

Classification		_
1		
	7	

.

-

• • • •

T

R	equested by	 		
ſ			•	
1			-	

particular and a second

free ban

. 9 C

Subtitle

Evaluation of core data

Co-workers

Title			
	Sta Evaluation	toil of core da	ta
	STATO EXPLORATION & F LABORAT	IL 15/8-/ PRODUCTION	
	۰.		
L			L
Prepared	T	Approved	
8/7-82	K. Sørheim	8/7-82	Per Thomassen

.

Routine and set I

The routine core measurements, (Klinkenberg corrected permeability, porosity and calculation of grain density for all plug samples and the measurements for set I seem reasonable. For a few samples low porosity gives high permeability and vice versa (15.1, 39.1, 51.1). This is due to grain size and cementation.

Set II

We asked for porosity by saturation technique for 3 samples (31.1, 51.1, 90.1). The report don't tell us that this is done. We can see from table (porosity recuction measured by brine with net overburden page 36) that reference porosity (10 bar) is the same as measured by Helium.

Set III

We asked for gas-perm. and porosity reduction as a function of overburden pressure. It is to be noted that the reference porosity (15 bar) is higher than the porosity measured for routine core measurements. These two have been measured with different techniques (page 40). The porosities obtained from conventional matrix cup measurements (grain volume measurement) are lower than what measured in the hydrostatic cell (pore volume Vp is directly measured). Page 40, 41 in the report show this difference, and the corrected table is on page 41.

All data in this report are presented as specified by Statoil Lab. in a letter to Geco 24/2-82.

10. Saturations Sw and Sxo.

Saturation was calculated from the North Sea equation with values of M = 1.7, N = 1.9 and A = 1 which were taken from special core analysis.

Method: The North Sea method is used for the calculation:

Sw:

//2 1.0/(RT)=	√vsh ^C /	//2 RSH +	PHIF ^{M/2.0} /(A	*]	RW)]* SWN/	2.0	
	2 0	1/2	M/2.0.4		. 167	N/2.	0

PRICE

13/8.1

Sxo:

- $1.0/(Rxo) = \int VSH^{C} / RSH^{+} PHIF^{M/2.0} / (A * RMF)^{2} * Sxo^{N/2.0}$
- Input: The curves required for the calculation (RT, VSH, PHIF) are put in by the system as well as the constants 1.0, 2.0 and the square root function. The paramters RSH, M, N, A, RW and C are put in by the analyst.

11. Core data.

Standard core data, helium porosity, horizontal and vertical air permeability (Klinkenberg corrected) and grain density were available for all wells except 15/9-3.

Core porosity was depth correlated to log porosity and the other core data shifted by the same amount.

The log porosity was matched to this core porosity. Figure 5 in each interval of the results section shows this match. Figures 9, 10, 11, 12 of the results general show a histogram match of log and core porosity and log and core density. APPENDIX III

TECHNIQUE FOR PREDICTION OF CAPILLARY PRESSURE FROM LOG DATA

The J function equation is

$$J = \frac{0 2 l g \cdot P_c}{\chi \cos \theta} \left(\frac{k}{\varphi}\right)^{1/2}$$

Units used were

Pc	- capillary pressure (psi)
8	- interfacial tension (dynes/cm
k	- permeability (md)
Ø	- porosity (fraction)
θ	- contact angle, degrees

The two J functions referred in the report Petrophysial Evaluation for 15/9-15/6 Volum 1. Febr. 1981 are now changed from

J = 0.17 Sw^{-2.788} to J = 0.037 Sw^{-2.788} k>75 md J = 0.78 Sw^{-2.2} to J = 0.017 Sw^{-2.2} k<75 md

by the constant 0.218

No changes were made in the water saturation calculations Swpc.

Swpc	=	$(0.118 \left(\frac{k}{\phi}\right)^{\frac{1}{2}}$	Pc)	-0.359	k<	75	mđ
Swpc	=	(0.0256 (k) -	P≎)	-0.455	k>	75	mđ

units used were:

Pc - capillary pressure (psi) k - core measured permeability (md) \emptyset - core measured porosity (fraction) $\int w$ - water density (gm/cm³) $\int g$ - gas density (gm/cm³) H - height above WOC (m)

 $Pc = (\rho w - \rho g) \cdot g \cdot H$

The correlation to fit water saturations from core data to log saturations was now found to be:

Sw (corr Pc) = 1.60 Swpc - 0.12

E۸ -

The results are shown in a log cross plot of Sw vs Swpc.

