CORE LABORATORIES Petroleum Reservoir Engineering CCB, ÅGOTNES

RESERVOIR FLUID STUDY D-28

FOR

CONOCO NORWAY INC.

WELL: 7/8-3 DST No.1

- CONOCO NORWAY INC. ---- CENTRAL FILES --- LIBRARY -- 16th. March 1984

Conoco Norway Inc. P.O.Box 488

4001 STAVANGER

Attention: Mr. Kurt O. Thomas

Subject: Reservoir Fluid Analysis Well: 7/8-3 DST No. 1 Block 7/8 North Sea, Norway Our File Number: RFLN 830009

Gentlemen,

Duplicate sets of separator liquid and vapor were collected from the subject well and forwarded to our Agotnes Laboratory for use in a reservoir fluid study. Presented in the following report are the results of this study as requested by a representitive of Conoco Norway Inc.

Upon receipt in the laboratory the room temperature saturation pressures of the separator oil samples were determined to be 31 PSIG at 62°F for both samples. The opening pressures of the gas cylinders were found to be 48 PSIG at 62°F in both cases. Using the factors shown on page one, the producing gas/oil ratio was calculated to be 175 cubic feet of gas at 14.696 PSIA and 60°F per barrel of separator oil at 45 PSIG and 56°F. The measured hydrocarbon compositions of the separator products were used in conjunction with the producing gas/oil ratio to calculate the hydrocarbon composition of the well stream material. These compositional data may be found on page two.

The separator products were then physically recombined in the above gas/oil ratio and the resulting recombined reservoir fluid was used for the entire study.

A small quantity of the recombined reservoir fluid was charged to a high pressure windowed cell and thermally expanded to the reservoir temperature of 310°F. During a constant composition expansion at this temperature, the fluid was found to have a bubble point pressure of 1274 PSIG. The results of the pressurevolume measurements at reservoir temperature may be found on page four.

When subjected to differential pressure depletion at the reservoir temperature, the fluid evolved a total of 434 cubic feet of gas at 14.696 psia and 60°F. per barrel of residual oil at 60°F. The resulting relative oil volume factor was 1.467 barrels of saturated fluid per barrel of residual oil at 60°F.

Conoco Norway Inc. Well: 7/8-3 DST No. 1

The oil denisty and the properties of the evolved gases were measured at each point during the differential pressure depletion and these data are included in the summary of the differential depletion data on page five.

The viscosity of the reservoir fluid was measured over a wide range of pressures at 310°F in a rolling ball viscosimeter. The viscosity of the fluid was found to vary from a minimum of 0.497 centipose at the saturation pressure to a maximum of 1.163 centipoises at atmospheric pressure. The results of the viscosity measurements are tabulated on page six.

Thank you for the opportunity to be of service to Conoco Norway Inc. If you have any questions or if we may be of further assistance in any way, please feel free to call upon us.

Very truely yours

Core Laboratories Norsk

Lenvo How

Duncan Thow Operations Supervisor Reservoir Fluid Laboratory

7 cc: Addressee

Petroleum Reservoir Engineering

CCB, ÅGOTNES

File RFLN 830009

Company Conoco. Norway. Inc	Date SampledDecember. 2nd 1983
Well	CountyNorth.Sea
FieldBlock.7/8	StateNorway

FORMATION CHARACTERISTICS

Formation Name	
Date First Well Completed	, 19
Original Reservoir Pressure	PSIG @Ft.
Original Produced Gas-Liquid Ratio	SCF/Bbl
Production Rate	Bbls/Day
Separator Pressure and Temperature	PSIGºF.
Liquid Gravity at 60°F.	• API
Datum	Ft. Subsea
WELL CHARACTERISTICS	5
Elevation	
Total Depth	14174 Ft.
Producing Interval	12342 - 12359 Ft.
Tubing Size and Depth	
Open Flow Potential	
Last Reservoir Pressure	
Date	, 19
Reservoir Temperature	310. • F. @
Status of Well	Ç
Pressure Gauge	
SAMPLING CONDITIONS	•
Flowing Tubing Pressure	59 PSIG
Flowing Bottom Hole Pressure	PSIG
Primary Separator Pressure	
Primary Separator Temperature	
Secondary Separator Pressure	PSIG
Secondary Separator Temperature	• F .
Field Stock Tank Liquid Gravity	······································
Primary Separator Gas Production Rate	228.8. MSCF/Day
Pressure Base 14.969 PSLA	
Temperature Base 60 °F.	
Compressibility Factor (F) 1.0102	
Gas Gravity (Laboratory) 0.880 V	
Gas Gravity Factor (F)l.aQ658	
g	1007
SeparatorLiquid Production Rate @45 Psig and 56°F	Bbls/Day
Primary Separator Gas/SeparatorLiquid Ratio	175 SCF/ВЫ
or	Bbls/MMSCF
Core Laboratories, Inc., Engineer	••••••

