Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

Reservoir Fluid Analysis
for WELLFILE
STATOIL

Well: 34/10-1 DST No.3 Flow 2 North Sea, Norway.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

9th November, 1978.

Statoil, Lagardsveien 78, P.O. Box 300, 4001, Stavanger, Norway.

Attention: Mr. Per Thomassan.

Subject: Reservoir Fluid Analysis

Well: 34/10-1 DST No. 3

Flow 2.

North Sea, Norway.

Our File Number: RFLA-78060

#### Gentlemen:

On August 29th 1978, a subsurface sample was collected form the subject well and forwarded to our Aberdeen laboratories. This report presents the results of analyses performed on this sample.

A portion of the reservoir fluid was placed in a high pressure visual cell and thermally expanded to the reservoir temperature of 156 F. At this temperature a constant composition expansion was conducted during which a bubble point pressure of 3684 psig was observed. The fluid was then subjected to a differential vaporization, which resulted in the total liberation of 579 cubic feet of gas at 14.73 psia and 60 F. per barrel of residual oil at 60 F., with an associated relative oil volume of 1.264 barrels of saturated oil per barrel of residual oil.

In addition, at several pressure levels below the observed saturation pressure, oil densities, gas deviation factors, and gas gravities were measured. These data are tabulated on pages two through four and graphically represented on pages five and six.

A two-stage flash separation was conducted in the laboratory at the following conditions: 380 psia at 68°F., 15 psia at 60°F. The ratios and factors derived from this test are presented on page seven. Also, gas samples evolved at each stage of separation were collected in the laboratory and analyzed for hydrocarbon composition. These compositions are listed on page eight. In addition, the stock tank oil was collected and analyzed for hydrocarbon composition, using low temperature fractional distillation apparatus.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

STATOIL:

Well: 34/10-1 DST 3 Flow 2.

Page Two

Using the experimentally determined compositions of the separator gas and stock tank oil, in conjunction with the factors and ratios derived from the flash separation, we were able to calculate a well stream composition. The resulting calculated well stream composition is given on page ten.

At this writing, the viscosity of the reservoir fluid has not been determined. However, upon completion of these test procedures, a supplementary report will be issued.

It has indeed been a pleasure to be of service to Statoil. Should you have any questions concerning the data presented in this report, please do not hesitate to contact us.

Very truly yours
Core Laboratories U.K. Limited

John D. Owen

JDO/rmb:

15cc/Addressee:

John D. Owen.

Supervising Engineer.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

|                                    | Page1 of10                              |
|------------------------------------|-----------------------------------------|
|                                    | File RFLA - 78060                       |
|                                    |                                         |
| CompanySTATOIL                     | Date Sampled 29th August, 1978.         |
|                                    | County NORTH SEA                        |
|                                    | StateNORWAY.                            |
| riciu                              | State                                   |
| FORMATIO                           | N CHARACTERISTICS                       |
| Formation Name                     | •••••                                   |
| Date First Well Completed          | , 19                                    |
| Original Reservoir Pressure        | PSIG @Ft.                               |
| Original Produced Gas-Liquid Ratio | SCF/Bbl                                 |
| Production Rate                    | Bbl/Day                                 |
| Separator Pressure and Temperature | PSIG° F.                                |
| Oil Gravity at 60°F.               | ° API                                   |
| Datum                              | Ft. Subsea                              |
| Original Gas Cap                   | •••••                                   |
| WELL C                             | CHARACTERISTICS                         |
| Elevation                          | Ft.                                     |
| Total Depth                        | Ft.                                     |
| Producing Interval                 | 1788 - 1792 M                           |
| Tubing Size and Depth              | 3½ In. to 1784 M                        |
| Productivity Index                 | Bbl/D/PSI @Bbl/Day                      |
| Last Reservoir Pressure            |                                         |
|                                    |                                         |
| Date                               | °F.@Ft.                                 |
| Reservoir Temperature              |                                         |
| Status of Well                     |                                         |
| Pressure Gauge                     | 7117                                    |
| Normal Production Rate             |                                         |
| Gas-Oil Ratio                      | SCF/Bbl                                 |
| Separator Pressure and Temperature | PSIG° F.                                |
| Base Pressure                      | PSIA                                    |
| Well Making Water                  | % Cut                                   |
| SAMPL                              | ING CONDITIONS                          |
| Sampled at                         | 1467 M.                                 |
| Status of Well                     |                                         |
| Gas-Oil Ratio                      | SCF/Bbl                                 |
|                                    | PSIG° F.                                |
| Separator Pressure and Temperature | PSIGPSIGPSIG                            |
| Tubing Pressure                    |                                         |
| Casing Pressure                    | Flopetrol. PSIG                         |
| Sampled by                         | riopetiui.                              |
| Type Sampler                       | *************************************** |
| REMARKS                            |                                         |