STATOIL

EVALUATION OF CORE DATA

WELL: 15/8-1

DATE: MAY 1982.

.

-

.

I

TABLE OF CONTENTS

~

	Page
Comments	1
Sample list	4
Data report	
- Helium Porosity and grain density	5
 Klinkenberg corrected air permeability 	4
- Air/brine Capillary pressure	11
- Resistivity index	20
- Formation resistivity Factor	28
 Porosity and permeability reduction measured by brine with net overburden pressure 	36
 Porosity and permeability reduction measured by gas with net overburden pressure 	40

COMMENTS.

PREPARATION.

The core sample analyses were performed on 2 3/4" by $1\frac{1}{2}$ " cylindrical plugs. The samples were extracted using methanol, followed by toluene and repeated with methanol.

The samples were dried in a humidity controlled cabinet at 60° C and 40% relative humidity.

Helium porosity and air permeability by multi-point technique corrected for Klinkenberg effects were measured.

SIMULATED FORMATION BRINE:

Na: 41 300 ppm K: 1 470 ppm Mg: 1 380 ppm Ca: 4 750 ppm

These cation contents are achieved by mixing the chloride salts of the cations in the table above.

Physical properties of the solution at $23^{\circ}C$:

Density : 1.086 gr/cc Viscosity: 1.17 cp Resisitivity: 0.072 ohm-m

RESISTIVITY INDEX - CAPILLARY PRESSURE MEASUREMENTS.

Set 1 was 100% saturated with simulated formation brine. The samples were desaturated in a porous plate cell by saturated air at 7 different pressure levels, up to 12 bar. Stability time at each pressure level varied from 3 to 4 days.

The different water saturations were determined by the weight of the sample.

At the same time the resistivity index was measured using a frequency of 1KH_{z} . The Resistivity Index (Ri) equation.

 $Ri = b \cdot Sw^{-n}$

has been evaluated both by weighted least square method (yielding b=1.00) and free least square method. The forced fit is presented graphically.

INCREASING HYDROSTATIC PRESSURE MEASUREMENTS:

Set 2 was 100% saturated with simulated formation brine. Applying increasing hydrostatic sleeve pressure, the formation resistivity factor, porosity and liquid permeability were measured simultaneously in a triaxial holder. To avoid effects of surface water on the plugs, the "atmospheric" pressure was set at 10 bar. A graduated pipette (Vol. 1,0 ml grad. 0.01 ml) was used to see when stability occured and to measure the pore volume reduction.

The formation resistivity factor was measured using a frequency of IK Hz.

The formation resistivity factor equation:

$$FF = a \cdot \phi^{-m}$$

has been evaluated both by weighted least squares method for each sleeve pressure. Also reported are a composite table and an evaluation of the equation using all the formation resistivity factors measured at atmospheric and "atmospheric" pressure. The forced fit curves are presented graphically.

Set 3 While applying increasing hydrostatic sleeve pressure, helium porosity and Klinkenberg corrected air permeability by multipoint technique were measured simultaneously in a triaxal holder.

Measurement procedure:

The sample was installed in a rubber sleeve, then placed tightly in a triaxial holder with confining liquid.

The hydrostatic pressure was increased to 15 bar ("atmospheric pressure") to avoid gas flow and volume between the sleeve wall and the sample. A helium porosimeter and a permeameter were connected to the holder to measure pore volume by helium injection and the Klinkenberg corrected air permeability. These measurements were repeated at hydrostatic pressures of 50,100,200 and 300 bar.

Conclusion:

The results show that the porosities obtained at "atmospheric" pressure in the hydrostatic cell were higher than the porosities obtained from conventional matrix cup measurements. This is due to the fact that the hydrostatic cell measurement is dependent on the shape of the sample, while the matrix cup measurement is not dependent on sample shape.

We assumed the difference between the "atmospheric" pressure measurement and the matrix cup measurement to be constant at all pressure levels.

The hydrostatic cell porosities are reported both uncorrected and corrected to conventional matrix cup measurements.

For all hydrostatic pressure measurements the geometric factor (area/length) was corrected at confining pressure assuming the compression was the same in all direction.

Statoil

SAMPLE LIST Well: 15/8-1

.

