

# END OF WELL REPORT

# WELL 6506/3-1

**PL259** 

February, 2002

Partner



**Partner** 







# This section contains:

| 1.1 | Introduction                                  | . 2 |
|-----|-----------------------------------------------|-----|
| 1.2 | Summary of Well Objectives vs. Results        | . 2 |
|     | Summary of Operational Objectives vs. Results |     |
|     | Summary of Activities                         |     |
|     | Attachments                                   |     |

### 36" Hole Section

Drilling of the 36" hole commenced on the 22nd of July, 2002, once cross tensioning of the anchor chains was completed. The 36" hole was drilled from seabed (366 m) to planned TD of 456 m with seawater and hi-vis pills without problems. The 30" conductor was successfully run and cemented in place.

#### 17 ½" Hole Section

Following clean-out of the 30" conductor shoe and rathole with a 26" bit, the  $8\frac{1}{2}$ " shallow gas pilot hole was drilled to 1383 m with seawater and hi-vis pills. No shallow gas was observed and the  $8\frac{1}{2}$ " hole was opened to  $17\frac{1}{2}$ ".

When running the 13 3/8" casing at 727 m, the casing started to take weight, but the running continued as this was interpreted to be drag in the hole. Shortly thereafter, the ROV sonar showed an unusual reflection and the running was halted. By visual observation, the casing was observed buckled over the wellhead with several joints folded onto the seabed. The casing was pulled to the surface and all joints were recovered, with the exception of two casing centralizers that were lost in hole.

A wiper trip was conducted and the hole was displaced to 1.40 sg KCl inhibited mud. The casing was re-run and successfully cemented in place without any further problems.

The BOP and riser were run. Because of constraints on "over the side work", some waiting on weather took place before the BOPs could be latched to the high pressure wellhead.

#### 8 ½" Hole Section

Following pressure testing of the BOP and 13 3/8" casing, the shoe track was cleaned out with the 8 ½" drilling assembly while displacing the well to 1.45 sg oil based mud. 4 m of new formation was drilled and leak-off tested to 1.84 sg EQMW, before drilling continued.

The ROP was controlled until the top of Brygge flooding surface (secondary objective) at 1654 m was established by use of LWD CDR /ISONIC. With no indications of hydrocarbons, drilling continued and the mud density was gradually increased to 1.50 sg.

During a connection at 1698 m, an increase in pit volume was noted and the well was shut in. A 4 m<sup>3</sup> pit gain was recorded, with 10 bar shut in casing pressure and 14 bar shut in drill pipe pressure. The kick was circulated out using the First Circulation of the Driller's Method. When relaxing the operating pressure on the Upper Annular Preventer to check for trapped gas with both annular preventers closed, the Lower Annular Preventer opened as well, allowing a 2.7 m<sup>3</sup> influx to be taken before the well was shut in. During subsequent circulation, it became apparent that the surface choke was partially plugged. With the surface choke, choke and kill lines cleaned out and a static well with 1.50 sg mud, the well was opened and circulation and rotation was established. An increase in pit level was again noticed and the well was shut in with an incremental pit gain of 7.4 m<sup>3</sup>. The well was killed with 1.57 sg mud using the Driller's Method. The mud on bottoms up was contaminated with saltwater and subsequent logs (MDT) measured a pore pressure of 1.52 sg around this depth.

After a conditioning trip back to the 13 3/8" casing shoe, drilling continued to 3101 m, which was determined to be 13 m into the Lysing Formation (primary objective). At this point, 70 m of formation was cored and 67.7 m of core was recovered. Drilling continued to a total depth of 3667 m and terminated in the Lange Formation.

Induction, Density, Neutron, Spectral Gamma Ray, Oil Based Diplog and Array Sonic wireline logs were successfully run. When running an 8 level Vertical Seismic Log, the tool became temporarily stuck at 3090 m. After coming free with the VSP toolstring, a wiper trip was conducted, followed by running the Modular Dynamic Testing Tool. Pressure points were recorded in the Lysing and Brygge formations and fluid samples were taken from the Lysing Formation. The Vertical Seismic Log was successfully re-run. The final log run was a Sidewall Core Gun, with 29 cores recovered out of 53 shots attempted.

#### Abandonment

Open hole cement plugs were placed across the Lysing Formation, the Brygge Formation, 13 3/8" casing shoe and in the top part of the 13 3/8" casing. The two last plugs were pressure tested to 70 bar above the formation leak-off pressure at the shoe. The oil-based mud was displaced with seawater before the BOP and riser was recovered. It took two attempts to cut the 20" extension joint and 30" conductor before recovery was possible. The ROV performed a seabed survey. While laying down drill pipe, recovery of the anchors and chains took place. The rig was released to Statoil at 01:12 hrs on 19<sup>th</sup> of August.

A total of 33.1 days were spent, including 9.5 days of trouble time.

### 1.5 Attachments

- 1. Daily Operational Summaries
- 2. Figure 1.1 Well Summary

#### 1.1 Introduction

This End of Well Report conforms to requirements laid down in NPD regulations and guidelines relating to drilling and well activities and geological data collection.

### 1.2 Summary of Well Objectives vs. Results

Well 6506/3-1 was Norsk Chevron's first exploration well to be drilled in the PL259 license.

The first objective of this well was to demonstrate the economic potential of two prognosed hydrocarbon reservoirs in Structure A in the Brygge (Paleogene) and Lysing (Cretaceous) Formations. The corresponding prospects were called the Harran and the Grong-A prospects respectively. This objective failed and the main reasons were lack of reservoir in the Harran prospect and lack of seal and proper reservoir in the Grong-A prospect.

The second objective was to gather data for understanding the risks and license strategy. This objective was fulfilled.

### 1.3 Summary of Operational Objectives vs. Results

- Three (3) reportable incidents were reported to NPD vs. none as a goal. No Lost Time Accidents occurred vs. none as a goal.
- No accidental spills were reported vs. none as a goal.
- 33.1 actual days were spent on the well vs. 34 days in the AFE.
- The estimated cost is 136 mill NOK vs. 134 mill NOK in the AFE.

### 1.4 Short Summary of Activities

- All depths are in m MD <u>RKB</u> ( = meter Measured Depth below <u>Rotary Kelly Bushing</u> (<u>Drill floor</u>)).
- See Section 4, Section Synopsis for more details.

### **Transit**

The semi-submersible drilling rig Byford Dolphin was taken under tow from Shell's Garn West location on July 16<sup>th</sup>, 2001 and arrived one day later at the 6506/3-1 location. Anchor handling operations were delayed three days, because of rough weather conditions.

# **Daily Operational Summaries**

PAGE 1 OF 9 OPERATIONS SUMMARY REPORT (Metric)

FROM: 16-JUL-2001 TO: 19-AUG-2001

OPERATOR: NORSK CHEVRON AS OP/NON OP: OP

PROJECT ID: UB5908 - 0 COUNTRY: NORWAY FIELD: PL259 LEASE: PL259

WELL NAME: DONNA WEST PROSPECT AFE No: KWENO-650631-001

RIG: BYFORD DOLPHIN CATEGORY: EXP RIG TYPE: SEMI-SUBMERSIBLE

16-JUL-2001

MW: MD: TVD: CASING: @ CUM COST: KR25,642,764

DOL: DFS: LAST SURVEY: @

1 HR SUMMARY

 $2300~{\rm HRS}\colon$  Last anchor bolstered at shell garn west location; rig on contract to norsk chevron a.s. as of  $2300~{\rm Hrs};$  commence tow to donna west location

PRESENT\_OPERATIONS:

0600 HRS; RIG ON TOW TO DONNA WEST; 66 NAUTICAL MILES TO LOCATION

17-Jul-2001

@

CUM COST: KR28,504,842

MW: MD: 0.0m TVD: 0.0m CASING:

DOL: 1 DFS: LAST SURVEY: @

24 HR SUMMARY

TOW RIG TO DONNA WEST LOCATION USING M/V FAR FOSNA; BALLAST DOWN TO SURVIVAL DRAFT (60FT) TO WOW 5 N-MILES FROM LOCATION -PERFORM RIG MAINTENANCE

PRESENT\_OPERATIONS:

0600 HRS:WOW 5 NAUTICAL MILES FROM DONNA WEST LOCATION - 18 M/S WIND, 4M SEAS

18-JUL-2001

MW: MD: 0.0m TVD: 0.0m CASING: @ CUM COST: KR 31,600,850

DOL: 2 DFS: LAST SURVEY: @

24 HR SUMMARY

WOW 5 NAUTICAL-MILES FROM DONNA WEST LOCATION - PERFORM RIG MAINTENANCE P/TEST LOWER ANNULAR TO 500/7500 PSI AND UPPER ANNULAR TO 500/3500 PSI

PRESENT\_OPERATIONS:

0600HRS: WOW 5 NAUTICAL MILES FROM DONNA WEST LOCATION - 17 M/S WIND, 6M SEAS

19-JUL-2001

MW: MD: 0.0m TVD: 0.0m CASING: @ CUM COST: KR34,778,777

DOL: 3 DFS: LAST SURVEY: @

24 HR SUMMARY

WOW 5 NAUTICAL-MILES FROM DONNA WEST LOCATION - PERFORM RIG MAINTENANCE MODUSPEC INSPECT BOP'S, REPLACE 5 RAM BLOCKS

PRESENT\_OPERATIONS:

0600 HRS: WOW 5 NAUTICAL MILES FROM DONNA WEST LOCATION - 21 M/S WIND, 6M SEAS

PAGE 2 OF 9

#### OPERATIONS SUMMARY REPORT (Metric)

FROM: 16-JUL-2001 TO: 19-AUG-2001

OPERATOR: NORSK CHEVRON AS OP/NON OP: OP

PROJECT ID: UB5908 - 0 COUNTRY: NORWAY FIELD: PL259

WELL NAME: DONNA WEST PROSPECT AFE No: KWENO-650631-001

RIG: BYFORD DOLPHIN CATEGORY: EXP RIG TYPE: SEMI-SUBMERSIBLE

20-JUL-2001

MW: MD: 0.0m TVD: 0.0m CASING: @ CUM COST: KR37,906,404

DOL:4 DFS: LAST SURVEY: @

24 HR SUMMARY

WOW 5 NAUTICAL-MILES FROM DONNA WEST LOCATION - DE-BALLAST RIG TO TOWING DRAFT; COMMENCE RUN IN ON LINE TO DEPLOY 1ST ANCHOR

PERFORM RIG MAINTENANCE; P/TEST STANDPIPE EQ. TO 500/5000 PSI

PRESENT OPERATIONS:

0600 HRS: RUN ANCHORS AT DONNA WEST - ANCHORS #2, #5, #6, #8, #10 AND #11 SET

\_\_\_\_\_21-JUL-2001

MW: 1031 MD: 0.0m TVD: 0.0m CASING: @ CUM COST: KR41,091,654

DOL: 5 DFS: LAST SURVEY: @

24 HR SUMMARY

RUN ANCHORS, BALLAST RIG DOWN TO OPERATIONAL DRAFT OF 21.3M (25M AIRGAP) CROSS TENSION ANCHORS IN PAIRS TO 150MT FOR 15 MIN - MEANWHILE, MIX SPUD, KILL & DISPLACEMENT MUD; M/U & TIH WITH 17 1/2 BIT + 26 X 36 H/O BHA FINAL RIG POSITION N65DEG 48MIN 20.82 SEC, UTM 7300302.5 M N FINAL RIG POSITION E06DEG 44MIN 32.36 SEC, UTM 396765.5 M E (312DEG HEADING)

PRESENT\_OPERATIONS:

0600 HRS: DRILL 36" HOLE TO 456M (1496'); DISPLACE HOLE TO 1.2 SG MUD

22-JUL-2001

MW: 1031 MD: 456.0m TVD: 456.0m CASING: 762.0mm@451.0m CUM COST: KR 44,374,480

DOL: 6 DFS: 1 LAST SURVEY: @

24 HR SUMMARY

CONT TIH W/ 17 1/2" BIT + 26" X 36" H/O ASSY AND TAG MUD LINE AT 366M (1201') DRILL 36" HOLE TO 456M (36" CUTTER DEPTH = 454M) & DISPLACE HOLE TO 1.2SG MUD POOH; RUN 30" CONDUCTOR AND 5" INNER STRING TO 451M (1480FT)

CEMENT CONDUCTOR & WOC

PRESENT\_OPERATIONS:

0600 HRS: TIH WITH 26" CLEAN OUT ASSY AND STAB 26" BIT INTO LP HOUSING

22 707 2001

23-JUL-2001

MW: 1031 MD: 456.0m TVD: 456.0m CASING: 762.0mm@451.0m CUM COST: KR47,609,035

DOL: 7 DFS: 2 LAST SURVEY: @

24 HR SUMMARY

WOC; POOH W/ 30" LANDING STRING, M/U 26" CLEAN OUT ASSY & TIH; TAG TOC @ 446M DRILL OUT CEMENT AND SHOE FROM 446 TO 456M (1463-1496FT); POOH & P/U 5" DP.

PRESENT OPERATIONS:

0600 HRS: DRILL 8 1/2" PILOT HOLE @ 591M (1939')

PAGE 3 OF 9

#### OPERATIONS SUMMARY REPORT (Metric)

FROM: 16-JUL-2001 TO: 19-AUG-2001

OPERATOR: NORSK CHEVRON AS OP/NON OP: OP

PROJECT ID: UB5908 - 0 COUNTRY: NORWAY FIELD: PL259 LEASE: PL259

WELL NAME: DONNA WEST PROSPECT AFE No: KWENO-650631-001

RIG: BYFORD DOLPHIN CATEGORY: EXP RIG TYPE: SEMI-SUBMERSIBLE

24-JUL-2001

MW:1031 MD:1382.0m TVD:1379.8m CASING: 762.0mm@ 451.0m CUM COST: KR50,515,659

DOL:8 DFS: 3 LAST SURVEY: 4.11 @ 1362.4m

24 HR SUMMARY

TIH W/ PILOT HOLE ASSY & DRILL 8 1/2" HOLE F/1496-4534' (456-1382M); DISPLACE HOLE TO 1.2 SG MUD; POOH W/ 8 1/2" ASSY - NO PROBLEMS; L/O MWD/CDR TOOLS.

PRESENT OPERATIONS:

0600 HRS: M/U & RIH W/ 17 1/2" HO ASSY. OPEN HOLE TO 17 1/2" @ 615M (2018')

25-JUL-2001

MW: 1031 MD: 1382.0m TVD: 1379.8m CASING: 762.0mm@451.0m CUM COST: KR53,180,709

DOL: 9 DFS: 4 LAST SURVEY: @

24 HR SUMMARY

M/U 17 1/2" HOLE OPENER ASSY. TIH & OPEN 8 1/2" PILOT F/ 456 TO 1379M (1496-4524'). POOH TO 635M (2083')

PRESENT\_OPERATIONS:

0600 HRS: P/U & RUN 13 3/8" CSG TO 82M (269FT)

26-JUL-2001

MW: 1031 MD: 1382.0m TVD: 1379.8m CASING: 762.0mm@451.0m CUM COST: KR55,570,160

DOL: 10 DFS: 5 LAST SURVEY: @

24 HR SUMMARY

POOH W/ 17 1/2" HOLE OPENER ASSY. JET W/ HEAD. R/U & RUN 13 3/8" CSG TO 810M (2658FT); ROV OBSERVED CSG BUCKLED AT W/ HEAD. COMMENCE POOH W/ 13 3/8" CSG TO 270M (886')

PRESENT\_OPERATIONS:

0600 HRS: M/U & TIH W/ 17 1/2" WIPER TRIP ASSY TO 40M (131')

27-JUL-2001

MW: 1031 MD: 1382.0m TVD: 1379.8m CASING: 762.0mm@451.0m CUM COST: KR58,134,392

DOL: 11 DFS: 6 LAST SURVEY: @

24 HR SUMMARY

POOH & L/D 13 3/8" CSG; M/U 17 1/2" WIPER TRIP ASSY & TIH; WASH & REAM F/ 535 TO 1382M (1755-4534') - 17 1/2" CUTTER DEPTH @ 1379M (4524'); DISPLACE HOLE TO 1.4SG KCL MUD; POOH F/ 1382M (4534') - NO PROBLEMS

PRESENT\_OPERATIONS:

0600 HRS: RUN 13 3/8" CSG @ 455M (148')

PAGE 4 OF 9

#### OPERATIONS SUMMARY REPORT (Metric)

FROM: 16-JUL-2001 TO: 19-AUG-2001

OPERATOR: NORSK CHEVRON AS OP/NON OP: OP

PROJECT ID: UB5908 - 0 COUNTRY: NORWAY FIELD: PL259 LEASE: PL259

WELL NAME: DONNA WEST PROSPECT AFE No: KWENO-650631-001

RIG: BYFORD DOLPHIN CATEGORY: EXP RIG TYPE: SEMI-SUBMERSIBLE

28-JUL-2001

MW: 0 MD: 1382.0m TVD: 1379.8m CASING: 337.8mm@ 1374.3m CUM COST: KR62,444,976

DOL:12 DFS: 7 LAST SURVEY: @

24 HR SUMMARY

RUN 13 3/8" CASING AND SET AT 1374M (4508'); CIRC CSG VOLUME AND CEMENT CSG W/ 1.56SG LEAD SLURRY AND 1.92SG TAIL SLURRY; DISPLACE CMT W/ SEAWATER BACK OUT AND RETRIEVE RUNNING TOOL; R/U TO RUN BOP'S

PRESENT\_OPERATIONS:

0600 HRS: FUNCTION TEST BOPS BELOW ROTARY TABLE PRIOR TO LATCHING UP TO RISER

\_\_\_\_\_29-JUL-2001

MW: 1440 MD: 1382.0m TVD: 1379.8m CASING: 337.8mm@1374.3m CUM COST: KR66,572,826

DOL: 13 DFS: 8 LAST SURVEY: @

24 HR SUMMARY

RUN BOPS ON RISER TO 250M (820'); P/TEST C&K LINES TO 35/414 BAR EVERY 5 JNTS

PRESENT\_OPERATIONS:

0600 HRS: WOW TO P/U SLIP JNT - 35 KNOTS WIND, 6M SEAS

30-JUL-2001

MW: 1440 MD: 1382.0m TVD: 1379.8m CASING: 337.8mm@1374.3m CUM COST: KR71,658,035

DOL: 14 DFS: 9 LAST SURVEY: @

24 HR SUMMARY

CONT RUN BOP'S ON RISER. WOW T/ P/U SLIP JNT & LANDING JNT. MOVE RIG. LAND & LATCH BOP'S.

PRESENT OPERATIONS:

0600 HRS: M/U 8 1/2" BHA

21 777 0001

31-JUL-2001

MW: 1440 MD: 1386.0m TVD: 1384.0m CASING: 337.8mm@1374.3m CUM COST: KR74,477,877

DOL: 15 DFS: 10 LAST SURVEY: 4.46 @ 1469.6m

24 HR SUMMARY

TEST 13 3/8" CSG TO 30/200 BAR; TEST C&K LINE TO 30/400 BAR; INSTALL DIVERTER M/U 8 1/2" BHA, P/U 21 JNTS 5" DP & TIH; DRILL CMT F/ 1341-1371M (4400-4498') DISPLACE HOLE TO 1.44SG LT-OBM; DRILL SHOE @ 1374M (4508') & CLEAN RATHOLE TO 1382M (4534'); DRILL 8 1/2" HOLE TO 1386M (4547'); CIRC & COND MUD PERFORM LOT W/ 1.44SG MUD TO 1.84SG EMW

PRESENT OPERATIONS:

0530 HRS: DRILL 8 1/2" HOLE @ 1512M (4961')

PAGE 5 OF 9

#### OPERATIONS SUMMARY REPORT (Metric)

FROM: 16-JUL-2001 TO: 19-AUG-2001

OPERATOR: NORSK CHEVRON AS OP/NON OP: OP

PROJECT ID: UB5908 - 0 COUNTRY: NORWAY FIELD: PL259 LEASE: PL259

WELL NAME: DONNA WEST PROSPECT AFE No: KWENO-650631-001

RIG: BYFORD DOLPHIN CATEGORY: EXP RIG TYPE: SEMI-SUBMERSIBLE

01-AUG-2001

MW:1505 MD:1698.0m TVD:1695.0m CASING: 337.8mm@ 1374.3m CUM COST: KR77,283,408

DOL:16 DFS: 11 LAST SURVEY: 4.55 @ 1641.8m

24 HR SUMMARY

DRL 8 1/2" HOLE F/ 1386 TO 1698M (4547-5571'); WELL FLOWED AT CONN @ 1698M (5571') - SICP=150PSI. CIRC BTM'S UP USING 1.50SG MUD - ISICP=250PSI

PRESENT OPERATIONS:

0600 HRS: CIRC BTM'S UP BY DRILLERS METHOD USING 1.52SG MUD

00.31

02-AUG-2001

MW: 1575 MD: 1698.0m TVD: 1695.0m CASING: 337.8mm@1374.3m CUM COST: KR80,007,403

DOL: 17 DFS: 12 LAST SURVEY: @

24 HR SUMMARY

DISPLACE WELL TO 1.52SG MUD (MAX. GAS 8.9%)- SIDP=90PSI, SICP=0PSI; DISPLACE WELL & RISER TO 1.57 SG - F/C STATIC..

PRESENT\_OPERATIONS:

0600 HRS: POOH TO CASING SHOE

03-AUG-2001

MW: 1570 MD: 1736.0m TVD: 1733.0m CASING: 337.8mm@1374.3m CUM COST: KR82,833,698

DOL: 18 DFS: 13 LAST SURVEY: 4.13 @ 1815.4m

24 HR SUMMARY

POOH F/ 1698 TO 1326M (5571 TO 4350'); PERFORM RIG MAINTENANCE/REPAIRS TIH F/ 1326 TO 1611M (4350-5285'); WASH AND REAM TO 1698M (5571'); CIRC BTM'S UP; DRILL 8 1/2" HOLE F/ 1698 TO 1736M (5571-5696')

PRESENT OPERATIONS:

0600 HRS: DRILL 8 1/2" HOLE @ 1878M (6161')

04.2779.0001

04-AUG-2001

MW: 1576 MD: 2561.0m TVD: 2556.5m CASING: 337.8mm@1374.3m CUM COST: KR85,769,736

DOL: 19 DFS: 14 LAST SURVEY: 1.6 @ 2533.5m

24 HR SUMMARY

DRILL 8 1/2" HOLE F/ 1736 TO 2304M (5696'-7559'); OBSERVE 5 BBL PIT GAIN - F/C - STATIC; CIRC BTM'S UP; DRILL 8 1/2" HOLE F/ 2304 TO 2561M (7559-8402')

PRESENT\_OPERATIONS:

0500 HRS: DRILL 8 1/2" HOLE

**OPERATIONS SUMMARY REPORT** (Metric) PAGE 6 OF 9

FROM: 16-JUL-2001 TO: 19-AUG-2001

OPERATOR: NORSK CHEVRON AS OP/NON OP: OP

COUNTRY: NORWAY PROJECT ID: UB5908 - 0 FIELD: PL259 LEASE: PL259

WELL NAME: DONNA WEST PROSPECT AFE No: KWENO-650631-001

RIG: BYFORD DOLPHIN CATEGORY: EXP RIG TYPE: SEMI-SUBMERSIBLE

05-AUG-2001

MW:1575 MD:3101.5m TVD:3096.9m CASING: 337.8mm@ 1374.3m CUM COST: KR88,629,225

1.75 @ 3049.8m DOL:20 DFS: 15 LAST SURVEY:

24 HR SUMMARY

DRILL 8 1/2" HOLE F/ 2561 TO 3101.5M (8402-10176'); CIRC BTM'S UP

POOH TO 2934M (9626')

PRESENT OPERATIONS:

0600 HRS: M/U CORE BIT, P/U CORE BBLS

06-AUG-2001

MW: 1575 MD: 3130.0m TVD: 3125.5m CASING: 337.8mm@1374.3m CUM COST: KR91,615,779

DOL: 21 DFS: 16 LAST SURVEY:

24 HR SUMMARY

POOH W/ 8 1/2 BHA; M/U & TIH W/ 249' OF CORE BARRELS; CORE F/ 3101.5-3130M (10176-10269'.)

PRESENT\_OPERATIONS:

0600 HRS: CIRC & BOOST RISER @ 3070M (10072')

07-AUG-2001

MW: 1575 MD: 3171.5m TVD: 3167.0m CASING: 337.8mm@1374.3m CUM COST: KR94,730,083

DOL: 22 DFS: 17 LAST SURVEY:

24 HR SUMMARY

CUT 8 1/2" CORE F/ 3130 TO 3171.5M (10269-10405'); CORE JAMMED AT 3171.5M CIRC. POOH & L/D CORE (67.7M=222' = 96.7% CORE RECOVERED). M/U 8 1/2" BHA P/U 5" DP

PRESENT\_OPERATIONS:

0530 HRS: TIH W/ 8 1/2" BHA @ 2700M (8858')

08-AUG-2001

MW: 1600 MD: 3437.0m TVD: 3432.0m CASING: 337.8mm@1374.3m CUM COST: KR98,271,192

DOL: 23 DFS: 18 LAST SURVEY: 1.76 @ 3451.1m

24 HR SUMMARY

TIH W/ 8 1/2" BHA; P/U TOTAL OF 51 JNTS OF 5" DP; TIH TO 3043M (9984') WASH AND REAM F/ 3043 TO 3171.5M (9984-10405') - CIRC BTM'S UP - LARGE AMOUNT OF CUTTINGS/CAVINGS; INC. MW F/ 1.57 TO 1.60SG; DRILL 8 1/2" HOLE F/ 3171.5

TO 3437M (10405-11276')

PRESENT\_OPERATIONS:

0600 HRS: DRILL 8 1/2" HOLE @ 3585M (11762')

PAGE 7 OF 9

#### OPERATIONS SUMMARY REPORT (Metric)

FROM: 16-JUL-2001 TO: 19-AUG-2001

OPERATOR: NORSK CHEVRON AS OP/NON OP: OP

PROJECT ID: UB5908 - 0 COUNTRY: NORWAY FIELD: PL259 LEASE: PL259

WELL NAME: DONNA WEST PROSPECT AFE No: KWENO-650631-001

RIG: BYFORD DOLPHIN CATEGORY: EXP RIG TYPE: SEMI-SUBMERSIBLE

09-AUG-2001

MW:1600 MD:3667.0m TVD:3662.4m CASING: 337.8mm@ 1374.3m CUM COST: KR102,263,858

DOL:24 DFS: 19 LAST SURVEY: 1.9 @ 3641.9m

24 HR SUMMARY

DRILL 8 1/2" HOLE F/ 3437 TO WELL TD @ 3667M (11276-12031')

CIRC & COND MUD; POOH - NO HOLE PROBLEMS

PRESENT OPERATIONS:

0530 HRS: RECORD REPEAT SECTION W/ SCHLUMB PEX LOGGING STRING @3140M (10301')

MW: 1600 MD: 3667.0m TVD: 3662.4m CASING: 337.8mm@1374.3m CUM COST: KR105,118,192

DOL: 25 DFS: 20 LAST SURVEY: @

24 HR SUMMARY

POOH W/ 8 1/2" BHA & L/D MWD/CDR TOOLS + BIT; R/U WIRELINE LOG RUN #1 AIT-PEX-HNGS: LOG F/ 3663-1374M (12018-4508') - NO HOLE PROBLEMS LOG RUN #2 DSI-GR-AMS-OBDT: LOG F/ 3664-1374M (12021-4508') - NO HOLE PROBLEM LOG RUN #3 PEX: RE-LOG F/ 2000-1590M (6562-5217') DUE TO ANOMALOUS DENSITY DATA F/ 1828-1624M (5997-5328')

PRESENT\_OPERATIONS:

0530 HRS: RIH W/ REED 8-LEVEL DELTA (VSP) TOOL ON E- LINE

11-AUG-2001

MW: MD: 3667.0m TVD: 3662.4m CASING: 337.8mm@1374.3m CUM COST: KR107,835,275

DOL: 26 DFS: 21 LAST SURVEY: @

24 HR SUMMARY

COMPLETE LOG RUN #3 (PEX) & POOH; RIH W/ READ 8-LEVEL DELTA VSP TO 3450M (11319') AND LOG UP; TOOL STUCK @ 3403M (11165'); WORK STRING W/ MAX LINE PUL POOH & R/D LOG EQ; M/U & TIH W/ 8 1/2" WIPER TRIP BHA TO 1343M (4406') - CIRC & COND MUD; CONT TIH W/ BHA TO 1900M (6234')

PRESENT\_OPERATIONS:

0530 HRS: CIRC & COND MUD # 3660M (12008')

10.377

12-AUG-2001

MW: 1600 MD: 3667.0m TVD: 3662.4m CASING: 337.8mm@1374.3m CUM COST: KR110,540,293

DOL: 27 DFS: 22 LAST SURVEY: @

24 HR SUMMARY

TIH W/ 8 1/2" BHA F/ 1900 TO 3600M(6234-11811'); WASH & REAM TO 3667M (12031') CIRC & COND MUD. POOH, R/U SCHLUM W/LINE & RIH W/ MDT TO 1655M (5430') TAKE 10 PRE-TEST F/ 1655-1732.5M (5430-5684'); ATTEMPTS TO TAKE FLUID SAMPLES AT 1673M (5489') AND 1673.5M (5490') FAILED

PRESENT\_OPERATIONS:

0530 HRS: TAKE MDT SAMPLES @ 3091.2M (10142')

PAGE 8 OF 9

#### OPERATIONS SUMMARY REPORT (Metric)

FROM: 16-JUL-2001 TO: 19-AUG-2001

OPERATOR: NORSK CHEVRON AS OP/NON OP: OP

PROJECT ID: UB5908 - 0 COUNTRY: NORWAY FIELD: PL259

WELL NAME: DONNA WEST PROSPECT AFE No: KWENO-650631-001

RIG: BYFORD DOLPHIN CATEGORY: EXP RIG TYPE: SEMI-SUBMERSIBLE

13-AUG-2001

MW:1600 MD:3667.0m TVD:3662.4m CASING: 337.8mm@ 1374.3m CUM COST: KR113,342,581

DOL:28 DFS: 23 LAST SURVEY: @

24 HR SUMMARY

TAKE 5 MDT PRE-TESTS F/ 3091.2-3107.2M (10142-10194'); MAX PRES IN LYSING 1.423SG; MAX PRES IN BRYGGE 1.535SG; TOOK 3X 450 CC WATER SAMPLE IN LYSING F/ 3091.2M (10142'); POOH - NO HOLE PROBLEMS; RIH W/ READ 8-LEVEL DELTA VSP TO 3523M; RECORD VSP SURVEY F/ 3523-2898M (11558-9508') TAKING SHOTS EVERY 10M (33FT); RECORD VSP WALKAWAY SURVEY W/ TOP GEOPHONE @ 2898M (9508') RECORD VSP SURVEY F/ 2898-2240M (9508-7349') TAKING SHOTS EVERY 10M (33FT)

PRESENT OPERATIONS:

0530 HRS: RIH W/ SIDEWALL CORE GUNS

14-AUG-2001

MW: 1600 MD: 3667.0m TVD: 3662.4m CASING: 337.8mm@1374.3m CUM COST: KR118,218,073

DOL: 29 DFS: 24 LAST SURVEY: @

24 HR SUMMARY

RECORD VSP SURVEY F/ 2240-790M (7349-2592') TAKING SHOTS EVERY 10M (33FT) NO HOLE PROBLEMS. M/U & RIH HOLE SIDEWALL COREGUNS. ATTEMPT 53 CORES - 29 RECOVERED. P/U 3 1/2" PH-6 TBG F/ DECK & TIH TO 1333M (4373')

PRESENT\_OPERATIONS:

0530 HRS: SET CMT PLUG #1 F/ 3190 TO 3025M (10466-9925')

15-AUG-2001

MW: 1610 MD: 3667.0m TVD: 3662.4m CASING: 337.8mm@1374.3m CUM COST: KR122,713,378

DOL: 30 DFS: 25 LAST SURVEY: @

24 HR SUMMARY

TIH W/ 3 1/2" STINGER F/ 1333 TO 3200M (4373-10499'); SET CMT PLUG #1 F/ 3190-3025M (10466-9925'); POOH TO 1791M (5876'); DROP DART & CIRC BTM'S UP SET CMT PLUG #2 F/ 1791-1491M (5876-4892'); POOH TO 1491M (4892'); DROP DART & CIRC BTM'S UP; SET CMT PLUG #3 F/ 1491-1274M (4892-4180'); POOH TO 1095M (3593'); DROP DART & CIRC BTM'S UP; POOH F/ 1095M TO 444M (1457') & L/D 5" DP POOH & L/D 444M OF 3 1/2" TBG; TIH W/ 5" MULESHOE ON 5" DP TO 374M (1227')

PRESENT OPERATIONS:

0530 HRS: POOH W/ 5" DP TO 411M (1348')

16, 200

16-AUG-2001

MW: 1001 MD: 3667.0m TVD: 3662.4m CASING: 337.8mm@1374.3m CUM COST: KR127,732,223

DOL: 31 DFS: 26 LAST SURVEY: @

24 HR SUMMARY

TIH W/ 5" DP; TAG TOC WITH 5MT @ 1281M (4203'); POOH TO 661M (2169'); P/TEST CMT PLUG #3 TO 110 BAR; SET CMT PLUG #4 F/ 661-411M (2169-1348'); CIRC BTM'S UP; DISPLACE RISER TO SEAWATER. POOH & L/D 5" DP; RETRIEVE WEAR BUSHING L/D 364M OF 5" DP F/ DERRICK; PULL DIVERTER, UNLATCH BOP'S

PRESENT OPERATIONS:

0530 HRS: POOH & L/O RISER JNT 10 OF 23

PAGE 9 OF 9

#### **OPERATIONS SUMMARY REPORT** (Metric)

FROM: 16-JUL-2001 TO: 19-AUG-2001

OP/NON OP: OP OPERATOR: NORSK CHEVRON AS

COUNTRY: NORWAY PROJECT ID: UB5908 - 0 LEASE: PL259 FIELD: PL259

WELL NAME: DONNA WEST PROSPECT AFE No: KWENO-650631-001

RIG: BYFORD DOLPHIN CATEGORY: EXP RIG TYPE: SEMI-SUBMERSIBLE

17-AUG-2001

MW:1001 MD:3667.0m TVD:3662.4m CASING: 337.8mm@ 1374.3m CUM COST: KR131,486,754

DOL:32 DFS: 27 LAST SURVEY:

24 HR SUMMARY

PULL RISER & BOPS. M/U & TIH W/ W/FORD MOST TOOL. CUT @ 371M-ATTEMPT TO PULL WELLHEAD - PULL TOOL FREE W/ 45MT O/PULL; KNIFE BLADES BENT BUT WORN TO TOP INDICATING FULL CUT; POOH TO C/O BLADES & SPACE OUT TO CUT @ 370.5M (1216')

PRESENT\_OPERATIONS:

0530 HRS: POOH W/ WELLHEAD AND MOST TOOL

.\_\_\_\_\_

18-AUG-2001

MW: 1001 MD: 3667.0m TVD: 3662.4m CASING: 337.8mm@1374.3m CUM COST: KR135,172,597

LAST SURVEY: DOL: 33 DFS: 28

24 HR SUMMARY

TIH; CUT CSG @ 370.5M (1216') & PULL WELLHEAD, L/O SAME WHILE PULLING ANCHORS L/D DP FROM DERRICK WHILE PULLING ANCHORS.

PRESENT\_OPERATIONS:

0600 HRS: LAST ANCHOR BOLSTERED AND RIG HANDED OVER TO STATOIL 0112HRS

19-AUG-2001

MW: 1001 MD: 3667.0m TVD: 3662.4m CASING: 337.8mm@1374.3m CUM COST: KR136,431,507

DOL: 34 DFS: 29 LAST SURVEY: @

1.5 HR SUMMARY

COMPLETE L/O OF TUBULARS F/ DERRICK, CONCLUDE ANCHOR HANDLING WORK & HAND WELL OVER TO STATOIL @ 0112HRS

PRESENT OPERATIONS:

FINAL REPORT - RIG OFF CONTRACT

# Figure 1.1 Well Summary

#### Figure 1.1 Well Summary Well 6506/3-1 Surface location: 65° 48' 20.82" 7300302.2 mN Water depth: 341m MSL Location: Norway Chevron Well Type/Status: Exploration 06° 44' 32.36" Rotary-MSL: 25m Target Tolerance: 200m Radius @ Lysing Rotary - Seabed: 366m Production Licence : Pl 259 Licencees: Chevron (40%), Agip (30%), Enterprise (30%) Actual TD: 3662 mTVD / 3667 mMD Target Formation(s): Brygge Sst. / Lysing Sst. Rig Name: Byford Dolphin Days on Location: 33.1 days Planned TD: 3625mTVD / 3625 mMD Rig on Contract : July 17<sup>th</sup>, 2001 at 2300 hrs AFE Davs: 33.6 days Maximum Hole Angle: 4.55° Norsk Chevron AS Rig off Contract : August 19th, 2001 at 0112 hrs Estimated Well Cost: 136.4 mill NOK Rig Heading: 313.6° (True) AFE Cost: 134.0 mill NOK FIT DATA Relevant drilling problems and Directional Lithology **Wellbore Schematic** Actulal and AFE Time vs Depth (Davs) Formation Tops Mud Syster Logging & Coring Pore & Frac.Pressure and Mud Density MD RT Surveys Drilling After Plug and Abandonment Days 30 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2. 0-25m Airgap 25 MSI Retrievable - Actual Mud Weight 18 3/4" DrilQuip SS15 74.5 hrs Lost Time for WOW Guide Base ROV survey of seabed Prognozed Fractur Pressure Prognozed Pore otal section NPT = 74.5 hrs 502 SW - Spud Mu 30" @ 451mMD Cement plug # 3, 661 - 411mMD. luckled 13 3/8" casing and and layed Dicarlace Pliocene Wedge TOC is estimated, pressure tested to out casing on the seabed. Recovered W - Spud Mu 8 1/2" pilot hol MDT Brygge ame, performed a wipertrip and re-ran 125 bar w. seawater ■ MDT Lysing 20" x 10 m ext. x 13-3/8" XO Swage Displaced to WOW 4.5 hrs Lost Time Du 13-3/8" 72# L80 Modified BTC Logging VOW to run BOP KCI mud Ander Drift otal section NPT= 61.5 hrs prior to 13-3/8" @1374mMD Fook a 4 m<sup>3</sup> saltwater kick at 1698 nMD (Brygge Formation) during a 1500 iSONIC to 3102 m r Water Kick Cement plug # 2, 1791-1281 mMD, load teste connection. Increased MW to 1.57 SG 1552 and killed well. (MDT pressure = 1.52 (VERSAVERT OBM to 5 mT and pressure tested to 110 bar. 1604 SG formation pressure) Brygge Fm. (LOT) 1654 Flooding Plain Min.MW emporarily stuck with VSP tool. 1741 Tare -1 44 SG 1797 Top Cretaceou 2000

otal section NPT = 80.5 hrs

Unable to recover WH after first cut, re

cut and revovered WH and quidebase

Total section NPT = 10.5 hrs

| 3088<br>3138<br>3667 | Lange —         |               | s       |          | Cored Lysing        | Total Depth : 3667        |                   | 90 - 3025 mMD.          |                                         | 238 m²  Cuttings Generated: 274.2 MT |                       | (96.7% recovery)  MDT Fluid Sample from Lysing. | 3500                                                                   | 3500 Recovery 2.0 Hrs Rig Repair                                |
|----------------------|-----------------|---------------|---------|----------|---------------------|---------------------------|-------------------|-------------------------|-----------------------------------------|--------------------------------------|-----------------------|-------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|
|                      | Bits            |               |         | Services |                     |                           | Peop              |                         | Boats                                   | Experience                           | Summary of Operations |                                                 |                                                                        |                                                                 |
| #                    | Bit size        | Make & Type   | D.out D | orld.    | Name                | Service                   | Name              | Service                 | Name                                    | Function                             | Boat name             | Function                                        |                                                                        |                                                                 |
|                      |                 |               | (mMD)   | (m)      | AnaDrill            | MWD/CDR/iSonic            | MI Anchor         | Mud                     | lan King                                | Drilling project Manager             | Sartor                | Standby                                         | <ol> <li>Dedicated supply for shipping of OBM cuttings req.</li> </ol> | Moved from previous location, WOW, positioned and anchored rig. |
| 1                    | 17 1/2" Bit     | Smith DGJ     | 456     | 90       | Cambriam            | Site Geologist            | ModuSpec          | BOP/Rig Inspection      | Terje Lokke-Sorensen                    | Drilling Engineer                    | Higland Star          | Supply Vessel                                   | 2 No shallow gas observed                                              | Drilled 36" hole (no boulders)                                  |
| 2                    | 26 x 36" HO     | IPE           | 454     | 88       | Corepro             | Core preservation         | NorCargo          | Transport               | Thomas L.Smith                          | HSE Representative                   | Skandi Stolmen        | Supply Vessel (Statoil)                         | 3 No boulders observed (tight spots in 17 1/2" hole)                   | Ran & cemented 30" csg with PGB                                 |
| 3                    | 26" Bit         | Hugh GTXCMG1  | 456     | 0        | DBS                 | Coring                    | Oceaneering       | ROV                     | Johan Myrdal / Herold Zahl              | Logistic Co-Ordinator                | Normand Progre        | ss AHV (arrival)                                | 4 No LTA                                                               | Drilled 8-1/2" Pilot Hole (no shallow gas)                      |
| 4                    | 8 1/2" Bit (PH) | Hugh MXC-1    | 1382    | 926      | DNV                 | Risk & Environmnetal Ar   | alysis Odfjell    | Casing Running          | Mitch Elkins / Roger Moore              | Senior Offshore Drilling Rep.        | Far Fosna             | AHV (arrival)                                   |                                                                        | Opened Pilot to 17-1/2"                                         |
| 5                    | 17 1/2" HO      | IPE           | 1382    | 926      | Dolphin             | Drilling Contractor       | Pertotech         | PVT analysis            | S. deJonge / M.Hollinshead / S.Bjorheim | Offshore Drilling Eng. & Rep.        | Normand Jarl          | AHV (arrival)                                   |                                                                        | Ran 13-3/8" Casing , buckled above WH, re-ran and cemented      |
| 6                    | 8 1/2" PDC Bit  | Hugh ABD536PH |         |          | DrilQuip            | Wellhead and Conductor    | Read              | VSP                     | Torleiv Agdestein                       | Lead Project Geologist               | Nothern Corrona       |                                                 |                                                                        | Ran riser and BOP's                                             |
| 7                    | 8 1/2" Core Bit | DBS FC274     | 3172    |          | Fugro GeoServices   | Rig positioning           | Helgelandsbase    | Shore base              | Mike Donovan / Ed Linaker               | Operational & Wellsite Geolog        | st Havila Crown       | AHV (departure)                                 |                                                                        | Drilled 8-1/2" hole to Lysing coring point (kick in Brygge)     |
| 8                    | 8 1/2" PDC Bit  | Hugh BD445HA  | 3667    | 495      | GeoServices         | Mudlogging                | SAR Helicopter    | SAR                     | Debbie South                            | Project Geologist                    | Normand Borg          | AHV (departure)                                 |                                                                        | Cored Lysing, cont. drilling to TD                              |
|                      |                 |               |         |          | Halliburton         | Cementing & DST Testing   |                   | Wirline logging         | Svein Johansen                          | Project Geophycisist                 |                       |                                                 |                                                                        | Wireline logged (stuck with VSP)                                |
|                      |                 |               |         |          | Helicopter Services | Helicopters (Kristiansund | ) Swaco           | Cuttings collec.& disp. | Dag Andreassen                          | Marine Advisor                       |                       |                                                 |                                                                        | Plugged back hole (cement plugs)                                |
|                      |                 |               |         |          | Mediteam            | Heath Service             | Weatherford / IPE | Fishing eq., wellhead   | Steve Pattie / Myke Wynne               | Well Testing and MDT                 | 1                     |                                                 |                                                                        | Pulled BOP's, cut and retrieved WH & PGB, pulled anchors        |
|                      |                 |               |         |          |                     |                           |                   | cutting, hole openers   | Ruth-Liv Chaplin                        | Admin. Assistant                     |                       |                                                 |                                                                        |                                                                 |
|                      | •               |               |         |          | •                   |                           | •                 |                         |                                         | •                                    |                       | •                                               |                                                                        | ·                                                               |

verage prop

PV - 41 cP

VP-11Pa

10sGel=7Pa

10mGel=10Pa

O/W = 72/28

Vol. Used

Wireline Logging:

AIT-PEX-HNGS DSI-GR-AMS-OBDT

MDT

VSP

SWC

Cored Lysina

3101.5 - 3171.5 mMD

2420

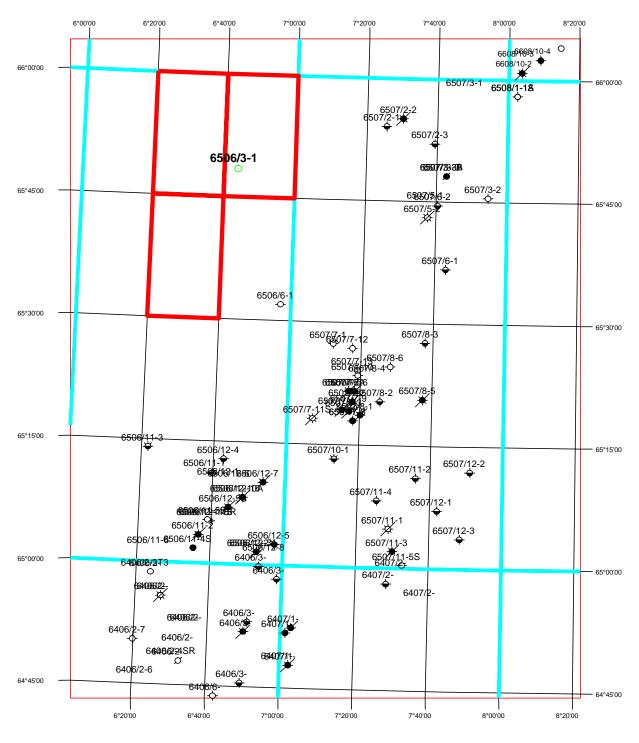
AFE Time

.ost Time .0 Hrs Logging Tools lus Rerun

# This section contains:

| 2.1 | Licensees                                 | . 2 |
|-----|-------------------------------------------|-----|
| 2.2 | Well Location Plot                        | . 3 |
|     | Well Results vs. Objectives               |     |
|     | Operational Safety Results vs. Objectives |     |
| 2.5 | Well Progress Curve                       | . 7 |
|     | Well Status after Abandonment             |     |
| 2.7 | Time Distribution Summary                 | . 8 |
|     | Cost Summary                              |     |

# 2.1 Licensees


The Production Licence 259 was awarded May 12, 2000 to:

NORSK CHEVRON A/S 40% (Operator)

ENTERPRISE OIL NORWEGIAN A/S 30% NORSK AGIP A/S 30%

and consists of blocks 6506/2, 6506/3 and 6506/5 covering an area of 1276.144 km<sup>2</sup>.

### 2.2 Well Location Plot



Norsk Chevron AS

#### 2.3 Well Objectives vs. Results

### **Objectives**

The first objective for this well was to demonstrate economic potential of hydrocarbon reservoirs in Structure A in Brygge (Paleogene) and Lysing (Cretaceous) Formations named the Harran and Grong prospects respectively. This was to be done by:

- identifying and evaluating the reservoir sands and by
- identifying fluid content in the identified reservoir sands.

The second objective was to gather data for understanding the risks and license strategy.

#### Results

Brygge vs. objectives:

The economic potential of the Brygge unit in structure A (Harran Prospect) was not demonstrated. The well was not able to identify and hence not able to evaluate Brygge reservoir sands. However, we were able to crudely identify the fluid content in the Brygge unit, due to a water kick. MDT sampling of the Brygge unit was not possible to perform due to the physical properties of the encountered diatomite lithofacies.

Brygge details: The 131.5m thick Brygge diatomite unit has an average porosity of 38% (max.60%) and very low permeability. Sand reservoirs were not encountered. SEM photographs and XRD results show diatomite to be the dominant lithofacies in the Brygge interval with some component of volcanic glass. N/G is 95%, Sw = 1, formation pressure = 1.52 SG and fluid gradient 1.04 g/cc. The Opal A to Opal CT transformation has only partly taken place at the base of the unit. The unit was water filled and significantly over-pressured. Hydrocarbon migration through the formation can only be inferred from the gas log data, which indicate a significant amount of methane present when the formation back-flowed.

### Lysing vs. objectives:

The economic potential of the Lysing in structure A (Grong Prospect) was not demonstrated. The well was able to identify the Lysing reservoir sands (22m gross sand interval) by logging, coring and SWC. The fluid type after recovering MDT samples (3 bottles of fluids) were identified to be water under-saturated with gas and containing traces of phenols and organic acids.

Lysing details: Lysing Fm was 49.5m thick with 22m gross sand interval at the top, out of which some 3m of net sand was encountered. N/G = 14% and average effective porosity 17% (max 22%). Permeability in the form of best mobility is 113.8 md/cp (MDT). Sw was 1 (No free gas) and the formation pressure was 1.422 SG. Rw=0.192 at 103 degC. No free gas was found in any of the samples. Methane and longer chain hydrocarbons were present. The samples were under-saturated with gas, rich in organic acids and traces of phenols were present. The Lysing sand package is present, but has thinned and partly shaled out at the crest of the A structure. The 3m sand at the very top top is of good quality but is water filled. The solution gas, the organic acid content and the phenol concentration indicate that the sampled water has been in contact with a hydrocarbon accumulation. The water is strongly under-saturated with gas and is not in close contact with a hydrocarbon accumulation at present.

# 2.4 Operational Safety Results vs. Objectives

The objectives for the well were:

- 1. Establish a functional Safety Management System in compliance with regulatory requirements.
- 2. Avoid accidents and loss during project execution. Take necessary preventive measures to limit the consequences if accidents should occur and thereby provide safety for personnel, external environment and property.
- 3. Provide operational solutions and emergency preparedness measures that, as a total for the project and rig, provide a good health and working environment, reduce risk and minimise pollution.
- 4. Operate with the minimum of discharges and emissions, both with respect to quantities, toxicity, and other environmental impacts.
- 5. Establish a functional emergency preparedness system in Compliance with Chevron and Regulatory requirements.

And the following sub goals for the PL259 project were established:

- Development of an HS&E awareness throughout the total organisation that provides necessary attention to HS&E in planning, procurement, drilling and reporting tasks being performed. This is obtained by active management and active involvement of participating HS&E organisation's.
- Continue to utilise waste segregation on the Byford Dolphin.
- Health and environmental friendly chemicals to be preferred.
- Reduce exposure of personnel to hazardous situations and accidents by focusing on injuries and ill health which cause absence from work; special attention will be paid to lifting operations.

The lessons learned reviews following the project did indeed verify that the PL 259 HSE objectives established were met, both regarding the personnel and environmental aspects.

From the lessons learned reviews there were three particular aspects which were seen to contribute to the successful outcome on the PL 259 project;

- A full openness in all regulatory matters between Norsk Chevron and the Norwegian Authorities.
- Use of well known advisors and contractors (i.e. RC Consultants, DNV, MediTeam, Aktiv Beredskap, Vest Drill and NorSea Logistics services) in the Norwegian Petroleum industry for local guidance through the various Authority's consent processes.
- Extended co-operation with Chevron Europe HSE expertise.

A total of 43 RUHs (undesired event reports; equivalent to a combination of Stop cards-Incident reports) were registered. There were three incidents reported to the Authorities:

- Casing buckling incident
- Well influx incident
- Falling objects (nut and bolt from derrick) incident

The Authorities commented upon the openness shown when reporting incidents and the time requirement of two hrs for serious incident to be reported to the NPD was not met although a verbal notification was made official. The timing until any serious incident is registered with the NPD is an area which needs improving for the next Norsk Chevron operation in Norway.

The onboard HSE incident reporting was satisfactory. A practice that was utilised for HSE follow-up, namely a weekly rig-shore telephone meeting was found to be worth while and is recommended for future drilling operations. In addition the use of regular compliance meetings (for follow-up of outstanding regulatory deviations) was found most useful, both prior to and during the drilling campaign.

Regarding discharges from the drilling operations, water based drilling fluids were used at the top sections, whilst oil based drilling fluids were used for the lower section. With exception of the waterbased displacement fluids, no chemicals were discharged to sea at the lower section. Cuttings from the oil based drilling section were brought onboard the Byford Dolphin, collected in enclosed containers and shipped ashore for disposal.

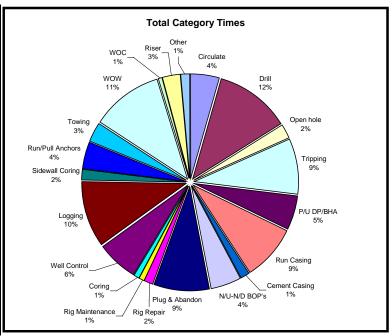
A separate assessment of the development of the environmental risk was not conducted for this project (this is the first PL 259 well). The Environmental risk assessment concluded that this isolated exploration drilling operation was a relatively low environmental risk (both for the coastline zone and the sea bird populations) and below the ALARP (As Low As Reasonably Practicable) region found in Norsk Chevron's accepted criteria. In the area specific environmental risk assessment, the environmental effects are categorised as minimum, mainly due to the fact that the majority of the drilling waste which is discharged consists of cuttings and inorganic waste from the drilling chemicals. The effects of this will be

temporary alterations in the local upper settlement of fauna, plus some small temporary alterations to the local sediment composition. It is considered that the actual effects regarding plankton and fish at an early stadium, is negligible due to the small discharge volume.

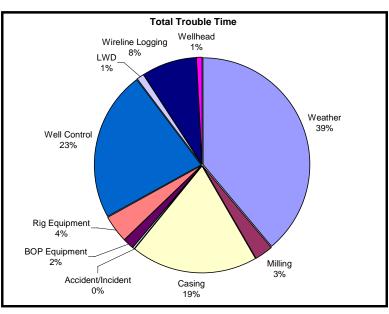
# 2.5 Well Progress Curve

See Figure 1.1. Well Summary

### 2.6 Well Status after Abandonment


See Figure 1.1. Well Summary

Norsk Chevron AS


# 2.7 Time Distribution Summary

The overall rig time distribution and trouble time (non productive time) are as follows:

| All Categories |                      |                     |  |  |  |  |  |  |
|----------------|----------------------|---------------------|--|--|--|--|--|--|
| Code           | Category Description | Total time<br>(hrs) |  |  |  |  |  |  |
| 1              | Circulate            | 35.0                |  |  |  |  |  |  |
| 2              | Drill                | 94.0                |  |  |  |  |  |  |
| 3              | Open hole            | 16.0                |  |  |  |  |  |  |
| 4              | Reaming              | 1.5                 |  |  |  |  |  |  |
| 5              | Tripping             | 68.0                |  |  |  |  |  |  |
| 6              | Surveying            | 0.5                 |  |  |  |  |  |  |
| 7              | P/U DP/BHA           | 42.5                |  |  |  |  |  |  |
| 8              | Run Casing           | 69.5                |  |  |  |  |  |  |
| 9              | Cement Casing        | 11.5                |  |  |  |  |  |  |
| 13             | N/U-N/D BOP's        | 35.5                |  |  |  |  |  |  |
| 14             | Test BOP's           | 2.0                 |  |  |  |  |  |  |
| 15             | Drill float eq.      | 3.5                 |  |  |  |  |  |  |
| 16             | Test Casing          | 1.5                 |  |  |  |  |  |  |
| 17             | LOT                  | 1.5                 |  |  |  |  |  |  |
| 19             | Plug & Abandon       | 68.5                |  |  |  |  |  |  |
| 20             | Rig Repair           | 13.0                |  |  |  |  |  |  |
| 21             | Rig Maintenance      | 5.0                 |  |  |  |  |  |  |
| 22             | Coring               | 7.5                 |  |  |  |  |  |  |
| 23             | Well Control         | 51.5                |  |  |  |  |  |  |
| 25             | Logging              | 81.0                |  |  |  |  |  |  |
| 26             | Sidewall Coring      | 12.0                |  |  |  |  |  |  |
| 40             | Run/Pull Anchors     | 34.5                |  |  |  |  |  |  |
| 41             | Towing               | 23.5                |  |  |  |  |  |  |
| 42             | WOW                  | 88.0                |  |  |  |  |  |  |
| 43             | WOC                  | 5.0                 |  |  |  |  |  |  |
| 53             | Riser                | 22.0                |  |  |  |  |  |  |
| 62             | Safety Meeting       | 0.5                 |  |  |  |  |  |  |
|                | Total (hrs)          | 794.5               |  |  |  |  |  |  |
|                | Total (days)         | 33.1                |  |  |  |  |  |  |



| Trouble Time |                      |                     |  |  |  |  |  |  |
|--------------|----------------------|---------------------|--|--|--|--|--|--|
| Code         | Category Description | Total time<br>(hrs) |  |  |  |  |  |  |
| 102          | Weather              | 88.0                |  |  |  |  |  |  |
| 104          | Milling              | 6.5                 |  |  |  |  |  |  |
| 107          | Casing Problems      | 43.5                |  |  |  |  |  |  |
| 108          | Accident/Incident    | 0.5                 |  |  |  |  |  |  |
| 201          | BOP Equipment        | 4.0                 |  |  |  |  |  |  |
| 202          | Rig Equipment        | 9.5                 |  |  |  |  |  |  |
| 406          | Well Control         | 51.5                |  |  |  |  |  |  |
| 501          | LWD                  | 3.0                 |  |  |  |  |  |  |
| 503          | Wireline Logging     | 18.5                |  |  |  |  |  |  |
| 504          | Wellhead             | 2.0                 |  |  |  |  |  |  |
|              | Total (hrs)          | 227                 |  |  |  |  |  |  |
|              | Total (days)         | 9.46                |  |  |  |  |  |  |



Norsk Chevron AS

# 2.8 Cost Summary

The AFE (Appropriation For Expenditure) was 134.3 million NOK, which was based on:

- Dry hole design.
- Trouble free time of 29.2 days, plus a contingency of 15% (4.4 days).
- Cost contingency of +15%. on non-time related costs.
- Exchange rates of 9.00 NOK/USD and 13.5 NOK/GBP.
- Total depth of 3600 mMSL.

The latest estimation (February 7, 2002) of well costs (captured in DisWin) is 133 million NOK. The AFE budget was 134 million NOK.

See attachment 2.10 for detailed comparison of estimated actual costs vs. estimated cost per line item in the AFE.

The books have not been closed yet and the final well reconciliation and final audit will be produced later this year.

# Cost Comparison Estimated Actual vs AFE



|                                                                                                                      |                                                                                                                     |              | NORSK C                                                                              | <b>HEVRON A</b>                                                      | S                                     |              |                                      |                                         |                      |                             |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|--------------|--------------------------------------|-----------------------------------------|----------------------|-----------------------------|--|--|
|                                                                                                                      | Drilling Cost Estin                                                                                                 |              | I                                                                                    | Estimated Actual D                                                   | rilling Cost                          |              |                                      |                                         |                      |                             |  |  |
| General:                                                                                                             |                                                                                                                     | Summary:     |                                                                                      |                                                                      |                                       | Summary:     |                                      |                                         |                      |                             |  |  |
| Author: Checked by: Approved by: Date of Estimate: Well Name: Well Type: Total Depth:                                | Terje Lokke-Sorensen<br>Ian King<br>Chris Riccobono<br>31.5.2001<br>6506/3-1<br>Vertical Exploration Well<br>3600 m | то           | Intangible Costs: Tangible Costs: Trouble Free Cost: Contingency Cost: TAL WELL COST | 114,832,143<br>1,689,667<br>116,521,809<br>17,478,191<br>134,000,000 | NOK<br>NOK<br><mark>NOK</mark><br>NOK | In<br>T      | tangible Costs :<br>Cangible Costs : | 131,199,556<br>1,747,951<br>132,947,507 |                      |                             |  |  |
| Revision Number:<br>Estimate Classification :<br>Exhange rate (NOK/USD):<br>Exhange rate (NOK/GBP):<br>Contingency : | A<br>0<br>9.00<br>13.50<br>15%                                                                                      | Total        | Trouble Free Time: Contingency time: ne incl. contingency:                           | 2,150,893 NOK<br>29.2 days<br>4.4 days<br>33.6 days                  |                                       |              |                                      | 20.000                                  | 20.000               |                             |  |  |
| Line Item                                                                                                            | Description                                                                                                         | Days         | Daily                                                                                | Fixed Costs                                                          | Total Costs                           | Actual Days  | DisWin Daily                         | DisWin<br>Fixed Costs                   | DisWin Total Costs   | DisWin Cost - AFE Cost      |  |  |
| 1.0 4 1.0 111                                                                                                        | D'. D. D. (                                                                                                         | 20.2         | Cost (NOK)                                                                           | (NOK)                                                                | (NOK)                                 | 22.1         | Cost (NOK)                           | (NOK)                                   | (NOK)                | (NOK)                       |  |  |
| 1. Contract Drilling                                                                                                 | Rig Day Rate                                                                                                        | 29.2         | 1,436,586                                                                            |                                                                      | 41,956,694                            | 33.1         | 1,436,586                            |                                         | 47,526,942           | 5,570,248                   |  |  |
|                                                                                                                      | Additional allowance for operating out of Sandnessjoen                                                              | 29.2         | 10,000                                                                               |                                                                      | 292,058                               | 33.1         | 10,000                               |                                         | 331,000              | 38,942                      |  |  |
|                                                                                                                      | Dolphin - crew charges for handling OBM                                                                             |              |                                                                                      | 500.000                                                              | 500 000                               | 18.0         | 2,538                                |                                         | 45,684               | 45,684                      |  |  |
|                                                                                                                      | Misc. re-imbursement (equip. and personnel)                                                                         |              |                                                                                      | 500,000                                                              | 500,000                               |              |                                      |                                         | 0                    | -500,000                    |  |  |
|                                                                                                                      | Safety incentive                                                                                                    |              |                                                                                      | 200,000                                                              | 200,000                               |              |                                      |                                         | 0                    | -200,000                    |  |  |
|                                                                                                                      | Helicopter Underwater Evacuation courses                                                                            |              |                                                                                      | 500,000                                                              | 500,000                               |              |                                      |                                         | U                    | -500,000                    |  |  |
|                                                                                                                      | Contingency                                                                                                         |              |                                                                                      |                                                                      | 6,517,248                             |              |                                      |                                         | 47.002.626           | -6,517,248                  |  |  |
| 4.6                                                                                                                  | Total (incl. contingency)                                                                                           | 20.2         | 22.050                                                                               |                                                                      | 49,966,000                            | 20.0         | 25,000                               |                                         | 47,903,626           | -2,062,374                  |  |  |
| 4. Supervision                                                                                                       | Rig Supervision (2 persons)                                                                                         | 29.2         | 22,050                                                                               |                                                                      | 643,989                               | 39.0         |                                      |                                         | 982,000              | 338,011                     |  |  |
|                                                                                                                      | Drilling Engineer (1 person on the rig)                                                                             | 29.2<br>29.2 | 12,600                                                                               |                                                                      | 367,994                               | 18.0<br>20.0 | 12,000                               |                                         | 216,000              | -151,994<br>-329,460        |  |  |
|                                                                                                                      | Rig Site Geologist (2 persons)                                                                                      |              | 15,903                                                                               |                                                                      | 464,460                               | 20.0         | 6,750                                |                                         | 135,000              |                             |  |  |
|                                                                                                                      | FE Specialist/Geologist (1 person)                                                                                  | 14           | 14,940<br>10,000                                                                     | 20,000                                                               | 209,160<br>160,000                    |              |                                      |                                         | 0                    | -209,160<br>-160,000        |  |  |
|                                                                                                                      | Marine Representative                                                                                               | 14           | 10,000                                                                               | 20,000                                                               | 160,000                               | 4            | 0.000                                |                                         | 22,000               |                             |  |  |
|                                                                                                                      | IT - support                                                                                                        |              |                                                                                      |                                                                      | 276,397                               | 4            | 8,000                                |                                         | 32,000               | 32,000<br>-276,397          |  |  |
|                                                                                                                      | Contingency                                                                                                         |              |                                                                                      |                                                                      | 2,122,000                             |              |                                      |                                         | 1,365,000            |                             |  |  |
| ( Feel Weter & December                                                                                              | Total (incl. contingency)                                                                                           | 20.2         | 45 101                                                                               |                                                                      | , ,                                   |              | 2267/ 42                             |                                         | , ,                  | - <b>757,000</b><br>387,510 |  |  |
| 6. Fuel, Water & Power                                                                                               | Fuel (rig)                                                                                                          | 29.2         | 45,181                                                                               |                                                                      | 1,319,541                             |              | 2267/m^3                             |                                         | 1,707,051            |                             |  |  |
|                                                                                                                      | Water                                                                                                               |              |                                                                                      |                                                                      | 107.450                               |              | 13/m^3                               |                                         | 59,150               | 59,150                      |  |  |
|                                                                                                                      | Contingency                                                                                                         |              |                                                                                      |                                                                      | 197,459                               |              |                                      |                                         | 1.766.201            | -197,459                    |  |  |
| 0 D 1111 EI 1 1                                                                                                      | Total (incl. contingency)                                                                                           | 20.2         | 50.055                                                                               | 121.010                                                              | 1,517,000                             |              |                                      |                                         | 1,766,201            | 249,201                     |  |  |
| 9. Drilling Fluids                                                                                                   | Mud engineering                                                                                                     | 29.2<br>29.2 | 53,255<br>37,400                                                                     | 121,910<br>938,500                                                   | 1,677,253                             |              |                                      |                                         | 1,623,935            | -53,318<br>-1,109,429       |  |  |
|                                                                                                                      | Cuttings collection and disposal                                                                                    | 29.2         | 37,400                                                                               |                                                                      | 2,030,798                             |              |                                      |                                         | 921,369              |                             |  |  |
|                                                                                                                      | Drilling fluids (36"hole section)                                                                                   |              |                                                                                      | 78,510<br>424,830                                                    | 78,510<br>424,830                     |              |                                      |                                         | 65,351               | -13,159                     |  |  |
|                                                                                                                      | Drilling fluids (17 1/2" hole section) Drilling fluids (8-1/2" hole section)                                        |              |                                                                                      | 1,592,424                                                            | 424,830<br>1,592,424                  |              |                                      |                                         | 985,062<br>1,991,598 | 560,232<br>399,174          |  |  |
|                                                                                                                      | Contingency                                                                                                         |              |                                                                                      | 1,392,424                                                            | 1,592,424<br>870,184                  |              |                                      |                                         | 1,991,398            | -870,184                    |  |  |
|                                                                                                                      | Total (incl. contingency)                                                                                           |              |                                                                                      |                                                                      | 6,674,000                             |              |                                      |                                         | 5,587,315            | -1,086,685                  |  |  |
| 10. Well Supplies                                                                                                    | Miscellaneous                                                                                                       | 29.2         | 10,000                                                                               | 32,826                                                               | 324,884                               |              |                                      | 996                                     | 996                  | -323,888                    |  |  |
| 10. Wen Supplies                                                                                                     | Contingency                                                                                                         | 29.2         | 10,000                                                                               | 32,820                                                               | 48,866                                |              |                                      | 990                                     | 990                  | -48,866                     |  |  |
|                                                                                                                      | Total (incl. contingency)                                                                                           |              |                                                                                      |                                                                      | 373,750                               |              |                                      |                                         | 996                  | -372,754                    |  |  |
| 11. Transportation                                                                                                   | Helicopter                                                                                                          | 29.2         | 45,000                                                                               |                                                                      | 1,314,263                             |              |                                      | 1,646,432                               | 1,646,432            | 332,169                     |  |  |
| 11. 11ansportation                                                                                                   | Standby vessel                                                                                                      | 29.2         | 64,500                                                                               |                                                                      | 1,883,776                             | 33.5         | 62,500                               | 1,040,432                               | 2,091,667            | 207,891                     |  |  |
|                                                                                                                      | Supply vessel                                                                                                       | 29.2         | 50,000                                                                               |                                                                      | 1,460,292                             | 28.0         |                                      |                                         | 1,400,000            | -60,292                     |  |  |
|                                                                                                                      | Ad-hoc supply vessel                                                                                                | 18.0         | 200,000                                                                              |                                                                      | 3,600,000                             | 27.5         | 243,000                              | -1,000,000                              | 5,682,500            | 2,082,500                   |  |  |
|                                                                                                                      | Transport of casing (UK-N-UK)                                                                                       | 13.0         | 200,000                                                                              | 202,500                                                              | 202,500                               | 27.3         | 2-13,000                             | 120,000                                 | 120,000              | -82,500                     |  |  |
|                                                                                                                      | Survival suit rental                                                                                                | 29.2         | 1,000                                                                                | 202,500                                                              | 29,206                                |              |                                      | 120,000                                 | 0                    | -29,206                     |  |  |
|                                                                                                                      | Moving materials from Stavanger to base                                                                             | 27.2         | 1,300                                                                                | 1,000,000                                                            | 1,000,000                             |              |                                      | 275,000                                 | 275,000              | -725,000                    |  |  |
|                                                                                                                      | Contingency                                                                                                         |              |                                                                                      | 1,000,000                                                            | 1,423,963                             |              |                                      | 275,530                                 | 275,500              | -1,423,963                  |  |  |
|                                                                                                                      | Total (incl. contingency)                                                                                           |              |                                                                                      |                                                                      | 10,914,000                            |              |                                      |                                         | 11,215,599           | 301,599                     |  |  |
| 12. Directional Drilling                                                                                             | Anderdrift                                                                                                          | 14           | 6,350                                                                                | 10,150                                                               | 99,050                                |              |                                      |                                         | 0                    | -99,050                     |  |  |
| Direction Diming                                                                                                     |                                                                                                                     | 17           | 0,330                                                                                | 10,130                                                               | 77,050                                |              | 1,400                                |                                         | <u> </u>             |                             |  |  |
|                                                                                                                      | Single shot kit                                                                                                     |              |                                                                                      |                                                                      |                                       | 44           | 1.400                                |                                         | 61,600               | 61,600                      |  |  |

