Intervals	12342 - 12359 ft (3762-3767m). 4" casing guns. 4 SPF. 90° phasing					
Mid-perforation Depth	12350 ft (3764.3m).					
Casing Size	7" 32# C95 liner. Hanger at 11348 ft. Shoe at 12557ft. 3127m					
Test String	5" 19.5# Class 'G' drill pipe.					
Test Packer	Dowell Positest Packer at 12284 ft (3744.2m).					
Test Valve	Dowell 'Sleeve Type' PCT Valve at 12254 ft (3735m).					
Cushion	Full seawater cushion .					
Test String Volume	205 bbls.					
Rathole Volume	1.0 bbls to top perforation; 1.4 bbls to bottom perforations.					
Mud	<u>MW FV PV YP pH % Oil CL-</u>					
1. When drilled	14.5 58 28 17 10.1 4 12K					
2. When perforated	14.2 55 27 9 11.3 1 17K					

DIARY OF EVENTS D.S.T. NO 1

~

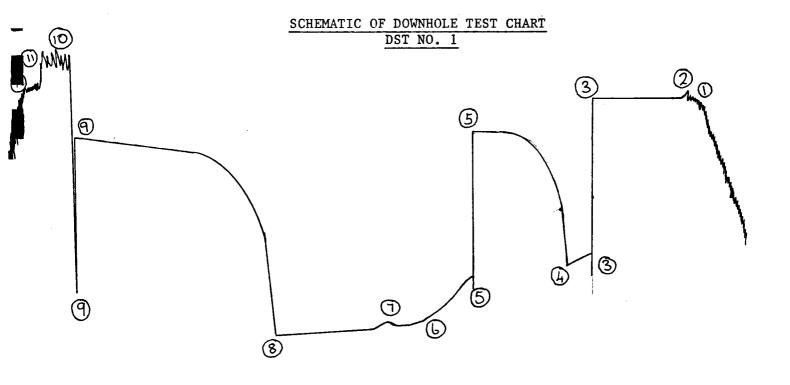
DATE	TIME	EVENT				
12/1/83	05-00	Perforate test interval from 12342-12359 ft (3762-3767m) with 4" casing guns, 4SPF, 90° phasing.				
	06-57	Start Sperry Sun gauge No. 0346 (20000 psi element) with a 70hr clock and a 17 hour start delay.				
	06-58	Start Sperry Sun gauge No. 0120 (10000 psi element) with a 70 hr clock and a 17 hour start delay.				
	07-10	Start Dowell gauge No. J-755 (14000 psi element) with a 96 hour clock.				
	07-12	Start Dowell gauage No. J-756 (14000 psi element) with a 48 hour clock.				
	08-00	Start picking up test tools.				
	11-30	Pressure test tool string to 5000 psi. Run in hole. Fill test string with a seawater cushion whilst running in the hole.				
	20-00	Function test EZ tree.				
21-56		Set packer at 12284 ft (3744.2m).				
	23-30	Rig up surface flowlines.				
12/2/83	06-30	 Pressure test surface equipment and test string. a) Test string, flohead and choke manifold to 7500 psi. b) Separator to 1000 psi. c) Burner flowlines to 500 psi. 				
	06-54	Pressure up annulus to 1600 psi to open downhole test valve for the initial flow period.				
	06-55	Open well at surface on a 2" fixed choke size. Flowing seawater cushion. WHP = 0 psig.				
	07-01	Bleed off annulus pressure to shut in well for the initial buildup period.				

- 07-04 Shutin at surface. ISIWHP = 0 psig.
- 08-01 FSIWHP = 0 psig.

DATE	TIME	EVENT
12/2/83	08-01	Pressure up annulus to open downhole test valve for final flow period. Open for flow at surface on a 2" fixed choke.
	10-25	Traces of gas at surface. FWHP = 1 psig.
	10-30	Traces of oil at surface FWHP = 1 psig.
	11-15	Increasing oil content in produced fluid. Flowing 45% seawater cushion and 55% oil. FWHP = 90 psig.
	12-03	Change to 1" adjustable choke.
	12-09	Change to 16/64" adjustable choke.
	12-24	FWHP = 170 psig.
	12-24	Change back to a 2" fixed choke. The wellhead pressure did not increase dramatically on the 16/64" choke size. The well is largely formation capacity limited. The flow will be through a 2" fixed choke and the separator will be used to control the back pressure to the well.
	12-45	Switch flow through the separator.
	16-00	Take one set of separator oil and gas PVT samples for laboratory recombination .
	16-40	Take second set of separator PVT samples.
	18-00	By-pass separator.
	18-03	Pressure up annulus to 3200 psi to try and shear closed the downhole test valve. The well was left open at surface to try and determine whether the downhole valve had indeed closed.
	18-11	It was unclear whether or not the downhole valve had closed. Information upon retreiving the test tools indicate that the valve did not shear closed. The annulus pressure was however released at 18-11 to close the tool for the final buildup.
	18-20	Shutin at surface. ISWHP = 20 psig.
12/3/83	06-30	FSIWHP = 139 psig.

- 07-19 Drop bar to shear impact sub.
- 07-35 Impact sub did not shear. There was no communication between the annulus and the drill pipe at this stage. It was therefore necessary to use annulus pressure to

12/3/83 open the S.S.A.R.V. reverse sub. However at 1900 psi the annulus pressure dropped. It was later discovered, upon inspection of the downhole tools, that the bar had not sheared the impact sub reverse pins when it landed but it had weakened them sufficiently such that the annulus pressure sheared them. The test string was then reversed out, recovering a full string of oil. Because the downhole test valve did not shear closed permanently, the annulus pressure required to reverse out the test string caused the valve to open during the reverse out. This prevented a representative bottomhole PVT sample being caught in the tool.


09-55 Unseat packer and pull out of the hole.