Received cylinder 22478 - 20.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

| Page | of <sup>10</sup>   |   |
|------|--------------------|---|
| File | RFLA - 78060       |   |
| Well | 34/10-1 DST 3 Flow | 2 |

# VOLUMETRIC DATA OF ... Reservoir Fluid ... SAMPLE

| 1. | Saturation pressure (bubble-point pressure)                              |
|----|--------------------------------------------------------------------------|
| 2. | Specific volume at saturation pressure: ft 3/lb 0.02094 @ 156 °F.        |
| 3. | Thermal expansion of saturated oil @                                     |
| 4. | Compressibility of saturated oil @ reservoir temperature : Vol/Vol/PSI : |
|    | From .5000 PSI to4600 PSI = $7.68 \times 10^{-6}$                        |
|    | From .4600 PSI to4200 PSI = $\frac{7.97 \times 10^{-6}}{10^{-6}}$        |
|    | From $4200$ PSI to $3800$ PSI = $8.13 \times 10^{-6}$                    |
|    | From . 3800 PSI to 3684 . PSI = $8.26. \times .10^{-6}$                  |

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

| Page | of <sup>10</sup>   |
|------|--------------------|
| File | RFLA- 78060        |
| Well | 34/10-1 DST 3 Flow |

Pressure-Volume Relations at ...156... °F.

| Pressure<br>PSIG | Relative Volume (1) | Y<br>Function (2) |
|------------------|---------------------|-------------------|
| 5000             | 0.9896              | $a = \frac{1}{2}$ |
| 4800             | 0.9911              |                   |
| 4600             | 0.9926              |                   |
| 4400             | 0.9942              |                   |
| 4200             | 0.9958              |                   |
| 4100             | 0.9966              |                   |
| 4000             | 0.9974              |                   |
| 3900             | 0.9982              |                   |
| 3800             | 0.9990              |                   |
| 3700             | 0.9999              |                   |
| 3684             | 1.0000              |                   |
| 3644             | 1.0020              | 5.439             |
| 3624 °           | 1.0030              | 5.496             |
| 3604             | 1.0040              | 5.554             |
| 3367             | 1.0175              | 5.356             |
| 3088             | 1.0374              | 5.136             |
| 2765             | 1.0681              | 4.855             |
| 2451             | 1.1089              | 4.591             |
| 2122             | 1.1705              | 4.287             |
| 1823             | 1.2531              | 4.000             |
| 1521             | 1.3775              | 3.730             |
| 1257             | 1.5438              | 3.508             |
| 1037             | 1.7521              | 3.345             |
| 913              | 1.9190              | 3.249             |
| 704              | 2.3411              | 3.090             |
| 529              | 2.9675              | 2.948             |
| 377              | 4.0167              | 2.797             |

(1) Relative Volume: V/Vsat is barrels at indicated pressure per barrel at saturation pressure.