REMARKS:

Sampled by Flopetrol

Petroleum Reservoir Engineering

CCB, ÅGOTNES

Page	2	fi	9
File_	RFLN	830009)
Well	7/8-3	DST N	ю. 1

HYDROCARBON ANALYSES OF SEPARATOR PRODUCTS AND CALCULATED WELL STREAM

Component	Separator Liquid Mol Percent	Separator Gas + Mol Percent GPM		Well Stream Mol Percent	
				\sim	
Hydrogen Sulfide	NIL	NIL		NIL (
Carbon Dioxide	0.23	4.51		1.27	
Nitrogen	Trace	3.06		0.74	
Methane (-/	1.17	58.25		+15.03	
Ethane C.L	2.61	18.93		6.57 م	Ì
Propane C-3	5.14	10.45	2.869	⇒6.43	ſ
Iso-Butane C-Q	1.07	0.91	0.297	1.03	ľ
n-Butane 🗠 🗠	4.55	2.67	0.839	4.09	k
iso-Pentane 🗠 🕤	1.77	0.44	0.161	1.45	ŀ
n-Pentane 🗁 🛱	3.45	0.55	0.199	2.75	ŀ
Hexanes $c \cdot \mathbf{Z}^{J}$	6.03	0.17	0.069	4.61	ł
Heptanes plus	73.98	0.06	0.027	56.03	ŀ
	100.00	100.00	4.461	100.00	
	- · · · · · ·			L	7

Properties of Heptanes plus

API gravity at 60°F	28.9		
Specific gravity at			0.882
Molecular weight	258	103 (assumed)	258

Calculated separator gas gravity (air= 1.000) = 0.880Calculated gross heating value for separator gas = 1354 BTU per cubic foot of dry gas at 14.696 psia and 60°F.

Primary separator gas collected at 45 psig and 56 °F. Primary separator liquid collected at 45 psig and 56 °F.

Primary separator gas/separator liquid ratio 175 SCF/Bbl at 56°F.

Cylinder Number: 83081909 Cylinder Number: A14741

Petroleum Reservoir Engineering

CCB, ÅGOTNES

Page	3 of9
File	RFIN 830009
Well	7/8-3 DST No. 1

VOLUMETRIC DATA OF ... RESERVOIR FLUID ... SAMPLE

 1. Saturation pressure (bubble-point pressure)
 1274 PSIG @ .310 °F.

 2. Specific volume at saturation pressure : ft 3/lb
 0.02244 @ .310 °F.

3. Thermal expansion of saturated oil @ PSI = $\frac{V @ 310}{V @ 59}$ °F = 1.13895

4. Compressibility of saturated oil @ reservoir temperature : Vol/Vol/PSI :

From . 8602... PSI to ... 7000 PSI = ... 7.40 \times .10⁻⁶ From ... 7000 PSI to ... 5000 PSI = ... 8.68 \times 10⁻⁶ From ... 5000 PSI to ... 3000 PSI = ... 10.75 \times 10⁻⁶ From ... 3000 PSI to ... 2000 PSI = ... 12.94 \times 10⁻⁶ From ... 2000 PSI to ... 1274 PSI = ... 14.88 \times 10⁻⁶

Disse analysene, eller tokningene baseres på observasjoner og materiell skaffet til vele av klienter, som denne rapporten ekslusivt og fortrolig er laget for. Det utførte arbeidet representerer de beste tolkninge Core Laboratories Norsk er i stand til å gi, (med forbehold om fell og utelatelser). Likevel frasier Core Laboratories Norsk og Deres personell seg alt ansvar og gir derfor ingen overslag på grunnlag av disse data som f.eks produktivitet, aktuelle operasjoner, og lønnsomhet fra en hver olje, gass eller mineral brønn eller sand, som en slik rapport er basert på. Petroleum Reservoir Engineering

