ELF AQUITAINE NORGE A/S Exploration Division ref.No.: 311D/79/03-R PA/sb

FORTROLIG

I h.t. Deskyliche instruksen,

Ifr. offentlighetslovens

nr.

GEOLOGICAL COMPLETION REPORT
WELL 15/3-3

REGISTRE RY OLIEGIBENTORATES

Authors: A. Paoloni (geol.) C.R. Evensen (geoph.)

LIST OF CONTENTS

<u>Text:</u> - Summary

- 1. General data and hole record
- 2. Objectives and main results
- 3. Lithology and stratigraphy
- 4. Structural data
- 5. Hydrocarbon shows
- 6. Coring
- 7. Logging
- 8. Tests
- 9. Preliminary reservoir results
- 10. Tentative correlations
- 11. Conclusions

Appendices:

- 1. Core descriptions
- 2. Sidewall core descriptions

LIST OF FIGURES AND PLATES

```
Figures: 1. Summary (1/5000)
           2. Geological log (1/20.000)
           3. Results (1/5000)
          4. Synthetic data log - Jurassic (1/2000)
          5. Lithostratigraphic attribution
          6. RFT pressure readings
          7. RFT and FIT sampling data
          8. DST results
          9. Schematic pressure diagram - DST 2 bis
         10. Pressure vs. depth (3)
         11.
                                 (J2)
         12.
                                 (J3)
         13.
                                 (J4 & Trias)
         14. Reduced composite reservoir log (J)
                         *1
         15.
                                    ŧŧ
                                               (J2)
         16.
                                               (J3)
         17. "
                                               (J4 & Trias)
         18. Pressure vs. depth, 15/3-1 - 15/3-3
         19. Correlations 15/3-1, 2 3 - Tertiary and Cretaceous
             (1/20.000)
         20. Correlations 15/3-1, 2, 3 - Jurassic (1/5000)
         21. Core measurements (cores 1, 2 and 3)
         22. Curve t = f(D) - 15/3-3
         23. Geophysical prognosis vs. results
         24. Calibrated sonic on seismic section 580 517, SP 260
         25. Stratigraphy and calibrated sonic - 15/3-3
Plates:
          1. Composite log (1/500)
          2. Chromatolog
          3. Composite reservoir log (J) (1/200)
          4.
                                   77
                                      (J2) ( " )
          5.
                                      (J3) (")
          6.
                                      (J4 & Trias) (1/200)
          7. Isochron map - J horizon (1/25.000)
```

8. Isobath map - J horizon (1/25.000)

POSITION MAP

WELL

<u>15/3 - 3</u>

COUNTRY : NORWAY OFFSHORE

COORDINATES: X: 58 52 313 N

Y: 01° 46′ 46.3″ E

SUMMARY

The 15/3-3 well was drilled between January 5th and June 2nd 1979 to a total depth of 5115 m (RKB) and was bottomed in presumed Triassic red series.

Its objective was to test Jurassic series on the central 15/3 structure already explored in 1974 by the 15/3-1 well located 4,5 km away in a southwest direction.

Below the M2 unconformity five sandstone bodies were encountered, three of them hydrocarbon bearing in Jurassic section.

Two DSTs were run in addition to some RFT and FIT. The well was plugged and abandoned on August 10th 1979 as a gas discovery well.

1 GENERAL DATA (see fig. 1)

Country:

Norway

Area:

Block 15/3 (licence 025)

Owner:

Petronord Group

Operator:

Elf Aquitaine Norge A/S

(43,6%)

Partners:

Total Marine Norsk A/S

(21,88)

Norsk Hydro Produksjon A/S (19,6%)

Norske Hudbay A/S

(15,08)

Statoil

Classification:

Wildcat

Drilling platform:

Pentagone 84 (Forex Neptune)

Coordinates:

Geographic: 58° 52' 31,3" N

01° 46' 46,3" E

UTM 31: Y (north) 6526924 mts

X (east) 429626 mts

Seismic location:

SP 260 - line 580 517

Water depth:

109 m

RKB elevation:

24 m

Rig assigned to EAN:

On location:

1st January 1979

31st December 1978

5th January 1979

Well spudded:

2nd June 1979

At T.D.:

Completed:

5th August 1979

Rig released:

10th August 1979

Contractors:

Electric logging: Schlumberger

Mud logging: Ceoservices

Wellsite geologists:

C. Guesdon

J.M. Masset

A. Michot

A. Paoloni

F. Verrolles

1.2 Hole Record

```
Drilling:
               36"
                            196 m
                       to
               26"
                        to
                           870 m
               17 1/2"
                       to
                           2859 m
               12 1/4"
                           4052 m
                       to
              8 3/8"
                           5115 m (T.D.)
                       to
               30 °
Casing:
                        at
                            195 m
               20"
                       at
                           857 m
              13 3/8"
                           2845 m
                       at
              9 5/8"
                           4040 m
                       at
              7" liner at
                           5109 m (liner hanger at 3853 m)
```

All depths are in RKB except when specified.

2 OBJECTIVES AND MAIN RESULTS

The main objective of the 15/3-3 well was to recognise the complete Jurassic series in the central prospect of block 15/3 on top of the infra M2 seismic marker, in up-dip position of well 15/3-1 drilled on the same structure in 1975. The 15/3-3 is located about 4.5 km NE of 15/3-1.

2.1 Post Jurassic Series

The lithology was approximately the same as prognosed and correlates rather easily with the 15/3-1 and 15/3-2 wells. It consists of:

- A series mainly argillaceous with some rare sandstone bodies ranging from Fleistocene to Eocene age.
- A sandy/shaly series from Paleocene age topped by a tuffitic zone (Cl seismic marker).
- A mainly chalky to marly series of Upper Cretaceous age followed by a shaly/marly series of Lower Cretaceous age.

All these levels were without hydrocarbon shows.

2.2 Jurassic (to Triassic) Series

Below the M2 seismic horizon found at 4017 m a shaly/sandy series was encountered.

The Jurassic section from 4017 to 5032 m allowed to recognise the four prognosed seismic markers with more or less important sandstone bodies, three of them being hydrocarbon bearing with porosity ranging from 7 to 25%.

The presumed Triassic section from 5032 to 5115 m (T.D.) was a water bearing sandstone of low porosity (5 to 6%) below a red shale level.

In addition to an important series of RFT and FIT performed in open hole and behind casing, two DSTs with perforation allowed to test the zones 4990 - 4967 m and 4632 - 4615 m.

The main results can be summarised as follows:

- Zone 4260 - 4369 m

Gas bearing sandstone (porosity: 20-25%) with gas/water contact at 4272 m (net pay: 6,7 m). This interval (cored from 4262 to 4307 m) is stratigraphic equivalent of the Jl seismic horizon on 15/3-1.

- Zone 4522 - 4768 m

Three main reservoirs, all tied with the J2 seismic horizon:

4522 - 4557 m: hydrocarbon bearing sandstone with a net pay of 10 m in interbeds of coal, tight sandstone and shale (cored from 4547 to 4562 m).

4588 - 4632 m: This sandstone body was tested in its lower part (from 4615 to 4632 m where porosity ranges from 11 to 15%) at a rate of 520.000 m 3 /day of gas through various chokes. The GOR was around 8.500 m 3 /m 3 with a parafinic condensate of 41.50 API at 60°F.

4679 - 4692 m: with a net pay of 8,4 m and a porosity of 11%, this sandstone (with layers of siltstone and shale) body seems to be oil bearing (no gas effect on logs).

- Zone 4768 - 4935 m

This interval tied with the J3 seismic horizon is mainly a shale siltstone body with rare sandstone stringers (cumulated thickness: 18 m in 13 levels) all of them gas bearing according to logs with porosity ranging from 7 to 15%. The core No. 5 was taken from 4851 to 4860 m.

- Zone 4967 - 4994 m

Tied with the J4 seismic horizon this 19 m net pay sandy interval with a porosity ranging from 12 to 14% was tested and produced 4278 1 of salt water (125 g/1) in 11 hours 54 minutes through a 1" choke.

- Zone 5052 - 5115 m (T.D.)

This sandstone body of low porosity (5 to 6%) below a red shale level was clearly water bearing on logs. This was confirmed by an FIT which recovered 10 1 of salt water (82 g/1).

3 LITHOLOGY AND STRATIGRAPHY

See appendices, composite log and stratigraphic plates.

3.1 Lithology

Pleistocene - Miocene (Lignitic series)

- 133 196 m: Drilling with return to sea bed. Probably clay and sand fine to coarse.
- 196 387 m: Predominantly clay grey to dark brownish locally silty. Abundant shell fragments and lignitic debris. Rare sand levels.
- 387 427 m: Sand very fine to medium grained subrounded to subangular. Traces of shell fragments.

 Abundant mica, pyrite and glauconite.
- 427 677 m: Clay grey sticky glauconitic, silty.
- 677 851 m: Sand translucent to greenish, fine to medium grained subrounded, glauconitic with inter-beds of clay sticky dark grey to greenish.

 Abundant shell fragments.

Oligocene - Eocene (Brown clay group)

Oligocene

851 - 1470 m: Clay grey to brown silty, locally strongly glauconitic slightly micaceous and pyritic.

Loose sand medium to very coarse translucent, subangular occasionally reddish.

Calcareous sandstone grey whitish hard between 1005 and 1130 m.

Rare limestone stringers below 1300 m.

Eocene

1470 - 1840 m: Predominantly sand fine to medium, rounded to subrounded, locally coarse to very coarse

with interbeds of shale dark to light grey pyritic.

Rare stringers of limestone white cryptocrystalline soft.

1840 - 2172 m: Shale dark grey grading to greenish blue with stringers of beige brownish dolomitic lime-stone. Traces of tuffaceous shale below 2150 m.

Paleocene (to Danian) (Sand/Shale group)

2172 - 2244 m: Shale light grey to red brown tuffaceous.

2244 - 2692 m: Sand to sandstone poorly consolidated fine to coarse, subangular to subrounded, with interbeds of shale dark grey silty slightly calcareous below 2600 m.

Cretaceous

Upper Cretaceous (Chalk group)

- Danian:

2692 - 2764 m: Limestone to marl white to pink and light grey.

- Maastrichtian:

2764 - 3023 m: Marl light grey soft locally slightly silty to limestone chalky white soft partly argillaceous.

- Campanian:

3023 - 3087 m: Limestone red to pink locally argillaceous.

- Coniacian - Santonian:

3087 - 3276 m: Marl light to medium grey locally pink.

3276 - 3486 m: Limestone argillaceous light to medium grey and chalky white. Rare levels of shale slightly calcareous dark grey.

- Turonian:

3486 - 3521 m: Limestone argillaceous grey as above.

3521 - 3628 m: Marl to shale medium to dark grey locally greenish. Traces of glauconite.

- Cenomanian:

3628 - 3743 m: Marl light to medium grey and limestone beige argillaceous.

