Denne rapport
 L\&U DOK. SENTER

L. NR. 20088370052 KODE Well 31/2-6 nr. 7 Returneres etter bruk

ON-LINE T.D.C. REPORT
NORSKE SHELL
WELL $31 / 2-6$

Report compiled by:-
I. cooper
E. Farley
P. Roughhead
L. Sourice

a) 36 " phase
b) 26" phase
c) $17 \frac{1}{2}$ " phase
d) $12 \frac{1}{4}$ " phase 13
7) R.F.T. PLOT19
8) D'EXPONENT OVERPRESSURE SURVEY ———_ 20
9) OVERBURDEN AND FRACTURE GRADIENT DEIERMINATION21

INFORMATION ON ON-LINE WELL-FILE PLOTS
$\begin{array}{lll}\text { a) Deviation } & 26 \\ \text { b) } & \text { Bit cost performance } & 27 \\ \text { c) D'Exponent } & 28\end{array}$

PROPOSALS AND OBJECTIVES

To drill an exploration well on Block 31/2 approximately 119 Km NW of Bergen on the eastern side of the Norwegian Trench, at location $60^{\circ} 541,14.2^{\prime \prime} \mathrm{N}, 0349.8^{\prime \prime}$ E positioned with diametric tolerance of 75 m .

FIVE OBJECITVES WERE FROPOSED FOR THE WEL工

a) To test the gas accumulation at its north-eastern most margin.
b) To evaluate the lateral variation in reservoir parameters.
c) To test the oil zone in a good sand reservoir.
d) To "prove" hydrocarbon communication between blocks 31/2 and 31/3.
e) To get reliable geologic tie to the seismic reflectors to allow for accurate lateral extrapolation of well data.

Spud to TD was expected to take c. 49 days including an extensive coring programme commencing in the Lower Cretaceous/Upper Jurassic shales and contimuing until at least one core had been taken in the water zone. Additional coring was to be carried out on occurence of good hydrocarbon shows in deeper sands.

A further 47 days were allocated for a production testing and abandonment programme.

GEOLOGICAL PROGVOSIS

FORMATICN TOPS	LITHOLOGY	DEPTH TVBDF	SEISMIC TOLERANCE
Seabed (Quarternary	Clay, claystones	365	
Eocene)			
Eocene	Claystones, sandstones	875	+/-10
Palaeccene	Tuffaceous claystones, silty claystones, Marls.	1185	+/- 30
Cretaceous	Marls and limestones	1455	+/- 20
Kimmeridge Clay Formation - thin or absent			
Jurasssi Sandstone Group			
Upper Jurassic	Medium-course, Unconsolidated sandstones	1505	+/- 5
Base gas colum		1573	
Middle Jurassic	Very fine, micaceous sandstones, coarser at base.	1595	+/- 20
Mid- Lower Jurassic	Sandstones, claystones, coals and marls.	1935	+/- 20
Dunlin Unit Equivalent	Silty/sandy claystones, Sandstones at base.	2040	+/- 20
Statfjord Formation	Fine - medium sandstones with coals at base	2205	+/-30
Triassic Red Beds	Claystones and sandstones	2405	+/-40

Tertiary

Nordland group	: Buff-light grey sands, loose, frosted, medium to coarse grained, with lithic and shell fragments, pyritic and occasional clays.
Hordaland group	: Light grey soft mudstones, silty and sandy, mainly non-calcareous, occasional limestone stringer's, and slightly carbonaceous, and micaceous in parts.
Rogaland group (Balder \& Sele formation)	: Light grey mudstones in parts'becoming mottled red, pink with white flecks, tuffaceous, slightly silty, becoming less tuffaceous and more sandy towards the bottom of the Balder with the development sands (glauc) in the Sele.
Forties Formation	: Coarse to medium sandstone adn sands, traces lignite and mica, towards the base there is an increase in clay and the calc content, with the development of limestone stringers and mudstones. The limestone buff hard crystalline with an angular break.
Lista "upper" formation	: Mudstone, light grey soft, and non-cale with the occasional development of fine sands and limestone horizons.
Andrews Formation	: Sandstone, grey to light grey, fine to medium grained, mod hard to unconsolidated sands. The sand grains are poorly sorted, sub-rounded and sub-spherical with the development of an argillaceous cement. There are also non calc grey mudstones and traces of white limestones.
Lista "lower" Formation	: Soft grey mudstones, as above, with silt and sands, non calcareous.

