

WELL SUMMARY

FOR A/S NORSKE SHELL EXPLORATION & PRODUCTION

WELL 31/2 - 6

1 ANCHOR DRILLING FLUIDS AS WELL SUMMARY FOR A/S NORSKE SHELL EXPLORATION & PRODUCTION WELL 31/2 - 6

GENERAL SUMMARY

OPERATOR A/S NORSKE SHELL

WELL NO. 31/2-6

OPERATOR'S REPRESENTATIVES

J.Hulme, J.Daly

CONTRACTOR Dolphin Services A/S RIG "Borgny Dolphin" CONTRACTOR'S REPRESENTATIVES J.Butchart, H.Frigstad

ANCHOR ENGINEERS

A.Lund, D.Geddes, C.Atkinson

368 m

462 m

448 m

ANCHOR DRILLING FLUIDS AS

SEABED to RKB 36" HOLE DRILLED TO 30" CASING SET AT

WATER DEPTH

26" HOLE DRILLED TO	820 m
20" CASING SET AT	800 m
17 ¹ / ₂ " HOLE DRILLED TO	1485 m
13%" CASING SET AT	1475 m
12¼" HOLE DRILLED TO	1760 m
9%" CASING SET AT	1572 m
8½" HOLE DRILLED TO	

7" LINER SET AT

6" HOLE DRILLED TO

WELL NAME 31/2-6

OPERATOR A/S NORSKE SHELL

ENGINEERS DENNIS GEDDES

DATE 20/7-81

Locate rig.

Built + 1400 bbls pre-hydrated Bentonite.

DATE 21/7-81

Spudded well. Drilled 368-420 m (midnight). Pumped +20 bbls spud mud at each connection.

DATE 22/7-81

Hit boulder bed at 420 m. Penetration rate Zero. Reamed 406-420 and POOH. Pick up new bit and RIH. Attempt to drill without any progress. POOH and picked up $17\frac{1}{2}$ " bit. RIH and drill $17\frac{1}{2}$ " pilot hole 420-462 m. POOH, made up new bit and RIH with $17\frac{1}{2}$ " bit and 26" hole opener.

WELL NAME 31/2-6

OPERATOR A/S NORSKE SHELL

ENGINEERS DENNIS GEDDES

DATE 23/7-81 Opened hole to 26" from 420-462 m and POOH. RIH with RIH. 36" hole opener and opened to 36" from 420-456 m. Wiper trip and POOH after displacing hole to spud mud. DATE 24/7-81 Rigged up and ran 30" casing. Circulated through casing. (no returns) Worked casing and established circulation. Cemented 30", backed out running tool and POOH. RIH with $17\frac{1}{2}$ " bit and 26" hole opener, Drilled cement 437-449m (midnight) Mixed +300 bbls spud mud at 1.40 s.g. and +740 bbls unweighted spud mud. DATE 25/7-81 Continued to drill out cement from 449-465 m and POOH. Rigged up and ran pin connector and riser. Tested lines. RIH with 17¹/₂" bit and drilled 465-520 m (midnight) Displaced hole to seawater/gel system. Treated with Drispac to increase viscosity to +60 sec/qt.

WELL NAME 31/2 - 6

OPERATOR A/S NORSKE SHELL

ENGINEERS DENNIS GEDDES

DATE 26/7-81

Drilled ahead with surveys 520-820 m and pulled to shoe for wiper trip. Hole tight at 523 m.

Washed and reamed through tight spot.

Massive dilution with seawater to maintain required mud density through this interval. Used Drispac to keep viscosity at 45-50 sec/qt.

DATE 27/7-81

Continued to wash to shoe. RIH and tagged bottom (no fill). POOH and rigged up Schlumberger. Tool hung up at 562 m. RIH with bit and washed and reamed 608-624 m. Ran to bottom and circulated bottoms up. Made wiper trip and ran back to bottom. Circulated bottoms up and spotted+500 bbls of 1.40 s.g. mud in open hole. POOH. Rigged up and ran Schlumberger.

DATE 28/7-81

RIH, displaced to seawater, lost returns when displacing 1.40 s.g. mud. Opened seabed dump valve and re-gained returns. Circulated bottoms up. Opened pin connector and observed well. Circulated bottoms up and pumped +400 bbls viscous mud at 1.15 s.g. POOH. RIH open-ended and set cement plug at 520-445 m. RIH and drilled out cement, ran clean to bottom.

WELL NAME 31/2-6

OPERATOR A/S NORSKE SHELL

ENGINEERS DENNIS GEDDES/CHRIS ATKINSON

DATE 29/7-81

Circulated hole to seawater and observed the well. Circulated bottoms up + +500 bbls of 1.15 S.G. mud. RIH and set 85 m cement plug at 500 m - squeezed 50 bbls. POOH. RIH with bit, circulated bottoms up and observed well. (static). Tagged cement at 443 m. Drilled cement 443-567 m (midnight).

DATE 30/7-81

Circulated hole clean with seawater and observed well. Circulated bottoms up. Drilled ahead 595-820 m. Circulated bottoms up and POOH. Picked up 26" underreamer and RIH.

Displaced hole to seawater while drilling ahead.

