
Final Well Report

30/07-03

Scientific Software Intercomp (UK) Ltd.

Monarch House
Crabtree Office Village
Eversley Way, Egham
Surrey TW20 8RY
Telephone 0784 430030 Facsimile 0784 431889

Map produced by the kind permision of Claygate Services Ltd.

Contents for Well: 30/07-03

Title page	
Contents	
Abbreviations	
Table 1	Basic well Data
Table 2	Available Data
Table 3	Data Correction Record
Table 4	Environmental Correction Data
Heimdal Reservoir	
	D = 14 G
Table 5	-
Cutoffs versus : Pore volum	e and Hydrocarbon Volume
Quality Control Checklist	
Table 6	Analysis Parameters
Table 7	Analysis Methods

ABBREVIATIONS

1	micro	MSFL mV	Micro Spherically Focused Lomilli Volts
ADH RADH	Average	N	Saturation Exponent
	Bad Data Flag 0=Good 1=No Bottom Hole Formation	NGT	Natural Gamma Ray Tool
SH FMT		NP	Net Pay
BS BVW	Bit Size (inches) Bulk Volume Water (PHIE*SW)	NPHI	Neutron Porosity Log D.M.
SVXO	Bulk Volume Filtrate	NR	Net Reservoir
SVAC	(PHIE*SXO)	P/A	Plugged and Abandoned
CAL	Composite Caliper for Well	P.V.	Pore Volume
ALI	Caliper from FDC D.M.	PAYN	Cum. NP
C C	centimeters cubed	PEF	Photo-Electric Effect D.M.
cq	cc of gas	PHIE	Effective porosity
GAM	Core Gamma D.M.	PHIN	Neutron Env. C. LS
GR	Gamma Ray From NGT	Por.	Porosity
NL	Compensated Neutron Log	Porv	Cum. P.V. NR
:0	Cut off	POTA	Potassium D.M.
OGD	Core Grain density D.M.	ppm	parts per million
omp.	Compaction	PSUM	Core summation Por. D.M.
	Core Description	PVNP	Cum. P.V. NP
coso	Core Oil saturation D.M.	Q	Lithology density total
OSW	Core Water saturation D.M.	R.C.A.	Routine Core analysis
PO	Core Helium porosity D.M.	R16	Short normal resistivity D.M
POV	Core Vertical Helium	Res	Reservoir
	porosity D.M.	Resn	Cum. NR
Cum.	Cumulative	RFOC	Shallow focused resistivity
).M.	Depth Matched		D.M.
P.No	Drilling Permit Number	RFT	Repeat Formation Tester
.Units	Depth Units	RHOB	Density log (pb)
Dens.	Density	RHOC	Bulk density Env. C.
OIL	Dual Induction Log	RILD	Deep Induction Resistivity
ORHO	Density Correction ($\Delta \rho$) D.M.	RILM	Medium Induction Resistivity
ST	Drill Stem Test	RLL3	Laterolog-3 resistivity D.M.
T	Interval Transit Time D.M.	RLL7	Laterolog-7 resistivity D.M.
OTL	DT (long spacing)	RLLD	Deep Laterolog D.M.
Env. C.	Environmental Corrections	RLLM	Medium induction resistivity
∍q.	equivalent		D.M.
Estim.	Estimate	RLLS	Medium Laterolog D.M.
fact.	Factor	RLLS	Medium laterolog D.M.
FDC	Compensated Formation	RMF	Resistivity of Mud Filtrate
	Density	RMFE	Resistivity Mud Filtrate (Na
711.	Filtrate		equivalent)
ft	feet	RMLL	Microlaterolog D.M.
· W	Formation Water	ROMA	Density Matrix Log
G. Res.	Gross Res.	RSFL	Spherically Focused
GI	Gross Interval		Resistivity D.M.
gm.	grams	RT	Deep resistivity invasion
GR	Gamma Ray	DUG	corrected
GRCO	GR Env. C.	RUG	Rugosity of Hole Formation Water Resistivity
GRES	Cum. G. Res.	Rw RWA	Apparent Formation Water
GRI	Gamma Ray Induction	MA	Resistivity
H-C	Hydrocarbon	Rwe	Resistivity Formation Water
HYCV	Cum. H-C P.V NP	VAG	(NaCl equivalent)
isf	Induction Spherically	RXO	Flushed resistivity invasion
	Focused	KAO	corrected
К	Arithmetic AV Estim.		seconds
	Horizontal Air Permeability	s Sal.	Salinity
KB EL.	Kelly Bushing Elevation	SP	Spontaneous Potential
ΚŒV	Potassium Env. C.	(SS)	(Sub Sea)
Kh	Permeability Thickness	SS	Sandstone
KHA	Core apparent permeability	SSP	Static Spontaneous Potential
	D.M.	Stof	Tool standoff from hole
KHAE	Estimated horizontal	SW	Water Saturation
	permeability	SXO	Invaded zone water saturation
KHAK	Core Klinkenberg	TD	Total Depth
	permeability D.M.	Temp.	Temperature
KHAL	Core apparent liquid	TEND	Tension curve from density r
	permeability D.M.	LEMU	D.M.
KHAT	Core Cumulative permeability	TENI	Tension curve from ISF/Sonio
7773	thickness		not D.M.
KVA	Core apparent vert. liquid	THEV	Thorium environmentally
VIII V	permeability D.M.		corrected
KVAK	Core vert. Klinkenberg	THOR	Thorium D.M.
	permeability D.M.	UEV	Uranium environmentally
KVAL	Core app. vert. liquid		corrected
	permeability D.M.	URAN	Uranium D.M.
LS	Limestone	VCL	Volume clay
m	meters	w/	with
M	Cementation Exponent		Water Depth
Max.	Maximum	Wat. Dep.	Well Depth
Mcc	1000 cc	Wel. Dep.	Well Name
md	milli darcies	Well	
(MD)	(Measured Depth)	WT	Water
	Minimum	wtr	water
Min.			
Min. Minf	Special Mineral Detection Flag 1=coal, 2=tuff,		

