ESSO PRODUCTION RESEARCH EUROPEAN

PALEONTOLOGICAL AND GEOCHEMICAL STUDY OF THE WELL ESSO 16/7-2. OFFSHORE NORWAY

BY

R. JAN DU CHENE, M. PONS AND N.S. IOANNIDES

EPR-E.WA5.82 June 1982

FOR COMPANY USE ONLY

PALEONTOLOGICAL AND GEOCHEMICAL STUDY OF THE WELL ESSO 16/7-2, OFFSHORE NORWAY

BY

R. JAN DU CHENE, M. PONS AND N.S. IOANNIDES

EPR-E.WA5.82

JUNE 1982

PALEONTOLOGICAL AND GEOCHEMICAL STUDY OF THE WELL

ESSO 16/7-2, OFFSHORE NORWAY

by

R. Jan du Chêne, M. Pons and N.S. Ioannides

INTRODUCTION

For the paleontological investigation of the Esso 16/7-2 well, 65 cutting samples, 28 sidewall cores and 15 core samples were processed for palynology, and 47 cutting samples and 5 core samples were examined for micropaleontology. In addition, 5 sidewall cores were analyzed geochemically, as requested by Esso Norway (Table 1). Significantly, most of the samples below core 4 (core 4: 2675-2690,75m) and down to the Permo-Triassic section have proved barren and only a couple of SWC's yielded a dinocyst association certainly not older than Jurassic. Evidently, there exists the possibility of mud contamination but until there is proof to the contrary the proposed interpretation seems the best possible at present.

The stratigraphic tops are:

Depth (in m)	<u>Age</u>	Palynology	Micropaleontology
600	Pleistocene-Pliocen	e	Elphidium incertum, E. clavatum, Cassidu-
700	Pliocene		lina laevigata Cibicides lobatulus grossa
1100	Miocene	Good dinos association	91020

Depth (in m)	<u>Age</u> <u>P</u>	alynology	Micropaleontology
(in m)			
1400	Late to Middle	Zone IX	Cyclammina aff. pla-
	Oligocene		centa
1700	Early Oligocene (?)	Zone VII (?)	
1990	Early Oligocene to Late Eocene	Zone VII	
2020	Middle Eocene	Zone VI	
2080	Early Eocene	Zone IV	
2170		Zone III	Coscinodiscus sp. 1
2235	Late to Middle	Zone IB	
	Paleocene		
2270			Bolivinopsis specta-
			bilis
2300		Zone IB-IA2	
2315	Middle to Early	Zone IA2	
	Paleocene		
2338			Globorotalia compressa,
			Globigerina spp.
2424	Early Paleocene	Zone IAI	
0.450			
2479	Early Maastrichtian		Assemblage of Arkhan-
			gelskiella cymbiformis,
			Prediscosphaera creta-
			cea, Micula staurophora
2539	Early Maastrichtian		Arkhangelskiella cym-
2333	to Late Campanian		biformis and Reinhard-
	co nace campanian		tites anthophorus
			CT CED ATTITIOPHOLUS

Depth (in m)	<u>Age</u>	Palynology	Micropaleontology
2560	Campanian to Santo	onian	Eiffellithus eximius and Reinhardtites an-thophorus
2587	Early Kimmeridgia: Oxfordian	n to	
2675	Callovian		
2690.75	Jurassic (?), not older than Callov		
2975	Permo-Triassic		
3013	Permian		

STRATIGRAPHY

At 600m: Pleistocene-Pliocene

A - Palynology

This level is barren for palynology.

B - Micropaleontology

This sample is characterized by the presence of such forams as *Elphidium incertum*, *E. clavatum* and *Cassidulina laevigata*.

From 700 to 1000m: Pliocene

A - Palynology

Palynomorphs recorded in this interval are not diagnostic.

B - Micropaleontology

The presence of *Cibicides lobatulus grossa* at 700m indicates a Pliocene age.

Elphidium sp. 16, Ammonia beccarii, Nonion pompilioides are additionally observed in this interval.