Sample no	Depth(m)	Set
15.1	3662.90	3
20.1	64.70	1
31.1	70.70	2
37.1	72.60	3
39.1	73.70	1
43.1	84.40	1
51.1	89.70	2
55.1	91.00	3
61.1	93.13	1
63.1	93.90	3
66.1	95.40	3
72.1	97.25	1
79.1	99.60	3
90.1	3704.00	2
93.1	05.10	1

- -

POROSITY AND GRAIN DENSITY

Sample no.	Helium Porosity %	Brine Sat. Porosity %	Grain Density
15.1	13.6		2.65
20.1	17.3		2.65
31.1	16.8	16.9	2.65
37.1	17.2		2.65
39.1	19.9		2.66
43.1	20.2		2.65
51.1	20.0	20.0	2.64
55.1	19.3		2.65
61.1	20.2		2.66
63.1	21.2		2.64
66.1	14.1		2.65
72.1	16.6		2.65
79.1	13.0		2.65
90.1	14.8	14.5	2.64
93.1	16.9		2.67

.

•

KLINKENBERG CORRECTED AIR PERMEABILITY

Sample no.	(Mean Pressure) ⁻¹ -1	Air permeability	Klinkenberg corrected permeability		
	(atm.abs.)	md	md		
15.1	0.944	707			
	0.644	695			
	0.489	679	653		
20.1	0.927	547			
	0.636	533			
	0.483	526	503		
31.1	0.926	566			
	0.636	557			
	0.484	551	535		
37.1	0.948	814			
	0.646	794			
	0.490	785	753		
39.1	0.836	174			
	0.592	171			
	0.458	169	163		
43.1	0.961	931			
	0.652	917			
	0.493	907	883		
51.1	0.794	140			
	0.571	137			
	0.445	136	131		
55.1	0.888	311			
	0.617	307			
	0.473	304	296		

.

KLINKENBERG CORRECTED AIR PERMEABILITY

Sample no.	(Mean Pressure) ⁻¹ -1	Air permeability	Klinkenberg corrected permeability		
	(atm.abs.)	md	md		
61.1	0.979	1771			
	0.660	1735			
	0.498	1705	1642		
63.1	0.993	6423			
	0.667	6337			
	0.502	6247	6087		
66.1	0.784	114			
	0.565	111			
	0.442	108	101		
72.1	0.658	49.3			
	0.497	48.3			
	0.399	47.6	45.0		
79.1	0.509	4.53			
	0.407	4.35			
	0.339	4.20	3.55		
90.1	0.612	11.1			
	0.470	10.6			
	0.381	10.4	9.20		
93.1	0.609	17.1			
	0.468	16.5			
	0.380	16.3	14.9		

-

KLINKENBERG CORRECTION

Geco 073 - Rogaland Industritrykk A s

KLINKENBERG CORRECTION

KLINKENBERG CORRECTION

CAPILLARY PRESSURE BY RESTORED STATE METHOD

COMPANY		STATOIL		BRINE SATURATION VERSUS PRESSURE (_{Bar})							GEOPHYSICAL COM	
DEPTH	NO	PERMEABILITY	POROSITY							OF NURWAY A'S		
m		K,e.l	Ø	0	0.05	0.1	0.3	0.5	1.0	3.0	12.0	
3664.70	20.1	503	17.3	100	82.5	48.6	31.5	26.3	22.0	20.8	20.6	
73,70	39.1	163	19.9	100	96.6	87.3	42.6	33.9	28.9	27.1	26.9	
84.40	43.1	883	20.2	100	78.1	46.4	26.9	22.6	19.0	18.2	18.0	
93.13	61.1	1642	20.2	100	57.3	41.0	26.5	22.7	19.5	19.0	18.5	
97.25	72.1	45.0	16.6	100	100	100	70.2	55.1	46.6	45.6	44.9	
3705.10	93.1	14.9	16.9	100	100	100	97.6	77.0	58.2	54.9	53.6	
												1

ł

Pressure : bar

 Well
 15/.8-1

 Sample No.
 43,1

 Kair
 883 md

 Depth
 3684,40m

 Well
 15/8-1

 Sample No.
 61,1

 Kair
 1642md

 Depth
 3693,13m

 Ø
 20,2%

100

Brine Saturation, Per Cent Pore Space.

Pressure : bar

Brine Saturation, Per Cent Pore Space.

