WELL 7/8-3 NORWAY

DRILL STEM TEST REPORT

DECEMBER 1983

CN	DRILLI	NG
·		
SUBJECT	0007/8	<u>03-64 </u>
CHRONO		
DISTR.	ACTION	INFO
MGR		Construction of the constr
SDE	LL COLOR	Annual of Contract Management of Contract
A PERSONAL PROPERTY OF THE PRO	a quantition, control and analysis support March 1999 6	Commence of the control of the contr
	The state of the s	The state of the s

	- CONOCO NORWAY INC CENTRAL FILES - LIBRARY -
1	D-810

J.S. MacJonald.

P.E.S. Howton.

WELL 7/8-3

SUMMARY OF TEST RESULTS

1. Drill Stem Test No 1

Date of Tool

Formation Type

Perforated Interval

Initial Flow Period.

Initial Buildup

Final Flow Period

Final Buildup

1º - 30 December 1983.

Upper Jurousic Sandstone.

12.42-12 59 ft (3762-3767m)

7 mins

60 mins.

10hrs 10 mins (610 mins)

13 hrs 24 mins (804 mins)

Flow Pariod Reputs

Oil Flowrate (final 5 hours)

Gas Flowrote

Gas - Oil - Roxio.

B. S. W.

Flowing BHP (final 5 hours).

Flowing WHP (final 5 hours)

Flowing Pressure Cradient

Oil Gravity - specific

19Aº

Gas Gravity

H2S Content

CO2 Content

1340 declining to 1275 BOPD.

230 M SCF) D.

177 SCF | BBL

1%

3788 psycheclining to 3736 psig.

57 psig.

0.299 psi)ft

0.864

320

188.0

0

5%

Pressure Buildup Analysia

Initial Formation Pressure (mid-parts)
Formation Pressure Cradient
Mud Weight Equivalent
Formation Temperature (mid-parts)
Temperature Cradient (ref mudule)
Permeability- Thickness
Permeability
Skin Effect.
Productivity Index (actual)
Radius of Investigation.

8602 ping ± 5 pin

0.701 psi/ft ± 0.001 psi/ft

13.48 ppg ± 0.02 ppg.

312° F.

2.314° F/100 ft

202 md-ft

70 md (assuming contributing h=3 ft).

-3.2

0.27 bbl/d/psi
± 500 ft.

2. Drill Stem Toot No. 2.

Date of Took

Formation Type.

Performed Interval

Initial Flow Period

Initial Buildup Period

Final Flow Period

Final Buildup Pariod.

MIH - PIN December 1983

Upper Surossic Sondotone.

12252 - 12272 ft (37345-37406m)

5 mins

40 mins.

9hrs 17mins (557mins)

10hrs 10min. (610 mins)

Flow Period Rooms.

Average Oil Flowrate

Gas Floured

Co- Oil Rotio

Flowing BHP final

Flowing WHP

Planing Pressure Coodint (final)

Oil Cravity - Specific

[14 0 -

Gos Grainy

11/25

CO2.

415 BOPD.

Unable to measure

Unable to measure.

HAHE POS.

20 psig.

0.362 psi) ft.

± 0.884

28 - 29 ° API

Unable to measure

0

h %

Pressure Buildup Analysis.

Initial Formation Pressure (mid-perb) 8586 psig ± 5 psi

Formation Pressure andient

Mud Weight Equivalent

0.700 por /ft + 0.001 por)ft

13.46 ppg + 0.02 pps.

Formation Temperature (mid-parts)

Temperature Cradient (ret mudbie)

Permeability - Hickness

Permestilly

Skin Factor

Dramdown Due to Stin

% Dr Due to Stin

Radius of Investigation

P.I. (actual)

P. J. (5=0)

310°F

2.313 ° F) 100 ft

346 md-H

23 md.

+ 9

1957 psi

54 %.

± 220 ft

0. 12 bbl 1d pri

0.30 bh/d/pi.

WELL 7/8-3 NORWAY

DATE: 151 - 350 DECEMBER 1983

WELL DATA DST NO 1

57° 15' 31.2" N. 2° 32' 45.8" E. Well Location (25m) 82 ft Depth RKB (to MSL) (81m) 266 fc Water Depth 14174ft. (4320m) Total Depth 12457 ft (3797 m) Plugback Depth 12342-12359 FE (3762 - 3767 m) Perforated Intervals 4" cosing guno. 4 SPF. 90° Phasing. 12350 ft (3764.3m) Mid-perforation Depth 7" 32# C95 liner . Hanger at 11348 A. Shoe at 12557 A Casing Size 5" 19.5 = Close 'G' din pipe. Test String Dowell Posited Packer at 12285 ft (3744.5m) Test Packer Dowell Sleeve PCT value at 12254 ft (3735m) Test Valve Full seawater custion. Cushion 205 bbls. Test String Volume 1. O bbls to top perforetion; I. H bbl to bottom perfording Rathole Volume 8 011 CL F۷ PV YP pН Mud MW 12K 28 10.1 14.5 58 17 1. When drilled

55

17.5

2. When perforated

27 9

11.3

1

MK.

Well 7/8-3 Diary of Events D.S.T. No 1

	Time	Event
æ 1983	05-00	Perforate test interval from 12342-12359 ft (3762-3767m) with h" casing guns, 45PF, 90°
	06-57	Phosing. Start Sperry Sun gauge no 0346 (20000 pi element) With a 70hr clock and a 17hour start delay.
	OP - 28	Start Sperry Sun gauge no 0120 (10000 psi element) with a 70hr clock and a 17 hour start delay.
	07-10	Stort Dowell gauge no 1-755 (14000 psi element)
	07 - 12	With a 96 hour clock. Start Dowell gauge no 1-756 (14000 più element)
	08 - 00 11 - 30	With a 48 hour clock. Start picking up bost tools
	11 - 30	Pressure toot tool string to 5000 psi. Run in hole. F.U test string with a seawater cushion
		whilst running in the hole.
	21 - 56	Function but EZ tree. Set packer at 12284ft (3744.2m).
	23 - 30	Rig up surface Howlers
amber _, 198	20 - 00 21 - 56 23 - 30 306 - 30	Pressure test surface equipment and test string of Test string, flohead and chake manifold to 7500pi
		b) Separator to 1000 psi. c) Burner Flouknes to 500 psi.
	06 - 54	Pressure up annulus to 1600 psi to open

downhole but volve for the initial flow period.