File: C Actual vs. AFE (2).xls

#### 6506/3-1, PL259 End of Well Report - Volume I

| Line Item                    | Description                                              | Days | Daily      | Fixed Costs | Total Costs | Actual Days | DisWin Daily | DisWin<br>Fixed Costs | DisWin<br>Total Costs | DisWin Cost<br>- AFE Cost |
|------------------------------|----------------------------------------------------------|------|------------|-------------|-------------|-------------|--------------|-----------------------|-----------------------|---------------------------|
|                              |                                                          |      | Cost (NOK) | (NOK)       | (NOK)       |             | Cost (NOK)   | (NOK)                 | (NOK)                 | (NOK)                     |
|                              | Total (incl. contingency)                                |      |            |             | 114,000     |             |              |                       | 61,600                | -52,400                   |
| 13. Drill String Rental      | Bits                                                     |      |            | 1,500,000   | 1,500,000   |             |              | 640,800               | 640,800               | -859,200                  |
| & Service                    | Jars                                                     | 29.2 | 1000       | 20,920      | 50,126      | 45          |              | 33,600                | 128,100               | 77,974                    |
|                              | 36" Hole Opener                                          |      |            | 200,000     | 200,000     | 49          | 1217         | 170,500               | 230,120               | 30,120                    |
|                              | Anderdrift                                               |      |            |             |             | 26          | 6350         | 10,150                | 175,250               | 175,250                   |
|                              | Odfjell pony DC rental (x4)                              |      |            |             |             | 38.5        | 520          |                       | 20,020                | 20,020                    |
|                              | Contingency                                              |      |            |             | 262,874     |             |              |                       |                       | -262,874                  |
|                              | Total (incl. contingency)                                |      |            |             | 2,013,000   |             |              |                       | 1,194,290             | -818,710                  |
| 14. Other Rentals & Service  | Base , Helgelandsbase                                    | 29.2 | 30,951     | 90,000      | 993,962     | 35          | 187,088      |                       | 6,548,080             | 5,554,118                 |
|                              | Container and basket rental                              |      |            |             |             | 34          | 30,000       |                       | 1,020,000             | 1,020,000                 |
|                              | Wellhead Equipment Rental & Service                      | 20   | 8,775      | 491,117     | 666,617     | 11          | 8,775        | 546,806               | 643,331               | -23,286                   |
|                              | Backup Piggy Back anchors                                |      |            |             |             | 8           | 1,520        | 20,600                | 32,760                | 32,760                    |
|                              | Casing Running Equipment                                 | 10   | 11,090     | 79,000      | 189,900     | 21          | 2,285        | 281,000               | 328,365               | 138,465                   |
|                              | Casing Crew (2x - 1 leader + 1 operator per crew)        | 14   | 22,060     |             | 308,840     | 9           | 22,060       | 7,702                 | 206,242               | -102,598                  |
|                              | P&A Package + personnel (x2)                             | 5    | 21,000     | 243,699     | 348,699     |             |              |                       | 0                     | -348,699                  |
|                              | Weather Service                                          | 29.2 | 500        |             | 14,603      |             |              | 53,606                | 53,606                | 39,003                    |
|                              | BOP Inspection                                           |      |            | 250,000     | 250,000     | 9.0         | 10,800       | 101,250               | 198,450               | -51,550                   |
|                              | Communications and data link                             | 29.2 | 5,000      | 200,000     | 346,029     |             |              |                       | 0                     | -346,029                  |
|                              | Personnel Onboard System, incl. training                 |      |            | 200,000     | 200,000     |             |              |                       | 0                     | -200,000                  |
|                              | Dolphin - meals service personnel (19x)                  |      |            |             |             | 30          | 9,690        |                       | 290,700               | 290,700                   |
|                              | NPD compatible Daily Reporting System                    |      |            | 150,000     | 150,000     | 34          | 1,100        | 1,000                 | 38,400                | -111,600                  |
|                              | Pore pressure prognosis                                  |      |            | 270,000     | 270,000     |             |              |                       | 0                     | -270,000                  |
|                              | Diving Support/ROV                                       | 29.2 | 26,556     |             | 775,588     |             |              | 1,152,884             | 1,152,884             | 377,296                   |
|                              | Contingency                                              |      |            |             | 676,762     |             |              |                       |                       | -676,762                  |
|                              | Total (incl. contingency)                                |      |            |             | 5,191,000   |             |              |                       | 10,512,818            | 5,321,818                 |
| 20. Coring                   | DBS Personnel (2x)                                       | 10   | 14,770     |             | 147,700     | 7.5         | 14,770       | 3,500                 | 114,275               | -33,425                   |
|                              | DBS Equipement rental                                    | 20   | 1,900      |             | 38,000      | 19          | 1,900        |                       | 36,100                | -1,900                    |
|                              | 8 1/2" cores (72 m)                                      | 72m  | 4596/m     | 330,912     | 330,912     | 70.5m       | 4596/m       | 323,844               | 323,844               | -7,068                    |
|                              | Corpro Personnel (2x)                                    |      |            |             |             | 9           | 10,800       | 4,000                 | 101,200               | 101,200                   |
|                              | Corpro Equipment                                         |      |            |             |             | 19          | 3,665        |                       | 69,635                | 69,635                    |
|                              | Core analysis                                            |      |            | 600,000     | 600,000     |             |              |                       | 0                     | -600,000                  |
|                              | Contingency                                              |      |            |             | 167,388     |             |              |                       |                       | -167,388                  |
|                              | Total (incl. contingency)                                |      |            |             | 1,284,000   |             |              |                       | 645,054               | -638,946                  |
| 21. Testing                  | Mob./de-mob downhole & surface test equipment            |      |            | 1,530,000   | 1,530,000   |             |              |                       | 0                     | -1,530,000                |
|                              | Planning                                                 |      |            | 683,500     | 683,500     |             |              | 1,021,327             | 1,021,327             | 337,827                   |
|                              | Steve Pattie                                             |      |            |             |             | 31          | 6,500        |                       | 201,500               | 201,500                   |
|                              | Mike Wynne                                               |      |            |             |             | 14          | 6,500        |                       | 91,000                | 91,000                    |
|                              | Petrotech personnel (2x)                                 |      |            |             |             | 9.5         | 19,600       |                       | 186,200               | 186,200                   |
|                              | Petrotech Equipment                                      |      |            |             |             | 19          | 14,160       |                       | 269,040               | 269,040                   |
|                              | Contingency                                              |      |            |             | 332,500     |             |              |                       |                       | -332,500                  |
|                              | Total (incl. contingency)                                |      |            |             | 2,546,000   |             |              |                       | 1,769,067             | -776,933                  |
| 22. Logging-Wireline and LWD | MWD/LWD Services - personnel                             | 29.2 | 14,360     |             | 419,396     | 29.5        | 14,360       |                       | 423,620               | 4,224                     |
| 55 5                         | MWD/LWD Services - equipment (DIR/GR/CDR)                |      |            | 1,918,359   | 1,918,359   |             |              |                       | 2,501,351             | 582,992                   |
|                              | PVT Simulations for MDT                                  |      |            | , , , , , , | , .,        |             |              | 52,000                | 52,000                | 52,000                    |
|                              | Log run #1 (Dens,Neu,Res,SGR)                            |      |            | 863,055     | 863,055     |             |              | ,                     | 0                     | -863,055                  |
|                              | Log run #2 (Sonic, Image, Dips)                          |      |            | 741,960     | 741,960     |             |              |                       | n                     | -741,960                  |
|                              |                                                          | 1    |            | 1,686,947   | 1,686,947   |             |              | +                     | 0                     | -1,686,947                |
|                              | Log run #3 (MDT press., samples)                         |      |            | , ,         | , ,         |             |              | 1.002.000             | 1,002,000             |                           |
|                              | Log run #4 (VSP)                                         |      |            | 2,286,000   | 2,286,000   |             |              | 1,002,000             | 1,002,000             | -1,284,000                |
|                              | Log run #5 SWC                                           | 10   | 64.710     | 232,470     | 232,470     | 21          | 54.150       | 05.620                | 1 222 222             | -232,470                  |
|                              | WL Crew Charges (2 Engineer + 4 Operator) + 1 Specialist | 10   | 64,719     |             | 647,190     | 21          | 54,162       | 85,630                | 1,223,032             | 575,842                   |
|                              | Logging tool rental + operating charges                  |      |            |             |             | 26          | 97,478       | 1,802,880             | 4,342,180             | 4,342,180                 |
|                              | Logging unit + tool package rental                       |      |            | 1.467.000   | 1.465.000   | 33          | 14,769       | 1                     | 491,439               | 491,439                   |
|                              | Analysis (MDT, SWC)                                      |      |            | 1,467,000   | 1,467,000   |             |              |                       | 0                     | -1,467,000                |
|                              | Contingency                                              |      |            |             | 1,539,623   |             |              |                       | 10.005.600            | -1,539,623                |
|                              | Total (incl. contingency)                                |      |            |             | 11,802,000  |             |              |                       | 10,035,622            | -1,766,378                |

File: C Actual vs. AFE (2).xls [Page]

#### 6506/3-1, PL259 End of Well Report - Volume I

| Line Item                           | Description                                                     | Days | Daily<br>Cost (NOK) | Fixed Costs<br>(NOK) | Total Costs<br>(NOK)  | Actual Days | DisWin Daily<br>Cost (NOK) | DisWin Fixed Costs (NOK) | DisWin Total Costs (NOK) | DisWin Cost - AFE Cost (NOK) |
|-------------------------------------|-----------------------------------------------------------------|------|---------------------|----------------------|-----------------------|-------------|----------------------------|--------------------------|--------------------------|------------------------------|
| 23. Logging-Mud                     | Mud Logging Unit                                                | 29.2 | 6,860               | ( ) = /              | 200,342               | 30.0        | 205,790                    | 10,450                   | 6,184,150                | 5,983,80                     |
|                                     | Personnel                                                       | 29.2 | 17,148              |                      | 500,822               | 33.0        |                            | ,,,,,                    | 489,164                  | -11,65                       |
|                                     | Reserval unit                                                   |      | ,                   |                      | ,                     |             |                            |                          | 57,470                   | 57,4                         |
|                                     | Contingency                                                     |      |                     |                      | 104,836               |             |                            |                          | ,                        | -104,83                      |
| 32. Cement & Cementing              | Total (incl. contingency)                                       |      |                     |                      | 806,000               |             |                            |                          | 6,730,784                | 5,924,78                     |
| 32. Cement & Cementing              | Operator and cement unit rental                                 | 29.2 | 19,850              |                      | 579,744               | 33.1        | 18,257                     |                          | 604,155                  | 24,41                        |
|                                     | Onshore support                                                 | 29.2 | 1,593               | 143,394              | 189,927               | 33.0        | 1,593                      |                          | 52,569                   | -137,35                      |
|                                     | Cement & additives                                              |      | ,                   | 1,000,000            | 1,000,000             |             |                            | 640,248                  | 640,248                  | -359,75                      |
|                                     | Sections costs                                                  |      |                     | 173,652              | 173,652               |             |                            | 172,829                  | 172,829                  | -82                          |
|                                     | Centralisers, EZSV for 13 3/8", 13 3/8" shoetrack etc.          |      |                     | 21,800               | 21,800                |             |                            | 96,534                   | 96,534                   | 74,73                        |
|                                     | 3 1/2" Tubing + handling equipment                              |      |                     | ·                    | ·                     | 29          | 2,676                      | 15,745                   | 93,349                   | 93,34                        |
|                                     | Contingency                                                     |      |                     |                      | 294,877               |             |                            |                          |                          | -294,8                       |
|                                     | Total (incl. contingency)                                       |      |                     |                      | 2,260,000             |             |                            |                          | 1,659,684                | -600,3                       |
| 40. Fishing Cost                    | Contingent fishing gear                                         | 29.2 | 5,000               |                      | 146,029               |             |                            | 86,180                   | 86,180                   | -59,84                       |
| 40. Fishing Cost                    | P & A package (MOST Tool)                                       |      | 2,200               |                      | , , , , , ,           |             |                            | 297,199                  | 297,199                  | 297,19                       |
|                                     | Weatherford Engineer (P & A)                                    |      |                     |                      |                       | 4.0         | 10,500                     | -2.,422                  | 42,000                   | 42,0                         |
|                                     | Contingency                                                     |      |                     |                      | 21,970                | 4.0         | 10,500                     |                          | .2,530                   | -21,9                        |
|                                     | Total (incl. contingency)                                       |      |                     |                      | 168,000               |             |                            |                          | 425,379                  | 257,3'                       |
| 52. Drillsite Cost                  | Site survey                                                     |      |                     | 3,600,000            | 3,600,000             |             |                            | 3,067,387                | 3,067,387                | -532,6                       |
| 52. Dimsite Cost                    | Rig positioning                                                 |      |                     | 144,000              | 144,000               |             | 19,800                     | 200,142                  | 200,142                  | 56,14                        |
|                                     | Anchor handling vessels (3 ea)                                  | 7    | 600,000             | 144,000              | 4,200,000             | 8.5         | 892,500                    | 200,142                  | 7,585,771                | 3,385,77                     |
|                                     | Marine Representative                                           |      | 000,000             |                      | 4,200,000             | 9.5         | 10,350                     | 27,141                   | 120,291                  | 120,29                       |
|                                     | Contingency                                                     |      |                     |                      | 1,192,000             |             | 10,550                     | 27,141                   | 120,271                  | -1.192.00                    |
|                                     | Total (incl. contingency)                                       |      |                     |                      | 9,136,000             |             |                            |                          | 10.973.591               | 1,837,59                     |
| 61. G&A Drilling Department         | Onshore support - Sandnes Office                                | 29.2 | 45,436              | 9,771,180            | 11,098,188            |             |                            |                          | 10,973,391               | -11,098,18                   |
| 61. G&A Drining Department          | Onshore support - Oslo Office                                   | 29.2 | 43,430              | 4,000,000            | 4,000,000             |             |                            |                          | 0                        | -4,000,00                    |
|                                     | Onshore support - Osio Office Onshore support - Aberdeen Office | 29.2 | 5,000               | 798,971              | 945,000               |             |                            |                          | 0                        | -4,000,00                    |
|                                     | Total Daily Charge for onshore costs                            | 29.2 | 3,000               | 790,971              | 943,000               | 50.0        | 81,124                     | 7,476,230                | 11,532,430               | -943,00                      |
|                                     | Contingency                                                     |      |                     |                      | 2,406,062             | 30.0        | 01,124                     | 7,470,230                | 11,332,430               | -2,406,06                    |
|                                     | 0 7                                                             |      |                     |                      | , ,                   |             |                            |                          | 11 522 420               |                              |
| CO. T. Provid Alliand Communication | Total (incl. contingency)                                       |      |                     | 242.000              | 18,449,250<br>243,000 |             |                            |                          | 11,532,430               | <b>-6,916,82</b><br>-243,00  |
| 62. Indirect Allocations            | Emergency Response Training                                     |      |                     | 243,000<br>2,090,000 | 2,090,000             |             |                            | 4.720.000                | 4.720.000                |                              |
|                                     | HSE (NOFO, NPD, Health Serv., Emerg.Resp., RA)                  |      |                     | 3,000,000            | 3,000,000             |             |                            | 4,728,000<br>3,092,500   | 4,728,000<br>3,092,500   | 2,638,00<br>92,50            |
|                                     | Env. Risk and Oil Spill Cont. Analysis (DnV)                    | 20.2 | 15 500              | 3,000,000            | , ,                   |             |                            | 3,092,500                | 3,092,500                | ,                            |
|                                     | Shearing of SAR helicopter at Heidrun                           | 29.2 | 17,500              |                      | 511,102               |             |                            |                          | U                        | -511,10                      |
|                                     | Contingency                                                     |      |                     |                      | 876,898               |             |                            |                          |                          | -876,89                      |
|                                     | Total (incl. contingency)                                       |      |                     |                      | 6,721,000             |             |                            |                          | 7,820,500                | 1,099,50                     |
| Total Intangibles                   |                                                                 |      |                     |                      | 114,832,143           |             |                            |                          | 131,199,556              | 16,367,41                    |
| Total Contingency Intangibles       |                                                                 |      |                     |                      | 17,224,858            |             |                            |                          |                          | (17,224,85                   |
| Total Intangibles (incl. Continger  |                                                                 |      |                     |                      | 132,057,001           |             | 1                          |                          | 131,199,556              | (857,44                      |
| 20 Well Dine (Care & That)          | TANGIBLE COSTS                                                  | П    | Г                   | 515,970              | 515,970               |             |                            | 442,845                  | 442,845                  | -73,12                       |
| 30. Well Pipe (Csg & Tbg)           | 30" Casing (96 m)<br>13-3/8" Casing (1000 m)                    |      |                     |                      |                       |             |                            |                          |                          |                              |
|                                     |                                                                 |      |                     | 1,073,697            | 1,073,697             |             |                            | 1,305,106                | 1,305,106                | 231,40                       |
|                                     | 9-5/8" Casing (contingency)                                     |      |                     |                      | 0                     |             | <b> </b>                   |                          | 0                        |                              |
|                                     | 7" Casing (contingency)                                         |      |                     | 100.000              | 100,000               |             |                            |                          | 0                        | 100.00                       |
|                                     | Misc.                                                           |      |                     | 100,000              | 253,333               |             |                            |                          | 0                        | -100,00<br>-253,33           |
|                                     | Contingency                                                     |      |                     |                      | ,                     |             |                            |                          | 1.7.17.051               |                              |
|                                     | Total (incl. contingency)                                       |      |                     |                      | 1,943,000             |             |                            |                          | 1,747,951                | -195,04                      |
| Total Tangibles                     |                                                                 |      |                     |                      | 1,689,667             |             |                            |                          | 1,747,951                |                              |
| Total Contingency Tangibles         |                                                                 |      |                     |                      | 253,333               |             |                            |                          | 0                        |                              |
| Total Tangibles (incl. Contingen    | cy)                                                             |      |                     |                      | 1,943,000             |             |                            |                          | 1,747,951                |                              |
| TOTAL WELL COST                     |                                                                 |      |                     |                      | 134.00                |             |                            |                          | 132.95                   |                              |

File: C Actual vs. AFE (2).xls [Page]

# This section contains:

| 3.1   | Geology Summary                    | 2  |
|-------|------------------------------------|----|
| 3.2   | Well Stratigraphy                  | 3  |
| 3.3   | Geochemistry                       |    |
| 3.4   | Geophysics                         | 10 |
| 3.5   | Petrophysics                       | 16 |
| 3.5.1 | Composite Log Curve Data           | 16 |
| 3.5.2 | Formation Evaluation- Cretaceous   |    |
| 3.5.2 | Formation Evaluation- Tertiary     |    |
| 3.6   | Bottom HoleTemperature Analysis    | 23 |
| 3.7   | Summaries                          | 24 |
| 3.7.1 | Temperature Profile                | 24 |
| 3.7.2 | Geological Sampling Summary        |    |
| 3.7.3 | LWD Operational Summary            |    |
| 3.7.4 | Open Hole Wireline Logging Summary |    |
| 3.7.5 | Conventional Coring Summary        |    |
| 3.7.6 | Percussion Side Wall Core Summary  |    |
| 3.7.7 | MDT Summary                        | 37 |
|       | ·                                  |    |

#### 3.1 **Geology Summary**

Boulders were not observed during drilling, but the Quaternary sedimentary package will always constitute a boulder challenge/risk for future wells in the license and in the region.

High-risk, shallow gas filled sands was neither prognosed nor observed in this well. A low to medium risk shallow gas hazard was defined at 1180-1270m, albeit considered to be a dim spot caused by lithological change across a debris flow/slump deposit. No significant increase in gas readings were observed from that same level during drilling, leading to the conclusion that the dim spot was indeed set up by a geophysical contrast between a debris flow lithofacies and a laterally located 'background' facies.

Two prospect target levels were defined and prognosed in this well, the Paleogene Brygge sands and the Cretaceous Lysing sands. One of the main objectives was to identify and evaluate these sands. Only the Lysing target contained sands (21m gross TVT sand interval). One of the partners had an additional Cretaceous Nise sand as a primary prospect target, and this particular potential sand unit was added to the prognosed lithocolumn by the Operator as a high risk sand lead to accommodate our partner. The Lange sands were also added to the prognosed lithocolumn as a high risk sand lead. Neither the Nise nor the Lange sands were present in this well.

### Paleogene, 'Brygge' Target (Harran Prospect)

The seismic sequence defined as the 'Brygge' Target contained parts of the Tare Formation (from 1654m MDRKB) and the upper part (37m) of the Tang Formation and contains disappointingly 104m of siliceous diatomite and volcanics (tuffaceous) facies.

If the upper part of the diatomaceous Tare Formation and the above Brygge Formation is added the total diatomite thickness is around 140m MT (Measured Thickness). SEM and XRD results prove that diatomite (also containing Radiolarians and sponge spicules) is the dominant lithofacies with some component of volcanic glass. The unit was water filled and significantly over-pressured. 38% average porosity (representing high microporosity within the diatom tests) and very low permeability were recognised in the diatomite. The only presence of hydrocarbons was from the gas log data indicating some amount of methane present when the formation back-flowed in a saltwater kick. The lack of reservoir was the main failure in this prospect. Failing of the vertical seal (faults?) during inversion is seen as the most likely cause for this Brygge back-flow zone being water bearing.

# Cretaceous, 'Lysing' Target (Grong-W Prospect)

The seismic sequence constituting the Lysing target was some 50m thick in the well, but the Lysing Formation sandstone unit was only 21.0 m thick (TVT) out of which at best some 3m of the uppermost sands had porosity of 20%. The Lysing Formation sandstone thinned and 'fined out' more than expected at the crest of Structure A indicating that Structure A was a paleo-high during the deposition of the Lysing Formation.

The solution gas, the organic acid content and the phenol concentration of the water obtained from wireline fluid sampling indicate that the sample has, at some point been in contact with a



hydrocarbon accumulation. The water is strongly under-saturated with gas and is not in close contact with a hydrocarbon accumulation at present. Failure of the vertical seal is the most likely cause for this Lysing Formation sandstone being water bearing.

# 3.2 Well Stratigraphy

#### Introduction

The 1:500 Composite log (Enclosure 3) is helpful when reading this chapter. Reference is also made to Ichron (2001A) and Ichron (2001B) for petrography and biostratigraphy respectively.

The prognosed and the actual lithocolumns are shown in Figure 3.2-1 and the prognosed and actual stratigraphic tops are compared in Table 3.2-1 and Table 3.2-2. Except for the Top Nise prognosis, all actual tops came inside the estimated uncertainty range in the prognosis. The reason for this error on the prognosed top Nise was caused by the seismic pick being 'phantomized' through most of the study area due to very poor seismic response. The main target (Top Lysing Fm) was encountered 17 m deeper than expected and well within the +155m -125m uncertainty range.

#### Seabed

The rig was oriented such that the anchors and the anchor chains did not interfere with some identified and mapped positive mound features scattered on the seabed inside the site survey (potential coral colonies). The well was drilled between closely spaced iceberg scours.

# Quaternary deposits, 366.0 (341.0) – 451.0 (426.0) m MDRKB (TVDSS) (Mid? Plesitocene – Holocene, Neogene)

The well was drilled with returns to seabed down to 1382m MDRKB. The lithology description for this unit is therefore based on the well logs and offset well information. This uppermost stratigraphic package consists of unconsolidated clays, silt-sands and boulders. No boulders were encountered at this level, but boulders have been recorded in numerous wells all over the Mid-Norwegian shelf supporting their presence close to this well bore also. The site survey only recognised boulders on the high-resolution seabed map. The vertical seismic sections did not have sufficient resolution to image boulders.

# Naust Fm, 451.0 (426.0) – 1624.0 (1596.0) m MDRKB (TVDSS) (Late Pliocene - Early-Mid? Pleistocene, Neogene)

These deposits range from over-consolidated clays with pebbles and occasional boulders in the upper section down to about ~700m, passing into predominantly clays with minor silt stringers down to 1100-1200m. The lower section, below ~1100-1200m to 1624.0m MDRKB contains more consolidated claystone with minor silts and sand stringers. Below 1382m MDRKB, cuttings were available for lithological description generally confirming the prognosis. The clays are dominantly light to medium grey with occasional green/grey and brown clays. Traces of limestone, pyrite, micromicaceous material and shell material occur throughout the formation. The base of this unit is an erosional unconformity and the unit is itself base-lapping onto the structurally inverted and partly eroded Brygge Formation. Medium to medium dark grey to greyish green claystone were encountered, occasionally coloured dark yellowish green, being soft to moderately firm, sub-blocky to amorphous and sticky in places. Traces of



carbonaceous material, occasionally micromicaceous and rare traces of pyrite have been recognised in this claystone. The unit is non- to occasionally moderately calcareous.

# Kai Fm, 1624.0 (1596.0) – 1624.0 (1596.0) m MDRKB (TVDSS) (Miocene, Neogene)

This stratigraphic unit is <u>absent</u> in the well due to erosion and non-deposition, resulting in a significant erosional unconformity and a large hiatus across 1624.0m MDRKB (see below).

### (?) Chattian Unconformity:

A large hiatus is present in this well at 1624.0m MDRKB. Erosion and non-deposition caused the development of a significant regional unconformity. The hiatus ranges from the onset of the Oligocene to the close of the Miocene stage. The erosion causes the <u>absence of the Kai Formation and the youngest part of Brygge Formation in this well.</u> The unconformity is tentatively correlated to the super-regional Chattian unconformity related to a general uplift of the western Fennoscandian shield. Superimposed inversion and associated erosion/non-deposition related to the plate-tectonic opening of the Norwegian Sea during the Tertiary probably caused further enhancement of this unconformity.

# Brygge Fm, 1624.0 (1596.0) – 1645.0 (1617.0) m MDRKB (TVDSS) (Early Eocene – Mid Eocene (Possibly partly incl. Late Eocene?), Paleogene)

The top of this formation is an erosional unconformity consisting of pale yellow, very fine <u>sandstone</u> grading to <u>siltstone</u> and <u>claystone</u> according to cuttings. Three sidewall cores indicated <u>diatomaceous</u> and tuffaceous (volcanic glass) facies. This facies becomes purer diatomite downward into the Tare Formation and indicates a gradual, but incomplete change from from Opal A to Opal CT in the same unit. The ultimate Opal CT transition depth is probably slightly deeper than base of the diatomite facies (>1740m MDRKB).

# Tare Fm, 1657.0 (1629.0) – 1756.0 (1728.0) m MDRKB (TVDSS) (Early Eocene, Paleogene)

The Tare Formation consists of light grey to grey <u>diatomaceous</u> and <u>tuffaceous</u> facies within a background lithofacies of grey to grey green with some brown claystone, possibly with thin limestone and sandstone stringers. The mineralogy of this facies changes gradually, but incompletely from Opal A to Opal CT. The 100% Opal CT depth, however, is probably slightly deeper than base of the diatomaceous facies (below 1740m MDRKB). SEM images and XRD analyses on SWC samples qualitatively proved the diatomaceous facies and the Opal-A/Opal-CT trend and hence overrule the limited and often misleading information from the cuttings, missing (meshing) out on the minute diatom grain sizes. The 40-60% microporosity and very low permeability make the diatomite a very poor reservoir unless fractured.

# Tang Fm, 1756.0 (1728.0) – 1796.5 (1768.0) m MDRKB (TVDSS) (Late Paleocene – Earliest Eocene, Paleogene)

The Tang Formation consists of light to dark grey and green/grey <u>claystone</u> with occasional meter-thick sandstone and limestone stringers. Here also (in the upper 25m of the unit) beds of diatomaceous facies has been inferred based on the character calibrated to SEM and XRD results from the sidewall cores in the Tare formation. The description of cuttings renders no information on diatomite identification for reasons given above.

# Springar Fm, 1796.5 (1768.0) – 2023.0 (1994.0) m MDRKB (TVDSS) (Early Campanian –Early Maastrichtian, Late Cretaceous)

This interval consists mainly of medium to dark grey and olive grey <u>claystone</u> with limestone and dolomite stringers. The unit is firm, sub-blocky, micromicaceous, occasionally with silts and traces of carbonaceous material. Crystalline pyrite is locally common Occasional stringers of micro- to cryptocrystalline dolomite also occur.

# Nise Fm, 2023.0 (1994.0) - 2300.0 (2271) m MDRKB (TVDSS)

### (Late Santonian – Early Campanian, Late Cretaceous)

This unit consists mainly of medium to dark grey and olive grey <u>claystone</u> with occasional and minor limestone and dolomite stringers. The unit is firm, blocky to amorphous, micromicaceous, having traces of glauconite and pyrite and tuffaceous material.

# Kvitnos Fm, 2300.0 (2271) – 3090.0 (3060.0) m MDRKB (TVDSS) (Early Coniacian – Late Santonian, Late Cretaceous)

This interval consists mainly of medium to dark grey to medium grey/brown, and occasionally olive grey <u>claystone</u>, with several minor micro- and cryptocrystalline limestone stringers and one thin micro-crystalline to crystalline dolomite stringer.

# Lysing Fm, 3090.0 (3060.0) - 3110.5 (3081.0) m MDRKB (TVDSS) (Early Coniacian, Late Cretaceous)

The 21m (TVT) thick Lysing Formation shows an upward increase in grain-size from claystones to medium grained sandstones. The top and the base of the of the Lysing Formation equals the top and the base of the gross sandstone interval. The top is easily recognised on the top of a 1m thick carbonate cemented sandstone bed. The base of the Lysing Formation has a gamma ray, density and velocity increase and a neutron porosity decrease going down and out of the sand into the claystone. The spiky increase in gamma ray to some 230-250 API units below base Lysing Formation (in the Lange Fm) probably represents a sequence boundary marking the base of a depositional sequence where Lysing Formation is included in the upper half. With regard to lithofacies, however, this belongs to the Lange Fm.

Thin sections show relatively 'clean' sandstones intercalated with detrital clay laminae. Based on the abundance of these detrital clay laminae, wackes and arenites have been recognised. Some lithic grains, dominantly mudstone intraclasts are abundant in two of the thin sections (25%). One sample contained 18.3% kaolinite and, hence, is classified as 'kaolinitic'.

The diagenetic history of the the Lysing sandstone is characterised by at least two periods of grain dissolution and abundant kaolinite cementation, interrupted by a pulse of quartz cementation which apparently predates compaction and protected remaining porosity from the same. The kaolinite crystals appear relatively fresh, with no evidence of illitisation. Only mica-and feldspar-replacive clast decay illitization (2%) has occurred as opposed to grain-rimming illitization. Abundant but patchy replacive and porefilling dolomite, and local poikilotopic porefilling calcite cementation followed the later period of secondary porosity development.

# 3. Geology, Geophysics and Petrophysics

The abundance of detrital clay laminae and a combination of abundant kaolinite and carbonate cementation, together with minor compaction effects controlled the Lysing reservoir quality. The kaolinite cement contains significant micro-porosity, as do the detrital clay laminae. Thus, much of the measured Helium porosity comprises poorly permeable micro-porosity. Quartz cementation is generally sparse, but in two samples it is sufficient to have protected earlier porosity from compaction. However, compaction is not a significant factor in the low to moderate reservoir quality of these samples, which is primarily controlled by the abundant cement.

# Lange Fm, 3110.5 (3081.0) – TD 3667.0 (3637.0) m MDRKB (TVDSS) (Mid - Late Turonian, Late Cretaceous)

The Lange Formation consists mainly of medium to dark grey claystones, being firm to moderately hard, sub-blocky to blocky, splintery to sub-fissile and micromicaceous.

Some 32 thin stringers of micro- and cryptocrystalline limestone are evenly distributed all over the Lange Fm. Traces of siltstone and sandstone have been reported from the cuttings in the upper 100m of the formation. TD was reached at 3667 (3637)m within the Lange Fm. No Lange sands were identified on the logs.

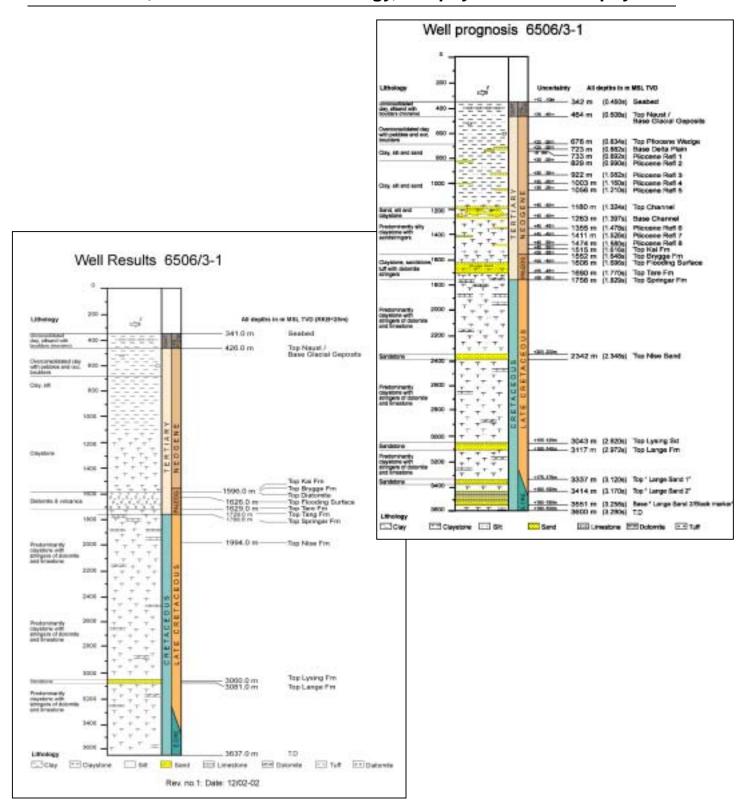



Figure 3.2-1 Actual (left) and prognosed (right) lithocolumns, well 6506/3-1

| Prognosed Formation Tops       | TWT (seis) | <b>Depth</b> | <u>Depth</u> | <u>Uncertainty</u> |       |
|--------------------------------|------------|--------------|--------------|--------------------|-------|
|                                | (ms)       | (mTVDSS)     | (mTVDRKB)    | (m)                | (m)   |
| Seabed                         | 452        | 342          | 367          | 10                 | -10   |
| Top Naust Fm                   | 608        | 464          | 489          | 25                 | -25   |
| Top Pliocene Wedge             | 834        | 676          | 701          | 25                 | 25    |
| Top Kai Fm                     | 1616       | 1515         | 1540         | 45                 | -50   |
| Top Brygge Fm = Top Diatomite  | 1648       | 1552         | 1577         | 50                 | -55   |
| Top Flooding Surface           | 1696       | 1606         | 1631         | 55                 | -45   |
| Top Tare Fm                    | 1770       | 1690         | 1715         | 55                 | -45   |
| Top Tang Fm                    | NI         | NI           | NI           | NI                 | NI    |
| Top Springar Fm                | 1829       | 1756         | 1781         | 50                 | -50   |
| Top Nise Fm *                  | 2348       | 2342         | 2367         | 200                | -200* |
| Top Kvitnos Fm                 | NI         | NI           | NI           | NI                 | NI    |
| Top Lysing Sand                | 2920       | 3043         | 3068         | 155                | -125  |
| Top Lange Fm                   | 2972       | 3117         | 3142         | 160                | -140  |
| Top Lange Sand 1               | 3120       | 3337         | 3362         | 175                | -175  |
| Top Lange Sand 2               | 3170       | 3414         | 3439         | 190                | -190  |
| Base Lange Sand 2/Black Marker | 3258       | 3551         | 3576         | 190                | -190  |
| TD                             | 3290       | 3600         | 3625         |                    |       |

**Table 3.2-1: Prognosed formation tops** 

| Actual Formation Tops          | TWT (well) | <u>Depth</u> | <u>Depth</u> | <u>Difference</u> |
|--------------------------------|------------|--------------|--------------|-------------------|
|                                | (ms)       | (mTVDSS)     | (mTVDRKB)    | (m)               |
| Seabed                         | NA         | 341.0        | 366.0        | -0.6              |
| Top Naust Fm                   | NA         | 426.0        | 451.0        | -38.0             |
| Top Pliocene Wedge             | NI         | NI           | NI           | NI                |
| Top Kai Fm                     | 1666.0     | 1596.0       | 1624.0       | 81.0              |
| Top Brygge Fm = Top Diatomite  | 1666.0     | 1596.0       | 1624.0       | 44.0              |
| Top Flooding Surface           | 1695.0     | 1626.0       | 1654.0       | 20.0              |
| Top Tare Fm                    | 1698.0     | 1629.0       | 1657.0       | -61.0             |
| Top Tang Fm                    | 1804.0     | 1728.0       | 1756.0       | NI                |
| Top Springar Fm                | 1846.0     | 1768.6       | 1796.5       | 12.6              |
| Top Nise Fm *                  | 2080.0     | 1994.0       | 2023.0       | -348.0            |
| Top Kvitnos Fm                 | 2338.0     | 2271.0       | 2300.0       | NI                |
| Top Lysing Sand                | 2936.0     | 3060.0       | 3090.0       | 17.0              |
| Top Lange Fm                   | 2945.8     | 3081.0       | 3110.5       | -36.0             |
| Top Lange Sand 1               | Absent     | Absent       | Absent       | Absent            |
| Top Lange Sand 2               | Absent     | Absent       | Absent       | Absent            |
| Base Lange Sand 2/Black Marker | Absent     | Absent       | Absent       | Absent            |
| TD                             |            | 3637.0       | 3667.0       | 37.0              |

\* 'phantomized' on very poor Upper Cretaceous seismic image

**Table 3.2-2: Actual formation tops** 

Chevron

Norsk Chevron AS

# 3. Geology, Geophysics and Petrophysics

# 3.3 Geochemistry

The phenols and the organic acids as reported in the Lysing MDT samples indicate that the water has been in contact with a hydrocarbon accumulation at an earlier stage.

No other routine geochemistry studies were undertaken in this well, as no source rocks were penetrated and no hydrocarbon bearing zones were encountered/sampled.

### 3.4 Geophysics

# **Acoustic logs**

Wireline sonic (ISONIC) and density logs were recorded in open hole section for both the Tertiary and the Cretaceous target levels. Both P-sonic and S-sonic logs were acquired. The quality of the logs across both target levels is very good, but the S-sonic log is suffering from poor registrations in the interval below Top Springar Fm. However, the poor data quality section does not interfere with any of the targets for well 6506/3-1.

#### **VSP/Checkshot Survey**

A zero offset VSP for well 6506/3-1 was acquired by READ Well Services. The survey ranged from 3664m to 950m MD RKB. The result of the study is presented in a separate report. The report describes the Zero Offset VSP data acquisition and processing, sonic calibration and generation of synthetic seismograms for well 6506/3-1.

The receiver array consisted of 8 satellites, each containing a 3 component geophone cartridge. Thus, 8 levels were acquired simultaneously. The geophone spacing was 20m. The spacing between registration levels in the hole was 10m from 3664m to 1270m MDRKB, apart from a few levels of spacing, and 20m from 1270m to 950m MDRKB.

The seismic source employed was a 2 x 150 cubic inch sleeve gun, located at 3.5m depth and with an air capacity of 1800psi.

A checkshot list was computed from the first arrival values and survey geometry. Based on the checkshot values the P-sonic was calibrated to real time values.

#### **Seismic Calibration**

Apart from the calibration presented in the Zero offset VSP report, an independent calibration was performed applying SynTool as the software. See Figures 3.4-1 to 3.4-4. The outcome of this effort is presented in this report. The sonic calibration is based on the checkshot data generated from the Zero Offset VSP. The display is according to normal SEG convention, with increase in acoustic impedance represented as a peak. The wavelets used to convolve the reflection series from the well are extracted from DTW2000 in a 500ms time window at the Tertiary and Cretaceous target levels.

The synthetic trace for both the Tertiary and Cretaceous display panels are compared with seismic traces and lines from 3D DTW2000 nearest to the penetration point for the well at the two levels.

For the Tertiary the "best fit parameters" and the tie as displayed in Figure 3.4-1 are all very good. The DTW2000 survey has to be shifted 12ms downwards to give the best possible match to the synthetic seismogram. This shift is in accordance with the results reported from the Zero Offset Report by READ. The tie points can be read directly from the displays in Figures 3.4-1 and 3.4-3.

# 6506/3-1, PL259 End of Well Report

# 3. Geology, Geophysics and Petrophysics

The tie between the seismic at the Cretaceous targets and the synthetic is good, the seismic has to be downshifted by only 2ms to give the best possible match to the synthetic seismogram, as illustrated in Figures 3.4-2 and 3.4-4.

February, 2002 Rev.: 1-TAGD



Figure 3.4-1 Synthetic to seismic tie For the Tertiary, well 6506/3-1

At the Tertiary target level the Trace 7762 has to be shifted 12ms downward to match the synthetic

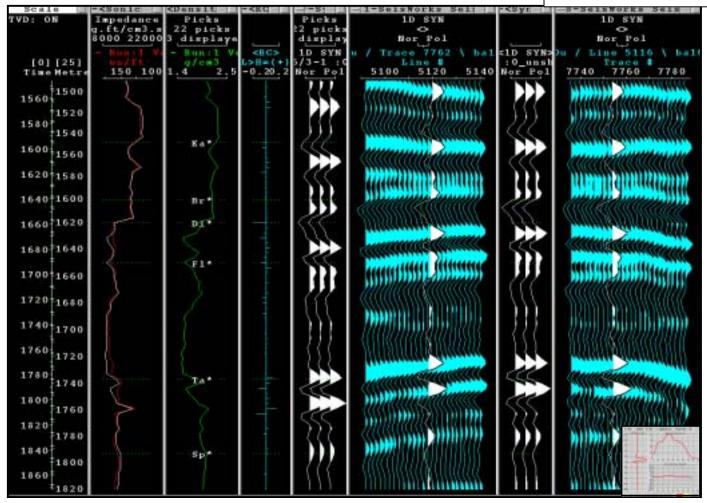



Figure 3.4-1 Synthetic to seismic tie for the Tertiary, well 6506/3-1

Figure 3.4-2 Synthetic to seismic tie for the Cretaceous, well 6506/3-1

At the Lysing sand level trace 7764 from DTW2000 has to be shifted 2ms TWT downwards to tie the synthetic

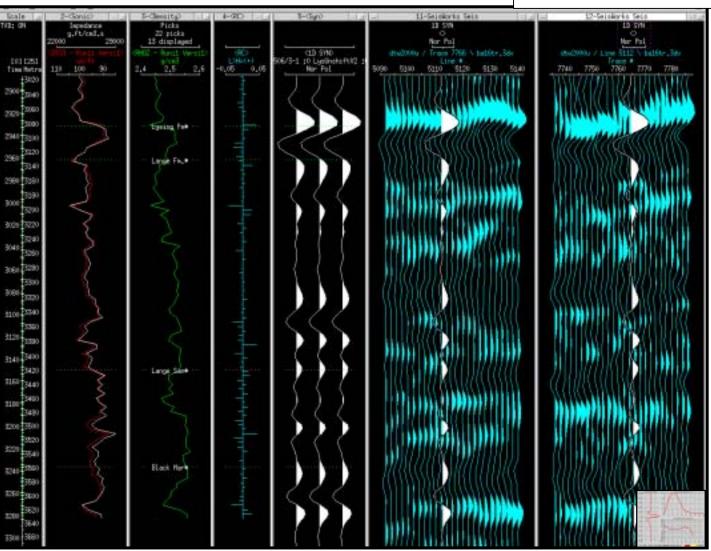



Figure 3.4-2 Synthetic to seismic tie for the Cretaceous, well 6506/3-1

Figure 3.4-2 Synthetic to seismic tie for the Cretaceous, well 6506/3-1

At the Lysing sand level trace 7764 from DTW2000 has to be shifted 2ms TWT downwards to tie the synthetic

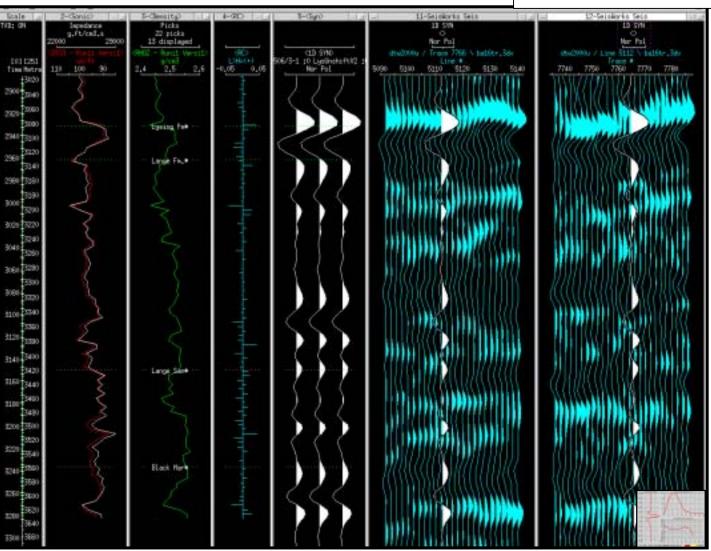



Figure 3.4-2 Synthetic to seismic tie for the Cretaceous, well 6506/3-1

At the Lysing sand level trace 7764 from DTW2000 has to be

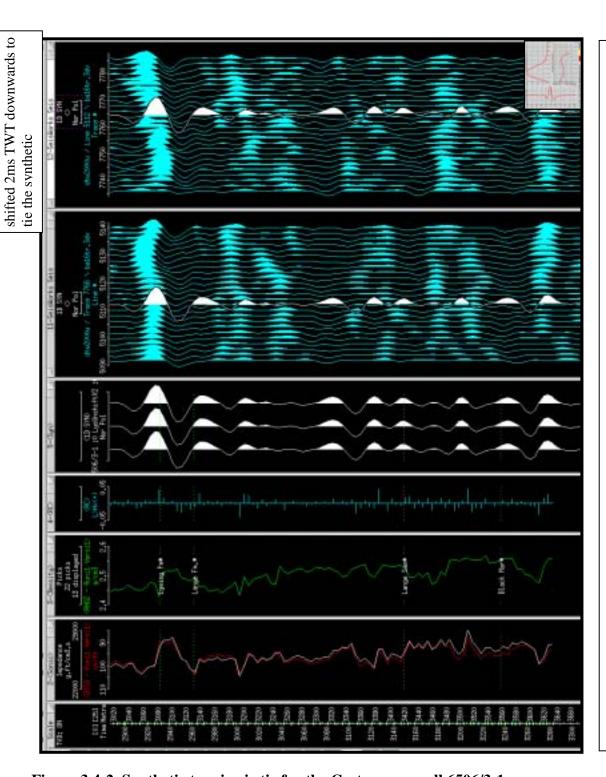



Figure 3.4-2 Synthetic to seismic tie for the Cretaceous, well 6506/3-1

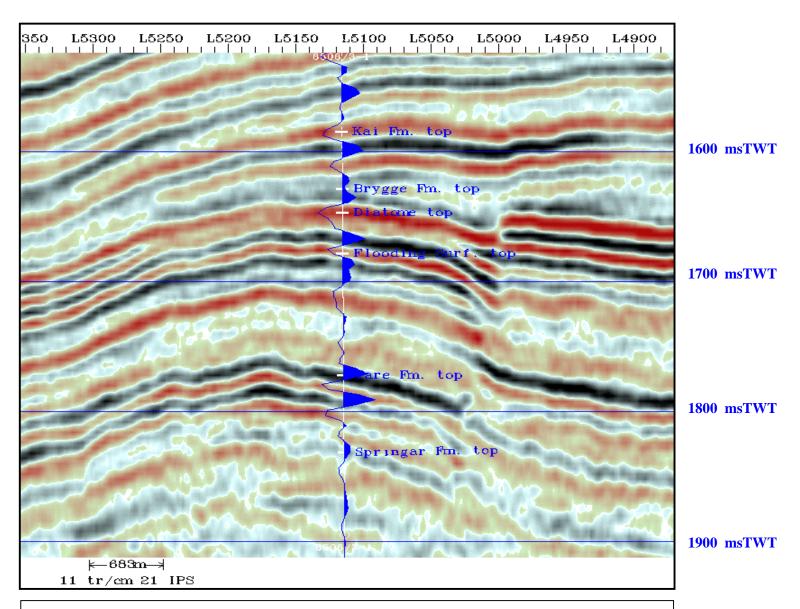



Figure 3.4-3 Synthetic tie of the Tertiary events to 3D DTW2000 trace 7762

Figure 3.4-4 Synthetic tie of the Cretaceous events to 3D DTW2000 trace 7764 (Slight deviation of well trajectory caused slight increase in DTW2000 trace number)

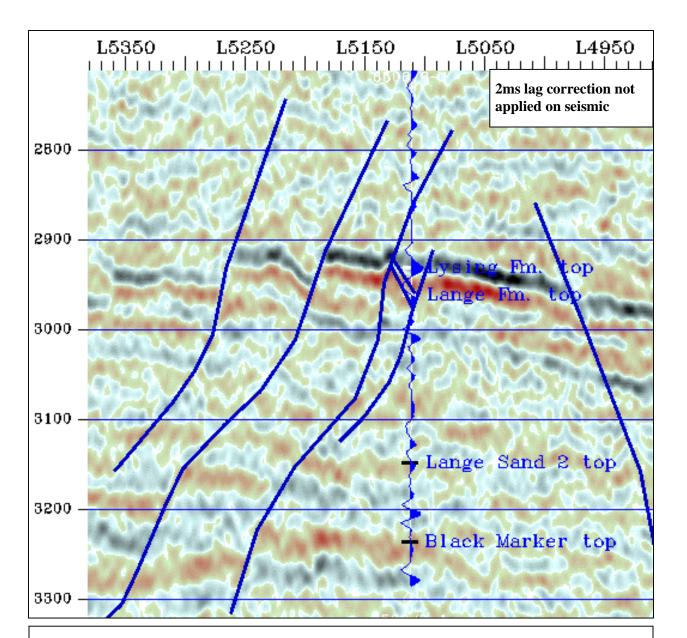



Figure 3.4-4 Synthetic tie of the Cretaceous events to 3D DTW2000 trace 7764

### 3.5 Petrophysics

#### 3.5.1 Composite Log Curve Data

The three LWD runs and the two wireline logs were reviewed to create the composite log curves. Wireline logs were run over the entire 8 ½" section giving a good continuous dataset. The dipole sonic log was reprocessed to optimise data quality in the Tertiary as well as the washed out interval from 2115 m to 2300 m in the Cretaceous. The washouts have also affected the density and neutron data. Sections where the data could not be restored have been replaced with null values.

Environmental corrections were applied to the data at the wellsite and onshore. These corrections include:

Neutron: Borehole salinity, pressure, temperature, hole size, mud cake and mud weight.

Density: Hole size.

Array Induction: Hole size.

Spectral Gamma Ray (HNGS): Barite in mud.

The curves used to create the HQLD curves and the splice points selected are listed in the following table (Table 3.5.1-1).

| HQLD composite log curves |                     |            |                |              |  |  |  |  |  |
|---------------------------|---------------------|------------|----------------|--------------|--|--|--|--|--|
| Curve Name                | Description         | 8 ½" Pilot | 8 ½" Main Hole | Splice Point |  |  |  |  |  |
|                           |                     | 453-1382m  | 1382 to 3667m  |              |  |  |  |  |  |
| HGR                       | Gamma Ray           | LWD-GR     | WL-HNGS-SGR    | 1369.1       |  |  |  |  |  |
| HCAL                      | Caliper             |            | WL-PEX-HCAL    | N/A          |  |  |  |  |  |
| HRHO                      | Density             |            | WL-PEX-RHOZ    | N/A          |  |  |  |  |  |
| HDRO                      | Density Corr        |            | WL-PEX-HDRA    | N/A          |  |  |  |  |  |
| HPHI                      | TNPH Neutron        |            | WL-PEX-TNPH    | N/A          |  |  |  |  |  |
| HDTC                      | Sonic (P)           |            | WL-DIPOLE-DTCO | N/A          |  |  |  |  |  |
| HDTS                      | Sonic (S)           |            | WL-DIPOLE-DTSM | N/A          |  |  |  |  |  |
| HRD                       | Deep Resistivity    | LWD-ATR    | WL-AIT-RT      | 1371.3       |  |  |  |  |  |
| HRM                       | Medium Resistivity  | LWD-PSR    | WL-AIT-AT30    | 1371.3       |  |  |  |  |  |
| HRS                       | Shallow Resistivity |            | WL-AIT-AT10    | N/A          |  |  |  |  |  |

Table 3.5.1-1 HQLD composite log curves

#### 3.5.2 Formation Evaluation - Cretaceous

The Cretaceous was penetrated with the 8 ½ hole to a depth that allowed complete logging of the "Black Marker" in the Lange formation. The only significant sand interval was the Lysing sand. The interval was evaluated with core, wireline logs, and a sidewall core. Fluid samples were retrieved from the formation and the analysis of those samples indicated the sands to be water bearing. The log data quality across the Lysing sands is excellent and no noticeable wellbore effects are present.

Log data quality throughout the Cretaceous is good. However, significant washouts in the Upper Cretaceous from 2115 m to 2400 m have adversely affected density, neutron and shear sonic data. No attempt has been made to repair this data as the section where the washout occurred is of little relevance to the analysis of the well.

### Log Analysis

The analysis of the Lysing sand is presented in Figure 3.5.2-1 and Table 3.5.2-1. The analysis was performed as follows:

- Vsh was calculated using GR.
- Density porosity was calculated using a RHOMA of 2.66g/cc and a RHOFL of 0.79 g/cc (Versavert base oil).
- Density porosity was shale corrected to give PHIE
- Rw was measured from the MDT water samples and temperature corrected to 0.192 Ohm-m @ 103 degC
- Sw was calculated using the Archie equation with a, m and N values of 1, 2 and 2 respectively.
- Net sand was determined using an effective porosity cutoff of 12%.

The log analysis results indicate the presence of hydrocarbon with high Sw at the very top of the Lysing sand. Bed boundary effects caused by the high resistivity calcite stringer immediately above the Lysing sand are thought to cause this. This agrees with the MDT water samples that contained no free gas and, when restored to down hole conditions, were undersaturated with gas.

The three MPSR water samples were analysed by Petrotech to determine the composition of the formation water. Sub-samples of the recovered water were sent to the University of Bergen (UiB) to determine if organic acids and phenols were present. The data from UiB and Petrotech was analysed by Dewpoint AS to determine if the water was in contact with hydrocarbon. The analysis report from Dewpoint AS can be stuided in the Appendix.

| Lysing net sand analysis summary |          |           |                 |                 |  |  |  |  |
|----------------------------------|----------|-----------|-----------------|-----------------|--|--|--|--|
| Gross Sand                       | Net Sand | Net/Gross | Average Phi     | Average Phi     |  |  |  |  |
| Interval                         |          |           | (Net Above 12%) | (Net Above 15%) |  |  |  |  |
| 20.5 m                           | 3 m      | 14%       |                 |                 |  |  |  |  |

Table 3.5.2-1: Lysing net sand analysis summary

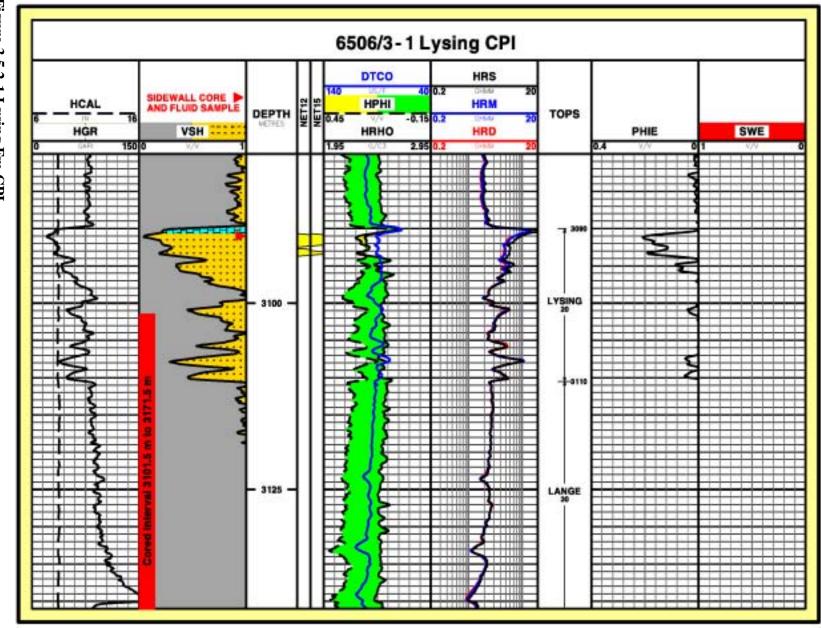



Figure 3.5.2-1 Lysing Fm CPI



#### 3.5.3 Formation Evaluation – Tertiary

The Brygge, Tare and 37m of the Tang Formation contained a total of 140.5m (Measured Thickness) of diatomaceous material and volcanics. Sand reservoirs were not encountered. SEM and XRD results show diatomite to be the dominant lithofacies in this interval with some component of volcanic glass. The Opal A to Opal CT transformation has only partly taken place at the base of the unit. The unit was water filled and significantly over-pressured.

The interval was evaluated with wireline logs, cuttings and sidewall cores. The log data quality across the interval is excellent with wellbore effects are only apparent from 1630m to 1655m MDRKB. The wireline data is presented in Figure 3.5.3-1. The scales on the density and the neutron porosity logs are 1.45 to 2.45 g/cc and 0.75 to 0.15 respectively.

Pressure data was recorded across the interval and showed a significant overpressure of 1.53 SG. The gradient indicated a fluid density of 1.04 g/cc. The pressure data is presented in Figure 3.5.3-2. No fluid samples were retrieved from the formation although fluid samples were attempted. The cause of the failure to acquire fluid samples was the formation collapsing around the MDT probe. Drawdown pressures after a short pumping time were high and increasing indicating probe plugging or a lack of connected reservoir porosity. Hydrocarbon migration through the formation can only be inferred from the gas log data, which indicate a significant amount of methane present when the formation back-flowed at 1698 m.

#### Log Analysis

Due to the complex makeup of the formation matrix, no significant attempt was made to evaluate the porosity. A simple density porosity calculation using an assumed grain density of 2.25 g/cc and a fluid density of 0.79 g/cc (Versavert base oil) gave an average porosity of 38% for the interval. There is no net reservoir in the interval.

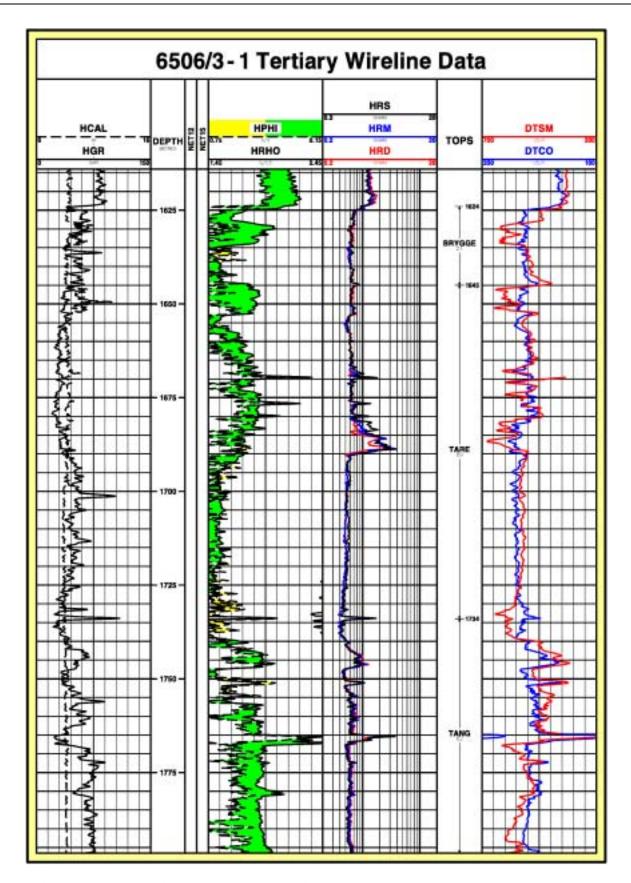



Figure 3.5.3-1 Tertiary target raw wireline data

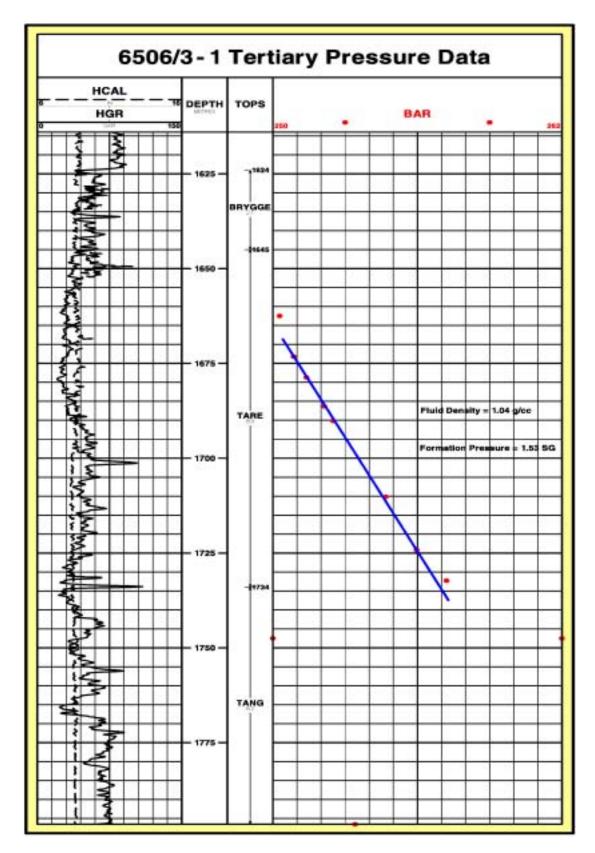



Figure 3.5.3-2 Tertiary target pressure data

Page 23 of 38

# 3.6 Bottom Hole Temperature

| CHEVRON Horner BHT Calcula              |           |                                      |                     |               |              |                  | lation  |
|-----------------------------------------|-----------|--------------------------------------|---------------------|---------------|--------------|------------------|---------|
| Well: 6506/3-1 Field: Location: Wildcat |           |                                      |                     |               |              | dcat             |         |
| Date: 15-0                              | ct-01     | Geologists: Mike Donovan, Ed Linaker |                     |               |              |                  |         |
|                                         | Dept      | h, Circula                           | tion and T          | emperatu      | ıre Data     |                  |         |
|                                         |           |                                      |                     |               | Date         | Time             |         |
| Depth:                                  | 3667 mBRT |                                      | Circulat            | tion stopped: | 9-Aug-01     | 17:30            |         |
| TVD:                                    | 3662 mTVD |                                      |                     |               |              |                  |         |
| RT-SB:                                  | 366 m     |                                      | Seabed <sup>-</sup> | Temperature:  | 5            | (5 deg C is defa | ult)    |
| Log                                     | Run No    | Date                                 | Bottom Log          | Max           | Time Since   | Circulation      | Log to  |
|                                         |           |                                      | Interval            | Temp          | Circ stopped | Time             | Bottom? |
| PEX/AIT                                 | 1A        | 10-Aug-01                            | 3667                | 112           | 12.7         | 3                | Y       |
| DSI/OBDT                                | 1A        | 10-Aug-01                            | 3667                | 116           | 24           | 3                | Υ       |

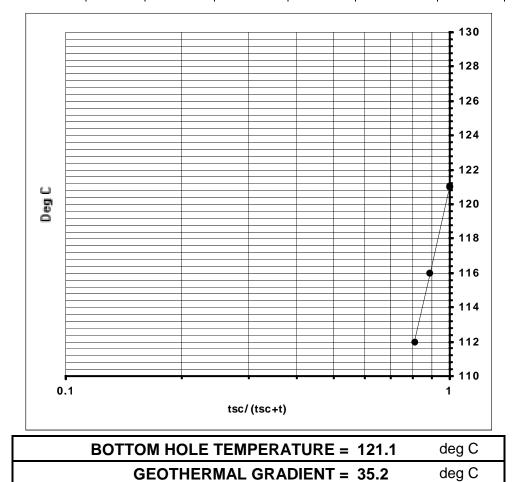



Figure 3.6-1 Bottom hole temperature

# 3.7 Summaries

# 3.7.1 Temperature Profile

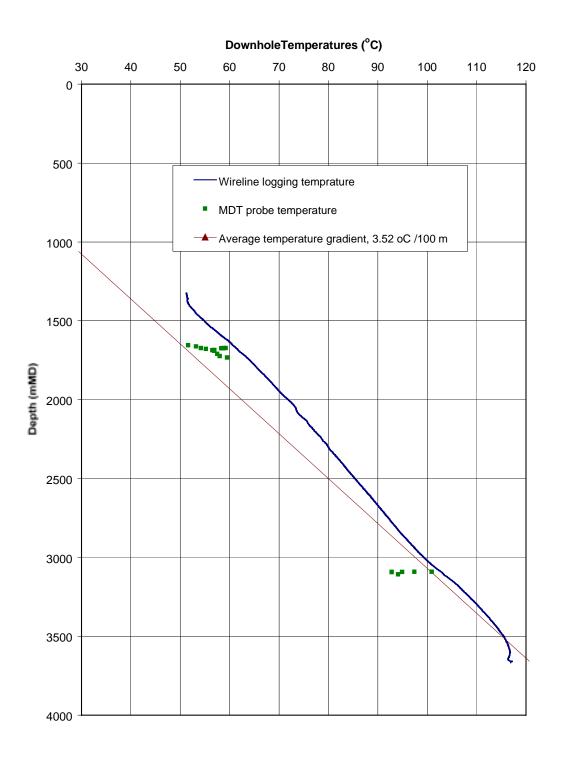



Figure 3.7.1-1 Downhole temperature profile

# 3.7.2 Geological Sampling Summary

The geological sampling program for the 6506/3-1 well is shown in Table 3.7.2-1:

| Open ho  | Open hole well cuttings and mud sampling |        |                            |                                |                              |  |  |  |  |  |  |
|----------|------------------------------------------|--------|----------------------------|--------------------------------|------------------------------|--|--|--|--|--|--|
| Interval | From (m)                                 | To (m) | Standard<br>Sample<br>Rate | Biostrat<br>Sample<br>Interval | Mud Samples<br>(Lag Depth m) |  |  |  |  |  |  |
| 1        | 1386                                     | 1625   | 10                         | 20                             | 2 Litres @ 1618              |  |  |  |  |  |  |
| 2        | 1625                                     | 1700   | 3                          |                                | 2 Litres @ 1635              |  |  |  |  |  |  |
| 3        | 1700                                     | 3088   | 10 (*)                     |                                | 3 Litres @ 3078              |  |  |  |  |  |  |
| 4        | 3088                                     | 3171.5 | 3                          |                                | 3 Litres While Coring        |  |  |  |  |  |  |
| 5        | 3171.5                                   | 3667   | 10 (*)                     |                                |                              |  |  |  |  |  |  |

Table 3.7.2-1: Open hole well cuttings and mud sampling

The conventional core and sidewall core programs for the 6506/3-1 well is shown in Table 3.7.2-2 and 3.7.2-3 respectively. Conventional core descriptions can be found in Section 3.7.5. Percussion sidewall core summary can be found in section 3.7.6 and percussion sidewall core descriptions are placed in the Appendix.

| Conv | Conventional cores |                 |               |       |      |      |  |  |  |  |
|------|--------------------|-----------------|---------------|-------|------|------|--|--|--|--|
| Core | De                 | Cut             | Reco          | vered |      |      |  |  |  |  |
| No.  | Drilled            | Recovered       | Log Corrected | (m)   | (m)  | %    |  |  |  |  |
| 1    | 3101.5- 3171.5     | 3101.5 - 3169.2 | 3102.6-3170   | 67.7  | 67.7 | 96.7 |  |  |  |  |

Table 3.7.2-2: Conventional cores

| Percussion sidewall cores |                       |           |           |      |  |  |  |  |  |
|---------------------------|-----------------------|-----------|-----------|------|--|--|--|--|--|
| Run No.                   | Depth Interval (mBRT) | Attempted | Recovered | %    |  |  |  |  |  |
| 1A                        | 3650 - 1447           | 53        | 29        | 54.7 |  |  |  |  |  |

Table 3.7.2-3: Percussion sidewall cores

The MDT fluid sample program follows Table 3.7.2-4. Analysis of the MDT samples can be found in the Appendix.

| <b>MDT</b> fluid | MDT fluid samples |          |                    |                       |  |  |  |  |  |
|------------------|-------------------|----------|--------------------|-----------------------|--|--|--|--|--|
| Run No.          | Depth (mBRT)      | Chamber  | Fluid Recovered    | Comment               |  |  |  |  |  |
| 1A               | 3109.2            | MPSR 712 | Filtrate and Water | No free gas in sample |  |  |  |  |  |
| 1A               | 3109.2            | MPSR 753 | Filtrate and Water | No free gas in sample |  |  |  |  |  |
| 1A               | 3109.2            | MPSR 856 | Filtrate and Water | No free gas in sample |  |  |  |  |  |

Table 3.7.2-4: MDT fluid samples

<sup>(\*)</sup> Some samples were missed due to the high drill rates in these intervals.

### 3.7.3 LWD Operations Summary

A total of three LWD/MWD (Formation Evaluation Measurements and Directional Data) runs were made in 6506/3-1. Schlumberger Anadrill provided all LWD services. There were no reported tool failures, however, the Isonic tended to peak at 135  $\mu$ s/ft in the Brygge Formation in Run 2 in both real time and memory data modes. Subsequent DSI data indicated more than 160  $\mu$ s/ft velocity reduction in this zone.