Table 1

Basic Well Data

Well: 30/07 -03 Operator: HYDRO

Field: WILDCAT Status: P/A

D.P.NO : 163 Completion: 25-10-1976

KB. EL. : 24.0 TD. (MD) : 4044.00

Wat. Dep.: 98.0 TD. (SS) : -4020

BH FMT : CROMER KNOLL D. Units : m

R.C.A. : NO Core Desc.: NO

Reservoir Intervals

Heimdal

Top : 2115.00 Base : 2274.00 Gross : 159

Remarks

No tests reported.

Minimum log suite (ISF/DT). No prints

available below 700.

Shows/Intervals of interest:

SS 400-1200 in Nordland. No shows. Lignitic.

Cycle skipping on DT. Not processed.

SS/LS 2100-2400 in Rogaland. Gas and poor sample

shows from SS and LS. Tuffaceous.

DT poor in places due to cycle

skipping. Balder & Heimdal interpreted.

SS/LS 2520-2575 in Shetland. No show. Poor/missing

logs over some of interval. Bad/nulled

shaley. Not processed.

Table 2

Available Data

Well : 30/07 -03

Core Data

Interval One Top: 3918 Bottom: 3936 Number of cores: 1

Log Data

MNEMONIC RESERVOIR 1 2 3 4 5 6

Gamma Ray		GR	x		
Caliper		CAL		11	
Spontaneous Potential		SP	x		
Density		RHOB			
Neutron		NPHI			
Photo-Electric Effect		PEF			
Density Correction		DRHO			
Sonic		DT	Х		
Deep Induction	(ISF)	RILD	х		
Spherically Focused	(ISF)	RSFL	x		
Deep Induction	(DIL)	RILD			
Medium Induction	(DIL)	RILM			
Deep Laterolog	(DLL)	RLLD			
Shallow Laterolog	(DLL)	RLLS			
Microspherically Focus	sed	MSFL			
Spectral Gamma	(NGT)				

1 = Heimdal

Table 3

Data Correction Record

Well: 30/07 -03

Log Verification: NO
No log prints available.