Time	Event
Ob-55	Open well at surface on a 2" fixed chake size.
	Floring seawater custion. WHP = 0 poig.
07-01	Bleed off annulus pressure to shutin well for
	the unitial buildup period.
40 - FO	Shoutin at surface. ISIWH? = 0 psig.
08 - 01	FSIWHP = Oping.
08 - 01	Pressure up annulus to open downhole but volve
	for final flow period. Open for flow at surface
	on a 2" fixed choke.
10 - 25	Traces of gos at surface. FWHP = 1 pring.
10 -30	Traces of oil at surface FNHP = 1 ping.
11 - 15	Increasing oil content in produced fluid. Flowing
	45% seawater working and 55% oil. FWHP= 90 psig
12 - 03	Change to 1" adjustable chake.
12- 09	Change to 16/64" adjustable choke.
12 - 24	FWHP = 170 psig.
12 - 24	Change back to a 2" fixed chape. The wellhand
	pressure did not increme dramatically on the 16/64"
	chake size. The well is largely formation
	capacity limited. The flow will be through a
	2" fixed choke and the separator will be used
	to control the backpressure. to the well.
12-45	Switch flow through the separator.
16-00	Take one set of separator Oil and gas PVT
	samples for laboratory recombination.
16-40	Take second set of separator PVT sample.
18-00	By- pos segonator.
11	

18-03

18 - 11

Prossure up amoulus to 3200 psi to try and shear closed the downhole toot value. The well was left open at surface to try and determine whether the downhole value had indeed closed. It was unclear whether or not the downhole value had closed Information upon retreiving the but tooks indicate that the value did not shear closed. The annulus pressure was however released at 18-11 to close the tool for the final buildup.

18-20

Shutin at surface. ISIWHP = 20 psig.

FSIWHP = 139 psig.

Drop bor to shoon impact sub.

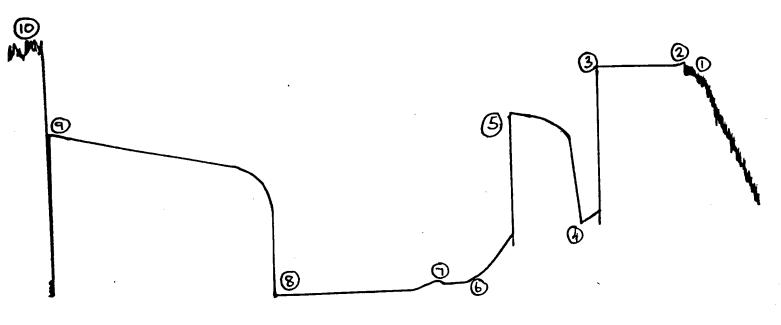
Impact sub did not shear. There was no communication between the annulus and the drill pipe at this stage. It was necessary to use annulus pressure to open the S.S.A.R.V. reverse sub. However at 1900 psi the annulus pressure dropped. It was later discovered, upon inspection of the downhole tools, that the bor had not sheared the impact cub neverse pins when it landed but it had weakened Hem Sufficiently such that the annulus pressure sheared them. The meet bot string was then reversed out, recovering a full string of oil. Because the downhale box value did not shear

Event.

closed parmonently, the annulus pressure required to neverse out the bot string caused the value to open during the neverse out. This prevented a representative bottomball PVT sample being caught in the tool.

09-55 Unsect packer and pull out of the hale.

EM OF TEST.


D.S.T. NO. 1

TEST TOOLS LISTING

	Description	0.D. (inches)	I.D. (Inches)	Length (feet)	Depth (feet)	
	Flohead		3.00	10.00	- 30.31	
	5" Day Pipe	5.00	4.28 -	20·31 317·63	- 20·31 0·60 317·63	Rotery
8	Sub-sea-bot-tree	5.00	3.00	22.17	317-63	Merrie
	5" Drill Pipe	5.00	4 - 28	10720-51	341.05	
H	X- Over	6 . 75	2 · 85	1.78	11061.56	
\vdash	35" Dil Pipe	3.50	2.76	276.27	11063.34	
h =	Stip Joint (open)	5.00	2.25	78.18	11339-61	
 	Slip Joint (2-open)	5.00	2.25	25.68	11367.79	
片취	Slip Joint (closed)	5.00	2.25	23 · 18	11395-47	
4	7 Stds Drill Collars	<u> よ・つち</u>	2.78	641.34	1418-65	
-	S.S.A.R.V.	5.00	2.25	8.46	12057-99	
-	1 Sed Dail Collars	4.75	2.78	91.62	12066.45	
	Import Reverse Sub	4 - 75	2.25 (equir.)	1.08	12158.07	
F	1 Std Dill Collars	4.75	2.78	91.62	12159-15	
	Bar Carcher Sub	4.75	2.25 (equi)	1.02	12250.77	
8	P.C.T. Value	4 75	1.50 Equin		12251.79	
	H.R.T.	4.75	1.50	4.27	12270.36	
1	Hydraulic Jars	5.00	2.25	b.50_	12274.63	
\frac{1}{\sigma}	Safety Joint	5.00	2.25	1.71	12281-13	
	Posited Pouter	5.75	2.25	1.15	12282.84	Packer
	X-over	ム・コち	2.25	0.87	12286.94	
3 8	Perforated Anchor	่⊾ำร	_	9.94	12287·7b	
TE I	Sperry Sun Game Comi	 :	-	30.70	12297.70	
H	J-200 Gouge Corrier	5.00		6.96	12328-40	-
0	J-200 Cange Corrier	5.00		6.96	12335.36	
	Ported Bullnuse	<u> </u>	-	1.90	12342-32	-
• 6	10.164 100-306					
	Notes: 1. Au depths	are to top	of tool	joints (d.	rillers deat	(w)
	2 Locares de	the (performed	intervals)	are 14th	deeper	-
	than driller	rs depthi.			· 	-
						-

5CHEMATIC OF DOWNHOLE TEST CHART

D.S.T. No. 1.