From 1100 to 1300m: Miocene

A - Palynology

Good dinoflagellate assemblages are recorded throughout this interval: Operculodinium crassum, "Hystrichosphaeridium" choanophorum, Tectatodinium pellitum, Hystrichokolpoma rigaudae, Palaeocystodinium golzowense, Hystrichosphaeropsis ovum, H. obscurum, Apteodinium spiridioides, Pentadinium taeniagerum, Millioudodinium tenuitabulatum, Tuberculodinium van campoae, Cyclopsiella elliptica, Andalusiella sp., etc...

B - Micropaleontology

A Miocene foram assemblage is present at 1300m. Asterigerina staeschei and A. gürichi are the most prominent species; they are accompanied by Globorotalia scitula and Gr. obesa.

From 1400 to 1600m: Late to Middle Oligocene

A - Palynology

At 1500m the first occurrence of *Deflandrea phosphoritica*, *Deflandrea heterophlycta* and *Wetzeliella* spp. indicates a Late to Middle Oligocene age (Zone IX).

At 1600m, we recorded *Rhombodinium draco*, *Wetzeliella sym-metrica* and *Tanyosphaeridium paradoxum* which characterize zone VIII.

Other dinocysts present in these samples are: Chiropteridium dispersum, Ch. aspinatum, Heteraulacacysta sp., Palaeocysto-dinium golzowense, Andalusiella sp., Cordosphaeridium cantha-rellum, Thalassiphora pelagica.

B - Micropaleontology

At 1400m, the presence of arenaceous foraminifera with Cyclammina aff. placenta suggest an Oligocene age.

Radiolarians and rare *Turrilina alsatica* are also observed in this interval.

From 1700 to 1990m: Early Oligocene to Late Eocene

A - Palynology

This assemblage is characterized by the presence of Areosphae-ridium arcuatum, A. diktyoplokus and Kisselovia coleothrypta (Zone VII). A single specimen of Eatonicysta ursulae (Zone V) is recorded at 1900m and considered reworked.

B - Micropaleontology

The microfauna is represented by Cyclammina aff. cancellata, C. placenta, Ammodiscus incertus, Bathysiphon discreta, Tro-chammina globigeriniformis and other arenaceous foraminifera.

Glomospira charoides is observed from 1900m downwards.

From 2020 to 2050m: Middle Eocene

A - Palynology

The first occurrence of Wetzeliella articulata at 2020m indicates a Middle Eocene age, (Zone VI). Wetzeliella pachyderma and Eatonicysta ursulae which characterize zone V, are absent from this interval.

B - Micropaleontology

Foraminiferal assemblages are dominated by arenaceous forams. Incertae sedis organism A is present at 2020m and below. A single specimen of Coscinodiscus sp. 1 is observed at 2050m, but considered reworked.

From 2080 to 2230m: Early Eocene

A - Palynology

The association W. pachyderma and Kisselovia aff. clathrata present from 2080 to 2140m characterizes the zone IV.

Deflandrea speciosa which indicates the zone III, is abundant at 2170 m and persists down section. The ratio of pollen is increasing in this zone: disaccate pollen, Carya type, Taxodiaceae type.

B - Micropaleontology

At 2170m, Coscinodiscus sp. 1 is recorded together with rare Globigerina linaperta.

The microfaunal assemblage is always represented by arenaceous foraminifera.

From 2235 to 2315m: Late to Middle Paleocene

A - Palynology

Alisocysta circumtabulata is consistently present from 2235m, and indicates the IB zone. Zone II seems to be absent.

Other dinoflagellates characterizing this interval are: Thalassiphora delicata, Cordosphaeridium fibrospinosum, C. inodes, Achomosphaera sagena, A. alcicornu, A. crassipellis, Hystrichosphaeridium tubiferum, Oligosphaeridium sp., Areoligera senonensis, Spiniferites spp., Caligodinium sp.

A few specimens of *Palaeoperidinium pyrophorum* are considered reworked. From 2300 to 2315m, *P. pyrophorum* is still rare but occurs consistently. This interval may represent a transition zone between IB and IA2.