DATE 31/7-81

RIH to 550 m - survey - POOH to 410 m. Washed down 410 -478 m. Under-reamed (26") 478-808 m.

Continuous water addition required for mud weight at 1.12 S.G. max. even with mud cleaner unit and desander running.

Maintained alkalinity with caustic.

Weighted up pit no. 1 and pit no. 3 to 1.35 S.G. as per orders - started weight up pit no. 4 also.

WELL NAME 31/2-6

OPERATOR A/S NORSKE SHELL

ENGINEERS	CHRIS ATKINSON

_

	Under-ream Pumped 105 1.11 s.g. 1 bbls 1.45 well. Pul chased wit: gauge seve shoe. Con- reamed sec	ed 808-820 m. Circulated bottoms up + 15 mins. 0 bbls of 1.35 s.g. mud. Chased with 20 bbls mud. Observed well. Pulled to 500 m. Pumped 325 s.g. mud chased with 20 bbls 1.11 s.g. mud. Observed led to 367 m. Pumped 25 bbls of 1.45 s.g. mud h 20 bbls 1.11 s.g. mud. POOH. Logged. Under ral places. Made up 26" undereamer. RIH to 30" ditioned system to balance at 1.13 s.g. Under- tion joint by joint.
<u> </u>	2/8 - 81	
DATE	Continued	re-underream to 820 m. Continue heavy dilution for
DATE	Continued maximum mu XC-Polymer Pulled to out of hol	re-underream to 820 m. Continue heavy dilution for dweight in at 1.16 s.g. Viscosity maintained with . Pumped 1050 bbls of 1.35 s.g. mud to displace hole. 500 m. Pumped 350 bbls of 1.45 s.g. mud and pulled e. Started pulling riser.
DATE	Continued maximum mu XC-Polymer Pulled to out of hol	re-underream to 820 m. Continue heavy dilution for dweight in at 1.16 s.g. Viscosity maintained with . Pumped 1050 bbls of 1.35 s.g. mud to displace hole. 500 m. Pumped 350 bbls of 1.45 s.g. mud and pulled e. Started pulling riser.
DATE	Continued maximum mu XC-Polymer Pulled to out of hole	re-underream to 820 m. Continue heavy dilution for dweight in at 1.16 s.g. Viscosity maintained with . Pumped 1050 bbls of 1.35 s.g. mud to displace hole. 500 m. Pumped 350 bbls of 1.45 s.g. mud and pulled e. Started pulling riser.

DAILY SUMMARY REPORT

WELL NAME 31/2 - 6

OPERATOR A/S NORSKE SHELL

ENGINEERS CHRIS ATKINSON

DATE	4/8-81
	Displaced hole with 720 bbls of 1.35 specific gravity gel/sea- water. Cemented 20" casing. Ran BOP-stack and riser.
	Cleaned out all pits and lines.
	Mixed up 1355 bbls KCl/Polymer. Started to weight up the mud to 1.27 s.g. Dumped and cleaned sand traps. Dressed mud cleaner with 150 mesh screens.
DATE	5/8-81
	Drilled 820-825 m new formation and displaced to mud. Circulated hole clean prior to leak-off test. Finished weighting up pits to 1.26 s.g. Added 1 ppb Ancopol to the mud.
DATE	6/8-81
	Performed leak-off test equivalent to 1.41 s.g. POOH. Made up 12 1/4" bit and BHA. RIH. Drilled 12 1/4" hole 825-976 m.
	Performed leak-off test equivalent to 1.41 s.g. POOH. Made up 12 1/4" bit and BHA. RIH. Drilled 12 1/4" hole 825-976 m. Finished mixing new mud in pits 2, 3 and 4. Weighted up no. 2 and 4 to 1.26 s.g., and no. 3 to 1.45 s.g. for kill mud.
	Performed leak-off test equivalent to 1.41 s.g. POOH. Made up 12 1/4" bit and BHA. RIH. Drilled 12 1/4" hole 825-976 m. Finished mixing new mud in pits 2, 3 and 4. Weighted up no. 2 and 4 to 1.26 s.g., and no. 3 to 1.45 s.g. for kill mud. Mixed 40 bbls Hi-vis pill. Pumped pill prior to start drilling to clean out the hole below the shoe.

WELL NAME 31/2 - 6

OPERATOR A/S NORSKE SHELL

ENGINEERS CHRIS A

CHRIS ATKINSON

DATE 7/8-81

Drilled 12 1/4" pilot hole 976-1050 m. Circulated bottoms up. POOH - tight at 851-880 m. Worked pipe - POOH - changed to $17\frac{1}{2}$ " bit and bottom hole assembly - RIH and reamed 825-1050 m and circulated bottoms up prior to survey and short trip.

Continued maintenance of Ancopol and KCl levels. Made up pit no. 2 Dilution mix (350 bbls).

Cuttings very firm and dry.

DATE 8/8-81

Drilled $17\frac{1}{2}$ " hole to 1050 m. Circulated to clean hole. Made wiper trip to shoe - tight at 900 m - worked pipe and circulated 900-875 m. Continued POOH. RIH to total depth - circulated to clean hole .

Drilled 1050-1303 m with surveys.