Cretaceous

Shetlands group	$:$ A monotonous sequence of light to dark grey calcareous mudstones, with off white chalky limestones, and buff hard dolomite
	stringers.

Jurassic

Kimeridge Formation

Brent Group

Duniln Group

Statfjord Group
: Dark brown and non calcareous mudstone, carbonaceous, micromic and pyritic.
: Light grey to brown, medium to coarse sandstone, angular to sub-round grains, with argillaceous and patches of calcite cement carbon fragments.
: Grey non-calc mudstone and siltstones with some fine grey sandstones, and a trace of microcrystalline white limestone.
: Light grey medium to coarse grained sandstone, moderate sorting, glaucanitic, with a white kaolin matrix. Becomes finer towards the base with the development of a hard fissial mudstone.

Triassic

Cormorant Formation
: Alternating grey and red brown mudstone (calc) with minor amounts of chalky white limestone, and poorly sorted sands.

GENERAL WELL SUMMARY

The Semi-submersible drilling rig 'Borgny-Dolphin' (AKER H3) was positioned at the location on the 20/July/1981 and 31/2-6 was spudded on the 21/July/1981.

The position given by Satnav was:

$$
\begin{array}{ll}
60^{\circ} 54^{\prime} & 13.57^{\prime \prime} \mathrm{N} \\
03^{\circ} 38^{\prime} & 49^{\circ} .43^{\prime \prime} \mathrm{E}
\end{array}
$$

This is 22 m on a bearing 193° from proposed location.
A total depth of 1760 m was reached on the $22 /$ August/ 1981 .
On the 25/August/1981 the $95 / 8^{\prime \prime}$ casing was overpressured during BOP tests necessitating washing-over and fishing the collapsed joint. Since the well's main objectives, had been fulfilled no further drilling was attempted below the $95 / 8$ " casing point.

11 bits were used
9 cores totalling 127.3 m were cut
One RFT was run over the reservoir section
53 CST's were taken (60 shot; 6 lost; 1 empty)

The rig is equipped with two Continental Emsco triplex pumps fitted with $6 \frac{1}{2}{ }^{2}$ liners. Pressure rating 3981 psi at a maximum of 120 spm . Output is $5.158 \mathrm{gal} /$ stroke at 1008 efficiency; measured efficiency :95\%.
a) $36^{\prime \prime}$ phase ($368-456 \mathrm{~m}$)

Well 31/2-6 was spudded on 21 July 1981. Sea-bed was 368 m . The phase began with a $26^{\prime \prime}$ OSC 3AJ bit with $3 \times 24 / 32^{n}$ jets and a $36^{\prime \prime}$ hole opmer, which drilled to 420 m . At this point no further progress could be made : the bit was changed (another $26^{\prime \prime}$ OSC $3 A J$ with $3 \times 24 / 32^{\prime \prime}$ jets) and the cutters on the hole opener were replaced, but still no progress was possible.

A 171 " drilling assembly was made up (bit no $3:$ OSC 1GJ with 24/32, 16/32, and 14/32" jets) which drilled to 462 m . The hole was opened with a $26^{\prime \prime} \mathrm{H} / \mathrm{O}$ and thereafter a $36^{\prime \prime} \mathrm{H} / \mathrm{O}$ was used but could not pass 456 m . This was considered enough and the string was pulled out to run $30^{\prime \prime}$ casing.

The phase was drilled with sea-water and viscous slugs.
Spud Assembly

```
26" bit
36" H/O
Bit sub
9\frac{1}{2}"Mmal MC
36" stab
2\times 9\frac{1}{2}"DC
XO
21 x 8" DC
XO
15 HNDP
```

Total length : 368.33m
Single shot magnetic surveys :
i) $387 \mathrm{~m} \frac{1^{\circ}}{}{ }^{\circ} \mathrm{N} 80 \mathrm{~W}$
ii) 425m ${ }^{\circ}$ WEST
iii) 45 m