B - Micropaleontology

Bolivinopsis spectabilis is observed at 2240m and the micro-fauna is the same as above.

From 2315 to 2378.8m: Middle to Early Paleocene

A - Palynology

The regular occurrence of Palaeoperidinium pyrophorum characterizes this interval and defines the zone IA2. Other dinocysts are: Palaeocystodinium benjaminii, H. tubiferum, T. delicata, A. sagena, etc... The fragment of E. crassibulata recorded at 2424m, is considered reworked.

B - Micropaleontology

Arenaceous foraminifera are again present. At 2338m, Globoro-talia compressa and Globigerina spp. appear. These forms indicate a Middle to Early Paleocene age. The core 3 at 2375m.50 is barren of microfossils.

From 2424m to 2425.7m: Early Paleocene

Palynology

The occurrence of abundant Eisenackia crassitabulata indicates the zone IA1.

From 2479 to 2539m: Early Maastrichtian

A - Palynology

One specimen of *Litosphaeridium* cf. arundum is present in sample 2485m, indicating a generalized Middle to Late Cretaceous age.

B - Micropaleontology

At 2479m the presence of Arkhangelskiella cymbiformis, Predicosphaera cretacea, Kamptnerius magnificus, Cretarhabdus crenulatus, Micula staurophora suggests an Early Maastrichtian age.

From 2539 to 2560m: Early Maastrichtian to Late Campanian

Micropaleontology

At 2539m, the association of *Arkhangelskiella cymbiformis* and *Reinhardtites anthophorus* indicates an Early Maastrichtian to Late Campanian age.

At 2560m: Campanian to Santonian

Micropaleontology

At 2560m, it is difficult to assign more precise age to this sample than Campanian to Santonian. *Eiffellithus eximius* is observed in association with *Reinhardtites anthophorus*.

From 2587 (as high as 2581m) to 2675m: Early Kimmeridgian to Oxfordian

Palynology

Although a drastic change in organic matter (from woody into an abundance of amorphous) occurs at 2581m, the first positively identified Jurassic palynomorphs are observed at 2587m and become more diversified below but always badly diluted by the organic matter. These include Gonyaulacysta jurassica, Scriniodinium luridum, Scriniodinium cf. galleritum, Sirmiodinium grossii, Acanthaulax sp. and a variety of Millioudodinium spp. An early Kimmeridgian to Oxfordian age may be suggested.

It is worth noting that in sample at 2587m Palaeohystrichophora infusoroides, and Criboperidinium spp. are present; they are almost certainly caved from higher in the section and indicate that Campanian (or older) rocks were penetrated. The remote possibility of having a Cretaceous sequence with reworked Jurassic should be born in mind.

From 2675 to 2683m: Callovian

Palynology

A highly distinctive assemblage was extracted from the upper half of core 4 which spans the above interval. In addition to Gonyaulacysta jurassica and Sirmiodinium grossii, it contains common Ctenidodinium tenellum/stauromatos, Lithodinia spp, Pareodinia ceratophora, Ellipsoidictyrum sp., Meiourogonyaulax sellwoodii, and Tubotuberella eisenacki subsp. oligodentata. Rare reworked striate pollen are also present. A Callovian age is indicated.

From 2683 to 2975m: Tentatively Jurassic (not older than Callovian?)

Palynology

The samples prepared from this interval are barren or poor in recovery. Millioudodinium is seen scarcely, and it is associated with Scriniodinium crystallinum and Scriniodinium? luridum. A level of reference may be considered the SWC at 2903m which contains Gonyaulacysta jurassica, Meiourogonyaulax cf. valensi, Leptodinium cf. subtile and S.? luridum.

On the basis of the above assemblage an age not older than Callovian is tentatively suggested. However, the penetration of red beds in this interval, generally indicative of an older age (Triassic), would require further evidence for substantiating the *in situ* occurrence of the forementioned palynomorphs. It should be emphasized here that problems of this nature may only be solved by the use of conventional cores.