Lower Cretaceous

- Albian Aptian:
- 3743 3901 m: Shale dark grey slightly silty in part, locally calcareous. Rare stringers of argillaceous limestone grey to dark brown slightly dolomitic.
- Barremian Hauterivian Valanginian (Berriasian):
 3901 4017 m: Marl light grey to red micromicaceous.
 Stringers of limestone whitish to cream.
- Berriasian (upper section of the Kimmeridge clay formation): 4017 4031 m: Shale dark brown micaceous, carbonaceous, pyritic.

Jurassic (to Triassic?)

- Portlandian - Upper Kimmeridgian (Kimmeridge clay formation):
4031 - 4225 m: Shale dark brown, carbonaceous and micaceous
as above with rare metric beds of sandstone
dark brown to grey whitish fine to coarse
locally calcareous strongly pyritic.

- Oxfordian:

- 4225 4247 m: Sandstone grey beige to dark brown fine to very coarse subangular to subrounded pyritic, friable, locally well calcareous cemented.
- 4247 4261 m: Shale dark brown carbonaceous.
- Lower Oxforidan Upper Callovian:
- 4261 4369 m: Sandstone dark grey brownish medium to very coarse locally microconglomeratic friable, and sandstone light grey fine, calcareous strongly cemented.

Rare metric interbeds of dark grey shale below 4300 m.

4369 - 4450 m: Shale brownish to dark brown micaceous, pyritic. Rare stringers of sandstone fine to very coarse.

- Callovian:

- 4450 4479 m: Shale dark grey calcareous to limestone dark grey brownish hard, silty strongly pyritic.
- 4479 4522 m: Shale dark grey to black with stringers of limestone as above.
- 4522 4588 m: Sandstone fine to very fine, argillaceous to calcareous beige brownish interbedded with siltstone partly dolomitic and shale dark grey. Abundant coal levels.

- Bathonian (Upper Bajocian?)

- 4588 4632 m: Sandstone beige to beige brown fine to medium, quartzitic, subangular well to fairly well cemented.
- 4632 4672 m: Shale dark grey silty. Rare stringers of sandstone. Abundant mica and pyrite.
- 4672 4702 m: Sandstone beige brownish quartzitic to calcareous cemented grading to siltstone.
- 4702 4768 m: Shale to siltstone dark grey to black micaceous. Rare stringers of sandstone.
- 4768 4967 m: Predominantly shale to siltstone dark grey to brownish micaceous with rare metric interbeds of sandstone dark grey to brown carbonaceous, fine to medium, well cemented. Coal levels below 4930 m.

- (Lower Bajocian?) Toarcian - Pliensbachian:

- 4967 4994 m: Sandstone beige to beige brownish fine to medium locally microconglomeratic quartzitic with shale dark grey interbedded.
- 4994 5033 m: Shale to siltstone strongly micaceous slightly dolomitic.

- Triassic?:

5033 - 5052 m: Shale red brick to purple and white grey greenish locally silty and very fine sandy.

5052 - 5115 m: (T.D.) Predominantly sandstone red to white translucent friable to well cemented slightly calcareous in part fine to very fine occasionally medium grained quartzitic. Interbeds of shale varicoloured as above.

3.2 Stratigraphy

Fig. 5 summarises the stratigraphy according to micropaleon tology and palynology studies and gives the lithological equivalence with North Sea nomenclature.

Main Palynological Results (see fig. 4)

The main results can be summarised as follows for the Jurassic section.

Depth (m)	Palyno. zone	. Age
4006 - 4028 4034 - 4042	NJ10 NJ9	Berriasian Portlandian
4051 - 4120 /(4150)	8LN	Kimmeridgian
4239 - 4263 4274 - 4375	NJ5c NJ5b	Oxfordian Lower Oxfordian/ Upper Callovian
4460 - 4500 4610 - 4756	NJ5a NJ4b	Callovian Bathonian
4979 - 5004	NJ3b	Aalenian/Upper Toarcian

A revision of the palynological results from 15/3-1 and 15/3-2 is actually in progress. On the 15/3-3 some zones are still doubtful and some samples remain not studied (zone 4756-4979 especially).

3.3 Sedimentology

A first study carried out on cores gives the following results:

- Cores 1, 2 and 3 (4262 4307 m):
 grain flow deposit with abundant floating pebbles and fragments of marine shells (belemnites).
- Core 4 (4547 4562 m):
 bay deposit with abundant bioturbation and micaceous beds.
- Core 5 (4851 4860 m):
 braided fluviatil channels and swamp deposit.
- Core 6 (4995 5004 m):
 marine swamp with negative sequence, abundant roots remain and figures of emersion (supratidal dolomite).

Remark:

We should note that both for palynology and sedimentology studies the final reports have not yet been received.

4 STRUCTURAL DATA

4.1 Geophysical Results

4.1.1 Vertical Seismic Profile and Calibrated Sonic

See figs. 22, 25.

Vertical seismic profile (VSP) has been performed on this well. The main parameters are:

Sample rate: 2 ms Recording length: 4000 ms

Frequency filter: 5 < f < 80 Hz

No. of acceptable levels: 118

In interval: 1580 m < Z < 5103 m

D.F.D. (D.F. = 24 m)

The VSP has been recorded and processed by SSL (England). A separate SSL report has been sent to partners.

The calibrated sonic log has been computed using VSP data. A separate SSL report has been sent to partners.

Fig. 22 shows the t = f(D) both predicted and actual. The prediction curve has been computed using only key horizons, whereas the actual t = f(D) is computed about every 300 m.

From other wells in the area it has been noted that there is a common point at ~ 3600 m, 1450 mS OWT and also that when passing into M2 the curves exert a kink and then go parallel. This kink comes by just above the M2 level. This observation may be useful for future t = f(D) computations. Any depth error is attributed to anticipated too high average velocities in prognosis, all depths are less than predicted.

4.1.2 Comparison Prognosis vs. Results (see fig. 23)

Figure 23 compares prognosis against calibrated results. An attempt has also been made in comparing seismic picks on unmigrated and migrated sections. For horizons above M2 it seems that use of the unmigrated lines in prognosis is adequate, whereas from M2 on and below the migrated lines are more adequate. In the case of migrated line the fact that migration velocities often are inadequate (approximations) should lead to caution in relying too much on dip values, thus horizon position.

Cycle corrections applied include both seismic pick corrections and any anticipated discrepancies between correct seismic pick and calibrated sonic log integrated times. Comparing the calibrated sonic logs and migrated seismic section (see fig. 23) it seems that there is no appreciable discrepancy between correct seismic position and sonic log times.

Some differences arise from the poor seismic signature of some of the Jurassic horizons, thus allowing cycle "slips" as in the case of Jl horizon. Future cycle corrections should therefore only include seismic pick corrections.

4.1.3 Comments (see fig. 24)

Fig. 24 links calibrated sonic logs to stratigraphy, thus to seismic section. It will be noted that we have not indicated any J1 horizon but J (no suffix) horizon which indicates the first Jurassic reservoir. The isochron map of J1 did match in 15/3-1 well whereas in 15/3-3 palynology states that J1 equivalent is higher than shown on the J1 map at 15/3-3 location and corresponds to J marker. This discrepancy has to be attributed to the fact that seismic signature in J2/M2 interval is not well defined and therefore a cycle "slip" must have occured in our interpretation. New migration on 580 xxx lines may help defining this horizon. However, the migrated sections also show a poor definition in J2/M2 interval.

A tentative map has been made on which J1 at 15/3-1 will fit with the J horizon on 15/3-3 well (see pl. 7).

For J2, J3 and J4 horizons the isochron maps fit with the 15/3-3 results.

Isobath map for the tentative J1-J horizon is produced (pl. 8).

The isobath maps prepared for the other horizons will be recomputed using migrated data (position of fault pattern etc).

4.2 Dipmeter

The HDT log was recorded from 2000 m down to T.D. and a quick study of the 1 x 0,5 meter 35 degrees x 2 arrow plot gives the following results:

4.2.1 Tertiary and Cretaceous

In the Tertiary series the dipmeter is almost blind except for a few meters in the tuffaceous sequence where dip ranges from 2 to 4° toward north-northeast.

The rest of the Paleocene sand/shale series presented only rare scattered values both for dip and azimuth.

From 2716 m (near top of Danian Limestone) to 2790 m (on top of Maastrichtian) dip ranges from 6 to $10^{\rm O}$ with a general north azimuth.

From 2790 to 2870 m dip decreased from 8 to 1° with a general southwest azimuth.

From 2870 to 2920 m the dip is very low (1 to 2°) with a west azimuth which turned progressively toward east while dip increased to 6° at base of Maastrichtian from 2920 to 3020 m.

The Campanian presented from 3020 to 3080 m a monotonous 6^{O} dip toward northeast.

On top of Coniacian a 30 meter zone of scattered high dip values (10 to 30°) is followed from 3120 to 3150 by a 10° north to northwest dip.

From 3150 to 3230 m the dip increased from 10 to 20° with a constant azimuth toward west-northwest.

The dip decreased progressively from 20 to 2° with an azimuth from northwest to southwest down to 3320 m.

From 3320 to 3743 m, for the rest of the Upper Cretaceous sequence, the dip is fairly constant, increasing slowly from 1 to $3^{\rm O}$ with a general azimuth toward northwest.

The upper part of Lower Cretaceous (Albian, Aptian) from 3743 to 3900 m presented a 2 to 8° dip generally toward east except for the top part (down to 3820 m where the general azimuth is toward west).

The lower part (Barremian and lower) has a dip between 2 and $6^{\rm O}$ with a general azimuth toward northwest.

4.2.2 Jurassic (Triassic)

The M2 horizon (top of Jurassic hot shale) is marked by an angular unconformity (3 to 5° in Lower Cretaceous, almost 0° in Jurassic shale).

The Kimmeridge clay formation presented a uniform 0 to 2° dip toward southwest to northwest.

In the sandstone bodies from 4227 to 4250 m and 4262 to 4370 m, no clearly persistent pattern is seen, probably because of complex stratigraphic dip.

From 4370 m down to 4450 m the dip ranges between 4 and $7^{\rm O}$ with a general azimuth toward northwest.

In the zone 4450 - 4526 m the arrow plot is scattered with no evidence of pattern.

From 4526 to 4586 m the dip ranges between 10 to 6° , sometimes 4° , with a general azimuth direction toward northwest.

The thick gas sandstone body from 4586 to 4632 m presented in its upper part (tight sandstone) a typical red pattern (channel deposit?). The dip increased from 6 to 30° with a constant north-west azimuth. The lower part of the sandstone body is more difficult to interprete due to the poor information provided by the arrow plot (very few dip data in a general north-west azimuth).

The zone 4635 - 4680 m with a dip ranging from 3 to 6° (10° in the top zone) and a general azimuth toward south-west to west is followed from 4680 to 4700 m in the sandstone body by a scattered dip and azimuth, possibly related to sedimentological figures.