Core Data Shifts: NO

Log Data Shifts: NO

Base Log:

Minor Shifts: NO

Data Editing: YES
Smoothed cycle skips 2160-2180.

Remarks

Table 4

Environmental Correction Data

Well : 30/07 -03 Reservoirs : Rogaland-Shetland

Top Depth : 2000.0 Bottom Depth : 2600.0

Bit Size : 17.5 GR Centered : NO

ILD STD-Off: 1.5

Mud Data

 Mud Type
 : FRESH WTR/LIGNO.
 Mud WT. (gm/cc) : 1.20

 Mud Res. (ohm-m): 0.300
 @ Temp. (°C) : 23.9

 FIL. RES.(ohm-m): 0.225
 @ Temp. (°C) : 23.9

 Cake Res.(ohm-m): 0.450
 @ Temp. (°C) : 23.9

 @ Depth
 : 2642

Max. Temp. (°C) : 85

Mud Salinity (ppm) (from Header Resistivities) : 19,800 Mud Chlorides (ppm) (from Mud Log) : 12,000 Mud Sal.(ppm NaCl Eq) (Mud Log Chlorides * 1.645) : 19,740

Remarks

No log prints available. Estimated mud properties from mud log. ISF/DT only. Missing intervals 2108-2113, 2289-2295, and 2546-2552.

1 % oil in mud.

Table 5

Results Summary

Well : 30/07 -03 Reservoir : Heimdal

Top Depth : 2115.0 Bottom Depth: 2274.0

Gross Interval : 159.00

Gross Reservoir Shale Vol.C/O: 0.40

Gross Res. : 77.1 Gross Res/GR Int: 0.48

Net Reservoir Porosity C/O: 0.10

Net Reservoir : 76.8 Net Res/GR Res : 1.00

Net Res/GR Int : 0.48 AV SW Net Res : 0.921

AV Porosity : 0.368 Cumm. P.V. : 28.25

Net Pay Wat. Sat. C/O: 0.60

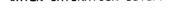
Net Pay : 0.2 Net Pay/GR Res : 0.00

Net Pay/Net Res: 0.000 Aver. SW Net Pay: 0.594

Hydrocarbon P.V.: 0.03 P.V. of Net Pay: 0.07

Remarks

RESULTS SUMMARY PLOT

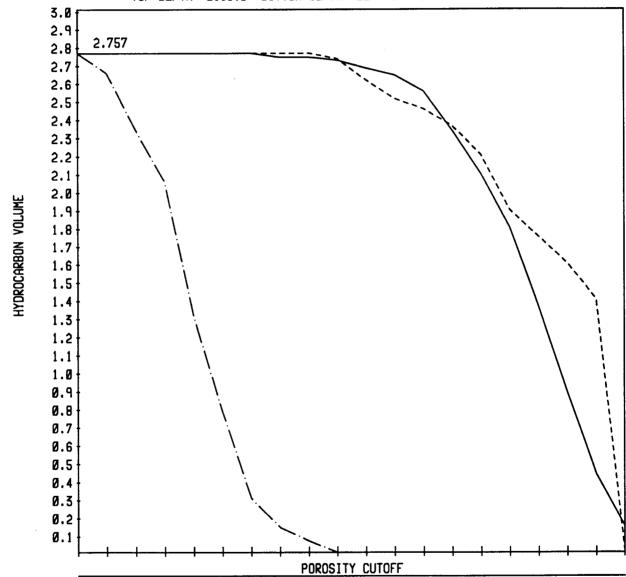

WELL NUMBER 685003007030.00

159.0 TOP DEPTH 2115.0 BOTTOM DEPTH 2274.0 GROSS INTERVAL 32. 31. 29.359 30. 29. 28. 27. 26. 25. 24. 23. 22. 21. 20. 19. 18. 17. 16. 15. 14. 13. 12. 11. 10. 9. 8. 7. 6. 5. 4. 3. 2. POROSITY CUTOFF