It is of interest that a similar situation occurred in the 16/9-1 well (1968) where a possibly comparable interval was not differentiated at that time despite the presence of *Gonyaula-cysta jurassica* (recycling may have then been suspected too). One of us rapidly re-examined some of the SWC's between 7750' and 8070' in 16/9-1. *Millioudodinium* and other elements not older than Jurassic were also observed. Unfortunately a core proved barren of microfossils (core 2: approx. 7860'-7867').

From 2975 to 3003m: Permo-Triassic

Palynology

Striate pollen are consistently encountered in this interval. A Permo-Triassic age is suggested.

From 3003 to 3146m: Permo-Triassic

Palynology

Questionable *Lueckisporites virkkiae* is present at 3003m, accompanied by other striate bisaccate pollen. Monosaccate pollen attributable to *Potoneisporites* and *Florinites* are commonly represented. A Permian age is indicated.

GEOCHEMISTRY

It is of interest to note that the sample at 2581m is considerably richer in organic matter than the underlying four samples. Although thermally immature, the type of organic matter (predominantly type I) enhances its value as a source rock. The four samples between 2975.20m and 3033m fall within the oil window despite the limited, and essentially gaz prone organic matter (predominently type III).

RJDC/MP/NSI/pd/gp June 9, 1982

SAMPLES STUDIED FOR PALYNOLOGY

Depth (m)	<u>Sample</u>		<u>Age</u>
600	cutt.	Barren	
700	cutt.	Very poor, non diagnostic	
800	cutt.	a.a.	
900	cutt.	a.a.	
1000	cutt.	a.a.	
1100	cutt.	Good dino. assemblage: Operculodinium crassum, O. sp., "Hystrichosphaeridium" choanophorum, Tectatodinium pellitum etc	Miocene
1200	cutt.	Hystrichokolpoma rigaudae, Palaeocysto- dinium golzowense, Hystrichosphaeropsis ovum, H. obscurum, Apteodinium spiri- dioides, etc	Miocene (middle)
1300	cutt.	a.a. + Pentadinium taeniagerum, M. tenui- tabulatum, Tuberculodinium van campoae, Cyclopsiella cf. elliptica, Andalusiella sp.	Zone X
1500	cutt.	Deflandrea phosphoritica, D. heterophlyco Wetzeliellaceae, Heteralacaucysta sp., Cordosphaeridium cantharellum etc	zone IX

1600	cutt.	a.a. + Rhombodinium draco, Chiropteridium spp., Taniasphaeridium paradoxum, W. sym-		
			Zone V	7111
1700	cutt.	a.a. + rare Kisselovia coleothrypta	Zone V	/II?
1800	cutt.	a.a. but no Kisselovia coleothrypta	?	•
1900	cutt.	Areosphaeridium arcuatum, A. dictyoplokus, K. coleothrypta, abundant scolecodonts, one specimen of A. ursulae	Zone	VII
1930	cutt.	a.a. no VI index species	Zone	VII
1960	cutt.	a.a.	Zone	VII
1990	cutt.	a.a.	Zone	VII
2020	cutt.	Wetzeliella articulata, Achomosphaera alcicornu	Zone	VI
2050	cutt.	a.a.	Zone	VI
2080	cutt.	Kisselovia aff. clathrata, W. pachyderma + a.a.	Zone	IV
2110	cutt.	Kisselovia aff. clathrata + a.a.	Zone	IV
2140	cutt.	a.a. + cf. D. speciosa	Zone	IV
2170	cutt.	D. speciosa very abundant	Zone	III
2200	cutt.	D. speciosa, pollen abundant	Zone	III