Not to Scale.

nitial hydrostatic set packer at 12284 fc.

Open downhole too valve for initial flow period.

Shurin downhole but value for unitial buildup period.

Open downhole too value for find flow period.

Produced the full water custion at surface. Now Howing clean oil.

Change to smaller chake 5,2e at surface. Decide to change back to a fully open 2" line

Shedin downhole test value for find buildup period.

Opened downhole test volve whilst trying to open neversing subs.

Downhale test value opened during reverse out.

Unseat packer.

Final hydrostatic.

WELL 7/8-3 RECORD OF SAMPLES D. S.T. No 1

A suite of separator PVT recombination samples and weathered oil samples were collected during the bost. The downhale sample was not caught due to the test value failing to shear closed after the final flow period. This resulted in the sample chamber opening during the revene and the sample being replaced by mud.

The following is a list of the samples cought and the conditions under which they were taken.

a. Separator Samples.

Type	Botile	Bottle	Time 1	oken	Separa	ior Sampling	Data
3,	Size	No.			Pressure psig	Temperature	Crospoil Rest Set/Bbl.
OIL	7000	83081909	12/2/83	16-00	45	56	175
GAS	20ler	A14761	•	16-00	45	56	175
OIL	7000	8207321	12/2/83	16-40	45	56	178
GAS	20 hr	A14716		16-40	45	56	178

b. Weathered Oil Samples.

- 1. 5 x 5 gallon weathered oil samples.
- 2. 1 x 55 gallon weathered oil sample.

Oil gravity

= 0.864 at 60°F.

b. Gas.

Gas gravity = 0.881 at $60^{\circ}F$ Co_2 = 5% H_2S = 0

A cromatograph of the gas samples was carried out during the test. The analysis is given below. However the accuracy of the data is unknown due to the limited facilities on the rig.

Component	%.
С,	72
C ₂	٩
C3	10
i C ₄	1
n C4	3
C 0 ₂	. 5

WELL 7/8-3 FLOW PERIOD DATA D.S.T. No. 1

Summary

The well was flowed for a 7 minute in 14al flow period fellowed by an initial buildup of 60 minutes. A final flow period of 10 hours 10 mins was then taken prior to a 13 hour 24 min find buildup. First traces of oil were seen at surface after 2.5 hours and the well was Howing 98% oil after 3.5 hours. After clean oil was flowing at surface an attempt to these back and increase the wellhead pressure in order to get withal flow to the separate was made. However a reduction from 2" to 16/64" only resulted in a wellhood pressure increase of about 100 psi. It was therefore decided to Han the well wide open (2" chake) at He wellhead and use He separator as the bookprenium control to the well. The well was then flowed through the separator for 5.25 hours before shutting in dountable for the final buildup. A detailed tabulation of the How data is provideà.

Fluid Properties.

The following is a summary of the fluids received and their properties.

a. 011.

The oil recovered was dark, black and sweet with no traces of H_2S . There did not appear to be any significant wax content to the oil.

D.S.T. No. 1.

Time	Bottonhole	Well	head	Sepa	roto r	Oil		Clas-Oil Robo	BSW	Remarks.	
IUME	Pressure	Pressure	Temperature	Pressure	Temperature	BORD	Flowrate M SCF)D	SCF BBL	%		
	psig	prig	· Y	13.3							
12 2 83		·						,	,	}	
08-01	Open d	bed slowing	noyal for	final flow	period. Ope	n at surface	on 2"	choke.			سولاس
08.30	5185	2	52	•	_	1322	0	0	B	, ,	uohion,
09-00	5028	2	56	-	<u>-</u>	1318	0	0	100	l i	
09-30	4877	2	61	- ,	-	1280	0	0	100	3	
10 - 00	4721	1	65	-	-	1293			99	Trace of	
10-30	4561	1	70	-	• .	1343	_	-]	ĺ	
11-30	4000	42	74		-	-	-	_	2	Cleon	» ((.
12-00 ->	12.30	Changing	surface cho	pe 5,1569	Decide	to rema	in with	a 2" F	× ed	choke o	\sim d
		control w	-	ł		oure. This	ł .	morimu	+ Fle	rotes.	
12- 45	Switch	flow the	ough sepo	rater.							
13 - 30	3788	55	67	40	57	דועו	232	164	2	Flowing	il.
14 - 00	3782	56	67	40	59	1346	232	173	2		
14-30	3776	57	67	45	60	1340	229	171	2	1	
1		57	67	45	62	1285	229	178	1		
15-00	3769	57	67	45	62	1358	229	169	1		
15-30	-	57	67	45	62	1308	228	175	0		
16-00	3755	i '	67	45	62	1294	228	176	1		
16-30	3746	57	67	45	62	1277	2 28	179	1		
17-00	3740	57	ł.	50	62	1288	230	179	1		
17-30	3738	59	67	i	1	l l	226	1			
18-00	3736	59	67	50	62	1252	1 4 2 6	180	,		
18-00	By-600	separate	· · ·								
18-11	Shutin	downhole	text value	for final	buildup.						
	Shutin	1	por vame	for final	buildup.						

COMPARISON OF BOTTOM HOLE PRESSURE GAUGES

		T. No. 1		 _
Gauge No. Gauge Element	55 0346 20000 psi.	\$5 0120 10000 psi	ا - 755 الم000 م	J- 756 14000 psi
Clock (hrs)	. 70	70	96	48
Depth (ft RKB)	12308	12317	13330	13337
Initial Hydrostatic	# .	*	9190	9266
Initial Flow Initial Buildup	5656-5382 8551	5499- 5416 8550	5585- 5456 8613	5575 - 5446 8620
Second Flow			~	· —
Second Buildup	_	_	_	
Final Flow # 2. Final Buildup	3792 - 3677 8135	*3 3790- 3669 * 3	3819- 3747 8147	3821-3758 8152
Final Hydrostatic	9035	* 3	9115	9082.
Temperature	312°F	310 ° F	310 °F	302°F.