Increased mud weight to 1.31 specific gravity after increasing gas (4% background) and fair amounts of cavings building up over shakers.

DATE 9/8-81

Circulated bottoms up. POOH - tight spots. Picked up new bit and new D.P. - RIH - to bottom at 1298 m - 5 m fill - drilled $17\frac{1}{2}$ " hole 1303-1305 m. Lost circulation - regained with 50 spm (100 bbls mud lost) - added Mica to system - gradually increased strokes and maintained circulation - drilled ahead to 1450 m (survey at 1403 m - $3/4^{\circ}$).

Weighted up pit no. 4 to 1.31 specific gravity. Made up new pit no. 2 of dilution mud mix - background gas variable 2-5% with peaks of 10-20%, but no cavings noted - maintained system weight at 1.31 specific gravity minimum.

WELL NAME 31/2 - 6

OPERATOR A/S NORSKE SHELL

ENGINEERS CHRIS ATKINSON

DATE 10/8-81 Drilled 17 ½" hole 1450-1485 m (casing pt) - started circulating bottoms up - lost circulation. (partial returns) Mixed Mica and circulated with reduced strokes - still loosing. POOH to shoe broke circulation and cleaned out hole (boosted riser with Halliburton pump down (choke/kill lines). POOH to lay down 17 $\frac{1}{2}$ " stabs (<u>no</u> balling). RIH - tight at 1400 m - broke circulation - reamed 7 joints to total depth - slight losses. Pumped 50 bbl Hi-vis pill to clean Circulated out. Had 34 % trip gas and lost mud over hole. shakers (25 bbls). Continued circulating until hole clean -Pumped slug and started POOH to log. DATE 11/8-81 Continued POOH to shoe - lost 40 bbls mud. Observed well. Level dropped 8 bbls. Continued POOH - level steady. Rigged up and ran logs - made up casing hanger assembly. Made up 17 $\frac{1}{3}$ " bit and BHA (no stabs) RIH for clean out trip. No returns from displacements until final 20 stands D.P. Tripped in to 1475 m (10 m off bottom) - tight spot. Circulated slowly, increased strokes - washed and reamed 1475-1485 m with Circulated bottoms up.(4% trip gas only) 80 spm. Continued circulating hole clean (200 spm). Minimal losses. Flow check. Slugged pipe and POOH to run casing. Added LCM when on bottom circulating to help seal hole and stop losses. DATE 12/8-81 Finished POOH with 17 $\frac{1}{2}$ " bit. Rigged and ran 13 3/8" casing checked for losses while running casing. Landed casing (shoe at 1475 m) - rigged up to start cement job. Pumped 250 bbls of 1.20 specific gravity mud with 5 ppb Mica prior to cement job. Lost approx. 35 bbls_mud in hole when initially circulating the 500 bbls of 1.31 specific gravity mud.

WELL NAME 31/2 - 6

OPERATOR A/S NORSKE SHELL

ENGINEERS DENNIS GEDDES

DATE 13/8-81 Cemented 13 3/8" casing - displaced cement with 553 bbbls of 1.31 specific gravity mud. Bumped plug. Full returns obtained throughout cementing - no back flow. Dumped and cleaned out sand traps. DATE 14/8-81 RIH and tagged cement at 1457 m. Drilled out plug and Circulated and reduced mud weight from 1.31 to cement. 1.20 specific gravity. Drilled out shoe and performed leak-off test to 1.62 specific gravity eqv. mud weight. Drilled 1485 - 1490 m and POOH. RIH and drilled 1490-1497m, circulated bottoms up and POOH. DATE 15/8-81 Circulated bottoms up at 1501 m. Drilled 12 1/4" hole 1501-1504 m, circulated bottoms up and POOH. RIH with core barrel and cored 1504-1514 m and POOH. RIH to cut core no. 2. Reduced mud weight as per instructions from 1.20 to 1.18 specific gravity.

WELL NAME 31/2 -6

OPERATOR A/S NORSKE SHELL

ENGINEERS : DENNIS GEDDES

DATE 16/8-81 Cored 1514-1532.5m and POOH. Hole tight at 1518-1509 m. Recovered core no. 2 and RIH - Cored 1532.5-1549.5 (midnight) DATE 17/8-81 Cored 1549.5 - 1551m and POOH. Recovered core no. 3 and RIH. Cored 1556-1567m (midnight) DATE 18/8-81 Continued to core 1567-1576 m and POOH. RIH with core head no. & and cored 1576.12 - 1583.9m and POOH.

WELL NAME 31/2 - 6

OPERATOR A/S NORSKE SHELL

ENGINEERS DENNIS GEDDES

DATE 19/8-81 RIH with core bit no. 3 and cut core no. 7 from 1583.91 m to 1602.8 m and POOH. RIH and cut core no. 8 - 1602.8 -1616m (Midnight.) -DATE 20/8-81 Cored 1616-1618.7 m and POOH. RIH and cored 1618.7 - 1632.06 m and POOH. Made up bit and bottom hole assembly. RIH and reamed 8 $\frac{1}{2}$ " hole to 12 1/4". 1504-1540 m (Midnight). DATE 21/8-81 Continued to ream $8\frac{1}{2}$ " hole to 12 1/4" 1540-1632 m. Drilled 12 1/4" hole 1632-1657m and POOH. RIH with new bit and drilled 1657-1700m (midnight).