END OF TEST

D.S.T. NO. 1

TEST TOOLS LISTING

	Description	0.D. (inches)	I.D. (inches)	Length (feet)	Depth (feet)	-
	Flohead 5" Drill Pipe	5.00	3.00	10.00	- 30.31 - 20.31	Rotary
88	Sub-sea-bot-tree	5.00	3.00 -	<u>22 17</u> 1 25	317.63	Wellhead
ZIE	5" Drill Pipe	5.00		10720.51	341.05	
	X-over	6 - 25	2.85	1.78	11061.56	
<u>}</u>	3'z" Drill Pipe	3.50	2.76	276.27	11063.34	
	Slip Joint (open)	5.00	2.25	28.18	11339.61	
<u>i</u> i	Slip Joint (2-open)	5.00	2.25	25.68	11367.79	
	Slip Joint (closed)	5.00	2.25	23 - 18	11393.47	
	7 Stds Drill Collars		2.78	641.34	11416.65	
00	S.S.A.R.N.	5.00	2.25	8.46	12057.99	
<u></u>	1 Std Drill Collars	4.75	2.78	91.62	12066.45	
0 0	Import Reverse Sub	4 . 75	2.25 (equiv.)	1.08	12158.07	
	1 Std Drill Collars	4.75	2.78	91.62	12159.15	
	Bar Catcher Sub	4.75	2.25 (equin)	1.02	1225077	
8	P.C.T. Value	4 75	1.50 (guin)	18.57	12251.79	
0	H. R.T.	4.75	1.50	4.27	12270.36	
	Hydraulic Jars	5.00	2.25	6.50	12274.63	
\sim	Safety Joint	5.00	2.25	ור ו_	12281.13	
	Positest Packer	5.75	2.25 -	1.15	12282.84	Packer Rubber
	X-over	1.75	2.25	0.82	1228.6.94	•
	Perforated Anchor	4.75	-	9.94	12287.76	
Đ	Sperry Sun Gauge Cornier		~	30.70	12297.70	
0	J-200 Gauge Carrier	5.00	-	6.96	12328.40	
0	J-200 Gauge Corrier	5.00		6.96	12335.36	-
0 0	Ported Bullnose	<u>4.75</u>		1.90	12342.32	-
k						
	Notes: 1. AU depths a			v (illers dept	(ev.
	2 Loggers dept				deeper	-
	than driller		<u> </u>			-
	····					-

NOT TO SCALE

- 1. Initial hydrostatic.
- 2. Set packer at 12284 ft.
- 3. Open downhole test valve for initial flow period.
- 4. Shutin downhole test valve for initial buildup period.
- 5. Open downhole test valve for final flow period.
- 6. Produced the full water cushion at surface. Now flowing clean oil.
- 7. Change to smaller choke size at surface. Decide to change back to a fully open 2" line.
- 8. Shutin downhole test valve for final buildup period.
- 9. Opened downhole test valve whilst trying to open reversing subs.
- 10. Downhole test valve opened during reverse out.
- 11. Unseat packer.
- 12. Final hydrostatic.

RECORD OF SAMPLES D.S.T. NO. 1

A suite of separator PVT recombination samples and weathered oil samples were collected during the test. The downhole sample was not caught due to the test valve failing to shear closed after the final flow period. This resulted in the sample being replaced by mud.

The following is a list of the samples caught and the conditions under which they were taken.

a.	Separator	Samples

TYPE	BOTTLE	BOTTLE	TIME TAKEN	SEPERATOR	SAMPLING	DATA
	SIZE	NO.		Pressure psig	Temperature °F	Gos/Oil Ratio Scf/Bbl.
OIL	700cc	83081909	12/2/83 16-00	45	56	175
GAS	20Ltr	A14761	16-00	45	56	175
OIL	700cc	8207321	12/2/83 16-40	45	56	178
GAS	20Ltr	A14716	16-40	45	56	178

b. Weathered Oil Samples

1. 5 x 5 gallon weathered oil samples.

2. 1 x 55 gallon weathered oil sample.

FLOW PERIOD DATA D.S.T. NO. 1

SUMMARY

The well was flowed for a 7 minute initial flow period followed by an initial buildup of 60 minutes. A final flow period of 10hours 10 mins was then taken prior to a 13 hour 24 min final buildup. First traces of oil were seen at surface after 2.5 hours and the well was flowing 98% oil after 3.5 hours. Once clean oil was flowing at surface the surface choke size was decreased in an attempt to increase the wellhead pressure in order to allow a critical flowpath to the separator. However a reduction from 2" to 16/64" only resulted in a wellhead pressure increase of about 100 psi. It was therefore decided to flow the well wide open (2" choke) at the wellhead and use the separator as the back pressure control to the well. The well was then flowed through the separator for 5.25 hours before shutting in downhole for the final buildup. A detailed tabulation of the flow data is provided.

Fluid Properties

The following is a summary of the fluids recovered and their properties.

a. 0il

The produced oil is dark, black and sweet with no traces of H_2S . There did not appear to be any significant wax content to the oil. Laboratory analysis indicates that the oil has a specific gravity of 0.882 at 60°F which is equivalent to a 29° API gravity.

b. Gas

The gas has a specific gravity of 0.880 at 60° F with 4.5% CO₂ and no measurable H2S. Laboratory analysis indicates the following gas component analysis.

Mol. Percent
58.3
19.0
10.5
1.0
2.7
1.0
4.5
3.0
0

c. Water

No indication of formation water production was detected during the test.

FLOW PERIOD DATA D.S.T. NO. 1

TIME	BOTTOMHO PRESSURE		LHEAD TEMPERATURE		ARATOR TEMPERATURE	OIL FLOWRATE	GAS FLOWRATE	GAS-OIL RATIO	BSW	REMARKS
	PSIG	PSIG	°F	PSIG	°F	BOPD	MSCF/D	SCF/BBL	. %	
12/2/83	3								·	
08-01	On on do	mbala tast	valve for	final flow	period. Ope	en at surfa	ace on 2" c	hoke		Flowing cushion
08-01	5185	2	52	-	-	1322	_	-	100	Flowing cushion
08-30	5028	2	56	-	-	1318	-	-	100	Flowing cushion
09-00	4877	2	61	-	-	1280	-	-	100	Flowing cushion
10-00	4721	1	65	-	-	1293	-	-	100	Flowing cushion
10-00	4561	1	70	-	_	1343	-	-	9 9	Trace of oil
11-30	4000	42	74	-	-	-		-	2	Clean Oil
12-00	12-30	Changing su	rface choke	sizes. D	ecide remain	with a 2"	fixed chok	e and cont	trol we	11 with the separator
12-00	12 50	well with t	he separato	r pressure	. This will	allow max:	imum flowra	tes.		
			-	-						· ·
12-45	Switch	flow throug	h separator						-	Flowing oil
13-30	3788	55	67	40	57	1417	232	164	2	
14-00	3782	56	67	40	59	1346	232	173	2	
14-30	3776	57	67	45	60	1340	229	171	2	
15-00	3769	57	67	45	62	1285	22 9	178	1	
15-30	3753	57	67	45	62	1358	229	169	1	c
16-00	3755	57	67	45	62	1308	228	175	0	
16-30	3746	57	67	45	62	1294	228	176	1	
17-00	3740	57	67	45	62	1277	228	179	1	
17-30	3738	59	67	50	62	1288	230	179	1	
18-00	3736	59	67	50	62	1252	226	180	1	
18-00		s separator.					*			
18-11	Shutin	downhole te	est valve fo	or final bu	ildup.					

Recovered a full string of oil upon reverse out.