(2) Y Function =  $\frac{\text{(Psat-P)}}{\text{(Pabs) (V/Vsat-1)}}$ 

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

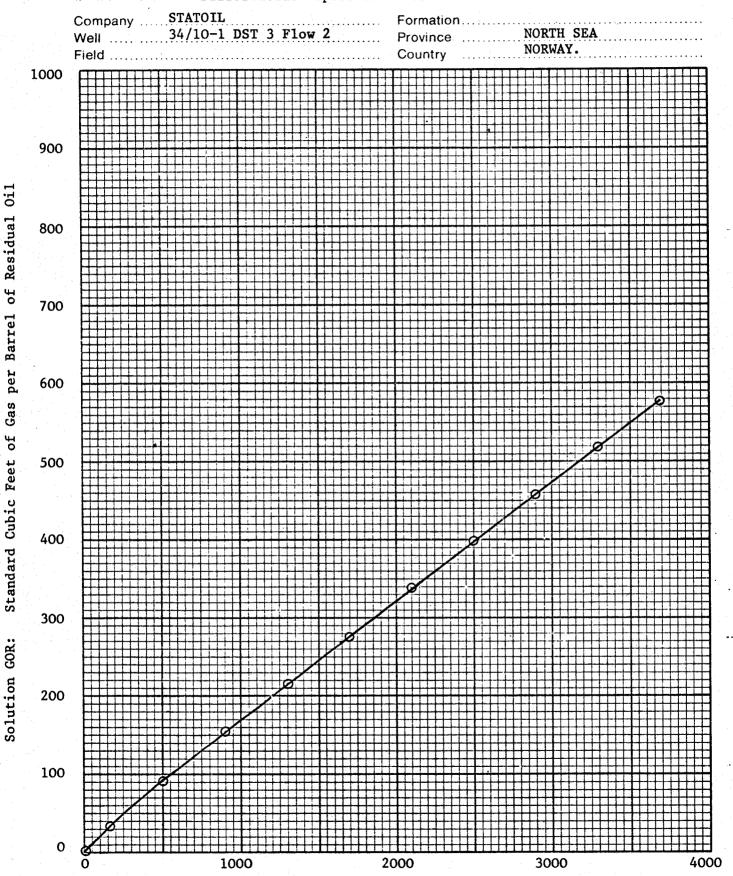
| Page | 4 of10      |     |
|------|-------------|-----|
| File | RFLA- 78060 | • • |
|      |             |     |

Well ... 34/10-1 DST 3 Flow 2

Differential Vaporization at 156 °F.

| Pressure<br>PSIG | Solution<br>Gas/Oil<br>Ratio (1) | Relative<br>Oil<br>Volume (2) | Relative<br>Total<br>Volume (3) | Oil<br>Density<br>gm/cc | Deviation<br>Factor<br>Z | Gas Formation Volume Factor (4) | Incremental<br>Gas<br>Gravity |   |
|------------------|----------------------------------|-------------------------------|---------------------------------|-------------------------|--------------------------|---------------------------------|-------------------------------|---|
| 3684             | 579                              | 1.264                         | 1.264                           | 0.7649                  |                          |                                 |                               |   |
| 3300             | 519                              | 1.241                         | 1.291                           | 0.7722                  | 0.896                    | 0.00472                         | 0.626                         |   |
| 2900             | 459                              | 1.219                         | 1.331                           | 0.7793                  | 0.873                    | 0.00523                         | 0.622                         |   |
| 2500             | 399                              | 1.198                         | 1.391                           | 0.7866                  | 0.868                    | 0.00602                         | 0.621                         |   |
| 2100             | 339                              | 1.176                         | 1.483                           | 0.7942                  | 0.872                    | 0.00719                         | 0.622                         |   |
| 1700             | 276                              | 1.153                         | 1.638                           | 0.8026                  | 0.884                    | 0.00899                         | 0.624                         |   |
| 1300             | 215                              | 1.131                         | 1.908                           | 0.8111                  | 0.903                    | 0.01198                         | 0.626                         |   |
| 900              | 154                              | 1.108                         | 2.446                           | 0.8198                  | 0.926                    | 0.01766                         | 0.633                         |   |
| 500              | 92                               | 1.085                         | 3.895                           | 0.8294                  | 0.956                    | 0.03239                         | 0.658                         | - |
| 159              | 33                               | 1.062                         | 10.668                          | 0.8384                  | 0.985                    | 0.09878                         | 0.739                         | į |
| 0                | 0                                | 1.042                         |                                 | 0.8471                  |                          |                                 | 1.068                         |   |
|                  |                                  |                               |                                 |                         |                          |                                 |                               |   |