The $6^{\rm O}$ dip south-west azimuth extended also from 4700 m down to 4730 m and turned toward north-west with the same dip down to 4770 m.

From 4770 m down to T.D. the dip values range from 9 to 15° with a general azimuth direction toward west-northwest. But the too large correlation depth of the cluster program does not allow to have subdivisions in this interval. However, it seems not to have any azimuth change even on top of the red beds at 5032 m.

A new treatment of the HDT log (geodip treatment) is actually in progress and will probably give new structural information.

5 HYDROCARBON SHOWS (see pl. 2)

Evaluation of hydrocarbon shows was carried out using a gas detector, a chromatograph and fluorescence observation on ditch cuttings.

5.1 Gas Shows

5.1.1 Tertiary and Cretaceous

In the tertiary section only methane was recorded (from 0.5 to 12%). The highest values correspond to sandy and lignitic levels.

The Upper Cretaceous section was drilled without shows except rare traces of Cl occasionally.

The Lower Cretaceous section gives some gas peaks (not exceeding 0.8% of Cl only).

5.1.2 <u>Jurassic - Triassic</u>

The Kimmeridgian unconformity is marked by a sharp increase on gas reading (2 to 4% of Cl with the first appearances of C2 and C3).

The background gas decreases progressively down to 4100 m where it increases again with the first appearance of iC4 and nC4.

The gas composition remains fairly constant to 4200 m with peaks (3 to 7% Cl to iC4) in front of sandstone stringers.

From 4200 to 4260 m the recorded gas decreased progressively with the same composition.

The top of the large sandstone body at 4260 m was marked by a sharp increase of das recording. This interval was cored between 4262 and 4307 m thus reducing the gas shows in noticeable quantity.

The gas shows remain fairly low with a composition ranging from Cl to C3 and occasionally from Cl to nC4 down to 4590 m with some gas peaks in front of sandstone and coal levels.

From 4562 m the drilling operation was conducted mainly with turbine and diamond bit with ditch cutting samples and gas shows very poor and hard to be interpreted.

At 4595 m an important gas peak (18% Cl with C2 and C3) was recorded in front of a sandstone level. For the rest of the sandy interval (proved to be gas bearing to 4632 m on log and test) very poor shows were reported (traces of Cl only).

Down to 4690 m only minor amount of Cl with traces of C2 were recorded.

At 4690 a small gas peak (10% Cl with C2 and C3) was noted and from 4700 down to 4765 m the gas percentage decreased progressively with the same composition.

From 4765 to 4820 m the gas composition remains the same but the percentage increase and numerous gas peaks (2 to 10% Cl with C2 and C3) appeared in front of sandstone layers.

From 4820 to 4965 m only Cl and C2 with rare traces of C3 were recorded.

At 4965 m an important amount of gas ranging from C1 to nC4 occurs (C1 up to 60%) but decreases rapidly and below 5005 m only rare traces of C1 were recorded.

5.2 Fluorescence and Oil Shows

The Tertiary and Cretaceous sections presented no fluorescence at all.

In the Jurassic section only rare pale yellow to greenish crush fluorescence after ccl4 extractions were reported around 4100 m and on the different cores.

The poor sampling (due to turbodrilling and use of diamond bit) probably masked some of the fluorescence normally observed on cuttings.

5.3 Geochemistry Analysis

Geochemistry and fluorescence organic matter studies are in progress.

Partial results related to oil samples analysis from RFT at 4262~m and DST at 4615~-~4632~m show that in both cases the source rocks seem to be very close to the reservoir (zone 4400~-~4550 for the oil of RFT at 4262~m and zone 4700~-~4800~m for the condensate of DST 2 bis).

A quick analysis of the SWC at 4034 m permitted to recognise the typical sapropelic facies with microscopic algaes and tasmanaea of the Kimmeridge Clay formation.

6 CORING

6.1 Coring (see appendix 1 and plate 21)

Six conventional cores were cut in the Jurassic section all with full recovery. On some cores exist a discrepancy between driller and wireline depth.

	Driller depth	Cored	Recov.	96	Core depth on log	Formation
1	4262-4271	9.0	9.55	100	4264,0-4273,4	Sandstone
2	4271-4289	18.0	18.15	100	4273,4-4291,7	Sandstone
3	4289-4307	18.0	18.20	100	4291,7-4309,9	Sandstone
4	4547-4562	15.0	15.00	100	4547,0-4562,0	Coal-sst-silt-sh
5	4851-4860	9.0	9.35	100	4851,0-4860,0	Silt-shale
6	4995-5004	9.0	9.00	100	4995,0-5004,0	Shale-silt (sst)

6.2 Sidewall Coring (see appendix 2)

Run	Date	Asked	Shot	Recov.	Lost	Misfire	Empty	Accepted
1	11.2.79	30	30	19	11	0	1	18
2	13.3.79	30	30	27	3	0	6	21
3	16.6.79	30	30	18	12	0	11	7
4	16.6.79	30	29	18	12	1	3	14
5	17.6.79	30	6	30	0	6	3	3
6	18.6.79	24	24	24	0	0	12	12
7	18.6.79	24	7	23	1	10	5	1
8	18.6.79	24	11	24	0	13	5	б

Sidewall cores were taken from 1975 to 5115 m. A total of 8 runs were made. The low recoveries in runs 3 to 8 were due to misfires probably caused by the high temperature of the well.

A total of 82 out of 222 cores were accepted.

7 ELECTRIC LOGGING

ISF Sonic GR-SP Log

Hole Ø	Date	Depth	Run	Remarks
26	08.01.79	866-195 (GR to surface)	1	
17 1/2	08.02.79	2757-844	2	Replayed from digital tape due to depth discrepancies.
†1	10.02.79	2862-2600	2bis	- id -
12 1/4	06.03.79	3827-2844 (GR to 850)	3	GR used to cali- brate depth of runs 2 and 2bis.
11	12.03.79	4052-3750	3bis	
8 3/8	03.04.79	4310,5-4042,7	4	***************************************
#	05.04.79	4389,7-4042,4	5	
"	05.05.79	4560,5-4250,0	6	
ıı ıı	13.05.79	4756-4438	7	
\$1	25,05,79	4967-4650	8	GR not working (recorded while going down).
11	04.06.79	5110-4740	9	

FDC-GR CAL Log

17 1/2	10.02.79	2857-858	1	Replayed from digital tape due to depth discrepancies.
12 1/4	12.03.79	4052-2843	2	

FDC-CNL-GR-CAL Log

8 3/8	05.04.79	4391,0-4042,4	3	
11	13.05.79	4787-4300	4	
11	04.06.79	5110-4740	5	Much sticking.
"	12.06.79	5110-4740	6	

DLL-MSFL Log

•	Hole Date		Depth	Run	Remarks
CHARLESCONERION	8 3/8	07.04.79	4390,5-4042,3	1	
	11	13.05.79	4767-4334	2	
	. 11	04.06.79	5110-4735	3	

Sonic Long Spacing Log

				Į _	
ł	12 1/4 1	13.03.79	4048-2844	1	
Ī	/ -		10.0	1 -	

HDT Log

17 1/2	10.02.79	2862-2000	1	(Deviation to 858).
12 1/4	13.03.79	4052-2844	2	
8 3/8	15.05.79	4762,5-4037,4	3	
8 3/8	09.06.79	5111-4740	4	

CBL-VDL Log

18.02.79	2862-1800 and 1000-30	1	13 3/8 casing in 17 1/2 hole. Two stage cementa- tion
----------	--------------------------	---	--

CBL Log

Primerona and an analysis and	22.02.79	2849-2250 and 950-846	2a	After squeeze of cement at 2874 m.
	13.03.79	2844-2544 and 925-800	2b	
	06.04.79	4042,3-2433,0	3	9 5/8 casing in 12 1/4 hole.

CBL-VDL Log

06.07	5067-	-3840 4	7" liner in 83/8 hole and 9 5/8
			casing.

Temperature Log

Hole Ø	Date	Depth	Run	Remarks
	15.02.79	2853-1500		After 13 3/8 cementations.

<u>Velocity Survey</u> (vertical seismic profile)

	y			\$
	10.06.79	5103-1580	1	118 shots (30 m
				spacing).

Bore Hole Geometry Tool

	·			
8 3/8	16.06.79	5116-4042	1	

8 TESTS

8.1 RFT (see figs. 6, 7 and 18)

A total of 8 runs of RFT with 51 reliable pressure readings and three samplings were performed in the 8 3/8" open hole. Due to differential pressure the RFT tool got stuck twice at 4975 m and had to be fished. The upper part of the Jurassic zone presented a 1.90 pressure gradient down to 4370 m and the lower part a 1.70 - 1.75 average pressure gradient from 4500 m down to T.D. It can be noted that in thin or compacted reservoir zones the recorded values are very dispersed around an average value, when in thick porous beds a good trend is easily drawn.

8.2 FIT (see fig. 7)

Five FITs were run after setting a 7" liner, four of them with sampling (5059,5 m, 4989,5 m, 4626,5 m, 4262 m). For FIT No. 2 at 4969 m the tool was plugged and no sample recovered.

8.3 DST (see figs. 8 and 9)

Two DSTs were performed after perforation by scallop gun 2 1/8", 13 shots per meter, of the 7" liner

- the first one in zone 4990 4967 m with packer at 4957 m, which produced 4278 l of emulsionated salt water (125 g/l) in ll hours.
- the second one in zone 4632 4615 m with packer at 4600 m, which flowed 520.000 m³ of gas and 60 m³ of parafinic condensate in 24 hours.

9 PRELIMINARY RESERVOIR RESULTS

9.1 Tertiary (0 to 2692 m)

Several water bearing sand bodies with high porosity were encountered in this section.

9.2 Cretaceous (2692 to 4017 m)

This chalky to marly section presented no reservoir and was drilled without gas shows.

9.3 Jurassic (4017 to 5032 m)

Several sandstone reservoir zones, most of them with hydrocarbons, have been encountered.

In the upper part, mainly shaly rare metric layers of sandstone were hydrocarbon bearing (according to CPI parameters).

Depth	Ø 8	Sw %	
4103,0 - 4104,2	10 - 15	30 - 40	
4116,5 - 4118,0	10 - 17	20 - 50	
4140,8 - 4141,8	14	25	

The interval 4228 - 4247 m is a water bearing sandstone with porosity around 20%.

- Prospect 4260 - 4369 m (figs. 10 and 14, pl. 3)

This sandstone body with interbeds of calcareous sandstone and shale is hydrocarbon bearing in its upper part. This interval was cored from 4262 to 4307 m (driller depth) (see appendix 1 and fig. 21).