LWD/MWD operations and tool performance are summarised below in Table 3.7.3-1. Additional details can be found in Schlumberger Anadrill's End of Well Report.

| LWD Op                 | LWD Operations       |                                                           |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|------------------------|----------------------|-----------------------------------------------------------|---------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Interval<br>(mMD)      | Tools                | Sensor<br>Distance to Bit                                 | Memory              | Real<br>Time | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Run #1:<br>453-1382    | MWD<br>CDR           | GR: 11.48m<br>RES: 8.13m<br>D&I:18.87m                    | 10 sec.<br>sampling | 6 bps        | No tool problems. The real time data quality was good.  Memory data was successfully downloaded and a memory log was produced at wellsite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Run #2:<br>1382-3101.5 | MWD<br>ISONIC<br>CDR | GR- 11.52m,<br>RES- 8.17m<br>ISONIC:19.27m<br>D&I: 26.42m | 10 sec.<br>sampling | 3 bps        | The window for the real time sonic processing was set from 150 to 100 us/ft and showed no evidence of flat-lining at 150 us/ft with the tool reading about 135 us/ft throughout much of the Brygge zone. Processing of the Isonic memory data gave similar results. Subsequent logging with the DSI wireline sonic indicated a slowness of over 160 us/ft. That was compatible with wireline density measurements. These measurements are within the Isonic's published range that is between 40 and 180 us/ft.  Memory data was successfully downloaded and a memory log of the CDR data was produced at wellsite. The ISONIC data required further reprocessing onshore. |  |  |  |  |  |
| Run #3:<br>3171.5-3667 | MWD<br>CDR           | GR: 11.56m<br>RES: 8.21m<br>D&I: 18.95m                   | 10 sec.<br>sampling | 3 bps.       | Reamed from 3050-3171.5m MDRKB (Core 1). No tool problems. The real time data quality was good, Memory data was successfully downloaded and a memory log was produced in town.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |

Figure 3.7.3-1: LWD operations

### 3.7.4 Open Hole Wireline Logging Summary

Open hole wireline logs were not run in the 36" or the 8 ½" pilot hole. Gamma ray and resistivity data were acquired over the 8 ½" pilot hole using Anadrill's LWD. Wireline log data was recorded using a Schlumberger MCU for all services except the VSP that was recorded using Reed's surface unit. The VSP data was recorded using Schlumberger's cable and winching equipment.

All continuous data was recorded in the 8 ½" hole section from TD to 13 3/8" casing in two descents. The PEX density was relogged across the Brygge, Tare and Tang formations due to anomalous density readings that effectively repeated.

Descent four with the VSP was aborted due to tool sticking and a conditioning trip was performed. Three further descents were made after the conditioning trip without further problems.

A summary of the wireline logging operations and can be found in Table 3.7.4-1 and Table 3.7.4-2 on the subsequent two pages. A detailed breakdown of the logging operation can be found in the Appendix.

| Wire     | line logg                 | ing – sun               | nmary             |                          |      |                  |                                                                                        |
|----------|---------------------------|-------------------------|-------------------|--------------------------|------|------------------|----------------------------------------------------------------------------------------|
| Run<br># | Date                      | Tool<br>String          | Max<br>Temp       | Time<br>Since<br>circ. * |      | Interval<br>BRT) | Remarks                                                                                |
|          |                           |                         | (°C)              | (hr:min)                 | From | То               |                                                                                        |
| 1A       | 10.08.01                  | AIT-PEX-<br>HNGS        | 113<br>112<br>112 | 12:40                    | 1374 | 3665.5           | Repeat section 3060-<br>3180m, Problem with AIT<br>meant relogging from 3150-<br>2690m |
| 1A       | 10.08.01                  | DSI-GR-<br>AMS-<br>OBDT | 116<br>116<br>116 | 24:00                    | 1374 | 3665.8           | Repeat section 2998 -<br>3188m. Maximum AMS<br>Temp -116.9 degC                        |
| 2A       | 10.08.01<br>-<br>11.08.01 | PEX                     | -                 | 31:10                    | 1590 | 2000             | Relog of anomalous density data in Brygge Fm.                                          |
| 1A       | 11.08.01                  | VSP-GR                  | -                 | 38:30                    | -    | -                | Stuck at 3402m and again at 3088m POOH for conditioning trip.                          |
| 1A       | 12.08.01<br>-<br>13.08.01 | MDT-GR                  | 101.9             | 23:11*                   | 1655 | 3107.2           | 20 Pretests and samples at 3091.2m (3xMPSR)                                            |
| 1A       | 13.08.01<br>-<br>14.08.01 | VSP-GR                  | -                 | 30:05*                   | 790  | 3660             | 10m intervals 3660-1270m.<br>20m intervals 1270-950m<br>and Walkaway VSP at<br>2898m.  |
| 1A       | 14.08.01                  | CST-GR                  | -                 | 48:05*                   | 1447 | 3650             | 53 CST's shot Recovered<br>29, 2 Empty, 14 Lost, 8<br>Misfire, Recovery 55%            |

**Table 3.7.4-1: Wireline logging - summary** 

| Time bre | Time breakdown |                 |           |           |  |  |  |  |  |  |
|----------|----------------|-----------------|-----------|-----------|--|--|--|--|--|--|
| Descent  | Date           | Tool String     | Opr. Time | Lost time |  |  |  |  |  |  |
|          |                |                 | (hrs:min) | (hrs:min) |  |  |  |  |  |  |
| 1        | 10.08.01       | AIT-PEX-HNGS    | 11:55     | 1:15 TT   |  |  |  |  |  |  |
|          |                |                 |           | 0:20 RT   |  |  |  |  |  |  |
| 2        | 10.08.01       | DSI-GR-AMS-OBDT | 8:45      | -         |  |  |  |  |  |  |
| 3        | 10.08.01       | PEX             | 3:55      | -         |  |  |  |  |  |  |
| 4        | 11.08.01       | VSP-GR          | 14:00     | -         |  |  |  |  |  |  |
| 5*       | 12.08.01       | MDT-GR          | 19:00     | -         |  |  |  |  |  |  |
| 6*       | 13.08.01       | VSP-GR          | 17:30     | -         |  |  |  |  |  |  |
| 7*       | 14:08.01       | CST-GR          | 12:00     | -         |  |  |  |  |  |  |
|          |                |                 | Total     | Total     |  |  |  |  |  |  |
|          |                |                 | 87:05     | 1:15 TT   |  |  |  |  |  |  |
|          |                |                 |           | 0:20 RT   |  |  |  |  |  |  |

Last circulation on bottom: 09.08.01@17:30hrs

Table 3.7.4-2: Time breakdown

<sup>\*</sup>For runs after Conditioning trip performed between runs 4 and 5 Last circulation on bottom was 12:08.09@10:15hrs

#### 3.7.5 Conventional Coring Summary

A single core was cut on 6506/3-1 in the Lysing Fm. The core was cut using standard 4" aluminum inner barrels. The bit used was an 8 1/2" DBS FC274 Corehead.

The coring information is summarized in Table 3.7.5-1 below:

| Conventional Core – 6506/3-1 |         |               |                |               |     |      |      |  |  |  |
|------------------------------|---------|---------------|----------------|---------------|-----|------|------|--|--|--|
| Core                         | Barrel  |               | Depth Interval |               |     |      |      |  |  |  |
| No.                          | ID (in) | Drilled       | Recovered      | Log Corrected | (m) | (m)  | (%)  |  |  |  |
| 1                            | 4       | 3101.5-3171.5 | 3101.5-3169.2  | 3102.6-3170   | 70  | 67.7 | 96.7 |  |  |  |

**Table 3.7.5-1 Conventional core – 6506/3-1** 

Core 1, in the Cretaceous Lysing and Lange Fms, was taken from 3101.5m MDRKB when LWD readings indicated the presence of sand beneath the carbonate stringer that locally overlies the Lysing Sand formation. LWD sensors were 8.5m from the bit. A 73m core barrel assembly (inner barrel length = 73m) was picked up, run into the hole, and coring commenced. At 3171.5m the torque dropped back to a steady 6000Nm and a slight pressure drop was seen, indicating that core had jammed. No attempt was made to restart the core. At surface, 67.7m of core was recovered.

Of the 67.7m of recovered only 8m of core came from the target Lysing formation due to the unexpected thinning of the sand unit. The core contained no net sand.

Precautions were taken to relieve pressure while pulling out of the hole to minimize damage caused by trapped pressure. The barrels were separated at surface and a guillotine cutter was used to break the core to reduce fracturing of the core.

#### **Core Processing**

The cores were measured and cut into 1m lengths then scanned with a core gamma device. The wellsite geologist took core chips from each 1 m length for core description. No core plugs were cut at the wellsite.

1 m sections of the core from 3120m, 3155m, 3137m, 3138m, 3139m were preserved in oil at the wellsite for top seal analysis.

Core analysis by Corepro in Stavanger included:

- Spectral gamma ray logging
- Helium porosity determination
- Permeability determination
- Preservation of whole core samples in Seal Peel for reference purposes
- Slabbing

- Thin sections
- Digital and white light photography

| Preserved whole core samples |                  |                           |  |  |  |  |  |  |
|------------------------------|------------------|---------------------------|--|--|--|--|--|--|
| Depth From (mMDRT)           | Depth To (mMDRT) | Comment                   |  |  |  |  |  |  |
| 3106.22 m                    | 3106.50 m        |                           |  |  |  |  |  |  |
| 3115.10 m                    | 3115.36 m        |                           |  |  |  |  |  |  |
| 3120.40 m                    | 3120.55 m        | Taken by Leeds University |  |  |  |  |  |  |
| 3124.00 m                    | 3124.28 m        |                           |  |  |  |  |  |  |
| 3136.00 m                    | 3136.32 m        |                           |  |  |  |  |  |  |
| 3139.25 m                    | 3139.40 m        | Taken by Leeds University |  |  |  |  |  |  |
| 3144.55 m                    | 3144.81 m        |                           |  |  |  |  |  |  |
| 3154.06 m                    | 3154.30 m        |                           |  |  |  |  |  |  |
| 3155.72 m                    | 3155.86 m        | Taken by Leeds University |  |  |  |  |  |  |
| 3164.75 m                    | 3165.00 m        |                           |  |  |  |  |  |  |

Table 3.7.5-2: Preserved whole core samples

Detailed results of the core analysis performed by Corpro can be found in their report. Wellsite descriptions of the core chips can be found in the Appendix.

Figure 3.7.5-1 compares the wireline logs over the Lysing cored interval with the core gamma logs supplied by Corpro. The core gamma logs were recorded on driller's depth.

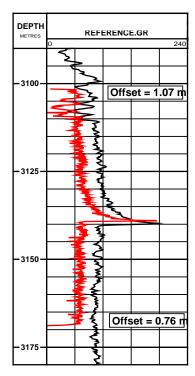



Figure 3.7.5-1: Core gamma ray versus reference wireline gamma ray

Page 31 of 38

### 3.7.6 Percussion Sidewall Coring Summary

A single descent with a combined 60 shot CST sidewall core gun was made for lithology identification, biostratigraphic control and top seal analysis.

Core depths, core bullets and gun rings were selected using open hole wireline log data. Correlation logs were run at TD, prior to the Lysing and prior to the Brygge formations. Core recovery was poor below the Lysing Formation due to misfires, bullets getting stuck and possibly due to the core gun being stuck at 2987 m. 53 bullets were shot out of which 29 were recovered, 2 were empty, 8 misfired and 14 were lost. The run is summarized in Table 3.7.6-1 below.

| Sidewall core recovery and descriptions |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |   |   |  |  |  |  |
|-----------------------------------------|--------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|---|--|--|--|--|
| SWC                                     | Depth  | Reco. | Lithology and Show Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Porosity |   |   |  |  |  |  |
| No.                                     | mBRT   | cm    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Р        | F | G |  |  |  |  |
| 1                                       | 3650   | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 2                                       | 3600   | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 3                                       | 3550   | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 4                                       | 3500   | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 5                                       | 3450   | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 6                                       | 3399.5 | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 7                                       | 3330   | 1.7   | Claystone with common fine <0.5mm Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |   |   |  |  |  |  |
|                                         | 2205   |       | laminations. CLAYSTONE: medium grey to occasionally medium light grey, firm to moderately hard, blocky to subfissile, micromicaceous, silty, grading to SILTSTONE, occasional coarse mica flakes, slightly to non calcareous.  SANDSTONE: off white to very pale grey, firm, blocky, friable in places, very fine to silt grained, occasionally fine grained, transluscent, off white to very pale grey, subangular to subrounded, subspherical, poor to moderately sorted, moderate calcite cement, good trace glauconite, rare coarse mica flakes, no visible porosity, NO SHOWS. |          |   |   |  |  |  |  |
| 8                                       | 3305   | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 9                                       | 3250   | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 10                                      | 3101   | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 11                                      | 3096   | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 12                                      | 3095   | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 13                                      | 3093.4 | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 14                                      | 3093.1 | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 15                                      | 3092   | -     | Lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |   |   |  |  |  |  |
| 16                                      | 3091.5 | -     | Misfire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |   |   |  |  |  |  |

|            |        |                                                    | y and descriptions (continued)                                                                                                                                                                                                                                                                                                                                                                     |   | orosi |  |
|------------|--------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|--|
| SWC<br>No. |        | Depth Reco. Lithology and Show Description mBRT cm |                                                                                                                                                                                                                                                                                                                                                                                                    |   |       |  |
| 17         | 3091.1 | 1.6                                                | <b>SANDSTONE</b> : off white to very pale grey, firm, friable, blocky, very fine to medium grained, clear to transluscent, colourless to very pale grey, subangular to subrounded, occasionally angular, subspherical, occasionally subelongate, poor to moderately sorted, moderate calcite cement, common glauconite, trace iron staining, poor to occasionally fair visible porosity, NO SHOWS. | X | X     |  |
| 18         | 3080   | -                                                  | Misfire                                                                                                                                                                                                                                                                                                                                                                                            |   |       |  |
| 19         | 3065   | 3.1                                                | <b>CALCAREOUS CLAYSTONE</b> : medium to medium light grey, firm to moderately hard, blocky, micromicaceous, rare trace glauconite, silty, grading to SILTSTONE, trace calcite grains, very calcareous.                                                                                                                                                                                             |   |       |  |
| 20         | 2800   | 3.4                                                | <b>CLAYSTONE</b> : medium to medium light grey, firm to moderately hard, blocky, micromicaceous, silty in places, trace very fine carbonaceous material, slightly to moderately calcareous.                                                                                                                                                                                                        |   |       |  |
| 21         | 2600   | -                                                  | Misfire                                                                                                                                                                                                                                                                                                                                                                                            |   |       |  |
| 22         | 2450   | 5.1                                                | <b>CLAYSTONE</b> : medium to medium light grey, firm to moderately hard, blocky, micromicaceous, slightly silty in places, occasional very fine carbonaceous material, rare micropyrite veins >0.5mm by 3mm (fossil burrows?), moderately calcareous.                                                                                                                                              |   |       |  |
| 23         | 2435   | 5.3                                                | <b>CLAYSTONE</b> : medium to medium light grey, olive grey, firm to moderately hard, blocky, micromicaceous, occasional very fine disseminated micropyrite, slightly to moderately calcareous.                                                                                                                                                                                                     |   |       |  |
| 24         | 2397   | -                                                  | Misfire                                                                                                                                                                                                                                                                                                                                                                                            |   |       |  |
| 25         | 2156   | 4.2                                                | <b>CLAYSTONE</b> : medium to medium light grey, olive grey, firm to moderately hard, blocky, micromicaceous in places, rare calcite grains, slightly to occasionally moderately calcareous, sandy in places, common SANDSTONE vesicles, very fine grained, transluscent, colourless to off white, subangular to subrounded, no visible porosity, NO SHOWS.                                         |   |       |  |
| 26         | 1950   | 4.0                                                | <b>CLAYSTONE</b> : greenish grey to light olive grey, occasionally pale green, firm to moderately hard, blocky, micromicaceous, in places, rare coarse mica flakes, occasional to locally abundant very fine disseminated micropyrite, occasional very fine carbonaceous material, slightly to moderately calcareous, occasionally very calcareous                                                 |   |       |  |
| 27         | 1799   | -                                                  | Misfire                                                                                                                                                                                                                                                                                                                                                                                            |   |       |  |
| 28         | 1790   | -                                                  | Misfire                                                                                                                                                                                                                                                                                                                                                                                            |   |       |  |
| 29         | 1749   | -                                                  | Misfire                                                                                                                                                                                                                                                                                                                                                                                            |   |       |  |
| 30         | 1744   | -                                                  | Misfire                                                                                                                                                                                                                                                                                                                                                                                            |   |       |  |

| Sidew | all core | recover | y and descriptions (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |         |
|-------|----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|
| SWC   | Depth    | Reco.   | Lithology and Show Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Po | orosity |
| No.   | mBRT     | cm      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |
| 31    | 1738     | 4.7     | <b>DIATOMATIOUS EARTH???:</b> medium dark grey to olive grey to brownish grey, soft, friable, subblocky in places, earthy, granular texture, very fine grained, opaque, occasional very fine to fine grained quartz, very fine disseminated micropyrite, micromicaceous in places, non calcareous, occasional pale yellowish brown argillaceous matrix. no to poor visible porosity.                                                                                                                                                           | X  |         |
| 32    | 1732     | 3.0     | <b>DIATOMATIOUS EARTH???</b> : medium dark grey to olive grey to brownish grey, soft, friable, subblocky in places, earthy, granular texture, very fine to silt grained, opaque, occasional very fine to fine grained quartz, very fine disseminated micropyrite, abundantly micromicaceous, non calcareous, occasional pale yellowish brown argillaceous matrix. no visible porosity.                                                                                                                                                         |    |         |
| 33    | 1730     | 5.0     | Claystone with a Sandstone band around 1mm thick and common very fine Sandstone laminations.  CLAYSTONE: medium to light medium grey, light olive grey to olive grey, soft to moderately firm, blocky, occasionally crumbly, micromicaceous in places, non calcareous,  SANDSTONE: white to off white, soft to firm, blocky, friable in places, very fine grained, transluscent to clear, colourless to off white, subangular to subrounded, subspherical, moderately sorted, occasional slight calcite cement, no visible porosity, NO SHOWS. |    |         |
| 34    | 1722     | 5.0     | <b>DIATOMATIOUS EARTH???:</b> medium dark grey to olive grey to brownish grey, very soft to soft, friable/crumbly, subblocky in places, earthy, granular texture, very fine grained, opaque, occasional very fine to fine grained quartz, very fine disseminated micropyrite, abundantly micromicaceous in places, non calcareous, occasional pale yellowish brown argillaceous matrix. no to rare poor visible porosity.                                                                                                                      | X  |         |
| 35    | 1707     | 5.2     | <b>CLAYSTONE</b> : medium to light medium grey, olive grey, soft to moderately firm, blocky to subblocky, micromicaceous, rarely silty, non calcareous.                                                                                                                                                                                                                                                                                                                                                                                        |    |         |
| 36    | 1701     | 4.8     | <b>CLAYSTONE</b> : medium to light medium grey olive grey, moderately firm, blocky to subblocky, micromicaceous, rarely silty, non calcareous.                                                                                                                                                                                                                                                                                                                                                                                                 |    |         |

| SWC | Depth | Reco. | y and descriptions (continued)  Lithology and Show Description                                               | Porosity |
|-----|-------|-------|--------------------------------------------------------------------------------------------------------------|----------|
| No. | mBRT  | cm    | Enthology and onow bosonphion                                                                                | 1 010010 |
| 37  | 1697  | 5.3   | <b>DIATOMATIOUS EARTH???</b> : medium dark grey to olive                                                     |          |
| 57  | 1077  | 3.3   | grey to brownish grey, soft, friable, subblocky in places,                                                   |          |
|     |       |       | earthy, granular texture, very fine grained, opaque, occasional                                              |          |
|     |       |       | very fine to fine grained quartz, very common fine                                                           |          |
|     |       |       | disseminated micropyrite, micromicaceous in places, non                                                      |          |
|     |       |       |                                                                                                              |          |
|     |       |       | calcareous, occasional pale yellowish brown argillaceous                                                     |          |
| 20  | 1.600 | ~ ~   | matrix. no visible porosity.                                                                                 |          |
| 38  | 1692  | 5.5   | <b>DIATOMATIOUS EARTH???</b> : medium dark grey, olive                                                       |          |
|     |       |       | grey, soft, friable, subblocky in places, earthy, granular                                                   |          |
|     |       |       | texture, silt to very fine grained, rare fine grained quartz,                                                |          |
|     |       |       | common pyrite filled vesicles, common                                                                        |          |
|     |       |       | mica/micromicaceous, occasional argillaceous matrix, non                                                     |          |
|     |       |       | calcareous, no visible porosity.                                                                             |          |
| 39  | 1686  | 5.5   | <b>DIATOMATIOUS EARTH???</b> : medium dark grey, olive                                                       |          |
|     |       |       | grey, soft, friable, subblocky in places, earthy, granular                                                   |          |
|     |       |       | texture, silt to very fine grained, becoming silty, rare fine                                                |          |
|     |       |       | grained quartz, rare pyrite, common mica/micromicaceous,                                                     |          |
|     |       |       | common argillaceous matrix, occasionally grading to                                                          |          |
|     |       |       | CLAYSTONE, non calcareous, no visible porosity.                                                              |          |
| 40  | 1678  | 4.8   | <b>SANDSTONE</b> : very pale grey to off white, firm                                                         |          |
|     |       |       | friable/crumbly, subblocky, very fine to silt grained,                                                       |          |
|     |       |       | transluscent off white to very pale grey, subangular to                                                      |          |
|     |       |       | subrounded, subspherical, poorly to moderately sorted,                                                       |          |
|     |       |       | common pyrite, common carbonaceous material, occasionally                                                    |          |
|     |       |       | grading to SILTSTONE, trace glauconite, micromicaceous,                                                      |          |
|     |       |       | trace glauconite, no visible porosity, NO SHOWS.                                                             |          |
| 41  | 1672  | 5.0   | CLAYSTONE: light grey to light olive grey, occasionally                                                      |          |
| 41  | 1072  | 3.0   |                                                                                                              |          |
|     |       |       | pale grey green, soft to firm, subblocky to crumbly, commonly micromicaceous, common very fine carbonaceous, |          |
|     |       |       | 1 · · · · · · · · · · · · · · · · · · ·                                                                      |          |
|     |       |       | silty in places, abundant diatomatious material?, non                                                        |          |
| 10  | 1.660 | - A   | calcareous.                                                                                                  |          |
| 42  | 1662  | 5.4   | CLAYSTONE: as 1672m                                                                                          |          |
| 43  | 1656  | 5.5   | <b>CLAYSTONE</b> : medium to medium light grey, olive grey,                                                  |          |
|     |       |       | moderately firm, subblocky to blocky, micromicaceous,                                                        |          |
|     |       |       | occasional micropyrite, occasional very fine carbonaceous                                                    |          |
|     |       |       | material, non calcareous.                                                                                    |          |
| 44  | 1652  | 4.9   | <b>DIATOMATIOUS EARTH???</b> : light brownish grey to                                                        |          |
|     |       |       | light medeium grey, soft to firm, blocky to crumbly, granular                                                |          |
|     |       |       | texture, very fine grained, occasional fine grained quartz,                                                  |          |
|     |       |       | common mica, trace glauconite, common light grey                                                             |          |
|     |       |       | argillaceous matrix, grading to CLAYSTONE in places, non                                                     |          |
|     |       |       | calcareous, no visible porosity.                                                                             |          |
| 45  | 1644  | 5.0   | <b>CLAYSTONE</b> : light grey to light olive grey to pale grey                                               |          |
| =   |       |       | green, firm, subblocky, crumbly in places, micromicaceous,                                                   |          |
|     |       |       | common fine grained black spherical carbonaceous? material,                                                  |          |
|     | 1     | l     | tominon time granica chack spherical carbonaccous. material,                                                 | 1 1      |

| SWC<br>No. | Depth<br>mBRT | Reco.<br>cm | Lithology and Show Description                                 | Ро | rosit | y |
|------------|---------------|-------------|----------------------------------------------------------------|----|-------|---|
| 46         | 1642          | 4.8         | CLAYSTONE: as 1644                                             |    |       |   |
| 47         | 1635          | 4.8         | <b>CLAYSTONE</b> : light grey to light olive grey to pale grey |    |       |   |
|            |               |             | green, firm, subblocky, crumbly, micromicaceous, rare very     |    |       |   |
|            |               |             | fine carbonaceous material, non calcareous.                    |    |       |   |
| 48         | 1618          | 4.3         | <b>CLAYSTONE</b> : medium dark grey to medium grey, olive      |    |       |   |
|            |               |             | grey, firm, subblocky, occasionally crumbly,                   |    |       |   |
|            |               |             | micromicaceous, slightly calcareous.                           |    |       |   |
| 49         | 1607          | 3.4         | <b>CLAYSTONE</b> : medium dark grey to medium grey, olive      |    |       |   |
|            |               |             | grey, firm, subblocky, occasionally crumbly,                   |    |       |   |
|            |               |             | micromicaceous, occasional very fine to fine sand grains,      |    |       |   |
|            |               |             | moderately calcareous.                                         |    |       |   |
| 50         | 1577          | -           | Empty                                                          |    |       |   |
| 51         | 1537          | -           | Empty                                                          |    |       |   |
| 52         | 1477          | 5.2         | <b>CLAYSTONE</b> : medium dark grey to medium grey, olive      |    |       |   |
|            |               |             | grey, firm, subblocky, occasionally crumbly,                   |    |       |   |
|            |               |             | micromicaceous, moderately calcareous.                         |    |       |   |
| 53         | 1447          | 3.5         | <b>CLAYSTONE</b> : medium dark grey to medium grey, olive      |    |       |   |
|            |               |             | grey, firm, subblocky, occasionally crumbly, occasional very   |    |       |   |
|            |               |             | fine carbonaceous material, micromicaceous, rare medium        |    |       |   |
|            |               |             | grained mica, moderately calcareous.                           |    |       |   |

Table 3.7.6-1: Sidewall core recovery and description

# 3.7.7 MDT Pressure and Sampling Summary

Tables 3.7.7-1 and 3.7.7-2 summarize the MDT operations. Pressure data and samples were gathered on a single descent with the MDT. A good quality gradient was determined below the 'Flooding Surface' that indicated the formation contained water. The pressure in this formation ranged from 1.52 to 1.53 SG. Fluid sampling attempts in this formation were aborted after three attempts due to formation collapsed and probe plugging.

In the Lysing Formation a pressure gradient could not be determined because of a lack of sand. Formation fluids from the high quality sand at the top of the reservoir were sampled. three MPSR sample chambers were filled. Lack of compressibility at the surface indicated no free gas. The samples were sent to Petrotech for analysis where it was determined that they contained formation water and OBM filtrate. The results of the analysis appear in the Appendix section of this report.

| <b>MDT</b> | pretest su | ımmary  |          |        |        |           |                       |
|------------|------------|---------|----------|--------|--------|-----------|-----------------------|
| Test       | Depth      | TVD     | Mobility | Mud Pr | essure | Formation | Comments              |
| No.        | (m)        | (m)     | (md/cp)  | Before | After  | Pressure  |                       |
|            |            |         |          |        |        | (Bar)     |                       |
| 1          | 1654.97    | 1651.97 |          | 260.74 | 260.68 |           | Dry Test              |
| 2          | 1662.45    | 1659.42 | 1.95     | 261.90 | 261.86 | 249.83    | Slightly Supercharged |
| 4          | 1673.18    | 1670.12 | 119.32   | 263.59 | 263.55 | 250.41    | Good Pretest          |
| 6          | 1678.67    | 1675.60 | 22.77    | 264.44 | 264.41 | 250.95    | Good Pretest          |
| 7          | 1685.15    | 1682.06 |          | 265.46 | 265.36 |           | Dry Test              |
| 8          | 1686.3     | 1683.21 | 11.72    | 265.59 | 265.58 | 251.71    | Good Pretest          |
| 9          | 1690.14    | 1687.03 | 91.81    | 266.24 | 266.18 | 252.08    | Good Pretest          |
| 10         | 1710.15    | 1706.98 | 3.7      | 269.40 | 269.34 | 254.29    | Good Pretest          |
| 11         | 1724.18    | 1720.97 | 6.01     | 271.60 | 271.56 | 255.58    | Good Pretest          |
| 12         | 1732.26    | 1729.03 | 2.24     | 272.70 | 272.68 | 257.22    | Slightly Supercharged |
| 12         | 1672.96    | 1669.90 |          | 263.01 | 263.16 |           | Dry Test              |
| 13         | 1673.45    | 1670.39 |          | 263.31 | 263.34 |           | Dry Test              |
| 15         | 3093.14    | 3088.45 | 1.17     | 483.15 | 483.43 | 431.00    | Good Pretest          |
| 16         | 3107.2     | 3102.50 |          | 485.56 | 485.63 |           | Dry Test              |
| 14         | 3092.19    | 3087.50 |          | 482.87 | 483.33 |           | Dry Test              |

Table 3.7.7-1: MDT pretest summary

| MDT san      | MDT sampling summary |                                |                                                        |  |  |  |  |  |
|--------------|----------------------|--------------------------------|--------------------------------------------------------|--|--|--|--|--|
| Depth<br>(m) | Mobility<br>(md/cp)  | Formation<br>Pressure<br>(Bar) | Comments                                               |  |  |  |  |  |
| 1674.00      | 13.2                 | 250.40                         | Attempt to sample - Lost Seal                          |  |  |  |  |  |
| 1674.47      | 16.6                 | 250.43                         | Attempt to sample - Formation Collapse                 |  |  |  |  |  |
| 1674.50      |                      |                                | Attempt to sample - Formation Collapse- Probe Plugging |  |  |  |  |  |
| 3091.90      | 22.2                 | 430.75                         | Attempt to sample - Tight                              |  |  |  |  |  |
| 3091.40      | 72.3                 | 430.69                         | Attempt to sample - Tight                              |  |  |  |  |  |
| 3091.20      | 113.8                | 430.70                         | Sampled 3 MPSR Chambers                                |  |  |  |  |  |

Table 3.7.7-2: MDT sampling summary

# 3. Geology, Geophysics and Petrophysics

# Literature:

**Ichron, 2001 A:** Petrographical analysis of rock samples from well 6506/3-1. Ref: 01/460/S. (Authors: John Cater)

**Ichron, 2001 B:** A Biostratigraphic Evaluation of the Pleistocene to Late Cretaceous interval in well 6506/3-1, NOCS. Ref: 01/433/B. (Authors: Mike Ayress, Nicholas Holmes and Paul Dodsworth)

# This section contains:

| 4.1   | SECTION SYNOPSIS                                   | 3  |
|-------|----------------------------------------------------|----|
|       | 4.1.1 PREPARATIONS                                 | 3  |
|       | Well Hand-over                                     |    |
|       | Tow to Location                                    |    |
|       | Running Anchors                                    |    |
|       | Delays                                             |    |
|       | 4.1.2 36" HOLE SECTION                             |    |
|       | Spud & 36" Hole Section                            | 4  |
|       | Run & Cement 30" Conductor                         | 5  |
|       | 4.1.3 8.1/2" x 17.1/2" PILOT HOLE SECTION          | 7  |
|       | Drilling 8.1/2" Pilot Hole Section                 |    |
|       | Open Hole to 17.1/2"                               |    |
|       | Run & Cement 13.3/8" Casing                        |    |
|       | Running the Riser and BOP (RAM/Annular/Model/Type) |    |
|       | Delays                                             |    |
|       | 4.1.4 8.1/2" MAIN HOLE SECTION                     | 13 |
|       | Drill Out 13.3/8" Shoe and LOT                     | 13 |
|       | Drill 8.1/2" Main Hole Section                     | 13 |
|       | Well Control Incident at 169                       | 13 |
|       | Drill to Coring Point @ 3101.5m                    | 15 |
|       | Coring Operations                                  |    |
|       | Drill to TD                                        | 16 |
|       | Open Hole Logging Operations                       | 17 |
|       | Wiper Trip                                         |    |
|       | Delays                                             |    |
|       | 4.1.5 ABANDONMENT                                  | 21 |
|       | Abandonment Cement Plugs                           | 20 |
|       | Wellbore Clean Up                                  |    |
|       | Pulling BOP & Riser                                | 22 |
|       | Cut and Retrieve the Wellhead                      | 22 |
|       | Anchor Handling                                    | 23 |
|       | Delays                                             | 23 |
| 4.2 S | SUMMARIES                                          | 24 |
|       | 4.2.1 Mooring Summary                              | 24 |
|       | 4.2.2 Drilling Fluid Summary                       | 24 |
|       | 4.2.3 BHA Summary                                  | 24 |
|       | 4.2.4 Bit Summary                                  |    |
|       | 4.2.5 Survey Summary                               |    |
|       | 4.2.6 Casing Summary                               | 27 |
|       | 4.2.7 Cementing Summary                            | 28 |
|       | 4.2.8 Casing Leak-off Test                         |    |
| 4.3   | ATTACHMENTS                                        | 28 |

#### 4.1 SECTION SYNOPSIS

#### 4.1.1 PREPARATIONS

#### **Well Handover**

The Semi-Submersible drilling rig "Byford Dolphin" was handed over from Norsk Shell to Norsk Chevron at the Garn West location at 23:00 hrs on 16 July 2001; formalities were based upon an agreed handover document.

#### **Tow to Location**

With the last anchor bolstered, the rig went under the tow of the "Far Fosna" for the 91 nautical mile journey to the Donna West location. It was accompanied by two anchor handling vessels: the "Normand Progress" and the "Normand Jarl". Average speed was ~4 knots. However, after 21 hrs under tow the weather and sea state deteriorated (32 knot winds and 3m seas) and the decision was taken to go to survival draft (18.3m). This was completed within 3 hrs. The rig was towed the remaining 5 nautical miles to the Donna West location and held just off station pending an improvement on the weather for running anchors.

Forecasts issued midday on the 20 July suggested an imminent improvement in the weather. At 16:30 hrs the decision was made to de-ballast the rig back to towing draft. This was completed in 4 hrs and by 23:00 hrs the sea state had improved sufficiently to work anchors.

Prior to, and during the tow, ModuSpec carried out a full BOP inspection. No significant problems were found with the exception of one cracked 5" ram block. A replacement set of rams were sourced and flown to the rig for installation prior to running the stack.

#### **Running Anchors**

The rig was 'Run in on Line' at 23:00 hrs 20 July and anchor handling started with #5 pennant being handed to the "Normand Progress" at 01:00 on the 21 July. With anchors #5, #11 & #2 deployed, the "Far Fosna" released its tow to assist in handling the remaining anchors. The 12 anchors were deployed in the following order #5, #11, #2, #8, #10, #6, #9, #7, #3, #4 & #12 and operation were complete by 13:30 hrs on 21 July. Ballasting down to operational draft (21.3m – 25m air gap) commenced at 12:40 hrs and was completed within 7 hrs. The anchors were cross tensioning to 150MT for 15 minutes in the following pairs #1 & #7, #2 & #8, #3 & #9, #4 & #10, #5 & #11, #6 & #12. Cross tensioning was completed by midnight on the 21 July.

Note: Additional chain for #1, #6; #7, #12 (150m each) needed to be removed and layed down on AHV's, because the rig chain lockers were not capable of handling same. This required approximately two hours of rig time to add the chain back to these anchors.

The final rig position on a heading of 313.6° (True) was recorded as:

Long: N 65° 48' 20.82" UTM 7 300 302.5m N Lat: E 6° 44' 32.36" UTM 396 765.5m E

While ballasting down and cross tensioning the anchors drill water was taken into the pits and the mixing of Spud and Kill Mud commenced. In addition, the drill floor started to make up the 17.1/2" x 26" x 36" hole opener assembly.

#### **Delays**

Wait on Weather (20:30 – 17/7/01 to 23:00 – 20/7/01): 74.5 hrs Section Total: 74.5 hrs

#### 4.1.2 36" HOLE SECTION

#### Spud & 36" Hole Section

While ballasting down and cross tensioning the anchors, the 17.1/2" x 26" x 36" hole opener assy. was made up as listed below:

17.1/2" Smiths DGJ Rock Bit (c/w 3 x 28/32" nozzles)
26" x 36" Heavy Duty Hole Opener (c/w 6 x 18/32" nozzles)
Bit Sub (c/w non-ported float)
Anderdrift Tool (0° to 5° inclination flask)
3 x 9.1/2" Spiral Steel Drill Collars
Cross Over
3 x 8" Spiral Steel Drill Collars
Cross Over
3 x 5" HWDP
6.1/2" Weir-Houston Hydraulic Jars
14 x 5" HWDP

The Anderdrift tool was surface tested with 1940 lpm, 50 bar when below sea level. The 17 1/2" bit tagged the mudline at 366m (tide corrected depth) and an Anderdrift survey taken to confirm the verticality of the assy. The well was then spudded at 00:30 hrs on the 22 July and the 36" hole drilled to 456m (a 36" cutter depth of 454m) in 5.5 hrs. 10m³ hi-vis sweeps were pumped each half stand and apart form some erratic torque at approximately 390m no hole or bolder problems were encountered. Typical drilling parameters were 5000 lpm, 142 bar, 50 -80 rpm, 8000 - 14,000 Nm torque, 2.3 - 4.5 MT WOB. Anderdrift surveys (6m behind the bit) were taken on each connection with the following results:

Mudline  $(366m) = 0^{\circ}$ ,  $374m = 0^{\circ}$ ,  $385m = 1^{\circ}$ ,  $397m = 2^{\circ}$ ,  $427m = 2.5^{\circ}$ ,  $449m = 3.5^{\circ}$ .

At TD (17 ½" TD of 456m, 36" cutter depth at 454m), the hole was displaced to 1.2 s.g. Spud mud at 4625 lpm, 166 bar. A total of 80m<sup>3</sup> or 1.5 x hole volume was pumped. The trip out of hole to the mudline was slick and so the decision was taken to run conductor without making a wiper trip.

No discernible wear was evident on either stage of the hole opener or on the 17.1/2" bit. All were graded 0, 0, NO, A7, E, IN, NO, TD.

#### Run & Cement 30" Conductor

The 30" conductor was run as configured in Fig: 1 below. It was handled on the drill floor using a 30" false rotary and hand slips. A 5" drill pipe inner string was run using a false rotary and was spaced out to be 19m above the 30" float shoe when the running tool was made up. A 28" bowspring centraliser was installed on the bottom single of the inner string. The inner string was made up to the 30" running tool which in turn was made up to the 30" Low Pressure (LP) housing with 5 LH turns.

The housing was locked into the Permanent Guide Base (PGB), located in the moon pool, and the whole assy. run in hole to the mudline. No problems were encountered locating, stabbing into and running down through the 36" hole. The conductor was suspended off bottom to provide the PGB with a 1.5m stick up above the mud line. Observation of the forward bullseye indicated a 1.5° tilt to starboard. The guidewire and anchor tensions were adjusted to reduce this by a quarter degree to 1.25°.

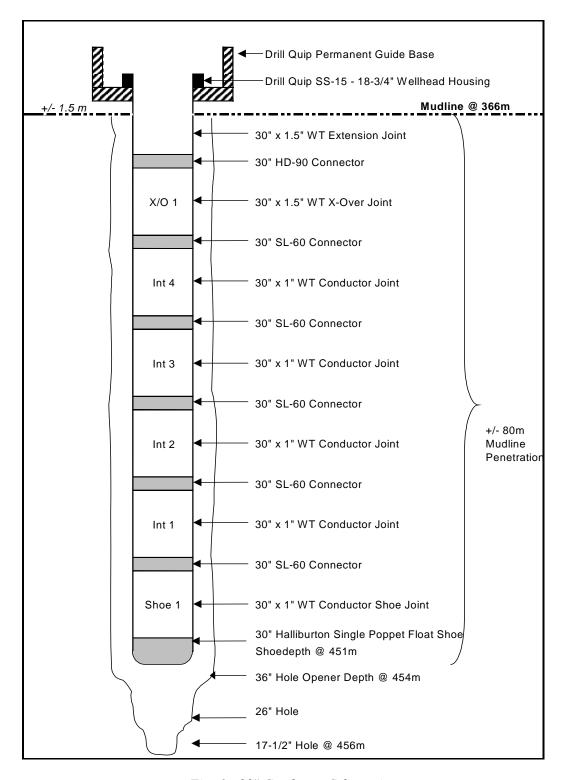



Fig: 1 - 30" Conductor Schematic

Circulation was broken with the rig pump and a total of  $97~\text{m}^3$  of seawater circulated at 1955~lpm prior to the 30" cement job. The 30" was cemented as per program, pumping both a lead and tail to reduce the initial hydrostatic pressure on the borehole. An excess of 200% was used. A wiper dart was released through a TIW valve and the cement displaced with the cement unit at  $1.4~\text{m}^3/\text{min}$  to leave 5m of cement above the shoe. Final displacement pressure was 10~bar at  $0.2~\text{m}^3/\text{min}$ .

Cement returns were seen at the mudline while observing with the ROV.

Wait on cement time was 5 hrs, after which the landing string weight was slacked off and the forward bullseye observed with the ROV. No movement of the PGB was seen. The running tool was backed out with 5 RH turns and the landing and inner string POOH. At the mud line the wellhead was flushed with seawater at 4900 lpm, 41 bar.

#### **Delays**

None

#### 4.1.3 8.1/2" x 17.1/2" PILOT HOLE SECTION

#### 26" Clean Out Run

The following 26" clean out assy. was made up and run in hole:

26" Hughes GTXCMG1 Rock Bit (c/w 1 x 24/32" & 3 x 20/32" nozzles). Bit Sub (c/w non-ported float)
Anderdrift Tool (0° to 5° inclination)
3 x 9.1/2" Spiral Steel Drill Collars
Cross Over
3 x 8" Spiral Steel Drill Collars
Cross Over
3 x 5" HWDP
6.1/2" Weir-Houston Hydraulic Jars
14 x 5" HWDP

The assy. was washed down and cement tagged, as expected, at 446m. The cement and shoe were drilled out with 4600 lpm, 122 bar, 50 rpm, 7,200 N.m torque and 10 - 11 MT WOB.  $10\text{m}^3$  hi-vis sweeps were pumped as required to clean the hole. The rathole was cleaned out to 456m. The assy. was POOH and racked back.

Prior to drilling ahead with the 8.1/2" pilot hole an additional 47 stands of 5" drill pipe was picked up and racked back. All pipe was drifted to 2.3/4" in the 'V' door.

#### **Drilling 8.1/2" Pilot Hole Section**

With a total of 2760m of pipe in the derrick, work commenced on making up the following 8.1/2" pilot hole assy:

8.1/2" Hughes MXC-1 Rock Bit (c/w 2 x 14/32" & 2 x 16/32" nozzles).

8.1/2" Near Bit Stab (c/w non-ported float)

2.6m x 6.1/2" Pony Drill Collar

8.1/2" String Stab

CDR Tool

8.3/8" In Line Stabiliser

**MWD** 

6.1/2" NMDC

5 x 6.1/2" Steel Drill Collars

3 x 5" HWDP

6.1/2" Weir-Houston Hydraulic Jars

14 x 5" HWDP

The BHA was tripped in hole and washed down to tag the 26" rathole at 456m. The pilot hole was drilled to a section TD of 1382m in 15 hrs.

The Anderdrift had indicated approximately 3.5° inclination at the 30" shoe. When free of casing interference the MWD tool confirmed this. The hole angle varied between 4.34° & 2.89° in a predominantly SSW direction. The final bottom hole location was projected to be:

MD - 1382m, TVD (RT) - 1379.8m, South - 62.52m, West - 7.68m.

Various drilling parameter were used in an attempt to control this angle: 3150 lpm (limited by MWD tool), 176 - 197 bar, 60 - 150 rpm, 2,300 - 6,100 Nm torque, 0 - 7 MT WOB.

5 - 10m³ hi-vis sweeps were pumped as required to clean the hole. At TD a final hi-vis pill was swept from the hole with seawater and the hole displaced to 1.2 s.g. Spud mud (98m³ pumped in total). The pipe was slugged and the assy. tripped to the 30" shoe. No excess drag was noted. At the 30" shoe, 80m³ of seawater was circulated at 4500 lpm, 295 bar to clean out the conductor. The top drive was again made up at the mudline and the PGB flushed of cuttings before finally POOH and racking back the assy. The MWD, ILS & CDR were laid out to be re-programmed for configuration with the ISONIC Tool planned or the 8.1/2" main hole section.

The bit had been heavily eroded and was graded: 8, 5, WT, A, E, 1/8", ER, TD.

#### **Open Hole to 17.1/2"**

The 12.1/4" x 17.1/2" hole opener assy. was made up as follows:

6.1/2" Bullnose

12.1/4" Hole Opener 17.1/2" Hole Opener Bit Sub (c/w non-ported float) Anderdrift Tool (0° to 5° inclination) 3 x 9.1/2" Spiral Steel Drill Collars Cross Over 3 x 8" Spiral Steel Drill Collars Cross Over 3 x 5" HWDP 6.1/2" Weir-Houston Hydraulic Jars 14 x 5" HWDP

This assy was run down into the 30" wellhead where the Anderdrift tool was tested. It was then run in and washed down to tag the top of the 8.1/2" pilot hole at 456m. The pilot hole was then opened up to 17.1/2" with 3200 - 4200 lpm, 66 - 150 bar, 120 - 150 rpm, 5000 -14,300 N.m torque and 1 - 8 MT WOB. 10m<sup>3</sup> hi-vis sweeps were pumped every stand and an Anderdrift survey taken every other stand to confirm that the hole was not side tracked. Drilling at times was ratty with erratic torque and occasional string stalls. The hole was opened to the section TD (1382m) in 16 hrs with a final 17.1/2" cutter depth of 1379m. The overall ROP of 58 m/hr was slower than anticipated.

The hole was displaced to 1.2 s.g. Spud Mud. No hole problems were experienced during the trip out of the hole. Both the 12.1/4" and 17.1/2" hole opener were very heavily worn and graded 8, 8, WT, A7, 4, 3/4", ER, TD.

#### Run & Cement 13.3/8" Casing

Handling gear was rigged up to run the 13.3/8", 72#, L-80, Mod Buttress casing. The single joint shoe track was made up and the casing string run in hole. 11 bowspring centralisers were fitted as per original program. The ROV visually monitored the casing enter the wellhead and then returned to its protective cage approximately 15m from well centre. There it continued to monitor the operation on sonar providing a gas watch. At approximately 727m, the string began to take weight, 9 MT. The Driller informed the Toolpusher but as it was assumed to be normal hole drag the casing running operation continued. approximately 810m the ROV noticed an unusual sonar reflection and was flown over to investigate. On visual inspection it could be seen that the casing had buckled at the wellhead with seven joints laying out on the seabed.

The decision was made to attempt to pull the casing string back to surface. This was successful and the entire string was recovered. On surface a number of joints were rejected due to being either buckled or split. The two bowspring centralizers from the shoe joint were missing.

A wiper trip was performed using the racked back BHA complete with the back up 17.1/2" hole opener and bullnose. When the assy, took weight at 535m it was washed and reamed down to the existing 17.1/2" section TD of 1379m with 3234 lpm, 152 bar, 150 rpm. The hole was swept clean prior to displacement to 1.4 s.g. inhibited KCl mud. During the trip out of hole a few tight spots of 10 - 15 MT drag were noticed. These were worked through without problem. No markings or scratches were seen on the bullnose and hole opener.

The racked back shoetrack was re-run. All damaged centralizers were removed with others being relocated to result in the casing string configuration shown in Fig. 2. This string was run in hole with the ROV providing a continuous visual watch. The casing was filled with 1.4 s.g. inhibited KCl mud while running in hole from 450 to 1374m. It was washed down from 1335 to 1379m with 3000 lpm. A casing swedge was used.

The casing was cemented as per program using a 100% open hole excess. Good returns were seen with ROV throughout the entire cement job. At theoretical strokes the 13.3/8" cement plug had not bumped and the displacement halted. The final circulating pressure was 55 bar (cement was observed at the seabed). When the pressure was bled down, the floats were seen to be holding. The running tool was backed out with 6 RH turns after which the landing string was POOH.

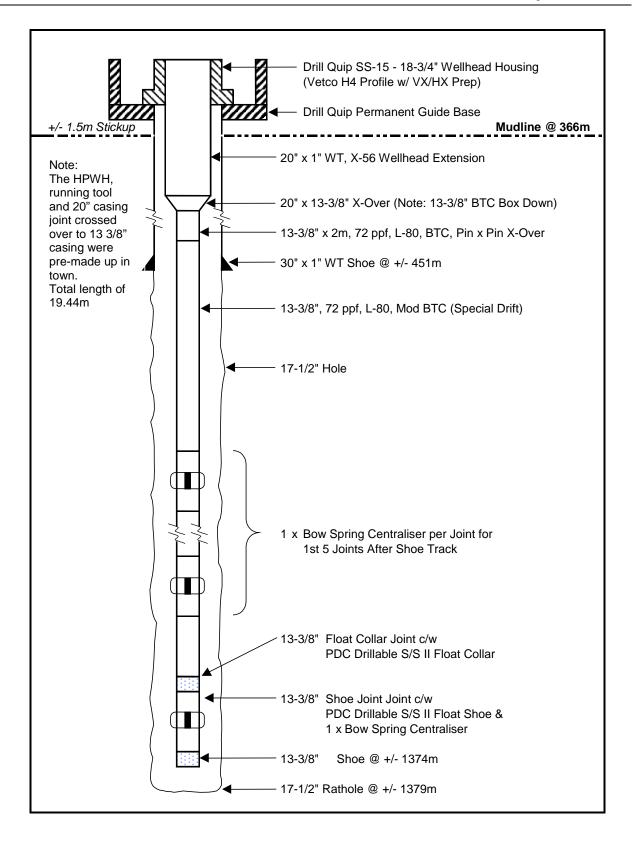



Fig: 2 – 13.3/8" Surface Casing Schematic

#### **Running the Riser and BOP**

The BOPs were inspected by a Moduspec Engineer during the tow to the location. No major work had to be performed on the BOP, except for changing out one cracked 5" ram block. The configuration of the Byford Dolphins stack is as shown in Table 1 below. Each Ram or Annular was stump tested as per the following schedule.

| Ram / Annular          | Model         | Type         | Stump pressure |
|------------------------|---------------|--------------|----------------|
|                        |               |              | (bar)          |
| Upper Annular          | Hydrill GL –  | -            | 240            |
| (LMRP)                 | 5k            |              |                |
| Lower Annular          | Hydrill GL –  | -            | 520            |
| (LMRP)                 | 10k           |              |                |
| Blind Shear Rams       | Hydrill – 15k | -            | 520            |
| <b>Upper Pipe Rams</b> | Hydrill – 15k | 3½" – 5" VBR | 520            |
| Middle Pipe Rams       | Hydrill – 15k | 5" fixed     | 520            |
| Lower Pipe Rams        | Hydrill – 15k | 5" fixed     | 520            |

*Table 1 − BOP Test Schedule* 

The BOP, Riser and Diverter were run in a total of 54 hrs, including 17 hours trouble time. It was noted with the BOP's in the moonpool area, that the choke line was not draining fast enough. Upon inspection, the target sleeve was found to be misaligned. The choke and kill lines were pressure tested to 35 / 414 bar every 5 connections. With the BOPs at well centre, and just prior to latching, the following bullseye readings were taken:

BOP – 
$$0.5^{\circ}$$
, LMRP –  $0.5^{\circ}$ , Flex Jnt –  $0.75^{\circ}$ .

After having latched and taken a 25MT overpull the following readings were taken.

$$BOP - 2^{\circ}$$
 (stb fwd),  $LMRP - 2^{\circ}$  (stb fwd), Flex  $Jnt - 0.5^{\circ}$  (stb),  $PGB - 1.75^{\circ}$  (stb fwd).

With the BOPs latched, the wellhead connector, the LMRP connector and the 13.3/8" casing were all successfully pressure tested to 30/200 bar for 5/10 min respectively.

#### **Delays**

| Buckling of 13.3/8" Casing (inc. wiper trip)                 | 43.5 hrs |
|--------------------------------------------------------------|----------|
| Replace Broken Snap Rings on Calipers of Drawworks           | 1.0 hrs  |
| Incorrectly Oriented Target Sleeve on Upper Inner Choke Line | 3.5 hrs  |
| Wait On Weather to Pick Up Slip Joint (no over-side work)    | 13.5 hrs |
| Section Total                                                | 61.5 hrs |

#### 4.1.4 8.1/2" MAIN HOLE SECTION

#### Drill Out 13.3/8" Shoe and LOT

The 8.1/2" main hole section BHA consisted of:

8.1/2" Hughes ABD536PH PDC Bit (c/w 4 x 18/32" nozzles).

8.1/2" Near Bit Stab (c/w non-ported float)

2.6m x 6.1/2" Pony Drill Collar

8.1/2" String Stab

CDR Tool

8.3/8" In Line Stabilizer

**ISONIC** 

**MWD** 

6.1/2" NMDC

6 x 6.1/2" Steel Drill Collars

9 x 5" HWDP

6.1/2" Weir-Houston Hydraulic Jars

8 x 5" HWDP

After making up the BHA an additional 21 joints of 5" DP were picked up to allow the assy. to reach the coring point in the Lysing formation. The assy. was tripped into hole and washed down to tag cement at 1341m. Within 30 minutes, the cement was washed / drilled away with 2000 lpm, 70 rpm, 0 - 2MT WOB. The hole was displaced to 1.44 s.g. Versavert (low tox OBM) mud. The shoetrack was drilled, the rathole cleaned out to 1382m and an additional 4m of formation drilled to 1386m with 2100 lpm, 120 rpm, 0 - 1MT WOB.

A LOT was performed using 1.44 s.g. mud. Leak-off occurred at 775 psi (1.84 s.g. EMW) after which the pressure bled off to 745 psi (1.82 s.g. EMW) in 5 mins. and to 700 psi (1.80 s.g. EMW) in 15 mins.

#### **Drill 8.1/2" Main Hole Section**

The mud weight was increased to 1.45 s.g. prior to commencing drilling. To maintain the inclination and get the BHA clear of the 13.3/8" casing, the drilling parameters were initially controlled to 250 lpm, 120 - 180 rpm, 0 - 3 MT WOB, and 5000 - 8000 N.m torque. This resulted in an average ROP of 25 m/hr (including connections). At 1530m the parameters were increased to 2750 lpm, 5 - 7 MT WOB. The desired 3000 lpm could not be achieved due to the mud pump pop-offs releasing at 276 bar (6" liners installed). ROP was controlled to 30m/hr from 1615m down after the top of the Kai and Brygge formations were picked at 1552m and 1604m respectively. Average background gas had been 0.6% until several stringers below 1670m were drilled. A gas peak of approximately 3.2% was noted after bottoms up from the first stringer at 1671m.

With the CDR indicating that the Brygge formation was water wet (with top flooding surface at 1654m) the planned weight up of the mud system began. It had been held at 1.45 s.g for formation evaluation purposes but was then increased to 1.50s.g. and planned to go to 1.55 s.g. by 1900m.

#### Well Control Incident at 1698m

During a connection at 1698m, an increase in pit volume was noted. The well was shut in using the Upper Annular. The SICP was 200 psi and a 4m<sup>3</sup> pit gain was recorded. The float was bumped to obtain the SIDP of 300 psi. An additional 0.5m<sup>3</sup> of mud was bled off through the choke but the casing pressure remained at 200 psi. It was decided at this point to begin circulating out the influx via the Drillers Method of well control.

The maximum gas at bottoms up was 4.6% and no other contaminants could be identified at this time. The final background gas was 2% and with the well shut in the SICP was 150 psi and the SIDP 200 psi. Trapped pressure was bled down and the casing and drill pipe pressure remained at 0 psi over 45 minutes while the riser was displaced to 1.50 SG mud.

To minimize the possibility of stack gas it was decided to close the Lower Annular and attempt to reduce the pressure on the Upper Annular. However, on the Byford Dolphin a single regulator controls both Upper and Lower Annulars and so when attempting to reduce the pressure on the Upper Annular both annulars relaxed resulting in a second influx being taken into the wellbore. An incremental pit gain of 2.7 m<sup>3</sup> was recorded. The well was shut in on the Lower Annular and the SICP built to 150 psi.

An attempt to bump the float in the string failed, with the drill pipe pressure increasing to 420 psi with no resultant change in casing pressure seen. This was repeated several times with no success, indicating that there was an obstruction somewhere between the drill pipe and choke. The well was isolated and the surface choke, kill and choke lines were flushed to clear obstructions, probably caused by cuttings settling out in the choke line.

The well was then shut-in on the Lower Annular and opened back to the choke line and flow checked for 10 minutes with the choke line open to the trip tank. The well was static. The well was then opened up and the pipe moved. No flow was observed. Rotation was established at 120 rpm, 5500 N.m torque. However, when starting to pump slowly with 260 lpm, 500 psi, the flow rate was seen to increase and a further pit gain noted. Rotation was stopped and the Lower Annular closed. SICP was 250 psi and the incremental pit gain 7.4 m<sup>3</sup>.

While the mud in the pits was weighted up to 1.52 SG the casing pressure increased from 250 to 290 psi. The well was displaced to 1.52 SG mud with 485 lpm, 600 psi. The influx was circulated out, recording a maximum gas of 8.9% and a lowest mud weight of 1.32 SG. Salt water contamination was identified in the mud. The mud was circulated and conditioned for a full system volume with a maximum gas peak of 1.7% observed on the last bottoms up.

With 1.52 SG mud in the well and the trapped pressure was bled off, SICP reduced to 0 psi and SIDP to 90 psi. When opening the choke line, slight flow into the trip tank was noted. The decision was made to displace the hole to an increased 1.57 SG mud. Circulation with the existing 1.52 SG mud was maintained while weighting up the mud in the pits due to the problems experienced getting the mud to move each time circulation was started.

The well was displaced to 1.57 SG mud using the Second Circulation of the Drillers Method. Stack gas was checked for by displacing choke and kill lines to Base Fluid and then to 1.57 SG mud. The well was flow checked and was seen to be static. The Lower Annular was opened and circulation established. The pumps were staged up over the first bottoms up to 1620 lpm, 134 bar, with 120 rpm. Max gas at bottoms up was 3.3%.

A conditioning trip was made back into the 13.3/8" casing with some difficulty being noted getting the BHA back into the shoe. At 1420m a 5MT overpull was taken. The interval 1410 to 1439m was worked over three times without problem. At 1395m a second overpull of 10MT was taken. It was necessary to wash and ream through this interval with very erratic torque from 1385 to 1381m. Inside the shoe at ~1326m a bottoms up was circulated and cement pieces were observed in the returns over the shakers. While performing rig maintenance and rig repairs, the well was monitored on the trip tank. The hole took a total of 0.65 m³ mud over this 4 hour period.

#### **Drill to Coring Point @ 3101.5m**

The assy. was tripped back in hole to 1611m and washed down from there to 1698m. Circulation was established and a bottoms up gas peak of 0.5% seen. Drilling re-commenced with 2580 lpm, 180 rpm, 5500 N.m torque and 0-1 MT WOB. Two sacks of Calcium Carbonate were added every hour to minimise seepage losses. ROP's were controlled to 30 m/hr initially while drilling the Brygge Flooding Surface and thereafter to be able to react to possible pore pressure increases. When entering the Springar formation at 1800m (Tare formation having been seen at 1741m) the controlled ROP's were increased to 45 m/hr. Since inclination held/dropped slightly, ROP's were again increased to 60 m/hr or higher using the maximum obtainable flow rate (without the pump pop-offs blowing), 180 rpm, 4000-5000 N.m torque and 0-5 MT WOB. Gas readings remained below 0.4% while drilling the Tare formation.

Drilling continued to 3101m. A clear increase in the LWD resistivity readings showed a Lysing formation consisting mainly of claystone with 30% water wet sand in the cuttings. Top Lysing was picked at 3088m (Note: GR and Resistivity sensors were 11.5m and 8m behind the bit, respectively). While drilling ahead the riser was boosted and SCR's were taken every 200m. Two sack per hour of calcium carbonate continued to be added to the active mud system to counter seepage losses. The hole was circulated clean at 3101m and an increase in sand noted in the samples.

The trip out of hole at core point was problem free with the hole being slick. The bit was graded 3, 5, CT, A, X, IN, BT, CP with several cutters being broken. The bottom string stabiliser was also scarred and a piece was missing from one of the blades.

Using LT-OBM, no cuttings could be discharged to the sea in this hole section. The Swaco cuttings collection system, involving vacuum pumps, drop off tanks and 4 weighting scales were used to collect all the cuttings. No major problems were experienced. Skip usage throughout the section averaged 30m of hole / skip.

#### **Coring Operations**

The 8.1/2" Coring assembly listed below was made up and run in hole:

8.1/2" DBS FC274 Corehead 75.78m of Stabilized Core Barrel 6 x 6.1/2" Steel Drill Collars 9 x 5" HWDP 6.1/2" Weir-Houston Hydraulic Jars 8 x 5" HWDP

Eight outer core barrels, totaling 76m in outer length, complete with inner core barrels that allowed up to 73m recoverable core length were run. During the trip in hole it became necessary to wash and ream from 1405 to 1417m and from 2150 to 2319m. A lot of cuttings / cavings were seen over the shakers. The final section from 3040 to 3101m was also washed down before circulating bottoms up. The maximum gas seen during this circulation was 6.8% and corresponded to ~2450m.

The interval from 3101.5 to 3171.5m was cored with 1050 lpm, 129 bar, 100 rpm, 5000 – 10,000 N.m torque. The additions of 2 sacks per hour of calcium carbonate continued through this cored interval. At 3171.5m the torque dropped back to a steady 6000 Nm and a slight pressure drop was seen, indicating that core had jammed. The assy, was pumped out of the hole from this depth to 3069m. A bottoms up was then circulated. During the trip out of hole it was necessary to work the pipe from 1583 to 1430m with a maximum overpull of 9MT. No further problems were encountered. At surface 67.7m of core was recovered equating to 96.7% recovery. The corehead was graded 7, 3, LT, XN, X, IN, JD, PR with 14 cutters missing from the nose area.

#### Drill to TD

The following BHA was made up and run in hole. It was essentially the main 8.1/2" BHA with a new bit and no ISONIC tool:

8.1/2" Hughes BD445 Bit (c/w 4 x 20/32" nozzles). 8.1/2" Near Bit Stab (c/w non-ported float) 2.6m x 6.1/2" Pony Drill Collar 8.1/2" String Stab
CDR Tool
8.3/8" In Line Stabiliser
MWD
6.1/2" NMDC
6 x 6.1/2" Steel Drill Collars
9 x 5" HWDP
6.1/2" Weir-Houston Hydraulic Jars
8 x 5" HWDP

No problems were encountered running in hole. However, when circulating bottoms up, a maximum gas reading of 3% was recorded and a large amount of cuttings / cavings (non-pressurized) seen at surface. The hole was circulated clean (filling 11 skips while coring/working from 3101 to 3170m). During this period of circulating the mud weight was raised from 1.57 s.g. to 1.60 s.g.

With the hole clean drilling re-commenced with 2425 lpm, 285 bar, 180 rpm, 8000 - 16,000 N.m torque, 1 - 5 MT WOB. The Lange formation was drilled (all claystone with no clear sign of the predicted markers). TD of the well was determined to be 3667m. The final MWD survey was projected TD to be:

MD = 3667m, TVD (RT) = 3662.02m, South = 141.67m, East = 8.56m.

With the shakers clean and the gas level below 0.2%, a flow check was performed. The well was static. The subsequent trip out of hole went without problem with the LWD and MWD tools being laid out at surface. The bit was graded: 1, 1, WT, A, X, IN, BT, TD. However, a large piece of matrix was broken off one of the 6 blades.

#### **Open Hole Logging Operations**

#### Run #1 - AIT-PEX-HNGS (Weak Point – ECRD – 8000 lbs)

With the rig floor cleared Schlumberger wireline was rigged up and the Run #1 Induction, Density, Neutron, Spectral Gamma Ray toolstring (AIT-PEX-HNGS) made up. This was run in hole and a repeat section logged. TD was tagged with a tide corrected depth of 3665.7m. Sections of the main log had to be repeated due to 'high' shallow resistivity readings that did not repeat correctly. Despite this, the log was completed in 9 hrs 15 mins with no excess drag or overpulls being seen. 1 hr 15 mins was recorded as Trouble Time against the tool and 20 mins against the rig for a sheared compensator pin. Logged from 3663 to 1374m. Most of the hole was seen to be in gauge, bar a heavily washed out section of the Springar formation from 2117m to approximately 2400m. ID's of up to 19" were recorded with an average excess of 24.5% over this interval. The average excess for the entire openhole section was 2.8%.

Run #2 - DIS-GR-AMS-OBDT (Weak Point – ECRD – 8000 lbs)

Run #2 was with the Oil Based Diplog, Array Sonic toolstring (DIS-GR-AMS-OBDT). This was also run without problem and completed within 8 hrs 45 mins, logging from 3664 to 1374m.

#### Run #3 - Back-up PEX (Weak Point – ECRD – 8000 lbs)

After analysing the data from Run #1, the density tool was seen to be reading unusually 'low' through the Brygge and Tare formations (between 1828m and 1624m). It was decided to relog this section with the back up Density, Neutron (PEX) toolstring. This Run #3 (2000 to 1590m) was completed in 3 hrs 55 mins and was seen to repeat with the previous PEX run, Run #1.

#### Run #4 - Read 8 Level VSP (Weak Point – Yellow – 4800 to 5400 lbs)

The Read 8 level Delta VSP tool was made up and run in hole on the Schlumberger line. It stood up at 2060m but was freed with a 2000 lbs overpull and worked through to bottom. However, two attempts to correlate the toolstring on depth failed due to sticking, the first requiring a 3000 lbs overpull to free. On the second attempt the tool became stuck at ~3403m (top geophone depth) for 45 mins. The toolstring was eventually freed by working it with up to 7000 lbs line pull (normal logging tension - 3400 lbs & toolstring weight - 900 lbs). While pulling out from this depth, additional overpulls were experienced and the toolstring became stuck again at approximately 3090m (top geophone depth). It was immediately worked to a maximum line pull of 7000 lbs but without success. The air gun array was fired and the signal monitored on the geophones in an attempt to determine where the toolstring was stuck.

After being stuck for 3 hrs 50 mins the string freed itself while holding 7000 lbs line pull. Communications with the toolstring confirmed it was complete and it was pulled out of hole without further incident – there was no damage to the tools.

#### Wiper Trip

With the VSP toolstring on surface, wireline was rigged down and the following 8.1/2" wiper trip assy. made up:

8.1/2" Hughes ABD536PH PDC Bit (c/w 4 x 18/32" nozzles).

8.1/2" Near Bit Stab (c/w non-ported float)

6.1/2" Drill Collar

8.1/2" String Stab

5 x 6.1/2" Steel Drill Collars

12 x 5" HWDP

6.1/2" Weir-Houston Hydraulic Jars

8 x 5" HWDP

This was run in hole to the casing shoe, filling the pipe and breaking circulation every 20 stands. At the shoe the drill line was slipped and cut and the mud circulated for half an hour at 2010 lpm, 151 bar, 112 rpm. The trip to bottom was without incident, with the last 2 stands being washed & reamed to bottom (from 3600 to 3660m) as a precaution with (2100 lpm, 211 bar, 120 rpm, 7000 - 8000 N.m torque). TD was tagged on depth at 3667m (tide corrected) with no fill. A total of 2.5 bottoms up were circulated with 2400 lpm, 280 bar, 120 rpm, 6000 - 7000 Nm torque while working the bottom 2 singles. A first gas peak of 6.4% was seen to have come from ~2100m with a second peak of 5% arriving at bottoms up. Following bottoms up the riser was boosted and the header box jetted. A total of 1.4MT of cuttings was removed from the well, riser and header box during this period of circulating.

Prior to POOH the choke and kill lines were flushed and SCR's taken. Only 2 stands were pulled before a hydraulic hose on the upper racking arm burst. The hole was circulated for one hour with full strokes while the burst hose was replaced. With only 2 stands out of hole it was decided to run back to TD and circulate an additional bottoms up. TD was tagged with no fill recorded and a further bottoms up circulated. An increase in cavings was seen when the header box was jetted, but the hole and riser cleaned up and after a total of 1.5 hrs circulating the hole was again flow checked and the trip out of hole begun.

No hole problems were encountered during the trip out. However, at 2902m an incident occurred when a bolt from the top drive bell guide worked loose and fell. The bolt landed on the upper racking arm but the associated washer fell and landed on the doghouse roof window. The operation was suspended while the origin of the bolt was determined. With it replaced and re-wired the trip out of hole continued without further problem.

#### Run #5 – MDT-GR (Weak Point – ECRD – 8000 lbs)

Rigged up Schlumberger logging equipment. The weather had deteriorated to the point where the sea state would not allow m/v the 'Highland Star' to handle the air gun array required for the VSP walkaway survey. Therefore, the decision was made to run the MDT first. Once correlated on depth (at 1600 m using the AIT-PEX-HNGS run of the 10th August 2001), pretesting began in the Brygge. 10 good tests were taken between 1655m and 1732m (wireline depth) with no lost seals. The maximum formation pressure through this interval was 1.535 SG. A fluid sample was then attempted at various depths between 1673m and 1673.5m MDRKB without success. The formation proved to be too soft and on all occasions the seal was lost or the probe plugged. The attempt was abandoned.

The MDT tool was run down to ~3100m MDRKB and re-correlated over the Lysing. Five pre-test were taken between 3091.2m and 3107.2m (wireline depth) with a maximum formation pressure of 1.423 SG. A fluid sample was required in the Lysing. Two attempts were aborted due to poor permeability and tool telemetry problems. One water sample was obtained from 3091.2m MDRKB. Three 450cc sample bottles were filled with what appeared to be water over a period of 5.5 hrs. The tool was then closed. No problems were encountered pulling free of the formation and during the subsequent trip out of hole. The

Page 20 of 29

fluid sample bottles were extracted at surface and attempts to compress them suggested that no gas was present in the samples.

#### Run #6 – Re-run Read 8 Level VSP (Weak Point – Pink – 5400 to 6000 lbs)

On surface the Schlumberger cable head was swapped out and the Read 8 Level VSP tool rigged up. It was run in hole without difficulties with check shots being taken at 1280m, 2400m & 3200m (wireline depth). The tool string was correlated over the Lysing to the AIT-PEX-HNGS run of the 10th August 2001 and run down to tag TD. The VSP survey was recorded at 10m intervals from 3523m to 2898m (wireline top geophone depth). At 2898m, the walkaway survey was conducted. With the walkaway completed, the survey continued, again at 10m intervals from 2898m to the final station at 790m. No hole problems or overpulls were encountered throughout the survey. The tool-string was pulled and laid out.