0. .026.053.079.105.132.158.184.211.237.263.289.316.342.368.395.421.447.474.500 SHALE VOLUME CUTOFF

1. .95 .89 .84 .79 .74 .68 .63 .58 .53 .47 .42 .37 .32 .26 .21 .16 .11 .05 .00

WATER SATURATION CUTOFF



RESULTS SUMMARY PLOT

WELL NUMBER 685003007030.00

TOP DEPTH 2115.0 BOTTOM DEPTH 2274.0 GROSS INTERVAL 159.0

0. .026.053.079.105.132.158.184.211.237.263.289.316.342.368.395.421.447.474.500

SHALE VOLUME CUTOFF

1. .95 .89 .84 .79 .74 .68 .63 .58 .53 .47 .42 .37 .32 .26 .21 .16 .11 .05 .00

WATER SATURATION CUTOFF

QUALITY CONTROL CHECKLIST

WELL NAME: 30/7-3 RESERVOIR: Heimdal

Data Preparation Yes No
Depth matching satisfactory? X
Environmental corrections satisfactory? X
Limitations of basic data:

Induction / sonic only. No log prints, so only estimated mud properties.

Petrophysical Interpretation	Yes	No
Full use made of available data?	x	
Parameters acceptable?	Х	
Model applicable?	X	
Results satisfactory?	X	

Comments

Porosity from sonic log only assuming sandstone. Hydrocarbon indications consistent with mud log.

Table 6

Analysis Parameters

Well: 30/07 -03 Reservoir: Heimdal

Top Depth : 2115.0 Bottom Depth: 2274.0

Fluid and Saturation Equation Parameters

RW. (ohms-m) : 0.045 Temp. (°C) : 73 FM.WT.Sal. $(NaCl\ ppm)$: 70,000 Source of RW. : SP

RW.@ 15.6°C(ohms-m) : 0.110

RMF. (ohms-m) : 0.108 Temp. (°C) : 73 Fil.Sal. (ppm 10-6) : 0.027 Dens. H-C. (g/cc) : 0.85 Sonic FL.(μ s/ft): 189

Parameters

Matrix Shale

(api) : 80 GR (api) : 38 GR : -47 SP (mv) : -11SP (mv) N Density (g/cc): 2.65 Density (g/cc) : $(\mu s/ft): 124$ Sonic (µs/ft): 56 Sonic R.(ohms-m): 1.00Neutron (lpu) : -4 Neutron (lpu) :

Sonic Compaction Factor: 1.00

Remarks

Rw from SP @ 2270m (73°C)

 $Rmf = 0.228 @ 24^{\circ}C \equiv 0.108 @ 73^{\circ}C$

Rmfe = 0.092, SSP = -36

Rwe = 0.035, Rw = 0.045 (or 0.115 @ 60°F)