Top reservoir:

4260,8 m (-4236 m MSL)

GWC (from RFT):

4271,7 m (-4247 m MSL)

Gross pay:

11 m

Net pay:

6,7 m

Average porosity:

25% (24% from cores)

Permeability:

100 to 1650 m darcy (from

cores 1, 2 and 3)

Pressure:

 $806,5 \text{ kg/cm}^2 \text{ at } 4262 \text{ m}$

(gradient: 1.89)

Temperature:

124°C (from logs)

Some samplings were performed in the hydrocarbon zone both by RFT and FIT. They recovered gas. Gas analyses showed mainly methane (73%), ethane (12%) and propane (3%), and condensate (API gravity: 43,6 at 15° C). The hydrogene sulfide contents was below the detector's limit.

Due to a discrepancy between the prognosed Jl horizon and the depth of the top of this sandstone body, no direct map existed for this level. A new map of the J horizon around 15/3-3 well is proposed (see plates 7 and 8).

- Prospect 4523 - 4768 m (see figs. 11 and 15, pl. 4)

Three main reservoir zones have been encountered, all tied with the J2 seismic marker.

Zone 4522,8 - 4556,8 m:

This level, interbeds of sandstone, shale, siltstone and calcareous stringers, is hydrocarbon bearing (gas bearing from FDC/CNL).

1		
5 7 -	- 12 25 - 13 28 ·	- 30 - 30 - 40
	5 10 - 5 7 -	5 10 - 12 25 5 7 - 13 28

Core measurement (core No. 4) confirmed the porosity values (10 to 13%). It showed bad permeability (0.1 to 0.2 m darcy) and high values for the formation factor which confirms the tightness of the reservoir.

Pressure readings in this interval $(795,6 \text{ kg/cm}^2 \text{ at } 4524,5 \text{ m})$ give a pressure gradient of 1.76.

Zone 4588,2 - 4632,6 m: (see figs. 8 and 9)
This 44,4 m thick sandstone body with a few meters of shale and sandstone on top is full of gas with no GWC, but only the bottom part (tested from 4632 to 4615 m) is of interest, the top part above 4618 m being more or less compacted.
The gas effect is higher in the bottom part.

Top reservoir:

4588,2 m RKB (-4561,7 m MSL)

Gross pay:

44,4 m (no GWC)

Net pay:

14,6 m (with 11% porosity cut-off)

Depth	Thickn. (m)	Ø %	Sw %
4588,2 - 4618,0	29 , 6	6 - 11	13 - 30
4618,0 - 4632,6	14,6	ll - 16	8 - 13

Pressure readings in this interval $(792.5 \text{ kg/cm}^2 \text{ at } 4630 \text{ m})$ give a pressure gradient of 1.71.

The evaluated temperature (from logs) is 146° C at 4590 m.

This zone was perforated from 4632 to 4615 m and tested with packer at 4600 m. Gas flowed through heater and separator before being burned at flare.

Flow duration	Choke	Gas rate m ³ /day	GOR m ³ /m ³	Water rate m ³ /day
15н 26'	1 3/4"	560.000	8200	2,5
3H 14'	44/64"	535.000	8400	2,3
3H 00'	1/2"	520.000	8550	2,2

At the total, the well flowed during 23 hours 40 minutes for a cumulative production of 520.000 m³ of gas and 60 m³ of parafinic condensate. The final build-up lasted 23 hours 20 minutes and the final build-up recorded pressure was 11.073 psi (778.4 kg/cm² at 4567,5 m MSL which gives an average gradient of 1.70).

Zone 4679,2 - 4692,8 m:

This sandy interval becoming calcareous below 4686,2 m is hydrocarbon bearing (oil bearing due to no gas effect on logs despite the fact that at such a temperature and pressure the formation should be gas bearing).

Depth	Thickn.	Ø %	Sw %
4679,2 - 4687,3	8,1	11	8 - 20
4692,5 - 5692,8	0,3	11	25
Total	8.4		

Pressure reading in this interval $(793,1 \text{ kg/cm}^2 \text{ at } 4685,5 \text{ m})$ gives a pressure gradient of 1.69.

- <u>Prospect 4768 - 4935 m</u> (see figs. 12 and 16, pl. 5)

This section, mainly shale and siltstone with metric layers of sandstone, is tied with the J3 seismic horizon.

According to logs and CPI interpretation, 13 sandstone levels have been recognised for a cumulative net pay of 18,1 m, all of them gas bearing.

See table showing cumulated net pay on the following page (page 29).

When the porosity is over 10% the Sw from CPI is about 20 to 30%.

Pressure readings in this interval (835,5 kg/cm 2 at 4796 m) give an average gradient of 1.74.

Depth	Thickn.	Ø 8
Depth 4767,4 - 4770,0 4795,0 - 4796,0 4808,2 - 4809,0 4823,7 - 4824,0 4826,8 - 4828,3 4829,8 - 4830,4 4850,0 - 4851,3 4853,4 - 4854,7 4865,6 - 4867,7 4868,7 - 4870,2 4896,7 - 4898,5	Thickn. 2,6 1,0 0,8 0,3 1,5 0,6 1,3 1,3 2,1 1,5 1,8	10 - 15 7 - 10 14 8 - 12 5 - 15 7 - 15 11 15 12 - 15 6 - 8 8 - 12
4909,5 - 4912,0 4914,7 - 4915,5	2,5 0,8	13 - 14 13 - 17
Cumulated net pay:	18,1	

- Prospect 4967 - 4994 m (see figs. 13 and 17, pl. 6)

This interval of sandstone is interbedded with shale and is tied with the J4 seismic horizon.

Top reservoir: 4967 m RKB

Gross pay: 27 m
Net pay: 19 m

Porosity: 12 - 14%

Sw: 80 to 100% (from logs)

This zone was formation tested with perforations from 4990 to 4975 m and from 4974 to 4967 m with packer at 4957 m. It produced 4278 l of salt water (salinity 125 g/l) with traces of gas in 11 hours 54 min. on a l" choke see fig. 7).

Pressure readings in this interval $(867,0 \text{ kg/cm}^2 \text{ at } 4990 \text{ m})$ give a gradient of 1.73.

- Zone 5052 m to T.D. (Triassic?)

See figs. 13 and 17, plate 6.
Below a red shale level found at 5032 m the well was bottomed in a sandstone body of low permeability (5 to 7%). According to logs the water saturation was between 80 and 100%.

This was confirmed by an FIT sampling at 5059,5 m which recovered 10 l of salt water (salinity: 82 g/l). Due to the tightness of the formation, only one pressure reading was available (880,8 kg/cm 2 at 5059,5 m) giving a pressure gradient of 1.75.

10 TENTATIVE CORRELATIONS

10.1 Tertiary and Cretaceous (fig. 19)

As no laboratory results are actually available on the 15/3-3 well for the Tertiary and Cretaceous sequence, the correlations between 15/3-1, 15/3-2 and 15/3-3 wells are only based on electric log characters (see fig. 18).

An attempt to use the Standard Lithostratigraphic Nomenclature for the North Sea (Deegan and Scull) has been made for the 15/3-3 well (see fig. 5).

10.2 Jurassic and Triassic (see fig. 20)

Essentially based on preliminary palynological results a tentative correlation between the three wells on block 15/3 is proposed. The main results can be summarised as follows:

- The Kimmeridgian Oxfordian series drilled from 3947 to 4442 m on 15/3-1 seems to correspond to the interval 4017 to 4261 m in the 15/3-3 with an important reduction of the sand bodies on 15/3-3. A confirmation of this correlation should invalidate the seismic isochron map of the J1 horizon for the 15/3-3 zone.
- An electric correlation is assumed between levels 4750 4850 m in 15/3-1 and 4450 4500 m in 15/3-3 despite the apparent discrepancy in the palynological zonation (Nj5b doubtful in 15/3-1) around this depth.
- The coaly levels in 15/3-1 and 15/3-3 seem to be stratigraphic equivalent and the 15/3-1 well was probably stopped before reaching the equivalent of the J2 b sandstone level drilled from 4586 to 4632 m in 15/3-3.

- The J2 seismic correlation between 15/3-3 and 15/3-2 has also to be reconsidered, the Nj4 b palynozone (J2 b seismic marker on 15/3-3) corresponding to the third sandy level in 15/3-2 (zone 4550-4615 m).
- From a pressure point of view (see fig. 18) a similar high pressure gradient (1.90) was recorded in 15/3-1 between 4083 and 4480 m and in 15/3-3 between 4117 and 4370 m.

An important change of gradient appears in 15/3-3 between the upper level (zone 4262 - 4370 m) and the following horizon starting at 4522 m where the pressure gradient ranges between 1.70 and 1.75, similar to the gradient recorded in 15/3-2 at 440 m (1.73 gradient) in the upper sandstone body.

As for the Tertiary and Cretaceous series, an attempt to use the Standard Lithostratigraphic Nomenclature for the Central and Northern North Sea is done but only as equivalence and for some formations only (see fig. 5).

11 CONCLUSIONS

The integration of the 15/3-3 well results in the 15/3 block scheme is actually in progress.

The main questionable points can be summarised as follows:

- Palynological zonation of well 15/3-1 and 15/3-2 towards the base.
- Seismic interpretation of Jl horizon eastward of the fault on the central prospect and its relation with the Jl horizon on 15/3-1 well.
- Lateral extension of the main gas bearing sandstones (J2 b horizon).
- Lateral improvement of the reservoir characteristics for the J3 horizon represented on 15/3-3 well under a deltaic facies.

A geophysical re-interpretation of block 15/3 using recent migration of seismic data should start soon.

An attempt to make a geological interpretation of some seismic profiles is also in progress below the M2 unconformity.

A structural and sedimentological analysis of the dipmeter log (Geodip treatment) is also scheduled on the 15/3-3 well.

APPENDIX 1

CORE DESCRIPTIONS

Core	1	4262	1445	4271	m	100%	recovery
Core	2	4271	***	4289	m	п	11
Core	3	4289	what	4307	m	11	11
Core	4	4547	****	4562	m	Ħ	11
Core	5	4851		4860	m	11	11
Core	6	4995		5004	m	11	11

cut: 9m (driller) RECOVERED: 9.55m

100_%

EAN COMPANY: _ _ WELL No: 1573-3 CORE Nº: 1

Recov. 9.55m (4262-4271.55) Core depth on logs: 4264-4273.4

Scale 1/40

LOSS:_____

DEPTHS	°⁄% Ç	PEBY	POROS	SKONS	Olds	LO G	DESCIPTION
4263	0 1 0 34						Sandstone, dark grey, coarse to very coarse, agular to rounded, friable, slightly argillaceous. 4263.1 Sandstone, grey hard, well sorted, calcareous, 4263.4 strongly cemented.
4264	0 35			strong			Sandstone ,friable a.a. Pebbles of Shale,dark grey.
1	39			weak to			calcareous Sandstone, hard, fine, grey. 4264.6 Sandstone, friable a.a., with rare dark grey to black
4265	0			cut white			pebbles to centimetric levels of Shale.
4266	0			orrange - (_4265.9 Black Shale. _4266.3
	42			01 e	_~ 30°		calcareous Sandstone a.a, black Shale pebbles. 4266.8 Sandstone, friable - abundant coarse quartz.
4267	28			pal	≃ 20°	0	4267.3 Sandstone, calcareous cemented, fine with abundant
4288—			THE PARTY AND ADDRESS OF THE PARTY AND ADDRESS	scence yellow	o°		centimetric quartz grains and black Shale pebbles 4268 below 4268m.
4269	42		LAVALALALAIQA SAVANJA SII SII SII SII SII SII SII SII SII SI	Fluorescence			_ 42 68.9
	31				15°		4269.5 Breccia to slumped levels of black Shale, and 4270 pebbles of calcareous Sandstone.
4270-	0 22				0°		Sandstone, dark grey, friable a.a. 4270.5 4270.8 Sandstone, med. grey, hard.
4271 —	0				30		Sandstone, dark grey a.a.