Pressure : Bar

Sample no	Sw (fraction)	K.e.1(md)	Log K.e.l.
20.1	20.6	503	2.70
39.1	26.9	163	2.21
43.1	18.0	883	2.95
61.1	18.5	1642	3.22
72.1	44.9	45.0	1.65
93.1	53.6	14.9	1.17

By Least Square method following equation was : evaluated: Sw = - 18.66 Log K.e.l. + 73.66

K.e.l: equivalent liquid permeability (Klinkenberg corrected air permeability).

Water Saturation, Per Cent Pore Space.

			RI	ESISTI	VITY IN	DEX						
COMPAN	Y:	STATOIL				WELL	: 1	5/8 - 1			<u>, </u>	GEOPHYSICAL COMP
DEPTH	NO	PERMEABILITY	POROSITY			Re	esistivity rat	io versus brin	e saturation			UF NORWAY AS
m		K.e.l	Ø	FF 0	RR 0.05	RR 0.1	RR 0.3	RR 0.5	RR 1.0	RR 3.0	RR 12.0	RR
3664.70	20.1	503	17.3	20.8	1.48	3.44	6.80	9.58	13.3	14.4	14.6	
3673.70	39.1	163	19.9	21.0	1.07	1.30	4.81	8.69	10.2	11.0	11.8	
3684.40	43.1	883	20.2	15.7	1.63	3.72	10.0	14.3	20.8	22.5	22.5	
3693.13	61.1	1642	20.2	19.5	2.57	4.59	12.6	13.2	18.9	18.9	20.1	
3697.25	72.1	45.0	16.6	26.3	1.0	1.0	2.40	3.67	5.42	5.96	6.22	
3705.10	93.1	14.9	16.9	24.3	1.0	1.0	1.09	1.85	3.45	3.71	4.22	
<u></u>									1			

RESISTIVITY INDEX

By Weighted Least Squares method

Sample no	$Ri = b Sw^{-n}$
20.1	$Ri = 1.00 \text{ sw}^{-1.70}$
39.1	$Ri = 1.00 \ Sw^{-1.88}$
43.1	$Ri = 1.00 \ Sw^{-1.80}$
61.1	$Ri = 1.00 \ Sw^{-1.78}$
72.1	$Ri = 1.00 \text{ Sw}^{-2.25}$
93.1	$Ri = 1.00 \ Sw^{-2.26}$

1

By Least Squares method	
20.1	$Ri = 1.05 \text{ sw}^{-1.66}$
39.1	Ri = 1.01 Sw_1.87
43.1	$Ri = 0.97 \text{ Sw}^{-1.82}$
61.1	Ri = 0.93 $Sw^{-1.83}$
72.1	$Ri = 1.10 \text{ sw}^{-2.12}$
93.1	$Ri = 1.04 \ Sw^{-2.20}$

.

<u>ر</u> --

Water Saturation, Fraction of Pore Space.

Water Saturation, Fraction of Pore Space.

FORMATION RESISITIVITY FACTOR MEASURED AT ATMOSPHERIC OR EQUIVALENT ATMOSPHERIC CONDITIONS

 $FF = a \cdot \phi^{-m}$

		Na	:	41	300	ppm	
		K	:	1	470	ppm	
Simulated formation brine:							
		Mg	:	1	380	ppm	
		Ca	:	4	750	ppm	
Brine resistivity at 23°C	:		:	0.	072	ohm-m	
Frequency			:	1	KHz		

Sample no.	Porosity	Formation resistivity factor
20.1	17.3	20.8
31.1^{x}	16.8	22.1
39.1	19.9	21.0
43.1	20.2	15.7
51.1^{x}	20.0	18.5
61.1	20.2	19.5
72.1	16.6	26.3
90.1 ^x)	14.8	29.8
93.1	16.9	24.3

By	weighted 1	Least	squares	method:	a	-	1.00	m	=	1.78
By	Least squa	ares u	nethod	:	a	=	1.51	m	-	1.55

x): These samples have been measured at a Net Confining Pressure of 10 bar (equivalent atmospheric conditions).

.

-

FORMATION RESISTIVITY FACTOR MEASURED AT DIFFERENT NET CONFINING PRESSURES.

.

*

.