·				
Gauge No.	SS 0346	SS 0120	J - 755	J-756
Gauge Element	20000 psi.	10000 psi	14000 psi	14000psi
Clock (hrs)	70	70	96	48
Depth (ft RKB)	12308	12317	12330	12337
Initial Hydrostatic	* 1	* 1	9190	9266
Initial Flow Initial Buildup	5656-5382 8551	5499-5416 8550	5585-5456 8613	5575–5446 8620
Final Flow *2 Final Buildup	3792-3677 8135	3790-3669 *3 *3	3819-3747 8147	3821-3758 8152
Final Hydrostatic	9035	*3	9115	9082
Temperature	312°F	310°F	310°F	302°F

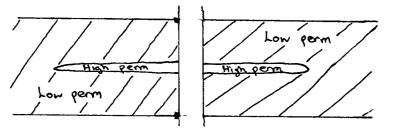
COMPARISON OF BOTTOM HOLE PRESSURE GAUGES D.S.T. NO. 1

Notes:

- 1. The delay time set in the Sperry Sun gauges prevented the initial hydrostatic from being recorded.
- 2. The pressures recorded here are for the final 5 hours of the flow period.
- 3. The Sperry Sun gauge No. 0120 started to malfunction during the final flow period and stopped during the final buildup. This was due to the excessive bottomhole temperatures experienced.

PRESSURE BUILDUP ANALYSIS D.S.T. NO. 1

The following are the parameters used for the pressure buildup analysis of drill stem test No. 1. The pressure data is taken from the Sperry Sun gauge No. 0346 at 12308 ft.


P*	=	8586 psig ± 5 psi	(from Horner Buildup Plot - Fig. 1)
P lhr	=	6660 psig.	(from Horner Buildup Plot - Fig. 2)
Pwf	=	3750 psig.	(from pressure data)
μο	=	0.9 cp	(from laboratory analysis)
Во	=	1.15 res bbls/bbl.	(from laboratory analysis)
Со	=	7.4x10 ⁻⁶ vol/vol/psi	(from laboratory analysis)
Cw	Ξ	4.6x10 ⁻⁶ vol/vol/psi	(from correlation charts)
Cf	=	4x10 ⁻⁶ vol/vol/psi	(from correlation charts)
Ct	=	1.03x10 ⁻⁵ vol/vol/psi	
ø	=	0.12	(from electric logs)
Sw	=	0.40	(from electric logs)
rw	=	0.35 ft	
qoil	=	1300 BOPD	
^m 1	Ŧ	1842 psi/cycle	(from Horner Buildup Plot - Fig 2)
^m 2	=	459 psi/cycle	(from Horner Plot - Fig 2)

1. Initial Formation Pressure

P*	= 8586 psig ± 5psi
Gauge depth	= 12308 ft
Mid-perforation depth	= 12350 ft
Assume fluid beneath test valve is	100% oil after the initial flow.
Liquid gradient (29° API oil)	= 0.382 psi/ft
Initial Formation Pressure (at mid-perfs)	= 8586 + (12350 - 12308) 0.382 = 8602 psig ± 5 psig
Formation Pressure Gradient	$= \frac{8602}{12350 - 82}$
(reference MSL)	= 0.701 psi/ft ± 0.001 psi/ft
Mud Weight Equivalent	= <u>13.48 ppg ± 0.02 ppg.</u>
2. Formation Temperature	
Maximum recorded temperature	= 311°F (average of 3 readings)
Gauge depth	= 12318 ft (average of 3 readings)
Mid-perforation depth	= 12350 ft
a. Assume average seafloor to	emperature is 34°F
Temperature Gradient	$= \frac{311 - 34}{12318 - 348}$
(reference mudline)	= 2.314°F/100 ft
b. Assume mean annual surface	e temperature is 50°F
Temperature Gradient	$= \frac{311-50}{12318-82}$
(reference MSL)	= 2.133°F/100 ft
Assuming case a	
Formation Temperature	= <u>312 °F</u>

3. Final Buildup Interpretation - Comments

Based on core and log data the perforated interval contains a 2-3 ft. layer of moderate permeability, with a very low permeability section above and below. The shape of the final buildup Horner plot (Fig 2) supports this theory. The increasing curvature of the plot indicates that the higher permeability layer does not extend any great distance from the wellbore. In addition there are indications of a decreasing flowrate during the test, which indicates some depletion of a relatively small higher permeability layer. This does not however, indicate depletion of the total reservoir. For the purposes of the buildup analysis the reservoir model assumes the zone of interest contains a thin relatively high permeability layer, limited in areal extent, within a low permeability matrix, as depicted graphically below.

This type of model acts very similar to a fracture zone in terms of the pressure buildup response and explains the upward curvature of the plot. Using the late time slope m_1 ' a kh and skin factor can be calculated which is representative of the wells performance as tested. The slope m_1 ' is the gradient between the last pressure point and P* from the initial buildup. This assumes that the buildup plot would continue in an upward curvature and eventually point to P*. The skin factor calculated from this slope will be negative. This is a pseudo skin effect related to the type of system we are dealing with.

An additional kh can be calculated using the early buildup slope 'm2'. This kh less the kh calculated from slope 'm₁' represents the transissibility of the higher permeability zone.

4. Permeability - Thickness (kh)

a. As Tested

(kh) = $\frac{162.6 \text{ q} \mu \text{ o Bo}}{m_1}$ = 120 md-ft

Assuming contributing h = 17 ft

k = 7 md

b. Higher Permeability Layer (kh)₂

Assuming from core and log data that the thickness of the higher permeability layer is 3 ft.

 $\underline{k = 120 \text{ md}}$

Although different flowrates should be used for each calculation the variation between the early rates and final rate is less than 5%. Therefore the average of 1300 BOPD has been used for each calculation.

$$1.151 \begin{cases} (\underline{P1hr} - \underline{Pwf}) & -\log & \frac{k}{\phi \ \mu \ Ct \ rw^2} \end{cases} + 3.23$$

S = -3.2

Effective Wellbore Radius = r_{We} -S

6. Radius of Investigation

The radius of investigation equation is being used assuming an average permeability of 20 md.

rinv =
$$\frac{l_2}{\sqrt{\frac{0.00105 \text{ kt}}{\phi \mu \text{ Ct}}}}$$

= $\pm 250 \text{ ft}$
7. Productivity Index
P.I. (actual) = q

(at end of flow period)