CCB, ÅGOTNES

Pressure PSIG	Relative	Y Function (0)
P310	Volume (1)	Function (2)
8602	0.9278	
8000	0.9316	
7500	0.9352	
7000	0.9388	
6500	0.9427	
6000	0.9467	
5500	0.9509	
5000	0.9554	
4500	0.9601	
4000	0.9651	
3500	0.9705	
3000	0.9764	
2500	0.9828	
2000	0.9892	
1600	0.9950	
1500	0.9964	
1400	0.9980	
1300 1374 Seturnetion	0.9997	
1274 Saturation	1.0000	
1266 Pressure	1.0027	2.343
1231	1.0150	2.306
1182	1.0339	2.267
1117	1.0631	2.198
1043	1.1026	2.128
953	1.1618	2.050
861	1.2389	1.974
758	1.3590	1.859
660	1.5171 / >pink	$\begin{array}{c} 1.039\\ 1.759\\ 1.663 - 1.528\\ 1.529\end{array}$
574	(1.7777) Data	1.663 - 1.528
464		·O(°T· 1.529
369	2.6728	1.410
280	3.6706	1.263

(1) Relative Volume : V/Vsat is barrels at indicated pressure per barrel at saturation pressure.

(2) Y Function = $\frac{(Psat-P)}{(Pabs)(V/Vsat-1)}$

Disse analysene, eller tokningene baseres på observasjoner og materiell skaffet til veie av klienter, som denne rapporten ekslusivt og fortrolig er laget for. Det utførte arbeidet representerer de beste tolkninger Core Laboratories Norsk er i stand til å gi, (med forbehold om feil og utelatelser). Likevel frasier Core Laboratories Norsk og Deres personell seg alt ansvar og gir derfor ingen overslag på grunnlag av disse data, som f.eks produktivitet, aktuelle operasjoner, og lønnsomhet fra en hver olje, gass eller mineral brønn eller sand, som en slik rapport er basert på.

CORE LABORATORIES Petroleum Reservoir Engineering CCB, ÅGOTNES

Page	<u>5</u> of9
File	RFIN 830009
Well	7/8-3 DST No. 1

Differential Vaporization at 310 °F.

Pressure PSIG	Solution Gas/Oil Ratio (1)	Relative Oil Volume (2)	Relative Total Volume (3)	Oil Density gm/cc	Deviation Factor Z	Gas Formation Volume Factor (4)	Incremental Gas Gravity
					and the second s		
1274	434	1.467	1.467	0.7137	\sim		
1100	397	1.445	1.569	0.7176	/0.961	0.01876	1.039
900	353	1.422	1.753	0.7230	0.964	0.02293	1.051
700	308	1.397	2.058	0.7283	0.967	0.02944	1.101
500	259	1.367	2.649	0.7347	0.973	0.04114	1.200
300	202	1.326	4.126	0.7451	0.980	0.06777	1.402
200	166	1.297	6.067	0.7520	0.986	0.09994	1.587
141	138	1.272	8.559	0.7574	0.989	0.13823	1.754
105	118	1.251	11.401	0.7624	0.992 /	0.18035	1.889
0	0	1.117		0.7894			2.802

Gravity of residual oil = 28., 9...... • API @ 60°F.

(1) Cubic feet of gas at 14.696 psia and 60 °F. per barrel or residual oil at 60°F.

(2) Barrels of oil at indicated pressure and temperature per barrel of residual oil at 60°F.

(3) Barrels of oil plus liberated gas at indicated pressure and temperature per barrel of residual oil at 60°F.

(4) Cubic feet of gas at indicated pressure and temperature per cubic foot at 14.696 psia and 60°F.

Disse analysene, eller tokalagene baseres på observasjoner og materiell skaffet til veie av klienter, som denne rapporten ekslusivt og fortrolig er laget for. Det utførte arbeidet representerer de beste tolkninger Core Laboratories Norsk er i stand til å gi, (med forbehold om feil og utelatelser). Likevel frasier Core Laboratories Norsk og Deres personell seg alt ansvar og gir derfor ingen overslag på grunnlag av disse data, som f.eks produktivitet, aktuelle operasjoner, og lønnsomhet fra en hver olie, gass eller mineral brønn eller sand, som en slik rannort er havert nå.