#### Run #7 – Sidewall Cores (Weak Point Green – 5450 to 6900 lbs)

On surface, poor insulation on line 7 of the Schlumberger cable-head required that it be rebuilt. This resulted in 0.5 hrs Trouble Time. Radio silence was established and the two tandem coreguns, loaded with a total of 60 bullets, were armed. The toolstring was run in hole and correlated at ~3450m. A total of 53 shots were taken between 3659m and 1447m. Significant overpulls were taken following the shots made in the Lysing formation and it was feared that some of the barrels had been lost. A number of misfires were also experienced, something confirmed when the guns were back on surface. No problems or overpulls were attributed to hole conditions. The final shot summary on surface was:

| Shots Attempted | 53 |
|-----------------|----|
| Cores Recovered | 29 |
| Empty Barrels   | 2  |
| Misfires        | 8  |
| Lost Barrels    | 14 |
|                 |    |

Overall Recovery 55%

#### **Delays**

| Well Control Incident                                            | 50.0 hrs |
|------------------------------------------------------------------|----------|
| Repair to Drawworks Caliper                                      | 2.5 hrs  |
| Repair to Faulty Weight Indicator on Rig                         | 2.0 hrs  |
| Wiper Trip to Repeat LWD log due to Questionable Data            | 1.5 hrs  |
| Noticed 5 bbl Gain in Active; Flowcheck and Circulate Bottoms Up | 1.5 hrs  |
| Repair to Leaking Rig Pump                                       | 0.5 hrs  |
| Trouble Shoot Comms Problem with MWD                             | 1.5 hrs  |
| Trouble Shoot Problem with Trip Tank                             | 0.5 hrs  |
| Broken Compensator Pin during Logging                            | 0.5 hrs  |

| Re-log AIT-PEX-HNGS due to bad Shallow Resistivity     | 1.5 hrs  |
|--------------------------------------------------------|----------|
| Re-log PEX due to Anomalous Density Data               | 3.5 hrs  |
| Stuck VSP Tool (not inc. wiper trip)                   | 13.0 hrs |
| Repair Burst Hydrualic Hose on Upper Racking Arm       | 1.0 hrs  |
| Investigate Dropped Object Incident                    | 0.5 hrs  |
| Re-build Schlumberger Cablehead due to Poor Insulation | 0.5 hrs  |
| Section Total                                          | 80.5 hrs |

#### 4.1.5 ABANDONMENT

#### **Abandonment Cement Plugs**

A 3.1/2" cement stinger with PH-6 connections was used to set the abandonment plugs and a total of 47 joint (444m) were picked up from the deck. The rig equipment was not capable of handling the make up of this tool joint and it was therefore necessary to mobilize a tubing power tong. An open ended mule shoe was installed on the bottom of the cement stinger. Circulation was established at the shoe and at 3200m, where a full bottoms up produced a max gas peak of 1.53%. The first of the four cement plugs was set from 3190m to 3025m as per program. It was mixed and pumped with out problems and both it, and the 5 m<sup>3</sup> tuned spacer pumped ahead of it, were displaced with the rig pumps leaving it under-displaced by 0.75 m<sup>3</sup>. No circulation was done at the top of the first plug, instead the string was tripped back to 1791m (the setting depth of the second), a drill pipe wiper dart pumped and a full bottoms up circulated.

The second cement plug was spotted from 1791m to 1491m as per program and this time without a spacer being pumped ahead of it. It too was under-displaced by 0.75 m<sup>3</sup> using the rig pumps before the string was pulled back to the Theoretical Top of Cement (1491m) and the excess circulated out of the hole. Again a drill pipe wiper dart was pumped.

The third plug was spotted (with a 5 m<sup>3</sup> spacer pumped ahead) right on top of the second from 1491m to 1274m. It too was under-displaced by 0.75 m<sup>3</sup> using the rig pumps. The string was pulled back to 1095m a wiper dart pump and a bottoms up circulated. A slug was pumped and the string pulled to surface laying out all the drill pipe and the 3.1/2" cement stinger. This was the best utilization of the Waiting On Cement time prior to a combined weight and pressure test of the plug.

A mule shoe was picked up and run in hole on 5" drill pipe. It was washed down to tag the top of plug three at 1281m (7m deep on theoretical) with 5 MT. The string was then pulled back to 661m (or the setting depth of plug four) and the upper annular closed in preparation for the planned pressure test with mud, using the rig pumps. However, the upper annular was seen to be leaking and it was decided to space out to close in on the Middle Pipe Rams. The pressure test to 110 bar / 5 mins was successfully concluded, this time using seawater from the cement unit. 0.6 m<sup>3</sup> was pumped and returned.

Cement plug four was set inside the 13.3/8" casing from 661m to 411m as per program. No spacer was pumped ahead of the slurry. It too was underdisplaced by 0.75 m<sup>3</sup> using the rig

pumps. The string was pulled to Theoretical Top of Cement and the hole circulated clean. After the displacement of the riser to seawater, the cement plug was pressure tested to 125 bar / 5 min.

Note: All plugs were pumped and displaced without pipe rotation.

#### Wellbore Clean Up

Prior to the wellbore / riser clean up, the choke, kill and riser booster line were displaced to seawater using the cement unit. This was due to pit space limitations. Next the following spacer train was pumped and displaced with seawater at a controlled 2265 lpm, 170 rpm:

| Base Oil             | $8 \text{ m}^3$  |
|----------------------|------------------|
| Weighted Hi-Vis Pill | $30 \text{ m}^3$ |
| Hi-Vis Wash Pill     | $30 \text{ m}^3$ |
| Solvent Pill         | $30 \text{ m}^3$ |
| Hi-Vis Clean Up Pill | $10 \text{ m}^3$ |

All returns were captured as slops ( $142 \text{ m}^3$  in total) with no discharges to sea. The remaining drill pipe in the hole was pulled and laid out.

A trip in hole was made with the universal tool and adapter to latch and pull the wearbushing (13.6 MT overpull required to shear the retaining pins). While POOH with the wearbushing the Blind Shear Rams were closed and plug four successfully pressure tested with seawater to 125 bar / 5 mins. 0.3 m<sup>3</sup> was pumped and returned.

#### **Pulling BOP & Riser**

February, 2002

Rev.: 1-TAGD

The rig floor was cleared and the riser handling equipment rigged up. The diverter, slip joint, 23 joints of riser and the BOPs were pulled in 17 hrs. 3 hrs was required to split and secure the BOPs and LMRP in the Cellar Deck. On inspecting the BOPs it was found that a keyseat had developed in the flex joint housing that would require attention prior to being re run. Beyond this no other damage or excessive wear was noted.

#### **Cut and Retrieve the Wellhead**

The Weatherford MOST tool was made up and spaced out to cut 5m below the mudline. It was run in hole and the wellhead engaged. The cut was initiated with a set down weight of 6MT and a pump rate of 3240 lpm. After 1.5 hrs cutting an unsuccessful attempt was made to free the wellhead and PGB with a 140MT overpull. The wellhead was engaged a second time and the cut was re-initiated at the same depth. After a further 30 mins cutting the motor began to stall out giving indications that the cut was complete. However, a second attempt to pull the wellhead free with 140MT overpull also proved unsuccessful. The tool was pulled above the wellhead to expose the knife blades and a visual inspection with the ROV showed a wear

pattern that indicated full travel and suggested that the cut was complete. An attempt to reinitiate the cut a second time was unsuccessful with the motor stalling out and on this occasion the tool became stuck while attempting to pick up. It was freed with a 45MT overpull but inspection of the knife blades with the ROV showed then to be distorted in the open position and the tool was pulled. On surface the blades were swapped out and the space out altered to make a fresh cut 0.5m higher than the first.

With the tool back at the mudline and the wellhead engaged a second successful cut was made in 1.5 hrs with good indications of returns below the PGB seen on the ROV. An overpull of 158MT was still required to free the wellhead. The tool, wellhead and PGB were POOH with the running string of Drill Collars, HWDP and Drill Pipe all being laid out sideways.

In the moonpool, with the PGB on the spider beams, the MOST tool was released without problem. However, attempts to disengaged the 30" LP Housing from the PGB as per Dril-Quip procedures were unsuccessful. Eventually the lock ring had to be cut with a welding torch to allow the LP & HP Housings, complete with 30" conductor stump, to be pulled with the 18.3/4" running tool. The rig next commenced to lay out the remaining drill pipe from the derrick.

#### **Anchor Handling**

Anchor handling had started while running in hole with the MOST tool. The "Havila Crown", "Northern Corona" and the "Normand Borg" were on location and had begun to remove excess chain from the four anchors (#1, #5, #6, #12) that required this due to chain locker capacity. Once complete these anchors were re-deployed on the seabed.

With the wellhead cut and pulled, de-ballasting commenced and the anchor handling started in earnest. Handling continued concurrently with the laying out of remaining drillpipe from the derrick and was complete with the last anchor being bolstered at 01:12 hrs on 19th August 2001. At this point the rig was off contract and handed over to Statoil. 22 stand of drill pipe remained in the derrick and were planned to be left there for the duration of the tow.

#### **Delays**

| Trouble Shoot and Repair Drawworks Parking Brake    | 1.5 hrs  |
|-----------------------------------------------------|----------|
| Leaking Annular During Cement Plug Pressure Test    | 0.5 hrs  |
| Difficulties Cutting and Pulling Wellhead           | 6.5 hrs  |
| Cut Wellhead Housing 'Lock Ring' with Welding Torch | 2.0 hrs  |
| Section Total                                       | 10.5 hrs |

#### 4.2 SUMMARIES

# **4.2.1 Mooring Summary**

See attached Initial Floater Report.

## 4.2.2 Drilling Fluid Summary

See attached Drilling Fluid Properties for Oil based Mud. See Enclosure, Drilling Fluids Summary report from Anchor MI.

# 4.2.3 BHA Summary

See attached Bottom Hole Assembly Details reports.

## 4.2.4 Bit Summary

See attached Bit Record.

# 4.2.5 Survey Summary

Table 4.1.10 Survey Listing

| Seq | Measured | TVD   | Incl. | Azimuth | Course | Vertical | Displ. | Displ. | Total | At    | DLS   | Survey |
|-----|----------|-------|-------|---------|--------|----------|--------|--------|-------|-------|-------|--------|
| #   | depth    | depth | angle | angle   | length | section  | +N/S-  | +E/W-  | displ | Azim  | (deg/ | tool   |
| -   | (m)      | (m)   | (deg) | (deg)   | (m)    | (m)      | (m)    | (m)    | (m)   | (deg) | 10m)  | type   |
| 1   | 366.0    | 366.0 | 0.00  | 0.00    | 0.0    | 0.0      | 0.0    | 0.0    | 0.0   | 0.0   | 0.00  | TIP    |
| 2   | 453.2    | 453.1 | 4.51  | 205.57  | 87.2   | -3.1     | -3.1   | -1.5   | 3.4   | 205.6 | 0.52  | MWD    |
| 3   | 485.0    | 484.9 | 3.76  | 203.81  | 31.8   | -5.2     | -5.2   | -2.4   | 5.7   | 205.3 | 0.24  | MWD    |
| 4   | 513.6    | 513.4 | 3.28  | 202.93  | 28.6   | -6.8     | -6.8   | -3.1   | 7.5   | 204.8 | 0.17  | MWD    |
| 5   | 542.5    | 542.2 | 3.07  | 203.87  | 28.9   | -8.3     | -8.3   | -3.8   | 9.1   | 204.6 | 0.07  | MWD    |
| 6   | 567.4    | 567.1 | 3.51  | 208.93  | 24.9   | -9.5     | -9.5   | -4.4   | 10.5  | 204.8 | 0.21  | MWD    |
| 7   | 599.6    | 599.2 | 3.41  | 209.84  | 32.2   | -11.2    | -11.2  | -5.4   | 12.4  | 205.5 | 0.04  | MWD    |
| 8   | 630.3    | 629.9 | 3.05  | 212.48  | 30.7   | -12.7    | -12.7  | -6.3   | 14.2  | 206.2 | 0.13  | MWD    |
| 9   | 657.7    | 657.2 | 2.89  | 212.95  | 27.4   | -13.9    | -13.9  | -7.0   | 15.6  | 206.8 | 0.06  | MWD    |
| 10  | 686.4    | 685.9 | 2.89  | 206.48  | 28.8   | -15.2    | -15.2  | -7.7   | 17.0  | 207.1 | 0.11  | MWD    |
| 11  | 715.3    | 714.7 | 3.51  | 190.67  | 28.8   | -16.7    | -16.7  | -8.2   | 18.6  | 206.3 | 0.37  | MWD    |
| 12  | 743.8    | 743.2 | 3.05  | 188.14  | 28.5   | -18.3    | -18.3  | -8.5   | 20.2  | 204.9 | 0.17  | MWD    |
| 13  | 772.5    | 771.9 | 3.12  | 188.66  | 28.8   | -19.8    | -19.8  | -8.7   | 21.7  | 203.8 | 0.03  | MWD    |
| 14  | 801.1    | 800.4 | 4.27  | 183.13  | 28.6   | -21.7    | -21.7  | -8.9   | 23.4  | 202.4 | 0.42  | MWD    |

|    |          |        |       |         |        |         | <u> </u> |        | · · · |       |       |        |
|----|----------|--------|-------|---------|--------|---------|----------|--------|-------|-------|-------|--------|
|    | Measured |        |       | Azimuth |        |         |          | Displ. | Total | At    | DLS   | Survey |
| #  | depth    | depth  | angle | angle   | length | section | +N/S-    | +E/W-  | displ | Azim  | (deg/ | tool   |
| -  | (m)      | (m)    | (deg) | (deg)   | (m)    | (m)     | (m)      | (m)    | (m)   | (deg) | 10m)  | type   |
| 15 | 829.8    | 829.0  | 4.32  | 182.28  | 28.7   | -23.8   | -23.8    | -9.0   | 25.4  | 200.7 | 0.03  | MWD    |
| 16 | 858.6    | 857.8  | 4.34  | 182.48  | 28.8   | -26.0   | -26.0    | -9.1   | 27.5  | 199.3 | 0.01  | MWD    |
| 17 | 885.7    | 884.8  | 4.24  | 189.42  | 27.1   | -28.0   | -28.0    | -9.3   | 29.5  | 198.4 | 0.19  | MWD    |
| 18 | 915.1    | 914.1  | 4.27  | 192.66  | 29.4   | -30.1   | -30.1    | -9.7   | 31.7  | 197.9 | 0.08  | MWD    |
| 19 | 943.8    | 942.8  | 4.15  | 189.73  | 28.8   | -32.2   | -32.2    | -10.1  | 33.7  | 197.5 | 0.09  | MWD    |
| 20 | 972.4    | 971.3  | 3.99  | 186.97  | 28.6   | -34.2   | -34.2    | -10.4  | 35.8  | 197.0 | 0.09  | MWD    |
| 21 | 1001.1   | 999.8  | 4.04  | 189.15  | 28.6   | -36.2   | -36.2    | -10.7  | 37.7  | 196.5 | 0.06  | MWD    |
| 22 | 1029.3   | 1028.0 | 3.92  | 187.00  | 28.2   | -38.1   | -38.1    | -11.0  | 39.7  | 196.1 | 0.07  | MWD    |
| 23 | 1058.1   | 1056.7 | 3.79  | 187.45  | 28.8   | -40.0   | -40.0    | -11.2  | 41.6  | 195.7 | 0.05  | MWD    |
| 24 | 1086.6   | 1085.2 | 4.01  | 180.33  | 28.5   | -42.0   | -42.0    | -11.4  | 43.5  | 195.1 | 0.19  | MWD    |
| 25 | 1114.6   | 1113.1 | 4.02  | 178.74  | 28.0   | -43.9   | -43.9    | -11.3  | 45.4  | 194.5 | 0.04  | MWD    |
| 26 | 1144.1   | 1142.6 | 3.98  | 173.70  | 29.6   | -46.0   | -46.0    | -11.2  | 47.3  | 193.7 | 0.12  | MWD    |
| 27 | 1173.4   | 1171.7 | 4.09  | 172.81  | 29.2   | -48.0   | -48.0    | -11.0  | 49.3  | 192.9 | 0.04  | MWD    |
| 28 | 1202.5   | 1200.8 | 4.03  | 171.56  | 29.1   | -50.1   | -50.1    | -10.7  | 51.2  | 192.0 | 0.04  | MWD    |
| 29 | 1231.1   | 1229.4 | 3.95  | 171.73  | 28.7   | -52.0   | -52.0    | -10.4  | 53.1  | 191.3 | 0.03  | MWD    |
| 30 | 1259.9   | 1258.1 | 4.14  | 166.43  | 28.8   | -54.0   | -54.0    | -10.0  | 55.0  | 190.5 | 0.15  | MWD    |
| 31 | 1289.0   | 1287.1 | 4.16  | 168.61  | 29.1   | -56.1   | -56.1    | -9.6   | 56.9  | 189.7 | 0.05  | MWD    |
| 32 | 1317.3   | 1315.3 | 4.15  | 167.23  | 28.3   | -58.1   | -58.1    | -9.1   | 58.8  | 188.9 | 0.04  | MWD    |
| 33 | 1346.1   | 1344.1 | 4.19  | 163.74  | 28.9   | -60.1   | -60.1    | -8.6   | 60.7  | 188.1 | 0.09  | MWD    |
| 34 | 1362.4   | 1360.3 | 4.11  | 157.77  | 16.3   | -61.2   | -61.2    | -8.2   | 61.8  | 187.6 | 0.27  | MWD    |
| 35 | 1383.1   | 1380.9 | 3.95  | 146.90  | 20.7   | -62.5   | -62.5    | -7.5   | 63.0  | 186.9 | 0.38  | MWD    |
| 36 | 1411.4   | 1409.1 | 4.29  | 149.02  | 28.3   | -64.2   | -64.2    | -6.5   | 64.6  | 185.7 | 0.13  | MWD    |
| 37 | 1441.8   | 1439.5 | 4.41  | 149.01  | 30.5   | -66.2   | -66.2    | -5.3   | 66.4  | 184.6 | 0.04  | MWD    |
| 38 | 1469.7   | 1467.2 | 4.46  | 150.46  | 27.8   | -68.1   | -68.1    | -4.2   | 68.2  | 183.5 | 0.04  | MWD    |
| 39 | 1498.2   | 1495.7 | 4.52  | 151.26  | 28.6   | -70.0   | -70.0    | -3.1   | 70.1  | 182.5 | 0.03  | MWD    |
| 40 | 1527.1   | 1524.5 | 4.48  | 148.81  | 28.9   | -72.0   | -72.0    | -2.0   | 72.0  | 181.6 | 0.07  | MWD    |
| 41 | 1555.6   | 1553.0 | 4.58  | 147.89  | 28.5   | -73.9   | -73.9    | -0.8   | 73.9  | 180.6 | 0.04  | MWD    |
| 42 | 1584.6   | 1581.8 | 4.57  | 146.38  | 29.0   | -75.9   | -75.9    | 0.5    | 75.9  | 179.7 | 0.04  | MWD    |
| 43 | 1613.1   | 1610.3 | 4.54  | 147.28  | 28.5   | -77.8   | -77.8    | 1.7    | 77.8  | 178.7 | 0.03  | MWD    |
| 44 | 1641.8   | 1638.9 | 4.55  | 147.28  | 28.7   | -79.7   | -79.7    | 2.9    | 79.7  | 177.9 | 0.00  | MWD    |
| 45 | 1670.7   | 1667.6 | 4.52  | 144.86  | 28.8   | -81.6   | -81.6    | 4.2    | 81.7  | 177.1 | 0.07  | MWD    |
| 46 | 1699.3   | 1696.2 | 4.46  | 140.09  | 28.6   | -83.3   | -83.3    | 5.6    | 83.5  | 176.2 | 0.13  | MWD    |
| 47 | 1728.4   | 1725.2 | 4.38  | 140.28  | 29.2   | -85.1   | -85.1    | 7.0    | 85.3  | 175.3 | 0.03  | MWD    |
| 48 | 1757.7   | 1754.4 | 4.22  | 142.59  | 29.2   | -86.8   | -86.8    | 8.4    | 87.2  | 174.5 | 0.08  | MWD    |
| 49 | 1786.9   | 1783.5 | 4.25  | 142.20  | 29.2   | -88.5   | -88.5    | 9.7    | 89.0  | 173.8 | 0.01  | MWD    |
| 50 | 1815.4   | 1811.9 | 4.13  | 142.39  | 28.5   | -90.1   | -90.1    | 11.0   | 90.8  | 173.1 | 0.04  | MWD    |
| 51 | 1843.9   | 1840.3 | 4.03  | 142.59  | 28.5   | -91.7   | -91.7    | 12.2   | 92.5  | 172.4 | 0.04  | MWD    |
| 52 | 1872.5   | 1868.9 | 4.07  | 143.02  | 28.7   | -93.3   | -93.3    | 13.4   | 94.3  | 171.8 | 0.02  | MWD    |
| 53 | 1901.1   | 1897.4 | 4.13  | 142.82  | 28.6   | -95.0   | -95.0    | 14.7   | 96.1  | 171.2 | 0.02  | MWD    |
| 54 | 1930.1   | 1926.3 | 4.13  | 142.19  | 29.0   | -96.6   | -96.6    | 15.9   | 97.9  | 170.6 | 0.02  | MWD    |
| 55 | 1958.2   | 1954.4 | 4.07  | 141.73  | 28.2   | -98.2   | -98.2    | 17.2   | 99.7  | 170.1 | 0.02  | MWD    |
| 56 | 1986.7   | 1982.8 | 4.01  | 142.48  | 28.5   | -99.8   | -99.8    | 18.4   | 101.5 | 169.6 | 0.03  | MWD    |
| 57 | 2015.4   | 2011.4 | 3.94  | 141.54  | 28.7   | -101.4  | -101.4   | 19.6   | 103.3 | 169.0 | 0.03  | MWD    |
| 58 | 2043.8   | 2039.8 | 3.38  | 145.43  | 28.4   | -102.8  | -102.8   | 20.7   | 104.9 | 168.6 | 0.22  | MWD    |
| 59 | 2072.5   | 2068.5 | 3.43  | 149.15  | 28.8   | -104.3  | -104.3   | 21.6   | 106.5 | 168.3 | 0.08  | MWD    |
| 60 | 2100.8   | 2096.7 | 3.35  | 150.09  | 28.3   | -105.7  | -105.7   | 22.5   | 108.1 | 168.0 | 0.03  | MWD    |
| 61 | 2129.8   | 2125.6 | 3.50  | 155.92  | 29.0   | -107.2  | -107.2   | 23.3   | 109.7 | 167.8 | 0.13  | MWD    |
| 62 | 2158.9   | 2154.6 | 3.27  | 155.29  | 29.1   | -108.8  | -108.8   | 24.0   | 111.4 | 167.6 | 0.08  | MWD    |
| 63 | 2188.0   | 2183.7 | 3.28  | 151.32  | 29.2   | -110.3  | -110.3   | 24.7   | 113.0 | 167.4 | 0.08  | MWD    |

| Seq | Measured | TVD    | Incl. | Azimuth | Course | Vertical | Displ. | Displ. | Total | At    | DLS   | Survey |
|-----|----------|--------|-------|---------|--------|----------|--------|--------|-------|-------|-------|--------|
| #   | depth    | depth  | angle | angle   | length | section  | +N/S-  | +E/W-  | displ | Azim  | (deg/ | tool   |
| -   | (m)      | (m)    | (deg) | (deg)   | (m)    | (m)      | (m)    | (m)    | (m)   | (deg) | 10m)  | type   |
| 64  | 2216.7   | 2212.4 | 2.96  | 150.43  | 28.7   | -111.7   | -111.7 | 25.5   | 114.5 | 167.2 | 0.11  | MWD    |
| 65  | 2246.4   | 2242.0 | 2.60  | 151.00  | 29.7   | -112.9   | -112.9 | 26.2   | 115.9 | 167.0 | 0.12  | MWD    |
| 66  | 2275.3   | 2270.9 | 2.22  | 147.44  | 28.9   | -114.0   | -114.0 | 26.8   | 117.1 | 166.8 | 0.14  | MWD    |
| 67  | 2303.8   | 2299.4 | 2.21  | 154.14  | 28.5   | -114.9   | -114.9 | 27.3   | 118.1 | 166.6 | 0.09  | MWD    |
| 68  | 2390.4   | 2385.9 | 2.08  | 152.82  | 86.6   | -117.8   | -117.8 | 28.8   | 121.3 | 166.3 | 0.02  | MWD    |
| 69  | 2419.2   | 2414.8 | 1.92  | 146.45  | 28.9   | -118.7   | -118.7 | 29.3   | 122.2 | 166.1 | 0.09  | MWD    |
| 70  | 2447.9   | 2443.4 | 1.98  | 149.21  | 28.7   | -119.5   | -119.5 | 29.8   | 123.2 | 166.0 | 0.04  | MWD    |
| 71  | 2533.5   | 2529.0 | 1.60  | 161.93  | 85.6   | -121.9   | -121.9 | 30.9   | 125.8 | 165.8 | 0.06  | MWD    |
| 72  | 2620.7   | 2616.1 | 1.26  | 178.57  | 87.2   | -124.0   | -124.0 | 31.3   | 127.9 | 165.8 | 0.06  | MWD    |
| 73  | 2649.5   | 2644.9 | 1.22  | 185.29  | 28.8   | -124.7   | -124.7 | 31.3   | 128.5 | 165.9 | 0.05  | MWD    |
| 74  | 2708.0   | 2703.4 | 1.07  | 190.81  | 58.5   | -125.8   | -125.8 | 31.2   | 129.6 | 166.1 | 0.03  | MWD    |
| 75  | 2737.0   | 2732.4 | 0.94  | 206.76  | 29.0   | -126.3   | -126.3 | 31.0   | 130.0 | 166.2 | 0.11  | MWD    |
| 76  | 2766.0   | 2761.4 | 0.99  | 218.17  | 29.0   | -126.7   | -126.7 | 30.7   | 130.4 | 166.4 | 0.07  | MWD    |
| 77  | 2794.0   | 2789.4 | 1.06  | 225.85  | 28.0   | -127.1   | -127.1 | 30.4   | 130.7 | 166.6 | 0.06  | MWD    |
| 78  | 2823.0   | 2818.4 | 1.06  | 219.22  | 29.0   | -127.5   | -127.5 | 30.0   | 131.0 | 166.7 | 0.04  | MWD    |
| 79  | 2851.0   | 2846.4 | 1.06  | 217.50  | 28.1   | -127.9   | -127.9 | 29.7   | 131.3 | 166.9 | 0.01  | MWD    |
| 80  | 2879.0   | 2874.4 | 1.23  | 227.59  | 28.0   | -128.3   | -128.3 | 29.3   | 131.6 | 167.1 | 0.09  | MWD    |
| 81  | 2907.2   | 2902.6 | 1.44  | 228.04  | 28.2   | -128.7   | -128.7 | 28.9   | 131.9 | 167.4 | 0.07  | MWD    |
| 82  | 2963.3   | 2958.6 | 1.46  | 230.04  | 56.1   | -129.7   | -129.7 | 27.8   | 132.6 | 167.9 | 0.01  | MWD    |
| 83  | 2993.1   | 2988.4 | 1.66  | 227.26  | 29.8   | -130.2   | -130.2 | 27.2   | 133.0 | 168.2 | 0.07  | MWD    |
| 84  | 3049.8   | 3045.2 | 1.75  | 232.80  | 56.8   | -131.3   | -131.3 | 25.9   | 133.8 | 168.9 | 0.03  | MWD    |
| 85  | 3109.1   | 3104.4 | 1.78  | 237.55  | 59.2   | -132.3   | -132.3 | 24.4   | 134.5 | 169.6 | 0.03  | MWD    |
| 86  | 3137.7   | 3133.0 | 1.80  | 238.89  | 28.7   | -132.8   | -132.8 | 23.6   | 134.9 | 169.9 | 0.02  | MWD    |
| 87  | 3167.1   | 3162.4 | 1.83  | 240.49  | 29.4   | -133.3   | -133.3 | 22.8   | 135.2 | 170.3 | 0.02  | MWD    |
| 88  | 3195.7   | 3191.0 | 1.76  | 241.98  | 28.6   | -133.7   | -133.7 | 22.0   | 135.5 | 170.6 | 0.03  | MWD    |
| 89  | 3224.4   | 3219.7 | 1.73  | 239.58  | 28.7   | -134.1   | -134.1 | 21.3   | 135.8 | 171.0 | 0.03  | MWD    |
| 90  | 3281.1   | 3276.3 | 2.04  | 238.38  | 56.7   | -135.1   | -135.1 | 19.7   | 136.5 | 171.7 | 0.06  | MWD    |
| 91  | 3337.4   | 3332.6 | 2.12  | 243.07  | 56.3   | -136.1   | -136.1 | 17.9   | 137.2 | 172.5 | 0.03  | MWD    |
| 92  | 3394.8   | 3390.0 | 1.82  | 240.73  | 57.4   | -137.0   | -137.0 | 16.1   | 137.9 | 173.3 | 0.05  | MWD    |
| 93  | 3451.1   | 3446.2 | 1.76  | 239.93  | 56.2   | -137.9   | -137.9 | 14.6   | 138.6 | 174.0 | 0.01  | MWD    |
| 94  | 3537.2   | 3532.3 | 1.83  | 235.40  | 86.1   | -139.3   | -139.3 | 12.3   | 139.9 | 174.9 | 0.02  | MWD    |
| 95  | 3566.4   | 3561.5 | 1.77  | 238.98  | 29.3   | -139.8   | -139.8 | 11.6   | 140.3 | 175.3 | 0.04  | MWD    |
| 96  | 3596.1   | 3591.2 | 1.81  | 239.38  | 29.7   | -140.3   | -140.3 | 10.8   | 140.7 | 175.6 | 0.01  | MWD    |
| 97  | 3625.4   | 3620.4 | 1.82  | 236.08  | 29.3   | -140.8   | -140.8 | 10.0   | 141.1 | 175.9 | 0.04  | MWD    |
| 98  | 3641.9   | 3636.9 | 1.90  | 232.64  | 16.5   | -141.1   | -141.1 | 9.6    | 141.4 | 176.1 | 0.08  | MWD    |
| TD  | 3667.0   | 3662.4 | 1.90  | 233.00  | 25.1   | -141.7   | -141.7 | 8.6    | 141.7 | 176.4 | 0.00  | Proj.  |

Figure 4.1.10 A, Horizontal Projection

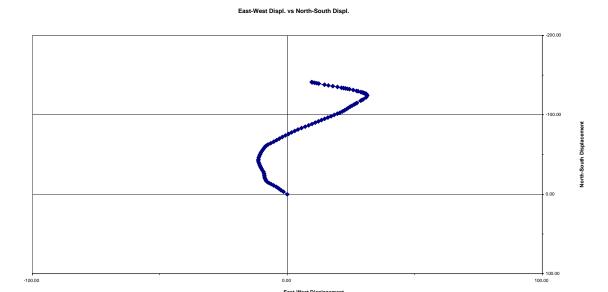
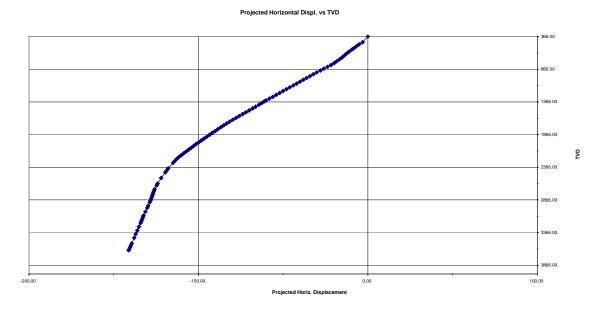
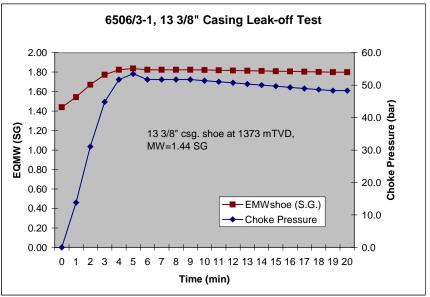




Figure 4.1.10 B, Vertical Profile



# 4.2.6 Casing Summary


See attached Casing Details records

# 4.2.7 Cementing Summary

See attached Casing Details records and Enclosure 1, End of Well Report from Halliburton

## 4.2.8 Casing Leak-off Test

| Time | Volume | Rig floor choke | EMW shoe |
|------|--------|-----------------|----------|
|      | pumped | line pressure   |          |
| min. | ltr    | Bar             | SG       |
| 0    | 0      | 0.0             | 1.44     |
| 1    | 80     | 13.8            | 1.54     |
| 2    | 160    | 31.0            | 1.67     |
| 3    | 240    | 44.8            | 1.77     |
| 4    | 320    | 51.7            | 1.82     |
| 5    | 360    | 53.4            | 1.84     |
| 6    |        | 51.7            | 1.82     |
| 7    |        | 51.7            | 1.82     |
| 8    |        | 51.7            | 1.82     |
| 9    |        | 51.7            | 1.82     |
| 10   |        | 51.4            | 1.82     |
| 11   |        | 51.0            | 1.82     |
| 12   |        | 50.7            | 1.82     |
| 13   |        | 50.3            | 1.81     |
| 14   |        | 50.0            | 1.81     |
| 15   |        | 49.7            | 1.81     |
| 16   |        | 49.3            | 1.81     |
| 17   |        | 49.0            | 1.80     |
| 18   |        | 48.6            | 1.80     |
| 19   |        | 48.3            | 1.80     |
| 20   |        | 48.3            | 1.80     |



# **4.3 ATTACHMENTS**

- 4.3.6 Initial Floater Report
- 4.3.7 Daily Mud Properties for the 8 ½" Section
- 4.3.8 BHA Summary Records
- 4.3.9 Bit Record
- 4.3.11 Casing Details

# Attachment 4.3.6 Initial Floater Report

| Second   S |                                                            |                                       |              |                |              |              |                       |              | •            | e, <b>1111014</b> |                               | _           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------|--------------|----------------|--------------|--------------|-----------------------|--------------|--------------|-------------------|-------------------------------|-------------|
| Sept   131-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | ******* Mooring Configuration ******* |              |                |              |              |                       |              |              |                   |                               |             |
| Mail   Trickinens   Trickinen | HUGHES - IIPE HMF 21" OD X 5/8" WALL X 50"                 | Vessel Heading:                       | 315.0 DE     | G              |              | 1            | 1                     |              |              |                   |                               | _           |
| Cold Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e O.D.: 533.0                                              | Line Number                           | 1            | 2              | 3            | 4            | 5                     | 6            | 7            | 8                 | 9                             | 10          |
| Standard   Standard  | 1 Thickness: 50.8                                          | Size (Chain)                          | 76.2         | 76.2           | 76.2         | 76.2         | 76.2                  | 76.2         | 76.2         | 76.2              | 76.2                          | 76.2        |
| R. Alt W@supenary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | el Grade:                                                  | Length Deployed                       | 1019.0       | 1135.0         | 1126.0       | 1106.0       | 1024.0                | 1066.0       | 1054.0       | 1102.0            | 1083.0                        | 1083.0      |
| Marker: Special Section of Special Section   Marker: Special Section | /M. In Air:                                                | Size (Wire)                           |              | 0.0            | 0.0          | 0.0          | 0.0                   | 0.0          | 0.0          | 0.0               | 0.0                           | 0.0         |
| ## 75 FROME Size FACTOR   Pender   Size Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /M. In Air W/Buoyancy:                                     | Length Deployed                       |              | 0.0            | 0.0          | 0.0          |                       | 0.0          | 0.0          | 0.0               |                               | 0.0         |
| Mac. Mr. 1. Nation Wilstynney:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /M. In Water:                                              | Anchor, Type, Wt.                     | VRIJHOF 15M7 | r VRIJHOF 15MT | VRIJHOF 15MT | VRIJHOF 15MT | VRIJHOF 15MT          | VRIJHOF 15M7 | VRIJHOF 15MT | VRIJHOF 15MI      | VRIJHOF 15MT                  | VRIJHOF 15M |
| Length Each Joint:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /M. In Water W/Buoyancy:                                   | Pendent Size, Type                    |              |                |              |              |                       |              |              |                   |                               |             |
| Test Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . W/Buoyancy:                                              | Pendent Length                        |              | 0.0            | 0.0          | 0.0          | 0.0                   | 0.0          | 0.0          | 0.0               | 0.0                           | 0.0         |
| ### Fill Up Valve In System?*    Marking Tansien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gth Each Joint:                                            | Piggy Back, Type-W                    | īt.          |                |              |              |                       |              |              |                   |                               |             |
| Marking Tension   Marking Te | gth Of Pups:                                               | Test Tension                          |              | 0              | 0            | 0            | 0                     | 0            | 0            | 0                 | 0                             | 0           |
| RED To Valve:  Rechor Az 329.4 5.2 20.7 60.7 89.4 120.1 149.2 179.9 214.8 7  Dynamic Positioning System Description:  Note:  Note:  Make: SHAPFER - AIR/HDD NI, 69-00291 Number: 8 Capacity, Each: 80000  Make: HUGHES - DOUBLE PACKER  length:  Stroke: 55 FEET  Weight: Coverall Stack Reight:  Overall Stack Reight: 342.00  Nate: Tespich: 342.00  REG: WARDON DOUBLE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | er Fill-Up Valve In System?:                               | Working Tension                       |              | 0              | 0            | 0            | 0                     | 0            | 0            | 0                 | 0                             | 0           |
| Dynamic Positioning System Description:   Make:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | To Valve:                                                  | Anchor Az                             | 329.4        | 5.2            | 20.7         | 60.7         | 89.4                  | 120.1        | 149.2        | 179.9             | 214.8                         | 240.4       |
| SEPRET   Separate    | ******* Slip Joint ****** e:  HUGHES - DOUBLE PACKER       |                                       |              |                |              |              |                       |              |              |                   |                               |             |
| Weight: Overall Stack Height:  *******Measurements ******  RKB To Sea level:  25.00  Water Depth:  342.00  RKB To Wellhead:  367.00  Rig: BYFORD DOLPH  AFE No: KWENO-650631-001  Well ID: UB5908  Project No: 0 Page: 1 Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oke: 55 ppr                                                |                                       |              |                |              |              |                       |              |              |                   |                               |             |
| *******Measurements ******  RKB To Sea level: 25.00  Water Depth: 342.00  RKB To Wellhead: 367.00  Rig: BYFORD DOLPH  Rig: BYFORD DOLPH  AFE No: KWENO-650631-001  Well ID: UB5908  Project No: 0 Page: 1 Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            |                                       |              |                |              |              |                       |              |              |                   |                               |             |
| RKB To Sea level: 25.00  Water Depth: 342.00  RKB To Wellhead: 367.00  Rig: BYFORD DOLPH  Rig: BYFORD DOLPH  AFE No: KWENO-650631-001  Well ID: UB5908  Project No: 0 Page: 1 Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rall Stack Height:                                         |                                       |              |                |              |              |                       |              |              |                   |                               |             |
| Rig: BYFORD DOLPH Well ID: UB5908 Project No: 0 Page: 1 Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.00 ter Depth: 342.00                                    |                                       |              |                |              |              |                       |              |              |                   |                               |             |
| S BYFORD DOLPH (B5908 TESTED ) PAGE: I OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 367.00                                                     | +                                     | , n          | FF No: KWENO-6 | 550631-001   | Well II      | D:                    |              | Project No:  | 2                 | Degra: 1                      | o€ 0        |
| Drilling Rep:       Field:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P BYFORD DOLPH  lling Rep: ELKINS/HOLLINSHEAD Field: PL259 |                                       | Lease: PL259 |                |              |              | Well Number: 6506/3-1 |              |              | _                 | Page: 1 Of  Date: 17-JUL-2001 |             |

| ****** Riser ******                                                                               |                           |             |                    | ***    | **** Mooring Conf | iguration ***** | *             |                   |  |  |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------|-------------|--------------------|--------|-------------------|-----------------|---------------|-------------------|--|--|--|--|
| Make:<br>HUGHES - TYPE HMF 21" OD X 5/8" WALL X 50"                                               | Vessel Heading: 315.0 DEG |             |                    |        |                   |                 |               |                   |  |  |  |  |
| Size O.D.: 533.0                                                                                  | Line Number               | 11          | 12                 |        |                   |                 |               |                   |  |  |  |  |
| Wall Thickness: 50.8                                                                              | Size (Chain)              | 76.2        | 76.2               |        |                   |                 |               |                   |  |  |  |  |
| Steel Grade:                                                                                      | Length Deployed           | 1076.0      | 1011.0             |        |                   |                 |               |                   |  |  |  |  |
| Wt./M. In Air:                                                                                    | Size (Wire)               | 0.0         | 0.0                |        |                   |                 |               |                   |  |  |  |  |
| Wt./M. In Air W/Buoyancy:                                                                         | Length Deployed           | 0.0         | 0.0                |        |                   |                 |               |                   |  |  |  |  |
| Wt./M. In Water:                                                                                  | Anchor, Type, Wt.         |             | VRIJHOF 15MT       |        |                   |                 |               |                   |  |  |  |  |
| Wt./M. In Water W/Buoyancy:                                                                       | Pendent Size, Type        |             |                    |        |                   |                 |               |                   |  |  |  |  |
| O.D. W/Buoyancy:                                                                                  | Pendent Length            | 0.0         | 0.0                |        |                   |                 |               |                   |  |  |  |  |
| Length Each Joint:                                                                                | Piggy Back, Type-Wt       |             |                    |        |                   |                 |               |                   |  |  |  |  |
| Length Of Pups:                                                                                   | Test Tension              | 0           | 0                  |        |                   |                 |               |                   |  |  |  |  |
| Riser Fill-Up Valve In System?:                                                                   | Working Tension           | 0           | 0                  |        |                   |                 |               |                   |  |  |  |  |
| RKB To Valve:                                                                                     | Anchor Az                 | 270.0       | 300.8              |        |                   |                 |               |                   |  |  |  |  |
| Number: 8 Capacity, Each: 80000  ******* Slip Joint ******  Make: HUGHES - DOUBLE PACKER  Length: | Mooring Schematic         |             |                    |        |                   |                 |               |                   |  |  |  |  |
| Stroke: 55 FEET                                                                                   |                           |             |                    |        |                   |                 |               |                   |  |  |  |  |
| Weight:                                                                                           |                           |             |                    |        |                   |                 |               |                   |  |  |  |  |
| Overall Stack Height:                                                                             |                           |             |                    |        |                   |                 |               |                   |  |  |  |  |
| *******Measurements ******  RKB To Sea level: 25.00  Water Depth: 342.00  RKB To Wellhead: 267.00 |                           |             |                    |        |                   |                 |               |                   |  |  |  |  |
| 307.00                                                                                            |                           | 1           | DE NE LEURING CEGG | 1 001  | Well ID:          |                 | Project No: 0 |                   |  |  |  |  |
| Rig: BYFORD DOLPH                                                                                 |                           | 1 _         | FE No: KWENO-65063 | 2T-00T | UDS               | 908             | troject wo. 0 | Page: 2 Of 2      |  |  |  |  |
| rilling Rep: ELKINS/HOLLINSHEAD Field: PL259                                                      |                           | Lease: PL25 | 9                  |        | Well Number: 65   | 506/3-1         |               | Date: 17-JUL-2001 |  |  |  |  |

# Attachment 4.3.7 Daily Mud Properties 8-1/2" Section

Operator: CHEVRON Well: 6506/3-1 Rig: Byford Dolphin pH Pf Mf CI- TH Ca++ KCI Solids MBT HGS LGS Sand Glycol K+ FSR Date Depth MW T FV VG-meter readings @ 50C AV PV YP Gel Gel HTHP 600 300 200 100 60 30 6 3 10 sec10 min x 1000 m sg °C s/qt. rpm rpm rpm rpm rpm rpm rpm rpm rpm cP cP Pa Pa Pa ml

 36" Socion Security (Parts 1)

 37" Socion Security (Parts 1)

 38" Soci • ml ml kg/m3 mg/l mg/l kg/m3 % kg/m3 kg/m3 kg/m3 % % kg/m3 36" Section: Seawater / Bentonite 1 21-07 367 1.03 **2 22-07** 456 1.03 100+ 17 1/2" Section: Seawater / Bentonite **3 23-07** 459 1.03 100+ 4 24-07 1382 1.05 100+ **5 25-07** 1382 1.05 100+ 6 26-07 1382 1.05 100+ 7 27-07 1382 1.40 100+ **8 28-07 1382 1.40** 100+ 9 29-07 1382 1.44 100+ Minimun 1.03 0.00 0.00 Maximur 1.44 0.00 0.00 Average 1.20 #DIV/0! #DIV/0! Daily drilling properties FSR 1-9

# Mud Properties, daily record

Operator: Chevron Well: 6506/3-1 Rig: Byford Dolphin

| FSR | Date   | Depth   | MW   | т     | F.Vis   |       |       | VG-r          | neter | readings @  | 50 C   |     |     | ΑV | PV | ΥP           | Gel | Gel | ES    | Мр   | Excess | НТНР           | CaCl2 | WPS  | Solids | Oil   | Water | O/W   | Sand  | HGS   | LGS   |
|-----|--------|---------|------|-------|---------|-------|-------|---------------|-------|-------------|--------|-----|-----|----|----|--------------|-----|-----|-------|------|--------|----------------|-------|------|--------|-------|-------|-------|-------|-------|-------|
| no. | 2001   |         |      | Temp  |         | 600   | 300   | 200           | 100   | 60          | 30     | 6   | 3   |    |    | 10 sec10 min |     |     |       | Lime | 250°F  | 50°F Chlorides |       |      |        |       | RATIO |       |       |       |       |
|     |        | m       | sg   | οС    | s/qt.   | rpm   | rpm   | rpm           | rpm   | rpm         | rpm    | rpm | rpm | cР | cР | Pa           | Pa  | Pa  | volts | ml   | kg/m3  | ml             | kg/m3 | k Cl | vol %  | vol % | vol % | vol % | vol % | kg/m3 | kg/m3 |
|     | 8 1/2" | Section | : Ve | rsav  | ert - ( | Oil b | ased  | d sy          | stem  | 1           |        |     |     |    |    |              |     |     |       |      |        |                |       |      |        |       |       |       |       |       |       |
| 13  | 29-07  | 1382    | 1.44 | n/a   | 100+    | 119   | 71    | 55            | 37    | n/a         | n/a    | 14  | 12  | 60 | 48 | 11.5         | 7   | 9   | 531   | 2.1  | 7.6    | 2.6            | 129   | 83   | 20     | 56    | 24.0  | 70/30 | Trace | 609   | 125   |
| 14  | 30-07  | 1382    | 1.44 | n/a   | 100+    | 119   | 71    | 55            | 37    | n/a         | n/a    | 14  | 12  | 60 | 48 | 11.5         | 7   | 9   | 531   | 2.1  | 7.6    | 2.6            | 129   | 83   | 20     | 56    | 24.0  | 70/30 | Trace | 609   | 125   |
| 15  | 31-07  | 1409    | 1.44 | n/a   | 100+    | 123   | 75    | 57            | 39    | n/a         | n/a    | 15  | 12  | 62 | 48 | 13.5         | 8   | 1   | 629   | 2.8  | 10.4   | 3.0            | 168   | 108  | 20     | 56    | 24.0  | 70/30 | 0.75  | 574   | 140   |
| 16  | 01-08  |         | 1.51 | 27    | 100+    |       |       | 65            | 45    | n/a         | n/a    | 18  | 16  | 69 | 53 | 16.0         | 10  | 14  | 672   | 2.0  | 7.2    | 2.0            | 207   | 133  | 20     | 56    | 24.0  | 70/30 | Trace | 574   | 140   |
| 17  | 02-08  |         | 1.57 | 22    | 92      | 76    | 44    | 33            | 21    | n/a         | n/a    | 8   | 7   | 38 | 32 | 6.0          | 5   | 7   | 672   | 2.0  | 7.2    | 3.0            | 147   | 94   | 23     | 59    | 18.0  | 77/23 | 0.25  | 830   | 68    |
| 18  | 03-08  |         | 1.57 | 20    | 100+    | 107   |       | 50            | 34    | n/a         | n/a    | 13  | 11  | 54 | 40 | 13.5         | 7   | 10  | 704   | 2.5  | 9.3    | 2.2            | 172   | 110  | 23     | 57    | 20.0  | 74/26 | 0.20  | 798   | 82.4  |
| 19  | 04-08  |         | 1.57 | 35    | 95      | 111   |       | 54            | 37    |             | n/a    | 15  | 14  | 56 | 42 | 13.5         | 9   | 13  | 808   | 0.7  | 2.6    | 2.0            | 215   | 138  | 22.6   | 55.5  | 21.0  | 73/27 | 1.00  | 776   | 102   |
| 20  | 05-08  | 3101    |      |       | 95      | 104   |       | 50            | 33    |             | n/a    | 13  | 12  |    | 38 | 14.0         | 8   | 11  | 854   | 3.4  | 12.6   | 2.2            | 253   | 162  | 24     | 55    | 21.0  | 72/28 | 1.25  | 744   | 129   |
| 21  | 06-08  |         | 1.57 | 23    | 100+    |       |       | 55            | 38    |             | n/a    | 14  | 13  | 58 | 45 | 13.0         | 8   | 12  | 746   | 3.2  | 11.8   | 3.1            | 217   | 139  | 24.0   | 53.0  | 23.0  | 70/30 | 1.25  | 721   | 146   |
| 22  | 07-08  |         | 1.57 | 23    | 100+    |       |       | 53            | 37    |             | n/a    | 14  | 13  | 59 | 46 | 12.5         | 8   | 12  | 790   | 3.2  | 11.8   | 2.0            | 220   | 141  | 22.8   | 53.0  | 23.0  | 70/30 | 1.25  | 733   | 137   |
| 23  | 80-80  |         |      |       | 92      | 106   |       | 49            | 34    |             | n/a    | 14  |     | 53 | 41 | 12.0         | 8   | 11  | 770   | 3.2  | 11.8   | 2.0            | 296   | 190  | 24.0   | 55.0  | 21.0  | 72/28 | 1.50  | 763   | 110   |
| 24  | 09-08  |         | 1.60 | 35    | 80      | 90    | 53    | 40            | 27    |             | n/a    | 10  | 9   | 45 | 37 | 8.0          | 7   | 9   | 876   | 3.2  | 11.8   | 2.0            | 226   | 145  | 25.5   | 55.5  | 20.0  | 74/26 | 1.50  | 797   | 114   |
| 25  | 10-08  |         | 1.60 | n/a   | 80      | 90    | 53    | 40            | 27    |             | n/a    | 10  | 9   | 45 | 37 | 8.0          | 7   | 9   | 876   | 3.2  | 11.8   | 2.0            | 226   | 145  | 25.5   | 55.5  | 20.0  | 74/26 | 1.50  | 797   | 114   |
| 26  | 11-08  |         |      | n/a   | 83      | 90    | 53    | 40            | 27    |             | n/a    | 10  | 9   | 45 | 37 | 8.0          | 7   | 9   | 815   | 3.5  | 13.0   | 2.0            | 234   | 150  | 24.5   | 55.5  | 20.0  | 74/26 | 1.50  | 796   | 114   |
| 27  | 12-08  |         | 1.60 | 23    | 100+    | 91    | 55    | 42            | 27    |             | n/a    | 10  | 9   | 46 | 36 | 9.5          | 7   | 9   | 830   | 3.2  | 11.8   | 2.5            | 253   | 162  | 25.0   | 55.0  | 20.0  | 73/27 | 1.50  | 769   | 140   |
| 28  | 13-08  |         | 1.60 | 23    | 100+    | 91    | 55    | 42            | 27    |             | n/a    | 10  | 9   | 46 | 36 | 9.5          | 7   | 9   | 830   | 3.2  | 11.8   | 2.5            | 253   | 162  | 25.0   | 55.0  | 20.0  | 73/27 | 1.50  | 769   | 140   |
| 29  | 14-08  |         | 1.60 |       | 100+    |       | 55    | 42            | 27    |             | n/a    | 10  | 9   | 46 | 36 | 9.5          | 7   | 9   | 830   | 3.2  | 11.8   | 2.5            | 253   | 162  | 25.0   | 55.0  | 20.0  | 73/27 | 1.50  | 769   | 140   |
| 30  | 15-08  |         | 1.60 | 23    | 100+    |       | 55    | 42            | 27    |             | n/a    | 10  | 9   | 46 | 36 | 9.5          | 7   | 9   | 830   | 3.2  | 11.8   | 2.5            | 253   | 162  | 25.0   | 55.0  | 20.0  | 73/27 | 1.50  | 769   | 140   |
| 31  | 16-08  | 3667    | 1.60 | 23    | 100+    | 91    | 55    | 42            | 27    | n/a         | n/a    | 10  | 9   | 46 | 36 | 9.5          | 7   | 9   | 830   | 3.2  | 11.8   | 2.5            | 253   | 162  | 25.0   | 55.0  | 20.0  | 73/27 | 1.50  | 769   | 140   |
| ī   |        |         |      |       |         |       |       |               |       |             |        |     |     |    |    |              |     |     |       |      |        |                |       |      |        |       |       |       |       |       |       |
|     |        | Minimum |      | 20    | 00      | 70    | 4.4   | 22            | 04    | 0           | ^      |     | 7   | 20 | 20 | _            | _   | ,   | 504   | ,    | 2      | 0              | 400   | 00   | 00     | 50    | 40    | 70/20 | 0     | F74   | CO    |
|     |        | Minimun |      | 20    | 80      | 76    | 44    | 33            | 21    | 0           | 0      | 8   | 1   | 38 | 32 | 6            | 5   | 1   | 531   | 1    | 3      | 2              | 129   | 83   | 20     | 53    | 18    | 70/30 | 0     | 574   | 68    |
|     |        | Maximur |      |       | 95      | 138   |       | 65            | 45    | #DDV//OL #F | 0      | 18  | 16  | 69 | 53 | 16           | 10  | 14  | 876   | 4    | 13     | 3              | 296   | 190  | 26     | 59    | 24    | 74/26 | 2     | 830   | 146   |
|     |        | Averag€ | 1.56 | 26    | 88      | 103   | 63    | 48            | 32    | #DIV/0! #E  | OIV/0! | 12  | 11  | 52 | 41 | 11           | 7   | 10  | 759   | 3    | 10     | 2              | 216   | 138  | 23     | 55    | 21    | 72/28 | 1     | 735   | 123   |
|     |        |         |      | Daily | drillin | g pro | perti | i <u>es</u> F | SR 13 | -31         |        |     |     |    |    |              |     |     |       |      |        |                |       |      |        |       |       |       |       |       |       |

# Attachment 4.3.8 BHA Summary Records

#### CHEVRON

### BHA Data Report

Page: 1 of 1 23-OCT-2001

PROJECT UB5908-0 WELL NAME: DONNA WEST PROSPECT FIELD: PL259

|         |                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Metric)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010011 | Depth<br>Out<br>(MD)                                                 | Total<br>BHA<br>Length                                                                                                            | BHA<br>Type<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RHA Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 366.0   | 456.0                                                                | 232.87                                                                                                                            | НО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.1/2" SMITH DGJ ROCK BIT - 26" X 36" H/OPENER - BIT SUB C/W FLOAT - ANDERDRIFT - 3 X 9.1/2" DC - X/OVER - 3 X 8" DC - X/OVER - 3 X 5" HWDP - 6.1/2" WEIR HOUSTON JARS - 14 X 5" HWDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 456.0   | 456.0                                                                | 229.68                                                                                                                            | SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26" HUGHES GTXCMG1 ROCK BIT - BIT SUB C/W FLOAT - ANDERDRIFT - 3 X 9.1/2" DC - X/OVER - 3 X 8" DC - X/OVER - 3 X 5" HWDP - 6.1/2" WEIR HOUSTON JARS - 14 X 5" HWDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 456.0   | 1382.0                                                               | 245.36                                                                                                                            | PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.1/2" HUGHES MXC-1 ROCK BIT - 8.1/2" NB STAB C/W FLOAT - 2.6M X 6.1/2" PONY DC - 8.1/2" STRING STAB - CDR - 8.3/8" IN LINE<br>STAB - MWD - 9.3M X 6.1/2" NMDC - 5 X 6.1/2" STEEL DC - 3 X 5" HWDP - 6.1/2" WEIR HOUSTON JARS - 14 X 5" HWDP                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1382.0  | 1382.0                                                               | 233.50                                                                                                                            | НО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BULLNOSE - 12.1/4" HOLE OPENER - 17.1/2" HOLE OPENER - BIT SUB C/W FLOAT - ANDERDRIFT - 3 X 9.1/2" DC - X/OVER - 3 X 8" DC - X/OVER - 3 X 5" HWDP - 6.1/2" WEIR HOUSTON JARS - 14 X 5" HWDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1382.0  | 1382.0                                                               | 234.36                                                                                                                            | НО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BULLNOSE - BIT SUB - PIN X PIN SUB - X/OVER - 17.1/2" HOLE OPENER - BIT SUB (C/W FLOAT) - ANDERDRIFT - 3 X 9.1/2" DC - X/OVER - 3 X 8" DC - X/OVER - 3 X 5" HWDP - 6.1/2" WEIR HOUSTON JARS - 14 X 5" HWDP                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1382.0  | 3101.6                                                               | 262.12                                                                                                                            | DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 1/2" ABD536PH PDC BIT - NB STAB C/W FLOAT - 6 1/2" PONY DC, 8 1/2" NM-STAB - CDR - 8 3/8" ILS - IOSONIC MWD SUB - MWD - 7* 6<br>1/2" DC - 9X 5" HWDP - 6 1/2" JARS - 8X 5" HWDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3101.5  | 3171.4                                                               | 298.23                                                                                                                            | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 1/2"-4" FC274 DBS CORE HEAD - 76M OUTER COREBARRELS (73M RECOVERABLE CORE) - 6*6 1/2" DC - 9X 5" HWDP - 6 1/2" JARS - 8X 5" HWDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3171.5  | 3667.0                                                               | 254.65                                                                                                                            | DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.1/2" BD445HA PDC BIT - NB STAB C/W FLOAT - 6.1/2" PONY DC - 8.1/2" NM STAB - CDR - 8.3/8" ILS - MWD - 7 X 6.1/2" DC - 9 X 5"<br>HWDP - 6.1/2" JARS - 8 X 5" HWDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3171.5  | 3667.0                                                               | 253.66                                                                                                                            | OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.1/2" BD445HA PDC BIT - NB STAB (C/W FLOAT) - 6.1/2" DC - 8.1/2" STRING STAB - 5 X 6.1/2" DC - 12 X 5" HWDP - 6.1/2" JARS - 8 X 5" HWDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3171.5  | 3667.0                                                               | 444.04                                                                                                                            | OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MULE SHOE - 47 X JNTS 3.1/2" PH-6 TUBING - X/OVER TO 4.1/2" IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3171.5  | 3667.0                                                               | 262.45                                                                                                                            | FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BULLNOSE - CASING CUTTER ASSY - DRILLEX MOTOR & MOST TOOL ASSY - 3 X 8" DRILL COLLARS - X/OVER - 6.1/2" DRILL COLLAR - 8.1/2" STRING STAB - 5 X 6.1/2" DRILL COLLARS - 18 X 5" HWDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | In (MD)  366.0  456.0  456.0  1382.0  1382.0  3101.5  3171.5  3171.5 | Depth Out (MD)  366.0 456.0  456.0 456.0  456.0 1382.0  1382.0 1382.0  1382.0 3101.6  3101.5 3171.4  3171.5 3667.0  3171.5 3667.0 | Depth In (MD)         Out (MD)         BHA Length           366.0         456.0         232.87           456.0         456.0         229.68           456.0         1382.0         245.36           1382.0         1382.0         233.50           1382.0         1382.0         234.36           1382.0         3101.6         262.12           3101.5         3171.4         298.23           3171.5         3667.0         254.65           3171.5         3667.0         444.04 | Depth In (MD)         Out (MD)         BHA Length Code         Type Code           366.0         456.0         232.87         HO           456.0         456.0         229.68         SL           456.0         1382.0         245.36         PH           1382.0         1382.0         233.50         HO           1382.0         1382.0         234.36         HO           1382.0         3101.6         262.12         DR           3101.5         3171.4         298.23         CO           3171.5         3667.0         254.65         DR           3171.5         3667.0         253.66         OT           3171.5         3667.0         444.04         OT |

# Attachment 4.3.9 Bit Record

(Metric) Bit Record

| CH | EV | RO: | N |
|----|----|-----|---|
|    |    |     |   |

|                                                   | RON              |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            |                                                      |                                 |                               |                                        |                                |                          |          |                                   |                     | (MECLIC        | ) BIC Recor |
|---------------------------------------------------|------------------|----------------|-------|-------|--------------|--------------|-------------------|-----|------------------------------------------------------------------------------------|---------------|-------------------|--------------------------------------------|------------------------------------------------------|---------------------------------|-------------------------------|----------------------------------------|--------------------------------|--------------------------|----------|-----------------------------------|---------------------|----------------|-------------|
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            |                                                      |                                 |                               | В                                      | it Grad                        | ding                     |          |                                   |                     |                |             |
|                                                   | Serial<br>Number | Date<br>Pulled | Size  | Make  | Type         | IADC<br>Code | Jets (mm) 1 2 3 4 | 5   | TFA                                                                                | Depth<br>POOH | Meters<br>Drilled | Total Avg<br>Bit Rate/ Av<br>Hours Hour WC | g Avg<br>B RPM                                       | Avg Mud<br>Pump Wt.<br>PRS KG/M | Bit<br>3 KW                   | Bit<br>HHP Mud<br>SQIN <sub>M3PM</sub> | e e l<br>r r<br>R R C<br>o o h | c a<br>a r<br>t i<br>i n | g a      | R e a s o n P u l Tri e Tir d Hrs | ip<br>ne<br>s Angle | Cost/<br>Meter | Remarks     |
| 49                                                | 9335             | 22-JUL-2001    | 444.5 | SMITH | DGJ          | 1-3-1        | 22.2              |     | 1161                                                                               | 456.0         | 90.0              | 5.5 0.000 4.                               | 5 80                                                 | 140 1031                        | 248.50                        | 1.4 5.02                               | 0 0 NC                         | A7 E                     | I NO I   | D 1.                              | 0 3.50              | 9747.64        |             |
| 39                                                | 9252             | 22-JUL-2001    | 914.4 | 1PE   | 26" X 36" HO | )            | 14.3              |     | 961                                                                                | 454.0         | 0.0               | 0.0 0.000 4.                               | 5 80                                                 | 140 1031                        | 362.20                        | 0.5 5.02                               | 0 0 100                        | A7 E                     | I ON I   | 'n 1.                             | 0 3.50              | 0.00           |             |
| D9                                                | 92DM53           | 23-JUL-2001    | 660.4 | HUGHE | GTXCMG1      | 1-1-5        | 19.1 15.9         |     | 877                                                                                | 456.0         | 0.0               | 0.0 0.000 11                               | . 50                                                 | 122 1031                        | 333.20                        | 0.6 4.60                               | 1 1 WI                         | A7 E                     | I ON I   | 'n 1.                             | 0 3.50              | 0.00           |             |
| W2                                                | 97ZS :           | 24-JUL-2001    | 215.9 | HUGHE | MXC-1        | 1-1-7        | 7 11.1 12.7       |     | 445                                                                                | 1382.0        | 926.0             | 15.0 61.720 7.                             | 0 150                                                | 197 1031                        | 413.20                        | 7.3 3.15                               | 8 5 WI                         | A7 E                     | 1/8 ER T | 'n 2.                             | 0 4.50              | 78.28          |             |
| 17                                                | 752012           | 26-JUL-2001    | 444.5 | IPE   | 17.1/2" H/O  |              | 22.2 9.5 14.3     |     | 1561                                                                               | 1382.0        | 0.0               | 16.0 0.000 5.                              | 0 150                                                | 153 1031                        | 74.60                         | 0.3 4.10                               | 8 8 WI                         | A7 4                     | 3/4 ER T | 'n 4.                             | 0 4.50              | 0.00           |             |
|                                                   |                  | 27-JUL-2001    | 444.5 | IPE   | 17.1/2" H/O  |              | 22.2 14.3         |     | 871                                                                                | 1382.0        | 0.0               | 0.0 0.000 5.                               | 0 150                                                | 152 1400                        | 160.90                        | 0.7 3.23                               | 1 1 WI                         | A7 E                     | IN NO T  | 'n 4.                             | 0 4.00              | 0.00           |             |
| 12                                                | 213767           | 05-AUG-2001    | 215.9 | HUGHE | ABD536PH     |              | 14.3              |     | 639                                                                                | 3101.5        | 1719.5            | 54.5 31.550 6.                             | 0 180                                                | 286 1570                        | 139.10                        | 2.5 2.42                               | 3 5 CI                         | A7 X                     | IN BT C  | P 8.                              | 0 2.00              | 5300.72        |             |
|                                                   |                  | 07-AUG-2001    | 215.9 | S-DBS | FC274        |              |                   |     | 0                                                                                  | 3171.5        | 70.0              | 7.5 9.330 12                               | . 100                                                | 129 1570                        | 0.00                          | 0.0 1.05                               | 7 3 LI                         | XN X                     | IN JD F  | R 12.                             | 0 2.00              | 34821.2        |             |
| 03                                                | 323129           | 10-AUG-2001    | 215.9 | HUGHE | BD445HA      | M333         | 15.9              |     | 794                                                                                | 3667.0        | 495.5             | 19.0 26.090 5.                             | 5 180                                                | 276 1600                        | 84.40                         | 1.5 2.34                               | 1 1 WI                         | XA X                     | IBTI     | D 14.                             | 0 1.90              | 8324.90        |             |
| R1 03                                             | 323129           | 12-AUG-2001    | 215.9 | HUGHE | BD445HA      | M333         | 15.9 0.0 0.0 0.0  | 0.0 | 794                                                                                | 3667.0        | 0.0               | 0.0 0.000 5.                               | 5 180                                                | 276 1600                        | 84.40                         | 1.5 2.34                               | 1 1 WI                         | XA X                     | I BT T   | 'n 14.                            | 0 1.90              | 0.00           |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            |                                                      |                                 |                               |                                        |                                |                          |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            |                                                      |                                 |                               |                                        |                                |                          |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            |                                                      |                                 |                               |                                        |                                | + + +                    |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            | -                                                    |                                 |                               |                                        |                                |                          |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            |                                                      |                                 |                               |                                        |                                | + + +                    |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            |                                                      |                                 |                               |                                        |                                | + + +                    |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            |                                                      |                                 |                               |                                        | +                              | +++                      |          | -                                 |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            |                                                      |                                 |                               |                                        |                                | + + +                    |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            | +                                                    |                                 |                               |                                        | +                              | + + +                    |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            |                                                      |                                 |                               |                                        |                                |                          |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            |                                                      |                                 |                               |                                        | +                              | ++                       |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            | 1                                                    |                                 |                               |                                        |                                | ++                       |          |                                   |                     |                |             |
| _                                                 |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            | -                                                    |                                 |                               |                                        | +                              | ++                       |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              |              | + + + + -         |     |                                                                                    |               |                   |                                            | +                                                    |                                 |                               |                                        | +                              | +++                      |          | -                                 |                     |                |             |
|                                                   |                  |                |       |       |              |              |                   |     |                                                                                    |               |                   |                                            | 1                                                    |                                 |                               |                                        |                                | ++                       |          |                                   |                     |                |             |
|                                                   |                  |                |       |       |              | -            |                   |     |                                                                                    |               |                   |                                            | AFE No: KWENO-650631-001 Well ID: UB5908 Project No: |                                 |                               |                                        |                                | ct No:                   | _        | 70: 1 05 -                        |                     |                |             |
| rilling Rep: MOORE/BJORHEIM/MH Field: PL259 Lease |                  |                |       |       |              |              |                   |     | AFE No: KWENO-650631-001   Well ID: UB5908   Project No:     Well Number: 6506/3-1 |               |                   |                                            | CC 1W.                                               | <u> </u>                        | ge: 1 Of 1<br>te: 30-AUG-2001 |                                        |                                |                          |          |                                   |                     |                |             |