2230	cutt.	a.a.	Zone III
2235	cutt.	Alisocysta circumtabulata	Zone IB
2240	cutt.	a.a. + ?Palaeoperidinium pyrophorum	Zone IB
2245	cutt.	Alisocysta circumtabulata	Zone IB
2250	cutt.	a.a.	Zone IB
2255	cutt.	a.a.	Zone IB
2260	cutt.	a.a.	Zone IB
2290	cutt.	a.a.	Zone IB
2295	SWC	rare Palaeoperidinium pyrophorum	Zone IB-IA2
2300	cutt.	a.a.	Zone IB-IA2
2300.60	core	a.a.	Zone IB-IA2
2301.20	core	a.a.	Zone IB-IA2
2304	SWC	Barren	
2310	SWC	Barren	
2311	cutt.	P. pyrophorum rare	Zone IB-IA2
2311	SWC	no P. pyrophorum	Zone IB-IA2

2315	SWC	a.a.	Zone IB-IA2
2317	SWC	P. pyrophorum present	Zone IA2
2320	SWC	P. pyrophorum very common	Zone IA2
2320	cutt.	a.a.	Zone IA2
2326 A	SWC	Senegalinium obscurum abundant	
2326 B	SWC	a.a.	
2329	cutt.	P. pyrophorum abundant	Zone IA2
2338	cutt.	a.a.	Zone IA2
2339	SWC	No diagnostic species	
2347	cutt.	P. pyrophorum abundant	Zone IA2
2359	cutt.	a.a., cavings abundant	Zone IA2
2363.5	cutt.	P. pyrophorum abundant	Zone IA2
2366.5	cutt.	a.a.	Zone IA2
2375.5	cutt.	a.a., one fragment of E. crassitabulata	Zone IA2
2378.8	SWC	no diagnostic species	
2424	SWC	E. crassitabulata abundant	Zone IA1
2425.7	SWC	a.a.	Zone IA1
2455	cutt.	Virtually barren	

.

2485	cutt.	Litosphaeridium cf. arundum	Middle-Late Cretaceous
2515	cutt.	Caved Tertiary palynomorphs	
2545	cutt.	a.a.	
2575	cutt.	Rare long-ranging dinocysts	Cretaceous
2581	SWC	Incoming of Amorphous	Jurassic?
2587	cutt.	Gonyaulacysta jurassica, etc Caved Cretaceous present	Early Kimmerid- gian-Oxfordian
2593	SWC	a.a.	
2596	cutt.	a.a.	
2605	cutt.	a.a.	
2610	SWC	a.a.	
2626	cutt.	a.a.	
2635	cutt.	Rare, corroded unidentified dinocysts	
2645	SWC	a.a.	
2665	cutt.	a.a.	
2675.00	Core 4	Meiourogonyaulax cf. valensi, Ctenidodinium tenellum/stauromatos	Callovian
2675.48	Core 4	a.a.	

2678.98-

2679 Core 4 Ctenidodinium, Sirmiodinium

2680.98-

2681 Core 4 A rich Callovian association

2682.98-

2683 Core 4 a.a.

Callovian

2684.99-

2685 Core 4 Barren

2687.04 Core 4 Rare sporomorphs

2687.60 Core 4 a.a.

2687.98-

2688 Core 4 Barren

2689.20 Core 4 a.a.

2689-

2689.06 Core 4 a.a.

2689.15 Core 4 a.a.

2689.20 Core 4 a.a.

2690.75 Core 4 a.a.

2691 SWC Gonyaulacysta jurassica

2695 cutt. Barren

2695 SWC a.a.

2725 cutt. a.a.

2725 SWC Gonyaulacysta cf. cladophora

2755	cutt.	Leptodinium sp.	
2785	cutt.	Poor	
2715	cutt.	a.a.	
2845	cutt.	Rare Jurassic dinocysts	
2875	SWC	Very poor	
2875	cutt.	Barren	
2903	SWC	A Jurassic association	
2905	cutt.	a.a.	
2935	cutt.	a.a.	
2955	cutt.	a.a.	
2930	SWC	No indication for a Triassic age	
2965	cutt.	a.a.	
2974	SWC	Tertiary mud contaminats	
2975.20	SWC	Striate pollen	Permo- Triassic
2995	cutt.	a.a.	
3003	SWC	Lueckisporites virkkiae, Potonei- sporites/Florinites	Permian
3013	SWC	a.a.	