CUT: 18m (driller)

RECOVERED: 18.15m 100 %

DATE: 01-04-79 DEPTHS: 4271-4289 (driller) Recov.18.15m (4271.55 4289.70)

LOSS:_________ (Page 1 of2)

COMPANY: <u>EAN</u>
WELL No: 15/3-3
CORE No: 2

Core depth on logs: 4274.4-4291.7

ſ	DEPTHS	్డిం	PERM	POROS	SKONS	OIPS	LO G	DESCIPTION
ŀ	4271.55	ω	५*	<u> </u>	<i>Š</i> ↑	0,	:::::::::::::::::::::::::::::::::::::::	
1	4272 —							
	4273	0						-
	स्यान्यकार्यकार्यकार्यकार्यकार्यकार्यकार्यकार	**************************************			ည္တေ	And the second s		Sandstone, grey to dark grey, coarse to very coarse, friable, fairly-well sorted, argillaceous cemented, Rare interbeds of black Shale and very fine micaceous Sandstone.
	4275 	0		term memasyangunya injenierma angung memasyang membangan angung	ot fluorescence	CAROLICA CA		black Shale pebbles (up to 5cm).
	4276	0			white direct		(200)	
	4277	9		- 1	yellow to			
	4278————————————————————————————————————	34	derivite			***************************************		Psammite, black, very fine. Sandstone, grey to whitegrey, medium grained, very hard, calcareous cemented. 4278.3
	4 279 militaria	0				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Sandstone, friable, coarse to very coarse a/a.
	4280	0					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Microconglomerate with 1 to 5 cm big quartz pebbles

CUT	:_	18m_	(Driller)
			Se

COMPANY: _ _EAN _____

DATE: 01.04.79

RECOVERED: 18.15m

100__%

WELL No: ___15/3-3_____

DEPTHS:4271.4289m (Driller)

Scale 1/40

CORE Nº: 2 (Page 2 of 2)

DEPTHS	% 300	PERM	POR OE	CHONG	OIRS	LOG	DESCIPTION
4281	7			A			
4282							Sandstone coarse to very coarse friable a/a becoming more dark toward base of core -
4283						entrolists.	Black Shale interbedded
4284						•	-4284.4 Black Shale pebbles dongated
4285				uce			
4288				ct fluorescence			•
4287			THE PROPERTY OF THE PROPERTY O	to white direct	A CHARLES AND	0	-¥287.3
4288	The state of the s	Andrews of the state of the sta	**************************************	yellow to		· · · · · · · · · · · · · · · · · · ·	Microconglomeratic Sandstone with Quartz grains up to kom - Abundant black Shale pebbles (1 cm diameter)
4289		PRIMATOR AND	A COMMANDA SANDANIA PARAMETERA SANDA S	A		À	
4289.7	ALLO COLLEGE OF THE PROPERTY O						

WELL No: __15/3-3____

CORE Nº:__3____

cut:_ <u>18.0 (Drille</u>r)

RECOVERED: 18.20

100 %

COMPANY: EAN

DATE: 02.04.79__

DEPTHS: 4289, 4307(Driller)

Recovery: 18.20m. (4289.7-4307.9)

Scale 1/40 (Page 1 of 2)

Core Depth on logs: 4291.7-4309.9

DESCRIPTION CORE

CUT:_18.0(Driller)

COMPANY: _ EAN _____

DATE:22.04.79

RECOVERED: 18.20___

100__%

WELL No: 15/3-3

DEPTHS: 4289-4307(Driller)

LOSS:_____

2 of 2) (Page

LOG	DESCIPTION
	-4299.1 Sandstone dark preÿ,coarse a/a.
######################################	4299.6 Sandstone black v.fine and Shale laminations 4299.8
and a second sec	Sandstone grey coarse with Shale laminations
	-4301.0 Black Shale micaceous with rare interbeds of
**************************************	black Sandstone. Abundant slumped figures4301.7
	-
	Complete and a company for inhibit 7/2
	Sandstone coarse mey friable a/a Rare Shale pebbles
	·
	4306₊4
	Sandstone black v.fine argillaceous with abundant interbeds of black Shale
	-4307.2 Coarse Sandstone a/a 4307.4 Black Sandstone and black Shale laminations a/a.
2777A117	

DEPTHS	°⁄%°	DEUN	POROS	.0 ³ / ₂	Oles	LOG	DESCIPTION						
454.7	ζ ⁶	6°	\$2.	CCL4	Ø),								
-	0								Coal, massive brittle				
4548	O	,				AND	4548 ²⁰						
4549	0							Sandstone	very fine to fine strongly				
4550	0			A		SMITE.			micaceous pyrite, Argilaceous, Brownish, Well cemented with millimetric interbeds of siltstone to shale dark grey to brownish.				
	0			Δ		A00009							
4551	0 2			۵	ANTANA MANAGARIAN MANAGARI	***************************************							
4552	2 10			۵			4552 ¹⁰	Dolonitic	siltstone to silty shale micaceous				
	42			Δ	***************************************	The second secon	ACCO	regional lac	pyrite.				
4553	25 6			Δ			4553	Siltstone	to silty shale micaceous, strongly pyrite (centimetric to millimetric interbeds)				
4554	1			A									
	0	-		A			4554 ⁹⁰						
4555	0			Δ		All Maries		Sandstone	fine rarely medium, brownish subangular arglaceous with open vertical to subvertical fractures.				
- 4550 —					redainkeum teinen franzische mer en er er er er er er								

CUT: 15 m RECOVERED: 15 m

100%

COMPANY: EAN WELL No: 15/3 - 3 CORE No: 4

DATE: 04 - 05 may 1979 DEPTHS: 4547 - 4562

elf norge - EXPLORATION

page 2 of 2

	DEPTHS	% % %	PERM	POROS	CCL4	Olpes	LO G	DESCIPTION
ľ	4559				CCL4			
ŀ	-	0			۵			millimetric inclusions of Coal
	4557	0			۵			4556 ⁸⁰ — 4558 ⁹⁰ — Sh, slty, drk gy — Sdst as above
	•	48			۵			Sltst, to slty Sh (millimetric intbds) abund crossed beddings
; }	4558 —	48			Δ			figures, pyrite and mica from 455770 to 455830: vertical
		0	-		A			fracture filled w/dolo
	4559 —	8			۵			–4559 Sdst, v. fn –4559 ²⁰
	- 4560	0			Δ		TOTAL STATE OF THE PARTY OF THE	Sltst to slty Sh, drk gy to black micac w/abund millimetric Coal inclusions and micac, pyrite
		0			Δ			
Ĭ.	4581	0			Δ			-4561 Sh, đrk gy, compact
	4562	0			Δ			
								△: weak fluorescence on CCL4 extraction in the fear to good " " " " " while core recovering: abundant gas coming out of core on fresh fractures: strong hydrocarbon smell disapearing in a few seconds no direct fluorescence weak to locally fair yellow greenish fluorescence on CCL4 extraction dip not evident

	06		<u> </u>	.6		r T	
DEPTHS	ૂર્જુ જ	SEAM	& OKOS	SKOME	OIRS	LOG	DESCIPTION
4851	0			A		N5	
4852	0					¥	Silt light grey with abundant millimetric floating quartz grains 4852.10 Shale black coaly fissurated 4852.40
4853	0				20°		Silt light grey a/a 4853
4854	0			tetrachloride	0		Silt dark grey to black with horizontal shale interbeds
4855	0			with	10		4854.6 4854.7 Coal
4856				after extaction			Shale dark grey to black with decimetric interbeds of siltstone light grey - nodules of coaly black shale
4857	0			fluorescence			
4858	0			yellowish	10"		4858.3
4859	O			Areak 🖊			Siltstone light prey Centimetric levels of dark grey shale
- 4860 - 4860	0						

DEPTHS	% ? ?	PERM	POROS	SKOMS	Oldes	L0 G	DESCIPTION
4996	0			A			Shale dark brown silty to v.fine sandy micromicaceous
4996							4996.1 Shale a/a grading to siltstone v.shaly dark brown micromicaceous
4997	0						- 4996.8 - 4997.0 Shale dark brown - Sandstone dark brown v.fine.micaceous. compact
4998	1						- 4997.6 Sandstone beige brown fine to medium micaceous, argillaceous, compact. grading to v.fine sandstone
4999	0			fluorscence.	arthium ann the state of the st		- 4998.9 Shale dark brown v.silty - 4999.2 Sandstone beige brown v.fine,micaceous,compact - 4999.5
5000	23 11			white fluo			Shale dark brown silty Microconglomeratic sandstone fine to med., rounded 5000.0 dolomitic, and dark brown Shale Sandstone to siltstone dark brown a/a 5000.4
5001	O		,	· rare weak			Sandstone white v.fine to fine micaceous, dolomitic 5000.9 Sandstone to siltstone dark brown 5001.4
5002	0			Gas seepage -	THE TAXABLE PROPERTY OF TAXABLE PR		Shale dark brown silty micaceous - 5002.0 Sandstone to siltstone dark brown with shale interbeds - 5002.4
5003	0			2	ANT THE RESERVE OF THE PARTY OF		Shale dark brown silty micaceous 5002.9 Sandstone beige brown v.fine, micaceous 5003.1 Siltstone dark brown grading to sandstone v.fine
5084							micaceous - 5003.8 - 5004.0 Shale dark brown

APPENDIX 2

SIDEWALL CORE DESCRIPTIONS

Run	1	2343,0	*****	1450,0	m	18	full	bullets
Run	2	4051,0	XXVIII .	3301,0	m	21	* }	11
Run	3	4787,5	4000	4540,0	m	7	fY	11
Run	4	4535,0	***	4095,0	m	14	# 1	11
Run	5	4787,5	÷om	4420,0	m	3	11	11
Run	6	4715,0	***	4068,5	m	12	Ħ	81
Run	7	5105,0	-	4795,0	m	1	11	##
Run	8	5105.0	***	4795.0	m	6	11	Ħ