# Attachment 4.3.11 Casing Details

| Onty Description                                                                              | Size(O.D.) Weigh  | nt Grade  | Threads | Length     | IMILITORION STAVARGER TORMAL |                                                                 |                                                                             |                |                             |               |                     |              |              |                            |            |                        |
|-----------------------------------------------------------------------------------------------|-------------------|-----------|---------|------------|------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|----------------|-----------------------------|---------------|---------------------|--------------|--------------|----------------------------|------------|------------------------|
| 1 30" SHOE                                                                                    | 762.0 312.        |           |         | 0.50       |                              | First Stage                                                     |                                                                             |                |                             |               | on Time & cementing |              | .00 Hrs @    | 1.90M3PM Return            | n(Full/Par | tial): <sub>FULL</sub> |
| 1 30" SHOE JOINT                                                                              | 762.0 312.        |           | SL-60   | 12.13      |                              | Cement Type                                                     |                                                                             | No.            | Pump Time                   | Yield         | Weight              | (KG/M3)      | Mix Water    | Comp. Streng               | h WL       | Free                   |
| 1 30" INTERMEDIATE JOINT                                                                      | 762.0 312.        | 00        | SL-60   | 12.18      |                              |                                                                 |                                                                             | Tonnes         | time @ temp                 | cu.m./ton     | est.                | actual       | m3/tonne     |                            | hrs cc     | water %                |
| 1 30" INTERMEDIATE JOINT                                                                      | 762.0 312.        | 00        | SL-60   | 12.21      |                              |                                                                 | SLURRY<br>SLURRY                                                            | 26.40<br>24.50 | 7.7 Hrs @ 8<br>3.9 Hrs @ 80 | 1.29<br>0.78  | 1560<br>1920        | 1570<br>1920 | 0.98         |                            | 5.03       | 0 0.00                 |
| 1 30" INTERMEDIATE JOINT                                                                      | 762.0 312.        | 00        | SL-60   | 12.19      |                              |                                                                 |                                                                             | 1              | NOLITE, 0.1 LT/100          |               |                     |              | 1            |                            |            | 0.00                   |
| 1 30" INTERMEDIATE JOINT                                                                      | 762.0 312.        | 00        | SL-60   | 12.21      |                              |                                                                 |                                                                             | / TOUKG ECC    | NOLITE, U.I LITTU           | UKG HF-6, 95. | 0 / 11/100          | KG SEAWAT    | EK.          | Additives<br>liquid/blende |            |                        |
| 1 30" X/OVER JOINT - 1.5" WI                                                                  | 762.0 456.        | 00        | HD-90   | 12.31      |                              | Tail Cement Ad                                                  | ditives: 4.35 L                                                             | T/100KG C      | CL2, 0.1 LT/100KG           | HF-6, 42.07   | LT/100KG            | SEAWATER.    |              | Additives<br>liquid/blende | d: YES /   | NO                     |
| 1 30" LP HSG JOINT - 1.5" WI                                                                  | 762.0 456.        | 00        | HD-90   | 13.12      |                              | Spacer Type:SE                                                  |                                                                             |                |                             | 90.0 Weigh    |                     |              | 0 YP: (      | Compatibility              | Test Run?  | :                      |
|                                                                                               |                   |           |         |            |                              | *                                                               | ement Rate: 1.4                                                             |                |                             | d With (Cemer |                     |              | 1            | Estimated TOC              | 366.       | 00                     |
| Liner Hanger(If Applicable):                                                                  |                   |           |         |            |                              | Cement Returns                                                  | ?(Y/N): <sub>YES</sub> Ear                                                  | ly Returns     | ?(Y/N): NO Est.             | Tonnes Circu  | ılated: 50          | . 90 Numb    | er of Plugs  |                            | Bumped?(   |                        |
| Total Pipe Installed:                                                                         |                   |           |         | 86.85      |                              | Second Stage                                                    | DV Tool Locate                                                              | d @:           | MD                          |               | on Time & cementing |              | Hrs @        | M3PM Return                | (Full/Par  | cial):                 |
| Less Cutoff Piece(s) and Landing J                                                            | oints:            |           |         | 0.00       |                              | Cement Type                                                     |                                                                             | No.            | Pump Time                   | Yield         |                     | (KG/M3)      | Mix Water    | Camp. Strengt              | h WL       | Free                   |
| DP To land Liner(If Applicable) TO                                                            | L @:              |           |         | 364.15     |                              |                                                                 |                                                                             | Tonnes         | time @ temp                 | cu. m./ton    | est.                | actual       | m3/tonne     |                            | hrs cc     | water %                |
| Plus KBE (One Ft. Above Rotary To                                                             | last CHF):        |           |         |            |                              | Lead                                                            |                                                                             |                | Hrs. @                      |               |                     |              |              |                            |            |                        |
|                                                                                               |                   |           |         |            |                              | Tail                                                            |                                                                             |                | Hrs. @                      |               |                     |              |              |                            |            |                        |
| Casing Set @: 451.00 TVD MD Total: 451.00 Lead Cement Additives:  Additives / liquid/blended: |                   |           |         |            |                              |                                                                 |                                                                             |                |                             |               |                     |              |              |                            |            |                        |
| Last Casing Size: @                                                                           | MD Hole Siz       | ze: 91    | 4.4 @   | 454.00     | MD                           | Tail Cement Additives:  Additives   Additives   liquid/blended: |                                                                             |                |                             |               |                     |              |              |                            |            |                        |
| Hole Volume From Caliper Log:                                                                 | м3                |           |         |            |                              | Spacer Type:                                                    |                                                                             |                | Volume:                     | Weigh         | ıt.:                | PV:          | YP:          | Compatibility              |            | :                      |
| Mud Properties Prior To Cementing:                                                            | WT: 1031 Type:    | SEAWATER  |         |            |                              | Cement Displac                                                  | Cement Displacement Rate: Displaced With (Cement Unit/Pump): Estimated TOC: |                |                             |               |                     |              |              |                            |            |                        |
| FV: 0 PV: 0 Y                                                                                 | YP: 0.0           | Gels: 0.0 | /0.0 WL | ı <b>:</b> | 0.0                          | Cement Returns                                                  | ?(Y/N): Ear                                                                 | ly Returns     | ??(Y/N): Est.               | Tonnes Circu  | ılated:             | Numb         | er of Plugs  | Used: Plug                 | Bumped?(   | 7/N):                  |
| HTHP WL: 0.0 Solids: %                                                                        | ≷ Oil: 0.00 S     | Sand:     | Hq      | [:         |                              | Remarks: CIRC                                                   | 97M3 OF SEAWAT                                                              | ER W/ RIG      | PUMPS @ 1955 LPM E          | PRIOR TO CEME | NT JOB. B           | REAK CIRC    | W/ CEMENT U  | NIT & P/TEST L             | NES 200 B  | R / 5 MIN.             |
| PM: 0 CL: 0                                                                                   | Ca: >             | KLime:    | El      | ec Stab:   |                              | MIX                                                             | & PUMP 34.1M3 O                                                             | F 1.56SG I     | EAD SLURRY USING 2          | 26.4MT OF CLA | SS 'G' CE           | MENT & 25    | .9M3 OF MIXW | ATER.                      |            |                        |
| Casing Reciprocation?: NO I                                                                   | Length of Stroke: |           | Time:   | Hrs        |                              | LEAI                                                            | MIXWATER - 3.2                                                              | LT/100KG       | ECONOLITE, 0.1 LT/          | /100KG NF-6 & | 95.07 LT            | /100KG OF    | SEAWATER. P  | UMP @ 1.3M3/MI             | , 36 BAR.  |                        |
| Casing Rotated?: NO                                                                           |                   |           |         |            |                              | MIX                                                             | & PUMP 19.0M3 O                                                             | F 1.93SG T     | AIL SLURRY USING 2          | 24.5MT OF CLA | SS 'G' CE           | MENT & 11    | .4M3 OF MIXW | ATER.                      |            |                        |
| Number of O / 0 Tentralizers/Wipers:                                                          | Гуре:             |           | /       |            |                              | TAII                                                            | MIXWATER - 4.3                                                              | 5 LT/100KG     | CACL2, 0.1 LT/100           | OKG NF-6,& 42 | .07 LT/10           | OKG OF SEA   | AWATER. PUMP | @ 0.8M3/MIN, 2             | 7 BAR.     |                        |
| Spacing:                                                                                      |                   |           |         |            |                              | CLEA                                                            | AR LINES W/ 0.2M                                                            | 3 OF SEAWA     | TER FROM CEMENT UN          | NIT, DROP DP  | WIPER DAR           | r & Follo    | w w/ 0.5m3 s | EAWATER FROM RI            | G PUMPS. 1 | DISPLACE               |
| _                                                                                             |                   |           |         |            |                              | REMA                                                            | AINDER OF CEMENT                                                            | TO LEAVE       | 5M ABOVE SHOE W/ 9          | 9.0M3 SEAWATE | R FROM CE           | MENT UNIT    | @ 1.4M3/MIN  | , 29 BAR.                  |            |                        |
|                                                                                               |                   |           |         |            |                              | FINA                                                            | AL DISPLACEMENT                                                             | PRESS @ 0.     | 2M3/MIN = 10 BAR.           |               |                     |              |              |                            |            |                        |
|                                                                                               |                   |           |         |            |                              | CEME                                                            | ENT IN PLACE @ 1                                                            | 9:33 HRS.      |                             |               |                     |              |              |                            |            |                        |
|                                                                                               |                   |           |         |            |                              | WAIT                                                            | ON CEMENT FOR                                                               | 5 HRS BEFC     | RE SLACKING OFF &           | BACKING OUT   | RUNNING TO          | OOL.         |              |                            |            |                        |
|                                                                                               |                   |           |         |            |                              |                                                                 |                                                                             |                |                             |               |                     |              |              |                            |            |                        |
|                                                                                               |                   |           |         |            |                              | TIH                                                             | WITH 26" CLEAN-                                                             | OUT ASSY A     | ND TAGGED CEMENT A          | AT 446M (AS E | STIMATED)           |              |              |                            |            |                        |
|                                                                                               |                   |           |         |            |                              |                                                                 |                                                                             |                |                             |               |                     |              |              |                            |            |                        |
|                                                                                               |                   |           |         |            |                              |                                                                 |                                                                             | п              |                             |               | 11                  |              |              |                            |            |                        |
|                                                                                               |                   |           |         |            |                              |                                                                 |                                                                             | Rig Nar        | ne:                         |               | AFE N               | o: KWENO     | -650631-001  |                            | Page:      |                        |
|                                                                                               | Field             |           |         |            |                              |                                                                 |                                                                             |                |                             |               |                     |              |              |                            |            | -JUL-2001              |

| Onty Description Size(O.D.) Weight Grade Threads Length Ref# Cement Company: UNITED TON Yard Location: |            |                          |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |            |                  |                            |                         |              |              |                                       |                       |           |  |
|--------------------------------------------------------------------------------------------------------|------------|--------------------------|----------|-----------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------|------------------|----------------------------|-------------------------|--------------|--------------|---------------------------------------|-----------------------|-----------|--|
| Onty Description                                                                                       | Size(O.D.  | Weight Grade             | Threads  | Length          | Ref‡                               | TALLIBORION AND THE PROPERTY OF THE PROPERTY O |                                          |            |                  |                            |                         |              |              |                                       |                       |           |  |
| 1 13 3/8" SUPER SEAL FLOAT SHOE                                                                        | 339.7      | 107.15 L80               | BIC      | 0.53            | 1                                  | First Stag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | е                                        |            |                  |                            | ion Time &<br>cementing |              | .00 Hrs @    | 3.00M3PM Return                       | (Full/Part            | ial):     |  |
| 1   13   3/8" CSG JNT W/ CENTRALISER                                                                   | 339.7      | 107.15 L80               | BIC      | 12.13           |                                    | Cement Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pe                                       | No.        | Pump Time        | Yield                      | Weight                  | (KG/M3)      | Mix Water    | Comp. Strengt                         |                       | Free      |  |
| 1 13 3/8" SUPER SEAL II F/C                                                                            | 339.7      | 107.15 L80               | BTC      | 0.37            |                                    | T 3 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | Tonnes     | time @ temp      |                            | est.                    | actual       | m3/tonne     | kPa @                                 | hrs cc                | water %   |  |
| 1 13 3/8" CSG JNT                                                                                      | 339.7      | 107.15 L80               | BTC      | 12.34           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JEAD - CLASS G CMT<br>TAIL - CLASS G CMT | 100.00     | 5.3 Hrs @ 8      | 86 1.30<br>86 0.75         | 1560<br>1920            | 1560<br>1920 | 0.99         | 630 1                                 | 2.00                  | 0 0.00    |  |
| 5 13 3/8" CSG JNT W/ CENTRALISER                                                                       | 339.7      | 107.15 L80               | BTC      | 60.10           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t Additives: ALL IN                      |            |                  |                            |                         |              | 0.11         | Additives<br>liquid/blended           |                       |           |  |
| 75   13   3/8"   CSG JNT                                                                               | 339.7      | 107.15 L80<br>107.15 L80 | BIC      | 895.60<br>12.30 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t Additives: 0.1 LT                      |            |                  |                            |                         |              |              |                                       |                       |           |  |
| 1 13 3/8" CSG PUP JNT                                                                                  | 339.7      | 107.15 L80               | BTC      | 3.10            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | R/ TOOKG N |                  |                            |                         | D11.         |              | Additives liquid/blende               | 1: 115 / 1            |           |  |
| 1 13 3/8 CSG PUP UNI                                                                                   | 339.7      | 107.13 1.80              | ыс       | 3.10            |                                    | Spacer Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e:<br>placement Rate: 3.2                |            | Volume           | e: Weight aced With (Ceme: |                         | DA:          | YP:          | Compatibility Estimated TOC           |                       |           |  |
| Time The way (TE Per li mala ) 10 0 0 4 m                                                              | 15         |                          | ·        | 10.00           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |            |                  |                            |                         |              |              |                                       | 366.0                 |           |  |
| Liner Hanger(If Applicable):18 3/4",                                                                   | 15K DRIL   | QUIP TYPE SS-15          | HPWH     | 13.07           |                                    | Cement Ret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | urns?(Y/N):YES Ear                       |            |                  |                            |                         |              |              | Used: 1 Plug                          |                       | 1.0       |  |
| Total Pipe Installed:                                                                                  |            |                          |          | 1009.54         |                                    | Second Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ge DV Tool Locate                        | d @:       | MD               |                            | ion Time &<br>cementing |              | Hrs @        | M3PM Return                           | Return(Full/Partial): |           |  |
| Less Cutoff Piece(s) and Landing Joi                                                                   |            |                          |          |                 |                                    | Cement Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pe                                       | No.        | Pump Time        | Yield                      |                         | t(KG/M3)     | Mix Water    | Comp. Strengt                         | h WL                  | Free      |  |
| DP To land Liner(If Applicable) TOL                                                                    | @:         |                          |          | 364.77          |                                    | _ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | Tonnes     | time @ temp      | cu.m./ton                  | est.                    | actual       | m3/tonne     | kPa @                                 | hrs cc                | water %   |  |
| Plus KBE (One Ft. Above Rotary To la                                                                   | st CHF):   |                          |          |                 |                                    | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |            | Hrs. @           |                            |                         |              |              |                                       |                       | +         |  |
|                                                                                                        |            |                          |          |                 | 1                                  | Tail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |            | Hrs. @           |                            |                         |              |              |                                       |                       |           |  |
|                                                                                                        | .30 MD     |                          | Total:   | 1,374.31        |                                    | Lead Cemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t Additives:                             |            |                  |                            |                         |              |              | Additives<br>liquid/blended           | : /                   |           |  |
| Last Casing Size: 762.0 @ 45                                                                           | 1.0 MD HO  | ole Size: 44             | 4.5 @    | 1379.00         | MD                                 | Tail Cemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t Additives:                             |            |                  |                            |                         |              |              | Additives<br>liquid/blended           | . /                   |           |  |
| Hole Volume From Caliper Log:                                                                          | М3         |                          |          |                 |                                    | Spacer Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e:                                       |            | Volume           | e: Weigh                   | nt:                     | PV:          | YP:          | Compatibility                         |                       |           |  |
| Mud Properties Prior To Cementing: W                                                                   | T: 0       | Type:                    |          |                 |                                    | Cement Disp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | placement Rate:                          |            | Displa           | aced With (Ceme            | nt Unit/Pu              | ump):        |              | Estimated TOC                         |                       |           |  |
| FV: 0 PV: 0 YP                                                                                         | : 0.       | 0 Gels: 0.0              | /0.0 WI  | <b>.:</b>       | 0.0                                | Cement Ret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | urns?(Y/N): Ear                          | ly Return  | s?(Y/N): Es      | st. Tonnes Circ            | ulated:                 | Numb         | er of Plugs  | Used: Plug                            | Bumped?(Y/            | N):       |  |
| HTHP WL: 0.0 Solids: % (                                                                               | Oil:       | 0.00 Sand:               | pН       | ı:              |                                    | Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 1/2" PILOT HOLE W                      | AS DRILLEI | FROM 456 TO 13   | 882M USING SEAWA           | ATER AND H              | II-VIS SWEE  | EPS; THEN, I | HE HOLE WAS OPE                       | NED USING A           | . 2-STAGE |  |
| PM: 0 CL: Ca                                                                                           | :          | XLime:                   | El       | ec Stab:        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 1/4" X 17 1/2" H                      | OLE OPENER | R ASSY (TD 17 1/ | /2" HOLE 1379M)            | HOLE WAS                | DISPLACE     | D TO 1.2 SG  | MUD; POOH W/ +/                       | - 10MT DRAG           | ; F/      |  |
| Casing Reciprocation?: NO Ler                                                                          | ngth of St | troke:                   | Time:    | Hrs             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1382 TO 780M - NO W                      | IPER TRIP  | WAS PERFORMED;   | BOTH THE 12 1/4            | 4" AND 17               | 1/2" HOLE    | OPENER WERE  | COMPLETELY WOR                        | N                     |           |  |
| Casing Rotated?: NO                                                                                    |            |                          |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RAN 13 3/8" CASING                       | TO 727M WE | HEN 15MT DRAG WA | AS NOTICED; CONT           | TO RUN C                | SG TO 810N   | M            |                                       |                       |           |  |
| Number of Centralizers/Wipers: 6 / 1 Type                                                              | pe: 17 1/2 | " BOWSPRING              | / SS REL | EASABLE         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT 810M, ROV OBSERV                      | ED CASING  | BEING BUCKLED A  | AT 2 PLACES (FIR           | RST ONE AT              | WELLHEAD)    | ) WITH CASIN | G LAYING ON THE                       | SEABED                |           |  |
| Spacing: IN CENTRE OF SHOEJNT & 1ST I                                                                  | FIVE JNTS  | ABOVE SHOETRAC           | K        |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POOH & L/D CASING -                      | 10 JOINTS  | REJECTED OF WH   | HICH 2 JNTS CRIM           | MPED; MOVE              | D RIG OFF    | WELL CENTRE  | ONCE SHOE CLEA                        | R OF WELLHE           | AD        |  |
|                                                                                                        |            |                          |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |            |                  |                            |                         |              |              |                                       |                       |           |  |
|                                                                                                        |            |                          |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIH W/ 17 1/2" HOLE                      | OPENER AS  | SSY; AT 535M, HO | LE TOOK WEIGHT             | ; WASH & R              | EAM F/ 535   | 5 TO 1382M W | / 150 RPM, 3234                       | LPM, 152 B            | AR        |  |
|                                                                                                        |            |                          |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISPLACED HOLE TO 1                      | .4 SG KCL  | MUD              |                            |                         |              |              |                                       |                       |           |  |
|                                                                                                        |            |                          |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · • •                                    |            |                  |                            |                         |              |              |                                       |                       | -         |  |
|                                                                                                        |            |                          |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RAN 996M OF 13 3/8"                      | 339.7MM T  | 180 BTC CASING ( | NOT SUFFICIENT             | SEALS ON                | LOCATION F   | FOR REPLACEM | ENT) — REMOVED                        | DAMAGED CEN           | TRALISERS |  |
|                                                                                                        |            |                          |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MONITORED CASING EN                      |            | ,                |                            |                         |              |              | · · · · · · · · · · · · · · · · · · · |                       |           |  |
|                                                                                                        |            |                          |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M/U 18 3/4" HPWH ANI                     | D RAN CASI | ING ON 5" DP; WA | ASHED DOWN CASIN           | NG F/ 1335              | TO 1379M     | W/ 3000 LPM  |                                       |                       |           |  |
|                                                                                                        |            |                          |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CIRCULATED CASING V                      |            |                  |                            | ·                       |              |              |                                       |                       |           |  |
|                                                                                                        |            |                          |          |                 | Rig Name: AFE No: KWENO-650631-001 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |            |                  | Page:                      | 1 Of 2                  |              |              |                                       |                       |           |  |
| Drilling Rep: ELKINS/MOORE/DEJONGE                                                                     |            | Field: PL259             |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |            |                  | Well No: 650               |                         | - KWENO-     |              | ): UB5908 -0                          | Date: 28-             |           |  |
| FIIIIII REP. ELKINS/MOORE/DEJONGE PL259                                                                |            |                          |          |                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PL259                                    |            |                  | METT 110 . 020             | U/3-I                   |              | MCTT II      | . 0R2A08 -0                           | 28-                   | JOT-SOUT  |  |

| Onty Des             | cription                                       | Size(O.D.) We    | eight Grade  | Thread  | s Length   | Ref# Cement Company: HAILIBURTON Yard Location: |                                                                                  |                                                                                                           |                      |                         |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
|----------------------|------------------------------------------------|------------------|--------------|---------|------------|-------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|-------------------------|--------------------------|--------|------------------------|-------------------|-----------------------|------------------|--------------------------|----------------------|-----------------|--|
|                      |                                                |                  |              |         |            |                                                 | Third Stage                                                                      |                                                                                                           |                      |                         |                          |        | on Time &<br>cementing |                   | Hrs @                 | МЗР              | Return(Fu                | ll/Part:             | al):            |  |
|                      |                                                |                  |              |         |            |                                                 | Cement Type                                                                      |                                                                                                           | No.<br>Tonnes        | Pump Time<br>time @ tem |                          | _      | Weight                 | (KG/M3)<br>actual | Mix Water<br>m3/tonne | Comp.<br>kPa     | Strength<br>@ hrs        | WL<br>CC             | Free<br>water % |  |
|                      |                                                |                  |              |         |            |                                                 | Lead                                                                             |                                                                                                           |                      | Hrs @                   |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
|                      |                                                |                  |              |         |            |                                                 | Tail                                                                             |                                                                                                           |                      | Hrs @                   |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
|                      |                                                |                  |              |         |            |                                                 | Lead Cement Add                                                                  | ditives:                                                                                                  |                      |                         |                          |        |                        |                   |                       | Additi<br>liquid | lves<br>l/blended:       | /                    |                 |  |
|                      |                                                |                  |              |         |            |                                                 | Tail Cement Add                                                                  | ditives:                                                                                                  |                      |                         |                          |        |                        |                   |                       | Additi<br>liquid | .ves<br>l/blended:       | /                    |                 |  |
|                      |                                                |                  |              |         |            |                                                 | Spacer Type:                                                                     |                                                                                                           |                      | Volu                    | ume:                     | Weigh  | t:                     | PV:               | YP:                   | Compat           | ibility Tes              | t Run?:              |                 |  |
|                      |                                                |                  |              |         |            |                                                 | Cement Displace                                                                  | ement Rate:                                                                                               |                      | Disp                    | placed With              | Cemen  | ıt Unit/Pı             | :(qmu             |                       | Estima           | ted TOC:                 |                      |                 |  |
| Liner Ha             | nger(If Applicable):18 3/                      | /4", 15K DRILQUI | IP TYPE SS-1 | 5 HPWH  | 13.07      | ,                                               | Cement Returns                                                                   | ?(Y/N): Ea                                                                                                | arly Return          | s?(Y/N):                | Est. Tonnes              | Circu  | lated:                 | Numb              | er of Plugs           | Used:            | Plug Bur                 |                      |                 |  |
| Total Pi             | pe Installed:                                  |                  |              |         | 1009.54    | ł                                               |                                                                                  | DV Tool Locat                                                                                             | ted @:               | MD                      |                          |        | on Time 8              |                   | Hrs @                 | мзр              | PM Return(Full/Partial): |                      |                 |  |
|                      | off Piece(s) and Landing                       |                  |              |         |            |                                                 | Cement Type                                                                      | ı                                                                                                         | No.                  | Pump Time               |                          |        |                        | t(KG/M3)          | Mix Water             |                  | Strength                 | WL                   | Free            |  |
| DP To lai            | nd Liner(If Applicable) T                      | rol @:           |              |         | 364.77     | ,                                               | _                                                                                |                                                                                                           | Tonnes               | time @ tem              |                          | 'ton   | est.                   | actual            | m3/tonne              | kPa              | @ hrs                    | CC                   | water %         |  |
| Plus KBE             | (One Ft. Above Rotary To                       | o last CHF):     |              |         |            |                                                 | Lead                                                                             |                                                                                                           |                      | Hrs. @                  |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
|                      |                                                |                  |              |         |            |                                                 | Tail                                                                             |                                                                                                           |                      | Hrs. @                  |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
| Casing S             | et @: 1372.10 TVD 1                            | 1374.30 MD       |              | Total   | 1,374.31   |                                                 | Lead Cement Add                                                                  | ditives:                                                                                                  |                      |                         |                          |        |                        |                   |                       | Additi<br>liquid | ves<br>/blended:         | /                    |                 |  |
| Last Cas:            | ing Size: 762.0 @                              | 451.0 MD Hole    | Size: 4      | 44.5 @  | 1379.00    | MD                                              | Tail Cement Add                                                                  | ditives:                                                                                                  |                      |                         |                          |        |                        |                   |                       | Additi           | ves<br>/blended:         | /                    |                 |  |
| Hole Vol             | ume From Caliper Log:                          | м3               |              |         |            |                                                 | Spacer Type:                                                                     |                                                                                                           |                      | Volu                    | ime:                     | Weight | t:                     | PV:               | YP:                   |                  | ibility Tes              | t Run?:              |                 |  |
| Mud Prope            | erties Prior To Cementing                      | g: WI: 0 Ty      | pe:          |         |            |                                                 | Cement Displace                                                                  | ement Rate:                                                                                               |                      |                         | placed With              |        |                        |                   |                       | Estima           | ted TOC:                 |                      |                 |  |
| FV:                  | 0 PV: 0                                        | YP: 0.0          | Gels: 0.     | 0.0 0   | vL:        | 0.0                                             | Cement Returns                                                                   | ement Returns?(Y/N): Early Returns?(Y/N): Est. Tonnes Circulated: Number of Plugs Used: Plug Bumped?(Y/N) |                      |                         |                          |        |                        |                   |                       |                  | и):                      |                      |                 |  |
| HTHP WL:             | 0.0 Solids:                                    | % Oil: 0.0       | 00 Sand:     | 1       | рН:        |                                                 | Remarks:                                                                         | emarks:                                                                                                   |                      |                         |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
| PM:                  | 0 CL:                                          | Ca:              | XLime:       | Ι       | Elec Stab: |                                                 | MIX                                                                              | AND PUMP 128M3                                                                                            | 3 OF 1.56 <i>S</i> G | LEAD SLURRY U           | ISING 100MT C            | F CLAS | SS 'G' CM              | TT W/ 3.2L        | TR/100KG ECO          | LONITE,          | 1LTR/100KG               | HR-4L,               |                 |  |
| Casing R             | eciprocation?: NO                              | Length of Stro   | ke:          | Time:   | Hrs        |                                                 | 0.11                                                                             | TR/100KG NF-6,                                                                                            | , 94.36LTR/          | 100kg seawater          | AND PUMP AT              | 1.2M   | 3/MIN, 25              | BAR               |                       |                  |                          |                      |                 |  |
| Casing R             | otated?: NO                                    |                  |              |         |            |                                                 | MIX 17M3 OF 1.92SG TAIL SLURRY USING 21MT CLASS 'G' CMT W/ 0.1LTR/100KG NF-6 AND |                                                                                                           |                      |                         |                          |        |                        | AND 43.78LTR      | /100KG                | FRESH WATER      | AND                      |                      |                 |  |
| Number c<br>Centrali | of<br>zers/Wipers: 6/1                         | Type: 17 1/2" H  | BOWSPRING    | / SS RE | LEASABLE   |                                                 | PUMP AT 0.8M3/MIN, 20 BAR; PUMP 3 BBLS SEAWATER AND SHEAR DART W/ 154 BAR        |                                                                                                           |                      |                         |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
| Spacing:             | IN CENTRE OF SHOEJNT & 1                       | ST FIVE JNTS AB  | OVE SHOETRA  | CK      |            |                                                 | DISP                                                                             | LACE CEMENT W/                                                                                            | / 76M3 SEAW          | ATER AT 3200 L          | PM, 161 BAR;             | SLOW   | PUMPS TO               | 580 LPM,          | 61 BAR                |                  |                          |                      |                 |  |
|                      |                                                |                  |              |         |            |                                                 | CEME                                                                             | ENT RETURNS SEE                                                                                           | IN AT SEABE          | D; WHEN SHUT D          | OWN PUMPS, F             | LOAT I | HAD NOT E              | SUMPED - FO       | CP 55BAR (TH          | EORETIC.         | AL TOC=SEABI             | ED);                 |                 |  |
|                      |                                                |                  |              |         |            |                                                 | BLED                                                                             | DOWN PRESSURE                                                                                             | E - FLOAT H          | OLDING; BACK C          | OUT RUNNING T            | OOL W  | / 5 RH TU              | IRNS              |                       |                  |                          |                      |                 |  |
|                      |                                                |                  |              |         |            |                                                 |                                                                                  |                                                                                                           |                      |                         |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
|                      |                                                |                  |              |         |            |                                                 |                                                                                  |                                                                                                           |                      |                         |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
|                      |                                                |                  |              |         |            |                                                 |                                                                                  |                                                                                                           |                      |                         |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
|                      |                                                |                  |              |         |            |                                                 |                                                                                  |                                                                                                           |                      |                         |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
|                      |                                                |                  |              |         |            |                                                 |                                                                                  |                                                                                                           |                      |                         |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
|                      |                                                |                  |              |         |            |                                                 |                                                                                  |                                                                                                           |                      |                         |                          |        |                        |                   |                       |                  |                          |                      |                 |  |
|                      |                                                | <del>- a</del>   |              |         |            | Rig Name:                                       |                                                                                  |                                                                                                           |                      | 1                       | AFE No: KWENO-650631-001 |        |                        |                   |                       | Page: 2 Of 2     |                          |                      |                 |  |
| Drilling             | rilling Rep: ELKINS/MOORE/DEJONGE Field: PL259 |                  |              |         |            |                                                 | Lea                                                                              | ase: <sub>PL259</sub>                                                                                     |                      |                         | Well No:                 | 6506   | 5/3-1                  |                   | Well ID               | : UB5908         | 3 -0 Da                  | te: <sub>28-</sub> , | TUL-2001        |  |

## 5. Lessons Learned

#### This section contains:

| 5.1 | Deviations from Original Program and Procedures   |   |
|-----|---------------------------------------------------|---|
|     | NPD's Drilling Regulations                        |   |
|     | Deviations from Drilling Program                  |   |
|     | Summary and Conclusions – Ton Ten Lessons Learned | • |

#### 5.1 Deviations from Original Program and Procedures

#### 5.1.1 Deviations from NPD's Drilling Regulations

The following deviations from the requirements in NPD's Drilling Regulations occurred:

| Deviation No.  | Reference<br>to Rules and<br>Regulations                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Consequence | Compensating<br>Measures                                                                                                                                                                                                                                         | Deadline                                                                                                |
|----------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Chevron<br>004 | NPD's guidelines to the drilling regulations, re. Sect. 50 | The guidelines to the regulations states that: "If the time interval since the last pressure test exceeds 14 days, the BOP, with the exception of the shear/blind ram, shall be pressure tested even if no new casing string has been installed."  The BOP was tested at 11:00 hrs, 31/07/01 and a new test is due the14/08/01. We are requesting that an extension to the BOP test through 21/08/01 based on the following information:  1. The well TD has been reached 3667m MD and no further drilling is required.  2. The mud weight of 1.60 sg has proven to be adequate to maintain well control based on conditioning trips and verification of pore pressure via the MDT tool. Maximum 1.53 sg in Brygge formation.  3. The logging program is on-going at the present time and should be completed within the next 24 hours.  4. The well P & A program will be completed before the extension date requested 21/08/01.  5. Should any deviations to this planned P & A program occur then NPD will be notified immediately to discuss any complications which may require a BOP test to be completed. | None.       | 1. The Annular or appropriate Pipe ram will be used to test the cement plug set across the 13 3/8" shoe and inside 13 3/8" casing during P & A operations.  2. The Blind / Shear rams will be used to pressure test the top cement plug during P & A operations. | The standpipe manifold and choke manifold will be pressure tested by 14/08/01 as per normal procedures. |

### **5.1.2 Deviations from Drilling Program**

The following amendments to the Drilling Program were issued:

- Brygge Coring Strategy, issued 30.7.2001 (limited distribution)
- Plug and Abandonment Program, issued 9.8.2001

#### 5.2 Summary and Conclusions – Key Lessons Learned

| # | Title          | Summary                                                                         | Conclusion                                                     |  |  |  |  |  |
|---|----------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|--|
| 1 | Establish      | Many of the contracts were assigned from                                        | Ensure that, the information is                                |  |  |  |  |  |
|   | Chevron        | Shell and Statoil, which may have contained                                     | captured by Graham Duthie and                                  |  |  |  |  |  |
|   | Norway         | T&C's Chevron would not normally agree                                          | the Aberdeen contracts group.                                  |  |  |  |  |  |
|   | Contracts      | to. However, more research was needed to                                        | when operating in Norway, more                                 |  |  |  |  |  |
|   |                | identify those T&C's. We were not allowed                                       | upfront time on T&C's is                                       |  |  |  |  |  |
|   |                | to see a lot of the T&C's until the contract                                    | required, legal support will be                                |  |  |  |  |  |
|   |                | had been signed due to the confidentiality of                                   | required as well as good                                       |  |  |  |  |  |
|   |                | the information contained within. The                                           | communications with San Ramo                                   |  |  |  |  |  |
|   |                | remaining contracts took time to put in place                                   | to ensure that contracts are                                   |  |  |  |  |  |
|   |                | and were unsuitable for Norway.                                                 | acceptable to Chevron. Review the end result with San Ramon to |  |  |  |  |  |
|   |                |                                                                                 | ensure lessons learnt are captured                             |  |  |  |  |  |
|   |                |                                                                                 | for the future. Review                                         |  |  |  |  |  |
|   |                |                                                                                 | commercial terms with contractor                               |  |  |  |  |  |
|   |                |                                                                                 | before signing contract. Each                                  |  |  |  |  |  |
|   |                |                                                                                 | contract should have a sponsor.                                |  |  |  |  |  |
| 2 | Recognise the  | Rig contract when all drill options on the                                      | We drilled primary and                                         |  |  |  |  |  |
| _ | consequences   | table. Decision on well and rig should be                                       | secondary targets in alignment                                 |  |  |  |  |  |
|   | of strategic   | driven by economic and technical analysis.                                      | with our business drivers and                                  |  |  |  |  |  |
|   | well decisions | We decided to drill our primary and                                             | license commitments. The                                       |  |  |  |  |  |
|   | vs technical   | secondary targets and later matured a deeper                                    | subsequent data evaluation to                                  |  |  |  |  |  |
|   | maturity of    | prospect which had an offset discovery                                          | date (4 Sep 01) would not have                                 |  |  |  |  |  |
|   | total          | subsequent to decision to drill.                                                | changed the decision to drill or                               |  |  |  |  |  |
|   | prospectivity  |                                                                                 | well placement but likely would                                |  |  |  |  |  |
|   |                |                                                                                 | have increased the geologic risk.                              |  |  |  |  |  |
|   |                |                                                                                 | Weigh up the risks. If strategy is                             |  |  |  |  |  |
|   |                |                                                                                 | the driver, do the same thing.                                 |  |  |  |  |  |
| 3 | Use risk       | Used good teamwork to develop risk                                              | A risk analysis using                                          |  |  |  |  |  |
|   | analysis to    | justification for Oil Based Mud use in gas                                      | probabilistic model showed Oil                                 |  |  |  |  |  |
|   | give direction | condensate exploration well. Without                                            | Based Mud to be best choice for                                |  |  |  |  |  |
|   |                | analysis may have been tempted to go for                                        | well. Resulted in significant                                  |  |  |  |  |  |
|   |                | Water Based Mud based on driver of need                                         | Capex savings. Apply                                           |  |  |  |  |  |
|   |                | to get good fluid sample (Condensate Gas                                        | risk/decision analysis when need to make critical decisions    |  |  |  |  |  |
|   |                | Ratio, etc.). Oil Based Mud proved to be the best option for this well based on | because it focused the discussion                              |  |  |  |  |  |
|   |                | probabilistic analysis.                                                         | and the decision. Get team to                                  |  |  |  |  |  |
|   |                | probabilistic analysis.                                                         | provide inputs/probabilities to                                |  |  |  |  |  |
|   |                |                                                                                 | gain buy-in to results.                                        |  |  |  |  |  |
|   | I              |                                                                                 | gam ouy-m to results.                                          |  |  |  |  |  |

Norsk Chevron AS

| # | Title                                                                                           | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Don't<br>underestimate<br>the need for<br>adequate IT<br>structure in a<br>satellite office     | The link between Stavanger and Oslo was inadequate and valuable time was lost during the planning phase until this was corrected. Getting the necessary computer hardware in place was an issue. Two computers offshore were not enough, we needed three computers.                                                                                                                                                                                                    | Ensure that office communications are specified according to the level of data and email traffic expected. Consider that there may be a need for spare computers on occasion (i.e. people from GAPA). Plan for growth in the initial assessment of required office space, computer, phones.                                                                                                                                                                                                                                                                                 |
| 5 | Define and communicate goals, well objectives and key operational issues with team and partners | Clearly defining well objectives in terms of prospects and license made data acquisition plans value focused. Had a number of partner meetings which gained agreement on a number of technical areas. However, a few weeks prior to spud one technical area (coring and sidetracking Brygge) was found to be ambiguous with regard to partner agreement. This could have resulted in operational inefficiency if this had not been picked up prior to reaching target. | Soon after well location was chosen, we did focused the entire team through meetings to define well objectives and reach consensus on associated data needs to meet objectives. Make sure all goals, well objectives and key operational issues are formally agreed with partners prior to spud and clearly documented. Continue to document well objectives with Value of Information (VOI) matrix to ensure remembering how and why decisions are made and clear communication of value. Conduct a pre-spud type meeting with partners to finalise operational decisions. |
| 6 | Early<br>initiation of<br>interaction<br>with NPD<br>added value                                | Chevron took a proactive approach when dealing with the NPD. Using a proactive approach, meeting with and speaking to the NPD regularly was seen as beneficial for our first operation                                                                                                                                                                                                                                                                                 | Meeting with the NPD throughout the planning process helped with ensuring that the consent to drill and the drilling program were understood and obligations had been met. The same is true for communications with the SFT. Ensure a proactive approach is taken on future operations.                                                                                                                                                                                                                                                                                     |

Norsk Chevron AS

| # | Title           | Summary                                     | Conclusion                        |
|---|-----------------|---------------------------------------------|-----------------------------------|
| 7 | Establishment   | Built both systems (application for consent | We developed the Management       |
|   | and             | and management system) in parallel which    | System for Chevron Norway, in     |
|   | maintenance     | resulted in delayed deliveries of processes | parallel to the consent           |
|   | of              | and procedures as expected (although        | application. We had               |
|   | "Management     | consent application was delivered on        | communicated this approach to     |
|   | System" (In-    | schedule).                                  | the NPD so they were aware we     |
|   | country safety  |                                             | were developing in parallel       |
|   | management      |                                             | (understood because of our        |
|   | system)         |                                             | "newness" to Norway.) Maintain    |
|   |                 |                                             | the "safety culture" - especially |
|   |                 |                                             | after merger. Be aware that new   |
|   |                 |                                             | 2002 regulations are focused on   |
|   |                 |                                             | "continuous improvement".         |
|   |                 |                                             | Make sure licensee requirements   |
|   |                 |                                             | are met even if we are not the    |
|   |                 |                                             | operator.                         |
| 8 | Consider        | When picking key rig/operations for first   | Continue to apply a selection     |
|   | contracter      | well in high HSE awareness areas, consider  | process that looks at reputation, |
|   | decision        | weighing HSE record and systems higher      | availability, cost, risks, safety |
|   | criteria        | than other factors.                         | record and the business drivers   |
|   | weighting       |                                             | with the appropriate criteria     |
|   | carefully in    |                                             | weighting for new country         |
|   | new             |                                             | expectations - particularly in a  |
|   | operations      |                                             | new country/environment where     |
|   |                 |                                             | HS&E is heavily weighted.         |
| 9 | Staff early     | Virtual support was provided from           | When entering into a new          |
|   | with right      | Aberdeen to get the well planning process   | country, clearly define           |
|   | disciplines, on | started in 2000. By early 2001, . In early  | vision/mission/objectives and set |
|   | first well in   | 2001, new project manager was assigned to   | high level boundaries to          |
|   | new country;    | the project                                 | accomplish mission. Build         |
|   |                 |                                             | appropriate resources to          |
|   |                 |                                             | guarantee success. Make sure      |
|   |                 |                                             | people are identified and located |
|   |                 |                                             | in the working location office by |
| 1 |                 |                                             | CPDEP phase 2 start.              |

Norsk Chevron AS

## **Enclosure 1**

## **Daily Activity Reports**

- 1.0 Daily Drilling Activity Reports
  - 2.0 Wellsite Geological Reports





# **Daily Drilling Activity Reports**



| Measur | Measured Depth: TVD: PBTD: Proposed MD: 11,893 Proposed TVD: 11,893 OCL: Daily Footage: Daily Rot Hrs: Total Rot Hrs: |          |          |       |              |               |              |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
|--------|-----------------------------------------------------------------------------------------------------------------------|----------|----------|-------|--------------|---------------|--------------|----------|--------|------------|------------|----------------------------------------------|------------|------------------|--------------|--------|------------|-----------|---------------------------------------|
| DOL:   |                                                                                                                       | D        | FS:      | S     | pud Date:    |               |              |          | Г      | aily       | Footage    | e:                                           | D          |                  |              |        | Total      | Rot Hr    | · · · · · · · · · · · · · · · · · · · |
| Torq:  |                                                                                                                       | Drag     | 1:       | Rot   | Wgt:         | P/U Wgt:      | :            | Sla      | .ck Of | f Wgt      | :          | Wind                                         | l: 8       | Seas             | : 3          | /      | Bar:       | 30,12     | POB: 78                               |
| Last C | asing                                                                                                                 | g Size:  |          |       | Set          | At:           |              |          | MI     | )          |            |                                              | TVD        | Shoe '           |              | /      | EMW        | Leako     |                                       |
| Cum Ro | t Hr                                                                                                                  | s On Ca  | sing:    |       | Cum Rot      | Hrs On C      | Casing       | Since    |        |            | per:       |                                              |            | Worst            | Wear:        |        |            | Remainir  | ng:                                   |
| Liner  | Size                                                                                                                  |          |          |       | Set At:      |               | MD           |          |        | T          | <i>T</i> D | Li                                           | iner To    | p At:            |              | ME     | `          |           | TVD                                   |
| Mud Co | ) <b>:</b>                                                                                                            |          |          | Т     | 'ype:        |               | MID          |          |        |            | Le From    | · ET ON                                      | Wt:        | FV:              | PV:          |        | YP:        | Gel:      | /                                     |
| WL     |                                                                                                                       |          |          |       | FC (1/32) A  |               |              | Sc       | lids:  |            | % O:       |                                              | Wat        |                  | % Sa:        |        | MB         |           | Ph:                                   |
| Pm:    | API:                                                                                                                  | Pf/Mf:   | HTHP:    | ,     | Carb:        | C1: F         | TTHP:        | a:       |        | Bent       | :          | Solid                                        | s %HG/1    | LG:              |              | %      | DS/Ben     | t:        | /                                     |
|        |                                                                                                                       | <u> </u> | /        |       |              |               |              |          |        |            |            |                                              |            |                  | /            |        |            |           | /                                     |
|        |                                                                                                                       |          |          |       |              |               |              |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
| D1 C   | · •                                                                                                                   |          | Max Gas  |       | Conn Gas     |               | T 0          |          |        | Troi       | ip Cl:     | Г                                            | emarks     |                  |              |        |            |           |                                       |
| Drlg G | as:                                                                                                                   |          |          | 1     |              |               | Trip G       |          |        | 11.1       |            |                                              |            | •                |              |        |            |           | -1                                    |
| Bit Nu | ımber                                                                                                                 | IADC     | Size     | Ма    | nufacturer   | Seria         | 1 numb       | er       |        | Jets<br>/  | (Quar      | ntity -                                      | Size)      | /                | TFA          | M      | D In       | MD Out    | TVD Out                               |
|        |                                                                                                                       |          |          |       |              |               |              |          | _      | <u>/ -</u> |            | <u>     /                               </u> | - /        | / <u>-</u><br>/  | 0            |        |            |           |                                       |
|        |                                                                                                                       |          |          |       |              |               |              |          |        | / -        | <u> </u>   | - /<br>                                      | - <i>/</i> | / -<br>          | <del> </del> |        | 1          |           | <u> </u>                              |
| Т      | ype                                                                                                                   | Fee      | t F      | lours | WOB          | R             | PM           | Mo       | otor F | RPM        | I-Row      | 0-Row                                        | DC         | Loc              | В            | G      | Char       | ?Pull     | Cost/Ft                               |
|        |                                                                                                                       |          |          |       | /            |               | /            |          |        |            |            |                                              | 1          |                  |              |        |            |           |                                       |
|        |                                                                                                                       |          |          |       | /            |               | /            |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
| Total  | Lengt                                                                                                                 | th of B  | HA:      |       | BHA Desc     | ription       | :            |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       |          |          |       |              |               |              |          |        |            |            | 1                                            |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       |          |          |       |              |               | _            |          |        |            |            | Hrs O                                        | n Jars     | :<br><del></del> | Hours        | Since  | e Last     | Inspect   | tion:                                 |
| Bit Nu | m                                                                                                                     | Line     | er       |       | Stroke       |               | 5            | SPM      | Pr     | ess.       | G₽M        | Jet Ve                                       | el DP      | Av D             | C Av         | Bit H  | HP BHH     | P/SQIN    | Pump HHP                              |
|        |                                                                                                                       |          | /        |       | /            | /             | /            |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       | /        | /_       |       | /            | /             | /            | /        |        |            |            |                                              |            |                  |              |        |            |           |                                       |
| Survey | MD.                                                                                                                   | Angle    | Azimu    | th    | Direction    | Т             | <b>V</b> D   | N/       | S Coc  | ordina     | ites       | E/W                                          | Coordin    | ates             | Verti        | cal S  | ection     |           | DLS                                   |
|        |                                                                                                                       |          |          |       |              |               |              |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       |          |          |       |              |               |              |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       |          |          |       |              |               |              |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       |          |          |       |              |               |              |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
| Hours  | urs From Act-Cat Operations Covering 24 Hours Ending at Midnight Total Hours Reported: 1,0                            |          |          |       |              |               |              |          |        |            |            |                                              |            |                  | rted: 1.0    |        |            |           |                                       |
|        |                                                                                                                       |          |          | NCHOF | R BOLSTERED  |               | -            |          |        |            |            |                                              |            | NORSK            | CHEVROI      |        |            |           |                                       |
|        |                                                                                                                       |          |          |       | 2001. COMME  |               |              |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       | 08 - 41  |          | 011 2 | EUUI. COMM   | IVCE TOW      | TO DOIN      | EAST AND | DI LIC | CAIIO      | IN OINDER  | CAEOSE                                       | L PAC      | POSINA           | •            |        |            |           |                                       |
|        |                                                                                                                       |          |          | rr c  | ROM GARN WE  | מידי ידים דים | NATINTA TATE | CT IO    |        | νNT _ Ω    | 1 6 NINI   | TTT C'N T                                    | MTTEC      |                  |              |        |            |           |                                       |
|        |                                                                                                                       |          |          | CE FF | COM GARIN WE | 31 10 00      | INING WE     | DI IU    | CAIIO  | - J        | I.O NAC    | )IICALI                                      | ишпео.     |                  |              |        |            |           |                                       |
|        |                                                                                                                       | 08 - 41  |          |       |              |               |              |          |        |            | 2525       |                                              |            |                  | 010          |        |            |           |                                       |
|        |                                                                                                                       |          |          | ON BO | OARD @ HAND  | OVER: FU      | EL - 3       | 33 M3    | , LUB  | OIL        | - 3725     | LTRS,                                        | POT WAS    | rer – 2          | 291 M3,      | DRILI  | L WATER    | 225       | мз,                                   |
|        |                                                                                                                       | 08 – 41  |          |       |              | BE            | TINOTIN      | E - 6    | 3 MT,  | BARI       | TE - 19    | 96 MT,                                       | CLASS      | 'G' CEM          | IENT - I     | 146 M  | Γ, BASE    | OIL -     | 85 M3.                                |
| -      |                                                                                                                       | 08 - 41  | -        |       |              |               |              |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       | 08 - 41  | WORK C   | NGOIN | NG DURING T  | OW: CLEA      | N ALL        | SUCTI    | ON &   | DISCH      | ARGE SI    | TRAINER                                      | S.         |                  |              |        |            |           |                                       |
|        |                                                                                                                       | 08 - 41  | 1        |       |              | SERV          | ICE TO       | P DRI    | VE &   | DOLLY      | , RIG I    | DOWN PI                                      | PE HAN     | OLER FO          | R SERV       | ICE.   |            |           |                                       |
|        |                                                                                                                       | 08 - 41  |          |       |              | SLIP          | & CUI        | 78 F     | T OF   | DRILL      | LINE.      |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       | 08 - 41  |          |       |              | INST          | 'ALL PE      | RMANE    | NT GU  | IDE B      | ASE IN     | MOONPO                                       | OL.        |                  |              |        |            |           |                                       |
|        |                                                                                                                       | 08 - 41  |          |       |              | INST          | 'ALL GU      | IDE F    | RAME   | ONTO       | LMRP.      |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       | -        |          |       |              |               |              |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       | -        |          |       |              |               |              |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
| Safety | r:<br>PRI                                                                                                             | E-TOW M  | JSTER HI | ELD O | N SUNDAY 1   | TH JULY       | 2001.        |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       |          |          |       | OF RIG FRO   |               |              | WEST     | LOCA'  | TION 8     | & COMME    | NCE TO                                       | W TO CH    | IEVRON I         | DONNA W      | VEST I | OCATIO     | N.        |                                       |
| Projec | ted (                                                                                                                 | peration | ons: coi | MPLET | E TOW TO DO  | NNA WES       | T_LOCA       | TION,    | BALL   | AST DO     | OWN RIG    | & RUN                                        | ANCHOR     | S.               |              |        |            |           |                                       |
| Remark | s:                                                                                                                    |          |          |       |              |               |              |          |        |            |            |                                              |            |                  |              |        |            |           |                                       |
|        |                                                                                                                       |          |          |       | PORTED IN (  |               |              |          |        |            |            |                                              | C . 1.47** | , Tampi          | VC /10       |        |            |           |                                       |
|        |                                                                                                                       |          |          |       | TED IN MET   |               |              |          |        |            | SOUKE I    | TA TATAL'H                                   | T OK MUL   | MT TW            | r.c./№.      |        |            |           |                                       |
|        |                                                                                                                       |          |          |       | WILL BE RE   |               |              |          |        | -          | N. # ~ = = |                                              |            | DOT - :          | 00377        |        | 04-00      | 037.7.7.7 | 107 /03                               |
| -      |                                                                                                                       |          |          | _     | A WEST. 66   |               | L MILE       | S TO 1   |        |            |            |                                              |            | 1                |              |        |            |           |                                       |
|        |                                                                                                                       | Cost: KI |          | _     | ily Tangibl  |               |              |          |        |            | l Cost:    |                                              |            | -                |              |        |            | T REPOR   | RTED                                  |
|        |                                                                                                                       | st: KR4  |          |       | m Tangible   |               |              |          | cum    | wett       |            |                                              |            |                  | Appr:        |        |            |           |                                       |
|        |                                                                                                                       | r: 1415  | Pot      | able  | Water: 183   | 1             |              | 095      |        |            |            |                                              | t: 3726    | N∈               | eat Cem      | ent:   | 3424       | Blende    |                                       |
| Countr | y: N                                                                                                                  | ORWAY    |          |       |              | Rig: BYI      |              | OLPHI    | V      |            | Rig Ph     |                                              | 2 88 03    | 35               | Drill        | ıng Re | ep:<br>ELK | INS/HOL   | LINSHEAD                              |
| Field: | PL25                                                                                                                  | 59       |          |       | Le           | ase: PL2      | 59           |          |        |            |            | We                                           | ll No:     | 6506/3-          | -1           |        | ₩e         |           | UB5908 -0                             |
|        |                                                                                                                       |          |          |       | API N        | o: 6506/      | 3-1          |          | AFE    | E No:      | KWENO-     | 650631                                       | -001       |                  | Date:        | 16-JU  | L-2001     | Page      | : 1 Of 1                              |

| Measur   | Measured Depth: 0 TVD: 0 PBTD: 0 Proposed MD: 11,893 Proposed TVD: 11,893 |          |            |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|----------|---------------------------------------------------------------------------|----------|------------|----------|----------------------------------------|----------------------|------------|--------|-------------------|----------------------------------------|---------------------|----------|-------------|---------|--------|------------|-----------------------------------------------|------------|
| DOL:     | 1                                                                         | Di       | FS:        | S        | pud Date:                              |                      |            |        | Daily             | Footage                                | e:                  | D        | aily Ro     |         |        | Total      | Rot Hr                                        | -          |
| Torq:    |                                                                           | Drag     | ŋ:         | Rot      | Wgt: P                                 | /U Wgt:              | 6          | Slack  | Off Wg            | t:                                     | Wind                | : 17     | Seas        | : 7     | / 13   | Bar:       | 30,08                                         | POB: 78    |
| Last C   | asin                                                                      | g Size:  |            |          | Set .                                  | At:                  | <u> </u>   |        | MD                |                                        |                     | TVD      | Shoe 7      |         |        | EMW        | Leako                                         |            |
| -        |                                                                           | s On Ca  |            |          | Cum Rot H                              | rs On Cas            | ing Si     | nce La |                   | iper:                                  |                     |          | Worst       | Wear:   | , 0    |            | emainir                                       | na:        |
| Liner    | Size                                                                      | <u> </u> |            |          | Set At:                                |                      |            |        |                   | TVD                                    | Liı                 | ner To   |             |         |        |            |                                               | TVD        |
| Mud Co   | );                                                                        |          |            | т        | 'ype:                                  |                      | MD         |        |                   | ole From                               | : T/                | r+ •     | FV:         | PV:     | MI     | YP:        | Gel:                                          | 100        |
| WL       |                                                                           |          |            |          | FC (1/32) AP                           |                      |            | Solid  |                   | % O:                                   |                     | Wate     |             | % Sai   |        | MB'        |                                               | Ph:        |
| Pm:      | API:                                                                      | Pf/Mf:   | HTHP:      | /        |                                        | I: HTH<br>Cl:        | P:<br>Ca:  | 50110  | Ben               |                                        | Solids              |          |             | ,       |        | DS/Bent    |                                               | ,          |
| FIII.    |                                                                           | FI/MI    | /          |          | CAID.                                  | ш·                   | la.        |        | Den               |                                        | 501108              | 9 9110/1 | <u> </u>    |         |        | DS/ Belli  |                                               | /          |
|          |                                                                           |          |            |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           |          |            |          |                                        |                      |            |        | -                 |                                        |                     |          |             |         |        |            |                                               |            |
| Drlg G   | as:                                                                       |          | Max Gas    | :        | Conn Gas:                              | Tri                  | ip Gas     |        | Tr                | rip Cl:                                | Re                  | marks    | :           |         |        |            |                                               |            |
| Bit Nu   | ımber                                                                     | IADC     | Size       | Ма       | nufacturer                             | Serial:              | number     |        | Jet               | s (Quan                                | ntity -             | Size)    |             | TFA     | М      | D In       | MD Out                                        | TVD Out    |
|          |                                                                           |          |            |          |                                        |                      |            | _      | /                 | _ / -                                  | - /                 | - /      | / _         | 0       |        |            |                                               |            |
|          |                                                                           |          |            |          |                                        | -                    |            | _      | /                 | _ / -                                  | - /                 | - /      | _           | 0       |        |            |                                               |            |
| Т        | ype                                                                       | Fee      | et F       | lours    | WOB                                    | RPM                  |            | Moto   | r RPM             | I-Row                                  | O-Row               | DC       | Loc         | В       | G      | Char       | ?Pull                                         | Cost/Ft    |
|          |                                                                           |          |            |          | /                                      | /                    |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           |          |            |          | /                                      | /                    |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
| Total    | Leng                                                                      | th of B  | HA:        |          | BHA Descr                              | ription:             | •          |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           |          |            |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           |          |            |          |                                        |                      |            |        |                   |                                        | Hrs Or              | Jars:    |             | Hours   | Sinc   | e Last     | Inspect                                       | tion:      |
| Bit Nu   | m                                                                         | Line     | er         |          | Stroke                                 |                      | SPM        |        | Press.            | G₽M                                    | Jet Vel             | L DP     | Av D        | C Av 1  | Bit H  | нь Внн     | P/SOIN                                        | Pump HHP   |
|          |                                                                           |          | /          |          | /                                      | /                    | /          | /      |                   |                                        |                     |          |             |         | - 11   |            | , = 2                                         |            |
|          |                                                                           |          |            |          | /                                      | /                    |            | /      |                   |                                        |                     |          |             |         |        |            |                                               |            |
| Survey   | , MD                                                                      | Angle    | Azimu      | th       | Direction                              | TVD                  |            | N/S (  | Coordin           | ates                                   | E/W C               | oordir   | ates        | Verti   | cal S  | ection     |                                               | DLS        |
| Bul vey  |                                                                           | raigic   | 1221110    | <u> </u> | DIFCCCION                              | 142                  |            | 14/15  | 2001411           | acas                                   | E/ W C              | OOLGII   | aceb        | VCICI   | car c  |            |                                               | DEG        |
|          |                                                                           |          |            |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           |          |            |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           |          |            |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           |          | 1          |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           | Act-Cat  |            |          |                                        | ions Cove            |            |        |                   |                                        |                     |          |             |         | Tota   | al Hour    | s Repoi                                       | rted: 24,0 |
|          |                                                                           |          |            |          | TOW TO CHE                             |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
| 3,00T    | 2030                                                                      | 08 - 42  | WIND S     | PEED     | INCREASING                             | 13 – 17 M            | /SEC &     | FORE   | CAST UN           | FAVORABL                               | E FOR I             | NIMUUS   | G ANCHO     | RS. DEC | CISIO  | I TAKEN    | TO BAI                                        | LLAST DOWN |
|          |                                                                           | 08 - 42  | TO SUR     | VIVAI    | L DRAFT - 60                           | FT.                  |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
| 0,50T    | 2330                                                                      | 08 - 42  | RIG @      | SURV     | IVAL DRAFT.                            | WAIT ON W            | EATHER     | @ CUI  | RENT L            | OCATION                                | 5 NAUT              | ICAL M   | ILES F/     | CHEVRO  | ON DOI | NNA WES    | T LOCAT                                       | TION.      |
|          |                                                                           | 08 - 42  |            |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           | 08 - 42  | WEATHE     | R LO     | G: WIND (M/S                           | ) DIR                | WAV        | ЕН (М  | (I) P             | RES (MM.                               | HG)                 | PITCH    | (DEG)       | ROLI    | L (DE  | G) H       | EAVE (N                                       | 1)         |
|          |                                                                           | 08 - 42  | 20:30      | HRS      | 16                                     | 040                  |            | 3.0    |                   | 764                                    |                     | 0        | . 3         | (       | 0.3    |            | 0.2                                           |            |
|          |                                                                           | 08 - 42  | 22:00      | HRS      | 16                                     | 040                  |            | 3.5    |                   | 764                                    |                     | 0        | . 3         | (       | 0.4    |            | 0.2                                           |            |
|          |                                                                           | 08 - 42  | 00:00      | HRS      | 17                                     | 035                  |            | 4.0    |                   | 764                                    |                     | 0        | . 2         | (       | 0.4    |            | 0.2                                           |            |
|          |                                                                           | 08 - 42  | 02:00      | HRS      | 17                                     | 035                  |            | 4.0    |                   | 764                                    |                     | 0        | . 3         | (       | 0.4    |            | 0.2                                           |            |
|          |                                                                           | 08 - 42  | 04:00      | HRS      | 17                                     | 035                  |            | 4.0    |                   | 764                                    |                     | 0        | .5          | (       | 0.4    |            | 0.2                                           |            |
|          |                                                                           | 08 - 42  | 06:00      | HRS      | 18                                     | 035                  |            | 4.0    |                   | 764                                    |                     | 0        | . 5         | (       | 0.4    |            | 0.2                                           |            |
|          |                                                                           | 08 - 42  |            |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           | 08 - 42  | RIG WO     | RK DI    | JRING TOW &                            | WOW: WOW             | MUD PIT    | MPS. F | E-INST            | ALL PIPE                               | HANDI.              | IR, ST.  | [P & CTI    | T RUCKI | ER WT  | RES.       |                                               |            |
|          |                                                                           | 08 - 42  |            | - 2      |                                        |                      |            |        |                   | VE TORQU                               |                     |          |             |         |        |            |                                               |            |
| Safety   | 7:<br>DAY                                                                 |          |            | ı ad     | -SPUD MEETIN                           |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
| 24 Hr    | Summe                                                                     | ary:     | י שוואדיים | יי שטין  | O CHEVRON DO                           |                      | ויייע דייי | ON P   | ΔΤ,Τ,Δ <b>Ο</b> Ͳ | בייייייייייייייייייייייייייייייייייייי | יידויקווף           | AT. DOM  | ייות ייק    | דמיייי  | בר כ   | י באדדעם   | WEDTHER                                       | . WOW      |
|          |                                                                           |          |            |          | WEATHER. BY                            |                      |            |        |                   |                                        |                     |          |             |         |        |            | , <u>, , , , , , , , , , , , , , , , , , </u> |            |
| Remark   | s:                                                                        |          | WA.        |          | · ···································· |                      | WINT.      | _,UE 1 | J., 10 (          | VALUE VALUE                            |                     | <u> </u> | VIV 1 16 10 | r 1011  | LEVUTI | ~ · · ·    |                                               |            |
|          |                                                                           |          |            |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           |          |            |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
| <u> </u> |                                                                           |          |            |          |                                        |                      |            |        |                   |                                        |                     |          |             |         |        |            |                                               |            |
|          |                                                                           |          |            | _        | NAUTICAL MII                           |                      | INA WES    |        |                   |                                        |                     |          | 1           |         |        |            |                                               |            |
|          |                                                                           |          | R15,262    |          | ily Tangible                           |                      |            |        |                   | ll Cost:                               |                     |          | Incide      |         |        | T AID      | Г                                             |            |
|          |                                                                           | st: KR6  |            |          | m Tangible C                           |                      |            | Cı     | m Well            | Cost:                                  |                     |          |             |         |        |            |                                               |            |
|          |                                                                           | r: 1384  | Pot        | able     | Water: 1824                            |                      | ZU1.       |        |                   |                                        | Weight              |          | Ne          | at Ceme | ent:   | 3424       | Blende                                        |            |
| Countr   | y: N                                                                      | ORWAY    |            |          |                                        | Rig: BYFOR           | D DOLE     | HIN    |                   | Rig Pł                                 | none: <sub>52</sub> |          | 35          | Drill:  | ing R  | ep:<br>ELK | INS/HOL                                       | LINSHEAD   |
| Field:   | PL25                                                                      | 59       |            |          | Lea                                    | se: <sub>PL259</sub> |            |        |                   |                                        | Wel                 | l No:    | 6506/3-     | 1       |        |            |                                               | UB5908 -0  |
|          |                                                                           |          |            |          |                                        | : 6506/3-1           |            | i      | AFE No:           | KWENO-                                 | 650631-             | 001      |             | Date:   | 17-JU  | L-2001     | Page                                          | : 1 Of 1   |

| Measur             | red D    | epth:    |        | 0      |          | TVD:               |                    | 0        |          | PBT      | D:        |                | 0                                            | Prop     | osed MC    | ·: 1          | 1,893  | , Pr    | oposed   | l TVD:              | 11,89  | 93 '         |
|--------------------|----------|----------|--------|--------|----------|--------------------|--------------------|----------|----------|----------|-----------|----------------|----------------------------------------------|----------|------------|---------------|--------|---------|----------|---------------------|--------|--------------|
| DOL:               | 2        | DI       | īs:    | 5      | Spud Da  | ate:               |                    |          |          |          | Daily     | r Foot         | age                                          | :        | Da         | aily Ro       |        |         | Tota     | l Rot Hi            |        | _            |
| Torq:              |          | Drag     | ı:     | Rot    | Wgt:     | P                  | /U Wgt             | :        | Sl       | Lack     | Off Wo    | t:             |                                              | Wind     | : 15       | Seas          | : 7    | / 13    | Bar:     | 30,04               | POB:   | 81           |
| Last C             | asin     | g Size:  |        |        |          | Set i              | At:                |          |          |          | MD        |                |                                              | <u> </u> | TVD        | Shoe T        |        |         | EMW      | Leako               |        | -            |
| Cum Ro             | t Hr     | s On Ca  | sing:  |        | Cun      | n Rot H            | rs On (            | Casing   | g Sin    | ce L     | ast Cal   | iper           |                                              |          | Depth      | Worst         | Wear:  |         |          | Remaini             | ng:    |              |
| Liner              | Size     | :        |        |        | Set i    | At:                |                    | MD       |          |          |           | IVD            |                                              | Li       | ner Tor    | At:           |        | ME      | <u> </u> |                     |        | TVD          |
| Mud Co             | :        |          |        | ŗ      | Type:    |                    |                    |          |          |          | Sam       | ole F          | ram:                                         | FLOW V   | Wt:        | FV:           | PV     |         | YP:      | Gel:                |        | /            |
| WL                 | API:     |          | HTHP:  |        | FC (1/   | /32) <sub>AP</sub> | r. ·               | HTHP:    | S        | Solid    |           |                | % Oi∶                                        |          | ₩ate       | r:            | % Sa   | and:    | ME       | <br>BT:             | Ph:    |              |
| Pm:                | API.     | Pf/Mf:   |        | /      | Carb:    |                    | cl:                | птиь.    | Ca:      |          | Ber       | ıt:            |                                              | Solid    | s %HG/L    | G:            |        | 9       | DS/Ber   | ıt:                 |        |              |
|                    |          |          |        | /      | <u> </u> |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
|                    |          |          |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
| Drlg G             | lag:     |          | Max G  | as:    | Co       | nn Gas:            |                    | Trip     | Gag:     |          | Т         | rip C          | 1:                                           | R        | emarks:    |               |        |         |          |                     |        |              |
|                    |          |          |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        | .       |          | 1m 0 1              | I      |              |
| Bit Nu             | mber     | IADC     | Size   | e Ma   | anufac   | turer              | Seria              | al num   | ıber     |          | Jet<br>/  | .s (Ç          | uant<br>/                                    | / /      | Size)      | ,             | TFA    | A M     | D In     | MD Out              | TVI    | Out          |
|                    |          |          |        |        |          |                    |                    |          |          | -        | /_        | <del>- '</del> | / -<br>/ -                                   | /        | - /<br>- / | <br>'         | 0      |         |          |                     |        |              |
|                    |          |          | .      |        |          | op                 | Τ.                 |          |          | Moto     | , DDM     |                | <u>,                                    </u> |          | 7          |               |        |         | al.      | 20.11               |        | <b>/</b> TI  |
| T                  | ype      | Fee      | t      | Hours  | 3        | WOB                | F                  | 2PM      | •        | MOTO     | r RPM     | T-F            | ROW                                          | 0-Row    | Œ          | Loc           | В      | G       | Chai     | ?Pull               | Cost   | t/Ft         |
|                    |          | $\dashv$ |        |        |          |                    |                    | /        |          |          |           | +              | $\dashv$                                     |          |            |               |        | +       |          |                     |        |              |
| moto 1             | T.C~ -   | th of D  |        |        | חם       | /<br>A Descr       | intion             | /<br>:   |          |          |           |                |                                              |          | <u> </u>   |               |        |         | <u> </u> |                     |        |              |
| iotal              | reng.    | th of B  | nA•    |        | Dfl      | DCSUL              | C C C C C C C C C  |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
|                    |          |          |        |        |          |                    |                    |          |          |          |           |                |                                              | TTe      | . T-       |               | 77-    | ~ ~:    |          | Tr                  | Ld     |              |
|                    | 1        |          |        | ı      |          |                    |                    | İ        |          | 1        |           | <del>-</del>   | $\overline{}$                                |          | n Jars:    | <u> </u>      | HOURS  |         | 1        | Inspec              |        |              |
| Bit Nu             | m        | Line     | er     | 1      | Str      | roke<br>/          | ,                  |          | SPM      |          | Press.    | GP.            | M C                                          | Jet Ve   | 1 DP 2     | Av Do         | C Av   | Bit H   | IP BH    | HP/SQIN             | Pump   | HHP          |
|                    |          |          |        |        |          | <u>/</u>           | <u>/</u>           | /        | <u>/</u> |          |           |                |                                              |          |            |               |        |         | _        |                     |        |              |
|                    | <u> </u> |          |        |        |          | <u>/</u>           | <u>/</u>           | /        | <u> </u> |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
| Survey             | MD       | Angle    | Azim   | nuth   | Dire     | ction              | 7                  | TVD      | ]        | N/S (    | C∞rdir    | ates           |                                              | E/W C    | Coordin    | ates          | Vert   | ical S  | ection   | ı                   | DLS    |              |
|                    |          |          |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
|                    |          |          |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
|                    |          |          |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
|                    |          |          |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
| Hours              | From     | Act-Cat  | _      |        |          | Operat             | ions C             | bveri    | ng 24    | Hou      | ırs End   | ing a          | t Mi                                         | dnight   | :          |               |        | Tota    | al Hou   | rs Repo             | rted:  | 24,0         |
| 24,00 <sub>T</sub> | 0000     | 08 - 42  | RIG @  | 9 SURV | IVAL D   | RAFT. I            | O TIAW             | VEAT     | HER @    | @ CUI    | RRENT I   | OCAT]          | ON 5                                         | 5 NAUT   | ICAL MI    | LES F/        | CHEVE  | RON DOI | JNA WE   | ST LOCA             | TION.  |              |
|                    |          | 08 - 42  |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
|                    |          | 08 - 42  | WEATH  | HER LC | G: WIN   | ID (M/S            | ) DI               | [R       | WAVE     | Н (1     | M) E      | RES (          | MM.F                                         | IG)      | PITCH      | (DEG)         | ROI    | LL (DEC | 3)       | HEAVE (I            | M)     |              |
|                    |          | 08 - 42  | 00:00  | ) HRS  |          | 17                 | 03                 | 35       | 4        | .0       |           | 76             | 54                                           |          | 0.         | 2             |        | 0.4     |          | 0.2                 |        |              |
|                    |          | 08 - 42  | 04:00  | HRS    |          | 17                 | 03                 | 35       | 4        | .0       |           | 76             | 54                                           |          | 0.         | 5             |        | 0.4     |          | 0.2                 |        |              |
|                    |          | 08 - 42  | 08:00  | HRS    |          | 15                 | 02                 | 25       | 4        | .0       |           | 76             | 54                                           |          | 0.         | 5             |        | 0.5     |          | 0.2                 |        |              |
|                    |          | 08 - 42  | 1      |        |          | 12                 |                    | 25       |          | .0       |           | 76             |                                              |          | 0.         |               |        | 0.4     |          | 0.2                 |        |              |
|                    |          | 08 - 42  |        |        |          | 13                 |                    | 30       |          | .0       |           | 76             |                                              |          | 0.         |               |        | 0.4     |          | 0.2                 |        |              |
|                    |          | 08 - 42  |        |        |          | 13                 |                    | 30       |          | .0<br>-4 |           | 76             |                                              |          | 0.         |               |        | 0.4     |          | 0.2                 |        |              |
|                    |          |          |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
|                    |          | 08 - 42  |        |        | (7\N/\   | 15<br>17           |                    | 30<br>20 |          | -4<br>0  |           | 76             |                                              |          | 0.         |               |        | 0.4     |          | 0.1                 |        |              |
|                    |          | 08 - 42  |        | מאח    | ( MIAI ) | Τ/                 | 02                 | -0       | ь        | .0       |           | 76             | , т                                          |          | 0.         | J             |        | 0.6     |          | ∪.∠                 |        |              |
|                    |          | 08 - 42  |        |        |          |                    |                    |          |          | _        |           |                |                                              |          |            |               | - · -  |         |          |                     |        |              |
|                    |          |          |        | VORK W | HILE W   | IOW: TES           | ST LOWE            | ER ANN   | IULAR    | TO !     | 500/750   | 0 PS1          | J & T                                        | JPPER .  | ANNULAR    | TO 50         | U/3500 | ) PSI I | FOR 5/   | 10 MINS             | - OK.  |              |
|                    |          | 08 - 42  |        |        |          | TES                | ST IBO             | P'S TO   | 500,     | /5000    | O PSI F   | OR 5/          | ′10 N                                        | MINS -   | OK. RE     | PLACE         | WASH E | PIPE, C | CONT W   | / ASSY (            | OF BOP | 'S.          |
| Qafa               | <u> </u> | 08 - 42  |        |        |          |                    |                    |          |          |          |           |                |                                              |          | INSTALL    | WEPCO         | ANCHO  | ORS ON  | GUIDE    | WIRES.              |        |              |
| sarety             | · MUS    | STER DR  | ILL &  | FIRE ' | TEAM E   | XERCISE            | HELD.              | DAY      | SHIFT    | 'SAF     | ETY ME    | ETING          | HEL                                          | D.       |            |               |        |         |          |                     |        |              |
|                    |          | ary: WA  |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
| Projec             | ted (    | peratio  | ons: W | AIT O  | N WEAT   | HER. CC            | NTINUE             | TOW '    | TO CH    | EVRC     | IN DONN   | A WES          | T LO                                         | CATION   | N & RUN    | ANCHOR        | s.     |         |          |                     |        |              |
| Remark             | ۵٠       |          |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
|                    |          |          |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
|                    |          |          |        |        |          |                    |                    |          |          |          |           |                |                                              |          |            |               |        |         |          |                     |        |              |
| 06:00              | OPS:     | WAIT O   | N WEAT | HER A  | PPROX    | 5 NAUTI            | CAL MI             | LES F    | / DON    | INA W    | EST LO    | CATIO          | N -                                          | 17 M/S   | S WIND,    | 6 METE        | E SEA  | s.      | _        |                     |        |              |
| Daily              | Mud (    | Cost: K  | 215,26 | ia Da  | aily Ta  | angible            | Cost:              |          |          | Da       | aily We   | 11 Cc          | st: <sub>k</sub>                             | r3,096   | 6,008      | Incide        | ents:  | NO I    | NCIDEI   | VI REPOR            | TED    |              |
|                    |          | st: KR8  |        | _      | ım Tang  | gible C            | lost:              |          |          |          | um Well   |                |                                              |          | 87,350     |               |        |         |          |                     |        |              |
|                    |          | r: 1321  |        | otable | e Wate   | r: 1667            | , Fu               | æl:      | 1956     |          |           | В              |                                              |          | 3726       |               |        | ment:   |          | Blende              | ed:    |              |
| Countr             |          |          |        |        |          |                    | Rig: <sub>BY</sub> |          |          | TN       |           |                |                                              |          | 2 88 03    | 35            | Dril   | ling Re | p:       | KINS/HOL            |        | באה          |
| Field:             | N        | UKWAY    |        |        |          |                    |                    |          | WILH     | ITIN .   |           |                |                                              |          | 11 No:     | 33<br>506 / 3 | 1      |         |          | CINS/HOL<br>ell ID: |        |              |
|                    | PL2      | 9        |        |        | 1        |                    | se: <sub>PL2</sub> |          |          | 1        | AFE No    | 7,7            | NTO C                                        |          |            | -             |        | 10 -    |          |                     | : 1 (  |              |
|                    |          |          |        |        |          | API No             | · 05U6/            | 5-1      |          | 4        | טאו הייני | KWE            | MO-6                                         | -1≿0∪c   | -UUT       |               |        | 18-JU   | ∟-2001   | rage                | · T (  | <i>)</i> ⊥ ⊥ |