At  $60^{\circ}$ F. = 1.000


Gravity of residual oil=.....28.7......° API @ 60°F.

- (1) Cubic feet of gas at 14.73 psia and 60 °F. per barrel or residual oil at 60°F.
- (2) Barrels of oil at indicated pressure and temperature per barrel of residual oil at 60°F.
- (3) Barrels of oil plus liberated gas at indicated pressure and temperature per barrel of residual oil at 60°F.
- (4) Cubic feet of gas at indicated pressure and temperature per cubic foot at 14.73 psia and 60°F.

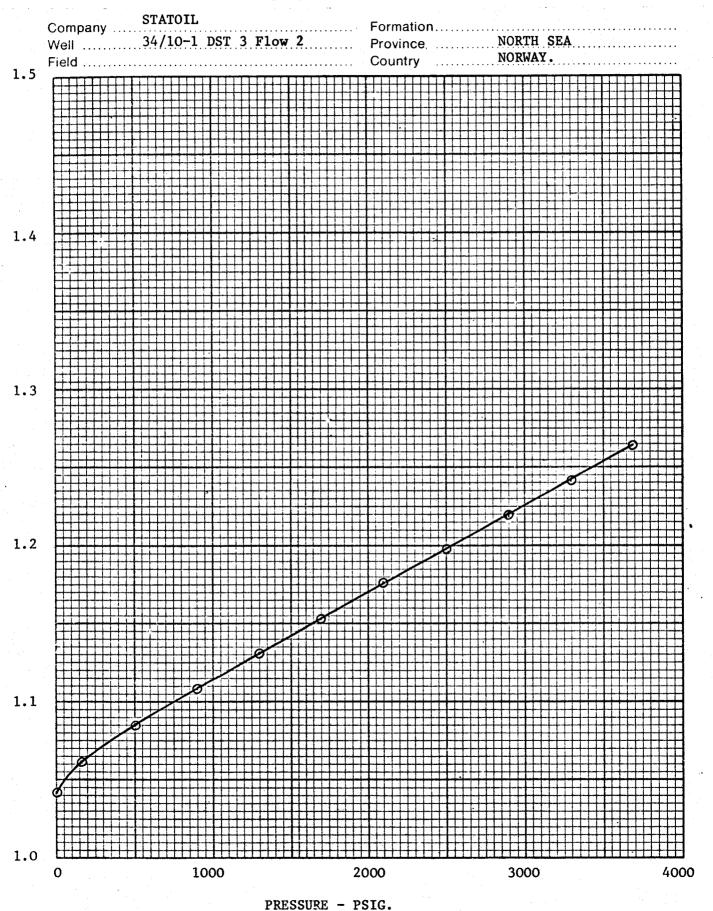
#### CORE LABORATORIES, INC. Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

5 of ... File RFLA- 78060

# Differential Vaporization of Reservoir Fluid at 156°F.



Gas


Standard Cubic Feet of

## CORE LABORATORIES, INC.

Petroleum Reservoir Engineering

Page 6 of 10 File RFLA- 78060 ABERDEEN, SCOTLAND

Differential Vaporization of Reservoir Fluid at 156°F.