Notes:

- 1. The delay time set in the Sperry Sun gauges prevented the initial hydrostatic from being recorded.
- 2. The pressures recorded here one for the find 5 hours of the flow period.
- 3. The Speny Sun gauge no 0120 malfunctioned during the final buildup. This was due to the excessive bottomhole temperatures experienced.

WELL 7/8-3 PRESSURE BUILDUP ANALYSIS D.S.T. No. 1

The following are the parameters used for the pressure buildup analysis of drill stem test no. 1. The pressure dota is taken from the Sperry Sun gauge no. 03 b at 12308 ft.

```
P*
                                     (from Horner Buildup Plot - Fig 1)
         = 8586 psia ± 5 psi
                                     (from Horner Buildup Plot - Fig 2)
P 1hr
         = 7070 psig.
                                     (from pressure data).
         = 3750 psig.
Pwf
                                     (from correlation charts)
          = 0.9 cp.
No
          = 1.21 res bbls/bbl.
B.
        = 5 × 10-6 vol/vol/poi
C。
          = 4.6 × 10-6 vol ) vol ) psi
C_w
Cf
         = 4 x 10-6 vol | vol | poi
           = 8.8 × 106 yd )ud )ysi
Ct
                                       (from electric logs)
φ
            = 0.12
S~
           = 0-40
۲۳
            = 0.35 ft
            = 1300 BOPD
9oil
                                      (from Horner Buildup Plot-Fig2)
            = 1140 pri/cycle.
m
```

1

1. Initial Formation Prossure

P*

= 8586 psig = 5 psi

Gauge depth

= 12308 ft

Mid-perforation depth

= 12350 ft

Assume fluid beneath took value is 100% oil after the initial flow.

Liquid gradient (32° API oil) = 0.374 psi/ft

Initial Formation Pressure

(at mid-perfs)

= 8586 + (12350-12308) 0-374

= 8602 psig = 5 psig

Formation Pressure Gradient

(reference MSL)

8602 = 12350 - 82

= 0.701 psi/ft + 0.001 psi/ft

Mud Weight Equivalent

= 13.48 ppg + 0.02 ppg.

2. Formation Temperature

Maximum recorded temperature = 311 °F (overage of 3 reading)

Clauge depth

= 12318 ft (average of 3 readings

= 12350 ft

Mid-perforation depth

a. Assume average seafloor temperature is 34°F.

Temperature Ciradient

(reference mudline)

= 2.314°F 100 ft

b. Assume mean annual surface temperature is 50°F.

Temperature Gradient = $\frac{311-50}{12318-82}$ (reference MSL)

= 2.133°F 100 ft

Assuming cool a.

Formation Temperature (at mid-perfs)

= 312°F

3. Permeobility - Thickness (kh).

kh = 162.6 20:1 110 Bo

kh = 202 md-ft

Based on the results of the core analysis it is resorrable to assume that the tasked production came from a 3ft thick layer. The average perneability for this layer (orsuming h=3ft) would therefore be approximately Tomd.

k = 70md contributing h = 3ft.

This high permedicity layer within a low permedicity zone acts like a fracture in terms of the pressure buildup response. This explains the upward curvoture in the find buildup plat (Figure 2) and also the high negative skin factor. This skin factor is a pseudo-skin effect due the similarity of fracture type effect.

4. Skin Factor.

$$S = 1.151 \left\{ \frac{P1hr - Pwf}{m} - \log \frac{k}{\rho u ct rw^2} + 3.23 \right\}$$