Net confin	ing	Sample No						
Pressure bar		31.1	51.1		90.	1	FI	F=a Ø ^{-m}
	ø	FF	ø	FF	ø	FF	By weighted Least Squares method	By Least Squares method
10 ^{x)}	16.8	22,1	20.0	18.5	14.8	29.8	a=1.00 m=1.77	a=1,50 m=1,54
50	16.3	25.7	19.4	19.0	14.3	32.8	a=1,00 m=1,79	a=1.01 m=1.79
100	16.1	26.5	19.2	19.5	14.1	34.5	a=1,00 m=1,80	a=0.93 m=1,84
200	15.9	27.5	19.0	20.4	13.9	37.0	a=1,00 m=1,82	a=0.87 m=1,89
300	15.8	28.0	18.9	20.6	13.8	38.5	a=1,00 m=1,82	a=0.76 m=1,97

x) : 10 bar is considered as equivalent atmospherical conditions.

POROSITY REDUCTION MEASURED BY BRINE WITH NET OVERBURDEN

	10	bar		50 ł	bar	100 bar			200 bar			300 bar		
Sample no.	Pore Volume	Ø orig. %	Pore Volume	Ø%	Ø.frac. of orig.	Pore Volume	Ø Ø%	.frac. of orig.	Pore Volum	e Ø%	Ø.frac. of orig.	Pore Volume	ø ø% o	• frac. f orig.
31.1	13.05	16.8	12.60	16.3	0.972	12.42	16.1	0.961	12.24	15.9	0.949	12.14	15.8	0.942
51.1	15.63	20.0	15.07	19.4	0.972	14.85	19.2	0.960	14.67	19.0	0.951	14.54	18.9	0.944
90.1	11.43	14.8	11.04	14.3	0.969	10.85	14.1	0.955	10.65	13.9	0.939	10.53	13.8	0.930

- 36 -

BRINE PERMEABILITY REDUCTION WITH NET OVERBUDEN

viscosity at 23 °C : 1.17 cp.

Sample no.	l0 bar K _{brine} orig.(md)	50 K _{brine} (md)	bar Fraction of orig.	100 K _{brine} (md)) bar Fraction of orig.	200 K _{brine} (md)) bar Fraction of orig.	300 K _{brine} (md)	bar Fraction of orig.
31.1	411	394	0.959	366	0.891	338	0.822	329	0.800
51.1	119	106	0.891	100	0.840	96.2	0.808	94.5	0.795
90.1	3.18	2.66	0.836	249	0.783	2.30	0.723	2.21	0.695

.

.

Permeability, Porosity Versus Net Overburden

Net overburden: bar

Net overburden: bar

POROSITY REDUCTION MEASURED BY HELIUM WITH NET OVERBURDEN

	15 bar	50 bar	100 bar	200 bar	300 bar
ample Pore to Volume	Pore Øorig. Volume %	Pore Ø.frag Volume Ø% of orig	• Pore Ø.fra • Volume Ø% of or	c. Pore Ø.frac. ig. Volume Ø% of orig	Pore Ø.frac. • Volume Ø% of orig.
5.1 10.92	10.92 14.2	10.55 13.8 0.972	10.33 13.5 0.95	10.09 13.2 0.930	9.95 13.1 0.923
7.1 14.30	14.30 18.2	13.89 17.8 0.978	13.63 17.5 0.96	2 13.35 17.2 0.945	13.18 17.1 0.940
5.1 15.35	15.35 20.0	14.90 19.5 0.975	14.65 19.2 0.96	0 14.42 19.0 0.950	14.30 18.8 0.940
3.1 16.80	16.80 22.4	16.15 21.7 0.969	15.90 21.5 0.96	0 15.59 21.2 0.946	15.40 20.9 0.933
6.1 11.55	11.55 15.1	11.13 14.6 0.967	10.91 14.4 0.95	64 10.61 14.1 0.934	10.40 13.8 0.914
9.1 10.51	10.51 13.3	10.20 13.0 0.977	10.00 12.8 0.96	9.77 12.5 0.940	9.58 12.3 0.925
5.1 10.92 7.1 14.30 5.1 15.35 3.1 16.80 6.1 11.55 79.1 10.51	10.92 14.2 14.30 18.2 15.35 20.0 16.80 22.4 11.55 15.1 10.51 13.3	10.55 13.8 0.972 13.89 17.8 0.978 14.90 19.5 0.975 16.15 21.7 0.969 11.13 14.6 0.967 10.20 13.0 0.977	10.33 13.5 0.95 13.63 17.5 0.96 14.65 19.2 0.96 15.90 21.5 0.96 10.91 14.4 0.95 10.00 12.8 0.96	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.95 13.1 0.4 13.18 17.1 0.4 14.30 18.8 0.4 15.40 20.9 0.4 10.40 13.8 0.4 9.58 12.3 0.4

.