I

DAILY SUMMARY REPORT

- ----

WELL NAME 31/2 - 6

OPERATOR A/S NORSKE SHELL

ENGINEERS DENNIS GEDDES

DATE	I
22/8-81	
	-
Drilled ah	ead 1700m - 1760 m. Wiper trip, circulated bottoms
up and POO	H.
Rigged up	Schlumberger for logging.
DATE 22/0 01	
23/8-81	J
Continued	to run logs.
	·
DATE 24 /8 01	
24/0-01	1
Rigged dow	n Schlumberger. RIH, circulated and conditioned.
POOH, rigg	ea up and ran y 5/8" casing.

WELL NAME 31/2 - 6

OPERATOR A/S NORSKE SHELL

ENGINEERS

DENNIS GEDDES

DATE 25/8-81

Ran and landed 9 5/8" casing. Circulated through casing without losses. Pumped +100 bbls. 1.10 specific gravity mud prior to cementing. Cemented 9 5/8" and displaced with 330 bbls 1.18 specific gravity mud without losses. Collapsed 9 5/8" casing at +761 m while attempting to test rams.

DATE 26/8-81

RIH and tagged bridge at 771.25 m. POOH. RIH with casing swage and attempted to open casing at 767.27 m. POOH. RIH and cut casing at 391 m below wellhead. POOH. RIH with spear and retrieved fish.

DATE 27/8-81

Laid out 9 5/8" casing. Attempted to back-off casing below collapsed section. Recovered cut joint. RIH and milled on 9 5/8" casing. Raised viscosity, PV and YP with XC-Polymer to assist hole cleaning while milling.

WELL NAME 31/2 - 6

OPERATOR A/S NORSKE SHELL

ENGINEERS ARNE LUND

DATE 28/8-81 Milled on 9 5/8" casing. Maintained high Y.P. to provide good hole cleaning. Dumped old mud in pit no. 3 and started make up 300 bbl prehydrated gel as per order. Polymer over shakers probably due to lack of shear and pH increase from old cement between 13 3/8" and 9 5/8" casings. DATE 29/8-81 Milled on 9 5/8" casing. Bled 200 bbl pre-hydrated gel in to active mud. DATE 30/8-81 Milled on 9 5/8" casing with wash over tool. Two mis-runs with fishing Dye. Dumped 150 bbls active mud and bled pre-hydrated gel into system to control viscosity.

· -----

DAILY SUMMARY REPORT

WELL NAME 31/2 - 6

OPERATOR A/S NORSKE SHELL

ENGINEERS ARNE LUND

DATE 31/8-81 Milled on 9 5/8" casing. Made two runs with Dye-collar. No success . Made up 200 bbls pre-hydrated gel. DATE 1/9-81 Milled on 9 5/8" casing with wash over tool. Trip to change tool. Bled 200 bbls pre-hydrated gel into system for rheology control. DATE 2/9-81 Milled and washed over fish. POOH. RIH with Dye-collar and latched on to fish. POOH with-fish.

WELL NAME 31/2 - 6

OPERATOR A/S NORSKE SHELL

ENGINEERS ARNE LUND

DATE
3/9-81
Laid down fish. Top of 9 5/8" casing at 806m. Wiper trip to
total depth with 8 ¹ / ₄ " bit. Circulated bottoms up. POOH.
Winner the with 12 2/0" apping scrapper to 806 m. Logging
wiper crip with 15 576 casing, scraper to boo m. hogging.
4/7-01
Logging.
Pressure tested overlap and casing . O.K.
Charted testing POP
Dumped 532 bbl surface mud.
· · · · · · · · · · · · · · · · · · ·
DATE
5/9-81
Tested BOP
Den in hele with coning agreenes. Displaced and in hele
kan in noie with casing scraper. Displaced mud in noie
with seawater and circulated clean.
Saved mud in pit no. 1,2 and 3.
Cleaned shakers sandtrans and nit no 4
Dillad DEO this hains in no 1 and mined U.D.C. so now program
Filled 250 bbis brine in no. 4 and mixed H.E.C., as per program.
Viscosity >200.
Changed screens on 2 shakers to : top 80/80. bottom 100/100.

· · ---

OPERATOR: A/S NORSKE SHELL

WELL NO. 31/2-6

_____<u>36"___</u>HOLE/___<u>30"</u>____CASING INTERVAL

Seabed was tagged at 368 m and drilling commenced with a 26" bit. The hole was drilled to 420 m using seawater and spotting 20 bbls high viscosity, pre-hydrated Bentonite before each connection.

The 26" bit was pulled at 420 m and replaced with a $17\frac{1}{2}$ " bit. Drilled the $17\frac{1}{2}$ " hole to 462 m and opened up to 26" and then to 36".

The hole was displaced to high viscous spud mud and the 30" casing landed at 448 m. The casing had to be worked in order to get cement returns to seabed.