| Measure | ed De       | epth:    |       | 0.0     |            | TVD:       |                                                | 0.0            |                                              | PBTI    | ):      | 0.0        | Propo        | osed M  | ):            | 3625       | m Pro    | posed         | TVD:        | 3635 m     |
|---------|-------------|----------|-------|---------|------------|------------|------------------------------------------------|----------------|----------------------------------------------|---------|---------|------------|--------------|---------|---------------|------------|----------|---------------|-------------|------------|
| DOL:    | 3           | D        | FS:   |         | Spud       | Date:      |                                                |                |                                              |         | Daily   | Footag     | e:           | D       | aily R        | ot Hrs:    |          | Total         | Rot Hr      | s:         |
| Torq:   |             | Drag     | J:    | Rot     | Wgt:       | P          | /U Wgt                                         | :              | S                                            | lack    | Off Wgt | ; <b>:</b> | Wind         | : 18    | Seas          | : 3.0      | / 6.0    | Bar:          | 757         | POB: 81    |
| Last Ca | asing       | g Size:  |       |         |            | Set 1      | At:                                            |                |                                              |         | MD      |            | -            | TVD     | Shoe '        |            |          | EMW           | Leako       |            |
| Cum Rot | t Hrs       | s On Ca  | sing: |         | С          | um Rot Hi  | rs On                                          | Casing         | g Sin                                        | .ce La  |         | iper:      |              | 1       | Worst         |            | 0        |               | emainin     | ıq:        |
| Liner S | Size:       | <u> </u> |       |         | Set        | At:        |                                                |                |                                              |         |         | -<br>-     | Li           | ner To  |               |            |          |               |             |            |
| Mud Co: |             |          |       | ĺ       |            |            |                                                | MD             |                                              |         | _       | VD         |              |         | <u> </u>      | PV:        | MD       | YP:           | G-1.        | TVD        |
|         | •           |          |       |         | Type:      |            |                                                |                |                                              | Solid   |         | % O        | FLOW         | wate    | FV:           |            |          | MB.           | Gel:        | Ph:        |
|         | API:        | 1        | HTHP: | :       | FC (1      | API        |                                                | HTHP:          | 1                                            | SOLIC   | -       |            | 1            |         |               | % Sa       |          |               |             | PII.       |
| Pm:     |             | Pf/Mf:   |       | /       | Car        | b:         | Cl:                                            |                | Ca:                                          |         | Bent    | :          | Solids       | 8 %HG/I | LG:           | /          | %I       | )S/Bent       | :           | /          |
|         |             |          |       |         |            |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
|         |             |          |       |         |            |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
| Drlg G  | as:         |          | Max ( | às:     | C          | Conn Gas:  |                                                | Trip           | Gas:                                         |         | Tr      | ip Cl:     | Re           | emarks  | •             |            |          |               |             |            |
| Bit Nu  | mber        | IADC     | Siz   | ze M    | lanufa     | acturer    | Seria                                          | al nur         | nber                                         |         | Jets    | s (Quai    | ntity -      | Size)   |               | TFA        | MI       | ) In          | MD Out      | TVD Out    |
|         |             |          |       |         |            |            |                                                |                |                                              | -       | / -     | - /        | - /          | - /     | / _           | 0          |          |               |             |            |
|         |             |          |       |         |            |            |                                                |                |                                              | -       | / -     | - /        | - /          | - /     | / _           | 0          |          |               |             |            |
| Tv      | <i>r</i> pe | Met      | ers   | Hour    | s          | WOB        | F                                              | RPM            |                                              | Motor   | RPM     | I-Row      | 0-Row        | DC      | Loc           | В          | G        | Char          | ?Pull       | Cost/m     |
|         |             |          |       |         |            | /          |                                                | /              |                                              |         |         |            |              |         |               |            |          |               |             |            |
|         |             |          |       |         |            |            |                                                | ,              |                                              |         |         |            |              |         |               |            |          |               |             |            |
| Total 1 | [enat       | h of B   | ΗΔ:   |         | E          | 3HA Descr  | iption                                         | <u>'</u><br>1: |                                              |         |         |            | <u> </u>     |         | <u> </u>      |            |          |               |             |            |
| 10001   |             |          |       |         |            |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
|         |             |          |       |         |            |            |                                                |                |                                              |         |         |            | IIma Or      | Towa    |               | Hoursa     | Cinac    | Tagt          | Tnancat     | ion:       |
|         | 1           |          |       |         | İ          |            |                                                | 1              |                                              | -       |         | İ          | Hrs Of       | ı Jars: |               | Hours      | БШСЕ     | Last          | Inspect     | TOI1•      |
| Bit Nur | n           | Line     | er    |         | S          | troke      | ,                                              |                | SPM                                          | :       | Press.  | M3/Min     | Jet Ve       | l DP    | Av D          | C Av       | Bit kW   | BHHI          | P/SQIN      | Pump kW    |
|         |             |          | /     |         |            | /          | <u>/</u>                                       | /              | / /                                          |         |         |            |              |         |               |            |          |               |             |            |
|         |             |          | /     |         |            | / ,        | <u>/                                      </u> | /              | <u>/                                    </u> |         |         |            |              |         |               |            |          |               |             |            |
| Survey  | MD          | Angle    | Azi   | muth    | Dir        | rection    | 5                                              | TVD            |                                              | N/S C   | !∞rdin  | ates       | E/W C        | oordir. | ates          | Verti      | .cal Se  | ection        |             | DLS        |
|         |             |          |       |         |            |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
|         |             |          |       |         |            |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
|         |             |          |       |         |            |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
|         |             |          |       |         |            |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
| Hours 1 | -Trom       | Nat -Ca  | _     |         |            | Oporat     | iona (                                         | buori          | ng 2/                                        | l Hous  | ca Endi | na at N    | <br> idniqht |         |               | <u> </u>   | Tota     | l Hour        | g Popor     | ted: 24,0  |
|         |             |          |       | @ CIID  | 7T 7 7 7 T | DRAFT. V   |                                                |                |                                              |         |         |            |              |         | PTCAT M       | ттес е     |          |               |             |            |
| 24,001  | 0000        | -        |       | @ DOIC  | AT AVIT    | DICAL'I, V | VAII OI                                        | IN WEST        |                                              | e Core  | KENI IK | CALLON     | AFFROX       | J NAO.  | LICAL I       | THEO F     | / LOIVIN | A WEST        | DOCATI      | .cav.      |
|         |             | 08 - 42  | 1     |         |            |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
|         |             | 08 – 42  | WEAT  | THER LO | CG: W.     | IND (M/S)  | ) D:                                           | IR             | WAVE                                         | H (M    | I) PI   | RES (MM    | .HG)         | PITCH   | (DEG)         | ROL        | L (DEG   | ) H           | EAVE (M     | I)         |
|         |             | 08 - 42  | 00:0  | 00 HRS  |            | 15         | 0:                                             | 30             | 3                                            | -4      |         | 763        |              | 0       | . 3           | -          | 0.4      |               | 0.1         |            |
|         |             | 08 - 42  | 04:0  | 00 HRS  |            | 16         | 0:                                             | 30             | 4                                            | .0      |         | 762        |              | 0       | . 4           | -          | 0.5      |               | 0.2         |            |
|         |             | 08 - 42  | 08:0  | 00 HRS  |            | 16         | 0:                                             | 30             | 6                                            | .0      |         | 761        |              | 0       | . 5           |            | 0.7      |               | 0.2         |            |
|         |             | 08 - 42  | 12:0  | 00 HRS  |            | 13         | 0:                                             | 30             | 5                                            | .0      |         | 761        |              | 0       | . 8           |            | 0.8      |               | 0.5         |            |
|         |             | 08 - 42  | 16:0  | 00 HRS  |            | 13         | 3:                                             | 10             | 5                                            | .0      |         | 761        |              | 0       | . 7           |            | 0.8      |               | 0.5         |            |
|         | _           | 08 - 42  | 20:0  | 00 HRS  | _          | 19         | 3!                                             | 50             | 5                                            | -6      |         | 760        |              | 0       | .7            |            | 0.7      |               | 0.5         |            |
|         |             | 08 - 42  | 24:0  | 00 HRS  |            | 19         | 0:                                             | 15             | 5                                            | -6      |         | 758        |              | 0       | . 9           |            | 0.9      |               | 0.4         |            |
|         |             | 08 - 42  |       |         | (AM)       | 21         | 00                                             | 05             | 6                                            | .0      |         | 758        |              | 1       | . 0           | :          | 1.1      |               | 0.6         |            |
|         |             | 08 - 42  |       |         | -          |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
|         |             |          |       | MODIE " | ייידטוגי   | MOM. DE    | ייי א א זר                                     | V ET T * 7     | מחמב                                         | CITION  | мт тътг | רי זיוווים | ב אינים ב    | 77/77   | I Citing rice | י ייים דמי | трост    | CiV IVITTI E  | 00/5000     | DOT OT     |
|         |             |          |       | WORK I  | MUTTE      |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             | PSI - OK.  |
|         |             | 08 - 42  |       |         |            |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             | ELLY HOSE  |
| Safatar |             | 08 – 42  | -     |         |            |            |                                                |                |                                              |         | PM WO   | RK IN P    | JMP ROOM     | M. RE-  | rorq bo       | LTS ON     | MANIP    | ULATOR        | ARM.        |            |
|         |             |          |       |         |            | JRING PER  |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
|         |             |          |       |         |            | PPROX 5 N  |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
| Project | ed C        | peration | ons:  | WAIT C  | N WEA      | ATHER. BA  | LLAST                                          | UP, C          | ONTIN                                        | UE TO   | OT WC   | HEVRON     | DONNA W      | EST LC  | CATION        | & RUN      | ANCHO    | RS.           |             |            |
| Remarks | 3:          |          |       |         |            | DOLPHIN    |                                                |                |                                              |         |         |            |              |         |               |            |          |               | ICE LAS     | r LTI - 54 |
|         |             |          |       |         |            |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
|         |             |          |       |         |            |            |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             |            |
| 06:00 ( | DPS:        | WAIT O   | N WEA | THER A  | PPROX      | K 5 NAUTI  | CAL MT                                         | LES F          | "/ D()                                       | NINA WI | EST LOC | ATION -    | 21 M/S       | WIND.   | 6 МЕТ         | RE SEAS    | 5.       |               |             |            |
| Daily M |             |          |       |         |            | Tangible   |                                                |                |                                              |         |         |            | KR3,177      |         | i             |            |          | ייים רד דיייי | ים∩סיוקק ין | TED        |
| Cum Muc |             |          |       | 02      |            | angible C  |                                                |                |                                              |         |         |            |              |         |               |            |          |               |             | لائد       |
|         |             |          |       |         |            |            |                                                | 101.           |                                              |         |         |            | KR34,76      |         |               |            |          |               |             | .d.        |
|         |             |          | 0.0   | rucabl  | e wat      | er: 2100   |                                                |                |                                              |         |         |            | Weight       |         |               | Daili      | ing Pr   | 46000         | PTEUGE      | ·u·        |
| Country | . N         | ORWAY    |       |         |            |            | Rig: <sub>BY</sub>                             |                | DOLPH                                        | IIN     |         | кід Р.     | hone: 52     |         |               | חנדדד      | ши ке    |               |             | LINSHEAD   |
| Field:  | PL25        | 59       |       |         |            | Leas       | se: <sub>PL2</sub>                             | 259            |                                              |         |         |            |              |         | 5506/3-       | -1         |          | We            | ll ID:τ     | љ5908 —0   |
|         |             |          |       |         |            | API No:    | 6506/                                          | /3-1           |                                              | A       | FE No:  | KWENO-     | 650631-      | 001     |               | Date:      | 19-JUI   | -2001         | Page:       | : 1 Of 1   |

| Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart      | Measur    | red D      | epth:       | 0.         | 0      | TVD:                                  | 0.0          |                                              | PBTD        | :          | 0.0         | Propo                                        | osed M      | ): ;             | 3625.0 i | m Pr                                   | oposed                 | TVD:       | 3625.0 m   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-------------|------------|--------|---------------------------------------|--------------|----------------------------------------------|-------------|------------|-------------|----------------------------------------------|-------------|------------------|----------|----------------------------------------|------------------------|------------|------------|
| The control of third   Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of    | DOL:      | 4          | Di          |            |        | ud Date:                              |              |                                              |             | Daily      |             | e:                                           | D           |                  |          |                                        | Total                  | Rot Hr     |            |
| Marc   Carlo   | Torq:     |            | Drag        | g: F       | Rot W  | gt: P                                 | /U Wgt:      | S                                            | lack 0      | ff Wgt     | :           | Wind:                                        | : 10        | Seas             | : 4.0    | / 6.0                                  | Bar:                   | 764        | POB: 81    |
| Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fine   Californ Fin   | Last (    | asin       | g Size:     |            |        | Set 1                                 | At:          |                                              | 1           | MD.        |             |                                              |             |                  |          |                                        | •                      |            |            |
| No.   Carlo   Proper   Prope   | Cum Ro    | t Hr       | s On Ca     | sing:      |        | Cum Rot Hi                            | rs On Casin  | g Sin                                        |             |            | per:        |                                              | 1           | Worst            | Wear:    | 0                                      |                        | emainir    | ng:        |
| Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary   Mary      | Liner     | Size       | :           |            |        | Set At:                               | MD           |                                              |             | ידי        |             | Lir                                          | ner To      | p At:            |          | MI                                     | <u> </u>               |            | TVD        |
| No.   Service   Point   Service   Point   Service   Se   | Mud Co    | ) <b>:</b> |             |            | Τν     | noe:                                  | עוייו        |                                              |             | +          |             | : ET ON W                                    | ī+:         | FV:              | PV:      |                                        |                        | Gel:       | /          |
| Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Parison   Pari   | WL        |            |             |            |        | -<br>TC (mm)                          |              |                                              | Solids      |            |             |                                              | -           |                  | % Sai    | nd:                                    | MB'                    |            | Ph:        |
| Display   Page   |           | API:       |             |            | -      | AL.                                   |              | Ca:                                          |             | Bent       | <br>.:      | Solids                                       | <br>  %HG/1 | LG:              |          | %                                      | DS/Bent                |            | /          |
| Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S   |           |            |             | /          |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            | /          |
| Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S   |           |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S   | Dual or C | 1000       |             | Max Cag:   |        | Com Cag:                              | Mari a       | O= ~:                                        |             | Tr         | in Cl·      | D.                                           | marka       |                  |          |                                        |                        |            |            |
| Type   Meters   Mours   Moth   SPK   Motor   | Drig G    | as:        |             |            | 1      |                                       |              |                                              |             | 11.        |             |                                              |             |                  |          | 1                                      |                        |            | 1          |
| TOTAL LARGE TO BEASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bit Nu    | ımber      | IADC        | Size       | Man    | ufacturer                             | Serial nur   | nber                                         |             | Jets<br>/  | (Quar       | ntity -                                      | Size)       | /                |          | M                                      | D In                   | MD Out     | TVD Out    |
| Symple   Market   Moure   Mo   |           |            |             |            |        |                                       |              |                                              | _           | <u>/ -</u> | /           | <u>     /                               </u> | _ /         | ,                |          |                                        |                        |            |            |
| Total Longeth of BMA    SAM Description   SAM    |           |            |             |            |        |                                       |              |                                              | _           | / -        |             | - /                                          | - /         |                  | +        |                                        |                        |            |            |
| Total Length of Real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Т         | ype        | Met         | ers Ho     | urs    |                                       |              |                                              | Motor       | RPM        | I-Row       | 0-Row                                        | DC          | Loc              | В        | G                                      | Char                   | ?Pull      | Cost/m     |
| Since   Stroke   St   |           |            |             |            |        | /                                     | /            |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| Since   Stroke   St   |           |            |             |            |        | / / / / / / / / / / / / / / / / / / / | /            |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total     | Leng       | th of B     | HA:        |        | BHA DESCI                             | Throu.       |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |            |             |            |        |                                       |              |                                              |             |            |             | 1                                            |             |                  | 1        |                                        |                        |            |            |
| Survey NO   2mg    2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   2mg   |           | 1          |             |            | i      |                                       | <u> </u>     |                                              | <del></del> |            |             | Hrs Or                                       | ı Jars:     | · ·              | Hours    | Since                                  | e Last                 | Inspect    | tion:      |
| Round   From   Act-Coat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bit Nu    | m          | Line        | er         |        | Stroke                                | ,            | SPM                                          | P           | ress.      | M3/Min      | Jet Vel                                      | l de        | Av D             | C Av 1   | Bit k√                                 | y BHH                  | P/SQIN     | Pump kW    |
| Round   From   Act-Coat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |            |             | /          |        |                                       | / ,          | / /                                          |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| Round   From   Act-Coat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |            | /           | /          |        |                                       | / ,          | <u>/                                    </u> |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| 16.50T 0000 08 - 42 RES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Survey    | MD.        | Angle       | Azimuth    | n      | Direction                             | TVD          |                                              | N/S Co      | ordina     | ites        | E/W C                                        | oordir      | ates             | Verti    | cal S                                  | ection                 |            | DLS        |
| 16.50T 0000 08 - 42 RES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| 16.50T 0000 08 - 42 RES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| 16.50T 0000 08 - 42 RES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| 16.50T 0000 08 - 42 RES @ SURVIVAL DRAFT. WAIT ON MEATHER @ CURRENT LOCATION APPROX 5 NATICAL MILES F/ DOWNA WEST LOCATION.    08 - 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| 08 - 42   WENTHER LOS: WIND (M/S)   DIR   WAVE H (M)   PRES (NM.HS)   PITCH (DBS)   ROLL (DBS)   HEAVE (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hours     | From       | Act-Cat     | t          |        | Operat                                | ions Coveri  | ng 24                                        | Hour        | s Endir    | ng at M     | Iidnight                                     |             |                  |          | Tota                                   | al Hour                | s Repoi    | rted: 24.0 |
| 08 - 42   WEATHER LOG: WIND (M/S)   DIR   WEVE H (M)   PRES (MM.HG)   PITCH (DBI)   RGLL (DEG)   HEAVE (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.50T    | 0000       | 08 - 42     | RIG @ S    | URVIV  | /AL DRAFT. V                          | WAIT ON WEAT | THER (                                       | @ CURR      | ENT LO     | CATION      | APPROX                                       | 5 NAU       | rical M          | ILES F   | / DON                                  | NA WEST                | LOCATI     | EON.       |
| 08 - 42   00:00 HRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |            | 08 - 42     | 2          |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| 08 - 42   04:00 HES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |            | 08 - 42     | WEATHER    | LOG:   | WIND (M/S                             | ) DIR        | WAVE                                         | H (M)       | PR         | ES (MM.     | .HG)                                         | PITCH       | (DEG)            | ROLI     | L (DEC                                 | G) H                   | EAVE (1    | 1)         |
| 08 - 42   04:00   HES   19   010   6.0   758   2.0   3.0   0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |            | 08 - 42     | 00:00 н    | RS     | 19                                    | 015          | 5                                            | <br>_6      |            | 758         |                                              | 0           | . 9              | (        | ).9                                    |                        | 0.4        |            |
| 08 - 42   16:00 HRS   16   010   6.0   758   1.5   2.5   0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |            |             | 1          |        | 19                                    | 010          | 6                                            | .0          |            | 758         |                                              | 0           | . 9              |          | L.0                                    |                        | 0.5        |            |
| 08 - 42   16:00 HRS   16   010   6.0   758   1.5   2.5   0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |            |             | +          |        | 21                                    | 000          | 6                                            | . 0         |            | 758         |                                              | 2           | . 0              | -        | 3.0                                    |                        | 0.8        |            |
| 08-42   16:00 HRS   16   000   6.0   761   1.5   2.0   0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| 5.00T 1630 08 - 42 WEATHER FORECASTS PREDICT AN IMPROVING SEA STATE. DECISION TAKEN TO DE-BALLAST RIG TO TOWING DRAFT.  1.50T 2130 08 - 42 RIG AT TOWING DRAFT - CONTINUE TO WAIT ON SEA STATE TO ALLOW ANCHOR HANDLING TO COMMENCE.  1.00 2300 08 - 41 COMMENCE 'RUN IN ON LINE' TO DEPLOY ANCHOR #5.  08 - 42 RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /  08 - 42 STRENNSHHENING WORK TO CATWALK. CONTINUE W/ BM & GENERAL RIG MAINTENANCE WORK.  Safety: PRE-SPID MEETING HELD FOR NEW DRILL CREW.  24 Hr Summary: WAIT ON IMPROVEMENT IN WEATHER. DE-BALLAST TO TOWING DRAFT & COMMENCE DEPLOYMENT OF ANCHORS.  Projected Operations: RUN & PRE-TENSION ANCHORS, BALLAST DOWN TO OPERATIONAL DRAFT, M/U 17.1/2" x 26" x 36" BHA & RIH TO SPUD Remarks:  POB: CHEVRON - 2, SERVICE - 18, DOLPHIN - 53, DOLPHIN SERVICE - 8  DAYS SINCE LAST LIT - 55  DAYS SINCE LAST LIT - 55  DAYS SINCE LAST LIT - 55  Cum Mud Cost: RR137,762 Daily Tangible Cost: Daily Well Cost: RR37,822,904 Total Appr: RR134,000,000 Drill Water: 200.0 Potable Water: 180.0 Fuel: 293.0 Bulk Weight: 196.0 Neat Cement: 146.0 Blended:  Country: NORWAY RES PLASS PREDICT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE P |           |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| 5.00T 1630 08 - 42 WEATHER FORECASTS PREDICT AN IMPROVING SEA STATE. DECISION TAKEN TO DE-BALLAST RIG TO TOWING DRAFT.  1.50T 2130 08 - 41 RIG AT TOWING DRAFT - CONTINUE TO WAIT ON SEA STATE TO ALLOW ANCHOR HANDLING TO COMMENCE.  1.00 2300 08 - 41 COMMENCE 'RUN IN ON LINE' TO DEPLOY ANCHOR #5.  08 - 42 RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /  08 - 42 RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /  Safety: PRE-SPUD MEETING HELD FOR NEW DRILL CREW.  24 Hr Summary: WAIT ON IMPROVEMENT IN WEATHER. DE-BALLAST TO TOWING DRAFT & COMMENCE DEPLOYMENT OF ANCHORS.  Projected Operations: RUN & PRE-TENSION ANCHORS, BALLAST DOWN TO OPERATIONAL DRAFT, M/U 17.1/2" X 26" X 36" BHA & RIH TO SPUD REMAINS:  POB: CHEVRON - 2, SERVICE - 18, DOLPHIN - 53, DOLPHIN SERVICE - 8  DAYS SINCE LAST LIT - 55  DAYS SINCE LAST LIT - 55  DAYS SINCE LAST LIT - 55  DAYS SINCE LAST LIT - 55  Cum Mad Cost: KR33,762 Daily Tangible Cost: Daily Well Cost: KR31,127,627 Incidents: NO INCIDENT REPORTED  Cum Mad Cost: KR129,086 Cum Tangible Cost: Daily Well Cost: KR37,892,904 Total Appr: KR134,000,000 Drill Water: 200.0 Potable Water: 180.0 Fuel: 293.0 Bulk Weight: 196.0 Neat Cement: 146.0 Blended:  Country: NORWAY RIGHER FORECASTOR SET ON THE TOWN OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRUMENT OF THE PROPRIED WELL INSTRU |           |            |             |            | KS     | 10                                    | 000          | 0                                            | .0          |            | 761         |                                              |             | . 5              |          | 2.0                                    |                        | 0.0        |            |
| 1.507 2130 88 - 42 RIG AT TOWING DRAFT - CONTINUE TO WAIT ON SEA STATE TO ALLOW ANCHOR HANDLING TO COMMENCE.  1.00 2300 88 - 41 COMMENCE 'RUN IN ON LINE' TO DEPLOY ANCHOR #5.    08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELLOWS AND TO  |           | 1.620      |             |            | =====  | IGIGEG PRES                           |              | O                                            | GER 6       |            | DEG = G = G |                                              |             |                  |          |                                        |                        | D          |            |
| 1.00 2300 08 - 41 COMMENCE 'RUN IN ON LINE' TO DEPLOY ANCHOR #5.    08 - 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        | KAFT.      |            |
| 08 - 41   08 - 42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08 - 42   STRENGTHENING WORK TO CATWAIK. CONTINUE W/ PM & GENERAL RIG MAINTENANCE WORK.   Safety: PRE-SPUD MEETING HELD FOR NEW DRILL CREW.   24 Hr Summary: WAIT ON IMPROVEMENT IN WEATHER. DE-BALLAST TO TOWING BRAFT & COMMENCE DEPLOYMENT OF ANCHORS.   Projected Operations: RIN & PRE-TENSION ANCHORS, BALLAST DOWN TO OPERATIONAL DRAFT, M/U 17.1/2" X 26" X 36" BHA & RIH TO SPUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            |             |            |        |                                       |              |                                              |             |            | ь тО Al     | TIOM AIN(                                    | JOK H       | -MTTT/NG         | , 10 WI  | · II · II · II · II · II · II · II · I | ٠.                     |            |            |
| 08-42   RIG WORK WHILE WOW: REPAIR & TEST KELLY HOSE CONNECTION TO 500/5000 PSI - OK. CARRY OUT WELDING REPAIR /   08-42   STRENGTHENING WORK TO CATWALK. CONTINUE W/ PM & GENERAL RIG MAINTENANCE WORK.   Safety: PRE-SPUD MEETING HELD FOR NEW DRILL CREW.   24 Hr Summary: Walt ON IMPROVEMENT IN WEATHER. DE-BALLAST TO TOWING DRAFT & COMMENCE DEPLOYMENT OF ANCHORS.   Projected Operations: RIN & PRE-TENSION ANCHORS, BALLAST DOWN TO OPERATIONAL DRAFT, M/U 17.1/2" X 26" X 36" BHA & RIH TO SPUD REmarks:   POB: CHEVRON - 2, SERVICE - 18, DOLPHIN - 53, DOLPHIN SERVICE - 8   DAYS SINCE LAST LTI - 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00      | 2300       |             |            | ь 'RU  | N TN ON LI                            | ME. IO DEBT( | JY AN                                        | UHUR #      | 5.         |             |                                              |             |                  |          |                                        |                        |            |            |
| Safety: PRE-SPUD MEETING HELD FOR NEW DRILL CREW.  24 Hr Summary: WAIT ON IMPROVEMENT IN WEATHER. DE-BALLAST TO TOWING DRAFT & COMMENCE DEPLOYMENT OF ANCHORS.  Projected Operations: RIN & PRE-TENSION ANCHORS, BALLAST DOWN TO OPERATIONAL DRAFT, M/U 17.1/2" x 26" x 36" BHA & RIH TO SPUD  Remarks:  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SI | -         |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| Safety: PRE-SPUD MEETING HELD FOR NEW DRILL CREW.  24 Hr Summary: WAIT ON IMPROVEMENT IN WEATHER. DE-BALLAST TO TOWING DRAFT & COMMENCE DEPLOYMENT OF ANCHORS.  Projected Operations: RUN & PRE-TENSION ANCHORS, BALLAST DOWN TO OPERATIONAL DRAFT, M/U 17.1/2" X 26" X 36" BHA & RIH TO SPUD Remarks: POB: CHEVRON - 2, SERVICE - 18, DOLPHIN - 53, DOLPHIN SERVICE - 8  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAILY MUD Cost: KR33,762  Daily Mud Cost: KR33,762  Daily Tangible Cost:  Daily Well Cost: KR33,127,627  Daily Well Cost: KR37,892,904  Drill Water: 200.0  Potable Water: 180.0  Fuel: 293.0  Rig: BYFORD DOLPHIN  Rig Phone: 52 88 03 35  Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259  Well No: 6506/3-1  Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            | 08 - 42     | RIG WOR    | K WHI  | LE WOW: REI                           | PAIR & TEST  | KELL                                         | Y HOSE      | CONNE      | CTION T     | ro 500/5                                     | 5000 P      | SI - OK          | . CARRY  | Z OUT                                  | WELDIN                 | G REPAI    | IR /       |
| 24 Hr Summary: WAIT ON IMPROVEMENT IN WEATHER. DE-BALLAST TO TOWING DRAFT & COMMENCE DEPLOYMENT OF ANCHORS.  Projected Operations: RIN & PRE-TENSION ANCHORS, BALLAST DOWN TO OPERATIONAL DRAFT, M/U 17.1/2" X 26" X 36" BHA & RIH TO SPUD  Remarks: POB: CHEVRON - 2, SERVICE - 18, DOLPHIN - 53, DOLPHIN SERVICE - 8  DAYS SINCE LAST LTI - 55  DAILY MUD Cost: RR33,762  Daily Tangible Cost: Daily Well Cost: RR31,127,627  Daily Well Cost: RR37,892,904  Drill Water: 200.0  Potable Water: 180.0  Fuel: 293.0  Rig: BYFORD DOLPHIN  Rig Phone: 52 88 03 35  Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259  Well No: 6506/3-1  Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Co.F.     |            |             |            |        |                                       |              | WORK                                         | TO CA       | TWALK.     | CONTIN      | NUE W/ E                                     | PM & G1     | ENERAL           | RIG MAI  | INTENA                                 | ANCE WO                | RK.        |            |
| Projected Operations: RIN & PRE-TENSION ANCHORS, BALLAST DOWN TO OPERATIONAL DRAFT, M/U 17.1/2" X 26" X 36" BHA & RIH TO SPUD  Remarks: POB: CHEVRON - 2, SERVICE - 18, DOLPHIN - 53, DOLPHIN SERVICE - 8  06:00 OPS: CONTINUE TO RUN ANCHORS @ DONNA WEST LOCATION. ANCHORS #2, #5, #6, #8, #10 & #11 SET.  Daily Mud Cost: RR33,762  Cum Mud Cost: RR129,086  Cum Tangible Cost:  Cum Well Cost: RR37,892,904  Drill Water: 200.0  Potable Water: 180.0  Fuel: 293.0  Rig: BYFORD DOLPHIN  Rig Phone: 52 88 03 35  Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259  Well No: 6506/3-1  Well ID: WB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| Remarks:  POB: CHEVRON - 2, SERVICE - 18, DOLPHIN - 53, DOLPHIN SERVICE - 8  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI | 24 Hr     | Summe      | ary: WA     | IT ON IM   | PROVE  | MENT IN WEA                           | THER. DE-BA  | LLASI                                        | TO TO       | OWING 1    | DRAFT &     | COMMEN                                       | CE DEF      | LOYMEN           | r of an  | CHORS                                  | S.                     |            |            |
| POB: CHEVRON - 2, SERVICE - 18, DOLPHIN - 53, DOLPHIN SERVICE - 8  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 55  DAYS SINCE LAST LTI - 51  DAYS SINCE LAST LTI - 51  DAYS SINCE LAST LTI - 51  DAYS SINCE LAST LTI - 51  DAYS SINCE LAST LTI - 51  DAYS SINCE LAST LTI - 51  DAYS SINCE LAST LTI - 51  DAYS SINCE LAST LTI - 51  DAY | Projec    | ted (      | peratio     | ons: RUN   | & PR   | E-TENSION A                           | NCHORS, BAI  | LAST                                         | DOWN '      | TO OPE     | RATIONA     | L DRAFT                                      | ', M/U      | 17.1/2           | " X 26"  | X 36                                   | " BHA                  | & RIH T    | O SPUD     |
| Daily Mud Cost: KR33,762 Daily Tangible Cost: Daily Well Cost: Cum Well Cost: KR3,127,627 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR129,086 Cum Tangible Cost: Cum Well Cost: KR37,892,904 Total Appr: KR134,000,000 Drill Water: 200.0 Potable Water: 180.0 Fuel: 293.0 Bulk Weight: 196.0 Neat Cement: 146.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |            | <u> 2</u> , | SERVIC     | E - 1  | 8, DOLPHIN                            | r - 53, DOI  | PHIN                                         | SERVI       | CE - 8     |             |                                              |             |                  |          |                                        | AYS SI                 | NCE LAS    | T LTI - 55 |
| Daily Mud Cost: KR33,762 Daily Tangible Cost: Daily Well Cost: Cum Well Cost: KR3,127,627 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR129,086 Cum Tangible Cost: Cum Well Cost: KR37,892,904 Total Appr: KR134,000,000 Drill Water: 200.0 Potable Water: 180.0 Fuel: 293.0 Bulk Weight: 196.0 Neat Cement: 146.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| Daily Mud Cost: KR33,762 Daily Tangible Cost: Daily Well Cost: Cum Well Cost: KR3,127,627 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR129,086 Cum Tangible Cost: Cum Well Cost: KR37,892,904 Total Appr: KR134,000,000 Drill Water: 200.0 Potable Water: 180.0 Fuel: 293.0 Bulk Weight: 196.0 Neat Cement: 146.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |            |             |            |        |                                       |              |                                              |             |            |             |                                              |             |                  |          |                                        |                        |            |            |
| Cum Mud Cost: KR129,086       Cum Tangible Cost: Cum Well Cost: KR37,892,904       Total Appr: KR134,000,000       Neat Cement: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended:                                                            | 06:00     | OPS:       | CONTIN      | UE TO RUI  | N ANC  | HORS @ DONN                           | IA WEST LOCA | NOITA                                        | . ANCH      | ORS #2     | , #5, #     | 6, #8,                                       | #10 &       | #11 SE           | г.       |                                        |                        |            |            |
| Cum Mud Cost: KR129,086       Cum Tangible Cost: Cum Well Cost: KR37,892,904       Total Appr: KR134,000,000       Neat Cement: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended: 146.0 Blended:                                                            | Daily     | Mud (      | Cost: K     | R 33 , 762 | Dai    | ly Tangible                           | Cost:        |                                              | Dai         | ly Wel     | l Cost:     | KR3,127                                      | ,627        | Incide           | ents:    | NO I                                   | NCIDEN                 | repor      | TED        |
| Drill Water: 200.0       Potable Water: 180.0       Fuel: 293.0       Bulk Weight: 196.0       New Cement: 146.0       Blended: 146.0         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig Phone: 52 88 03 35       Drilling Rep: ELKINS/HOLLINSHEAD         Field: PL259       Lease: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |            |             | -          | Cum    | Tangible C                            | ost:         |                                              |             |            |             |                                              |             | Total            | Appr:    | KR134                                  | 1,000.0                | 00         |            |
| Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |            |             |            | able ' | Water: 180                            | O Fuel:      | 293 (                                        |             |            |             |                                              |             |                  |          |                                        |                        |            | ed:        |
| Field: PL259 Well No:6506/3-1 Well ID:UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |             | <u>-  </u> |        |                                       |              |                                              |             |            |             |                                              |             | - <u>I</u><br>35 | Drill:   | ing Re                                 | = 20.0<br>≘p:<br>⊟n.v. | TNIS / HOT | TINKHEAD   |
| FLED - 1000/0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field:    | יר זת      | 20          |            |        |                                       |              | 1                                            |             |            |             |                                              |             | 5506/3-          | ·1       |                                        |                        |            |            |
| API No: 6506/3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | ruZ;       | رر          |            |        |                                       |              |                                              | AF          | E No:      | KWENO-      |                                              |             |                  |          | 20- <sub>-</sub> πτ                    |                        |            |            |

| Measured              | Depth:   | 0           | .0      | TVD:           | 0.0         |            | PBTD   | :        | 0.0      | Prop        | osed MI | ): 3     | 3625.0 n | n Pro  | posed   | TVD:     | 3625.0 m    |
|-----------------------|----------|-------------|---------|----------------|-------------|------------|--------|----------|----------|-------------|---------|----------|----------|--------|---------|----------|-------------|
| DOL: 5                | ]        | OFS:        | Spu     | d Date:        |             |            |        | Daily    | Footage  | e: 0.       | .0 D    | aily Ro  | ot Hrs:  |        | Total   | Rot Hr   | s:          |
| Torq:                 | Dra      | ıg:         | Rot Wg  | t: P           | /U Wgt:     | S          | lack 0 | ff Wgt   | :        | Wind        | •       | Seas     | : 5.0 /  | 0.0    | Bar:    | 764      | POB: 81     |
| Last Casi             | ng Size  | :           |         | Set A          | At:         |            | 1      | MD.      |          |             | TVD     | Shoe 5   |          |        | EMW     | Leako    |             |
| Cum Rot H             | rs On C  | asing:      |         | Cum Rot H      | rs On Casin | g Sin      |        |          | iper:    |             | T       | Worst    | Wear:    | U      |         | emainin  | q:          |
| Liner Size            | e:       |             | S       | et At:         |             |            |        |          | -        | Li          | ner To  |          |          |        |         |          |             |
|                       |          |             | _       |                | MD          |            |        | _        | VD       | <del></del> |         |          | PV:      | MD     | YP:     | a 1.     | TVD         |
| Mud Co: <sub>M-</sub> | I NORŒ   | A.S.        |         | e: SEAWATER    | 2           |            | Solids |          | le From  |             | Wate    |          |          |        | MB'     | Gel:     | Ph:         |
| WL<br>API             | 1        | HTHP:       |         | (mm) API       |             |            | SOTIUS | -        |          | 1           |         |          | % San    |        |         |          | PII.        |
| Pm:                   | Pf/Mf    | ·           | Ca      | arb:           | cl:         | Ca:        |        | Bent     | ::       | Solida      | s %HG/I | .G:      | /        | %L     | S/Bent  | ::<br>   | /           |
|                       |          |             |         |                |             |            |        |          |          |             |         |          |          |        |         |          |             |
|                       |          |             |         |                |             |            |        |          |          |             |         |          |          |        |         |          |             |
| Drlg Gas:             |          | Max Gas     | :       | Conn Gas:      | Trip        | Gas:       |        | Tr       | ip Cl:   | R           | emarks: |          |          |        |         |          |             |
| Bit Numbe             | r IADC   | Size        | Manu    | facturer       | Serial nu   | mber       |        | Jets     | s (Quar  | ntity -     | Size)   |          | TFA      | MI     | ) In    | MD Out   | TVD Out     |
| 1                     | 1-3-1    | 17.5        | 5       | SMITHS         | 49335       |            | 3 - 22 | 2.2/ -   | . / .    | - /         | - /     | / _      | 1163.9   | 366    | 5.0 m   |          |             |
| 2                     |          | 36.0        |         | IPE            | 39252       |            | 6-14   | 1.3/ -   | . /      | - /         | - /     | / _      | 963.9    | 366    | 5.0 m   |          |             |
| Туре                  | Me       | ters H      | ours    | WOB            | RPM         |            | Motor  | RPM      | I-Row    | 0-Row       | DC      | Loc      | В        | G      | Char    | ?Pull    | Cost/m      |
| DGJ                   |          |             | 0.0     | 0.0/0.0        |             |            |        |          | 1 100    | O Itow      | 200     | 100      |          |        | CHAI    |          | 0.00        |
| 26" X 36"             |          |             |         |                | /           |            |        |          |          |             |         |          |          |        |         |          |             |
| -                     |          |             | 0.0     | / Doggr        | intion:     |            |        |          |          |             |         |          |          |        |         |          | 0.00        |
| Total Leng            |          | 2,72        | 2.87 m  |                | iption: 17  |            |        |          |          |             |         |          |          |        |         |          |             |
| ANDERDRI              | FT - 3   | X 9.1/2"    | DC - 2  | X/OVER - 3     | X 8" DC -   | X/OVE      | IR - 3 | X 5" I   | HWDP -   | 6.1/2"      | WEIR H  | OUSTON   | JARS -   | 14 X   | 5" HWI  | )P       |             |
|                       |          |             |         |                | <del></del> |            |        |          | i -      | Hrs O       | n Jars: |          | Hours    | Since  | Last    | Inspect  | ion:        |
| Bit Num               | Lir      | ier         |         | Stroke         |             | SPM        | P      | ress.    | M3/Min   | Jet Ve      | l dp.   | Av D     | C Av E   | sit kW | ВНН     | P/SQIN   | Pump kW     |
| 1                     | 152 /    | 152 / 15    | 30      | 4.8/304.8      | / 304.8     | / /        |        | 0        | 0.00     | 0.00        | 0.0     | 00 0     | 0.00     | 0.00   | (       | 0.0      | 0.00        |
| 2                     | 152 /    | 152 / 1!    | 52 304  | 4.8/304.8      | / 304.8     | / /        |        |          | 0.00     | 0.00        | 0.0     | 00 0     | 0.00     | 0.00   |         | 0.0      | 0.00        |
| Survey MD             | Angle    | Azimut      | h D     | irection       | TVD         |            | N/S Co | ordina   | ates     | E/W C       | cordin  | ates     | Vertic   | cal Se | ection  |          | DLS         |
|                       | 3 -      |             |         |                |             |            | ,      |          |          | ,           |         |          |          |        |         |          |             |
|                       |          |             |         |                |             |            |        |          |          |             |         |          |          |        |         |          |             |
|                       |          |             |         |                |             |            |        |          |          |             |         |          |          |        |         |          |             |
|                       |          | +           |         |                |             |            |        |          |          |             |         |          |          |        |         |          |             |
|                       |          | <u> </u>    |         |                |             |            |        |          |          |             |         |          | <u> </u> |        |         |          |             |
| Hours Fra             | n Act-Ca | at          |         | 0perat         | ions Coveri | ng 24      | Hour   | s Endi:  | ng at M  | idnight     | :       |          |          | Tota   | l Hour  | s Repor  | ted: 24.0   |
| 1.00 000              | 0 08 – 4 | 1 CONT 'I   | RUN IN  | ON LINE' U     | INDER THE T | OW OF      | "FAR   | FOSNA"   | TO DEE   | PLOY AN     | CHOR #5 | 5.       |          |        |         |          |             |
| 3.00 010              | 0 08 - 4 | 0 COMMEN    | CE ANCH | HOR HANDLII    | G OPERATIO  | NS W/      | PENNA  | NT #5    | TO "NOF  | RMAND P     | ROGRESS | S". DEP  | LOY AND  | HORS   | #5, #1  | 1 & #2.  |             |
| 9.50 040              | 0 08 - 4 | 0 RELEAS    | ED FROM | TOW OF "I      | FAR FOSNA". | CONT       | TO RU  | N ANCH   | IORS #8, | #10,        | #6, #9, | #7, #    | 3, #4 &  | #12    | WORKIN  | G 3 AHV  | . COMMENCE  |
|                       | 08 - 4   | 0 BALLAS    | ring Ri | IG TO OPERA    | ATIONAL DRA | FT @ :     | 12:40  | HRS. A   | NCHOR I  | HANDLIN     | G COMPI | ETED B   | Y 13:30  | HRS.   |         |          |             |
| 6.00 133              | 0 08 – 4 | 0 CONTIN    | JE TO E | BALLAST RIC    | G DOWN TO O | PERAT:     | ING DR | AFT OF   | 7 21.3 N | (AIR        | GAP OF  | 25 M).   |          |        |         |          |             |
|                       |          |             |         |                |             |            |        |          |          |             |         |          |          | 1 #6   | s. #12  | ΔT.T. TΩ | 150 MT FOR  |
| 1.30 133              |          |             |         |                |             |            |        |          |          | по с п      | J, πΙ α | π10,     | #2 0c #1 | Ι, πο  | α π12   | ALL TO   | 150 111 101 |
|                       |          |             | 3 - OK. | . CROSS TEI    | NSIONING CO | MPLET.     | E BY 2 | 4:00 F   | IRS.     |             |         |          |          |        |         |          |             |
|                       | 08 - 4   |             |         |                |             |            |        |          |          |             |         |          |          |        |         |          |             |
|                       | 08 – 4   | 0 FINAL I   | RIG POS | SITION OF B    | BYFORD DOLP | HIN: I     | N 65 D | EG 48    | MIN 20.  | .8 SEC      | - UTN   | 1 73003  | 02.5 M   | N.     |         |          |             |
|                       | 08 - 4   | 0           |         |                |             | ]          | E 06 D | EG 44    | MIN 32.  | 6 SEC       | - UTN   | 1 3967   | 65.5 M   | E.     |         |          |             |
|                       | 08 - 4   | 0           |         |                |             |            |        |          |          |             |         |          |          |        |         |          |             |
|                       | 08 - 4   | 0 DURING    | TENSIC  | ONING - TAI    | Œ ON DRILL  | WATER      | & COM  | MENCE    | MIXING   | SPUD,       | KILL &  | DISPLA   | CEMENT   | MUD A  | S PER   | PROGRAM  |             |
|                       | 08 - 4   | 0           |         | M/T            | J 17.1/2" B | IT & :     | 26" X  | 36" H/   | OPENER   | ASSY.       | SURFACE | TEST     | ANDERDR  | IFT W  | / 1940  | LPM, 5   | 0 BAR - OK. |
|                       | 08 - 4   | 0           | _       | ·π.            | P ROV. TIH  | W/ H       | /OPENF | R ASSV   | TO MIT   | LINE        | _       | _        | _        |        | _       |          |             |
|                       | _        |             |         | 0.01           | +           | ., 11      |        |          |          | ,           |         |          |          |        |         |          |             |
| Safety:               | 1        |             |         |                |             |            |        |          |          |             |         |          |          |        |         |          |             |
| 24 Hr Sum             | mary:    | TAT 3350550 | 00 577  | T A CM D T C = | OWN TO OPER | ολ m τ ~·· | TAT    | 7 E.E. C | anoac =  |             | 7,77777 | C 34/T-  | C [[]]   | 26 "   | T7\     |          |             |
|                       |          |             |         |                |             |            |        |          |          |             |         |          |          |        | ıA.     |          |             |
| Remarks:              | oF       | DR1         | .LL 36" | HOLE TO 4      | 56 м. РООН  | , R/U      | & RUN  | 30" C    | ONDUCTO  | R & PGE     | 3. CEME | N:I: 30" | CONDUC   | IOR.   |         |          |             |
|                       | RON - 2  | , SERVIC    | E - 18  | , DOLPHIN      | - 53, DOI   | PHIN       | SERVI  | CE - 8   |          |             |         |          |          | D/     | AYS SI  | NCE LAST | r LTI - 55  |
|                       |          |             |         |                |             |            |        |          |          |             |         |          |          |        |         |          |             |
|                       |          |             |         |                |             |            |        |          |          |             |         |          |          |        |         |          |             |
| 06:00 OPS             | DRILL    | 36" TO 4    | 56 M.   | DISPLACE H     | OLE TO 1.2  | SG DI      | ISPLAC | EMENT    | MUD.     |             |         |          |          | _      |         |          |             |
| Daily Mud             | Cost:    | TR 26, 262  | Dail    | y Tangible     | Cost:       |            | Dai    | ly Wel   | .l Cost: | KR3,18      | 5,250   | Incid    | ents:    | NO II  | NCIDEN  | T REPORT | TED         |
| Cum Mud Co            |          |             | Cum '   | Tangible C     | ost:        |            |        |          |          |             |         |          | Appr:    |        |         |          |             |
| Drill Wate            |          |             | able W  | ater: 180.     | O Fuel:     | 202.2      |        |          |          | Weight      |         |          | at Ceme  |        |         |          | d:          |
| Country:              |          | .0 [-30     | •       |                | •           |            |        |          |          | none: 52    |         |          | Drilli   | ng Re  | 0.0±0.U |          | LINSHEAD    |
| Field:                | NORWAY   |             |         |                | Rig: BYFORD | MTbH       | 1LIN   |          | J 21     |             |         |          |          |        |         |          |             |
| Field: PL             | 259      |             |         |                | se: PL259   |            | I_     |          |          |             |         | 5506/3-  |          |        | _       |          | JB5908 -0   |
|                       |          |             |         | API No         | 6506/3-1    |            | AF     | F NO:    | KWENO-   | 650631-     | -001    |          | Date: /  | 21-JUI | -2001   | Page:    | 1 of 1      |