Petroleum Reservoir Engineering

CCB, ÅGOTNES

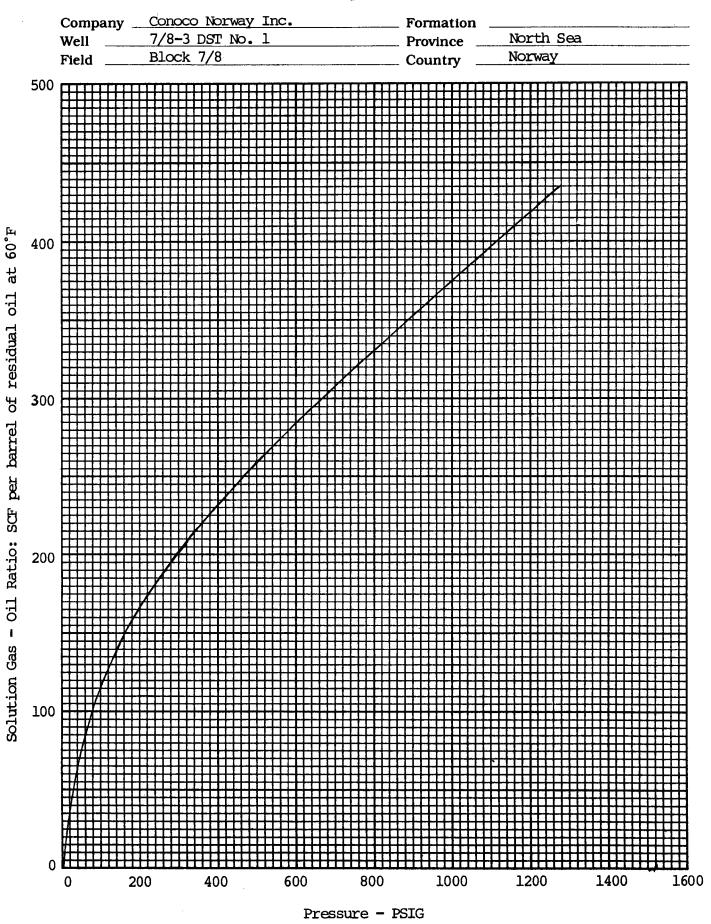
Well 7/8-3 DST No. 1

Viscosity Data at 310 °F.

Pressure PSIG	Oil Viscosity Centipoise	Calculated Gas Viscosity Centipoise	Oil/Gas Viscosity <u>Ratio</u>	
V8602 1247.61	0.947			
80001160,30	0.908			
7500 1087.75	0.878			
7000 1015.26	0.847			
6500 942.74	0.816			
46000 870.22	0.785			
5500 797,70	0.755			
V 5000 725.15	0.725			
4500 652,67	0.693			
¥1000 550.15	0.662			
3500 507.63	0.633			
3000 435.11	0.602			
2500 /362.55	0.571			
2000 × 290,00	0.540			
1274 Saturation (34.77)	0.497			
Pressure				
1100 159.54	0.516	0.0153	33.7	
900 130 53 V	0.552	0.0145	38.1	
700 101.52	0.599	0.0137	43.7	
500 22.51 V	0.661	0.0131	46.6	
300 43.51	0.733	0.0125	58.6	
200 25.00	0.782	0.0120	65.2	
141 20:45	0.840	0.0115	73.0	
105 15.72	0.891	0.0112	79.6	
0 ø	1.163			

Disse analysene, eller tokningene baseres på observasjoner og materiell skaffet til vele av klienter, som denne rapporten ekslusivt og fortrolig er inget for. Det utførte arbeidet representerer de beste tolkninger Core Laboratories Norsk er i stand til å gi, (med forbehold om feil og utelstelser). Likevel frasier Core Laboratories Norsk og Deres personell seg alt ansvar og gir derfor ingen overslag på grunning av disse data, som f.eks produktivitet, aktuelle operasjoner, og istansomhet fra en hver olje, gass eller mineral brønn eller sand, som en slik rapport er basert på. ۴

CORE LABORATORIES NORSK. A.S.