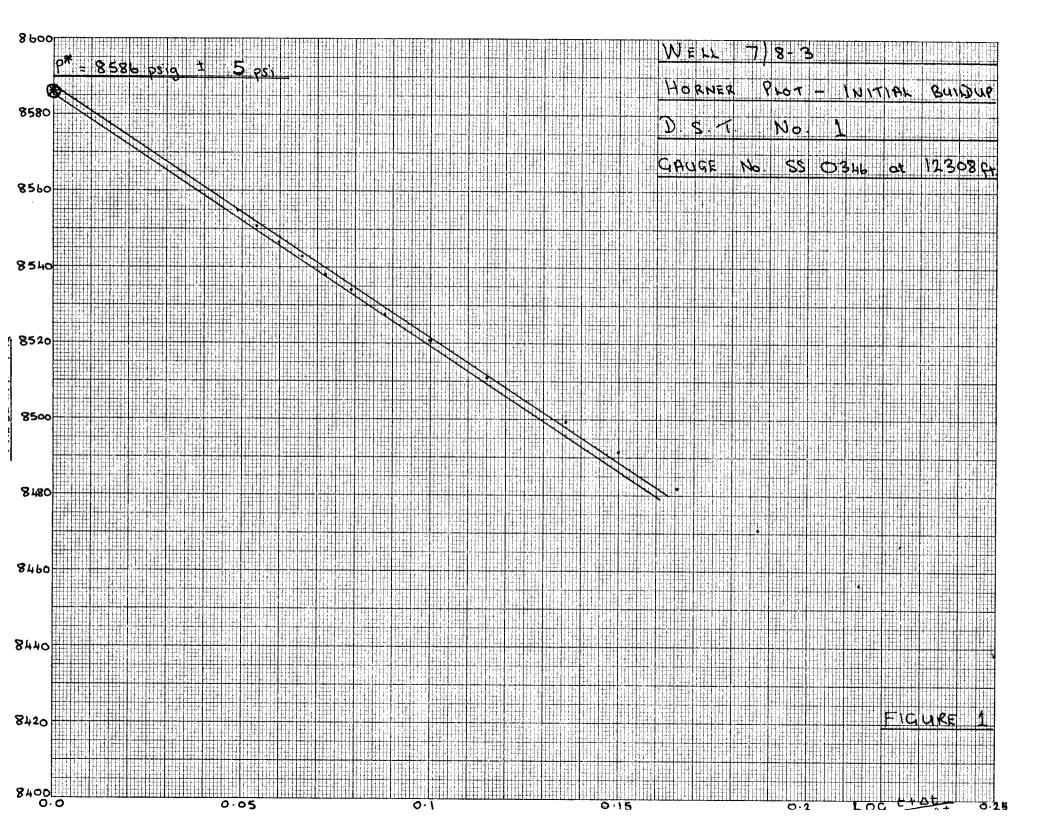
Pi - Pwf

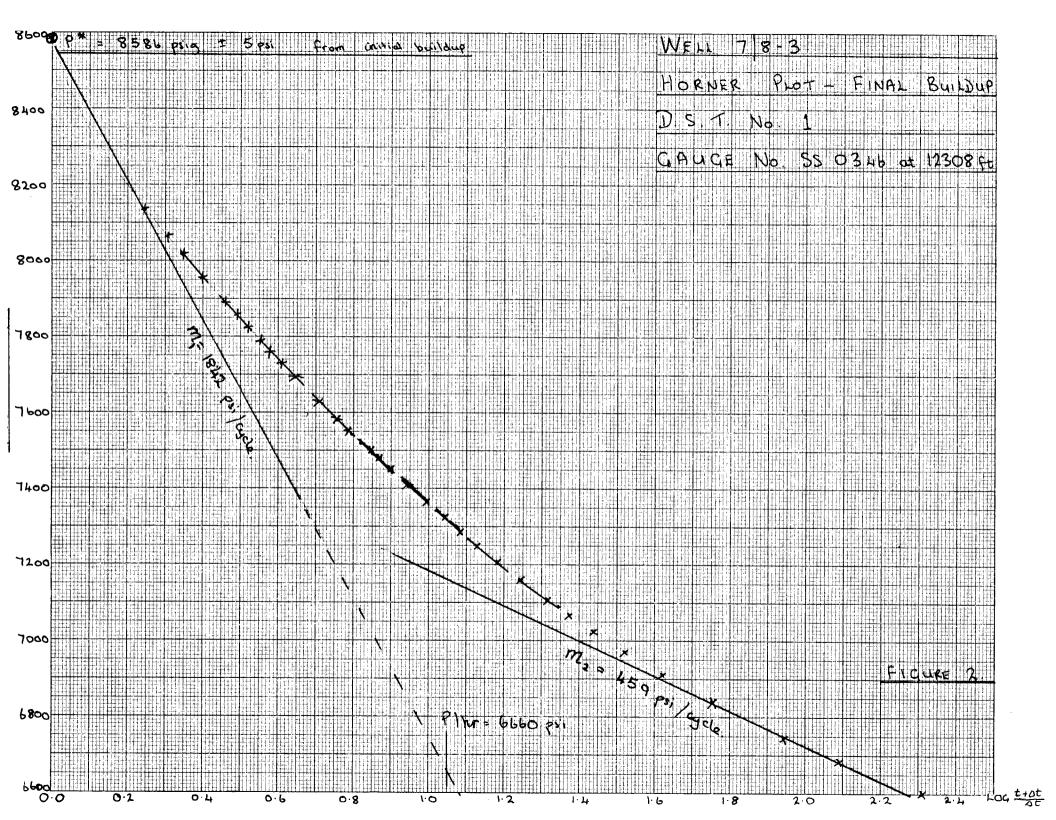
.

PRESSURE BUILD-UP DATA

D.S.T. No. 1

.


Gauge #	Sperry	Sun	0346	at	12308 ft.


•

	Δt mins.	$\log \frac{t^* + \Delta t}{\Delta t}$	Pressure psi
<u>t = 7mins</u>	135791135793593739 1135792715934739	$\begin{array}{c} 0 & 903 \\ 0 & 523 \\ 0 & 380 \\ 0 & 301 \\ 0 & 250 \\ 0 & 214 \\ 0 & 187 \\ 0 & 187 \\ 0 & 186 \\ 0 & 150 \\ 0 & 150 \\ 0 & 150 \\ 0 & 136 \\ 0 & 150 \\ 0 & 100 \\$	$8192 \cdot 37$ $8306 \cdot 56$ $8384 \cdot 02$ $8415 \cdot 78$ $8438 \cdot 50$ $8456 \cdot 53$ $8456 \cdot 53$ $8470 \cdot 81$ $8482 \cdot 22$ $8491 \cdot 34$ $8499 \cdot 34$ $8511 \cdot 27$ $8520 \cdot 84$ $8527 \cdot 57$ $8534 \cdot 07$ $8538 \cdot 81$ $8542 \cdot 82$ $8546 \cdot 57$ $8550 \cdot 85$ $8550 \cdot 85$
Enal Buildup = 610 mirs.	$ \begin{array}{c} $	$ \begin{array}{c} 0 & 0 & 49 \\ \hline 2 & 786 \\ 2 & 310 \\ 2 & 090 \\ 1 & 945 \\ 1 & 752 \\ 1 & 520 \\ 1 &$	$ \begin{array}{r} 6 450 \cdot 96 \\ 6 596 \cdot 37 \\ 6 683 \cdot 49 \\ 6 746 \cdot 21 \\ 6 839 \cdot 28 \\ 6 911 \cdot 44 \\ 6 970 \cdot 16 \\ 7021 \cdot 41 \\ 7065 \cdot 72 \\ 7106 \cdot 53 \\ 7158 \cdot 40 \\ 7205 \cdot 77 \\ 7249 \cdot 19 \\ 7286 \cdot 27 \\ \end{array} $