3025 cutt. a.a.

3033.20 SWC a.a.

3055 cutt. a.a.

3085 cutt. a.a., poor

3115 cutt. Poor

3146 cutt. Poor

LIST OF CUTTINGS AND CORES STUDIED FOR MICROPALEONTOLOGY

(Foraminifera and Coccoliths)

600	cutting	2050 cutting	2320 cutting
700	cutting	2080 cutting	2329 cutting
800	cutting	2110 cutting	2338 cutting
900	cutting	2140 cutting	2347 cutting
1000	cutting	2170 cutting	2359 cutting
1100	cutting	2200 cutting	2363.50 Core 3
1200	cutting	2230 cutting	2365 cutting
1300	cutting	2235 cutting	2366.50 Core 3
1400	cutting	2240 cutting	2375.50 Core 3
1500	cutting	2245 cutting	2440 cutting
1600	cutting	2250 cutting	2461 cutting
1700	cutting	2255 cutting	2479 cutting
1800	cutting	2260 cutting	2500 cutting
1900	cutting	2290 cutting	2521 cutting
1930	cutting	2300 cutting	2539 cutting
1960	cutting	2300.60 Core 1	2560 cutting
1990	cutting	2301.20 Core 1	2581 cutting
2020	cutting	2311 cutting	

MATERIA CELETITORI	0 2111											SI	IDES	SLIDES REC'D		,		ON BOL
WELL SECTION	2-1/01/										.	SI	STARTED	٥				STUDIED FOR:
												Œ	FINISHED	ED:		1 1		STUDIED BY:
				TA	AI POPULAT	TAI POPULATION ANALYSIS*		Am /	ALGAL		1ERBACEOUS		C W		отнев	æ	MINERAL	.L REMARKS
					(%)		(5.1) 45	W.			76/4/						520153	OMVS - ORGANIC MATTER VERY SPARCE
			10	30NI	JON BO	30N 30N	\$12300 \$123000	1300	775071	, C.3.	\$31.50 S		_	/ao	1000	~V3/~	BAOW! ?	OM1S + OHGANIC MATTER TOO SPARCE TO EVALUATE
SAMPLE INTERVAL	T. O. C.	136 Jag	D~ ~	1787 / 78 / 78 / 78 / 78 / 78 / 78 / 78	18 13 P	MARON R	4940187 074708 NAM2RT	ONIC P ONIC	39092			13 by	_ 'V^ 1	70,00	1950	3/20	by	• CIRCLE TAI VALUE OF INDIGENOUS POPULATION WHEN POSSIBLE
1,581	5.80	1.5			Ï	L		2	7	7	77		_		W			
2975.20	0.26	1.5			7	07			2	4	9	#	+		4			
3003	0,40	2.5			7	20		7	9	7	40	1	+	\downarrow	+	-		
3013	0.26	25	+	1	7	45	#	(3)	8	V3	0	7	+	#	#	+		
3033.2	0.42	2.5	+	#	-1	8	†	1	\$		9		+	1	#	+	2007	20:22 C)/a
			+		+	#	+	\dagger	-		#	-	+	F	Ŧ			1 5 5 7
	THE RESERVE AND PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO I		+	1	†	1					L	-						
				-									H			\Box		
			-													-		
	The second secon																	
		L	+														-	
			F	F		-												
						F									-	\dashv		
																\dashv		
			-													+		
	De appropries aparendados de la composiçõe de la composiç	<u> </u>	+	F												-		
			F	-														
	THE PROPERTY OF A STATE OF THE PROPERTY OF THE		+	-		-	F		-									
	The same of the case of the same of the sa		+	-	-													
	THE R. P. LEWIS CO., LANSING MICH. SPECES AND ADDRESS OF THE PROPERTY ADDRESS OF T		-							<u> </u>								
	CONTRACTOR OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF	+		-		-								1	-			
KEROGE	KEROGEN TYPE	1		1					=		<u> </u>							