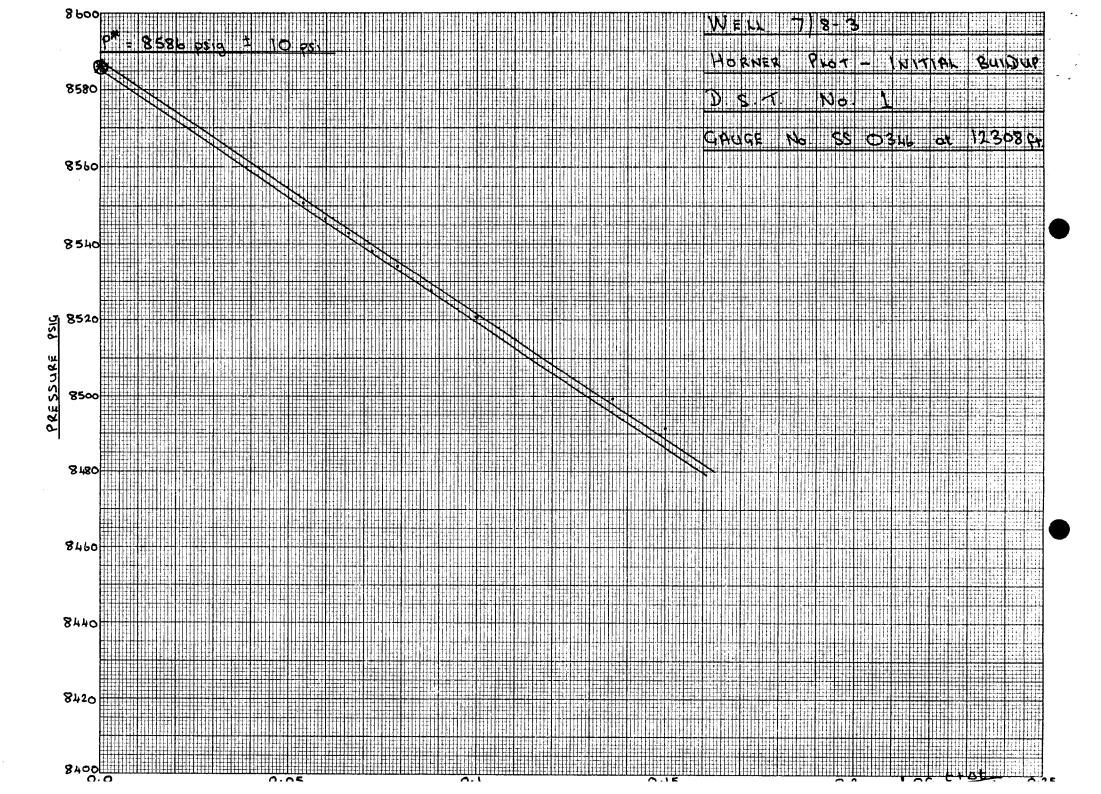
$$S = -3.2$$

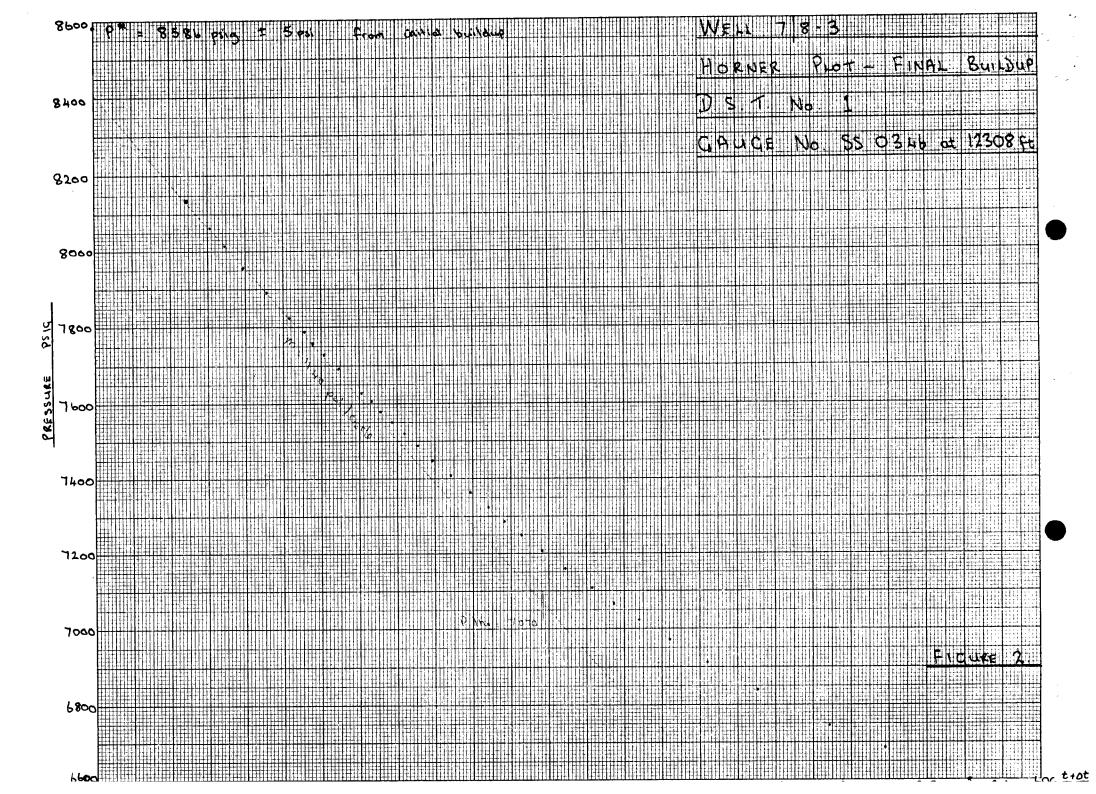
5. Radius of Investigation.

The radius of investigation equation to being used obsuming a high permeability streak of 100 md

6. Productivity Index

P.I. (actual) =
$$\frac{Q}{Pi - Pwt}$$
 (at end of flow period)


WELL 7/8-3


PRESSURE BUILD-UP DATA D.S.T. No. 1

Gauge #	Sperry	Sun	0346	at	12308 ft.

Gauge # Spe	ry Sun 0346 at	12308 ft.	
	Δt mins.	log <u>t*+ Δt</u> Δt	Pressure psi
ial Buildup	۱ 3	0 · 903 0 · 523	8192·37 830b·56
/ Mills.	5	0 380	
	7	0.301	8415.78
	9	0.250	
	13	0 · 2 4	
	15	0.166	
	17	0.150	8491.34
	19	0.136	8 4 99 . 34
	23	0 115	8520.84
	31	0.088	8527.57
	35	0.079	8534.07
	39	0.072	8538.81
	43	0.066	8 5 4 2 · 8 2
	47	0.060	8546.57
	53	0.054	8 5 50 85
al Buildup	1	2 786	6450.96
•	3	2.310	6596.37
610 mins.	5	2.090	6 6 83 · 49
	11	1 945	6746·21 6839·28
	15	1 620	6911.44
	19	1.520	6 970 . 16
	23	1.440	7021.41
,	27	1.373	7065.72
	31	1.315	7106.53
	37	1. 243	7158.40
	49	1.129	7249.19
	55	1.082	7286.27

51 1.041 732 69 0.993 7.36 79 0.941 740 89 0.895 744 99 0.895 747 109 0.819 75 109 0.787 75 129 0.787 75 139 0.731 76 149 0.707 76 159 0.685 76 179 0.644 77 199 0.578 77 239 0.514 7 249 0.483 7 329 0.483 7 0.483 7 0.483 7	1.28 1.28 1.28 1.28 1.20 1.30
69 0.993 7.36 79 0.941 740 89 0.895 744 99 0.895 744 109 0.855 749 119 0.787 75 129 0.787 75 139 0.707 76 149 0.707 76 159 0.644 77 179 0.644 77 199 0.578 77 219 0.514 77 239 0.483 7 329 0.455 7	2.46 08.18 49.50 87.13 20.07 50.78 78.34
409 0.396 449 0.373 499 0.347 549 0.325 599 0.305 659 0.285 719 0.267	28 42 651 24 691 94 727 62 788 54 8 80 94 9 9 11 88 9 9 11 88 9 0 86 086 8 0 86 20 8 1 34 88