OPERATOR: A/S NORSKE SHELL

WELL NO. 31/2-6

26" HOLE/ 20" CASING INTERVAL

Drilled cement and shoe with seawater to 465 m where the bit was pulled and riser nippled up.

Resumed drilling with $17\frac{1}{2}$ " bit, using pre-hydrated Bentonite/ Seawater with some Drispac to ensure hole cleaning. The $17\frac{1}{2}$ " was drilled to 820 m where a wiper trip was made. The hole was tight at 523 m and required reaming.

Although all solids removal equipment was utelized, heavy dilution was necessary to control funnel viscosity and mud weight.

Schlumberger logs were hung up at 562 m. A wiper trip was made with tight hole 608-624 m. Circulated bottoms up and made wiper trip to shoe. Ran back to bottom and spotted 500 bbls 1.40 specific gravity mud before running logs successfully.

OPERATOR: A/S NORSKE SHELL

WELL NO. 31/2-6

26" HOLE/ 20" CASING INTERVAL

After logging the hole was displaced back to seawater and the returns were lost.

Established returns and spotted 400 bbls of high viscous mud at 1.15 specific gravity in the hole before setting a cement plug 445-520 m due to shallow gas problems. The cement plug was drilled out and the hole cleaned out to 820 m before displacing back to seawater to observe well.

A 500 bbl viscous mud, 1.15 specific gravity, was then spotted in the hole and a cement plug with 15 ppb LCM squeezed at 500 m. The cement plug was tagged at 443 m and drilled out. The hole was circulated clean with seawater and observed before cleaned out to 820 m.

The hole was opened up to 26" to 820 m. Pumped 1050 bbls of 1.35 specific gravity mud and pulled out to 500 m and pumped 325 bbls of 1.45 specific gravity mud. Observed the well. Pumped an additional 25 bbls of 1.45 specific gravity mud at 376 m. The well was then logged and found to be undergauged in several places.

Made up 26" BHA and conditioned mud to 1.13 specific gravity at the 30" shoe. Reamed back to bottom using large amounts of seawater to control mud weights of maximum 1.16 specific gravity going in the hole. Viscosity was maintained with the additions of XC-Polymer.

The hole was displaced with 1050 bbls of 1.35 specific gravity mud and the pipe pulled to 500 m where another 350 bbl 1.45 specific gravity was pumped.

Ran logs-successfully and rigged up and ran 20" casing to 800 m. Displaced with 720 bbls 1.35 specific gravity before cementing 20" casing.

OPERATOR: A/S NORSKE SHELL

WELL NO. 31/2-6

173" HOLE/ 13 3/8" CASING INTERVAL

Mud pits, sand traps etc. were cleaned out prior to taking brine fluid onboard rig. Recieved an initial 600 bbls of brine, diluted back with seawater and mixed 1350 bbls of KCl/Polymer mud as per programme.

This mud was weighted up to 1.27 S.G.

The cement and shoe was drilled out with the old mud to 825 m where a leak off test was performed to a equivalent mud weight of 1.49 S.G.

Resumed drilling with KCl mud and 12 1/4" bit. Drilled ahead to 1050 m where the 12 1/4" bit was replaced with a $17\frac{1}{2}$ " bit. The mud weight was gradually increased to 1.31 S.G. At 1305 m lost circulation occured but was regained at reduced pump rates.

Added Mica to the active system and resumed drilling to 1485 m were partial loss of returns were experienced. Added Mica and reduced pump strokes still with partial returns. Pulled back to the casing shoe and circulated the mud clean. On running back in the hole it was found to be tight at 1400 m. Also reamed the last seven joints to bottom with slight mud losses. A 50 bbls viscous pill was pumped around to ensure hole cleaning before running logs. A wiper trip was made prior to running casing.

The 13 3/8" casing shoe was landed at 1475 m and circulated with 500 bbls of mud and then 250 bbls of 1.20 S.G. mud with 5 ppb L.C.M. prior to pumping cement.

Throughout this section the KCl/Polymer system was maintained with a continuous addition of KCl/Polymer dilution fluid.

OPERATOR: A/S NORSKE SHELL

WELL NO. 31/2-6

12 1/4" HOLE/ 9 5/8" CASING INTERVAL

This section was drilled and cored without any mud or hole problems.

The mud from previous section was utilized, but no additions of KCl or Ancopol were made, and consentrations of these materials allowed to decrease naturally.

Mud weight was cut back in two stages from 1.31 s.g. to 1.18 s.g.

After 9 5/8" casing had been run and cemented, casing collapsed during attempt to test rams. Casing was cut at 759 m and pulled out of hole. Attempt to back off casing below collapsed joint failed, and only cut joint was recovered. After this, several days were spent milling on and washing over collapsed joint, and casing finally backed off at 806 m.

During milling and wash over operations viscosity and yield point was raised as instructed to ensure good hole cleaning.

Preparations for testing were made.