∆t mins.	$\log \frac{t^{\pm} + \Delta t}{\Delta t}$	Pressure psi.
61	1.041	7321.28
69	0.993	736246
79	0.941	7408.18
89	0.895	7449.50
99	0.855	7487.13
109	0 819	7520.07
119	0.787	7550.78
129	0.758	7578.34
139	0.731	7604.62
149	0.707	7628.42
159	0 685	7651.24
179	0 - 644	7691.94
199	0.609	7727.79
219	0 · 578	7759.62
239	0.551	77 88 . 54
269	0.514	7826.46
299	0.483	7860.44
329	0.455	7890.94
369	0.424	7924.52
409	0 396	7955.08
449	0.373	7982.66
499	0 347	8011.76
549	0.325	8037.88
599	0.305	8 061. 89
659	0.285	8086.03
719	0.267	8108.20
803	0.245	8134.88

-

WELL 7/8-3 - NORWAY

DRILL STEM TEST NO. 2

DATE: 4th - 6th December 1983

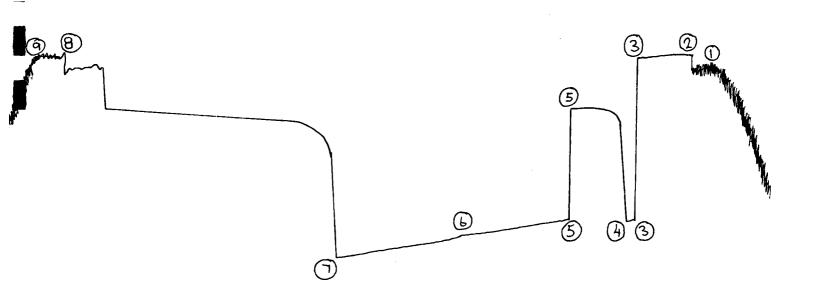
~ WELL DATA D.S.T. NO. 2

.

Well Location	57° 15' 31.2" N. 2° 32' 45.8" E.							
Depth RKB (to MSL)	82 ft (25m).							
Water Depth	266 ft (81m).							
Total Depth	14174 ft (4320m).							
Plugback Depth	12278 ft (37424m).							
Perforated Intervals	12252-12272 ft (3734.5-3740.6m) 4" casing guns. 4 SPF. 90° phasing.							
Mid-perforation Depth	12262 ft (3737.5m).							
Casing Size	7" 32# C95 linear. Hanger at 11348 ft. Shoe at 12557 ft.							
Test String	5" 19.5# Class 'G' drill pipe.							
Test Packer	Dowell Positest Packer at 12189 ft. (3715.3m).							
Test Valve	Dowell PCT at 12159 ft. (3706.lm).							
Cushion	Full seawater cushion.							
Test String Volume	203 bbls.							
Rathole Volume	1.5 bbls to top perforations; 2.1 bbls to bottom perforations.							
Mud	<u>MW FV PV YP pH % Oil CL-</u>							
1. When drilled	14.5 58 28 17 10.1 4 12K							
2. When perforated	14.2 55 27 9 11.5 1 17K							

DIARY OF EVENTS

DATE	TIME	EVENT
12/4/83	21–30	Perforate test interval from 12252-12272 ft (3734.5-3740.5m) with 4" casing guns, 4 SPF, 90° phasing.
	22-45	Start Dowell gauge No. J-755 with a 96hr clock.
	22-46	Start Dowell gauge No. J-756 with a 48hr clock.
	22-47	Start Sperry Sun gauge No. 0346 with a 70hr clock and an 8.5hr start delay.
	22-52	Start Sperry Sun gauge No. 0341 with a 70hr clock and an 8.5hr start delay.
	23-00	Start picking up test tools.
12/5/83	01-30	Pressure test bottomhole test assembly to 5000 psi.
	11-00	Function test sub-sea-test-tree.
	12-14	Set packer at 12189 ft. (3715.3m).
	13-10	Rig up and pressure test surface flowlines.
		a. Test string to 7500 psi. b. Choke manifold to 7500 psi. c. Separator to 1000 psi.
	13-28	Pressure up annulus to open downhole test valve for initial flow period.
	13-33	Bleed off annulus to shutin downhole test valve for initial buildup period.
	14-13	Pressure up annulus to open downhole test valve for final flow period.
	14-14	Open well for flow on a 2" fixed choke.
12/5/83	19-10	Traces of gas at surface. FWHP = 15 psig.
	19-15	Traces of oil at surface. FWHP = 15 psig.
	23-30	Pressure up annulus to shear the downhole test valve closed.


DATE	TIME	EVENT
	23-33	Bleed of annulus pressure. S.S.A.R.V. reverse sub opened.
	23-40	Start to reverse out test string.
12/6/83	00-30	Well killed. Wait on buildup.
	09-40	Unseat packer. End of buildup.
	09-50	Circulate hole.
	12-55	Pull out of hole.
		END OF TEST

Description	0.D. (inches)	I.D. (inches)	Length (feet)	Depth (feet)
Floread		3.00	10.00	-30.31
5" Drill ?, pe	5.00	4.28 -	20.31	-20.3
Sub-Sea-Text-Tree	5.00	3.00 -	22.17	317.6
5" Drill Pipe	5.00	4 - 28	10625.99	341.0
X- over	6.25	2.85	8 ا ۱۰	10967.0
3'z" Drill Pipe	3.50	2.76	276.27	10968.
Slip Soint (open)	5.00	2.25	28.18	11245.
Slip Join (tzopen)	5.00	2.25	25.68	11273.1
Slip Joint (closed)	5.00	2.25	23.18	11298.
8 Stds Drill Collars	4 .75	2.78	732.96	11322
Impact Reverse Sub	4 . 75	2.25(equiv)	1.08	12055.
Std Drill Collars	4.75	2.78	91.62	12056.
Bar Catcher Sub	<u>ц. 15</u>	2.25 (equiv)		12147.
S.S.A.R.V	5.00	2.25	8.46	12148
P.C.T. Value	4.75	2.25	18.57	12157.
H. R.T.	4.75	2.25	4.27	12175
Hydraulic Jars	5.00	2.25	6.50	12180.
Safety Joint.	5.00	2.25	1.71	12186
Positest Packer	5.75	2.25 -	1.15	12188
X-over	4 · 75	2.25	0.82	12192.
Perforated Anchor	4 · 75	<u> </u>	9.94	12193
Sperry Sun Gauge Carrier		*	30.70	12203
Sperry Sun Gauge Carrier J-200 Gauge Carrier	5.00	_	6.96	12233
	5.00	<u> </u>	6.96	12240
Ported Bullnose	4.75	· · · · · · · · · · · · · · · · · · ·	1.90	12247
Notes: 1. AU depty		•	1.90 rop of tool	1224 joints.