WELL 7 8-3 - NORWAY

DATE: 4th - LTH DECEMBER 1983

WELL DATA DST NO 2

57° 15' 31.2" N. 2° 32' 45.8" E. Well Location 82 ft (25m) Depth RKB (to MSL) (81m) 266 ft Water Depth 14174 ft (4320m) Total Depth 12278 ft (3742 4 m) Plugback Depth 12252-12272 fe (3734.5-3740.6m) Perforated Intervals 4" cosing guns. L SPF. 90° phosing. 12262 ft (3737.5 m) Mid-perforation Depth 7" 32# C95 liner. Hanger at 11348tr. Shoe at 125579 Casing Size 5" 19.5# Closs '9' drill pipe. Test String Dowell Positest Packer at 12189 ft. (3715.3m) Test Packer Dowell PCT at 12159 ft. (3706.1m) Test Valve Full seamoter cushion. Cushion 203 bbls. Test String Volume 1-5 bbls to top perforations; 2.1 bbls to bottom perforations. Rathole Volume CL_ λ_b pН % 0il Mud MW 4 12K n 10.1 14.5 58 28 1. When drilled

MK

11.5

9

27

14.2 55

2. When perforated

WELL 7/8-3 DIARY OF EVENTS D.S.T. No. 2

te_	Time	Event
December 1983	21-30	Perforate test interval from 12252-12272 ft (3734.5-3740.5 m) with H" cosing guns, HSPF, 90° phasing.
	22-45	Start Dowell gauge no J-755 with a 96 hr clock.
	22-46	Start Dowell gauge no J-756 with a 48 hr clock.
	22. 47	Start Dowell gauge no J-755 with a 96 hr clock. Start Dowell gauge no J-756 with a 48 hr clock. Start Sperry Sun gauge no 0346 with a 70 hr clock and an 8.5 hr start delay.
		Start Sperry Sun gauge no 0341 with a 70hr clock
	22 · 52 23 · 00	and an 8.5 hr Start delay. Start picking up bot tools.
December 1983	01-30	Pressure test bottombale test assembly to 5000 psi.
	11 - 00	Function test sub-sea-test-tree.
	12 - 14	Set packer at 12189 ft. (3715.3m).
	11 - 00 12 - 14 13 - 10	Rig up and pressure test surface flowlines.
		a. Test string to 7500 psi
		b. Chake manifold to 7500 psi
		c. Separator to 1000 psi.
	13-28.	Pressure up annulus to open downhole test value
		for unitial flow period.
	13-33	Bleed off annulus to shutin downhole test value for
		Unittal buildup period.
	14-13	b. Chake manifold to 7500 psi: c. Separator to 1000 psi. Pressure up annulus to open downhole test value for initial flow period. Bleed off annulus to shutin downhole test value for initial buildup period. Preosure up annulus to open downhole test value for final flow period. Open well for flow on a 2" fixed chake.
		final flow period.
	14-14	Open well for flow on a 2" fixed chake.

<u> </u>	Time	<u>Event</u>
December 1983	19-15	Traces of goo at surface. FWHP= 15 psig. Traces of oil at surface. FWHP= 15 psig. Pressure up annulus to sheer the downhale test
the property of the state of th	23 - 33	value closed. Bleed of annulus pressure. S.S.A.R.V reverse sub opened. Start to reverse out test string.
	. 00-30 09-40 09-50	Well killed. Wait on buildup. Unseat packer. End of buildup. Circulate hole. Pull out of hole.

END OF TEST.

WELL 7 8-3 TEST TOOLS DST NO 2

	Description	0.D. (inches)	I.D. (inches)	Length (feet)	Depth (feet)
	Floread		3.00	10.00	-30.31 -20.31 Rote
88	5" Drill Pipe Sub-Sea-Toot-Tree	5.00	3.00 -	317.63	317. P3 MATI
	5" Day Pipe	5.00	4.28	10625.99	341.05
	X- Over	6.25	2 85	1.78	10967.04
	3 ½ " Drill Pipe	3.50	2.76	276.27	10968.82
	Slip Soint (open)	5.00	2.25	28 · 18	11245.09
] [Slip Join (to pen)	5.00	2 - 25	25.68	11273.27
1 [Slip Joint (closed)	5.00	2.25	23 - 18	11298.95
	8 Stds Drill Collars	4 .75	2.78	732.96	1132213
0 0	Impact Reverse Sub	4 . 75	2.25(equin)	1-08	12055-09
	1 Std Drill Collars	4.75	2.78	91.62	12056 17
	Bar Catcher Sub	H 75	2.25 (equi)	1.02	12147.79
0	S.S.A.R.V	5.00	2.25	8.46	12148-81
\otimes	P.C.T. Valve	4.75	2.25	18.57	12157.27
0	H. R.T.	4.75	2.25	4.27	12175.84
	Hydraulic Jors	5.00	2.25	6.50	12180-11
~	Safety Joint.	5.00	2.25	1.71	12186.61 12188:32 Pack
	Positest Packer	5.75	1.25	2 95	12189 47 820
	X- over	4 · 75	2.25	0.87	12192-42
	Perforated Anchor	4 · 75		9.94	12193.24
8	Sperry Sun Gouge Corrier	3.50		30.70	12203.18
0	J-200 Gauge Carrier	5.00	_	6.96	12233.88
0	1-200 Gouge Carrier	5.00		6.96	12240.84
0	Ported Bullnase	4.75		1.90	12247-80
	·				·
	Notes: 1. AU depths	are drillers	depths to	100 कि कि क	joints.
	2. Loggers	depths one	2 14 ft d	eoper than	drilles depths.
					
					

Not to Scale

- 1. Initial hydrostatic
- 2. Set packer at ft.
- 3. Open downlole test valve Br initial flow period.
- 4. Shutin downtale test valve for initial buildup period.
- 5. Open downhale test valve for Linal flow period.
- 6. Oil begins to surface mix with cushion water.
- 7. Shutin downhole test valve for final buildup period.
- 8. Open downhole reverse sub.
- 9. Circulation begins.
- 10 Unseat packer.
- 11 Final hydrostatic.