WELL NO. 31/2-6

MATERIAL CONSUMPTION & COST ANALYSIS

• •

36"	HOLE DRILLED TO	462	Meters XX Mexet	30"	CASING SET AT	448	Meters
ACTUAL A	MOUNT OF HOLE D	RILLED	94	Meters BEDAT	DAYS ON IN		5
DRILLING FLUID SYSTEM PRE-HYDRATED BENTONITE SPUD MUD							

		·				
MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	c	COST
BENTONITE	M/T	17	15	- 2	US\$	4.920,
BENTONITE	50 kg		20	+ 20	11	324,
CAUSTIC	<u>25 kg</u>	20	10	- 10	11	190,
SODA ASH	50_kg	3	10	+ 7	"	185,
LIME	40 kg	66	6			
BARITE	50 kg		150	+ 150		945,
			· · ·	· · · · · · · · · · · · · · · · · · ·	 	
					ļ	
		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
		_				
_						
					1	

COST/DAY

US\$ 1.318,80

US\$

US\$

TOTAL COST FOR INTERVAL

US\$ 6.594,-

COST/Mt. orxfst.

70,14

PROG. COST FOR INTERVAL

US\$ 6.041,50

ENGR. COST

2.475,- COST VA

COST VARIANCE FOR INTERVAL

US\$+ 552,50

_ . . --

WELL NO. 31/2-6

MATERIAL CONSUMPTION & COST ANALYSIS

• •

26"	HOLE DRILLED T	O 820 Meters	20"	CASING SET AT	800	Meters
ACTUAL A	MOUNT OF HOLE	DRILLED 358	Meters Rextx	DAYS ON IN	TERVAL	12
DRILLING F	LUID SYSTEM	GEL/SEAWAT	?ER			·

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ± COST		COST	
BARITE	M/T		321	+ 321	US\$	43.014	
BENTONITE	M/T	27	66	+ 29	"	21.648	-
DRISPAC_REG	_50 lbs		79	+ 79	11	13.374	70
XC-POLYMER	50 ls		33	+ 33	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.956	-
CAUSTIC	25 kg	45	61	+ 16		1.159	-
SODA ASH	50 kg	8	20	+ 12		370	-
SAPP	25 kg		1	+ 1		105	-
LIGNOSULPHONATE	25 kg	· · · · · · · · · · · · · · · · · · ·	3	+ 3		51	.60
LF-5	25_kg	44		- 44			
NUT PLUG	<u>25 kg</u>		17	+ 17	"	290	70
MICA F	25_kg		17	+ 17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	290	,70
						· · · · · · · · · · · · · · · · · · ·	
~		 				<u></u>	

COST/DAY

US\$ 7.604,98

TOTAL COST FOR INTERVAL

US\$ 91.259,70

US\$ 11.971,-

ENGR. COST

COST/Mt. ouxExt.

US\$ 254,92 US\$ 5.940,-

COST VARIANCE FOR INTERVAL

PROG. COST FOR INTERVAL

_ _

US\$+79.288,70

WELL NO. 31/2-6

MATERIAL CONSUMPTION & COST ANALYSIS

- -

17 ¹ / ₂ " HOLE DRILLED TO	1485 Meters 133, xFR	/8 CASING SET AT 1475	Meters Eeel
ACTUAL AMOUNT OF HOLE DR	ILLED 665 Reters	DAYS ON INTERVAL	8
DRILLING FLUID SYSTEM	KC1/POLYMER		

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	C	COST	
BARITE	M/T	205	205	-	US\$	27.470	,
BENTONITE	50_kg		11	+ 1		16	,20
- KCl	bb1		9.2.0	+ 920	"	14.803	,63
ксі	50 kg	954	570	- 384	11	10.203	,-
DRISPAC R	50 lbs	90	95	+ 5	"	16.083	,-
LF-5	25 kg	164	184	+ 20	"	8.832	, -
CMC_Lo-Vis	25_kg		92	+ 11		5.428	,-
CAUSTIC	25 kg	109	114	+ 5	"	2.166	,-
SODA ASH	50 kg	10	43	+ 33	"	795	,50
ANCOPOL	50 lbs	85	74	- 11	"	9.768	,-
DRILLING DETERGENT	200 ltr_	. 15	4	_ 11	"	1.400	,-
MICA F	25 kg		90	+ 90	n	1.539	,-
MICA C			40	+ 40	"	684	,-
NUT_PLUG	25 kg		13	+ 13	"	222	,30
ALUMINUM STEARATE	25_kg		11		"	80	,-
· · · · · · · · · · · · · · · · · · ·							
]		

COST/DAY

US\$ 12.43

12.436,91 TOTAL COST FOR INTERVAL

US\$ 99.491,13

ENGR. COST

US\$ 149

US\$

3.960,-

149,61 PROG. COST FOR INTERVAL

US\$ 91.160,-

NGN. 000

COST/Mt. OK #K

COST VARIANCE FOR INTERVAL

US\$ + 8.331,13

WELL NO. 31/2-6

MATERIAL CONSUMPTION & COST ANALYSIS

- -

• •

12 1/4" HOLE DRILLED	TO 1760 Meters	9 5/8"	CASING SET AT 1752	Meters XXX Feet
ACTUAL AMOUNT OF HOLE	DRILLED 275	Meters F xx	DAYS ON INTERVAL	23
DRILLING FLUID SYSTEM	KC1/POLYMER			