. 1

SCHEMATIC OF DOWNHOLE TEST CHART D. S. T. NO. 2

NOT TO SCALE

- 1. Initial hydrostatic
- 2. Set packer at 12189 ft.
- 3. Open downhole test valve for initial flow period
- 4. Shutin downhole test valve for initial buildup period
- 5. Open downhole test valve for final flow period
- 6. Oil begins to surface mixed with water cushion
- 7. Shutin downhole test valve for final buildup period
- 8. Unseat packer
- 9. Final hydrostatic

	T	·····		
Gauge No.	SS 0346	SS 0341	J-755	J-756
Gauge Element	20000 psi	20000 psi	14000psi	14000 psi
Clock (hrs)	70	70	96	48
Depth (ft RKB)	12213	12222	12235	12242
Initial Hydrostatic	9030	9032	9123	9068
Initial Flow Initial Buildup	5473-5470 8522	5499-5484 8520	5511 8555	5509 8554
Final Flow Final Buildup	5442-4446 8521	5452-4441 8517	5525-4465 8538	5534-4467 8527
Final Hydrostatic	8980	8977	9027	8997
Temperature	307°F	309°F	309°F	312°F

COMPARISON OF BOTTOM HOLE PRESSURE GAUGES D.S.T. NO. 2

Notes:

1. All pressures are psig

RECORD OF SAMPLES

Due to the low flowrate produced by the well it was not possible to flow hydrocarbons through the separator during the test. Therefore no separator PVT recombination samples or gas samples were able to be taken. However a single phase bottomhole sample was collected from the downhole test tools, and several weathered oil samples were also collected from the reverse out. Based on the BSW figures recorded on the samples from the reverse out it is probable that the weathered oil samples are slightly contaminated with the seawater cushion. A record of the samples collected and an analysis of the fluid is given below.

a. Record of Samples

1. Downhole PVT Samples

Туре	Bottle Size	Bottle No.	Time Taken 5.12.83	Pressure psig.	Temperature °F
OIL	550 cc.	20112/106	23-30	550	47
OIL	550 cc.	9214/182	23-30	450	47

2. Weathered Oil Samples

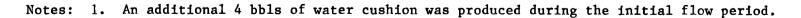
1 x 55 gallon weathered oil
4 x 5 gallon weathered oil

b. Analysis of Recovered Fluids

1. Oil Analysis

The produced oil is dark, black and sweet with no measureable H2S. Laboratory analysis indicates that the oil has a specific gravity of 0.876 at 60°F which is equivalent to a 30° API gravity.

2. Gas Analysis


Due to the low flowrates and the inability of the well to be flowed through the separator it was not possible to collect any gas samples. The gas is assumed to be the same as the gas from dst No. 1 with a specific gravity of 0.880 with 4.5% CO₂ and No H_2S .

3. Water Analysis

All the recovered water was seawater cushion having chlorides reading 20-25 K ppm. There was no evidence of any formation water production.

FLOW PERIOD DATA

TIME	BOTTOMHOLE PRESSURE PSIG	WELLH PRESSURE PSIG	HEAD TEMP. °F	FLOWRATE BFPD	BSW %	CUMULATIVE OIL PRODUCED Bbls.	CUMULATIVE CUSHION PRODUCED Bbls.	REMARKS
12/5/8	3	<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u> </u>					
14-13	Pressure up	annulus to	open dc	wnhole ter	st val	lve for final f	flow period.	
14-30	-	15	45	520	100	0	54.4	Flowing seawater cushion (CL = 24K ppm)
15-00		13	45	415	100	-	14.1	
15-30		13	45	380	100	_	20.8	
16-00		16	45	380	100	-	28.8	
16-30		16	45	374	100	-	36.6	
17-00		16	45	387	100	_	44.7	
17-30		15	46	393	100	-	52.9	
18-00		16	46	399	100	-	61.2	
18-30		16	46	393	100	-	69.4	
19-00		17	47	387	100	-	77.4	
19-30		15	47	406	85	0.3	85.6	Small percent of oil at surface
20-00		15	47	425	85	1.6	93.1	•
20-30		14	47	551	75	3.6	104.5	Increasing oil cut and water cushion
21-00		15	47	486	70	-	-	<u> </u>
21-30		16	47	372	65	7.1	112.6	
22-00		16	47	456	65	10.4	118.8	
22-30		19	47	450	52	14.9	123.7	
23-00		20	47	393	58	18.3	128.5	
23-30		20	47	418	62	21.6	133.9	
23-30	Pressure up	annulus to	shear d	ownhole te	≥st va	lve during the	e initial flow peri	iod.

.

REVERSED RECOVERIES

Sample No.		Volume Since Start Of Reverse Bbls.	Depth From Which Sample Recovered Ft.	BSW %	Rever	Oil From se Out bls.	From R	. Water everse ls.	Remarks Out
1	100	13.1	725	70	4.0	4.0	9.1	9.1	Mostly water cushion ($CL^{-} = 25K$) with traces
2	200	26.2	1450	65	4.6	8.6	8.5	17.6	of oil.
3	300	39.3	2175	56	5.8	14.4	7.3	24.9	
4	400	52.4	2900	43	7.5	21.9	5.6	30.5	Increasing oil cut with some rathole mud and seawater cushion.
5	500	65.5	3625	24	10.0	31.9	3.1	33.6	
6	600	78.6	4350	20	10.5	42.4	2.6	36.2	
7	700	91.7	5075	14	11.3	53.7	1.8	38.0	Fairly clean oil mixed with a small percentage of seawater cushion.
8	800	104.8	5800	14	11.3	65.0	1.8	39.8	
9	900	117.9	6525	14	11.3	76.3	1.8	41.6	
10	1000	131.0	7250	12	11.5	87.8	1.6	43.2	,
11	1100	144.1	7975	8	12.1	99.9	1.0	44.2	
12	1200	157.2	8700	8	12.1	112.0	1.0	45.2	
13	1300	170.3	9425	10	11.9	123.9	1.2	46.4	
14	1400	183.4	10150	9	12.0	135.9	1.1	47.5	
15	1500	196.5	10875	15	11.1	147.0	2.0	49.5	
16	1570	203.0	12150	15	5.5	152.5	1.0	50.5	
17	1575	-	-	99		-		-	Reverse out is complete. Mud from annulus

PRESSURE BUILDUP ANALYSIS D.S.T. NO. 2

The following are the parameters used for the pressure buildup analysis of drill stem test No. 2. The pressue data is taken from the Sperry Sun gauge No. 0346 at 12213 ft.