Table 7

Analysis Methods

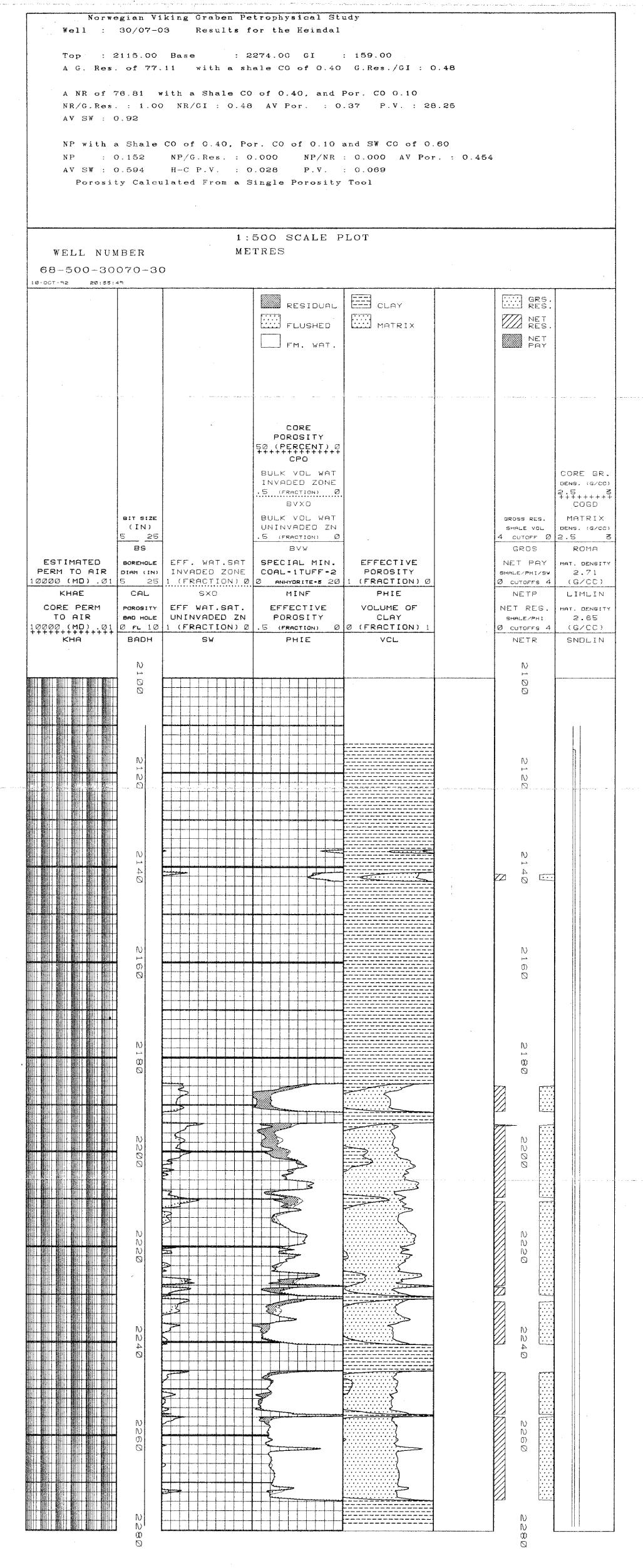
Well : 30/07 -03

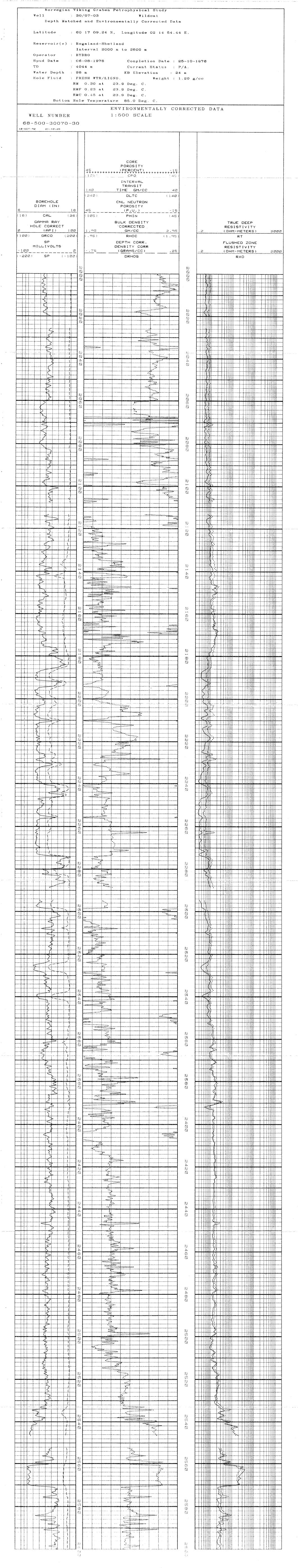
Reservoir : Heimdal

Top Depth : 2115.0

Bottom Depth: 2274.0

The Lithology Model used was Sand Shale.


The Porosity Log used was: Sonic.


Shale Volume used Spontaneous Potential.

The water saturation equation was INDONESIAN.

Remarks