WELL 7/8-3

COMPARISON OF BOTTOM HOLE PRESSURE GAUGES

	D.5.T	. No. 2.		
Gauge No.	SS 0346	SS 0341	J- 755	1.756
Gauge Element	20000 psi	20000 psi	14000 psi	14000 Pi
Clock (hrs)	70	OF	96	48
Depth (ft RKB)	12213	12222	12235	12242
Initial Hydrostatic	9030	9032	9123	9068
Initial Flow	5473 - 5470 8522	5499 - 5484 8520	5511 855 <i>5</i>	5509 8554
Second Flow	~	_	~	-
Second Buildup	~	_		-
Final Flow Final Buildup	5442 - 4446 8521	5452 - 4441 8517	5525- 4465 8538	5534- 4467 8527
Final Hydrostatic	8980	8977	9027	8997
Temperature	307 ° F	309°F	309°F	312 °F

Notes:

WELL 7/8-3

RECORD OF SAMPLES.

D. S.T. No. 2.

Due to the low flourate produced by the well it was not possible to flow hydrocarbans through the separator during the teat. Therefore no separator PVT recombination samples or gos samples were able to be taken. However a single phase bottomhole sample was collected from the downhole test tools, and several weathered oil samples were also collected from the reverse out. Based on the BSW figures recorded on the samples from the reverse out it is probable that the weathered oil samples are slightly contaminated with the seawater cushion. A record of the samples collected and an analysis of the fluid is given below.

a. Record of Samples.

1. Downhole PVT Samples

2. Weathered Oil Samples.

1 × 55 gallon weathered oil sample.

4 × 5 gallon weathered oil sample.

b. Analysis of Recovered Fluids.

1. Oil Analysis.

The produced oil is dark black and sweet with no measurable H2S. There is a possibility that the oil contains a small percentage of max although it is difficult to tall on site.

However He oil has a measured specific gravity of 0.905 at 60°F which is equivolent to a 26° API oil. This is much lower than the 32° API gravity from det no 1. There is a 10-15°/o water cut in the samples which if removed will increase the gravity to 28-29° API It is unusual to have such different gravities between that interval unless they were separate reservoirs. A more accurate analysis of the samples will be carried out in four.

2. Gos Analysis.

Due to the low Flowrater and the inability of the swell to be Howed through the separator it was not possible to collect any go samples. Therefore no gravity or compositional data is available. However there was 4% CO2 and O pym H25 detected at the choke manifold.

3. Water Analysis

AU the recovered water is seawater cushion having 20-25000 ppm chlorides. There was no evidence of any formation water production.

FLOW PERIOD DATA
D. S. T. No 2.

Time Bottomhole				Flowrate	BSW	Cumulative	Cumulative Cushion Product	Remarks.
6	Pressure Poig.	Psig	0 6	8262	/6;	Bbb.	Bpls	
5 Dec. 1983								
14-13	Pressure up	annulus to	open	do-nimele toot	value for	final flow	period.	
14-30		15	45	520	100	-	5 · 4	Flowing seawater cushion (Cl=24tm
15-00		13	45	4 15	100	~	11 _t 1	
15 -30		13	45	380	100	~	20.8	
16.00		16	45	380	100	~	28⋅8	
16-30		16	45	374	100	_	36.6	
17.00		16	45	387	100	-	44.7	
17-30		15	46	393	100	-	52.9	
18-00	ļ	16	46	399	100	_	61.2	
18-30	1	16	46	3 93	100	_	69.4	
19-00		17	٢٤	3 87	100	-	77.4	1
19-30	:	15	47	406	85	0.3	85.6	Small percent of oil at surface
20-00		15	۲٦	425	85	16	93.1	
20-30		14	F4	551	75	3.6	104.5	Increming all aux and a
21-00		15	٢μ	486	70		_	Increasing oil cut and water custing
22-00	ļ	16	٣٦	372	65	7.1	112.6	
22-30		16	47	456	65	10.4	1 18.8	
23-00		19	47	450	52	14.9	123.7	
23-30		20	47	393	58	18.3	128.5	
23 - 30		20	47	418	62	21.6	133.9.	
£5 ⁻ \$0	Pressure	up anni	llus to	shear do	worker to	of volve	closed.	·

Notes: 1. An additional 4 666 of water custion was produced during the Withal flow period.

REVERSED RECOVERIES

D. S.T. No 2.

Sample	No of Strokes	Volume since	Depth from which	BSW		n. Oil from		n Woter	Remarks
No.	and the second s	bbla.	fe	%		घषत		ppp	
	100	13.1	725	70	4.0	40	9.1	9.1	mostly water custion (searcher Cl = 25K) with traces of oil.
2	200	26.2	1450	65	4.6	8.6	B. 5	17.6	
3	300	39.3	2175	56	5.8	14.4	7.3	24.9	
4.	400	52.4	2900	43	7.5	21.9	5.6	30.5	Increasing oil cut with some rathele mud or
5	500	65.5	3625	24	10	31.9	3.1	33.6	Seawater Cushian.
Ь	600	78.6	4 350 5075	20	10.5	42·4 53·7	1-8	36.2 38.0	Fairly clean oil mixed with a small
7	700	41.1			11.3	15.0	1.8	39.8	percentage of seawater cushion.
8	800	104.8	5 800	14	11.3	76.3	1.8	41.6	Legistings of seamoun consision.
9	9 00	1179	6525	14	} -		1.6	1	
10	1000	131.0	7 250	12	11.5	81.8	1,6	43-2	
11	1100	144-1	7975	8	12.1	99.9	1.0	44.2	
12	1200	157.2	8700	8	12.1	112.0	1.0	45.2	
13	1300	170.3	9 4 2 5	10	11.9	123.9	1.2	46.4	
14	1400	183-4	10150	9	12.0	135.9	1.1	47.5	
15	1500	196.5	10875	15	11-1	147.0	2.0	49.5	
16	1570	203.0	12150	15	5-5	152.5	1.0	50.5	
ĬŤ	1575	-	_	99		_		-	Reverse out is complete. Mud from annulus

1. Irutial Formation Prossure

PF

= 8568 psig + 5 psi

Gauge depth

= 12393 fc

Mid-perforation depth

= 12350 Ft

Assume fluid beneath took volve is 100% oil after the without flor-

Liquid gradient (29° API oil) = 0.375 psi/H

Initial Formation Premune

= 8586 psig = 5 psig.