Relative Volume:

# CORE LABORATORIES UK LTD. Petroleum Reservoir Engineering

ABERDEEN, SCOTLAND

| Page | of              |
|------|-----------------|
| File | RFLA- 78060     |
| Well | 34/10 - 1 DST 3 |

SEPARATOR TESTS OF Reservoir Fluid SAMPLE

| SEPARATOR<br>PRESSURE<br>PSIA | SEPARATOR<br>TEMPERATURE<br>• F. | GAS/OIL RATIO | GAS/OIL RATIO | STOCK TANK<br>GRAVITY<br>• API @ 60° F. | FORMATION<br>VOLUME<br>FACTOR<br>(3) | SEPARATOR<br>VOLUME<br>FACTOR<br>(4) | SPECIFIC<br>GRAVITY (<br>FLASHED G | )F |
|-------------------------------|----------------------------------|---------------|---------------|-----------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|----|
|                               |                                  |               |               |                                         |                                      |                                      |                                    |    |
| 380                           | 68                               | 447           | 473           |                                         |                                      | 1.059                                | 0.622                              | *  |
| to                            |                                  |               |               |                                         |                                      |                                      |                                    |    |
| 15                            | 60                               | 92            | 92            | 29.1                                    | 1.258                                | 1.000                                | 0.827                              | ** |

- \* Collected and analyzed for hydrocarbons.
- \* \* Stock tank liquid and gas collected and analyzed for hydrocarbons.

- (4) Separator Volume Factor is barrels of oil @ indicated pressure and temperature per barrel of stock tank oil @ 60° F.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

| Page |       | of      | · <u>··</u> ···· |
|------|-------|---------|------------------|
| File | RFLA- | 78060   |                  |
|      |       |         | ••••••           |
| Well | 34/10 | - 1 DST | 3                |

# Hydrocarbon Analysis of Multi-Stage Separator Gases.

| Separator Conditions:                                                                           | 380 PSIA @ 68 <sup>0</sup> F. |       | 15 PSIA @ 60° | <u>F.</u> |
|-------------------------------------------------------------------------------------------------|-------------------------------|-------|---------------|-----------|
| Components:                                                                                     | Mol Per Cent                  | -GPM  | Mol Per Cent  | GPM.      |
|                                                                                                 |                               |       |               |           |
| Hydrogen Sulphide                                                                               | NIL                           |       | NIL           |           |
| Carbon Dioxide                                                                                  | 1.83                          |       | 3.31          |           |
| Nitrogen                                                                                        | 0.75                          |       | 0.45          |           |
| Methane                                                                                         | 90.97                         |       | 67.72         |           |
| Ethane                                                                                          | 4.88                          |       | 17.83         |           |
| Propane                                                                                         | 0.63                          | 0.173 | 4.47          | 1.230     |
| iso-Butane                                                                                      | 0.20                          | 0.065 | 1.88          | 0.615     |
| n-Butane                                                                                        | 0.25                          | 0.079 | - 1.72        | 0.542     |
| iso-Pentane                                                                                     | 0.13                          | 0.048 | 1.05          | 0.384     |
| n-Pentane                                                                                       | 0.14                          | 0.051 | 0.67          | 0.243     |
| Hexanes                                                                                         | 0.12                          | 0.049 | 0.56          | 0.228     |
| Heptanes Plus.                                                                                  | 0.10                          | 0.045 | 0.34          | 0.154     |
|                                                                                                 | 100.00                        | 0.510 | 100.00        | 3.396     |
| Calculated gas gravity (Air=1.000):                                                             | 0.622                         |       | 0.82          | 496       |
| Calculated gross heating value (BTU per cubic foot of dry gas at 14.73 PSI absolute and 60°F.): | 1060                          |       | 1347          |           |
| Collected in the laboratory.                                                                    |                               |       |               |           |