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±		COST
BARITE	M/T	112	67	- 45	US\$	8.978,-
BENTONITE	M/T	13.5	9	- 4.5		2.952,-
DRISPAC R	_50 lbs	60	73	+ 13		12.358,90
LF-5	25 kg	50	39	- 8	<i>n</i>	1.872,-
XC-POLYMER	50 lbs	15	34	+ 19		11.288,-
CAUSTIC	<u>25 kg</u>	80	39	- 41	"	741,-
SODA ASH	<u>50 kg</u>	4	27	+ 18	11	407
CMC LV	25 kg	25		- 25		
DRILLING DETERGENT	200 ltr	10		- 10		
SPERCELL C	25 kg	200		- 200		
BICARBONATE	_50_kg			+ 5		96,2
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	 		
			· · · · · · · · · · · · · · · · · · · ·			
\						

COST/DAY

US\$ 1.682,31 TOTAL COST FOR INTERVAL

US\$ 38.693,15

COST/Mt. or £k

/:

140,70 US\$

US\$ 11.385,-

PROG. COST FOR INTERVAL

US\$

47.334,-

ENGR. COST

COST VARIANCE FOR INTERVAL

US\$ - 8.640,85

31/2-6 WELL NO.

TOTAL CONSUMPTION & COST ANALYSIS

• •

TOTAL DEPTH

Meters 1760 XXX 48

TOTAL HOLE DRILLED

1392

Meters Ře

TOTAL DAYS

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST	
BARITE BULK	M/T	317	593	+ 276	US\$ 79.462	2 -
BARITE SXS	50_kg	0	150	+ 150	" 945	<u>.</u>
BENTONITE	M/T	57,5	90	+ 32,5	" 29.520)
BENTONITE	50 kg	0	21	+ 21	" 34(20
CAUSTIC	25_kg	254	224	- 30	" <u>4.25</u> 6	i] -
SODA_ASH	50 kg	25	95	+53	"1,75;	2 50
LIME	40 kg	6	6		-"	u -
DRISPAC R	50 lbs	150	247	+ 97	" 41.815	410
XC_POLYMER	50 lbs	15	67	+ 50	" 22.244	4-
SAPP	<u>25 kg</u>	-	1	+ 1	" 105	<u>5</u> -
LIGNOSULFONATE	25 kg	200	3	- 197	"51	60
LF 5	<u>25 kg</u>	258	223	66	" 10.704	∐ -
NUT_PLUG	25_kg	-	30	+13	513	70
MICA F/C	25 kg		107/40	+ 107/40		-,70
KCl	Bbls		920	+ 920	<u>-14.803</u>	,63
KCl	50 kg	954	570	- 384	" 10.203	
CMC Lovis	25 kg	81	92	+ 11	"5.428	-
ANCOPOL -	50 lbs		74	11	<u> </u>	
DRILLING DETERGENT	200_ltr		4	11	" 1.400	-,
ALUMINUM STEARATE			1	+ 1	" 80	_ -
BICARBONATE	50 kg		5	+ 5	96	25

COST/DAY

US\$ 4.917,46

_ - ·

169,57

TOTAL COST FOR INTERVAL

US\$ 236.037,98

COST/Mt. oXXt.

ENGR. COST US\$ 23.760,-

US\$

PROG. COST FOR INTERVAL

COST VARIANCE FOR INTERVAL

US\$ 156.506,50

US\$ + 79.531,48

/: constants

Drilling Flu	uid &	Mater		STAVAN	nptio	n Rep	ort				WELL NA OPERATO	₩ ∰ 	31/2- A/S 1	IORSKI	3 SHELL	AREA RIG.	OFFSHORE NORWAY BORGNY DOLPHIN
MUD SYSTEM		<u>GEL/</u>	SEAW	ATER/I	KC1/P	OLYME	R				ENGINEE	RS	CHRIS	ATK	INSON		Vzr
Dare No		ES]	UD VOL	D DAILY	\square	BUL	ALS	SACI	ALS	R	MATERIALS /		D CONT	PHC PRC	DPERTIES	5	TE ERGE
		SUB S.E	55 	NET	F		NTO				PLYMERS >			SH	BL/	PHERS	ARA DET PE VO
	LOSSE	-URFAC	SURFAC	MUD BU	BARIT	BENTON	BENTO	BARIT	LIGNO	DR IST ST	CMC I CMC E	LF-5	CAUST	SODA	LIME KCI BI ANCO	BICAR	AL. STE DRLG. LA FREE MICA SAPT
15 3.8	 		N	80	39		 	i 		σ							
16 4.8	ļ	2156	1ω	ភ						41	39	78	23	15	- 600/		
17 5.8		17	6	80	64								F	<u></u>	320/- 12		
18 _ 6 . 8	;	59	ω	ω 5	73					27	29	58	4	<u> </u>	-/120 12		
19 7-8	1	89	μ μ	25	10					Ф	<u>в</u> р	16	<u>+</u>	6	-/160 12		2/-
20 8.8		72		00	24					α.	8	16	35	4	-/150 12		
21 9.8	_100	62	μ μ		16					8	8	16	18	<u> </u>	-/140 12		2/- 2- 24/4/
22 10.8	275			' 	14					ω			10				34/29/
23 11.8	66	4		t	4		→						2				6///
24 12.8	78	2.80		 								 					26/-/
25 13.8		136												-			
26 14 8		391		8					_	28		23		6	-		
27 15.8		200	2	87	9					14		ω	6				
28 16.8		15	[4			æ	8			
FORWAP.D		5732	2 76	80	282	81	20	150	ω	77 28		 	71	30	74		
	519	9258	3 121	70	535	81	21	150	ω	218 33 9	2	215 1	661	90	920/ 570 74		1 $4/-$ 1077 40/30 1