30' Casing :	7 joints of $30^{\prime \prime}$ (1" wall) conductor were run. The shoe was set at 448 m .
Cementation	The lead slurry consisted of 800 sks class
	$\mathrm{G}+0.36 \mathrm{gal} / \mathrm{sk}$ Econolite $+\mathrm{gal} / \mathrm{sk}$ sea-
	water at 13.2 ppg . The tail slurry consisted
	of 777 sks class $G+38 \mathrm{CaCl}+5.15 \mathrm{gal} /$
	sea-water at 15.8 ppg . The slurries were
	displaced to 6 m above the shoe with
	37 bbl sea-water.

b) $\quad 26^{\text {n }}$ Phase ($456+820 \mathrm{~m}$)

The $30^{\prime \prime}$ casing shoe was drilled out to 465 m with bit no 4 ($17 \frac{1}{2}{ }^{\prime \prime}$ DSJ with $3 \times 18 / 32$ jets) and a $26^{\prime \prime} \mathrm{H} / \mathrm{O}$.

Without the H/O bit 4 then drilled to 820 m . On pulling out the hole was tight but a second trip showed the hole to be in good condition. Schlumberger, however, hit a bridge at 562 m and a cleanup bit run followed.

Schlumberger then ran ISF/SONIC/GR/SP
misran FDC/CNL/GR/CAL FOLIOWED BL FDC/CNL/GR/SP rerm.

On returning to bottom the hole was displaced to sea-water whereupon returns were lost. A 48 gas slug was circulated up and then, 400 bbl 1.13 hi -vis mud were pumped and then open-ended drill-pipe was run in. 460 sks class G cement +28 CaCl at 15.8 ppg were pumped; the diverter was closed to squeeze the cement.

Bit 5 DSJ drilled cement from 458-497m. . Circulation returned 20\% gas. 500bbls 1.15 mud were spotted in the open hole. Operended drillpipe was run in to 540 m ; 50 bbl hi-vis mud were spotted the string was pulled back to 500 m .

800 sks class $G+2 \%$ CaCl, +15 PPB LCM mixed with sea-water at 15.8 ppg were displaced to equalise with 22 bbl sea-water.

A rerun of bits 5 DSJ ($17 \frac{1}{2}^{n}$; $3 \times 18 / 32+11 / 32^{n}$ jets) drilled cement form 443-536m; fell through to 542 m and drilled to 595m with sea-water and hi-vis pills.

AVERAGE B．H．A．

Drilling Assembly

$$
\text { Total length } 229.83 \mathrm{~m}
$$

Single shot magnetic surveys ：

i）	562 m	S65E
ii）	655 m	$\frac{1}{4}$
N30E		
iii）	815 m	$\frac{1}{2}$
N40W		

26＂UNDERREAMER
The $17 \frac{1}{2}$＂pilot hole was opened to $26^{\prime \prime}$ with an underreamer behind a rerun of bit 5．A BGT showed the hole to be under gauge in several places with intervals up to 100 m ．The hole was rerreamed twice with a rerun of bit $3+26^{\prime \prime} U / R$ ．The bottam hole assembly was identical to that used in the pilot hole with the addition of the 2.91 m underreamer．

Single shot magnetic surveys ：

The riser was pulled and prior to running $20^{\prime \prime}$ casing the hole was displaced with 330 bbl 1.45 sg mad ．
$20^{\prime \prime}$ casing ： 36 joints of $20^{\prime \prime} \times 133 \mathrm{lb} / \mathrm{ft}$ grade X 52 were run， the shoe was set at 800 m ．

Cementation ：20bbl sea－water were pumped ahead．A lead slurry which consisted of 2560 sks class G＋． $36 \mathrm{gal} / \mathrm{sk}$ Econalite + $10 \mathrm{gal} / \mathrm{sk}$ fresh water； 610 bbl mix water at 13 i 2 ppg ．The tail slurry consisted of ： 800 sks class $\mathrm{G}+2 \% \mathrm{CaCl}+5.15 \mathrm{gal} / \mathrm{sk}$ sea－water， 98 bbl mixwater at 15．8．ppg．Displaced with 63 bbl sea－water to 10 m above shoe．