*) Plug irregularily shaped.

POROSITY REDUCTION MEASURED BY HELIUM WITH NET OVERBURDEN

PORE VOLUMES CORRECTED TO MATRIX CUP MEASUREMENTS

	Atm 50 bar				100	bar		200 Ъ	ar	300 bar				
Sample no.	Pore Volume	Ø orig. %	Pore Volume	Ø%	Ø.frac. of orig.	Pore Volume	Ø%	Ø.frac. of orig.	Pore Volum	e Ø%	Ø.frac. of orig.	Pore Volume	¢ Ø% o	ofrac. f orig.
15.1	10.50	13.6	10.13	13.2	0.971	9.91	13.0	0.953	9.67	12.7	0.932	9.53	12.5	0.921
37.1	13.51	17.2	13.10	16.8	0.977	12.84	16.5	0.961	12.56	16.2	0.943	12.39	16.0	0.932
55.1	14.88	19.3	14.43	18.9	0.977	14.18	18.6	0 •96 4	13.95	18.4	0.951	13.83	18.2	0.944
* 63.1	15.86	21.2	15.21	20.5	0.966	14.96	20.2	0.953	14.65	19.9	0.938	14.46	19.7	0.928
66.1	10.75	14.1	10.33	13.6	0.964	10.11	13.3	0•946	9.81	13.0	0.922	9.60	12.8	0.905
79.1	10.24	13.0	9.93	12.6	0.973	9.73	12.4	0.956	9.50	12.2	0•936	9.31	12.0	0.919

*) Plug irregularily shaped.

-

KLINKENBERG CORRECTED AIR PERMEABILITY

at Net Overburden Pressure

Sample no. 15,1	(Mean Pressure) ⁻¹	Air permeability	Klinkenberg corrected permeability		
Net Overburden Pressure Bar	(atm.abs.) ⁻¹	md	nd		
15	0.942	688			
	0.643	675			
	0.488	663	638		
50	0.941	642			
	0.643	630			
	0.488	619	596		
100	0.941	612			
	0.643	601			
	0.489	591	570		
200	0.941	582			
,	0.643	570			
	0.488	559	536		
300	0.941	566			
	0.643	555			
	0.488	545	524		

.

KLINKENBERG CORRECTED AIR PERMEABILITY

at Net Overburden Pressure

Sample no. 37.1	(Mean Pressure) ⁻¹	Air permeability	Klinkenberg corrected		
Net Overburden Pressure Bar	(atm.abs.) ⁻¹	md	md		
15	0.955	826			
	0.649	810			
	0.492	797	768		
50	0.955	770			
	0.649	753			
	0.492	746	720		
100	0.955	746			
	0.649	731			
	0.492	719	692		
200	0.955	713			
	0.649	692			
	0.492	685	654		
300	0.955	689			
	0.649	673			
	0.492	663 [·]	636		

•

KLINKENBERG CORRECTED AIR PERMEABILITY

at Net Overburden Pressure

Sample no. 55.1	(Mean Pressure) ⁻¹	Air permeability	Klinkenberg corrected		
Net Overburden Pressure Bar	(atm.abs.) ⁻¹	md	md		
15	0.888	312			
	0.617	305			
	0.473	301	289		
50	0.888	293			
	0.617	286			
	0.473	283	271		
100	0.888	282			
	0.617	276			
	0.473	274	264		
200	0.888	271			
	0.617	264			
	0.473	261	249		
300	0.888	265			
	0.617	257			
	0.473	253	239		

KLINKENBERG CORRECTED AIR PERMEABILITY

at Net Overburden Pressure

Sample no.	(Mean Pressure) ⁻¹	Air permeability	Klinkenberg corrected permeability md		
Net Overburden Pressure Bar	(atm.abs.) ⁻¹	md			
15	0.000	5005			
15	0.993	5825			
	0.66/	5714			
	0.502	5620	5427		
50	0.000	5107			
50	0.993	5186			
	0.667	5105			
	0.502	5026	4879		
100	0.000	(075			
100	0.993	4875			
	0.667	4778			
	0.502	4715	4557		
200	0.093	4560			
200	0.993	4509			
	0.667	4486			
	0.502	4437	4305		
300	0 993	4296			
300	0.773	4270			
	0.66/	4198			
	0.502	4135	3976		

.