	₽	NCHOR DRILLING FLUIDS AS		
	<u>n</u>	Lind & Material Construction Deport	WELL NAME 31/2-6	AREA OFFSHORE NORWAY
	CASTEN		CHEMAIUH HAR NURSAR SHELL	AIG BORGINE DULETIN
	SYSTEM	AKCI/POLYMER	ENGINEERS DENNIS GEDDES/ARNE	LUND Str.
Day No	DATE	ESTIMATED DAILY BULK SACK MUD VOLUMES MATERIALS MATERIALS	MATERIALS ADDED TO CONTROL PROPERTIES	24 ST & S SER GI E
		Star Star a the Star	THINNERS U POR MERS S LU S	ON THE BY & SURATO
		LOSAFAC STAC LOBUL BARIT ON BENTON TO BARIT ON BARIT ON BARIT ON BARIT ON BARITON	DRISPA X DC MC LE ST DA LINE	CI AN BICAL SIG. I AND
29	.17.8		1	
ω O	. 18.8			
<u>ω</u> 1	19.8		5	
32	20.8			
ມ	21.8	3 14 36 17	80	
	22.8	6 100	80	
- ω 5	- 23.8	136		
-36	24.8	6		
37	25.8	446		
<u>38</u>	26.8			
39	27.8	50	20	
40	28.8	150 300 7	3 2 8 7 1	
41	29.8	10 4	2	
4.2	30.8	155		
FO	DRWAPD	519 9258 12170 535 81 21 150 3	218 33 92 215 199 90 570	/ 4/ 107/
ES	TIMATED OTALS	519 10333 12612 574 85 21 150 3	920/ 243 59 92 223 222 94 920/	
RE	MARKS	VOLUMES ARE CORRECT, 1760 BBL IN SYSTEM		
 ·				

Number

FORWARD 519 1					• •	1010	48 5.9	4.7 -4.9	46 . 3.9	45 2.9	44 .1.9	43 _31.8	LOSSES OSSERFAC	SJB SJB		MUD SYSTEM	Drilling Fluid & Ma		ANCHO	
1221 2221	10333 126			 	 	LEFT IN P	263	532	 		150 200	<u>σ</u>	LOSSE SURFAC	1 mics /	ESTIMATED D MUD VOLUM	NCT/ A TOW	aterial Cor		R DKILI	
2 . 592	12 574			 		SLI							MUD BU,	545 /	DAILY	Ę	nsumpt		INAVANGE	
06	8 5			 					_		υ υ		BENTO	ж / ,			ion Re	·	FLUI	
21	21			 									BENTON	1 / m	IALS		port		DS A	
150 3	150 3	 		 									BARITE		SACK MATERIALS				S	
2	24													THINNERS	/					
47 67	15 59	 		 	 			-		2	<u> </u>		RISPAC XC							
7 92 - 2:	92 22			 						2			POLYM CMC LU CMC ER	A SOLYMERS	MATERIALS AD	ENGINEERS	OPERATOR	WELL NAME		
23 224	3 222	 		 	 	 						2	LF-5 CAUC		DED TO CO	ARNE	A/S	31/2		
95	94			 			_						SODA A	C. 52	NTROL PRO	LUND	NORSKE	-6		
6 5	6 5		-	 	 								LIME		OPERTIES		SHELL			
70 70 74	70 70 7			 	 		_						ANCO							
თ	σ						_				5		BICAR	OBAERS			- RIG	- AREA		
$1 \frac{4}{-107/4} \frac{107}{30} 1$	$1 \frac{4}{-} \frac{107}{40/30}$												LL. STER DRIG: ENTCA PRIG: NICA FREE NICA SAPA	27 DE 12 C UG	TE TERGI	227	BORGNY DOLPHIN	OFESHORE NORWAY		

í

I

12 and a

CLL : ANCHOR DRILLING FLUIDS AS

GRAPHI-CAP

OPERATOR: WELL NAME CONTRACTO

0005	1750	1500	1000	200 7 20	250	METERS 80	DEPTH
						DAYS FROM SPUD 10 20 30 40 50 60 70 80 90	
	b	50000	150000	150000		\$83 £	COST
							CASING PLAN
							DEZ

Norske 31/2- or: Dolpt	<u>k</u> PAU <u>k</u> SPU nin Services Ric	GE NO: <u>1</u> UD DATE: <mark>1/7 - 81</mark> 3: Bargny Dalphin
\$ITY	FILTRATE	RHEOLOGY
SG SE	API —— HTHP	PV — ΥΡ
10 I,30	4.0 5.0 6.0	10 20 30
	No_control	

Name.

: . .