> i) 590 m 1 N 20 E
> ii) $693 \mathrm{~m} \frac{1}{2}$ N12E
> iii) $814 \mathrm{~m} \frac{1}{2} \mathrm{~N} 40 \mathrm{~W}$

$$
\begin{aligned}
& \text { 173 }{ }^{2} \text { " bit } \\
& \text { bit sub } \\
& \text { 93" }{ }^{1} \text { monel } D C \\
& 9 \frac{1}{2}{ }^{2} D C \\
& \text { 17⿺⿱土龰卜} \\
& 9 \frac{1}{2}{ }^{\prime \prime} D C \\
& 17 \frac{1}{2}{ }^{n} \text { stab } \\
& \text { XO } \\
& 9 \times 8^{n} D C \\
& \text { XO } \\
& 12 \text { HNDP } \\
& \text { Dart sub }
\end{aligned}
$$

550 psi displacenent pressure was bled off; float held OR. good returns throughout cement job.
c) $17 \frac{1}{2}{ }^{n}$ PHASE ($820-1485 \mathrm{~m}$)

The BOP stack and riser were run and the cement and $20^{\prime \prime}$ casing shoe were drilled out with bit 6 (Smith DSJ with $3 \times 18 / 32+$ $15 / 32^{\prime \prime}$ jets) to 825 m .
(i) pilot hole

Due to the possibility of shallow gas $12 \frac{1}{4}{ }^{n}$ bit 7 (SEC S33S with $2 \times 14 / 32+18 / 32^{\prime \prime}$ jets) was used to drill this pilot section to 1050 m . Gas reached maximm during this section of 7.5% C1 at 1010m. Nud weight throughout the section was 1.26 sg . The hole was tight at 880 m during a trip.
(ii) $17 \frac{1}{2}{ }^{\prime \prime}$

A rerun of bit 6 (used also to drill out 20" csg shoe) opened the $12 \frac{1}{4}$ " pilot to $17 \frac{1}{2}$ " down to 1050 m . A check trip at this depth showed the hole to be tight at 900 m , with max overpull of 125000 lbs , but the hole was clean on the run in and bit 6 drilled new 17 ${ }^{\prime \prime}$ " hole from 1050-1303m. At 1256 m a 2 stand wiper trip showed overpull of $25-100000$ lbs, but again the hole was clean on the run in. The mud weight, however, was increased to 1.31 sg . During the bit trip at 1301m the hole was tight from 1259-1230m; 1200-1180m; 1003-975m; overpull ranged fram 25-110000 lbs.

Bit 8 ($17 \frac{1}{2}{ }^{n}$ Smith DSJ with $18,18,22$ and $15 / 32^{\prime \prime}$ jets) campleted. the phase. On running in with bit 8, the hole was tight and 2 singles were reamed before tagging bottom, whereupon circulation was lost. Pump rate was reduced to 50 spm and mica was added whilst working the kelly (with overpull up : 100000 and down : 50000 lbs). Circulation was eventually regained and drilling resumed. Trip gas reached a total from 1303m.

At 1364 m gas peaked at 19% total from a background of 2%. At 1485 m during the circulation of bottoms up, 60bbl of mud were lost. Mica was added during reduced pum-rate, and losses were eventually reduced. During the trip the hole was tight 5 stands off bottom with 50-100 000 1 lbs overpull.

The bottom hole assembly was altered (to remove the $17 \frac{1^{\prime \prime}}{}$ stabiliser) and an inspection trip found the hole to be tight at 1499 m , but only light reaming to bottom was necessary. A 34% gas peak circulated after stripping. After 2 full circulations, the bit was pulled clean and preparations made for logging.

EJECTRIC LOGGINGS

Sclumberger ran : ISF/SON IC FDC/CNL CST - Fired 30; Lost 3 at 1.454.5. 1429.999m
13委" casing : 96 joints of $13 \frac{3}{6}$ " casing at $72 \mathrm{lbs} / \mathrm{ft}$, grade L 80 were run, the shoe set at 1475.29 m .