| Measured                                                                                                                                                                                             | Den                                                                                     | th:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TVD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PBTD:                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dr                                                                                                  | posed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | шл.                                                                                                                           |                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                      | Щ                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 456.                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 456.0 m                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sed MD                                                                                                       |                                                                                                        | 3625.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               | 3625.0 m                                                                                               |
| DOL: 6                                                                                                                                                                                               | 5                                                                                       | DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rs: 1                                                                                                                                                                                    | Spud :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date: 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -JUL-2001                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Daily                                                                                                                                                                                                                                       | Footag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e: 90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              |                                                                                                        | ot Hrs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5                                                                                                 | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rot Hr                                                                                                                        | rs: 5.5                                                                                                |
| Torq: 1                                                                                                                                                                                              | L1                                                                                      | Drag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : 0.0 R                                                                                                                                                                                  | ot Wgt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160.0 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /U Wgt: 160.                                                                                                                                                                                                                                                                  | .o sl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ack Off Wgt                                                                                                                                                                                                                                 | : 160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 Wind:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                           | Seas                                                                                                   | : 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | / 0.0                                                                                               | Bar:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 758                                                                                                                           | POB:<br>81                                                                                             |
| Last Casi                                                                                                                                                                                            | ing :                                                                                   | Size:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          | 62.0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Set A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \t:                                                                                                                                                                                                                                                                           | 451.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Om MD                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51.0m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TVD                                                                                                          | Shoe                                                                                                   | Test:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                   | EMW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Leako                                                                                                                         | off?                                                                                                   |
| Cum Rot H                                                                                                                                                                                            | Hrs (                                                                                   | On Cas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rs On Casing                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth                                                                                                        | Worst                                                                                                  | Wear:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     | % R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emaini                                                                                                                        | ng:                                                                                                    |
| Liner Siz                                                                                                                                                                                            | ze:                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          | Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | At:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             | VD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er Top                                                                                                       |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                        |
|                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MD                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        | DII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MD                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               | TVD                                                                                                    |
| Mud Co: <sub>M-</sub>                                                                                                                                                                                |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEAWATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PIT W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gel:                                                                                                                          | 0 / 0                                                                                                  |
| WL<br>API                                                                                                                                                                                            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 0.0 HTHP:                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Solids:                                                                                                                                                                                                                                     | 8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | il:<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *Wate                                                                                                        | r:<br>0.0                                                                                              | 0    Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd:                                                                                                 | MB'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I.:                                                                                                                           | Ph:                                                                                                    |
| Pm: 0.00                                                                                                                                                                                             | )                                                                                       | ef/Mf:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00 /0                                                                                                                                                                                  | .00 Carb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>:</b>                                                                                                                                                                                                                                                                      | Ca:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bent                                                                                                                                                                                                                                        | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %HG/L                                                                                                        | G:                                                                                                     | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 윙                                                                                                   | OS/Bent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :                                                                                                                             | /                                                                                                      |
| 85 1N                                                                                                                                                                                                | MT I                                                                                    | BARITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ]                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1KG SOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A ASH                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1mt bent                                                                                                                                                                                                                                    | CONITE A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | API 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 <sub>K</sub> (                                                                                             | G CMC                                                                                                  | HV TEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Н                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                        |
|                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                        |
| Drlq Gas:                                                                                                                                                                                            | :                                                                                       | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Max Gas:                                                                                                                                                                                 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onn Gas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trip                                                                                                                                                                                                                                                                          | Gas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tr                                                                                                                                                                                                                                          | ip Cl:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | marks:                                                                                                       |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                        |
|                                                                                                                                                                                                      |                                                                                         | 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q÷                                                                                                                                                                                       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a; )                                                                                                         |                                                                                                        | mea.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MD 0                                                                                                                          | - FT D O - +                                                                                           |
| Bit Numbe                                                                                                                                                                                            |                                                                                         | ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Size                                                                                                                                                                                     | Manufa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Serial num                                                                                                                                                                                                                                                                    | iber.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntity -<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Size)                                                                                                        | ,                                                                                                      | TFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                     | O In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MD Out                                                                                                                        |                                                                                                        |
| 1                                                                                                                                                                                                    | 1                                                                                       | -3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 444.5                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ITHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49335                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-22.2/ -                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - /                                                                                                          |                                                                                                        | 1163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     | 6.0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 456.0                                                                                                                         |                                                                                                        |
| 2                                                                                                                                                                                                    |                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 914.4                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39252                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-14.3/                                                                                                                                                                                                                                     | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - /<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - /                                                                                                          | _                                                                                                      | 961.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 36                                                                                                | 6.0 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 454.0                                                                                                                         | m 454.0 m                                                                                              |
| Type                                                                                                                                                                                                 | <u> </u>                                                                                | Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ers Ho                                                                                                                                                                                   | ırs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WOB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RPM                                                                                                                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Motor RPM                                                                                                                                                                                                                                   | I-Row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O-Row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DC                                                                                                           | Loc                                                                                                    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G                                                                                                   | Char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ?Pull                                                                                                                         | Cost/m                                                                                                 |
| DGJ                                                                                                                                                                                                  |                                                                                         | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .0 5                                                                                                                                                                                     | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3/4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 / 80                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO                                                                                                           | A7                                                                                                     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                                                                   | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TD                                                                                                                            | К 9747.64                                                                                              |
| 26" X 36                                                                                                                                                                                             | 5" HC                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0 0                                                                                                                                                                                     | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3/4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 / 80                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO                                                                                                           | A7                                                                                                     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                                                                   | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TD                                                                                                                            | 0.00                                                                                                   |
| Total Len                                                                                                                                                                                            | ngth                                                                                    | of BI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HA: 232.                                                                                                                                                                                 | 87 m B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HA Descr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iption: 17                                                                                                                                                                                                                                                                    | .1/2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SMITH DGJ                                                                                                                                                                                                                                   | ROCK BI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | т - 26"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X 36"                                                                                                        | H/OPEI                                                                                                 | VER - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BIT SU                                                                                              | B C/W F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOAT -                                                                                                                        | •                                                                                                      |
| ANDERDR:                                                                                                                                                                                             | IFT                                                                                     | - 3 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.1/2"                                                                                                                                                                                   | OC - X/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OVER - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X 8" DC - X                                                                                                                                                                                                                                                                   | K/OVEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R - 3 X 5"                                                                                                                                                                                                                                  | HWDP -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.1/2" V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ŒIR HO                                                                                                       | DUSTON                                                                                                 | JARS -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 14 X                                                                                              | 5" HWD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )P                                                                                                                            |                                                                                                        |
|                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hrs On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jars:                                                                                                        | 5.5                                                                                                    | Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Since                                                                                               | e Last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inspec                                                                                                                        | tion: 5.5                                                                                              |
| Dit Non                                                                                                                                                                                              |                                                                                         | T 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                          | G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                               | CIDM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                                                                                                                                                                                                                           | 242 /241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               | 3.3                                                                                                    |
| Bit Num                                                                                                                                                                                              |                                                                                         | Line<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | roke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                             | SPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jet Vel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              |                                                                                                        | C Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               | Pump kW                                                                                                |
| <b>l</b>                                                                                                                                                                                             | 152                                                                                     | / 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52 / 152                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / 304.8 104/                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                           | 5.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.8                                                                                                          |                                                                                                        | 5.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                           | 11.60                                                                                                  |
| 2                                                                                                                                                                                                    | 152                                                                                     | / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52 / 15:                                                                                                                                                                                 | 304.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/304.8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 304.8 104                                                                                                                                                                                                                                                                     | 104/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L04 140                                                                                                                                                                                                                                     | 5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.8                                                                                                          | 0 8                                                                                                    | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                           | 11.60                                                                                                  |
| Survey MD                                                                                                                                                                                            | ) A                                                                                     | ngle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Azimuth                                                                                                                                                                                  | Dir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TVD                                                                                                                                                                                                                                                                           | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/S Coordina                                                                                                                                                                                                                                | ates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E/W Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oordin                                                                                                       | ates                                                                                                   | Verti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ical S                                                                                              | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               | DLS                                                                                                    |
|                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                        |
|                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                        |
|                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                        |
|                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                        |
|                                                                                                                                                                                                      |                                                                                         | . ~ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        | <u>.                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |                                                                                                        |
|                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     | 7 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                             | 1 1. 04 0                                                                                              |
| Hours Fro                                                                                                                                                                                            |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hours Endi                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / 105                                                                                                        |                                                                                                        | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               | rted: 24.0                                                                                             |
|                                                                                                                                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          | JINE @ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ions Coveri                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W/ 195                                                                                                       | O LPM,                                                                                                 | 36 BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               | rted: 24.0                                                                                             |
| 0.50 000                                                                                                                                                                                             | 00 0                                                                                    | 1 - 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAG MUDI                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 366M (AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                               | 'IDES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . TAKE AND                                                                                                                                                                                                                                  | ERDRIFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SURVEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R = 0                                                                                               | DEG IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c.                                                                                                                            |                                                                                                        |
| 0.50 000                                                                                                                                                                                             | 00 0                                                                                    | 1 - 06<br>1 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAG MUDI                                                                                                                                                                                 | " HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 866M (AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JUSTED FOR I                                                                                                                                                                                                                                                                  | DES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . TAKE ANDI<br>PM, 142 BAI                                                                                                                                                                                                                  | ERDRIFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SURVEY 80 RPM,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 - 1                                                                                                        | 4 KN.N                                                                                                 | TORQ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R = 0<br>PUMP                                                                                       | DEG IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C.                                                                                                                            | SWEEPS EACH                                                                                            |
| 0.50 000                                                                                                                                                                                             | 00 0<br>30 0                                                                            | 1 - 06<br>1 - 02<br>1 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAG MUDI<br>DRILL 30<br>HALF STA                                                                                                                                                         | " HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 366M (ADD<br>F/ 366M<br>ATIC TORG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JUSTED FOR T<br>- 456M W/ 5                                                                                                                                                                                                                                                   | DES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . TAKE ANDI<br>PM, 142 BAI                                                                                                                                                                                                                  | ERDRIFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SURVEY 80 RPM,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 - 1                                                                                                        | 4 KN.N                                                                                                 | TORQ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R = 0<br>PUMP                                                                                       | DEG IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C.                                                                                                                            | SWEEPS EACH                                                                                            |
| 0.50 000                                                                                                                                                                                             | 00 0                                                                                    | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TAG MUDI<br>DRILL 30<br>HALF STA<br>456M (30                                                                                                                                             | HOLE ND. ERA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F/ 366M<br>F/ 366M<br>ATIC TORG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | USTED FOR T<br>- 456M W/ 5<br>Q @ 390M, WC                                                                                                                                                                                                                                    | OOO I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . TAKE ANDI<br>PM, 142 BAI<br>RU SAME. WO                                                                                                                                                                                                   | ERDRIFT<br>R, 50 -<br>DRK STAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SURVEY  80 RPM,  ND F/ 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 - 1<br>5M - 3                                                                                              | 4 KN.N                                                                                                 | I TORQ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R = 0<br>PUMP<br>RILLIN                                                                             | DEG IN<br>10M3 H<br>IG AHEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C.<br>I-VIS S                                                                                                                 | SWEEPS EACH                                                                                            |
| 0.50 000<br>5.50 003                                                                                                                                                                                 | 00 0 0 0 0 0 0 0 0 0 0                                                                  | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAG MUDI<br>DRILL 30<br>HALF STA<br>456M (30<br>ANDERDR                                                                                                                                  | " HOLE  ND. ERF " CUTTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F/ 366M ATIC TORGER DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | USTED FOR T - 456M W/ 5 0 @ 390M, WC = 454M).                                                                                                                                                                                                                                 | CIDES) 0000 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . TAKE ANDI<br>PM, 142 BAI<br>RU SAME. WO                                                                                                                                                                                                   | ERDRIFT<br>R, 50 -<br>DRK STAI<br>, 385M :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SURVEY 80 RPM, ND F/ 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 - 1<br>5M - 3<br>397M                                                                                      | 4 KN.M                                                                                                 | TORQ.  FORE D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R = 0  PUMP  RILLIN  M = 2.                                                                         | DEG IN  10M3 H  IG AHEA  5 DEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C. I-VIS S D TO SI                                                                                                            | SWEEPS EACH ECTION TD @ = 3.5 DEG.                                                                     |
| 0.50 000<br>5.50 003<br>0.50 060                                                                                                                                                                     | 00 0<br>30 0<br>0<br>0<br>0                                                             | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAG MUDI<br>DRILL 30<br>HALF SIZ<br>456M (30<br>ANDERDRI                                                                                                                                 | " HOLE  ND. ERF  " CUTTE  FT SURV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F/ 366M (AD.) F/ 366M ATIC TORG CR DEPTH VEYS: MUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JUSTED FOR T  - 456M W/ 5  @ 390M, WC  = 454M).  DLINE = 0 DE  G DISPLACEME                                                                                                                                                                                                   | CIDES)  0000 I  ORK TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . TAKE ANDI<br>PM, 142 BAI<br>RU SAME. WO<br>VAM = 0 DEG<br>ID @ 4625 LI                                                                                                                                                                    | ERDRIFT<br>R, 50 -<br>DRK STAI<br>, 385M :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SURVEY  80 RPM,  ND F/ 40  = 1 DEG,  BAR. PU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 - 1<br>5M - 3<br>397M<br>MP A T                                                                            | 4 KN.N<br>73M BE<br>= 2 DE                                                                             | TORQ.  FORE D  G, 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R = 0 PUMP RILLIN M = 2. (1.5                                                                       | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C. I-VIS S D TO SI                                                                                                            | SWEEPS EACH ECTION TD @ = 3.5 DEG.                                                                     |
| 0.50 000<br>5.50 003<br>0.50 060<br>1.50 063                                                                                                                                                         | 00 0<br>30 0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 01<br>1 - 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAG MUDI<br>DRILL 30<br>HALF STA<br>456M (30<br>ANDERDRI<br>DISPLACE<br>POOH TO                                                                                                          | " HOLE  ND. ERA  " CUTTE  FT SURV  HOLE T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F/ 366M (ADATIC TORGER DEPTH VEYS: MUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | USTED FOR T  - 456M W/ 5  @ 390M, WC  = 454M).  DLINE = 0 DE  G DISPLACEME  H/OPENER AS                                                                                                                                                                                       | CIDES)  OOO I  ORK TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . TAKE ANDI<br>PM, 142 BAI<br>RU SAME. WO<br>74M = 0 DEG<br>ID @ 4625 LI<br>HOLE SLICK                                                                                                                                                      | ERDRIFT  R, 50 -  DRK STAI  , 385M =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SURVEY  80 RPM,  ND F/ 40  = 1 DEG,  BAR. PU  POOH & R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 - 1<br>5M - 3<br>397M<br>MP A T                                                                            | 4 KN.N<br>73M BE<br>= 2 DE                                                                             | TORQ.  FORE D  G, 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R = 0 PUMP RILLIN M = 2. (1.5                                                                       | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C. I-VIS S D TO SI                                                                                                            | SWEEPS EACH ECTION TD @ = 3.5 DEG.                                                                     |
| 0.50 000<br>5.50 003<br>0.50 060<br>1.50 060<br>1.50 080                                                                                                                                             | 00 0<br>30 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 01<br>1 - 05<br>1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAG MUDI<br>DRILL 36<br>HALF STA<br>456M (36<br>ANDERDRI<br>DISPLACE<br>POOH TO<br>R/U TO 1                                                                                              | " HOLE I CUTTE HOLE I MUDLINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F/ 366M (ADATIC TORGER DEPTH VEYS: MUI CO 1.2 SC W/ 36" CONDUCTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | USTED FOR T  - 456M W/ 5  2@ 390M, WC  = 454M).  CLINE = 0 DE  G DISPLACEME  H/OPENER AS  OR USING FAL                                                                                                                                                                        | COOO LOOK THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . TAKE ANDI<br>PM, 142 BAI<br>RU SAME. WO<br>74M = 0 DEG<br>ID @ 4625 LI<br>HOLE SLICK                                                                                                                                                      | ERRIFT  R, 50 -  DRK STAN  , 385M =  PM, 166  . CONT 1  D SLIPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SURVEY 80 RPM, ND F/ 40 = 1 DEG, BAR. PU POOH & R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 - 1<br>5M - 3<br>397M<br>MP A T<br>/BACK                                                                   | 4 KN.M<br>73M BE<br>= 2 DE<br>OTAL C                                                                   | TORQ.  CFORE D  CG, 427.  DF 80M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PUMP RILLIN M = 2. (1.5                                                                             | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C. II-VIS S D TO SI & 449M VOLUME                                                                                             | SWEEPS EACH ECTION TD @ = 3.5 DEG. E).                                                                 |
| 0.50 000<br>5.50 003<br>0.50 060<br>1.50 060<br>1.50 080                                                                                                                                             | 00 0<br>30 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 01<br>1 - 05<br>1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAG MUDI<br>DRILL 36<br>HALF STA<br>456M (36<br>ANDERDRI<br>DISPLACE<br>POOH TO<br>R/U TO 1                                                                                              | " HOLE I CUTTE HOLE I MUDLINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F/ 366M (ADATIC TORGER DEPTH VEYS: MUI CO 1.2 SC W/ 36" CONDUCTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | USTED FOR T  - 456M W/ 5  @ 390M, WC  = 454M).  DLINE = 0 DE  G DISPLACEME  H/OPENER AS                                                                                                                                                                                       | COOO LOOK THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . TAKE ANDI<br>PM, 142 BAI<br>RU SAME. WO<br>74M = 0 DEG<br>ID @ 4625 LI<br>HOLE SLICK                                                                                                                                                      | ERRIFT  R, 50 -  DRK STAN  , 385M =  PM, 166  . CONT 1  D SLIPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SURVEY 80 RPM, ND F/ 40 = 1 DEG, BAR. PU POOH & R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 - 1<br>5M - 3<br>397M<br>MP A T<br>/BACK                                                                   | 4 KN.M<br>73M BE<br>= 2 DE<br>OTAL C                                                                   | TORQ.  CFORE D  CG, 427.  DF 80M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PUMP RILLIN M = 2. (1.5                                                                             | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C. II-VIS S D TO SI & 449M VOLUME                                                                                             | SWEEPS EACH ECTION TD @ = 3.5 DEG. E).                                                                 |
| 0.50 000<br>5.50 003<br>0.50 060<br>1.50 060<br>1.50 080                                                                                                                                             | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 01<br>1 - 05<br>1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAG MUDI<br>DRILL 30<br>HALF SIZ<br>456M (30<br>ANDERDRI<br>DISPLACE<br>POOH TO<br>R/U TO 1<br>P/U & RI                                                                                  | " HOLE "ND. ERA " CUTTE "FT SURV. " HOLE T MUDLINE "YUN 30"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F/ 366M (ADATIC TORGER DEPTH VEYS: MUI CO 1.2 SC W/ 36" CONDUCTO JNT & 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | USTED FOR T  - 456M W/ 5  2@ 390M, WC  = 454M).  CLINE = 0 DE  G DISPLACEME  H/OPENER AS  OR USING FAL                                                                                                                                                                        | CIDES)  OOO I  ORK THE  CG, 37  CNT MU  SSY -  SSE RC  X 1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAKE ANDI PM, 142 BAI RU SAME. WO  VAM = 0 DEG  ID @ 4625 LI HOLE SLICK DIARY & HANI WIT COND W,                                                                                                                                            | ERRIFT  R, 50 -  ORK STAI  , 385M:  , 385M:  CONT 1  O SLIPS  / SL-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SURVEY  80 RPM,  ND F/ 40  = 1 DEG,  BAR. PU  POOH & R  CONNECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 - 1 5M - 3 397M MP A T /BACK ORS AS                                                                        | 4 KN.M<br>73M BE<br>= 2 DE<br>OTAL C                                                                   | TORQ.  CFORE D  CG, 427.  DF 80M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PUMP RILLIN M = 2. (1.5                                                                             | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C. II-VIS S D TO SI & 449M VOLUME                                                                                             | SWEEPS EACH ECTION TD @ = 3.5 DEG. E).                                                                 |
| 0.50 000<br>5.50 003<br>0.50 060<br>1.50 063<br>1.50 080<br>2.50 093                                                                                                                                 | 00 0<br>30 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 01<br>1 - 05<br>1 - 08<br>1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TAG MUDI<br>DRILL 30<br>HALF STA<br>456M (30<br>ANDERDR:<br>DISPLACI<br>POOH TO<br>R/U TO 1<br>P/U & RI<br>F/ SL-60                                                                      | " HOLE " CUTTE " CUTTE " CUTTE " CHOLE 1 " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUDLINE " MUD | F/ 366M (ADA F/ 366M ATIC TORG CR DEPTH ZEYS: MUII TO 1.2 SC C W/ 36" CONDUCTO JNT & 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | USTED FOR T  - 456M W/ 5  @ 390M, WC  = 454M).  DLINE = 0 DE  G DISPLACEME  H/OPENER AS  OR USING FAL  JNTS OF 30"                                                                                                                                                            | CIDES)  OOO I  ORK THE  OG, 37  ONT MU  OSY -  SE RO  X 1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAKE ANDI PM, 142 BAI RU SAME. WO  AM = 0 DEG D @ 4625 LI HOLE SLICK DTARY & HANI WT COND W, I 30" X 1.5"                                                                                                                                   | ERRIFT  R, 50 -  ORK STAI  , 385M :  PM, 166  CONT    O SLIPS  / SL-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SURVEY  80 RPM,  ND F/ 40  = 1 DEG,  BAR. PU  POOH & R  CONNECT  HSG JOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 - 1 5M - 3 397M MP A T /BACK ORS AS                                                                        | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/                                                                    | TORQ.  FORE D  GG, 427.  OF 80M3  OPENER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PUMP RILLIN M = 2. (1.5 ASSY.                                                                       | DEG IN 10M3 H IG AHEA 5 DEG X HOLE RUN 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C. II-VIS S D TO SI & 449M VOLUMI                                                                                             | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).                                                                |
| 0.50 000<br>5.50 003<br>0.50 060<br>1.50 063<br>1.50 093<br>1.00 120                                                                                                                                 | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 01<br>1 - 05<br>1 - 08<br>1 - 08<br>1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAG MUDI<br>DRILL 30<br>HALF SIZ<br>456M (30<br>ANDERDRI<br>DISPLACE<br>POOH TO<br>R/U TO 1<br>P/U & RI<br>F/ SL-60<br>R/U FALS                                                          | " HOLE "ND. ERA " CUTTE " CUTTE " HOLE T " HOLE T " HOLE T " HOLE T " HOLE T " HOLE T " HOLE T " HOLE T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F/ 366M (ADC) F/ 366M ATIC TORG CR DEPTH VEYS: MUI CO 1.2 SC W/ 36" CONDUCTO JNT & 4 -90 CONNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | USTED FOR T  - 456M W/ 5  @ 390M, WC  = 454M).  CLINE = 0 DE  G DISPLACEME  H/OPENER AS  OR USING FAL  JNTS OF 30"  OCTORS. P/U                                                                                                                                               | CIDES)  OOO I  ORK THE  CG, 37  ENT MU  CSY -  SE RO  X 1"  & RUN  INER S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAKE ANDOUGH, 142 BAI PM, 142 BAI PM, 142 BAI PM PM PM PM PM PM PM PM PM PM PM PM PM                                                                                                                                                        | ERRIFT  R, 50 -  ORK STAI  , 385M:  , 385M:  O SLIPS  / SL-60  ' WI LP  ED OUT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SURVEY  80 RPM,  80 RPM,  10 F/ 40  11 DEG,  BAR. PU  12 POOH & R  13 CONNECT  14 HSG JOIL  15 L9M ABOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA                                                             | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/                                                                    | TORQ.  CFORE D  CG, 427  OF 80M3  OPENER  CALLY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28                                                          | DEG IN 10M3 H IG AHEA 5 DEG X HOLE RUN 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C.  I-VIS S D TO SI & 449M  VOLUMI  5" WI 2                                                                                   | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT  CN BIM JNT.                                       |
| 0.50 000<br>5.50 003<br>0.50 060<br>1.50 063<br>1.50 080<br>2.50 093<br>1.00 120<br>0.50 130                                                                                                         | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 01<br>1 - 05<br>1 - 08<br>1 - 08<br>1 - 08<br>1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAG MUDI<br>DRILL 30<br>HALF STA<br>456M (30<br>ANDERDR:<br>DISPLACI<br>POOH TO<br>R/U TO 1<br>P/U & RI<br>F/ SL-60<br>R/U FALS                                                          | " HOLE " CUTTE " CUTTE " CUTTE " CHOLE 1 " MUDLINE " MUDLINE " TO HD- " TO HD- " ULP HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F/ 366M (ADC) F/ 366M ATIC TORG CR DEPTH VEYS: MUI CO 1.2 SC C W/ 36" CONDUCTO JNT & 4 -90 CONNE RY & TIH GG R/TOOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | USTED FOR T  - 456M W/ 5  @ 390M, WC  = 454M).  DLINE = 0 DE  G DISPLACEME  H/OPENER AS  OR USING FAL  JNTS OF 30"  OCTORS. P/U  W/ 5" DP IN                                                                                                                                  | CIDES)  OOO I  OK THE  CG, 37  ONT MU  SSY -  SE RC  X 1"  & RUN  INER S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAKE AND  PM, 142 BAI  RU SAME. WO  PM = 0 DEG  D @ 4625 LI  HOLE SLICK  DTARY & HANI  WT COND W,  J 30" X 1.5  STRING SPACE  E. ENGAGE R,                                                                                                  | ERRIFT  R, 50 -  ORK STAI  385M:  PM, 166  CONT 1  SLIPS  SL-60  WI LP  ED OUT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SURVEY  80 RPM,  ND F/ 40  = 1 DEG,  BAR. PU  POOH & R  CONNECT  HSG JOI  19M ABOV  LOCK IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA                                                             | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/                                                                    | TORQ.  GFORE D  GG, 427  GF 80M3  GOPENER  CALLY.  LH TUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN                                                   | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C.  I-VIS S D TO SI  & 449M  VOLUMI  5" WF 2  SPRING  FILL UI                                                                 | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT ON BIM JNT.                                        |
| 0.50 000<br>5.50 003<br>0.50 060<br>1.50 063<br>1.50 080<br>2.50 093<br>1.00 120<br>0.50 130<br>2.00 133                                                                                             | 000 0<br>000 0<br>000 0<br>000 0<br>000 0<br>000 0<br>000 0                             | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 01<br>1 - 05<br>1 - 08<br>1 - 08<br>1 - 08<br>1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAG MUDI<br>DRILL 30<br>HALF SIZ<br>456M (30<br>ANDERDRI<br>DISPLACE<br>POOH TO<br>R/U TO 1<br>P/U & RI<br>F/ SL-60<br>R/U FALS<br>P/U & M                                               | " HOLE " CUTTE " CUTTE " CUTTE " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 " HOLE 1 | F/ 366M (ADC) F/ 366M ATIC TORGO CR DEPTH TEYS: MUI CO 1.2 SC W/ 36" CONDUCTC JNT & 4 -90 CONNE RY & TIH GG R/TOOI LP HSG 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JUSTED FOR T  - 456M W/ 5  20 390M, WC  = 454M).  DLINE = 0 DE  DISPLACEME  H/OPENER AS  R USING FAL  JUST OF 30"  DCTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN                                                                                                          | G, 37 CNT MU SSY - SE RO X 1" & RUN INER S TIRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAKE ANDI  PM, 142 BAI  RU SAME. WO  VAM = 0 DEG  D @ 4625 LI  HOLE SLICK  DTARY & HANI  WT COND W,  30" X 1.5"  STRING SPACE  COOL. CONT 1                                                                                                 | ERRIFT  R, 50 -  ORK STAN  , 385M =  PM, 166  , CONT 1  O SLIPS  / SL-60  ' WT LP  ED OUT :  /TOOL &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SURVEY  80 RPM,  ND F/ 40  = 1 DEG,  BAR. PU  POOH & R  CONNECT  HSG JOI  LOCK IN  MUDLINE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R                                                 | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1                                                            | TORQ.  FORE D  GG, 427.  F 80M3  OPENER  CALLY.  LH TUR  SUAL TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PUMP RILLIN  M = 2.  (1.5  ASSY.  P/U &  ALL 28  NS. IN  GUIDE                                      | DEG IN 10M3 H IG AHEA 5 DEG X HOLE RUN 1. 8" BOW ISTALL C 30" S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C.  I-VIS S D TO SI  & 449M  VOLUME  5" WI 2  SPRING  FILL UI  HOE IN:                                                        | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT ON BIM JNT.                                        |
| 0.50 000 5.50 003  0.50 060 1.50 063 1.50 080 2.50 093  1.00 120 0.50 130 2.00 133 1.00 153                                                                                                          | 000 000 000 000 000 000 000 000 000 00                                                  | 1 - 06<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 02<br>1 - 01<br>1 - 05<br>1 - 08<br>1 - 08<br>1 - 08<br>1 - 08<br>1 - 08<br>1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAG MUDI DRILL 30 HALF STA 456M (30 ANDERDR: DISPLACE POOH TO R/U TO 10 P/U & RI F/ SL-60 R/U FALS P/U & M. TIH & LC CONT TO                                                             | " HOLE " CUTTE " CUTTE " CUTTE " CHOLE 1 MUDLINE "UN 30" "N SHOE " TO HD- "CE ROTAF "U LP HE "CCK 30" " TIH W/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F/ 366M (ADC) F/ 366M ATIC TORG CR DEPTH VEYS: MUI CO 1.2 SC C W/ 36" CONDUCTO JNT & 4 -90 CONNE CY & TIH GG R/TOOI LP HSG 1 30" CONI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JUSTED FOR TO 456M W/ 5  - 456M W/ 5  - 26 390M, WC  = 454M).  DLINE = 0 DE  G DISPLACEME  H/OPENER AS  OR USING FAL  JUSTO F 30"  OCTORS. P/U  W/ 5" DP IN  L TO INNER S  INTO PGB IN  DUCTOR TO PR                                                                          | CIDES)  OOO I  OK THE  CG, 37  CNT MU  CSY -  SE RO  X 1"  & RUN  INER S  TRING  MOONF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAKE ANDI PM, 142 BAI RU SAME. WO PM = 0 DEG D @ 4625 LI HOLE SLICK STARY & HANI WT COND W, J 30" X 1.5" STRING SPACE G. ENGAGE R, COOL. CONT T                                                                                             | ERRIFT  R, 50 -  ORK STAI  , 385M:  PM, 166  . CONT 1  O SLIPS  / SL-60  WI LP  ED OUT:  //TOOL &  FIH TO 1  1.5M S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  1 | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R AT MUE                                          | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1 T SHOE W/ 5 OV VIS                                         | TORQ.  GFORE D  GG, 427.  GF 80M3  GOPENER  CALLY.  LINST: LIH TUR  GUAL TO  30 " SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE OE DEE                                      | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  8" BOW  ISTALL  2 30" S  PTH = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C.  I-VIS S D TO SI & 449M  VOLUMI  5" WI 3  SPRING  FILL UI HOE IN: 51M.                                                     | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT ON BIM JNT. P VALVES. TO 36" HOLE.                 |
| 0.50 000 5.50 003  0.50 060 1.50 063 1.50 080 2.50 093  1.00 120 0.50 133 1.00 153 0.50 163                                                                                                          | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAG MUDIDRILL 30 HALF STA 456M (30 ANDERDRI DISPLACE POOH TO R/U TO 1 P/U & RI F/ SL-60 R/U FALA P/U & M. TIH & LO CONT TO OBSERVE                                                       | " HOLE " CUTTE " CUTTE " CUTTE " CHOLE 1 " MUDLINE " N SHOE " TO HD- " CE ROTAF " U LP HE " CK 30" " TIH W/ FORWARI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F/ 366M (ADC) F/ 366M ATIC TORG CR DEPTH TEYS: MUI TO 1.2 SC CONDUCTO JUNT & 4 -90 CONNE RY & TIH GG R/TOOI LP HSG 1 30" CONI D BULLSEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JUSTED FOR T  - 456M W/ 5  20 390M, WC  = 454M).  DLINE = 0 DE  DISPLACEME  H/OPENER AS  R USING FAL  JUST OF 30"  DCTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN                                                                                                          | CIDES)  OOO I  OK THE  CG, 37  CNT MU  CSY -  SE RO  X 1"  & RUN  INER S  TRING  MOONF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAKE ANDI PM, 142 BAI RU SAME. WO PM = 0 DEG D @ 4625 LI HOLE SLICK STARY & HANI WT COND W, J 30" X 1.5" STRING SPACE G. ENGAGE R, COOL. CONT T                                                                                             | ERRIFT  R, 50 -  ORK STAI  , 385M:  PM, 166  . CONT 1  O SLIPS  / SL-60  WI LP  ED OUT:  //TOOL &  FIH TO 1  1.5M S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  10 E,  1 | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R AT MUE                                          | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1 T SHOE W/ 5 OV VIS                                         | TORQ.  GFORE D  GG, 427.  GF 80M3  GOPENER  CALLY.  LINST: LIH TUR  GUAL TO  30 " SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE OE DEE                                      | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  8" BOW  ISTALL  2 30" S  PTH = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C.  I-VIS S D TO SI & 449M  VOLUMI  5" WI 3  SPRING  FILL UI HOE IN: 51M.                                                     | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT ON BIM JNT. P VALVES. TO 36" HOLE.                 |
| 0.50 000 5.50 003  0.50 060 1.50 063 1.50 080 2.50 093  1.00 120 0.50 130 2.00 133 1.00 153 0.50 163 Safety: H                                                                                       | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TAG MUDI DRILL 30 HALF SIZ 456M (30 ANDERDR: DISPLACE POOH TO R/U TO 1 P/U & RI F/ SL-60 R/U FALS P/U & M. TIH & LC CONT TO OBSERVE                                                      | " HOLE " CUTTE " CUTTE " CUTTE " CUTTE " TO HOLE 1 " MUDLINE " N SHOE " TO HD- " TO HD- " U LP HE " OCK 30" " TIH W/ FORWARI 30" CEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F/ 366M (ADC) F/ 366M (ADC) F/ 366M ATIC TORG CR DEPTH TEYS: MUI TO 1.2 SC W/ 36" CONDUCTO JNT & 4 -90 CONNE TY & TIH TO TORG TY & TIH TO TORG TY & TIH TO TORG TY & TIH TO TORG TY & TIH TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY TORG TY T | JUSTED FOR T  - 456M W/ 5  20 390M, WC  = 454M).  JULINE = 0 DE  G DISPLACEME  H/OPENER AS  R USING FAL  JUSTOF 30"  COTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN  JUCTOR TO PR  JE ON PGB -                                                                             | GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH | TAKE ANDI  PM, 142 BAI  RU SAME. WO  VAM = 0 DEG  D @ 4625 LI  HOLE SLICK  DTARY & HANI  WT COND W,  J 30" X 1.5  STRING SPACE  COOL. CONT TO  LIP HSG W/  DEG TO STARE                                                                     | ERRIFT  R, 50 -  ORK STAN  , 385M =  PM, 166  CONT 1  O SLIPS  / SL-60  ' WI LP  ED OUT :  /TOOL &  FIH TO I  1.5M S  BOARD. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 E 1 DEG,  BAR. PU  POOH & R  CONNECT  HSG JOI  LOCK IN  MUDLINE.  FICK UP  ADJUST G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R AT MUE                                          | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1 T SHOE W/ 5 OV VIS                                         | TORQ.  GFORE D  GG, 427.  GF 80M3  GOPENER  CALLY.  LINST: LIH TUR  GUAL TO  30 " SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE OE DEE                                      | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  8" BOW  ISTALL  2 30" S  PTH = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C.  I-VIS S D TO SI & 449M  VOLUMI  5" WI 3  SPRING  FILL UI HOE IN: 51M.                                                     | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT ON BIM JNT. P VALVES. TO 36" HOLE.                 |
| 0.50 000 5.50 003  0.50 060 1.50 063 1.50 080 2.50 093  1.00 120 0.50 133 1.00 153 0.50 163 Safety: H 24 Hr Sum                                                                                      | 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                   | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAG MUDI DRILL 30 HALF SIZ 456M (30 ANDERDRI DISPLACE POOH TO R/U TO 10 P/U & RI F/ SL-60 R/U FALS P/U & M. TIH & LO CONT TO OBSERVE PRIOR TO                                            | " HOLE " CUTTE " CUTTE " CUTTE " CUTTE " CHOLE 1  MUDLINE "UN 30" IN SHOE " TO HD- " CK 30"  TIH W/ FORWARI 30" CEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F/ 366M (ADC) F/ 366M (ADC) F/ 366M ATIC TORG CR DEPTH VEYS: MUI CO 1.2 SC CW/ 36" CONDUCTC JNT & 4 -90 CONNE CY & TIH CG R/TOOI LP HSG 1 30" CONI D BULLSEY ENT JOB. 454M, RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JUSTED FOR TO 456M W/ 5  20 390M, WC  = 454M).  DLINE = 0 DE  DISPLACEME  H/OPENER AS  R USING FAL  JNTS OF 30"  CCTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN  CUCTOR TO PR  E ON PGB -                                                                                  | CIDES)  OOO I  ORK THE  CITY MU  CITY MU  CITY MU  CITY MU  CITY MU  CITY MOONE  COVIDE  1.5 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAKE ANDI  PM, 142 BAI  RU SAME. WO  PM = 0 DEG  D @ 4625 LI  HOLE SLICK  TARY & HANI  WT COND W,  30" X 1.5"  STRING SPACE  G. ENGAGE R,  COOL. CONT TO  CLP HSG W/  DEG TO STARE                                                          | ERRIFT  R, 50 -  ORK STAN  , 385M:  , 385M:  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  O | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40   | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R AT MUE                                          | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1 T SHOE W/ 5 COV VIS                                        | TORQ.  GFORE D  GG, 427  GF 80M3  GOPENER  CALLY.  C. INST.  IH TUR  GUAL TO  30 " SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PUMP RILLIN M = 2. (1.5 ASSY.  P/U & ALL 28 NS. IN GUIDE OE DEE                                     | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  3" BOW  ISTALL  2 30" S  PTH = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C.  I-VIS S D TO SI & 449M  VOLUMI  5" WI S SPRING  FILL UI HOE IN: 51M. EDUCE S                                              | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT  ON BIM JNT. P VALVES. TO 36" HOLE.                |
| 0.50 000 5.50 003  0.50 060 1.50 063 1.50 080 2.50 093  1.00 120 0.50 133 1.00 153 0.50 163 Safety: H 24 Hr Sum Projected                                                                            | 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                   | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAG MUDI DRILL 30 HALF SIZ 456M (30 ANDERDRI DISPLACE POOH TO R/U TO 10 P/U & RI F/ SL-60 R/U FALS P/U & M. TIH & LO CONT TO OBSERVE PRIOR TO                                            | " HOLE " CUTTE " CUTTE " CUTTE " CUTTE " CHOLE 1  MUDLINE "UN 30" IN SHOE " TO HD- " CK 30"  TIH W/ FORWARI 30" CEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F/ 366M (ADC) F/ 366M (ADC) F/ 366M ATIC TORG CR DEPTH VEYS: MUI CO 1.2 SC CW/ 36" CONDUCTC JNT & 4 -90 CONNE CY & TIH CG R/TOOI LP HSG 1 30" CONI D BULLSEY ENT JOB. 454M, RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JUSTED FOR T  - 456M W/ 5  20 390M, WC  = 454M).  JULINE = 0 DE  G DISPLACEME  H/OPENER AS  R USING FAL  JUSTOF 30"  COTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN  JUCTOR TO PR  JE ON PGB -                                                                             | CIDES)  OOO I  ORK THE  CITY MU  CITY MU  CITY MU  CITY MU  CITY MU  CITY MOONE  COVIDE  1.5 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TAKE ANDI  PM, 142 BAI  RU SAME. WO  PM = 0 DEG  D @ 4625 LI  HOLE SLICK  TARY & HANI  WT COND W,  30" X 1.5"  STRING SPACE  G. ENGAGE R,  COOL. CONT TO  CLP HSG W/  DEG TO STARE                                                          | ERRIFT  R, 50 -  ORK STAN  , 385M:  , 385M:  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  O | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40   | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R AT MUE                                          | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1 T SHOE W/ 5 COV VIS                                        | TORQ.  GFORE D  GG, 427  GF 80M3  GOPENER  CALLY.  C. INST.  IH TUR  GUAL TO  30 " SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PUMP RILLIN M = 2. (1.5 ASSY.  P/U & ALL 28 NS. IN GUIDE OE DEE                                     | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  3" BOW  ISTALL  2 30" S  PTH = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C.  I-VIS S D TO SI & 449M  VOLUMI  5" WI S SPRING  FILL UI HOE IN: 51M. EDUCE S                                              | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT  ON BIM JNT. P VALVES. TO 36" HOLE.                |
| 0.50 000 5.50 003  0.50 060 1.50 063 1.50 080 2.50 093  1.00 120 0.50 133 1.00 153 0.50 163 Safety: H 24 Hr Sum Projected Remarks:                                                                   | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAG MUDI DRILL 36 HALF STA 456M (36 ANDERDRI DISPLACE POOH TO R/U TO 1 P/U & RI F/ SL-66 R/U FAL P/U & M TIH & L6 CONT TO OBSERVE PRIOR TO TIL 36" F                                     | " HOLE " CUTTE " CUTTE " CUTTE " CUTTE " CHOLE 1 " MUDLINE " UN 30" " N SHOE " TO HD- " U LP HE " CK 30" " TIH W/ FORWARI " OLE TO OUT 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F/ 366M (ADC) F/ 366M (ADC) F/ 366M ATIC TORG CR DEPTH TEYS: MUI TO 1.2 SC W/ 36" CONDUCTO JNT & 4 -90 CONNE RY & TIH TO BULLSEY ENT JOB. 454M, RU " R/TOOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JUSTED FOR TO 456M W/ 5  20 390M, WC  = 454M).  DLINE = 0 DE  DISPLACEME  H/OPENER AS  R USING FAL  JNTS OF 30"  CCTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN  CUCTOR TO PR  E ON PGB -                                                                                  | G, 37 CNT MU SSY - SE RO X 1" & RUN INER S TIRING MOONE 1.5 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAKE ANDI  PM, 142 BAI  RU SAME. WO  VAM = 0 DEG  ID @ 4625 LI  HOLE SLICK  DTARY & HANI  WT COND W,  30" X 1.5"  STRING SPACE  COOL. CONT TO  LIP HSG W/  DEG TO STARE  ONDUCTOR. W  CLEAN OUT                                             | ERRIFT  R, 50 -  ORK STAN  , 385M =  PM, 166  , CONT 1  O SLIPS  / SL-60  ' WI LP  ED OUT :  /TOOL &  TIH TO I  1.5M S  380ARD. 1  ASSY, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40   | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R AT MUE                                          | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1 T SHOE W/ 5 COV VIS                                        | TORQ.  GFORE D  GG, 427  GF 80M3  GOPENER  CALLY.  C. INST.  IH TUR  GUAL TO  30 " SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE OE DEF                                      | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  3" BOW  ISTALL  30" S  PTH = 4  DN TO R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C.  I-VIS S D TO SI  & 449M  VOLUMI  5" WI 2  SPRING  FILL UI  HOE IN:  51M.                                                  | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT  ON BIM JNT. P VALVES. TO 36" HOLE.                |
| 0.50 000 5.50 003  0.50 060 1.50 063 1.50 080 2.50 093  1.00 120 0.50 133 1.00 153 0.50 163 Safety: H 24 Hr Sum Projected Remarks:                                                                   | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAG MUDI DRILL 36 HALF STA 456M (36 ANDERDRI DISPLACE POOH TO R/U TO 1 P/U & RI F/ SL-66 R/U FAL P/U & M TIH & L6 CONT TO OBSERVE PRIOR TO TIL 36" F                                     | " HOLE " CUTTE " CUTTE " CUTTE " CUTTE " CHOLE 1 " MUDLINE " UN 30" " N SHOE " TO HD- " U LP HE " CK 30" " TIH W/ FORWARI " OLE TO OUT 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F/ 366M (ADC) F/ 366M (ADC) F/ 366M ATIC TORG CR DEPTH TEYS: MUI TO 1.2 SC W/ 36" CONDUCTO JNT & 4 -90 CONNE RY & TIH TO BULLSEY ENT JOB. 454M, RU " R/TOOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JUSTED FOR TO 456M W/ 5  2 @ 390M, WC  = 454M).  JULINE = 0 DE  BE DISPLACEME  H/OPENER AS  RUSING FAL  JUNTS OF 30"  COTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN  JUCTOR TO PR  E ON PGB -  N & CEMENT IN  & POOH. M/I                                                 | G, 37 CNT MU SSY - SE RO X 1" & RUN INER S TIRING MOONE 1.5 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAKE ANDI  PM, 142 BAI  RU SAME. WO  VAM = 0 DEG  ID @ 4625 LI  HOLE SLICK  DTARY & HANI  WT COND W,  30" X 1.5"  STRING SPACE  COOL. CONT TO  LIP HSG W/  DEG TO STARE  ONDUCTOR. W  CLEAN OUT                                             | ERRIFT  R, 50 -  ORK STAN  , 385M =  PM, 166  , CONT 1  O SLIPS  / SL-60  ' WI LP  ED OUT :  /TOOL &  TIH TO I  1.5M S  380ARD. 1  ASSY, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40   | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R AT MUE                                          | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1 T SHOE W/ 5 COV VIS                                        | TORQ.  GFORE D  GG, 427  GF 80M3  GOPENER  CALLY.  C. INST.  IH TUR  GUAL TO  30 " SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE OE DEF                                      | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  3" BOW  ISTALL  30" S  PTH = 4  DN TO R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C.  I-VIS S D TO SI  & 449M  VOLUMI  5" WI 2  SPRING  FILL UI  HOE IN:  51M.                                                  | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT ON BIM JNT. P VALVES. TO 36" HOLE. TO 1.25 DEG.    |
| 0.50 000 5.50 003  0.50 060 1.50 063 1.50 080 2.50 093  1.00 120 0.50 133 1.00 153 0.50 163 Safety: H 24 Hr Sum Projected Remarks:                                                                   | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAG MUDI DRILL 36 HALF STA 456M (36 ANDERDRI DISPLACE POOH TO R/U TO 1 P/U & RI F/ SL-66 R/U FAL P/U & M TIH & L6 CONT TO OBSERVE PRIOR TO TIL 36" F                                     | " HOLE " CUTTE " CUTTE " CUTTE " CUTTE " CHOLE 1 " MUDLINE " UN 30" " N SHOE " TO HD- " U LP HE " CK 30" " TIH W/ FORWARI " OLE TO OUT 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F/ 366M (ADC) F/ 366M (ADC) F/ 366M ATIC TORG CR DEPTH TEYS: MUI TO 1.2 SC W/ 36" CONDUCTO JNT & 4 -90 CONNE RY & TIH TO BULLSEY ENT JOB. 454M, RU " R/TOOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JUSTED FOR TO 456M W/ 5  2 @ 390M, WC  = 454M).  JULINE = 0 DE  BE DISPLACEME  H/OPENER AS  RUSING FAL  JUNTS OF 30"  COTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN  JUCTOR TO PR  E ON PGB -  N & CEMENT IN  & POOH. M/I                                                 | G, 37 CNT MU SSY - SE RO X 1" & RUN INER S TIRING MOONE 1.5 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TAKE ANDI  PM, 142 BAI  RU SAME. WO  VAM = 0 DEG  ID @ 4625 LI  HOLE SLICK  DTARY & HANI  WT COND W,  30" X 1.5"  STRING SPACE  COOL. CONT TO  LIP HSG W/  DEG TO STARE  ONDUCTOR. W  CLEAN OUT                                             | ERRIFT  R, 50 -  ORK STAN  , 385M =  PM, 166  , CONT 1  O SLIPS  / SL-60  ' WI LP  ED OUT :  /TOOL &  TIH TO I  1.5M S  380ARD. 1  ASSY, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40   | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R AT MUE                                          | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1 T SHOE W/ 5 COV VIS                                        | TORQ.  GFORE D  GG, 427  GF 80M3  GOPENER  CALLY.  C. INST.  IH TUR  GUAL TO  30 " SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE OE DEF                                      | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  3" BOW  ISTALL  30" S  PTH = 4  DN TO R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C.  I-VIS S D TO SI  & 449M  VOLUMI  5" WI 2  SPRING  FILL UI  HOE IN:  51M.                                                  | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT ON BIM JNT. P VALVES. TO 36" HOLE. TO 1.25 DEG.    |
| 0.50 000 5.50 003 0.50 060 1.50 063 1.50 080 2.50 093 1.00 120 0.50 133 1.00 153 0.50 163 Safety: H 24 Hr Sum Projected Remarks: POB: CHEV                                                           | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 | TAG MUDI DRILL 30 HALF STA 456M (30 ANDERDR: DISPLACE POOH TO R/U TO 10 P/U & RI F/ SL-60 R/U FALS P/U & M. TIH & LO CONT TO OBSERVE PRIOR TO TILL 36" H THS: BACK                       | " HOLE " CUTTE " CUTTE " CUTTE " CUTTE " TO HOLE 1 " MUDLINE " N SHOE " TO HD- " TO HD- " CE ROTAF " U LP HS " OCK 30"  TIH W/ FORWARI 30" CEM OUT 30  - 18,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ENT JOB.  ACTOOL  PARTOLIC TORG  ACTIC TOR | USTED FOR TO 456M W/ 5  @ 390M, WC  = 454M).  DLINE = 0 DE  G DISPLACEME  H/OPENER AS  R USING FAL  JNTS OF 30"  CTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN  UCTOR TO PR  E ON PGB -  N & CEMENT:  & POOH. M/M  - 53, DOLI                                              | EDES)  OOO I  OK THE  CG, 37  CNT MU  CSY -  SE RO  X 1"  & RUN  INER S  TRING  MOONF  COVIDE  1.5 D  30" CO  L 26"  PHIN S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAKE ANDI PM, 142 BAI RU SAME. WO PM = 0 DEG D @ 4625 LI HOLE SLICK NTARY & HANI WT COND W, J 30" X 1.5" STRING SPACE COOL. CONT : C LP HSG W/ DEG TO STARE CONDUCTOR. W CLEAN OUT SERVICE - 8                                              | ERRIFT  R, 50 -  ORK STAN  , 385M =  PM, 166  , CONT 1  O SLIPS  / SL-60  ' WI LP  ED OUT :  /TOOL &  TIH TO I  1.5M S  380ARD. 1  ASSY, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40   | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R AT MUE                                          | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1 T SHOE W/ 5 COV VIS                                        | TORQ.  GFORE D  GG, 427  GF 80M3  GOPENER  CALLY.  C. INST.  IH TUR  GUAL TO  30 " SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE OE DEF                                      | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  3" BOW  ISTALL  30" S  PTH = 4  DN TO R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C.  I-VIS S D TO SI  & 449M  VOLUMI  5" WI 2  SPRING  FILL UI  HOE IN:  51M.                                                  | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT ON BIM JNT. P VALVES. TO 36" HOLE. TO 1.25 DEG.    |
| 0.50 000 5.50 003 0.50 060 1.50 063 1.50 080 2.50 093 1.00 120 0.50 133 1.00 153 0.50 163 Safety: H 24 Hr Sum Projected Remarks: POB: CHEV                                                           | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 | TAG MUDI DRILL 30 HALF SIZ 456M (30 ANDERDRI DISPLACE POOH TO R/U TO 10 P/U & RI F/ SL-60 R/U FALS P/U & M. TIH & LO CONT TO OBSERVE PRIOR TO LL 36" H ONS: BACK SERVICE                 | " HOLE " CUTTE " CUTTE " CUTTE " CUTTE " CHOLE 1 " HOLE 1 | EACH (ADC)  F/ 366M (ADC)  F/ 366M  ATIC TORG  CR DEPTH  CO 1.2 SC  W/ 36"  CONDUCTO  JNT & 4  P90 CONNE  RY & TIH  GG R/TOOI  LP HSG 1  30" CONI  ENT JOB.  454M, RU  " R/TOOL  DOLPHIN  SSY. STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JUSTED FOR TO 456M W/ 5  2 @ 390M, WC  = 454M).  DLINE = 0 DE  G DISPLACEME  H/OPENER AS  OCTORS. P/U  W/ 5" DP IN  L TO INNER S  INTO PGB IN  DUCTOR TO PR  E ON PGB -  N & CEMENT:  & POOH. M/U  - 53, DOLL  B 26" BIT II                                                   | EDES)  OOO I  OK THE  CG, 37  CNT MU  CSY -  SE RO  X 1"  & RUN  INER S  TRING  MOONF  COVIDE  1.5 D  30" CO  L 26"  PHIN S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAKE ANDI PM, 142 BAI RU SAME. WO PM = 0 DEG D @ 4625 LI HOLE SLICK PARY & HANI WT COND W, J 30" X 1.5" STRING SPACE E. ENGAGE R, COOL. CONT TO E. LP HSG W/ DEG TO STARE ONDUCTOR. W CLEAN OUT SERVICE - 8                                 | ERRIFT  R, 50 -  ORK STAI  , 385M:  , 385M:  PM, 166  . CONT 1  O SLIPS  / SL-60  ' WI LP  ED OUT:  /TOOL &  TIH TO I  1.5M S  380ARD. A  ASSY, T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SURVEY  80 RPM,  80 RPM,  PO F / 40  1 DEG,  BAR. PU  POOH & R  CONNECT  HSG JOI  LOCK IN  MUDLINE.  FICK UP  ADJUST G  CEMENT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R AT MUD                                          | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1 T SHOE W/ 5 OV VIS                                         | TORQ.  FORE D  G, 427.  F, 80M3  FOPENER  CALLY.  LINST: LIN TUR  SUAL TO  30 " SH  MICHOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R = 0 PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE OE DEF TENSIO                         | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  8" BOW  ISTALL  2 30" S  PTH = 4  DN TO R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C.  I-VIS S D TO SI  & 449M  VOLUME  5" WI 2  SPRING  FILL UI  HOE IN:  51M.  M/U PII  NICE LAS                               | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT  ON BIM JNT. P VALVES.  TO 36" HOLE.  TO 1.25 DEG. |
| 0.50 000 5.50 003  0.50 060 1.50 063 1.50 080 2.50 093  1.00 120 0.50 133 1.00 153 0.50 163 Safety: H 24 Hr Sum Projected Remarks: POB: CHEV                                                         | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 | TAG MUDI DRILL 30 HALF STA 456M (30 ANDERDRI DISPLACE POOH TO R/U TO 1 P/U & RI F/ SL-60 R/U FAL P/U & M TIH & LO CONT TO OBSERVE PRIOR TO TIL 36" H OBSERVICE SERVICE 26" CLEA          | "HOLE "CUTTE "CUTTE "FT SURV. "HOLE 1 "MUDLINE "UN 30" "N SHOE "ULP HE "CCK 30" "TIH W/ FORWARI 30" CEM OUT 30 - 18, "N OUT A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EACH (ADC)  F/ 366M (ADC)  F/ 366M (ADC)  F/ 366M (ADC)  F/ 366M (ADC)  CR DEPTH  CONDUCTO  JNT & 4  P90 CONNE  RY & TIH  GG R/TOOI  LP HSG I  30" CONI  DOLPHIN  SSY. STA  Tangible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | USTED FOR T  - 456M W/ 5  2 390M, WC  = 454M).  LINE = 0 DE  DISPLACEME  H/OPENER AS  R USING FAL  JNTS OF 30"  CTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN  UCTOR TO PR  E ON PGB -  N & CEMENT:  & POOH. M/I  - 53, DOLL  B 26" BIT II  COSt:                          | EDES)  OOO I  OK THE  CG, 37  CNT MU  CSY -  SE RO  X 1"  & RUN  INER S  TRING  MOONF  COVIDE  1.5 D  30" CO  L 26"  PHIN S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAKE ANDI  PM, 142 BAI  RU SAME. WO  VAM = 0 DEG  D @ 4625 LI  HOLE SLICK  DTARY & HANI  WT COND W,  J 30" X 1.5  STRING SPACE  COOL. CONT :  LIP HSG W/  DEG TO STARE  ONDUCTOR. W  CLEAN OUT  SERVICE - 8  P HSG.  Daily Wel              | ERRIFT  R, 50 -  ORK STAN  , 385M:  , 385M:  , 385M:  , 385M:  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  OSLIPS  | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40   | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA PLACE USE R AT MUD UIDEWI                                   | 4 KN.N. 73M BE = 2 DE OTAL ( 36" H/ 3 PER 1 T SHOE W/ 5 COV VIS LINE. T CEME                           | TORQ.  GFORE D  GG, 427.  GF 80M3  GOPENER  CALLY.  LH TUR  GUAL TO  30 " SH  MINCHOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R = 0 PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE TENSIC                                | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  8" BOW  ISTALL  2 30" S  PTH = 4  DN TO R  AYS SIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C.  I-VIS S D TO SI  & 449M  VOLUMI  5" WT 2  SPRING FILL UI HOE IN: 51M.  EDUCE T                                            | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT  ON BIM JNT. P VALVES.  TO 36" HOLE.  TO 1.25 DEG. |
| 0.50 000 5.50 003 0.50 060 1.50 063 1.50 080 2.50 093 1.00 120 0.50 133 1.00 153 0.50 163 Safety: H 24 Hr Sum Projected Remarks: POB: CHEV 06:00 OPS Daily Mud Cum Mud C                             | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 | TAG MUDI DRILL 30 HALF STA 456M (30 ANDERDRI DISPLACE POOH TO R/U TO 10 P/U & RI F/ SL-60 R/U FALS P/U & M. TIH & LO CONT TO OBSERVE PRIOR TO LL 36" F ONS: BACK SERVICE 26, 262 21, 610 | "HOLE IND. ERF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EACH (ADC)  F/ 366M (ADC)  F/ 366M (ADC)  F/ 366M (ADC)  F/ 366M (ADC)  CR DEPTH  CO 1.2 SC  W/ 36"  CONDUCTO  JNT & 4  P90 CONNE  EY & TIH  GG R/TOOI  LP HSG 1  30" CONI  " R/TOOL  DOLPHIN  SSY. STA  Tangible Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JUSTED FOR TO 456M W/ 5  2 @ 390M, WC  = 454M).  DLINE = 0 DE  G DISPLACEME  H/OPENER AS  OR USING FAL  JUSTS OF 30"  OCTORS. P/U  W/ 5" DP IN  L TO INNER S  INTO PGB IN  CUCTOR TO PR  E ON PGB -  N & CEMENT:  & POOH. M/I  - 53, DOLL  B 26" BIT II  Cost:                | CIDES)  OOO I  ORK THE  CIG, 37  CINT MU  CISY -  SEE RO  X 1"  & RUN  INER S  CITRING  MOONE  COVIDE  1.5 D  30" CO  J 26"  PHIN S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAKE ANDI  PM, 142 BAI  RU SAME. WO  PM = 0 DEG  D @ 4625 LI  HOLE SLICK  TARY & HANI  WT COND W.  STRING SPACE  E. ENGAGE R.  COOL. CONT TO  E. LP HSG W/  DEG TO STARE  ONDUCTOR. W  CLEAN OUT  SERVICE - 8  P HSG.  Daily Well  Cum Well | ERRIFT  R, 50 -  ORK STAN  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 385M:  , 166  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLIPS  O SLI | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40   | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA I PLACE USE R AT MUD UIDEWI                                 | 4 KN.N. 73M BE  = 2 DE  OTAL (  36" H/  T SHOE  W/ 5  OV VIS  LINE.  RE & A  T CEME  Incid  Total      | I TORQ.  GOVERNMENT  CALLY.  C. INST.  IH TUR  SUAL TO  30" SH  NOT & SI  CALLY.  C. Appr:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R = 0  PUMP  RILLIN  M = 2.  (1.5  ASSY.  P/U &  ALL 28  NS. IN  GUIDE  OE DEE  TENSIO  NO I  KR134 | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  3" BOW  ISTALL  30" S  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH = 4  PTH | C.  I-VIS S D TO SI  & 449M  VOLUME  5" WI 2  SPRING  FILL UI  HOE INT.  51M.  M/U PIL  M/U PIL  M/U PIL  M/CE LAS            | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT  ON BIM JNT. P VALVES. FO 36" HOLE. FO 1.25 DEG.   |
| 0.50 000 5.50 003  0.50 060 1.50 063 1.50 080 2.50 093  1.00 120 0.50 133 1.00 153 0.50 163 Safety: H 24 Hr Sum Projected Remarks: POB: CHEV  06:00 OPS Daily Mud Cum Mud C                          | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 | TAG MUDI DRILL 30 HALF STA 456M (30 ANDERDRI DISPLACE POOH TO R/U TO 10 P/U & RI F/ SL-60 R/U FALS P/U & M. TIH & LO CONT TO OBSERVE PRIOR TO LL 36" F ONS: BACK SERVICE 26, 262 21, 610 | "HOLE IND. ERF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F/ 366M (ADC F/ 366M (ADC F/ 366M (ATIC TOR) CR DEPTH TEYS: MUI TO 1.2 SC W/ 36" CONDUCTO JNT & 4 -90 CONNE RY & TIH TO BULLSEY ENT JOB. 454M, RU " R/TOOL DOLPHIN  SSY. STA Tangible Congible C | JUSTED FOR TO 456M W/ 5  2 390M, WC  = 454M).  JUINE = 0 DE  G DISPLACEME  H/OPENER AS  R USING FAL  JUSTS OF 30"  CTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN  JUCTOR TO PR  E ON PGB -  N & CEMENT:  & POOH. M/I  - 53, DOLL  B 26" BIT II  Cost:  DST:  DST:  O Fuel: | GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH | TAKE ANDI PM, 142 BAI RU SAME. WO  V4M = 0 DEG  D @ 4625 LI HOLE SLICK DTARY & HANI WT COND W, J 30" X 1.5  STRING SPACE COL. CONT : CLP HSG W/ DEG TO STARE  ONDUCTOR. W  CLEAN OUT  SERVICE - 8  P HSG.  Daily Well Cum Well              | ERRIFT  R, 50 -  ORK STAN  , 385M:  PM, 166  CONT 1  O SLIPS  / SL-60  ' WI LP  ED OUT :  //TOOL &  FIH TO I  1.5M S  300ARD. ;  ASSY, T  1.1 Cost  Cost:  Bulk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SURVEY  80 RPM,  ND F/ 40  = 1 DEG,  BAR. PU  POOH & R  CONNECT  HSG JOI  LOCK IN  MUDLINE.  TICK UP  ADJUST G  CEMENT.  TH & DR:  KR3,285  KR44,36  Weight:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 - 1 5M - 3 397M MP A T /BACK ORS ASS NT. E FLOA I PLACE USE R AT MUD UIDEWI ILL OU  ,372 3,526 166.0       | 4 KN.N. 73M BE  = 2 DE  OTAL (  36" H/  S PER 1  T SHOE  W/ 5  LINE.  RE & A  T CEME  Incid  Total  Ne | TORQ.  GOPENER  CALLY.  C. INST.  LH TUR  SUAL TO  30" SH  INCHOR  TALLY.  EAT & SI  EAT & SI  EAT & SI  EAT & CALLY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R = 0 PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE OE DEF TENSIO                         | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  3" BOW  ISTALL  30" S  PTH = 4  OOH & N  AYS SIN  NCIDEN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C.  I-VIS S D TO SI  & 449M  VOLUMI  5" WT 2  SPRING FILL UI  HOE IN: 51M.  M/U PII  NCE LAS  F REPOR  00  Blende             | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT  ON BIM JNT. P VALVES. FO 36" HOLE.  FO 1.25 DEG.  |
| 0.50 000 5.50 000 6.50 060 1.50 060 1.50 060 1.50 093 1.00 120 0.50 130 2.00 133 1.00 153 0.50 163 Safety: H 24 Hr Sum Projected Remarks: POB: CHEV 06:00 OPS Daily Mud Cum Mud C Drill Wat Country: | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 | TAG MUDI DRILL 30 HALF STA 456M (30 ANDERDRI DISPLACE POOH TO R/U TO 10 P/U & RI F/ SL-60 R/U FALS P/U & M. TIH & LO CONT TO OBSERVE PRIOR TO LL 36" F ONS: BACK SERVICE 26, 262 21, 610 | "HOLE IND. ERF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F/ 366M (ADC F/ 366M (ADC F/ 366M (ATIC TOR) CR DEPTH TEYS: MUI TO 1.2 SC W/ 36" CONDUCTO JNT & 4 P90 CONNE RY & TIH TO BULLSEY ENT JOB. 454M, RU " R/TOOL DOLPHIN  SSY. STA Tangible Congible C | JUSTED FOR TO 456M W/ 5  2 @ 390M, WC  = 454M).  DLINE = 0 DE  G DISPLACEME  H/OPENER AS  OR USING FAL  JUSTS OF 30"  OCTORS. P/U  W/ 5" DP IN  L TO INNER S  INTO PGB IN  CUCTOR TO PR  E ON PGB -  N & CEMENT:  & POOH. M/I  - 53, DOLL  B 26" BIT II  Cost:                | GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH | TAKE ANDI PM, 142 BAI RU SAME. WO  V4M = 0 DEG  D @ 4625 LI HOLE SLICK DTARY & HANI WT COND W, J 30" X 1.5  STRING SPACE COL. CONT : CLP HSG W/ DEG TO STARE  ONDUCTOR. W  CLEAN OUT  SERVICE - 8  P HSG.  Daily Well Cum Well              | ERRIFT  R, 50 -  ORK STAN  , 385M:  PM, 166  CONT 1  O SLIPS  / SL-60  ' WI LP  ED OUT :  //TOOL &  FIH TO I  1.5M S  300ARD. ;  ASSY, T  1.1 Cost  Cost:  Bulk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SURVEY  80 RPM,  80 RPM,  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40  10 F/ 40   | 8 - 1 5M - 3 397M MP A T /BACK ORS ASS NT. E FLOA I PLACE USE R AT MUD UIDEWI ILL OU  ,372 3,526 166.0       | 4 KN.N. 73M BE  = 2 DE  OTAL (  36" H/  S PER 1  T SHOE  W/ 5  LINE.  RE & A  T CEME  Incid  Total  Ne | TORQ.  GOPENER  CALLY.  C. INST.  LH TUR  SUAL TO  30" SH  INCHOR  TALLY.  EAT & SI  EAT & SI  EAT & SI  EAT & CALLY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R = 0 PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE OE DEF TENSIO                         | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  3" BOW  ISTALL  30" S  PTH = 4  OOH & N  AYS SIN  NCIDEN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C.  I-VIS S D TO SI  & 449M  VOLUMI  5" WT 2  SPRING FILL UI  HOE IN: 51M.  M/U PII  NCE LAS  F REPOR  00  Blende             | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT  ON BIM JNT. P VALVES. FO 36" HOLE.  FO 1.25 DEG.  |
| 0.50 000 5.50 003  0.50 060 1.50 063 1.50 080 2.50 093  1.00 120 0.50 133 1.00 153 0.50 163 Safety: H 24 Hr Sum Projected Remarks: POB: CHEV  06:00 OPS Daily Mud Cum Mud C                          | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                  | 1 - 06 1 - 02 1 - 02 1 - 02 1 - 02 1 - 01 1 - 05 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 - 08 1 | TAG MUDI DRILL 30 HALF STA 456M (30 ANDERDRI DISPLACE POOH TO R/U TO 10 P/U & RI F/ SL-60 R/U FALS P/U & M. TIH & LO CONT TO OBSERVE PRIOR TO LL 36" F ONS: BACK SERVICE 26, 262 21, 610 | "HOLE "CUTTE "CUTTE "FT SURV "HOLE 1 "HOLE 1 "MUDLINE "UN 30" "IN SHOE "U LP HE "CCK 30" "TIH W/ "FORWARI "30" CEM "OLE TO "OUT 30 "- 18, "N OUT A "Daily" "Cum Ta:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AGEN (ADC) F/ 366M ATIC TORG R DEPTH TEYS: MUI TO 1.2 SC W/ 36" CONDUCTC JNT & 4 P90 CONNE RY & TIH AGG R/TOOL LP HSG 1 30" CONI ENT JOB. 454M, RU " R/TOOL DOLPHIN  SSY. STA Tangible ngible Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JUSTED FOR TO 456M W/ 5  2 390M, WC  = 454M).  JUINE = 0 DE  G DISPLACEME  H/OPENER AS  R USING FAL  JUSTS OF 30"  CTORS. P/U  W/ 5" DP IN  TO INNER S  INTO PGB IN  JUCTOR TO PR  E ON PGB -  N & CEMENT:  & POOH. M/I  - 53, DOLL  B 26" BIT II  Cost:  DST:  DST:  O Fuel: | GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH  GREATH | TAKE ANDI PM, 142 BAI RU SAME. WO  V4M = 0 DEG  D @ 4625 LI HOLE SLICK DTARY & HANI WT COND W, J 30" X 1.5  STRING SPACE COL. CONT : CLP HSG W/ DEG TO STARE  ONDUCTOR. W  CLEAN OUT  SERVICE - 8  P HSG.  Daily Well Cum Well              | ERRIFT  R, 50 -  ORK STAN  , 385M:  PM, 166  CONT 1  O SLIPS  / SL-60  ' WI LP  ED OUT :  //TOOL &  FIH TO I  1.5M S  300ARD. ;  ASSY, T  1.1 Cost  Cost:  Bulk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SURVEY  80 RPM,  80 RPM,  F 1 DEG,  BAR. PU  POOH & R  CONNECT  HSG JOI  19M ABOV  LOCK IN  MUDLINE.  FICK UP  ADJUST G  CEMENT.  TH & DR:  KR3,285  KR44,36  Weight:  hone: 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 - 1 5M - 3 397M MP A T /BACK ORS AS NT. E FLOA I PLACE USE R AT MUE UIDEWI  ILL OU  ,372 3,526 166.0 88 03 | 4 KN.N. 73M BE  = 2 DE  OTAL (  36" H/  S PER 1  T SHOE  W/ 5  LINE.  RE & A  T CEME  Incid  Total  Ne | TORQ.  GOPENER  CALLY.  C. INST.  LH TUR  SUAL TO  30" SH  INCHOR  CALLY.  C. INST.  Appr:  CALLY.  C. INST.  CALLY.  C. INST.  CALLY.  C. INST.  CALLY.  C. INST.  CALLY.  C. INST.  CALLY.   R = 0 PUMP RILLIN M = 2. (1.5 ASSY. P/U & ALL 28 NS. IN GUIDE OE DEF TENSIO                         | DEG IN  10M3 H  IG AHEA  5 DEG  X HOLE  RUN 1.  3" BOW  ISTALL  30" S  PTH = 4  DN TO R  AYS SIN  NCIDEN  1,000,00  185.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C.  I-VIS S D TO SI  & 449M  VOLUMI  5" WT 2  SPRING  FILL UI  HOE IN:  51M.  M/U PII  NICE LAS  I REPOR  00  Blende  INS/HOL | SWEEPS EACH ECTION TD @  = 3.5 DEG. E).  K/OVER JNT  ON BIM JNT. P VALVES. FO 36" HOLE. FO 1.25 DEG.   |

| Measu    | red D             | epth:     | 456.     | 0 m   | TVD:         | 456.0                 | ) m        | PB'            | TD:        | 0.0          | Prop             | posed M    | ): 3      | 625.0   | m Pro   | posed           | TVD:     | 3625.0   | ) m   |
|----------|-------------------|-----------|----------|-------|--------------|-----------------------|------------|----------------|------------|--------------|------------------|------------|-----------|---------|---------|-----------------|----------|----------|-------|
| DOL:     | 6                 | Di        | FS: 1    | Spu   | nd Date: 22  | -JUL-2001             | L          |                | Daily      | Footage      |                  |            | aily Ro   |         |         |                 |          | s: 5.5   | ,     |
| Torq:    | 11                | Drag      | g: 0.0 F | ot Wo | gt: 160.0 P  | /U Wgt: 1             | .60.0      | lack           | Off Wgt    | 160.         |                  |            | Seas:     | 4.0     | / 0.0   | Bar:            | 758      | POB:     | 81    |
| Last 0   | asin              | g Size:   | -        | 762.0 | Set :        |                       |            |                | MD         |              | 51.0m            |            | Shoe T    |         |         | EMW             | Leako    | •        |       |
| Cum Ro   | t Hr              | s On Ca   |          | 702.0 | Cum Rot H    | rs On Cas             |            |                |            |              | 31. OIII         | 1          | Worst     | Wear:   |         |                 | emainir  | ng:      |       |
| Liner    | Size              | :         |          | S     | !<br>Get At: |                       | MD         |                | Т          |              | L                | iner To    | o At:     |         | MD      |                 |          | т        | ľVD   |
| Mud Co   | ): <sub>M_T</sub> | NORGE .   | 7. C     | Тур   | e: SEAWATER  |                       | 110        |                |            |              | : <sub>DTT</sub> | Wt: 103    | 1 FV:     | o PV    |         |                 | n Gel:   |          |       |
| TATE.    |                   |           |          | F(    | 7 ()         |                       |            | Soli           | .ds:       |              |                  | 00 *Wate   |           | -       |         | MB              | l.       | Ph:      | 0     |
| Dm:      |                   |           | 0.00 /   | _     |              | 1:0.0 HTH<br>Cl:      | Ca:        |                | Bent       |              |                  | ds %HG/I   |           | /       |         | S/Bent          |          |          |       |
| 0        | .00               |           | 0.00 / 0 | 7.00  |              |                       |            |                |            |              |                  |            |           |         |         |                 |          | /        |       |
|          |                   |           |          |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
| Drlg G   | lag:              |           | Max Gas: |       | Conn Gas:    | Tr                    | ip Gas:    |                | Tr         | ip Cl:       | Ī                | Remarks    |           |         |         |                 |          |          |       |
|          |                   |           |          | 1     |              |                       |            |                |            |              |                  |            |           |         | T       |                 | 1D 0 1   |          | 0 -   |
| Bit Nu   | ımber             | IADC      | Size     | Manu  | ıfacturer    | Serial                | number     |                |            | s (Quar      | reity -          | - Size)    | /         | TFA     | ME      | ) In            | MD Out   | TVD      | Out   |
|          |                   |           |          |       |              |                       |            | <del>  -</del> | · / -      |              | - /<br>- /       | - /<br>- / |           | 0       |         | -               |          |          |       |
|          |                   | 3.5       |          |       | 1100         | DDM                   |            | Moto           | / DDM      | 7            | /                | 7          |           | _       |         | <i>a</i> 1      | 20.11    |          | ,     |
| Т        | ype               | Met       | ers Ho   | urs   | WOB          | RPM                   |            | MOCC           | or RPM     | I-Row        | O-Rov            | w DC       | Loc       | В       | G       | Char            | ?Pull    | Cost     | /m    |
|          |                   |           |          |       | /            | /                     |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
| mat- 1   | T 0               | -h        | 117      |       | RHA Decay    | intion:               | 10 1 11    | . ~            |            | D0077        | <u> </u>         |            | 11/0-     |         | TE ~    |                 | T 63=    | <u> </u> |       |
|          |                   |           | HA: 232. |       | BHA Descr    |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
| ANDE     | KURIF             | .Τ. – 3 Σ | 9.1/2"   | DC -  | X/OVER - 3   | X 8" DC               | - X/OV     | ER -           | 3 X 5" :   | HWDP -       |                  |            |           |         |         |                 |          | -1 :     |       |
|          | 1                 |           |          | 1     |              |                       |            |                |            |              | -                | On Jars:   |           | hours   | since   | ⊥ast            | TUSDEC.  | _10n: 5  | 5.5   |
| Bit Nu   | m                 | Line      | er ,     |       | Stroke /     |                       | SPM        | ,              | Press.     | M3/Min       | Jet Ve           | el DP      | Av DO     | C Av    | Bit kW  | BHHI            | P/SQIN   | Pump k   | ₫W    |
|          |                   |           |          |       |              | /                     | <u>/</u> / | ,              |            |              |                  |            |           |         |         | +               |          |          |       |
|          |                   |           |          |       |              | <u>/</u>              | <u>/ /</u> | ′              |            |              |                  |            |           |         |         |                 |          |          |       |
| Survey   | MD                | Angle     | Azimuth  | ı I   | Direction    | TVD                   |            | N/S            | Coordina   | ates         | E/W              | Coordin    | ates      | Vert    | ical Se | ction           |          | DLS      |       |
|          |                   |           |          |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   |           |          |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   |           |          |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   |           |          |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
| Hours    | From              | Act-Ca    | t        |       | Operat       | ions Cove             | ering 2    | 4 Hot          | urs Endi   | ng at M      | idnigh           | ıt         |           |         | Tota    | l Hour          | s Repoi  | rted: 2  | 24.0  |
| 1.00     | 1700              | 01 - 09   | BREAK C  | IRC W | / RIG PUMPS  | S. PUMP 9             | 7M3 SEA    | WATE           | R @ 1955   | 5 LPM, 5     | 0 BAR            | . HOLD 7   | BT PRI    | OR TO   | CEMENT  | ING CO          | NDUCTOF  | ۲.       |       |
| 1.00     | 1800              | 01 - 09   | BREAK C  | IRC W | / CMT UNIT   | . PRESS T             | EST LIN    | ies t          | O 200 B    | AR / 5 N     | MINS -           | OK. MIX    | & PUM     | P 34.1  | M3 OF   | 1.56 <i>S</i> G | LEAD (   | JSING    |       |
|          |                   | 01 - 09   | 26.4MT   | CLASS | 'G' CEMEN    | r W/ 3.2              | LT/100F    | G EC           | CONOLITE   | & 95.07      | / LTR/           | 100KG SI   | CAWATER   | . PUMP  | @ 1.3   | M3/MIN          | , 36 BA  | AR.      |       |
| 0.50     | 1900              | 01 - 09   | MIX & P  | UMP 1 | 9.0M3 OF 1   | .92SG TAI             | L USING    | 3 24.          | 5MT CLAS   | SS 'G' (     | CEMENT           | W/ 4.35    | LT/10     | OKG CA  | CL2 &   | 42.07           | LT/100F  | KG SEAW  | ATER. |
|          |                   | 01 - 09   | PUMP @   | 0.8M3 | /MIN, 27 B   | AR. CLEAR             | LINES      | W/ 0           | .2M3 SEA   | AWATER,      | DROP I           | DP WIPER   | DART (    | & DISP  | LACE W  | / 0.5M          | 3 F/ R   | IG PUMPS | S &   |
|          |                   | 01 - 09   | 9M3 F/   | CMT U | NIT @ 1.4M   | 3/MIN. FI             | NAL DIS    | SPLAC          | EMENT PR   | RESSURE      | @ 0.21           | M3/MIN =   | = 10 BA   | R. CEM  | ENT IN  | PLACE           | @ 19:3   | 33 HRS.  |       |
|          |                   | 01 - 09   | NOTE: C  | EMENT | RETURNS AT   | r MUDLINE             | OBSERV     | ED W           | / ROV.     |              |                  |            |           |         |         |                 |          |          |       |
| 4.50     | 1930              | 01 - 43   | WAIT ON  | CEME  | NT.          |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   | _         |          |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   | -         |          |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   | _         |          |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   | _         | 1        |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   | _         | 1        |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   | _         | 1        |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   | _         | 1        |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
| Safety   | r: 1101           |           |          | 30" ( | CEMENT JOB.  |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   |           |          |       | TO 454M, RU  |                       | ייי אַרייי |                | TICTTOD T∙ | ז∧דיד ריידעז | <i>С</i> ЕМЕУПТ  | P          |           |         |         |                 |          |          |       |
|          |                   |           |          |       | 30" R/TOOL   |                       |            |                |            |              |                  |            | LL CLEMEN | וחי כו  | TOP TO  |                 | W/II DTI |          | 7     |
| Remark   | s:                |           | BACI     | 001   | 30" R/100L   | & POOH.               | M/U 26     | CT             | LAN CUI    | ASSY, I      | IH & L           | KILL OU    | I CEMEN   | 11 & 51 | HUE. PC | OH & I          | M/U PIL  | OI HOLE  | 5     |
|          |                   |           |          |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   |           |          |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
|          |                   |           |          |       |              |                       |            |                |            |              |                  |            |           |         |         |                 |          |          |       |
| <u> </u> |                   |           |          |       |              |                       |            |                |            | -            |                  |            |           |         |         |                 |          |          |       |
|          |                   |           | 26,262   |       | y Tangible   |                       |            | _              | aily Wel   |              | KR3,28           | 35,372     | Incide    |         |         |                 | repor    | TED      |       |
|          |                   | st: KR1   |          |       | Tangible C   |                       |            | С              | tum Well   |              |                  | 363,526    | Total     | Appr:   | KR134   | ,000,0          | 00       |          |       |
|          |                   | r: 350.   | 0 Pota   | ble W | Water: 325.  |                       | 2/1.       |                |            |              |                  | nt: 166.   | ne Ne     | at Cem  | ent: 1  | 85.0            | Blende   |          |       |
| Countr   | y: N              | ORWAY     |          |       |              | Rig: <sub>BYFOF</sub> | D DOLP     | HIN            |            | Rig Pl       |                  | 2 88 03    | 35        | Drill   | ing Re  | P:<br>ELK       | INS/HOL  | LINSHEA  | AD    |
| Field:   | PL2               | 59        |          |       | Leas         | se: <sub>PL259</sub>  |            |                |            |              | W∈               | ell No:    | 5506/3-   | 1       |         | We              | ell ID:  |          |       |
|          |                   |           |          |       | API No       | : 6506/3-1            | L          |                | AFE No:    | KWENO-       | 650631           | -001       |           | Date:   | 22-JUL  | -2001           | Page     | : 2 Of   | E 2   |

| Measured 1            | Depth:                                           | 456            | . 0 m   | TVD:        | 456.0 m      |         | PBTI   | D:       | 0.0      | Propo            | osed MD  | ): 3        | 625.0    | m Proj   | posed    | TVD:      | 3625.0 m     |
|-----------------------|--------------------------------------------------|----------------|---------|-------------|--------------|---------|--------|----------|----------|------------------|----------|-------------|----------|----------|----------|-----------|--------------|
| DOL: 7                | :                                                | OFS: 2         |         | d Date: 22  |              |         |        | Daily    | Footage  | e: 0.            | . 0 Da   |             |          |          |          |           | s: 5.5       |
| Torq: 720             | 0 Dra                                            | ıg: 0.0        | Rot Wg  | t: 66.0 P   | /U Wgt: 66.  | sl      | Lack   | Off Wgt  | : 66.0   |                  |          | Seas        | 3.0      | / 0.0    | Bar:     | 761       | POB: 79      |
| Last Casin            |                                                  | <u> </u>       | 762.0   | Set I       |              |         | 0m     |          |          | 51.0m            |          | Shoe T      |          |          | EMW      | Leako     |              |
| Cum Rot Hi            | rs On C                                          | asing:         |         | I           | rs On Casing |         |        |          |          | ) <b>1.</b> UIII | 1        | Worst       | Wear:    |          |          | emainir   | ng:          |
| Liner Size            | <b>:</b>                                         |                | S       | !<br>et At: | MD           |         |        | ידי      | VD       | Li               | ner Top  | At:         |          | MD       |          |           | TVD          |
| Mud Co: <sub>M-</sub> |                                                  |                | Tyr     | œ: SEAWATER |              |         |        |          | le From  | : To             | īt: 100  | E77 •       | o PV:    | MD       | /P: 0    | O Gel:    |              |
| TATT.                 |                                                  |                | Fr      | 7 ()        |              |         | Solid  |          |          | il:<br>0.00      |          |             | -        |          | MB'      | l l       | 0 / 0<br>Ph: |
| Pm: API:              |                                                  | HTHP: 0        | .0      | API         | : 0.0 HTHP:  | 0.0 Ca: |        | Bent     |          |                  | HG/L     | er:<br>0.00 | )   ° 5α |          | S/Bent   |           | ,            |
| 0.00                  | F L/ MI                                          | 0.00 /         | 0.00    | alb.        | ·L.          | a.      |        | Benc     | ••       | 501108           | 5 6110/1 |             |          | الله     | 5/ Deric | <u> </u>  | /            |
| 75 1K                 | G SODA                                           | ASH            | 10      | 1MT BEN     | TONITE API   |         |        |          |          |                  |          |             |          |          |          |           |              |
|                       |                                                  | Т              |         | 1           |              |         |        |          |          |                  |          |             |          |          |          |           |              |
| Drlg Gas:             |                                                  | Max Gas:       | :<br>   | Conn Gas:   | Trip         | Gas:    |        | Tr       | ip Cl:   | Re               | emarks:  |             |          |          | <u>.</u> |           |              |
| Bit Numbe             | r IADC                                           | Size           | Manu    | ıfacturer   | Serial num   | iber    |        | Jets     | (Quar    | ntity -          | Size)    |             | TFA      | MD       | In       | MD Out    | TVD Out      |
| 3                     | 1-1-5                                            | 660.4          | 1       | HUGHES      | D92DM53      | 3       | 1-1    | L9.1/3-  | 15.9/    | - /              | - /      | <u>-</u>    | 878.7    | 7 456    | .0 m     | 456.0     | m 456.0      |
|                       |                                                  |                |         |             | +            |         | -      | / -      | . / .    | - /              | - /      | _           | 0        |          |          |           |              |
| Type                  | Me                                               | ters H         | ours    | WOB         | RPM          |         | Motor  | RPM      | I-Row    | O-Row            | DC       | Loc         | В        | G        | Char     | ?Pull     | Cost/m       |
| GTXCMG                | L                                                | 0.0            | 0.0     | 10.0/11.0   | 50 /         |         |        |          | 1        | 1                | WT       | A7          | E        | I        | NO       | TD        | 0.00         |
|                       |                                                  |                |         | /           | /            |         |        |          |          |                  |          |             |          |          |          |           |              |
| Total Leng            | gth of                                           | BHA: 229       | .68 m   | BHA Descr   | iption: 26   | " HUG   | HES C  | GTXCMG1  | ROCK B   | IT - BI          | T SUB (  | C/W FLC     | AT - A   | NDERDR   | IFT -    | 3 X 9.    | 1/2" DC      |
|                       |                                                  |                |         |             | HWDP - 6.1/  |         |        |          |          |                  |          |             |          |          |          |           |              |
|                       |                                                  |                |         |             |              |         |        |          |          | Hrs Or           | ı Jars:  | 7.0         | Hours    | Since    | Last     | Inspect   | ion: 7.0     |
| Bit Num               | Lir                                              | ıer            |         | Stroke      |              | SPM     |        | Press.   | M3/Min   | Jet Ve           | l np:    | AV D        | C Av 1   | Bit kW   | ВНП      | P/SOTN    | Pump kW      |
|                       |                                                  | 152 / 15       | 52 30   | 4.8/304.8   | / 304.8 76/  | 96/     |        | 122      | 4.58     |                  |          |             | 5.45     | 0.00     |          | 0.0       | 9.50         |
|                       | /                                                | /              | 30      | /           | /            | / /     |        |          | 1130     | 07,121           |          |             | 3.13     |          |          | -         | 2.30         |
| Survey MD             | /<br>Angle                                       | Azimut         | ьг      | oirection   | TVD          | Τ,      | NT/C C | Coordina | at or    | E/W C            | coordin  | atog        | Vorti    | cal Se   | ation    |           | DLS          |
| Survey MD             | Aigre                                            | AZIIIUU        | 11 1    | )Hection    | TVD          | 1       | N/S C  | .оогаша  | aces     | E/W C            | JOHAIII  | aces        | verci    | car se   | CCIOII   |           | рцз          |
|                       |                                                  |                |         |             |              |         |        |          |          |                  |          |             |          |          |          |           |              |
|                       |                                                  |                |         |             |              |         |        |          |          |                  |          |             |          |          |          |           |              |
|                       |                                                  |                |         |             |              |         |        |          |          |                  |          |             |          |          |          |           |              |
|                       |                                                  | 1              |         |             |              |         |        |          |          |                  |          |             |          |          |          |           |              |
| Hours Fra             | n Act-C                                          | at             |         | Operat      | ions Coveri  | ng 24   | Hou    | rs Endi  | ng at M  | idnight          |          |             |          | Tota]    | l Hour   | s Repor   | rted: 24.0   |
| 0.50 000              | 01 - 4                                           | 3 CONT TO      | TIAW (  | ON CEMENT.  | SURFACE SA   | MPLES   | S FIR  | M AFTER  | 5 HRS    | F/ CEM           | ENT IN   | PLACE.      |          |          |          |           |              |
| 1.00 003              | 01 - 0                                           | 9 OBSERVE      | E FORWA | ARD BULLSEY | Æ W/ ROV -   | 1.25    | DEG.   | SLACK    | OFF L/S  | TRING I          | WT - NC  | MOVEM       | ENT OF   | PGB SE   | EN. P    | ICK BAC   | CK UP &      |
|                       | 01 - 0                                           | 9 BACK OU      | JT R/TO | OOL W/ 5 RE | H TURNS. POO | )H TO   | MUDL   | INE & F  | FLUSH 30 | " LP H           | SG W/S   | EAWATE:     | R @ 490  | 00 LPM,  | , 41 B   | AR.       |              |
| 2.00 013              | 01 - 0                                           | 9 POOH W/      | / 30" I | RUNNING STE | RING. L/O 30 | " R/:   | IOOL   | & R/BAC  | CK 5" DE | INNER            | STRING   | ÷.          |          |          |          |           |              |
| 0.50 033              | 01 - 0                                           | 7 B/O & I      | L/O 17  | .1/2" BIT 8 | 26" X 36"    | H/OPI   | ENER.  |          |          |                  |          |             |          |          |          |           |              |
| 2.00 040              | 01 - 0                                           | 5 M/U & 7      | TIH W/  | 26" CLEAN   | OUT ASSY. A  | TTACI   | H BRE  | AK OFF   | LINES T  | O FIRS           | T JNT C  | F 9.1/      | 2" DC.   |          |          |           |              |
| 1.50 060              | 01 - 1                                           | 5 Wash Da      | J W/ 20 | 000 LPM, 33 | BAR & TAG    |         | a 446  | M. DRIL  | L OUT C  | MT & SI          | HOE W/   | 4600 L      | PM, 122  | BAR,     | 50 RP    | м, 7.2    | KN.M TORQ    |
|                       | 01 - 1                                           | 5 10 - 11      | MT W    | OB. PUMP 10 | M3 HI-VIS S  | WEEPS   | SAS    | REQ'D.   | CLEAN C  | UT RATI          | HOLE TO  | 456M.       |          |          |          |           |              |
| 2.00 073              | 0 01 - 0                                         | 5 POOH &       | R/BACE  | K 26" CLEAN | OUT ASSY.    | B/O 8   | & L/O  | ) 26" BI | т.       |                  |          |             |          |          |          |           |              |
| 13.00 093             | 0 01 - 0                                         | 7 P/U, M       | ′U & R. | /BACK 47 ST | IDS OF 5" DE | ). A :  | IOTAL  | OF 276   | 50M 5" I | P R/BAG          | OK IN D  | ERRICK      | . ALL I  | OP DRIE  | TED T    | 0 2.3/4   | 1".          |
|                       |                                                  |                |         | ILOT HOLE A |              |         |        |          |          |                  |          |             |          |          |          |           |              |
|                       | -                                                |                |         |             |              |         |        |          |          |                  |          |             |          |          |          |           |              |
|                       | _                                                |                |         |             |              |         |        |          |          |                  |          |             |          |          |          |           |              |
|                       | † -                                              |                |         |             |              |         |        |          |          |                  |          |             |          |          |          |           |              |
|                       | <del>                                     </del> | +              |         |             |              |         |        |          |          |                  |          |             |          |          |          |           |              |
| Safety:               | _                                                |                |         |             |              |         |        |          |          |                  |          |             |          |          |          |           |              |
|                       | mrv:                                             |                |         |             |              |         |        |          |          |                  |          |             |          | . der =  |          |           |              |
|                       |                                                  |                |         |             | , M/U 26" C  |         |        |          |          |                  |          |             |          | P/U 5" : | DP.      |           |              |
| Remarks:              | o <sub>r</sub> cial.                             | DRI            | LL 8.1  | L/2" PILOT  | HOLE TO APP  | ROX 1   | .375M  | . POOH,  | M/U 17   | .1/2" H          | I/OPENE  | R ASSY      | & TIH.   |          |          |           |              |
|                       | RON - 2                                          | , SERVIC       | E - 16  | 5, DOLPHIN  | - 53, DOL    | PHIN    | SERV   | ICE - 8  |          |                  |          |             |          | DA       | YS SII   | NCE LAS   | T LTI - 58   |
|                       |                                                  |                |         |             |              |         |        |          |          |                  |          |             |          |          |          |           |              |
|                       |                                                  |                |         |             |              |         |        |          |          |                  |          |             |          |          |          |           |              |
| 06:00 OPS:            | DRILL                                            | AHEAD 8.       | 1/2" F  | PILOT HOLE  | AT 591M. LA  | ST SU   | RVEY   | - 542.   | 45M, 3.  | 07 INC,          | 203.9    | AZ.         |          |          |          |           |              |
| Daily Mud             | Cost:                                            | æ91,613        | Dail    | y Tangible  | Cost:        |         | Da     | ily Wel  | .l Cost: | KR3,234          | 1,555    | Incide      | ents:    | NO IN    | CIDEN    | I REPOR   | TED          |
| Cum Mud Co            | st: KR                                           | 273,223        | Cum     | Tangible C  | ost:         |         | _      | m Well   | Chat:    | KR47,59          |          | Total       | Appr:    | KR134.   | 0,000    | 00        |              |
| Drill Wate            |                                                  |                | able W  | Mater: 300. | O Fuel:      | 252.0   | )      |          |          | Weight           |          | Ne          | at Ceme  | ent: 15  | 35 . N   | Blende    | ed:          |
| Country:              |                                                  | · <del>-</del> |         |             | Rig: BYFORD  |         |        |          |          | one: 52          |          | 35          | Drill    | ing Rep  | ):<br>   | TNIS /HOT | LINSHEAD     |
| Field: PL2            | )EO                                              |                |         |             | se: PL259    |         |        |          |          |                  | ll No:   | 506/3-      | 1        |          |          |           | UB5908 -(    |
| PL2                   | .J                                               |                |         |             | 6506/3-1     |         | P      | AFE No:  | KWENO-   |                  |          |             | Date:    | 23-,тт   |          | 1         | : 1 of 1     |
|                       |                                                  |                |         |             |              |         |        |          | 0        |                  |          |             |          |          | _ JU T   |           |              |