P*	= 8568 psig ± 5 psi	(from Horner Buildup Plot - Fig 1).
P lhr	= 8320 psig.	(from Horner Buildup Plot - Fig 2).
Pwf (average)	= 4946 psig	(from pressure data)
μο	= 0.9 cp	(from laboratory analysis)
Во	= 1.15 res bbls/bbl.	(from laboratory analysis)
Со	= 7.7x10 ⁻⁶ vol/vol/pi	(from laboratory analysis)
Cw	= 4.6x10 ⁻⁶ vol/vol/psi	(from correlation charts)
Cf	= 4×10^{-6} vol/vol/psi	(from correlation charts)
Ct	= 1.077x10 ⁻⁵ vol/vol/psi	
ø	= 13%	(from electric logs)
Sw	= 30%	(from electric logs)
rw	= 0.35 ft	
qoil	= 440 BOPD	
m	= 284 psi/cycle	(from Horner Buildup Plot - Fig 2).

1. Initial Formation Pressure

P*	= 8568 psig ± 5 psi	
Gauge depth	= 12213 ft	
Mid-perforation depth	= 12262 ft	
Assume fluid beneath test valve is 100% oil after the initial flow		
Liquid gradient (30°API oil)	= 0.375 psi/ft	
Initial Formation Pressure (at mid-perfs)	= 8568 psig + (12262-12213) 0.375 = 8586 psig ± 5 psi	

Formation Pressure Gradient	= <u>8586</u> 12350-82				
(reference MSL)	= 0.700 psi/ft ± 0.001 psi/ft				
Mud Weight Equivalent	= 13.46 ppg ± 0.02 ppg.				
2. Formation Temperature					
Maximum recorded temperature	= 309°F				
Gauge depth	= 12235 ft				
Mid-perforation depth	= 12262 ft				
a. Assume average seafloor temperature is 34°F					
Temperature Gradient	= <u>309-34</u> 12235-348				
(reference mudline)	= 2.313°F/100ft				
b. Assume mean annual surface temperature is 50°F					
Temperature Gradient	$= \frac{309-50}{12318-82}$				
(reference MSL)	$= 2.117^{\circ} F/100 ft$				
Assuming case a					
Formation Temperature (at mid-perfs)	= <u>310°F</u>				

3. Final Buildup Interpretation - Comments

The shape of the final buildup plot (Fig. 2) is essentially a straight line with a turnover towards initial reservoir pressure near the end of the buildup period. The straight line portion of the plot is representative of the near wellbore permeability-thickness. The bend-over portin of the plot could be indicative of a change in viscosity (i.e gas cap, water aquifer) or an increase in kh, away from the wellbore. As this is an undersaturated reservoir and the test interval is a considerable height above any possible oil-water contact the bend-over is unlikely to be caused by viscosity changes and is probably due to an increase in kh. The logs indicate that the perforated interval is separated from additional oil-bearing pay by a shale barrier, the laterial extent of which is unknown. It is therefore concluded that the shale barrier does not extend further than ±100 ft from the wellbore and that the pressure transient is expanding in the vertical direction as well as on the horizontal direction beyond this point. It should be noted that the quoted distance from the wellbore is a very approximate number and may be as much as ± 50 ft. in error.

4. Permeability - Thickness (kh) (near wellbore)

$$Kh = \frac{162.6 \text{ qoil } \mu \text{o Bo}}{\text{m}}$$

$$Kh = 260 \text{ md} - \text{ft}$$

Assuming contributing h = 15 ft

$$k = 18 \text{ md}$$

5. Skin Factor

$$S = 1.151 \left\{ \frac{P \ln r - P w f}{M} - \log \frac{k}{\phi \ \mu \ Ct \ r w^2} + 3.23 \right\}$$

$$\frac{S = + 8.1}{2}$$

Drawdown due to skin

DD = 0.87 mS = 2001 psi

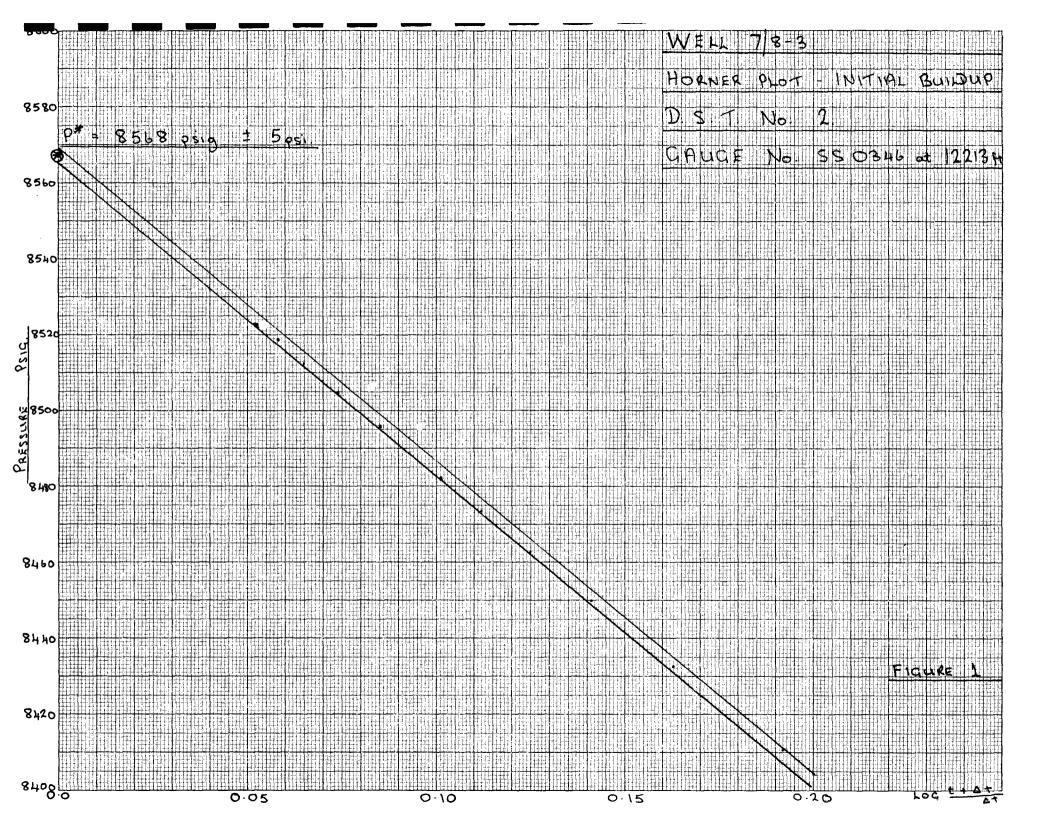
Percentage of drawdown due to skin = $\frac{\Delta P \text{ skin}}{DD}$