Cementation

$500 b 1$ mud at 1.31 sg were pumped to elean the anulus. This was followed by 250 bbl at 1.20 sg . The lead slurry consisted of 1112 sks class G neat with freshwater ($.6 \mathrm{Gal} / \mathrm{sk}$) and $5 \mathrm{lb} / \mathrm{sk}$ mica at 12.2 ppg . The tail slurry consisted of 395 sks class G neat and freshwater at 15.8 ppg . Displacement was with 531 bbl at 1.32 sg :bump plug with 3000 .psi held for 15 mimutes.
d）$\quad 12 \frac{1}{2}{ }^{n}$ PHASE（1485－1760m）

Eit 9 （12每＂HIC XIG $+3 \times 15 / 32^{\prime \prime}$ jets）tagged cement at 1457 m and drilled to 1489 m ．Here the mud weight was reduced to 1.2 sg ． A leak off test was then performed returning an equivalent mud gradient of 1.62 sg ．However when pumping ceased at $2 \frac{1}{4} \mathrm{bbl}$ ， no leak off to the formation had occured．Also，this figure was derived not from the maximum surface pressure reached but from the stabilised value．It is therefore a conservative estimate of the fracture gradient at the shoe．

Maximum gas in return with the 1.20 sg mud was 5．5\％．Bit 9 was then pulled to run a junk basket as a prelude to coring．

On resuming drilling at 1489 m ， $26 \% \mathrm{trip}$ gas was returned． Circulations for geological samples occured at 1497 and 1501m．

Maximum gas returned was 24\％．At 1504．8m due to the high percentage of sand in the sample，it was decided to oore．

CORING SECTION（1504．8－1632．1m）
9 cores in fibre glass sleeves were taken．For the first run a 10.77 m core barrel was used；for the second and all sub－ sequent runs，a double（19．91m）barrel was used．

2 main bottom hole assemblies were used；the BHA used for core 2 was the same as that used for core 1 except for a double core barrel and a 6年＂DC was added to the assembly．

total Length ：325．32m

BHA cores 3－9
core Head
Core barrel（19．91m）
Sub
$6 \frac{1}{2}$＂DC
83＂Stab
$6 \frac{1}{2}$＂DC
$8 \frac{1}{2}$＂Jab
$7 \times 6 \frac{3^{n}}{}{ }^{n} D$
$6 \frac{1}{2}$ Jar
6年＂Jar
$2 \times 6 \frac{1}{2}{ }^{n} D C$
$15 \times$ HNDP
Sub
Total Length ：272．84m

3 coreheads were used to drill the section. Nos 1 and 3 were both diamond CB 303's. NO 2 was a stratapax CB 502 using industrial diamonds with a course cutting action. This corehead cut quickly (up to $5 \mathrm{~min} / \mathrm{m}$) where the formation was friable but aimost halted in well cemented formations. In consequence cores of only 4.8 and 6.4 were obtained with this corehead.

Core Nos. 1 and 2 both had to be worked free on pulling out. Maximum overpull was 130000 lbs (core 1) and 140000 lbs core 2). No overpull was recorded when the BHA was changed for subsequent runs.

The core barrel janmed on run 8. This was indicated by a rapid 200 psi pressure loss with decrease in both torque and ROP.

It was pulled having cored 15.9m.

From 1564 - 1567m there were traces of direct iv fluorescence.

From 1567-1579m this increased to a moderately good pale yellow colour, and from 1579-1599 there was a good yellow to pale blue direct fluorescence. Below 1599m there was no fluorescence.

Cut (solvent) fluorescence was weak to moderate from 1557-1654m. From 1564 - 1571m there was good milky white cut and from 1571 - 1578m the cut became slow with a green-brown colour. Below 1578m the colour was milky with a yellow-brown stream. No cut was observed. below 1599m.

On inspection of Schlumberger logs, the top of gas was estimated to be 1492 m ; the gas-oil contact at 1572 m , and the oil-water contact at 1582m.

The only significant trip gas occured at 1504m (248), and at 1532m (18\%). Maximum drilled gas during coring was 3% at 1540 m . Levels remained well below 1% in the oil and water phases.

A tabulated sumary of thecoring section is given below.

BIT 10 (SEC S44 + 14,14,18/32" jets) was used to open-the cored section to $12 \frac{1}{4}$. . Trip gas at 1504 m was 32%, and gas levels remained around 10% to 1570 m , where they fell to below 1\%. Bit 10 drilled 25 m of new hole to 1657 m . The bit was $3 / 8^{\prime \prime}$ under gauge.

BIT 11 (Smith FVH $+3 \times 15 / 32^{\prime \prime}$ jets) finished the phase to 1760 m . No hole problems were encountered.