		SERVICE COMPANY: SPE ASKED: 30
SIDE WA	RECOVERED: 19 SHOT : 30 LOST : 11	
WELL : 15/3-3	RUN N°: 1	FULL BULLEY: 18
LICENCE: 025	PAGE N°: 1	
	DATE: 11.02.1979	
		C. GUESDON

		nr.	tr. trace - M.: medium - G.:	Fluore	***	10 8	
No.	DEPTHS	REC %	LITHOLOGY]	C	
Ţ	2843	40	MARL, grey, very soft				
2	2837	15	MARL, grey, very soft				
3	2815	40	MARL, whitish, soft				
4	2791	50	MARL, grey, med. hard				
5	2767	0	lost				
6	2758	40	MARL, grey, med. hard				
7	2720	60	MARI, light pink, very hard				
೪	2687	0	lost				
9	2665	ಚ 0	MARL, dark grey - LIMESTONE, white cream, med. hard				
10	2595	100	SHALE, black to dark grey, micaceous				
11	2565	0	lost				
12	2530	୪0	SHALE, greenish, glauconitic				
L3	2465	0	lost				
L4	2435	υ	empty				
L5	2363	85	sand, fine , rounded to subrounded, glauconitic				
L6	2340	ც0	Shale, black to dark grey				
۲.	2275	90	Sand, very fine, micaceous				
L8	2240	0	lost				
						T	

	SERVICE COMPANY: SPE
	ASKED: 30
	RECOVERED: 19
SIDE WALL CORES DESCRIPTION	SHOT : 30
SIDE WALL CORES DESCRIPTION	LOST :]]
WELL : 15/3-3 RUN N°: 1	FULL BULLET: 18
LICENCE: 025 PAGE N°: 2	
DATE: 11.02.1979	C. Guesdon

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			tr . trace - M : medium - G	Fluor	6 2 2 5 1	c e	_
Ν°	DEPTHS	REC %	LITHOLOGY		기	¢	U
19	2225	υ	lost				_
20	2215	<u>೪</u> ೦	Shale, grey to pink, micromicaceous				
21	2190	υ	lost				
22	2175	100	.f Shale, black to dark grey, micaceous, very pyritic				
23	2165	90	Shale, dark grey to brown, micaceous, very pyritic		4		
24	2100	100	Shale, dark grey to brown, micaceous, soft		- -		
25	2040	100	Shale, brown, micromicaceous		4		
26	1975	100	Shale, black to dark grey, micromicaceous				
27	1925	0	lost		1		
2੪	1810	0	lost	=	$\frac{1}{1}$		
29	1685,5	0	lost		$\frac{\parallel}{\parallel}$	-	-
30	1450	0	lost		$\frac{\parallel}{\parallel}$		
		<u> </u>			_		-
		 		1-	_	\prod	
		-				-	1
		-				+	
		<u> </u>				+	
-						\prod	-
							ŀ

		SERVICE COMPANY: SCHLUM ASKED: 30
SIDE WALL	CORES DESCRIPTION	RECOVERED: 27 SHOT: 30 LOST: 3
WELL : 15/3-3	RUN Nº: 2	FULL BULLET: 21
LICENCE: 025	PAGE N°: 1	
	DATE: 13.03.1979	C. Guesdon

. 1				Fluo	rescei	10.	,
٥	DEPTHS	REC %	LITHOLOGY		片호	C	
1	4051	30	Shale, dark brownish to black, silty, loc VF sandy, Micro-pyr Co ³ Ca = 3%				
2	4042	30	Shale, dark brownish, silty, loc SL MIC w/laminae of silt to VF sand				-
3	4034	30	Shale A/A Co ³ Ca = 2,5%	-			
4	4028	25	Shale A/A				_
5	4023	30	Shale A/A w/laminae of silt to VF sand, pyr. Co ³ Ca= 1%				
6	4020	25	Shale A/A				_
7	4018		Lost Shale, strong.calc, LT gry to gry, soft, silty, Loc SL.MIC,	<u> </u>			
8	4012,1	60	w/ pyr incl. $Co^3 Ca = 21\%$	 	-	-	
9	4006,8	40	Calc shale, gry-drk, soft, silty, loc SL.MIC. w/rare pyr incl. Co ³ Ca = 13%	1			
.0	3995,3	50	Shale, strong calc/marl, gry, soft, SL silty, Loc SL.MIC Co ³ C =3	_ 168 -	_		
1	3975,7	30	Shale red brown, silty, strong calc. Co ³ Ca = 26%	1			
2	3923,7	60	Shale strong calc, gry, indurated, silty to VF sandy Co3Ca = 25%	_	-		
.3	3898	70	Calc. shale, gry mod.ind, sl silty, SL MIC, w/pyr.incl Co3Ca = 12			 	
.4	3879,3		LOST	1	_	H	
.5	3863,7		EMPTY Shale, sl.calc, gry to gry-drk, soft, silty to VF sandy, SL MIC,	1	_		
.6	3854,8	50	loc mic-pyr Co ³ Ca = 9%	-	-	<u> </u>	
.7	3800	100	Shale sl.calc, gry-drk, mod ind, silty Mic. Co3Ca = 6%	1-		 	-
.8	3751	30	Marl, drk.gry, ind, SL slty, w/pyr incl. Co3Ca = 43%				

		SERVICE COMPANY: SCHLUM ASKED: 30
SIDE WALL CORES DESCRIPTION		RECOVERED: 27 SHOT: 30 LOST: 3
WELL : 15/3-3	RUN Nº: 2	FULL BULLET : 21
LICENCE: 025	PAGE N°: 2	
	DATE: 13.03.1979	C. Guesdon

	y		tr., trace - M.: medium - G.:	, <u> </u>			
	DEPTHS	REC		fluor	scen	c e	_
N o	DEPTHS	çç Ç	LITHOLOGY		1	CI	
		,		ļ		#	ł
19	3745	40	Shale strong calc, gry-drk, soft silty, micac. Co ³ Ca = 23%		Ш		
20	3740	50	Marl, LT gry to gry, soft, SL slty, lac Mic, (Glauconite?) Co3ca50	ŝ			
21	37 35,5		EMPTY				
22	3675		LOST				
23	3632	40	Calc.shale, LT gry, sandy, loc grad to sandstone V. argil, glauconitic, friable Co3ca = 14%				-
24	3626,5	40	Calc shale, gry-drk, soft, v.sandy, micac, grad to sand v.argil, VF to F, rare med, subang, w/glauc. Co ³ Ca = 18%			I	1
25	3620		ЕМРТҮ				+
26	3529	50	Marl, LT gry to gry, soft slty to VF sandy Mic, glauc. Co ³ Ca=53	Š.			-
27	3520		EMPTY				
28	3401,7		EMPTY				
29	3311,8		EMPTY				
30	3301	5υ	Argil limestone, gry, mod hd, mudstone, TR of MIC. Co ³ Ca = 77%				
							-
							-
							1
							+
					$\parallel \parallel$	#	+

	SERVICE COMPANY: SCHLUM ASKED: 30
SIDE WALL CORES DESCRIPTION	RECOVERED: 18 SHOT: 30 LOST: 12
WELL : 15/3-3 RUN N° : 3	FULL BULLET: 7
LICENCE: 025 PAGE Nº: 1	
DATE: 16.06.1979	C. Guesdon

tr . trace - M : medium - G : guod

		REC		Fluc	7 4 5 C	nc	<u>, </u>
Ио	DEPTHS	8	LITHOLOGY		7		TUC
		5			7	СO	H
1	4787,5		LOST				
2	4776		ЕМРТҮ				
3	4773	20	Shale, gry-brwn, HD, slty, loc VF sandy				
4	4770		EMPTY				
5	4760		LOST				
6	4750		LOST				
7	4735		EMPTY				
8	4725	15	Shale, brwn, HD, slty to VF sandy, mic-micac.				
9	4715		EMPTY				
. 10	4705		EMPTY				
_11	4695		LOST				
12	4688	40	Sandstone, beige-brwn, VF to F, subang. SL mic, friable, argil, loc SL calc				
13	4631		LOST				
14	4670		LOST				
_1.5	4660	50	Shale, gry-brwn to brwn, HD, SL slty, mic.				
.16	4650		EMPTY				
17	4640		LOST				
18	4630		LOST				
							\prod

		SERVICE COMPANY; SCHLUM					
		ASKED: 30					
SIDE WALL	SIDE WALL CORES DESCRIPTION						
SIDE WALL	SIDE WALL COILED DESCRIPTION						
WELL : 15/3-3	RUN Nº: 3	FULL BULLET: 7					
LICENCE: 025	PAGE Nº: 2						
	DATE: 16.06.1979	C. Guesdon					

		REC		Fluor	9 9 6 61	nce	
N°	DEPTHS	REC 8	LITHOLOGY] ∃≖		ט:
.9	4628		LOST				
20	4625	20	Sandstone, beige-brwn, F, subang, friable, argil				
21	4623		LOST				
22	4620		LOST				
23	4610	20	Sandstone, beige-brwn, med, subang, friable, argil				
24	4605	20	Sandstone, beige to beige-brwn, F to med, subang, friable, argil				
25	4593		EMPTY				
6	4590		LOST				
:7	4585		ЕМРТУ				
!ಟ	4580		EMPTY				
9	4570		EMPTY				
0	4540		EMPTY				
***************************************		1					
							-
					\prod	П	T

		SERVICE COMPANY: SCHLIM ASKED: 30
SIDE WALL CORES DES	RECOVERED: 18 SHOT: 29	
SIDE WALL CORES DE		LOST : 12
WELL : 15/3-3 RUN Nº :	4	FULL BULLET: 14
LICENCE: 025 PAGE Nº:	1	
DATE :	16.06.1979	C. Guesdon

				Fluo	resce	nc (è
Ио	DEPTHS	REC %	LITHOLOGY		7==	lo lo	cu
1	4535		LOST				
2	4530	10	Siltstone to sandstone VF, beige-brwn, subang. friable, calc. cmt	-			
3	4526		LOST	-			-
4	4525		LOST				
5	450L		LOST				
6	4500		LOST				
7	4489		LOST				
8	4480		LOST				
9	4469		LOST .	-			
10	4458		LOST				
11	4445		LOST				
12	4430		LOST				
13	4420		LOST	1			
14	4405	10	Shale, brwn, drk-brwn, HD slty, loc VF sandy rare gas BBLES				
15	4390	40	Shale, gry-drk, med HD, slty, SL mic	-			
16	4375	<u> </u>	Shale, gry-drk, med HD, slty, SL mic	-			
17	4351		Shale, gry-drk to blk med HD, mic w/VF incl of sandstone LT GY to white, VF to F ang/subang, argil				-
18	4327	30	Sandstone, lt beige, med to crs, V friable, subang argil	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************

		SERVICE COMPANY: SCHLUM
		ASKED: 30
		RECOVERED: 18
	SIDE WALL CORES DESCRIPTION	SHOT: 29
		LOST : I2
WELL :	15/3-3 RUN Nº : 4	FULL BULLET: 14
LICENCE :	025 PAGE Nº: 2	
	DATE: 16.06.1979	C. Guesdon