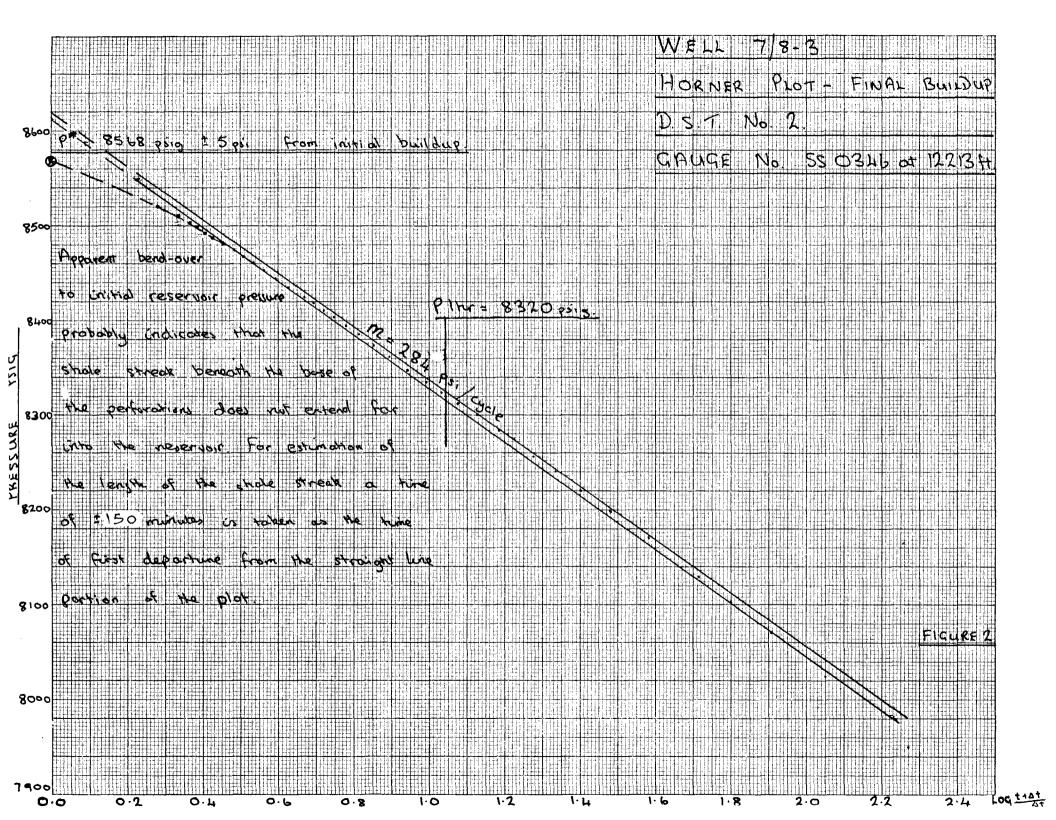
7. Distance to End of Shale Barrier

$$r_i = \frac{l_2}{\sqrt{\frac{.00105 \text{ kt}}{\phi \mu C_t}}}$$
 where t = time of first departure
from straight line portion
of buildup plot
= $\pm 100 \text{ ft.}$

8. Actual Productivity Index

.


WELL 7/8-3


•

PRESSURE BUILD-UP DATA

		D.S.T. No. 2.		
Gauge # Sperry Sun 0346 at 12213 ft				
	∆t mins.	$\log \frac{t^{*} + \Delta t}{\Delta t}$	Pressure psi	
$\frac{t + 5 \text{ mins.}}{1 + 5 \text{ mins.}}$	ן	0 426	8096·53	
	3	0 426	8261·65	
	5	0 301	8335·01	
	7	0 234	8379·85	
	9	0 192	8410·55	
	11	0 · 1 63	843258	
	13	0 · 1 41	844976	
	15	0 · 1 25	846278	
	17	0 · 1 12	847330	
	19	0 · 1 0	8481.81	
	23	0 · 0 85	8495.83	
	27	0 · 0 74	8504.69	
	31	0 · 0 65	8512.21	
	35	0 · 0 58	8518.22	
	39	0 · 0 52	8522.09	
<u>t= 556 mins</u>	I 3 5 7 9 11 15 19 23 27 31 35 39 45 51 57	$2 \cdot 746$ $2 \cdot 270$ $2 \cdot 050$ $1 \cdot 905$ $1 \cdot 798$ $1 \cdot 712$ $1 \cdot 581$ $1 \cdot 481$ $1 \cdot 401$ $1 \cdot 334$ $1 \cdot 277$ $1 \cdot 228$ $1 \cdot 126$ $1 \cdot 126$ $1 \cdot 076$ $1 \cdot 032$	7773 23 7950 28 8024 74 8070 97 8102 57 8128 97 8169 04 8197 93 8220 84 8239 58 8256 02 8269 29 8282 75 8299 02 8312 19 8324 52	
	63	0.992	8335.38	
	7 I	0.946	8348.74	

ſ	Δt mins.	$\log \frac{t + \Delta t}{\Delta t}$	Pressure psi.
		$\begin{array}{c} 0 & 8 & 9 & 6 \\ 0 & 8 & 52 \\ 0 & 8 & 13 \\ 0 & 7 & 79 \\ 0 & 7 & 48 \\ 0 & 7 & 20 \\ 0 & 6 & 94 \\ 0 & 6 & 70 \\ 0 & 6 & 70 \\ 0 & 6 & 28 \\ 0 & 5 & 92 \\ 0 & 5 & 92 \\ 0 & 5 & 5 & 5 \\ 0 & 5 & $	8362.04 8374.94 8374.94 8384.84 8394.29 8403.26 8410.75 8418.76 8424.28 8424.28 8434.86 8434.86 8444.99 8453.09 8461.19 8461.19 8461.19 8461.31 8473.45 8481.09 8487.26 8492.94 8492.94 8498.94 8502.63 8506.34 8509.84 8512.56 8516.80 8520.81
	·		