SCHIUMBERGER LOGS

Ran and logged ISF/Sonic, FDC/CNL; MSFL/DLL; HDT. RFT; CST recovered 27, lost 3 at 1488; 1489.5; and 1497m; CBL.

9年 CASING
116 joints of 9 保 $\times 47 \mathrm{lbs} / \mathrm{ft}$ grade VAM N80/L80 were run and the shoe set at 1752 m .

CORE	$\begin{aligned} & \text { CORE } \\ & \text { HEAD } \end{aligned}$	$\begin{aligned} & \text { IDEN- } \\ & \text { TITY } \end{aligned}$	INIERVAL		CORED (M)	RECOVERY\%	AVERAGE DRILLIING PARAMETERS			COMMENTS	LTTHOLOGY
					$\begin{aligned} & \text { R.O.P. } \\ & \text { (MIN/M) } \end{aligned}$		$\begin{aligned} & \text { W.O.B. } \\ & \text { K libs } \end{aligned}$	BOTTOM HOURS			
			IN	OUT							
1	1	CB 303	1504.4	1514.0	9.6	98	20.8	15.8	3.2	Work Pipe to free barrel when pooh (max ovp 130 k lbs)	SST. f - med grn. fri-hd. hd arg cmt.
2	1RR	CB 303	1514.0	1532.5	18.5	100	26.4	16.9	8.1	work pipe to free Barrel when pooh (Max ovp 140 k lbs	Sst : f - crs grns, fri mod cmit
3	1RR2	CB 303	1532.5	1551.0	18.4	99.5	20.8	19.6	6.17		Sst. f -crsgrns.fri, mod cem
: 4	2	$\begin{gathered} \text { CB } 502 \\ \text { (STPX) } \end{gathered}$	1551.0	1556.0	5.0	96	17.8	3.8	1.2		Sst : f-very crs grms. fri, mod cem; occ rock frag
5	1RR3	CB 303	1556.0	1576.1	18.5	99	45.7	16.8	13.4	Depth correction made here	Sst. f - crs grns, fri, mod cmt, with shell frag.
6	2RR	$\begin{aligned} & C B ` 502 \\ & (S T P X) \end{aligned}$	1576.1	1583.9	7.8	80	43.9	7.2	5.7		Sst. f - crs grs, hard with hard cmt.
7	3	CB 303	1583.9	1602.8	18.9	97	24.3	18.1	7.4		Sst. f - crs grns, fri to mod hard, calc cmt non cmt
8	3RR	CB303	1602.8	1618.7	15.9	99	30.3	18.0	8.0	200 psi pres. loss + drop in torque d R.O.P. core barrel jammed	SSt, (1602-1607) silt to grns. cons hard. (16071618) f-crs grns, cons hard.
y	3RR2	CB303	1618.7	1632.1	13.4	100	28.8	17.7	6.25		Sst. f - crs, fri $-\bmod h$ cons, calc cmt.
N.	The CB 303's were run with RPM 90 - 100 and a flow rate of 245 gallons/Min. The CB 502 was run with RPM 105 and a flow rate of 290 gallons/min.										

CEMENTATION

164 sks class G mixed with fresh water containing cfr－2；econolite and hlx－c2481 as scavanger slurry at 13.5 ppg ．Followed by 620 sks class G tail slurry mixed with fresh－water containing cfr－2，econolite and hlx－c248 at 15．4ppg．

The cement was displaced with 21 bbl spacer followed by 327 bbl mud at 1.18 sg ．Bumped plug with 4000psi for 15 mimutes－no back flow．

CASING PROBLEMS

During pressure testing of the BOP，it was discovered that due to the seal not being properly set，the 9\％＂x 13年＂anulus had been overpressured（ 5600 psi applied below pipe－rams and Collapse pressure of 9sin casing $=4750$ psi）．

On running in the hole a restriction was met at 771m；the restriction was later indicated as being less than $\mathbf{2 "}^{\prime \prime}$ ．The casing was cut at 760 m and the undamaged casing retrieved，leaving the obstruction at 768m．

After four days of milling and washing over，a flattened，burst joint of casing was succesfully sished with two undamaged joints of 9 fry casing connected below it．This left the top of the 9 㸓＂casing at c．804m．