		PEC.	Fiuer	Fluorescenc			
Ио	DEPTHS	REC %	LITHOLOGY			0	UT
19	4254	20	Shale, gry-drk, med HD, mic w/laminae of sandstone LT beige, VF loc F, subang, mic, SL calc				\uparrow
20	4239	100	Calc CMI			#	+
21	4238	50	Sandstone, gry-beige, F to med rare CRS, subang friable, argil, loc SL calc				
22	4233	40	Sandstone, gry-beige, med to CRS, subang, friable, SL calc				
23	4201	5%	Shale, drk-gry-brwn, V.HD, slty, SL mic				
24	4175		EMPTY				
25	4150	10	Shale, drk-brwn, HD, slty to VF sandy, mic-mic				-
26	4125		MF				
27	4112	25	Sandstone, beige, beige-brwn, F to med loc CRS subang, friable, SI, calc w/incl of shale A/A				
2੪	4100		ЕМРТУ				
29	4125		ЕМРТУ				-
30	4095	30	Shale, gry-drk-brownish, HD, slty to VF sandy, mic-mic w/F incl of SST beige, VF to F, mic-mic, calc				
							-

	SERVICE COMPANY: SCHLUM ASKED: 30
SIDE WALL CORES DESCRIPTION	RECOVERED: 30 SHOT: 6 LOST: 0
WELL : 15/3-3 RUN Nº : 5	FULL BULLET: 3
LICENCE: 025 PAGE N°: 1	
DATE: 17.06.1979	C. Guesdon

-		REC .		Fluor	36.61	10.6	
Νo	DEPTHS		LITHOLOGY]= =		UT I
1	4787,5	30%	Shale, gry-brwn, HD, slty, mic				T
2	4776	40%	Shale, brown, HD, V.slty, mic				T
3	4760		ЕМРТҮ				
4	4756		Misfire				
5	4750	40	Shale, gry-drk,-brwnish, HD, strong slty, mic.				
б	4715		ЕМРТҮ				
7	4650		Misfire				
ម	4645		ЕМРТУ				
9	4640		Misfire ·				
1.0	4593	,	11				
11	4585						
12	4580						
13	4577,5		POOH after shot No. 12				
14	4570						
15	4540						
16	4535 [°]					\parallel	
17	4525					Ħ	
18	4517						

		SERVICE COMPANY: SCHLUM
		ASKED: 30
	CIDE WALL CODES DESCRIPTION	RECOVERED: 30
	SIDE WALL CORES DESCRIPTION	LOST : O
WELL :	15/3-3 RUN Nº : 5	FULL BULLET : 3
LICENCE :	025 PAGE N°: 2	
	DATE: 17.06.1979	C. Guesdon

			tr trace - M : medium - G ;	Fluor	• 5 C E	n c i	
N°	DEPTHS	REC	LITHOLOGY			K	CU
19	4510		Not shot				
20	4500		n .				
21	4495		11	_			
22	4489		ti .				
23	4480		11				
24	4469		11	1			
25	4460		11				
26	4458		11				
27	4445		"				
28	4435		,				
29	4430		H ·		\parallel		
30	4420		11				
	,			1		Ī	
					\prod		
					\prod		
					\parallel		
					\prod		
							H

		SERVICE COMPANY: SCHLUM ASKED: 24
SIDE WALL	CORES DESCRIPTION	RECOVERED: 24 SHOT: 24 LOST: 0
WELL : 15/3-3	RUN N°: 6	FULL BULLET : 12
LICENCE: 025	PAGE N°: 1	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
	DATE: 18.06.1979	C. Guesdon

		REC		Fluor	escen	c e	_
Ν°	DEPTHS	g _g	LITHOLOGY		쿠치	CL o	
1.	4715	20	Shale, drk-brwn to blk, med HD, mic, slty gas bbls				
2	4712	15	Shale, drk-brwn to blk, med HD, mic, slty gas bbls				
3	4705		EMPTY	_			
4	4650		EMPTY				A
5	4655	25	Shale, drk-brwn, med HD, slty, SL mic				
6	4640		ЕМРТУ				4
7	4580		EMPTY			Ħ	1
8	4570		EMPTY				•
Я	4554	10	Shale, gry-drk, brownish, soft, V.slty, to silt v.argil SL mic				
10	4540		EMPTY				
11	4510		ЕМРТҮ			\prod	•
12	4500	10	Shale, drk-brwn, HD, SL slty, mic-mic, w/rare pyr incl.				
13	4489		БМЬЛА				
14	4480	5	Shale, gry-drk, HD, slty, mic, SL, pyr				-
15	4468		EMPTY			1	***
16	4445	5	Shale, gry/drk-brownish, med HD, SL slty, mic			\parallel	~
17	4435		ЕМРТУ				-
18	4430	15	Shale, gry-drk to blk, med HD, SL slty, mic				_
						\parallel	-

			SERVICE COMPANY: SCHLUM ASKED: 24
	SIDE WALL	CORES DESCRIPTION	RECOVERED: 24 SHOT: 24 LOST: 0
WELL :	15/3-3	RUN Nº : 6	FULL BULLET: 12
LICENCE :	025	PAGE N°: 2	
		DATE: 18.06.1979	C. Guesdon .

			tr . trace - M : medium -	Fluor	2 5 C E I	100	,
N°	DEPTHS	REC %	LITHOLOGY]	C	ı ı
19	4425	16	Shale, gry-drk-brownish, HD, SL slty, mic-mic				
20	4420	10	Shale, gry-drk, med HD, SL slty, mic				-
21	4175		ЕМРТУ				
22	4100		EMPTY EMPTY				
23	4075	15	Shale, gry-drk to blk, med HD, SL mic and slty				
4	4068,5	10	Shale, gry-drk to blk, med HD, SL slty mic				
						T	
						\prod	
***********						T	
						T	
					\prod	+	
					\mathbf{H}		
					H	+	4

	SERVICE COMPANY: SCHLUM
	ASKED: 24
	RECOVERED: 23
SIDE WALL CORES DESCRIPTION	SHOT : 7
SIDE WALL CORES DESCRIPTION	LOST : 3
WELL : 15/3-3 RUN N° : 7	FULL BULLET: I
LICENCE: 025 PAGE Nº: 1	
DATE: 18.06.1979	C. Guesdon

		REC		Fluo	***	nc t	!
N°	DEPTHS	NE-C	LITHOLOGY		늄	do do	:บา
1	5105		EMPTY				
2 .	5086		LOST				
3	5082		EMPTY				
4	5073,5		EMPTY				
5	5069,5		EMPTY	=			
6	5060	10%	Silt beige, friable, loc SL ind, and LMST, gry-white, beige-brwn, microxline soft.				
7	5052		ЕМРТУ				
R	5020		MISFIRE				
9	4985		11				
10	4979		17				
11	4976						
12	4972		11				T
13	4970		13				
14	4962						T
15	4960	<u> </u>	TI T				T
16	4958		11				
17	4923,5		н	1			
18	4912		STOP SHOOTING - POOH				
							H

			SERVICE COMPANY: SCHLJIM ASKED: 24
	SIDE WALL	RECOVERED: 23 SHOT: 7 LOST: 1	
WÉLL :	15/3-3	RUN N°: 7	FULL BULLET: 1
LICENCE :	025	PAGE N°: 2	
		DATE: 18.06.1979	C. Guesdon

			tr. trace - M : medium - G :	~~~~~~~			
		REC		Fluore	366	7	
МФ	DEPTHS		LITHOLOGY		7	k	וט:
					32	اد	Ш
10	1005		NO.		П		Π
19	4907		NOT SHOT		Ш	Ц	Ш
20	4898		H 1	1			
					Ц.	Ц	Ц
21	4845			-			
		ļ			#	4	4
22	4810		11 11				
				 	╫	H	₩
23	4795		If II , .	1			
				-	${}^{+}$	H	${\sf H}$
24	4795		# H	1			
					$\dag \uparrow$	H	H
]			
					Ħ	Ħ	Ħ
				1			
							П
		ļ		1			Ш
			ı	-			
					Щ	Ц	Ц
		 		<u> </u>	$\!$	H	H
				1			
		 		1	H	$oxed{\parallel}$	H
l				1			
				1	╫	$\!$	H
1							
					╫	${\sf H}$	H
]			
					#	$\dag \uparrow$	H
I					\prod	T	П
					Ц	Ц	Ц
				-			\prod
·					Щ		Ц
1		, ,		1	11		ŧ

			SERVICE COMPANY: SCHILIM ASKED: 24
	SIDE WAL	L CORES DESCRIPTION	RECOVERED: 24 SHOT: 11
WELL :	15/3-3	RUN Nº: 8	LOST : 0 FULL BULLET : 6
LICENCE :	025	PAGE Nº: 2	
		DATE: 18.06.1979	C. Guesdon .

		REC		Fluor	* \$ C 2	ne	ę
N º	DEPTHS	%	LITHOLOGY] 13	- 1	ÇI
19	4907,3	20	Siltstone, gry-beige, med HD, SL mic, V.argil				+
20	4898		MISFIRE		T		
21	.4845		II .				1
22	4810	-	11				
23	4795						
24	4795		11				
					\parallel	Ħ	_
,	-				\parallel	Ħ	-
					\parallel		-
					\parallel	H	-
,						H	-
	·				\parallel	H	
	·-			_	\parallel		-
	. ,			-	\prod	H	**
					T	H	-
,					\mathbf{H}		-
					\parallel	H	
				-	#	$ \cdot $	-
		,			H	H	-

2-JAN1980 REGISTRERT OLIEDIRENTORATET

FIGURES

05th JANUARY 1979 x: 58° 52°31.3½ ground: - 109 Spudded : Well Coord v. 01 46 46.3 Z RKB: 24 Storted drilling: 05 th. JANT TAPY 1979
At T.D 02 DT JINE 1979 15/3-3Line 580 517 133m Depths s detum: RKP Completed: 10.08.79 Country Rig: PONTACONE 84 TD Driller: T. D. Logger: 5]11.5m 5115m Stopped in TRIASSIC (?) SANDSTONE MOLLINA OPER ATOR TILL ACCUTATINE NORGE A/S LICENCE UZ5 OWNED BY TETTONOTED TARG ETS RESULTS JUPASCIC SANISTONES - CAS AND CONDENSATE IN JUNEAUC CANDCTONES: - PLUGGED AND ABANDONNED NIOSO A E G ST RE RT CORES CASINGS JEDIAEKTOMAT**E**T 195m #262 **-** 4271 100 20": 857m +271 - 42892 13 3/8": 2845m 3 4289 - 4307 9 5/8": 40400 4 4547 - 4562 7" Liner: 5]09m 5 4851 - 4860 6 H995 - 5004 SHOWS SPC cl to cl, locally 2843 - 1975 1 30/10 ic4 to nc4 in 30/21 H051 -33015 Jurassic levels. **47.87.5−**4.540 30/7 4535-4025 Ιī 30/14 H7875-4420 5 30/3 6 4715-40685 24/12 7 5105-4795 8 5105-4795 J, HORIZON (JURASSIC) LOGS ISOCHRON WAP ISF-SONIC-GR-SP FTYC-CNI_GP-CAL tests 866 - 195 2857 - 858 2862 - 854.4 4052.7-2843.8 75 pressure readings from 5059.5 3827.7-2844 RFT: 3 4391 - 4042.433 s 4767 - 4300 4052 - 3750 to 4117m 4310.5-4042.4 5110 - 1740 5 4 sampling 5110 - 4740 4389.7-4042.4 4 sampling and pressure readings 4560.**5-**4250 6 FIT: 4756 - 4438 PDT DST: DST no.1: 4990.4967m 4962 **-** 4650 8 2862 - 2000 Recovered 42701 water: 125g/1 5110 **-** 4740 4057.5-2847 salinity 4762.5-4037.4 DLL - MSFL DST no.2 bis:4632.4515m 5111 - 4740 4390.5-4042.3 Flowed 520.000m³ gas and 60m³ parafinic condensate in 23 Hours 40min. 4767 -4334 VERTICAL SEISM 51]0 - 4725 PROFILE SONIC LONG SPACI 118 shots betw 4048.8 - 2844 5102 and 1580