,

KLINKENBERG CORRECTED AIR PERMEABILITY

at Net Overburden Pressure

Sample no.	(Mean Pressure) ⁻¹	Air permeability	Klinkenberg corrected permeability md		
Net Overburden Pressure Bar	(atm.abs.) ⁻¹	md			
15	0.784	116			
	0.565	111			
	0.442	108	97.7		
50	0.783	105			
	0.565	101			
	0.442	98.3	89.8		
100	0.783	102			
	0,565	98.4			
	0.442	95.5	87.4		
200	0.783	97.9			
	0.565	94.9			
	0.442	91.8	84.5		
300	0.783	95.1			
	0.565	92.0			
	0.442	89.4	82.4		

.

.

KLINKENBERG CORRECTED AIR PERMEABILITY

at Net Overburden pressure

•

Sample no. 79.1	(Mean Pressure) ⁻¹	Air permeability	Klinkenberg corrected		
Net Overburden Pressure Bar	(atm.abs.) ⁻¹	md	md		
15	0.509	4.38			
	0.407	4.23			
	0.339	4.07	3.48		
50	0.509	3.95			
	0.407	3.73			
	0.339	3.59	2.87		
100	0.509	3.61			
	0.407	3.42			
	0.339	3.24	2.52		
200	0.509	3.18			
	0.407	3.00			
	0.339	2.85	2.20		
300	0.509	2.94			
	0.407	2.73			
	0.339	2.60	1.92		

:

AIR PERMEABILITY REDUCTION WITH NET OVERBURDEN

	(mg)	of orig.	(md)	of orig.	K.e.l. (md)	Fraction of orig.	K.e.l. (md)	Fraction of orig.
538	596	0.934	570	0.893	536	0.840	524	0.821
768	720	0.938	692	0.901	654	0.852	636	0.828
289	271	0.938	264	0.913	249	0.862	239	0.827
5427	4879	0.899	4557	0.840	4305	0.793	3976	0.733
97.7	89.8	0.919	87.4	0.895	84.5	0.865	82.4	0.843
3.48	2.87	0.825	2.52	0.724	2.20	0.632	1.92	0.552
5723	38 68 89 427 7.7 .48	38 596 68 720 89 271 427 4879 7.7 89.8 .48 2.87	38 596 0.934 68 720 0.938 89 271 0.938 427 4879 0.899 7.7 89.8 0.919 .48 2.87 0.825	38 596 0.934 570 68 720 0.938 692 89 271 0.938 264 427 4879 0.899 4557 7.7 89.8 0.919 87.4 .48 2.87 0.825 2.52	38 596 0.934 570 0.893 68 720 0.938 692 0.901 89 271 0.938 264 0.913 427 4879 0.899 4557 0.840 7.7 89.8 0.919 87.4 0.895 .48 2.87 0.825 2.52 0.724	38 596 0.934 570 0.893 536 68 720 0.938 692 0.901 654 89 271 0.938 264 0.913 249 427 4879 0.899 4557 0.840 4305 7.7 89.8 0.919 87.4 0.895 84.5 .48 2.87 0.825 2.52 0.724 2.20	38 596 0.934 570 0.893 536 0.840 68 720 0.938 692 0.901 654 0.852 89 271 0.938 264 0.913 249 0.862 427 4879 0.899 4557 0.840 4305 0.793 7.7 89.8 0.919 87.4 0.895 84.5 0.865 .48 2.87 0.825 2.52 0.724 2.20 0.632	38 596 0.934 570 0.893 536 0.840 524 68 720 0.938 692 0.901 654 0.852 636 89 271 0.938 264 0.913 249 0.862 239 427 4879 0.899 4557 0.840 4305 0.793 3976 7.7 89.8 0.919 87.4 0.895 84.5 0.865 82.4 .48 2.87 0.825 2.52 0.724 2.20 0.632 1.92

•

ัว

Geco 073 --Rogaland Industritrykk A.s

Net overburden: bar

Permeability, Porosity Versus Net Overburden

Net overburden: bar

Permeability, Porosity Versus Net Overburden

Net overburden: bar