The exposed 133 年＂casing was scrapped；Schlumberger ran a CBL which showed poor bonding behind the 9%＂casing，but a RIIS packer was run and set twice to test for leaks between the 9fi＇ and 13t＂casings and there was none．Preparations were then made for production testing．

GEOSERVICES

SHELL 31/2-6

REPEAT FORMATION TEST REPORT

3

Nemmel Pradsert 1. 82

D'EXPONENT OVERPRESSURE SURVEY

The d'exponent trend line was established in the top hole section with two coupled depth and den value points viz.
at zero metres den $=0.82$; at 1900 m den $=0.93$.
This gives trend-line regression coefficients
$a=.00000877$ and $b=-.08619$.
The trend required shifting below the $20^{\prime \prime}$ casing shoe using the couples : at zero metres, dan $=0.75$, at 1900 m den $=0.86$. This gives coefficients $\mathrm{a}=.000009535$ and $\mathrm{b}=-.12490$.

Another shift was required during coring, using the couples: at zero meteres, den $=1.75$; at 1900 m dan $=1.86$.
This gives coefficents a .000004247 and $\mathrm{b}=.243$.
Whilst drilling with bit 6RR, a steady decrease in d'exponent values is seen beginning at 1200m and continuing untilc. 1250 m , the d'exponent remaining well left of the trend line until 1302 m . Many things pointed to the presence of a short undercompacted shale section in these Palaeocene claystones. At 1256 m , mud weight was incresed to control caving; overpull during tripping increased dramatically at 1303m; trip gas also increased considerably at this depth.

The Palaeccene claystones were occasionally silty and this normally gives a negative shift in d'exponent values, but this depends very much on the nature of the host rock as can be seen below 1400 m . The occurence of under-compaction in the Palaeocene claystones is clearly a debatable subject, but due to the observations while drilling, it was considered preferable to allow a brief rise in predicted formation pressure (to a maximum of 1.18) during the $17 \frac{t_{2}^{\prime \prime}}{}$ phase. (see d'exp plots).

OVERBURDEN AND FRACIURE GRADIENT DETERNINATION

To estimate the local fracture gradient, appropriate values of vertical (overburden) and horizontal stress coefficients must be found.

The variation of overburden with depth may be approximated by the third order polynomial :
$s=a l n^{2}$ depth + bln depth $+c$ where
$S=$ overburden gradient; a, b, c are coefficients of regression.

The coefficients used during drilling were:

$$
\begin{aligned}
& a=0.01304 \\
& b=-0.17314 \\
& c=1.43350
\end{aligned}
$$

These are typical values for the Gulf Coast area.
FDC and Sonic Log Data (from 31/2-4 and 31/2-6) was then used, and from the regression data of each batch the coefficients were evolved. Four regression curves were plotted (Fig. 1); curves 2, 3, 4 and 5 show the influence of the water column. The coefficients derived fram the FDC date $(31 / 2-6)$ curve 4 are:

$$
\begin{aligned}
& a=-0.05119 \\
& b=1.00822 \\
& c=-4.10036
\end{aligned}
$$

and these values were used in the calculation of Poisson's ratio, "mu" and in the subsequent remm of the d'exponent at the end of the well.

The horizontal stress compnent of the fracture gradient may be estimated by the secordorder polynomial :

$$
\begin{aligned}
K & =\frac{{ }^{n n n}}{i=n^{n}} \\
\text { In }^{n} R & =a \text { in depth }+b \\
n_{m m^{n}} & =\text { FSG }- \text { FPG }
\end{aligned}
$$

$$
\text { (FSG }=S=2 \text { FPG })
$$

Where FSG $=$ Formation strength gradient estimated from leakoff test

> FPG $=$ Formation pore pressure ${ }^{n}{ }^{\prime \prime}=$ Poisson's Ratio
a and b are coefficients derived form a best fit regression curve of the variation of poisson's ratio with depth.

The Poisson coefficients used during drilling were

$$
\begin{aligned}
& a=0.277 \\
& b=2.977
\end{aligned}
$$

However, these gave a low fracture gradient and therefore the local LOT data was used to calculate the coefficients for poisson's ratio.

These were also found to be unsuitable as they gave a negative regression (see Fig. 2 curve (3)) and thas a negative fracture gradient curve.