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

|                  |                |                   | <b>I</b>                                          | Page9             | of <sup>10</sup>    |
|------------------|----------------|-------------------|---------------------------------------------------|-------------------|---------------------|
|                  |                |                   | 1                                                 | ileRFL            | A- 78060            |
| CompanySTATOIL   | <b>.</b>       | Dat               | e Sampled29th Au                                  | igust, 19         | 78.                 |
| <del>-</del> -   | DST 3 Flow 2   |                   | inty NORTH S                                      | SEA               |                     |
|                  |                |                   | e NORWAY.                                         |                   |                     |
| 1 Mu             |                | Stat              |                                                   |                   |                     |
| HY               | DROCARBON AN   | ALYSIS OF Stoci   | c Tank Oil SA                                     | MPLE *            |                     |
| COMPONENT        | MOL<br>PERCENT | Weight<br>Percent | DENSITY @ 60° F.<br>GRAMS PER CUBIC<br>CENTIMETER | ° API<br>@ 60° F. | MOLECULAR<br>WEIGHT |
|                  |                |                   |                                                   |                   |                     |
|                  |                |                   |                                                   |                   |                     |
| Hydrogen Sulfide | NIL            | NIL               |                                                   |                   |                     |
| Carbon Dioxide   | 0.05           | 0.01              |                                                   |                   |                     |
| Nitrogen         | NIL            | NIL               |                                                   |                   |                     |
| Methane          | 0.41           | 0.03              |                                                   |                   |                     |
| Ethane           | - 0.58         | 0.07              |                                                   |                   |                     |
| Propane          | 0.39           | 0.07              |                                                   |                   |                     |
| iso-Butane       | 0.34           | 0.08              |                                                   |                   |                     |
| n-Butane         | 0.32           | 0.08              |                                                   |                   |                     |
| iso-Pentane      | 0.24           | 0.07              |                                                   |                   |                     |
| n-Pentane        | 0.20           | 0.06              |                                                   |                   |                     |
| Hexanes          | 0.72           | 0.26              |                                                   |                   |                     |
| Heptanes plus    | 96.75          | 99.27             | 0.8889                                            | 27.5              | 245.                |
|                  | 100.00         | 100.00            |                                                   |                   |                     |

Collected in the laboratory at O Psig and 60°F. from two-stage separator test.

Petroleum Reservoir Engineering ABERDEEN, SCOTLAND

|        | of   | 10   |
|--------|------|------|
| PFI A- | . 75 | 8060 |
|        |      | of   |

Well 34/10-1 DST 3 Flow 2

| Company | STATOIL | Formation_ |                   |    |
|---------|---------|------------|-------------------|----|
| Field   |         | State      | NORTH SEA - NORWA | Y. |

HYDROCARBON ANALYSIS OF Calculated Wellstream

|     | Component                                            | Mol Per Cent   |
|-----|------------------------------------------------------|----------------|
|     | Hydrogen Sulfide                                     | NIL            |
|     | Carbon Dioxide                                       | 1.13           |
| . • | Nitrogen                                             | 0.37           |
|     | Methane                                              | 46.40          |
|     | Ethane                                               | 4.01           |
|     | Propane                                              | 0.86           |
|     | iso-Butane                                           | 0.42           |
|     | n-Butane .                                           | 0.41           |
|     | iso-Pentane                                          | 0.26           |
|     | n-Pentane .                                          | 0.21           |
|     | Hexanes                                              | 0.44           |
|     | Heptanes Plus.                                       | 45.49          |
|     |                                                      | 100.00         |
|     |                                                      | 100.00         |
|     | Properties of Heptanes plus                          |                |
|     | API gravity at 60°F.<br>Specific gravity at 60/60°F. | 27.6<br>0.8894 |
| •   | Molecular Weight                                     | 245            |
|     |                                                      |                |

<sup>\*</sup> Calculated from two-stage separator test data.

Core Laboratories U.K. Limited Reservoir Fluid Analysis

John D. Owen

John D. Owen. Supervising Engineer.