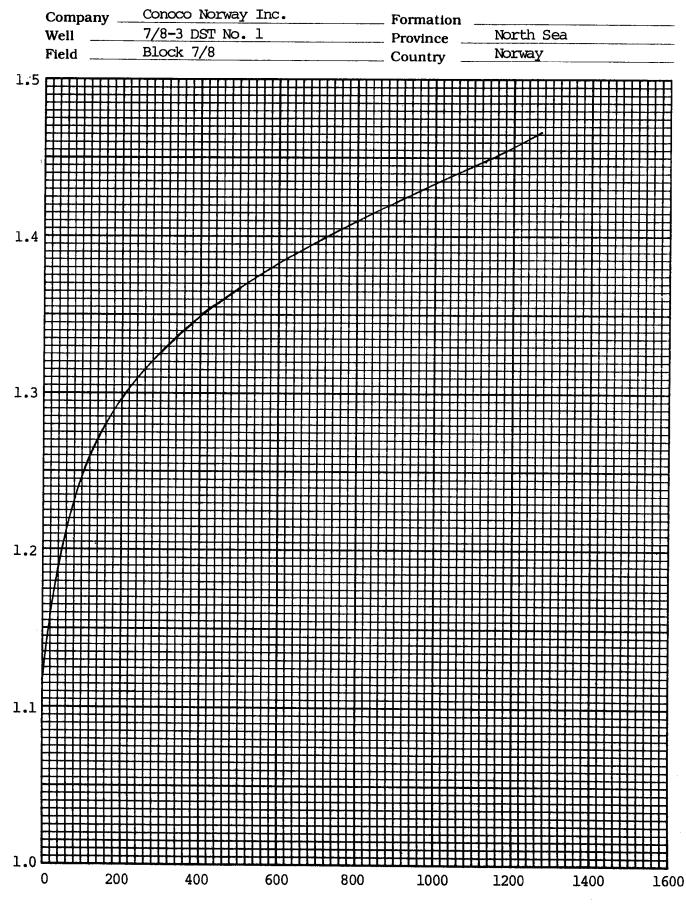

 Page
 7
 of
 9

 File
 RFLN
 830009

Petroleum Reservoirs Engineering

BERGEN, NORWAY

Differential Vapourization at 310°F



CORE LABORATORIES NORSK. A.S.

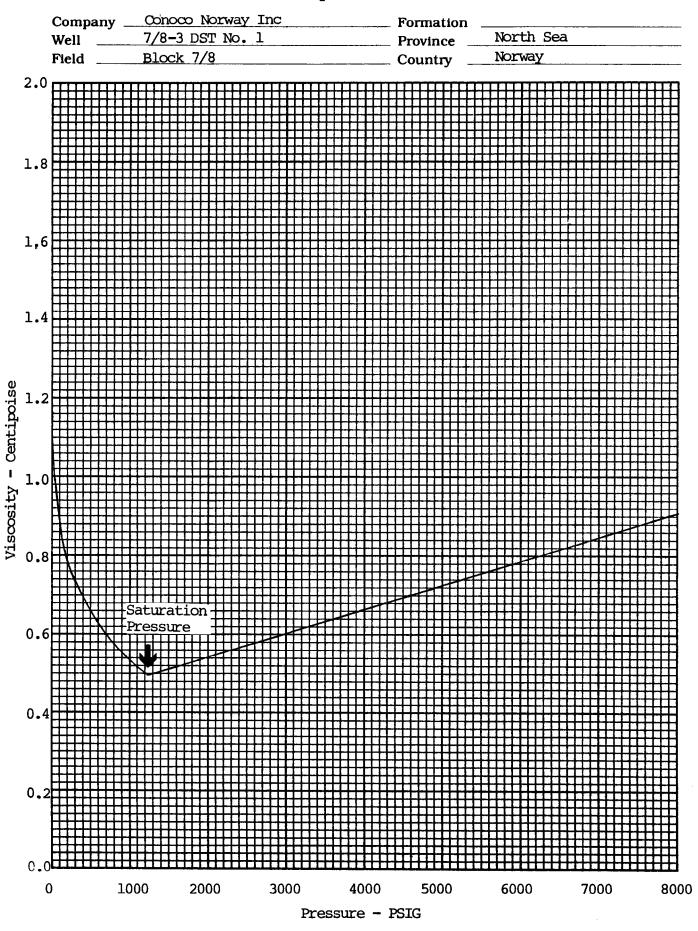
Page __8__ of _9_ File __RFLN_830009

Petroleum Reservoirs Engineering BERGEN, NORWAY

Differential Vapourization at 310°F

Relative Oil Volume: V/Vr

Pressure PSIG


CORE LABORATORIES NORSK. A.S. Page _

<u>9</u> of 9

Petroleum Reservoirs Engineering

BERGEN, NORWAY

Viscosity Of Reservoir Fluid

Conoco Norway Inc. Well: 7/8-3 DST No. I RFLN 830009

Core Laboratories Norsk Reservoir Fluid Laboratory

thenon Thow

Duncan Thow Operations Supervisor