FIG.1

Checked A. PAOLONI

Date 07.79

)EPTKS m	LITHOL	FORM	STAGE	markers seismìc	DESCRIPTIONS 085.	COORD: 58° 5	2 31. 3 N 6 46. 3 E	•	WELL: 15/3 -:	
•••	11/14/14			30"	24m SEA BED	LINE :	580517 SP		COUNTRY:	
	174 159			195 m	CLAY SILTY TO SANDY SAND FINE TO COARSE	WATER DEPTH:	109m (KB:	24m) 	11c: 025	
	yieessa		- PLEISTOCEME		SHELL FRAGMENTS	DEPTH REF.			<u> </u>	
	າ 		Q.		LICNITE	NOTA :				
			MIOCERE	20″	676m SAND MED TO COARSE	CASINGS	TARGETS:			
				∑ 557m	-851m	30" : 195m 20" : 857m	JURASSI	C SANDS	TONE	
1000 -					CLAY GREY BROVN GLAUCONITIC AND	13 3/8:2845m		•		
			E		SAND V.FINE	9,5/8:4040m 7,Liner5109m				
			OLIGOCENE				RESULTS:			
			0		1470m					
					SAND FINE TO MED		GAS AND CON			
	:				SHALE DARK GREY		JURASSIC SA	WDSTONE	S	
į	-		EOCENE		- 1840m SHALE DARK GREY				•	
2000 -	=======================================		2		STRINGER OF DOLOMIT					
			 	C1)1833ms	2172m TUFFACEOUS SHALE					
			<u> </u>	_	SAND V.FINE TO	OBSERVATIONS:	*	_		
			PALEDCENE		COARSE, INTERBEDS OF		4262 -4271 42 71 - 4289	100% "		
	1		PALI	13″3/8	SHALE DARK GREY	3:	4289 -4307 4547 -4562	98 88		
	Ž~Ž		DAM.	-C2)1242 ma	2692m 2764m PINK TO WHITE	5 ; 1	4 851 - 4860	ff 11		
			AESTR.	2845m	LIMESTONE GREY TO	6: 4995 -5004 "				
3090 -	⋛∰		CAMP.		-3023m WHITE -3087m LIMESTONE PINK	MARKER	ONE WAY	DEPTH (MSL)	
			SANT		MARL LIGHT GREY		TIME MS		,	
		2= (980	-3279m LIMESTONE ARG.GREY	Cl	1033	2148		
					TO WHITE 3521m MARL TO SHALE	C2	1242	2740		
N.		C/A	TURON CENGR		DARK GREY 3628m MARL LIMESTONE	M'1 M2	1432 1574	3497 3993		
	~ ~		ALB.		3743m SHALE DARK GREY	J J2	1653 1749	4238 4564		
			APT.	9"5/8	F3901m AND MARL I	J3	1800 1854	4744 4943		
¥000-			BEAR. PORT.	1574 ms. 4040m	SHALE DARK BROWN	U4	1004		······	
		,	KINN. UP GXF.	l	WITH ORG.MATERTAL.					
	***	¥	low Gai Upp. Cal		HACOM SHALE TO SLITSI.					
			CALLOV.	4780	4450m HAR TO CALC 4586m SDST. HARD					
		\(\frac{\partial}{2}\)	BATHO		-4632m SHALE SLITST.SDST	1				
			だける		4768m SHALE SILT STGRS OF SANDSTONE	•				
- 1	### ### ###	⊕ 125	EN BRACCIAN		4967m SANDST.SHALE					
1996		· ·	THIAS?]7"	5032m SHALE RED TO GREEN, SDST.CALC					
	5115m		Ē	5109m	HARD	ţ		a nen:	N 84 1	
	T.D.					FIG.2		A. PAOL	DWI BER 1979	

15/3.3 RFT PRESSURE READINGS

ZONE	DEPTH (RKB)	FORM PRESS kg/cm ²	GRAD:	FLOW TIME	ZONE	DEPTH (RKB)	FORM PRESS kg/cm ²	GRAD	FLOW TIME
4017-4246	4117	796.4	1.934	4*20	4679 -4 693	4683.5	792.8	1.692	6*
	4141	797.8	1.926	12'30	PROSPECT J2C	4685.5	793.1	1.692	70
	4181.5	806.2	1.927	2155	4768-4935	4769.5	834.4	1.749	4,
	4233	802.9	1.896	1'45	PROSPECT J3	4796	835.9	1.742	61
	4235.5	803.2	1.896	31		4809	841.3	1.749	LL F
-	4242	803.7	1.894	2 30		4828.3	837.0	1.733	4,
	4246.5	804.5	1.894	14.10	nemonius de des de la companie de la	4851.2	847.1	1.746	3,
4261-4369	4261.5	806.4	1.892	3!30		4870	868.5	1.783	3,
4201 4303	4261.5	804.9	1.888	91	-	4898.5	848.7	1.732	ц,
(PROSPECT J)	4261.6	810.5	1.901		***	4912	843.4	1.716	31
	4261.8	810.5	1.888	2'30					
	4262	806.5	1.892	2*30	4967-4994	4968.5	874.9	1.760	12'
	4262	811.1	1.903	64'		4968.7	858.6	1.728	71
	4262.5	805.0	1.888	6 9	PROSPECT J4	4971	876.3	3 700	11'
	4264	806.4	1.891	2 20		4971.4	863.6	1.762 1.737	7 7
	4264	805.0	1.888	2 30		4972.6	861.7	1.732	5,
	4267.2	806.7	1.890	2'30		4973	878.3	1.766	91
,	4278.5	807.6	1.887	2 1		4981.5	862,2	1.730	71
	4291	809.1	1.885	21		4988.7	858.8	1.721	61
	4305	810.5	1.882	2'20		4989.8	855.7	1.714	49
	4342	814.3	1.875	3'10		4990	867.6	1.738	61
	1012	027.0	1,0,0			4990	867.7	1.738	71
					THE PROPERTY OF THE PROPERTY O			٤	
4522-4556	4524.5	795.6	1.758	6 1		Thermone			
	454,3	799,6	1,759	13'			***************************************		
(PROSPECT J2A	4555,1	800.1	1.756	22'	5052-TD	5059.5	882.6	1.744	71
4588-4633	4588.6	789.3	1.720	6'	(TRIAS)	<u> </u>			
	4591	789.9	1.720	12 7					
(PROSPECT)J2B	4611	790.0	1.713	71					
•	4620	790.1	1.710	81		•			
	4630	792.5	1.711	61					

RFT and FIT Sampling Data 15/3-3

Sampling data	Recovered 7800 cc gas 2600 cc condensate (d: 0.805) Chamber pressure: 183 kg/cm at surface)	Seal failure	Seal valve failure Recovered: 1600 cc mud with traces of condensate Chamber pressure: 0	Seal valve failure Recovered: 2500 cc condensate Chamber pressure: 0	10 l formation water + filtrate Salinity: 82 g/l	10 l Filtrate Salinity: 35,8 g/l	9 l gas at athmospheric pressure	4,9 5,6
Static pressure	806,5		805,0	804,9	899,l uncorrected	865,8 uncorrected	792,3 uncorrected	843,8 uncorrected
Total time set	19 '30		31 :	22;				
Flowing time (chamber full)	10'		10 '	7	ammenter sistingal hikking ganggar			
Flowing pressure kg/cm	≃ 245		≈ 280	430				
Depth . (RKB)	4262	4261,8	4262,5	4261,5	5059,5	4990	4626,5	4262
Test	RFT 12	RFT 22	RFT 23	RFT 24	FIT 1	FIT 3	FIT 4	FIT 5

RESULTS

DST 1

PERFORATION

:4990/.4975 m :4974. 4967 m

DEPTH PACKER: 4958 m

INITIAL FLOW	1′	1′	1′	BHP WHP BHP	506.1 128. 814.	66	761.8 94.9	21	808.46 126.55 854.51
INITIAL SHUT IN	19	201	61	WHP	135.	69	173.3	31	174.64
	CHOKE	4	DUR.	BHP kg	g/cm ²	W	HP	PRO	DUCTION
FINAL FLOW	8/64 10/64 32/64 64/64 8/64 25/64 47/64		97 217 4 5 25 90 483	714.13 742.35 712.26 704.85 694.96 683.55 669.86	5)) 3	1	5.5 3.8 4.06 0		lm3 4m3
FINAL BUILD UP		,	720	NO PRE	SSURE	REC	CORD B	Y F	LOPETROL

RECOVERED ON REVERSE CIRCULATION : 4278 1 EMULSIONED SALT WATER

125 g/l NaCl

> pΗ 7

DST 2 BIS

PERFORATION: 4632, 4615m

DEPTH PACKER 4600m

OPERATION	CHOKE	DURA Hx	TION	BHP Kg/cm ²	WHP Kg/cm ²	GAS RATE	OIL RATE	GOR m ³ /m ³
INITIAL FLOW INITIAL SHUT IN		00 00	01 14	695.48 785.75	279.82 281.02			
FINAL FLOW	24/64 32/64 48/64 64/64 (64/64 48/64 44/64 32/64	00 00 00 01 15 03	08 08 15 17 28 14	578.35 576.73 589.03 560.00 515.84 510.36 508.25	142.02 112.49 137.10 70.31 43.45 128.31 205.30	GAS ON S MINUTES 548400 540500 514300	URFACE AFT OF FLOW 66.6 63.4 60.0	ER 22 8234 8581 8572
FINAL BUILD UP		24	00	778.51	elas e			

520.000 m³ GAS D: 0.656/AIR 60 m³ PARAFINIC CONDENSATE 41.5 API AT 60° F 1.6 m³ WATER CUMULATED PRODUCTION:

Fig. 9