Coefficients were therfore chosen to fit the fracture gradient to that estimated for this area. These were:

$$
\begin{aligned}
& a=0.006561 \\
& b=-0.088452
\end{aligned}
$$

See Fig. 2 Curve (2).
The printed table reproduces a fracture gradient curve using the above local values for Overburden and Poisson and this is plotted along with the Overburden curves in Fig 1.

ffactupe gradicht seell 31/2-6

Poisson's	Overburden
A: 0.0065	A: -0.0512
E: -0.0885	B: 1.0082
	$C:-4.1004$

The cbove table reprociucas i frccture Gricient curve ucine locally dorived coefiicients for the Overiumaen Eradiont,S (FDC 31/2-6). The coefficients for the horizontal stress compon ent, "nu", iere cioos.n to fit the frecture pradient to that estimated for this area.

OVERUUROLIN ERAOIENT OP
(
molesan Ratio anlo

DEVIATION

The vertical depth, hole co-ordinates at the corresponding depth and dog-leg in degrees per 30 metres are computed using the "radius of curvature" method when the radius of curvature is not too large (i.e. if drift is greater than 1.5°) and the "average angle" method otherwise. This is to avoid large errors when drift angles and nearing angles are equal or nearly equal for two consecutive survey points (i.e. in those cases where the radius of curvature is infinite or at least extremely large).

BIT PERFORMANCE

As well as the bit report printed out at the end of each bit rum, a cost performance graph is plotted to enable a quick look interpretation of the bit's actual performance down hole.

Two curves are plotted for oost versus depth, one standard and including the total time that the bit was in the hole-drilling plus connections. The other based on the actual on-bottom rotating hours only.

The rate of penetration is also plotted to determine whether a decrease in the drilling rate is due to bit wear of formation change. The minimum cost point for each curve is determined and noted with the time and depth at which it occurred.

The data is obtained directly from the on-line data tapes with the bit cost/metre being computed according to the formula

$$
C=\frac{R C(T I T=R T)+B C}{M}
$$

Where : $C:$ cost per metre in p US
BC: bit cost in $\$$ US
RC: rig cost overall in 8 US/hour
TT: average time for the round trip at drilling depth in decimalised hours
RT: rotary time or elapsed time in decimalised hours
M : metrage drilled after elapsed time in metres

The cost per metre versus time follows a curve passing through a minimum. The assumed cost of the rig has been taken as \$2708/hour.

D-EXPONENT

used in the Geoservices development of the d-exponent which computes a normalised rate of penetration to highlight anomalies in formation compaction.

An expression may be found for a compaction trend in normally p ressured shales. Negative departures from this trend will indicate undercoupaction and potential overpressures.

Equations

The original equation for d-exponent was developed by Jordan and Shirley in 1966, mud weight correction applied by Rehm and Moclendon and bit wear/type correction applied by Geoservices.

$$
\operatorname{des}=\frac{\log \frac{d^{\prime} \mathrm{ROP}}{60 \mathrm{RPM}}}{\log \frac{12 \mathrm{WOB}}{10^{6} \mathrm{Dh}}} \quad \times \frac{\mathrm{H}}{\mathrm{ECD}}
$$

Where $\operatorname{ECD}=$ the equivalent circulating density and a^{p} a bit wear correction

$$
\begin{aligned}
& a=93 T^{2}+6 T+1 \\
& T=x \frac{.31 F B W^{2}+3 F B W+1}{.31 x^{2}+3 x+1} \\
& x=\text { FBW }((T D-1 D) / L) \\
& p=\text { a parameter of bit type (diamond to soft mill tooth } \\
& \text { ID total depth } \\
& I=\text { run length } \\
& \text { FBW }=\text { final bit wear }(\mathrm{N} / 8)
\end{aligned}
$$

The des trend line may be expressed as a straight line with an equation such as

$$
\log (d x)=a 2+6
$$

The trend may be given mamally through the CRI keyboard or the computer may find it's own trend within predetermined limits over a particular interval.

When the observed des is lower than the trend:

$$
\mathrm{PF}+\mathrm{S}=(\mathrm{S}-\mathrm{H}) \frac{\text { des }}{\overline{\mathrm{ndes}}}
$$

Where $S \doteq$ overburden gradient
Equivalent circulating density is the effective pressure of the mud in circulation, taking into account the back pressure of the mud in tine armulus.