(at mid-perfs)

=

Formation Prossure Cradient

Preference MSA)

= 8586 = 12350-82. = 0.700 psi)ft = 0.001 psi/ft

Mud Weight Equivalent

= 13 46 ppg + 0.02 ppg.

2. Formation Temperature

Maximum recorded temperature

= 309°F

Gauge depth

= 12235 ft

Mid-perforation depth

: 12262 ft

a. Assume average seafloor temperature is 34°F.

Temperature Gradient

 $= \frac{369 - 34}{12235 - 348}$

(reference mudline)

- 2.313°F/100ft

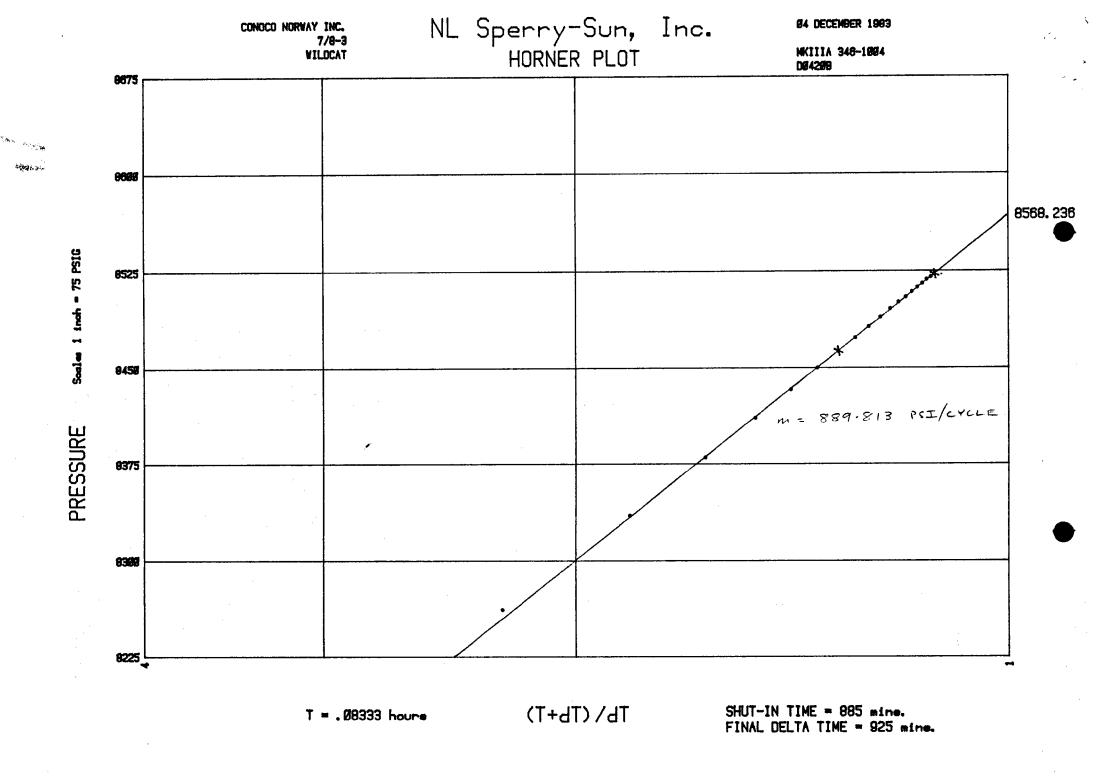
b. Assume mean annual surface temperature is 50°F.

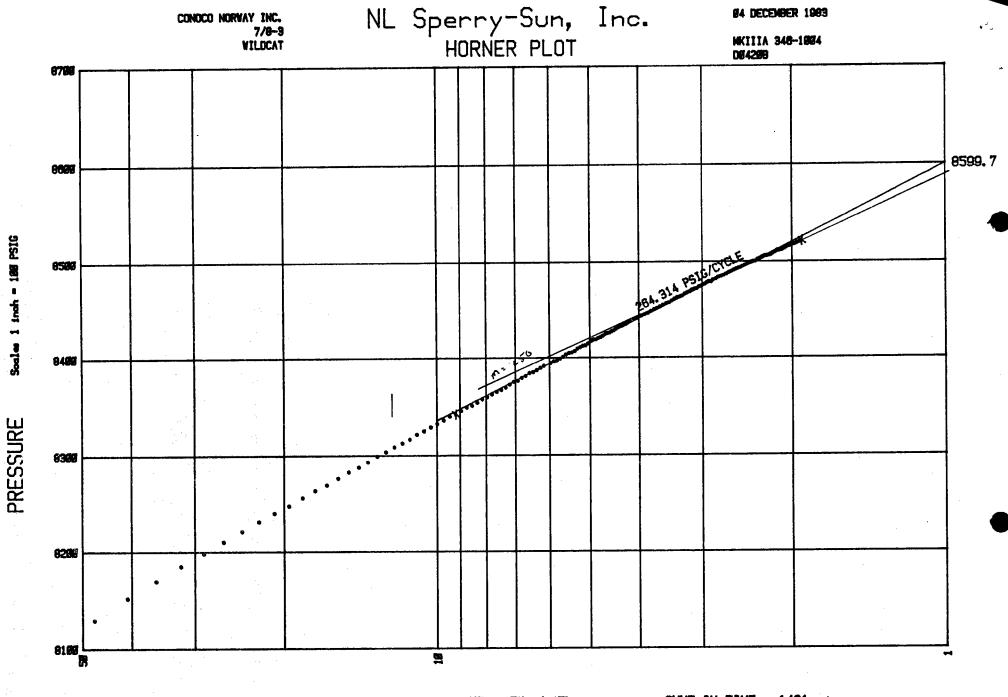
Assuming cool a.

3. Permeobility - Thickness (kh).

Assuming contributing h= 18 ft

$$k = 23 \text{ md}$$


4 Skin Factor.


Drondown due to skin a

Percentage of drandown due to skin = $\frac{\Delta P_{shin}}{DD}$

54%.

s. Radius of Investigation.

T = 9,28333 hours

(T+dT) /dT

SHUT-IN TIME = 1481 mine. FINAL DELTA TIME = 2091 mine.