| Measur   | ed D  | epth:    | 1382.    | 0 m    | TVD:                   | 1382.0 m                 |              | PBTD       | ):       | 0.0        | Propo              | sed MI           | ): 3        | 625.0    | m Pro           | posed    | TVD:     | 3625.0 m     |
|----------|-------|----------|----------|--------|------------------------|--------------------------|--------------|------------|----------|------------|--------------------|------------------|-------------|----------|-----------------|----------|----------|--------------|
| DOL:     | 8     | DI       | FS: 3    | Spu    | nd Date: 22            |                          |              |            | Daily    | Footage    | 926                | .0 D             |             |          |                 |          |          | s: 20.5      |
| Torq:    | 6100  | Drag     | ₁: 4.5 F | Rot Wo | gt: 78.0 P/            | ″U Wgt: 82.5             | s sl         |            |          |            |                    |                  | Seas        | : 3.0    | / 0.0           | Bar:     | 759      | POB: 85      |
| Last C   | asing | g Size:  |          | 762.0  | Set 1                  |                          | -            |            | MD       |            | 51.0m              | TVD              | Shoe 7      |          |                 | EMW      | Leako    | •            |
| Cum Ro   | t Hr: | s On Ca  | sina:    | 16.5   |                        | s On Casing              |              | · · · ·    |          | imer:      | 6.5                |                  | Worst       | Wear:    |                 |          | emainir  | ng:          |
| Liner    | Size  |          |          |        | ↓<br>}et At:           | MD                       |              |            | П        | VD<br>T    |                    | ner Toj          | o At:       |          | MD              |          |          | TVI          |
| Mud Co   | ·     | NORŒ .   |          | Tvz    | e: <sub>SEAWATER</sub> |                          |              |            | _        |            | : <sub>PIT</sub> W | + 100            | 1 577.      | DV/:     |                 | VD: 0 /  | Gel:     |              |
| TATT.    |       |          |          | म      | 7 ()                   |                          | 9            | Solida     |          | 8 0        | il: 0.00           | *Wate            |             |          |                 | MBT      |          | 0 / 0<br>Ph: |
| Pm:      | API:  | 1        | HTHP: 0  | . 0    | API                    | : 0.0 HTHP:              | 0.0 `<br>Ca: |            | Bent     |            | 0.00<br>Solids     |                  | er:<br>0.00 | )   • 50 |                 | S/Bent   |          |              |
| 0        | .00   | FI/MI.   | 0.00 /   | 0.00   | aib.                   | л. ·                     | G.           |            | Deric    |            | 501105             | 6 11G/1          |             | /        | راه.            | 5/ Belle | •        |              |
| 29       | 1MT   | BARITI   | <u> </u> | 375    | 1KG SOD.               | A ASH                    | 28           | 1м         | T BENT   | CONITE A   | PI 425             | 1 <sub>K</sub> ( | G CMC I     | IV TECH  | I               |          |          |              |
|          |       |          |          |        |                        |                          |              |            | _        |            |                    |                  |             |          |                 |          |          |              |
| Drlg G   | as:   |          | Max Gas: |        | Conn Gas:              | Trip                     | Gas:         |            | Tr       | ip Cl:     | Re                 | marks:           |             |          |                 |          |          |              |
| Bit Nu   | mber  | IADC     | Size     | Manu   | ıfacturer              | Serial num               | ber          |            | Jets     | s (Quar    | ntity -            | Size)            |             | TFA      | MD              | In       | MD Out   | TVD Ou       |
| 4        |       | 1-1-7    | 215.9    |        | HUGHES                 | W97ZS                    |              | 2-1        | 1.1/2-   | 12.7/      | - /                | - /              | <u> </u>    | 447.     | 1 456           | .0 m     | 1382.0   | m 1380.0     |
|          |       |          |          |        |                        | +                        |              | -          | / -      | - / -      | - /                | - /              | _           | 0        |                 |          |          |              |
| T        | ype   | Met      | ers Ho   | urs    | WOB                    | RPM                      | 1            | Motor      | RPM      | I-Row      | O-Row              | $\mathbb{C}$     | Lœ          | В        | G               | Char     | ?Pull    | Cost/m       |
| MX       | C-1   | 92       | 5.0 1    | 5.0    | 0.0/7.0                | 60 / 150                 |              |            |          | 8          | 5                  | WT               | A7          | E        | 1/8             | ER       | TD       | к 78.28      |
|          |       |          |          |        | /                      | /                        |              |            |          |            |                    |                  |             |          |                 |          |          |              |
| Total    | Leng  | th of B  | HA: 245  | .36 m  | BHA Descr              | iption: 8.1              | L/2" :       | HUGHE      | S MXC-1  | 1 ROCK I   | BIT - 8            | .1/2" 1          | NB STAE     | B C/W F  | LOAT -          | 2.6M     | X 6.1    | /2" PONY     |
|          |       |          |          |        |                        | IN LINE STAR             |              |            |          |            |                    |                  |             |          |                 |          |          |              |
| WEIR     | HOUS  | TON JAF  | S - 14 X | 5" H   | IWDP                   |                          |              |            |          |            | Hrs On             | Jars:            | 23.5        | Hours    | Since           | Last     | Inspec   | tion: 23.5   |
| Bit Nu   |       | Line     |          |        | Stroke                 |                          | SPM          | Т          | Press.   | M3/Min     | Jet Vel            | . NP             | Av D        | C Av     | Bit kW          | ринг     | /SOTN    | Pump kW      |
| 4        |       | 52 / 1   |          | 2 30   | 4.8/304.8/             | / 304.8 86/              | 72/          |            | 197      |            | 117.99             |                  |             | 7.69     | 0.00            |          | .0       | 10.50        |
|          |       | /        | /        | 2 30   | / /                    | / / /                    | ' /          | 50         | 107      | 3.13       | 117.00             | 131.             | 20          | .,       | 0.00            |          |          | 10.30        |
| G        | 1/0   | 77       | 7        | .   .  | / /                    | /                        | Τ,           | NT / C. C. |          |            | E/H G              |                  |             | 77       | 1 a-            |          |          | DT C         |
| Survey   |       | Angle    | Azimut   |        | Direction              | TVD                      | 1            | N/S C      | ordina   |            | E/W C              |                  |             |          | cal Se          |          |          | DLS          |
| 1289.    |       | 4.16     | 168.61   |        | S11.39E                | 1286.8                   |              |            | 56.0     |            |                    | 9.5              |             |          | -56.08          |          |          | 0.17         |
| 1317     |       | 4.15     | 167.23   |        | S12.77E                | 1315.0                   | -            |            | 58.0     | 9 S        |                    | 9.1              | 4 W         |          | -58.09          | 1        |          | 0.11         |
| 1346     |       | 4.19     | 163.74   |        | S16.26E                | 1343.7                   | +            |            | 60.1     | 2 S        |                    | 8.6              | 1 W         |          | -60.12          | !        |          | 0.27         |
| 1362     | . 4   | 4.11     | 157.77   |        | S22.23E                | 1360.0                   |              |            | 61.2     | 3 S        |                    | 8.2              | 2 W         | <u> </u> | -61.23          |          |          | 0.81         |
| Hours    | From  | Act-Cat  | =        |        | Operat:                | ions Coveri              | ng 24        | Hour       | s Endi   | ng at M    | idnight            |                  |             |          | Tota            | l Hour   | s Repoi  | rted: 24.    |
| 3.00     | 0000  | 01 - 07  | CONT TO  | M/U    | & TIH 8.1/2            | " PILOT HOL              | E ASS        | SY TO      | 245.5M   | 1. SURF    | CE TEST            | MWD V            | 7/ 2100     | LPM,     | 57 BAR          | - OK.    |          |              |
| 1.00     | 0300  | 01 - 05  | TIH W/   | 5" DP  | F/ 245.5 -             | 443M. WASH               | DN V         | W/ 315     | 50 LPM,  | , 176 B    | R & TAG            | BTM @            | 456M.       |          |                 |          |          |              |
| 15.00    | 0400  | 01 - 02  | DRILL 8  | .1/2"  | PILOT HOLE             | F/ 456M -                | SECT:        | ION TI     | 0 @ 138  | 32M W/ 3   | 150 LPM            | 1, 176           | - 197       | BAR, 0   | - 7 T           | WOB,     | 50 - 1   | 50 RPM,      |
|          |       | 01 - 02  | 2300 -   | 6100   | N.M TQ. VAR            | Y PARAMS IN              | ATTI         | EMPT 1     | ro conti | TROL INC   | LINATIC            | N. PUN           | 1P 5 -      | 10М3 Н   | I-VIS S         | SWEEPS   | AS REQ   | Q'D.         |
| 1.50     | 1900  | 01 - 01  | PUMP 20  | м3 ні  | -VIS SWEEP             | & DISPLACE               | W/ 75        | 5M3 OE     | F SEAWA  | ATER @ 3   | 150 LPM            | 1, 200           | BAR. D      | ISPLACI  | E HOLE          | TO 1.    | 2SG DIS  | SPLACEMENT   |
|          |       | 01 - 01  | MUD @ 3  | 300 L  | PM, 275 BAR            | a. PUMP A TO             | TAL (        | OF 981     | 43. SLU  | JG PIPE    | W/ 4M3             | OF 1.6           | SG KIL      | L MUD.   |                 |          |          |              |
| 1.00     | 2030  | 01 - 05  | POOH W/  | 5" D   | P F/ TD @ 1            | .382M - 30"              | SHOE         | @ 451      | LM. NO   | EXCESS     | DRAG -             | HOLE S           | SLICK.      |          |                 |          |          |              |
| 0.50     | 2130  | 01 - 01  | M/U TOP  | DRIV   | E & CIRC 30            | " CONDUCTOR              | CLE          | AN W/      | 80M3 C   | OF SEAW    | TER @ 4            | 500 LI           | м, 295      | BAR.     |                 |          |          |              |
| 0.50     |       |          |          |        |                        | MUDLINE @                |              |            |          |            |                    |                  |             |          | F SEAW          | ATER @   | 4000 1   | LPM, 221 1   |
|          |       |          |          |        |                        | E @ 366M -               |              |            |          |            |                    |                  | · ·         |          |                 |          |          |              |
| 1.00     |       |          |          |        |                        | A. L/O MWD,              |              |            |          | BE RE-PF   | OGRAMME            | ID FOR           | ISONIC      | TOOL)    | . B/O 8         | £ L/O 8  | 8.1/2"   | ROCK BIT     |
|          |       | -        |          |        | , 3                    |                          |              |            |          |            |                    |                  |             | /        |                 |          |          |              |
|          |       | _        |          |        |                        |                          |              |            |          |            |                    |                  |             |          |                 |          |          |              |
|          |       | _        |          |        |                        |                          |              |            |          |            |                    |                  |             |          |                 |          |          |              |
|          |       | _        |          |        |                        |                          |              |            |          |            |                    |                  |             |          |                 |          |          |              |
| Safety   | :     | -        |          |        |                        |                          |              |            |          |            |                    |                  |             |          |                 |          |          |              |
|          |       | 277.     |          |        |                        |                          |              |            |          |            |                    |                  |             |          |                 |          |          |              |
|          |       |          |          |        |                        | RILL 8.1/2"              |              |            |          |            |                    |                  |             |          |                 |          |          |              |
| Remark   | s:    | rcrati(  | M/U      | & RII  | H W/ 17.1/2            | " HOLE OPEN              | ER AS        | SY. O      | PEN HO   | LE TO 1    | 7.1/2",            | POOH             | & R/U 7     | O RUN    | 13.3/8          | " CASI   | NG.      |              |
|          |       | DN - 2,  | SERVIC   | E - 23 | 3, DOLPHIN             | - 51, DOL                | PHIN         | SERVI      | CE - 9   | 1          |                    |                  |             |          | DA              | YS SIN   | ICE LAS  | T LTI - 5    |
| FINAL    | SURVI | EY PROJI | ECTED TO | SECT   | ION TD @ 13            | 82M - 1379.              | 8M TV        | 7D, 62     | 2.52M S  | OUTH, 7    | .68M WE            | ST.              |             |          |                 |          |          |              |
|          |       |          |          | _      |                        |                          |              | _          |          |            |                    |                  |             |          |                 |          |          |              |
| 06:00    | OPS:  | OPENIN   | G 8.1/2" | PILO   | r hole to 1            | 7.1/2" @ 61              | 5M.          |            |          |            |                    |                  |             |          |                 |          |          |              |
| Daily    | Mud ( | Cost: K  | 26,262   | Dail   | y Tangible             | Cost:                    |              | Dai        | ily Wel  | l Cost:    | KR2,911            | ,624             | Incide      | ents:    | NO IN           | CIDENI   | REPOR    | TED          |
|          |       | st: KR2  |          | Cum    | Tangible Co            | ost: KR442,              | 845          |            |          | Chat:      | KR50,50            |                  | Total       | Appr:    |                 |          |          |              |
|          |       | r: 40.0  |          |        | Water: 40.0            |                          | 494.0        | )          |          |            | Weight             |                  | ne Ne       | at Cem   | ent: 1          | 85 N     | Blende   | ed:          |
| Countr   |       |          | l        |        |                        | Rig: <sub>BYFORD I</sub> |              |            |          |            | one: 52            |                  |             | Drill    | ing Rep         | );<br>   | Mc /tiot | LINSHEAD     |
| Field:   | DT 0- | OUMAI    |          |        |                        | se: PL259                | лигп         | <u></u> 1  |          |            |                    |                  | 5506/3-     | 1        |                 |          |          | UB5908 -     |
|          | ьг5   | פפ       |          |        |                        | 6506/3-1                 |              | Δ          | FE No:   | KIMIE NIO  | 650631-0           |                  |             | Date:    | 24 77#          |          | 1        | : 1 Of :     |
| <u> </u> |       |          |          |        | 1 T T TAO.             | 2200/2-T                 |              | - 1        |          | ±44171140— |                    | ~ U T            |             |          | <u>∠+</u> -∪ UL | -700T    | - uge    | - OI -       |

| Measur | red D              | epth:               | 1382.       | 0 m        | TVD:                  | 1382.0                 | m           | PBTD           | ):       | 0.0           | Prop       | osed MD    | ): 3       | 625.0 t    | m Proj  | posed  | TVD:    | 3625.      | . 0 m  |
|--------|--------------------|---------------------|-------------|------------|-----------------------|------------------------|-------------|----------------|----------|---------------|------------|------------|------------|------------|---------|--------|---------|------------|--------|
| DOL:   | 9                  | D                   | FS: 4       |            | d Date: 22            |                        |             |                | Daily    | Footage       | e: 0       | .0 Da      | aily Ro    |            |         | Total  | Rot H   |            | -      |
| Torq:  | 1200               | 0 Drag              | g: 0.0 R    | ot Wgt     | e: <sub>93.0</sub> P. | /U Wgt: 93             | .0 S        | lack (         | Off Wgt  | 93.0          |            |            | Seas       | 3.0        | / 0.0   | Bar:   | 761     | POB:       | 85     |
| -      |                    | g Size:             | <del></del> | 762.0 r    | Set 7                 |                        |             | . 0m           |          |               | 51.0m      |            | Shoe T     |            |         | EMW    | Leako   |            |        |
| Cum Ro | ot Hr              | s On Ca             | ging:       | 35.0       | Cum Rot Hi            | rs On Casi:            | ng Sin      | ice Las        | st Cali  | iper:         | F 0        |            | Worst      | Wear:      |         |        | emaini  | ng:        |        |
| Liner  | Size               | :                   |             |            | et At:                | M                      |             |                |          | VD            |            | iner Top   | At:        |            | MD      |        |         |            | TVD    |
| Mud Co | ): <sub>14</sub> - | NORGE               | 7. C        | Type       | ⊇: SEAWATER           |                        |             |                | _        | le From       | : DTM      | Wt: 102    | : V7       | o PV:      |         | 7P: n  | O Gel:  |            | ,      |
|        |                    |                     |             |            | (mm) API              |                        |             | Solida         |          | % O:          | il:<br>0.0 | . Wate     | r:<br>0.00 | -          |         | MB'    |         | 0 /<br>Ph: | 0      |
| Dm:    |                    |                     |             |            |                       | : 0.0 HTHP<br>Cl:      | :0.0<br>Ca: |                | Bent     |               |            | s %HG/I    |            | /          |         | S/Bent | -:      |            |        |
| 0      | 0.00               | /                   | 0.00 /0     | 0.00       |                       |                        |             |                |          |               | 50114      |            |            |            | 0.21    |        |         |            |        |
| 21     | 1MT                | BENTO               | NITE API    | 5575       | 1KG CMC               | HV TECH                | 1225        | 1 <sub>K</sub> | G SODA   | ASH           |            |            |            |            |         |        |         |            |        |
|        |                    | Г                   |             |            | 1                     |                        |             |                |          |               |            |            |            |            |         |        |         |            |        |
| Drlg ( | Gas:               |                     | Max Gas:    | T          | Conn Gas:             | Trip                   | Gas:        |                | Tr       | ip Cl:        | R          | emarks:    |            | 1          |         |        |         |            |        |
| Bit Nu | umber              | IADC                | Size        | Manu       | facturer              | Serial n               | ımber       |                |          | (Quar         |            | Size)      | ,          | TFA        | MD      | In     | MD Out  | TVI        | Out    |
| 5      | 5                  |                     | 444.5       |            | IPE                   | 17520                  | 12          | 1-2            | 2.2/3-   | 9.5/6         | -14.3/     | - /        | <u>-</u>   | 1563.      | 2 1382  | 2.0 m  |         |            |        |
|        |                    |                     | <del></del> | <u> </u>   |                       | +                      | _           | -              | / -      | . / .         | - /        | - /        | _          | 0          |         |        |         |            |        |
| Т      | ype                | Met                 | ers Ho      | urs        | WOB                   | RPM                    |             | Motor          | RPM      | I-Row         | 0-Row      | DC         | Loc        | В          | G       | Char   | ?Pull   | Cost       | c/m    |
| 17.1/  | /2" н              | /0 0                | .0 0        | .0         | 3.0/5.0               | 120 / 1                | 10          |                |          |               |            |            |            |            |         |        |         | 0          | .00    |
|        |                    |                     |             |            | /                     | /                      |             |                |          |               |            |            |            |            |         |        |         |            |        |
| Total  | Leng               | th of B             | HA: 233.    | 50 m       | BHA Descr             | iption: B              | ULLNOS      | SE - 1         | 2.1/4"   | HOLE O        | PENER -    | - 17.1/2   | 2" HOLE    | OPENE      | R - BI' | T SUB  | C/W FL  | OAT -      |        |
| ANDE   | RDRIF              | T - 3 2             | ر<br>9.1/2  | DC - X     | K/OVER - 3            | X 8" DC -              | X/OVE       | IR - 3         | X 5" I   | HWDP - (      | 5.1/2"     | WEIR HO    | OUSTON     | JARS -     | 14 X    | 5" HWI | OP      |            |        |
|        |                    |                     |             |            |                       |                        |             |                |          |               | Hrs O      | n Jars:    | 42.0       | Hours      | Since   | Last   | Inspec  | tion:      | 42.0   |
| Bit Nu | ım                 | Line                | er          |            | Stroke                |                        | SPM         | I              | Press.   | M3/Min        | Jet Ve     | 1 DP 2     | Av Do      | C Av I     | Bit kW  | ВНН    | P/SQIN  | Pump       | kW     |
| 5      | 1                  | 52 / 1              | 52 / 152    | 2 304      | 1.8/304.8             | / 304.8 96             | 5/ 94/      | 72             | 151      |               | 45.05      |            |            | 3.53       | 0.00    |        | 0.0     | 10.        |        |
|        |                    |                     | /           |            | /                     | /                      | / /         | '              |          |               |            |            |            |            |         |        |         |            |        |
| Survey | z MD               | Angle               | Azimuth     | ı D        | irection              | TVD                    | <u> </u>    | N/S C          | ordina ( | ates          | E/W (      | Coordin    | ates       | Verti      | cal Se  | ction  |         | DLS        |        |
|        |                    | 5                   |             |            |                       |                        |             |                |          |               |            |            |            |            |         |        |         |            |        |
|        |                    |                     |             |            |                       |                        |             |                |          |               |            |            |            |            |         |        |         |            |        |
|        |                    |                     |             |            |                       |                        |             |                |          |               |            |            |            |            |         |        |         |            |        |
|        |                    |                     |             |            |                       |                        | +           |                |          |               |            |            |            |            |         |        |         |            |        |
|        | L                  | Ì                   | Ī           |            |                       |                        |             |                |          |               |            |            |            |            |         |        |         |            |        |
|        |                    | Act-Ca              |             |            |                       | ions Cover             |             |                |          |               | idnight    | t          |            |            | Tota]   | l Hour | s Repo  | rted:      | 24.0   |
| 2.00   | 0000               | 01 - 07             | 7 M/U & T   | IH W/      | 12.1/4" X             | 17.1/2" H              | OLE OP      | ENER A         | ASSY TO  | 233M.         |            |            |            |            |         |        |         |            |        |
| 1.00   | 0200               | 01 - 05             | TIH W/!     | 5" DP      | F/ 233 - N            | AUDLINE 36             | 5M. ST      | AB IN          | ro well  | HEAD &        | TEST A     | NDERDRI    | FT T00     | Ĺ <b>.</b> |         |        |         |            |        |
| 0.50   | 0300               | 01 - 05             | TIH & W     | ASH DO     | WAN W/ 2000           | ) LPM, 47 1            | BAR TO      | TAG 8          | 3.1/2"   | PILOT H       | IOLE AT    | 456M.      |            |            |         |        |         |            |        |
| 16.00  | 0330               | 01 - 03             | OPEN 8.3    | 1/2" P     | PILOT HOLE            | TO 17.1/2              | ' F/ 4      | 56 – 1         | 1379M (  | 17.1/2        | CUTTE      | R DEPTH    | I) W/ 3    | 200 – 4    | 1200 LE | PM, 66 | - 150   | BAR,       |        |
|        |                    | 01 - 03             | 120 - 1     | 50 RPM     | 1, 5000 - 1           | L4300 N.M              | rorq,       | 1 - 8          | MT WOE   | B. PUMP       | 10M3 H     | II-VIS S   | WEEPS      | EVERY S    | STAND 8 | TAKE   | ANDER   | DRIFT      | SURVEY |
|        |                    | 01 - 03             | EVERY O     | THER S     | TAND TO CO            | NFIRM HOLD             | E INCL      | INATIO         | ON - OK  | C. ERRAI      | CIC TOR    | QUE & C    | CCASIO     | NAL STE    | RING ST | TALLS. |         |            |        |
| 2.00   | 1930               | 01 - 01             | PUMP 201    | M3 HI-     | VIS SWEEP             | & DISPLAC              | E W/ 3      | 05м3 С         | OF SEAW  | VATER @       | 4500 L     | PM, 176    | BAR.       | WORK ST    | TRING 8 | cont   | TO PUI  | MP SEA     | WATER  |
|        |                    | 01 - 01             | WHILE C     | JT BAC     | K 1.6SG KI            | LL MUD TO              | 1.2SG       | DISPI          | LACEMEN  | T MUD.        |            |            |            |            |         |        |         |            |        |
| 0.50   | 2130               | 01 - 01             | PUMP REI    | MIMIAN     | IG 25M3 HI-           | -VIS & DIS             | PLACE       | HOLE 7         | ro 1.2s  | G DISPI       | ACEMEN     | T MUD W    | / 4500     | LPM,       | L90 BAF | R. PUM | IP 157M | 3 IN T     | OTAL.  |
|        | <u> </u>           | 01 - 01             | P/U, S/0    | <br>O & RO | T WT = 93             | MT. DISPL              | ACE DR      |                | TRING W  | 7/ 14M3       | SEAWAT     | ER.        |            |            |         | _      |         |            |        |
| 2.00   | 2200               | 01 - 05             | POOH W/     | 5" DP      | F/ 1382M              | - MIDNIGH              | r Dept      | н 635м         | и. 9 -   | 13 MT I       | RAG F/     | 1320 -     | 780M.      | HOLE S     | SLICK E | 780    | - 6351  | м.         |        |
|        |                    | -                   |             | _          |                       |                        | _           | _              | _        | _             | _          | _          | _          | _          | _       |        | _       | _          |        |
|        |                    | -                   |             |            |                       |                        |             |                |          |               |            |            |            |            |         |        |         |            |        |
|        |                    | _                   |             |            |                       |                        |             |                |          |               |            |            |            |            |         |        |         |            |        |
|        |                    | _                   |             |            |                       |                        |             |                |          |               |            |            |            |            |         |        |         |            |        |
| Safety | 7: <sub>MTT</sub>  |                     | III. & WFE  | KI'A 6     | AFETY MEET            | ING HEID               |             |                |          |               |            |            |            |            |         |        |         |            |        |
|        |                    |                     |             |            | OPENER AS             |                        | ס דיודים ס  | 3 1/2"         | pπ∴πq    | י אַרו די ייי | ∩ 1270°    | יזיידםים N | DUUT       | TO 625     | M       |        |         |            |        |
| Projec | ted (              | peration            | ons:        | 1 & D /    | BACK HOLE             |                        | V D/r       | יום גן ד       | INI 13 3 | /8 II (7) C   |            |            | . 1 0011   | 10 000     | - 1 •   |        |         |            |        |
| Remark |                    |                     | FOOR        | 1 & K/I    | BACK HOLLE            | OPENER ASS             | )1. K/(     | 0 & RU         | II 13.3  | /0 CAS        | 1103.      |            |            |            |         |        |         |            |        |
| POB: C | HEVR(              | M - 2,              | SERVICE     | 23         | , DOLPHIN             | - 51, DC               | LPHIN       | SERVI          | CE - 9   |               |            |            |            |            | DA      | YS SI  | NCE LAS | T LTI      | - 60   |
|        |                    |                     |             |            |                       |                        |             |                |          |               |            |            |            |            |         |        |         |            |        |
|        |                    |                     |             |            |                       |                        |             |                |          |               |            |            |            |            |         |        |         |            |        |
|        |                    |                     | RUN 13.3/   | 1          |                       |                        |             | -              |          |               |            |            | 1          |            |         |        |         |            |        |
|        |                    |                     | R 26 , 262  |            | 7 Tangible            |                        |             |                |          | .l Cost:      | KR2,66     | 5,050      | Incide     |            |         |        | repof   | RTED       |        |
|        |                    | st: <sub>KR</sub> 3 |             |            | Tangible C            |                        | 2,845       | Cun            | m Well   |               |            | 69,755     | Total      | Appr:      | KR134,  | 000,0  | 00      |            |        |
|        |                    | r: 95.0             | Pota        | ble Wa     | ater: 75.0            | Fuel:                  | 475.0       | 0              |          | Bulk          | Weight     | t: 166.0   | ) Ne       | at Ceme    | ent: 1  | 78.0   | Blend   |            |        |
| Countr | y: N               | ORWAY               |             |            |                       | Rig: <sub>BYFORD</sub> | DOLPI       | IIN            |          | Rig Ph        | none: 52   | 2 88 03    | 35         | Drill      | ing Rep | ELK    | INS/HOL | LINSHE     | EAD    |
| Field: | PL25               | 59                  |             |            |                       | se: <sub>PL259</sub>   |             |                |          |               | We         | ll No:     | 5506/3-    | 1          |         |        | ell ID: |            |        |
|        |                    |                     |             |            |                       | 6506/3-1               |             | A              | FE No:   | KWENO-        | 650631     | -001       |            | Date:      | 25-JUL  | -2001  | Page    | : 1 (      | of 1   |

| Measured 1             | Depth:   | 1382.      | 0 m       | TVD:      | 1379.8 m                        |         | PBTD         | ):       | 0.0        | Propo       | sed MI     | ):         | 3625.0   | m Pro                                   | posed       | TVD:          | 3625.0 m   |
|------------------------|----------|------------|-----------|-----------|---------------------------------|---------|--------------|----------|------------|-------------|------------|------------|----------|-----------------------------------------|-------------|---------------|------------|
| DOL: 10                | ) I      | DFS: 5     |           | Date: 22  | -JUL-2001                       |         |              | Daily    | Footage    | e: 0.       | n D        |            | ot Hrs:  |                                         | Total       | . Rot Hr      | as: 36.5   |
| Torq: 0                | Dra      | g: oo F    |           |           | /U Wgt: 0.0                     | Sl      | .ack (       | off Wgt  | .: 0.0     |             |            | Seas       | : 3.0    | / 0 0                                   |             |               | POB: 85    |
| Last Casir             | _        |            |           | Set I     |                                 |         | ^            | MD       |            |             | TVD        | 1          | Test:    |                                         | EMW         | Leako         |            |
| Cum Rot Hi             |          | asina:     | 762.0 mm  |           | rs On Casing                    |         | 0m<br>ce Las |          | imer:      | 51.0m       |            |            | Wear:    | 0                                       | - 1         | emainir       |            |
| Liner Size             |          |            | 35.0      | At:       | - D GI GGDIII                   | 5 02110 |              |          | 3          | 5.0<br>T.ir | ner To     |            | wear     |                                         | 0 1         | CIIIGIIIII    |            |
|                        |          |            |           |           | MD                              |         |              |          | VD         | -           |            |            |          | MD                                      |             |               | TVD        |
| Mud Co: <sub>M-1</sub> | I NORŒ   | A.S.       |           | SEAWATER  | 2                               | - 1 -   | ~ 7.1        | !        | le From    | : PIT W     | t: 103     |            |          |                                         |             | 0 Gel:        | 0 / 0      |
| WL<br>API:             |          | HTHP: 0    |           | mm) API   | : 0.0 HTHP:                     | 0.0     | Solid        | s:       | 80         | il:<br>0.00 | Wate       | er:<br>0.0 | 0 % Sai  | nd:                                     | MB'         | Т:            | Ph:        |
| Pm: 0.00               | Pf/Mf    | : 0.00 /0  | 0.00 Cark | ):<br>    | cl:                             | Ca:     |              | Bent     | ;;         | Solids      | %HG/I      | LG:        | /        | 윎                                       | OS/Bent     | t:            | /          |
|                        |          |            |           |           |                                 |         |              |          |            |             |            |            |          |                                         |             |               |            |
|                        |          |            |           |           |                                 |         |              |          |            |             |            |            |          |                                         |             |               |            |
| Drlg Gas:              |          | Max Gas:   | C         | onn Gas:  | Trip                            | Gas:    |              | Tr       | ip Cl:     | Re          | marks      | :          |          |                                         |             |               |            |
| Bit Number             | r IADC   | Size       | Manufa    | cturer    | Serial num                      | nber    |              | Jets     | s (Ouar    | ntity -     | Size)      |            | TFA      | М                                       | ) In        | MD Out        | TVD Out    |
| 5                      |          | 444.5      |           | PE        | 1752012                         |         | 1 – 2        |          | 9.5/6      |             | - /        | / _        | 1563.    |                                         | -           | 1382.0        |            |
|                        |          |            |           |           |                                 |         | _            | / -      | . /        | - /         | - <i>,</i> | / _        | 0        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |             |               |            |
|                        | Mo       | ters Ho    | urs       | WOB       | RPM                             | ,       | Motor        | DDM      | I-Row      | 0-Row       | DC         | Loc        | В        | G                                       | Char        | ?Pull         | Cost/m     |
| Type                   |          |            |           |           | +                               |         | MOCOL        | KEM      |            |             |            |            |          |                                         |             |               |            |
| 17.1/2" F              | 1/0      | 0.0 10     | 5.0       | 0.0/0.0   | /                               |         |              |          | 8          | 8           | WT         | A7         | 4        | 3/4                                     | ER          | TD            | 0.00       |
|                        |          |            | -         | /         | /                               |         |              |          |            |             |            |            |          |                                         |             |               |            |
| Total Leng             | gth of 1 | BHA: 233.  | 50 m      | HA DESCI  | iption: BU                      | LLNOS   | E - 1        | 2.1/4"   | HOLE O     | PENER -     | 17.1/      | 2" HOLI    | E OPENE  | R – I                                   | BIT SUE     | B C/W F       | LOAT -     |
| ANDERDRI               | FT - 3   | X 9.1/2"   | DC - X/0  | OVER - 3  | X 8" DC - 3                     | X/OVEI  | R - 3        | X 5" I   | HWDP -     |             |            |            |          |                                         |             |               |            |
|                        |          |            |           |           | <del></del>                     |         | -            |          |            | Hrs On      | Jars:      | 42.0       | Hours    | Since                                   | Last        | Inspect       | tion: 42.0 |
| Bit Num                | Lin      | er         | St        | roke      |                                 | SPM     | Ι            | Press.   | M3/Min     | Jet Vel     | DP .       | Av D       | C Av     | Bit kW                                  | BHH         | P/SQIN        | Pump kW    |
| 5 1                    | L52 /    | 152 / 15:  | 304.8     | 8/304.8   | /304.8                          | / /     |              | 0        | 0.00       | 0.00        | 0.0        | 00 (       | 0.00     | 0.00                                    |             | 0.0           | 0.00       |
|                        | /        | /          |           | / ,       | / /                             | / /     |              |          |            |             |            |            |          |                                         |             |               |            |
| Survey MD              | Angle    | Azimuth    | n Dir     | ection    | TVD                             | 1       | N/S C        | ∞rdina   | ates       | E/W C       | oordin     | ates       | Verti    | .cal Se                                 | ection      |               | DLS        |
|                        |          |            |           |           |                                 |         | ,            |          |            | ,           |            |            |          |                                         |             |               |            |
|                        |          |            |           |           |                                 |         |              |          |            |             |            |            |          |                                         |             |               |            |
|                        |          |            |           |           |                                 |         |              |          |            |             |            |            |          |                                         |             |               |            |
|                        |          |            |           |           |                                 |         |              |          |            |             |            |            |          |                                         |             |               |            |
|                        | 1        | 1          |           |           |                                 |         |              |          |            |             |            |            | <u> </u> |                                         |             |               |            |
| Hours Fra              | n Act-Ca | at         |           | Operat    | ions Coveri                     | ng 24   | Hour         | s Endi   | ng at M    | Iidnight    |            |            |          | Tota                                    | 1 Hour      | rs Repor      | rted: 24.0 |
| 0.50 0000              | 01 - 0   | 5 CONT PO  | OH W/ 5"  | DP F/ 6   | 635M - MUDLI                    | INE @   | 366M         | W/OUT    | PROBLE     | 4.          |            |            |          |                                         |             |               |            |
| 1.50 0030              | 01 - 0   | 5 JET WEL  | LHEAD W/  | 30M3 SI   | EAWATER @ 45                    | 500 LE  | PM, 12       | 24 BAR.  | POOH 8     | k R/BACK    | BHA.       | B/O &      | L/O 17   | .1/2"                                   | HOLE C      | PENER.        |            |
| 2.00 020               | 01 - 0   | 8 R/U TO   | RUN 13.3  | 3/8", 72‡ | ♯, L-80, MOI                    | BUTT    | CASI         | ING.     |            |             |            |            |          |                                         |             |               |            |
| 0.50 040               | 0 01 - 0 | 8 HOLD SA  | FETY MTG  | . P/U 13  | 3.3/8" SHOE                     | JNT 8   | ins          | rall 2   | X BOW S    | SPRING (    | ENT. I     | PUMP TH    | IRU TO : | TEST F                                  | LOAT -      | OK. P         | /U 13.3/8" |
|                        | 01 - 0   | 8 FLOAT C  | OLLAR &   | BAKERLO   | OK TO SHOE J                    | NT. I   | INSTAI       | LL 1 X   | BOW SPE    | RING CEN    | IT & GU    | JIDEROF    | PES. PUI | MP THR                                  | U TO I      | EST FLO       | DATS - OK. |
| 8.00 0430              | 0 01 - 0 | 8 P/II & R | IN 13.3/  | 8". 72#   | , L-80, MOD                     | влтт    | CASI         | NG AS E  | PER TALI   | Y. INST     | ALL 1      | X BOW      | SPRING   | CENT                                    | ON EAC      | H OF FI       | IRST 9 JNT |
|                        |          |            |           |           |                                 |         |              |          |            |             |            |            |          |                                         |             |               |            |
| 0. 508100              |          |            |           |           | ETELY FILL                      |         |              |          |            |             |            |            |          | D 6 TN                                  | T TOTAL     | 13 MPD 0. 0.7 | NAT        |
| 2.5011123              |          |            |           |           | 7M. CONT TO                     |         |              |          |            |             |            |            |          |                                         |             |               | AME.       |
|                        |          |            |           |           | KLED IN TWO                     |         |              |          |            |             |            |            |          |                                         |             |               |            |
| 9.00T 150              | +        |            |           |           | k L/O 13.3/8                    |         |              |          |            |             |            |            |          |                                         |             |               | INTS &     |
|                        | 01 - 0   | 8 TAKE FU  | LL STRIN  | IG WI. CO | ONT POOH & I                    | L/O OT  | Л 13.        | .3/8" 0  | CSG F/73   | 34 - 270    | M. REJ     | JECT BU    | JCKLED ( | JNIS #                                  | 53 TO       | #62.          |            |
|                        | 01 - 0   | 8 JNTS #5  | 7 & #62   | CRIMPED.  | . JUMP ROV V                    | VHEN S  | SHOE (       | CLEAR C  | F WELL     | HEAD & C    | BSERVI     | FORWA      | ARD BULI | LSEYS                                   | - 1.25      | DEG.          |            |
|                        | 01 - 0   | 8 MOVE RI  | G OFF WE  | LL CENTE  | RE ONCE SHOE                    | E CLEA  | R OF         | WELLHE   | EAD.       |             |            |            |          |                                         |             |               |            |
|                        | -        |            |           |           |                                 |         |              |          |            |             |            |            |          |                                         |             |               |            |
|                        | _        |            |           |           |                                 |         |              |          |            |             |            |            |          |                                         |             |               |            |
| Safety: TF             | BT PRIOF | R TO COMMI | INCING C  | ASING PU  | LLING OPERA                     | TIONS   |              |          |            |             |            |            |          |                                         |             |               |            |
|                        |          |            |           |           | JET W/HEAD.                     |         |              | 1 13 2/  | 8" C7CT    | NG CVC      | TNG DI     | ריב. דאר   | a W/נוני | 7D CC                                   | VIMI∓NT∕'E' | DW⊓ ™         | I/ SIMF    |
|                        |          |            |           |           | 3/8" CASING                     |         |              |          |            |             |            |            |          |                                         |             | I WII W       | , orth.    |
| Remarks:               |          | CON'.      | . ruuh &  | ⊔/∪ 13.   | J/O" CASING                     | . к/В.  | ACK S        | noe TR   | ALR. M/    | ∪ & TIH     | w/ 17      | . 1/ 4"    | MTREK (I | KTL V                                   | .160        |               |            |
| POB: CHEVE             | RON - 2  | SERVICE    | 23,       | DOLPHIN   | - 51, DOL                       | PHIN    | SERVI        | CE - 9   |            |             |            |            |          | Di                                      | AYS SI      | NCE LAS       | T LTI - 61 |
|                        |          |            |           |           |                                 |         |              |          |            |             |            |            |          |                                         |             |               |            |
|                        |          |            |           |           |                                 |         |              |          |            |             |            |            |          |                                         |             |               |            |
| 06:00 OPS:             | M/U &    | RIH W/ 1   | 7.1/2" W  | IPER TRI  | P ASSY TO 4                     | OM.     |              |          |            |             |            |            |          |                                         |             |               |            |
| Daily Mud              | Cost: H  | TR 26, 262 | _         | Tangible  |                                 |         | Dai          | ily Wel  | l Cost     | KR2,389     | , 451      | Incid      | ents:    | NO I                                    | NCIDEN      | T REPOR       | TED        |
| Cum Mud Co             | st: KR   | 352,009    | Cum Tai   | ngible C  | ost: KR442                      | ,845    |              | n Well   | Chat:      | KR55,55     |            | Total      | Appr:    | KR134                                   | ,000.0      | 000           |            |
| Drill Wate             |          |            |           | er: 250.  |                                 | 465.0   | <del></del>  |          |            | Weight      |            | n Ne       | eat Cem  | ent: ,                                  | )52 N       | Blende        | ed:        |
| Country:               |          |            |           | 1         | o  <br>Rig: <sub>BYFORD</sub> : |         |              |          |            | none: 52    |            |            | Drill    | ing Re                                  | p:          | TMC /TTOT     | LINSHEAD   |
| Field: PL2             | NEC YMAI |            |           |           | se: PL259                       | -VIEU   |              |          | 1          |             |            | 5506/3-    | _1       |                                         |             |               | UB5908 -0  |
| PL2                    | 159      |            |           |           |                                 |         | 7.           | EE NO.   | TAT-TITE-C |             |            |            |          | 06 -                                    |             |               |            |
| L                      |          |            |           | PLT INO   | 6506/3-1                        |         | A            | - T TAO. | VMFINO-    | 650631-0    | νUΤ        |            | Date:    | ∠o-JŪĪ                                  | J-2001      | rage          | : 1 Of 1   |

| Measured               | De             | pth:      | 1382          | 0 m    | TVD:                       | 1379                                             | 9.8 m      |            | PBTI    | D:      | 0.0               | Pro        | posed M  | D: :        | 3625.0   | m Pro   | posed   | TVD:    | 3625       | .0 m   |
|------------------------|----------------|-----------|---------------|--------|----------------------------|--------------------------------------------------|------------|------------|---------|---------|-------------------|------------|----------|-------------|----------|---------|---------|---------|------------|--------|
| DOL: 1                 | 11             | DE        | rs: 6         | _      | nd Date: 22                |                                                  |            |            |         | Daily   | Footage           | e: (       | 0.0      | aily R      |          |         | Total   | Rot Hr  |            | -      |
| Torq:                  | 0              | Drag      | · 0.0         | Rot Wo | gt: 0.0 P                  | /U Wgt:                                          | 0.0        | Sl         | .ack    | Off Wgt | ;: <sub>0.0</sub> |            | d: 4     | Seas        | : 2.0    | / 0.0   | Bar:    | 766     | POB:       | 88     |
| Last Casi              | ing            |           |               | 762.0  | Set I                      |                                                  |            | 451.       | Ωm      | MD      | 4                 | 51.0m      |          | Shoe '      |          |         | EMW     | Leako   | ff?        |        |
| Cum Rot H              | Hrs            | On Cas    | sing:         | 41.0   | Cum Rot Hr                 | s On C                                           |            |            | ····    |         | imer:             | 1.0        | 1        | n Worst     | Wear:    |         |         | emainir | ng:        |        |
| Liner Siz              | ze:            |           |               |        | !<br>Get At:               |                                                  | MD         |            |         | т       | VD                |            | iner To  | p At:       |          | MD      |         |         |            | TVD    |
| Mud Co: <sub>M</sub> - | T 1            | VIODOTE I | ۸             | Tyr    | œ: SEAWATER                |                                                  | מויז       |            |         | _       | le Fram           | : DTT      | Wt.: 103 | 1 FV:       | o PV:    | -       | YP: n   | O Gel:  |            | ,      |
| WT.                    |                |           |               | F      | 7                          |                                                  |            |            | Solid   |         | % O               | il:<br>0.0 | Wat      | er:<br>0.0  | % Sa     |         | MB'     |         | 0 ,<br>Ph: | / 0    |
| Dm:                    |                |           | HTHP: 0       | .0     | API                        | :0.0 H                                           |            | .0 <br>.a: |         | Bent    |                   |            | ds %HG/I |             | 0        |         | S/Bent  | ::      |            |        |
| 0.00                   | )              |           | 0.00 /        | 0.00   |                            | <u></u>                                          |            |            |         | 2011    |                   | 0011       | 3107     |             | /        |         | D, 2011 |         |            |        |
|                        |                |           |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
|                        |                | 1.        |               |        |                            | 1_                                               |            |            |         |         | ' 01.             | 1.         | n 1      |             |          |         |         |         |            |        |
| Drlg Gas               | :              | ,         | Max Gas:      |        | Conn Gas:                  | ]                                                | Trip G     | as:        |         | Tr      | ip Cl:            | -          | Remarks  | •           |          | _       |         |         |            |        |
| Bit Numbe              | er             | IADC      | Size          | Manu   | ıfacturer                  | Seria                                            | l numb     | per        |         |         | s (Quar           | ntity      | - Size)  | ,           | TFA      | MD      | In      | MD Out  | TV         | D Out  |
| 6                      |                |           | 444.5         |        | IPE                        |                                                  |            |            | 1-2     | 22.2/3- | -14.3/            | /          | <u> </u> | <u>/ - </u> | 869.     | 0 138   | 2.0 m   | 1382.0  | m 13       | 80.0 m |
|                        |                |           | <del></del>   |        |                            | <del>                                     </del> |            | <u> </u>   | -       | / -     | - /<br>T          | - /        | - /      | / -<br>     | 0        |         |         | 1       |            |        |
| Type                   | <u> </u>       | Met       | ers H         | ours   | WOB                        | RE                                               | PM         | ľ          | Motor   | RPM     | I-Row             | 0-Ro       | w DC     | Loc         | В        | G       | Char    | ?Pull   | Cos        | t/m    |
| 17.1/2"                | H/             | 0 0.      | . 0           | 0.0    | 0.0/5.0                    | 150 ,                                            | /          |            |         |         | 1                 | 1          | WT       | A7          | E        | IN      | NO      | TD      | (          | 0.00   |
|                        |                |           |               |        | /                          | ,                                                | /          |            |         |         |                   |            |          |             |          |         |         |         |            |        |
| Total Ler              | ngt            | h of BI   | HA: 234       | .36 m  | BHA Descr                  | iption:                                          | BULI       | NOSI       | E – E   | BIT SUB | - PIN             | X PIN      | SUB - X  | /OVER       | - 17.1/  | 2" HOL  | E OPEN  | IER -   | BIT S      | JB     |
| (C/W FL                | CAO            | 7) – AN   | DERDRIF"      | г – 3  | X 9.1/2" D                 | C - X/O                                          | VER -      | 3 X        | 8" [    | c - x/  | OVER -            | 3 X 5"     | HWDP -   | 6.1/2       | " WEIR   | HOUSTO  | N JARS  | 3 - 14  | X 5"       |        |
| HWDP                   |                |           |               |        |                            |                                                  |            |            |         |         |                   | Hrs (      | On Jars  | 48.0        | Hours    | Since   | Last    | Inspec  | tion:      | 48.0   |
| Bit Num                |                | Line      | r             |        | Stroke                     |                                                  |            | SPM        |         | Press.  | M3/Min            | Jet V      | el DP    | Av D        | C Av     | Bit kW  | BHHI    | P/SQIN  | Pump       | kW     |
| 6                      | 15             | 2 / 1     | 52 / 15       | 2 30   | 4.8/304.8                  | / 304.8                                          | 100/1      | 100/       |         | 152     | 3.22              | 61.9       | 4 22.    | 62 2        | 9.44     | 0.00    | (       | 0.0     | 8.         | 10     |
|                        |                | /         | /             |        | /                          | /                                                | /          |            |         |         |                   |            |          |             |          |         |         |         |            |        |
| Survey M               | D i            | Angle     | Azimut        | h I    | Direction                  | Т                                                | VD         | ı          | 1/S C   | Coordin | ates              | E/W        | Coordin  | nates       | Verti    | .cal Se | ction   |         | DLS        |        |
|                        |                |           |               |        |                            |                                                  |            |            | -,      |         |                   |            |          |             |          |         |         |         |            |        |
|                        | t              |           |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
|                        |                |           |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
|                        | +              |           |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
|                        | 4              |           |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
| Hours Fro              | <del>-  </del> |           |               |        | -                          |                                                  | -          |            |         |         | ng at M           |            |          |             |          |         |         | s Repoi | rted:      | 24.0   |
| 2.50 <sub>T</sub> 000  | 00             | 01 – 08   | CONT PO       | . 4OO  | L/O OUT 13.                | .3/8" C                                          | SG F/      | 270M       | 1 – R   | IG FLO  | OR. M/U           | SWEDG      | E & 5" 1 | DP PUP      | TO SHO   | ETRACK  | & R/B   | ACK.    |            |        |
|                        |                | 01 - 08   | SOME OF       | IPPIN  | G DAMAGE TO                | CEMEN                                            | T ON N     | OSE        | OF S    | HOE; 2  | CENTRA            | ISERS      | MISSIN   | G ON SH     | IOEJO IN | Т       |         |         |            |        |
| 1.50T 023              | 30             | 01 - 08   | CLEAR 1       | 3.3/8  | " CASING HA                | NDLING                                           | EQUIF      | MENT       | F/:     | DRILL I | FLOOR &           | R/U T      | O RUN W  | IPER TF     | RIP ASS  | Υ.      |         |         |            |        |
| 5.50T 040              | 00             | 01 - 08   | M/U 17.       | 1/2"   | WIPER TRIP                 | ASSY.                                            | STRAP      | WELD       | CON     | NECTION | NS BELO           | 17.1       | /2" HOL  | E OPENE     | R.       |         |         |         |            |        |
| Т                      |                | 01 - 08   | TIH TO        | 364.5  | M & WASH WE                | LLHEAD                                           | - PUM      | 1P HI      | VIS     | PILL; ( | CONT TH           | I TO 5     | 35M      |             |          |         |         |         |            |        |
| 6.50T 093              | 30             | 01 - 08   | HOLE TO       | OK WE  | IGHT AT 535                | M; WAS                                           | H & RE     | AM F       | 7/ 53   | 5 TO 83 | 38M W/ 3          | .50 RP     | м, 3234  | LPM, 1      | .52 BAR  | & SWE   | EP HOL  | E W/ H  | I-VIS      | PILL   |
| Т                      |                | 01 - 08   | CONT TO       | WASH   | & REAM F/                  | 838 TO                                           | 1382M      | ı (TI      | 17      | 1/2" H  | OLE @ 13          | 379M)      |          |             |          |         |         |         |            |        |
| 2.50T160               | 00             | 01 - 08   | CIRC 50       | м3 ні  | -VIS PILL 8                | DISPL                                            | ACE W/     | SEA        | WATE    | R; DISI | PLACE H           | LE TO      | 1.4 SG   | KCL M       | ID       |         |         |         |            |        |
| 3.50T183               | 30             | 01 - 08   | POOH F/       | 1382   | M TO SURFAC                | E - NO                                           | HOLE       | PROE       | BLEMS   | L/D I   | HOLE OP           | NER        |          |             |          |         |         |         |            |        |
| 2.00T 220              | 00             | 01 - 08   | R/U TO        | RUN 1  | 3 3/8" CASI                | NG;                                              |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
|                        |                | _         |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
|                        |                | _         |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
|                        | $\neg$         |           |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
|                        | $\dashv$       |           |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
|                        |                | _         |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
| Safety: _              | שמח            |           | TO DIMI       | TN7 1  | 3 3/8" CASI                | NC                                               |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
|                        |                |           |               |        |                            |                                                  | TEXT C = - | T37~       | TID = - | W / 1 - | 1/0"              | 0 50 5     | 120055   | 20011: -    | /11      | OTBT ~~ | ,       |         |            |        |
| Projected              | l Or           | eratio    | ла L/D<br>ns: | 13 3,  | /8" CSG; MA<br>MENT 13 3/8 | NE CONT                                          | 71 1 TON   | TING ,     | 1 ZZ    | W/ 1/   | 1/2" H/           | 0 10 1     | L30∠Mi b | roumi R     | / U 10 F | CIN CSC | ī       |         |            |        |
| Remarks:               | 1              |           | RUN           | & CEI  | MEN'I' 13 3/8              | " CASIN                                          | NG; PR.    | EPAR.      | E TO    | RUN BC  | DP & RIS          | ER         |          |             |          |         |         |         |            |        |
| POB: CHEV              | /ROI           | 1 - 3,    | SERVIC        | E - 22 | 2, DOLPHIN                 | - 55,                                            | DOLP       | HIN :      | SERV    | ICE - 8 | 3                 |            |          |             |          | DA      | YS SII  | NCE LAS | T LTI      | - 62   |
|                        |                |           |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
|                        |                |           |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
| 06:00 OPS              | S: (           | CONT T    | IH W/ 13      | 3/8"   | CASING @ 4                 | 55M                                              |            |            |         |         |                   |            |          |             |          |         |         |         |            |        |
| Daily Mud              | d C            | ost: KR   | 262,462       |        | y Tangible                 |                                                  |            |            | Da      | ily Wel | ll Cost           | KR2,5      | 54,232   |             | ents:    | NO IN   | CIDEN   | repor   | TED        |        |
| Cum Mud (              | Cos.           | t: KR41   | .4,471        | Cum    | Tangible C                 | ost: K                                           | R442,8     | 345        | Cu      | m Well  | Cost:             | KR58,1     | L23,438  | Total       | Appr:    | KR134   | ,000,0  | 00      |            |        |
| Drill Wat              |                |           |               |        | Water: 220.                |                                                  | -1.        | 57.0       |         |         | Bulk              | Weigh      | nt: 384. | 0 Ne        | eat Cem  | ent: 2  | 53.0    | Blende  | ed:        |        |
| Country:               |                |           | I I           |        |                            | Rig: <sub>BYF</sub>                              |            |            |         |         |                   |            | 2 88 03  |             | Drill    | ing Rej | p: FILK | INS/MOO | RE/DE      | JONGE  |
| Field: <sub>PL</sub>   | .250           | )         |               |        |                            | se: <sub>PL25</sub>                              |            |            |         |         | <del></del>       |            | ell No:  |             | -1       |         |         | 11 ID:  |            |        |
| FI                     | ر به د         | -         |               |        | API No:                    |                                                  |            |            | A       | AFE No: | KWENO-            |            |          | -,-         | Date:    | 27–ரா   |         |         | : 1        |        |
|                        |                |           |               |        |                            |                                                  |            |            |         |         |                   |            |          |             |          | - 01    | ,       |         |            |        |

| Measured I             | epth:    | 1:     | 382.0 m | l       | TVD:              | 137                | 79.8 m  |                | PBT   | D:       | 0.0       | Prop                | osed M          | ): <u>;</u> | 3625.0  | m Pro  | posed   | TVD:        | 3625.0 m   |
|------------------------|----------|--------|---------|---------|-------------------|--------------------|---------|----------------|-------|----------|-----------|---------------------|-----------------|-------------|---------|--------|---------|-------------|------------|
| DOL: 12                |          | DFS: 7 |         |         | ate: 22           |                    |         |                |       | Daily    | Footag    | e:                  | D               | aily Ro     | ot Hrs: |        | Total   | Rot Hr      | s: 36.5    |
| Torq:                  | Dra      | ıg:    |         | Wgt:    | - 1               | /U Wgt             |         | S              | lack  | Off Wg   | ::        | Wind                | l: <sub>1</sub> | Seas        | : 2.0   | / 3.0  | Bar:    | 756         | POB: 88    |
| Last Casin             | ıg Size  | :      | 220     | 9.7 mm  | Set 1             | At:                |         | 1374.          | 2m    | MD       | 12        | 72.1m               |                 | Shoe '      |         |        | EMW     | Leako       |            |
| Cum Rot Hr             | s On C   | asing: |         | Cur     | m Rot Hi          | rs On              | Casing  | 13/4.<br>g Sin | ice L | ast Cal  | iper: ,   | 72.1111             | 1               | 1 Worst     |         |        |         | emainin     | a:         |
| Liner Size             | <u> </u> |        |         | 0 Set   |                   |                    |         |                |       |          |           |                     | iner To         |             |         |        |         |             | _          |
|                        |          | 0.0    |         |         |                   | 0.0                | ) MD    |                |       | 0.0      |           | +                   |                 | -           |         | 0 MD   | YP:     | a 1.        | 0.0 TVD    |
| Mud Co: <sub>M-I</sub> | NORŒ     | A.S.   |         | Type:   |                   |                    |         |                | Solid |          | le From   | i FLOW              | wt:<br>Wat      | FV:         | PV:     |        | MB.     | Gel:        | Ph:        |
| WL<br>API:             |          | HTHP   | :       | FC (mr  | APJ               |                    | HTHP:   |                | POTT  | 1        |           | 1                   |                 |             | ₹ Sa    |        |         |             | PII•       |
| Pm:                    | Pf/Mi    | :      | /       | Carb    | :                 | cl:                |         | Ca:            |       | Ben      | t:        | Solid               | s %HG/1         | LG:         | /       | %I     | )S/Bent | ::          | /          |
|                        |          |        |         |         |                   |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
|                        |          |        |         |         |                   |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
| Drlg Gas:              |          | Max (  | Gas:    | Co      | nn Gas:           |                    | Trip    | Gas:           |       | Tr       | ip Cl:    | F                   | emarks          | :           |         |        |         |             |            |
| Bit Number             | IADC     | Si     | ze M    | anufac  | turer             | Seri               | al nun  | ıber           |       | Jet      | s (Qua:   | ntity -             | Size)           |             | TFA     | MI     | ) In    | MD Out      | TVD Out    |
|                        |          |        |         |         |                   |                    |         |                | -     | / .      | - /       | - /                 | - ,             | / _         | 0       |        |         |             |            |
|                        |          |        |         |         |                   |                    |         |                | -     | / .      | - /       | - /                 | - ,             | / -         | 0       |        |         |             |            |
| Type                   | Me       | ters   | Hour    | s       | WOB               |                    | RPM     |                | Moto  | r RPM    | I-Row     | 0-Row               | DC              | Loc         | В       | G      | Char    | ?Pull       | Cost/m     |
| 1790                   |          |        |         |         | /                 |                    | /       |                |       |          | 1         |                     |                 |             |         |        |         |             |            |
|                        |          |        |         |         |                   |                    | ,       |                |       |          |           |                     |                 |             |         |        |         |             |            |
| Total Lenc             | th of    | DII7 • |         | BH      | /<br>IA Descr     | intion             | /<br>n: |                |       |          |           |                     | <u> </u>        |             |         |        |         |             |            |
| Total leng             | JCII OI  | опи•   |         |         |                   | -F-01-01           |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
|                        |          |        |         |         |                   |                    |         |                |       |          |           | 1                   |                 |             | 1       |        |         |             |            |
|                        |          |        |         |         |                   |                    | 1       |                | 1     |          | 1         | Hrs O               | n Jars:         | :<br>       | Hours   | Since  | Last    | Inspect     | ion:       |
| Bit Num                | Lir      | ner    |         | Sti     | roke              |                    |         | SPM            |       | Press.   | M3/Min    | Jet Ve              | :1 DP           | Av D        | C Av    | Bit 🙀  | BHHI    | P/SQIN      | Pump kw    |
|                        |          | /      | ,       |         | <u>/</u>          | <u>/</u>           | /       | <u> </u>       |       |          |           |                     |                 |             |         |        |         |             |            |
|                        | /        | /      | ,       |         | / .               | /                  | /       | / /            | '     |          |           |                     |                 |             |         |        |         |             |            |
| Survey MD              | Angle    | Azi    | muth    | Dire    | ction             |                    | TVD     |                | N/S   | Coordin  | ates      | E/W                 | Coordin         | ates        | Verti   | cal Se | ection  |             | DLS        |
|                        |          |        |         |         |                   |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
|                        |          |        |         |         |                   |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
|                        |          | +      |         |         |                   |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
|                        |          | +      |         |         |                   |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
|                        | 1        | 4      |         |         |                   |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
| Hours From             | Act-C    | at     |         |         | Operat            | ions (             | Coveri: | ng 24          | 1 Hou | ırs Endi | .ng at 1  | Midnigh             | t               |             |         | Tota   | l Hour  | s Repor     | ted: 24.0  |
| 0.50 <sub>T</sub> 0000 | 01 - 0   | 8 CONT | r to R  | U TO F  | RUN 13 3          | 3/8" C             | SG; HE  | ELD T          | BT    |          |           |                     |                 |             |         |        |         |             |            |
| 7.50T 0030             | 01 - 0   | 8 RE-I | RUN 13  | 3/8" 5  | SHOETRAG          | OK & I             | NSTALI  | GUI            | DELII | NES; RU  | N 13 3/   | 8" 72#              | L-80 M          | OD BTC      | CASING  | AS PE  | R TALL  | Y TO 72     | 7M         |
| Т                      | 01 - 0   | 8 REMO | OVE ALI | L DAMAC | GED CEN           | TRALIS             | ERS -   | CENT           | RALI  | SERS IN  | STALLED   | ON SHO              | E JOIN          | r, and      | FIRST   | 5 JOIN | TS ABO  | VE SHOE     | TRACK      |
| 4.00 0800              | 01 - 0   | 8 CONT | TO T    | H W/ 1  | 13 3/8"           | CSG -              | MONIT   | TOR C          | ASIN  | G MOVEM  | ENT W/    | ROV AT              | WELLHE          | AD -FIL     | L CSG   | EVERY  | 5 JNTS  | W/ 1.4      | SG KCL MUE |
|                        | 01 - 0   | 8 FROM | м 450м  | то 137  | 79 <b>M; M</b> /T | J 18 3             | /4" HE  | WEL:           | LHEAI | D        |           |                     |                 |             |         |        |         |             |            |
| 2.50 1200              | 01 - 0   | 8 RUN  | 13 3/8  | 3" CSG  | ON 5" I           | DP; WA             | SH DOW  | N CS           | G AT  | 1074,    | 1190 AN   | D F/ 13             | 35 TO :         | 1379M W     | / 3000  | LPM    |         |             |            |
|                        |          |        |         |         | VELLHEAI          |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
| 1.00 1430              |          |        |         |         |                   |                    |         |                |       |          | ш         |                     |                 |             |         |        |         |             |            |
|                        |          |        |         |         |                   |                    |         |                |       |          | DITMED 10 | OM2 OE              | 1 5600          | T E A D     | TIMDI   | IICTNO | 1000    | OT A CC. I  | CI CEMENT  |
| 4.00 1530              |          |        |         |         |                   |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
|                        |          |        |         |         |                   |                    |         |                |       | -        |           |                     |                 |             |         |        |         |             | 25 BAR     |
|                        | 01 - 0   | 9 MIX  | & PUMI  | 2 17M3  | OF 1.92           | 2SG TA             | IL SLU  | JRRY 1         | USIN  | G 21MT   | CLASS '   | G'OMT               | W/ 0.1          | LTR/10      | UKG NF  | -6 AND | 43.78   | LTR/100     | KG DRILL   |
|                        | 01 - 0   | 9 WATI | ER AND  | PUMP A  | 1 8.0 TA          | M3/MIN             | W/ 20   | ) BAR          | ; DIS | SPLACE   | CMT W/    | 3M3 SEA             | WATER 8         | SHEAR       | DART    | W/ 154 | BAR     |             |            |
|                        | 01 - 0   | 9 DISI | PLACE V | VIPER V | v/ 76M3           | SEAWA'             | TER AT  | 320            | 0 LPI | м, 161   | BAR USI   | NG RIG              | PUMPS;          | SLOW F      | UMPS T  | 0 580  | LPM, 6  | 1 BAR       |            |
|                        | 01 - 0   | 9 MON  | ITORED  | RETURI  | NS @ SEA          | ABED D             | URING   | ENTI           | RE CI | EMENT O  | PERATIO   | N; S/D              | PUMPS -         | - PLUG      | DID NO  | T BUMP | ;       |             |            |
|                        |          |        |         |         | 55 BAR            |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
| Safety: TB             | T PRIO   | R TO R | RUNNING | 13 3/   | 8" CASI           | NG ANI             | O CEME  | NT JC          | )B    |          |           |                     |                 |             |         |        |         |             |            |
| 24 Hr Summ             |          |        |         |         |                   |                    |         |                |       | ASING W  | 1.5690    | E CEMEN             | r; Rete         | RIEVE R     | /TOOL A | k R/∏⊓ | O RIN   | BOP'S       |            |
| Projected              | Operat:  | ions:  | RIM DO  | מג פים  | Π Ι.ΔΜΩ           | Same               |         |                | . ω   | 11/      |           |                     |                 |             | (       | , 0    |         |             |            |
| Remarks:               |          |        | TON DO  | r D AIV | שאבו שו           | DAME               |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
| POB: CHEVR             | .ON - 3  | , SER  | RVICE - | 22,     | DOLPHIN           | r – 55,            | , DOL   | PHIN           | SERV  | /ICE - 8 | 3         |                     |                 |             |         | D/     | AYS SII | NCE LAST    | LTI - 62   |
|                        |          |        |         |         |                   |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
| STARBOARD              | BULLSE   | YE 1 1 | ./2 DEG | ļ       |                   |                    |         |                |       |          |           |                     |                 |             |         |        |         |             |            |
| 06:30 OPS:             | FUNCT    | ION TE | ST BOP  | 'S BEL  | OW ROTA           | RY TAI             | BLE PR  | IOR 7          | IO LA | ATCHING  | UP TO T   | THE DOU             | BLE             |             |         |        |         |             |            |
| Daily Mud              | Cost:    | KR118, |         |         |                   |                    |         |                |       | aily We  | ll Cost   | : <sub>KR4,31</sub> | 0,584           | Incid       | ents:   | NO II  | NCIDEN  | report      | ED         |
| Cum Mud Co             | st: KR   | 533,33 | 33 C    | um Tan  | gible C           | ost:               | KR1,74  | 47,95          | ı Cı  | um Well  | Cost:     | KR62.4              | 34,022          | Total       | Appr:   | KR134  | ,000.0  | 00          |            |
| Drill Wate             |          |        | Potabl  | e Wate  | r: 195.           |                    | uel:    |                |       |          |           | Weigh               |                 |             | at Cem  |        |         | Blende      | d:         |
| Country:               |          |        |         |         |                   | Rig: <sub>BY</sub> |         |                |       |          |           | hone: 52            |                 |             |         |        |         | TNIC! /N#^~ | RE/DEJONGE |
| Field: PL2             | EQ.      |        |         |         |                   | se: PL2            |         | -VILET.        | 14    |          |           |                     |                 | 6506/3-     | .1      |        | ᄺᄯ      | ll ID:      | DEOUG -0   |
| PL2                    | 59       |        |         |         |                   |                    |         |                | 1     | AFF Ma.  | T/T-777-0 |                     |                 |             |         | 00 =   |         |             |            |
|                        |          |        |         |         | API No            | - 05Ub/            | , 2-⊥   |                |       | AFE No:  | VMEINO-   | .T500co             | -001            |             | Date:   | ∠8-JŪĪ | ZUU1    | rage:       | 1 Of 2     |

| Description   Part      | Measur   | red D  | epth:             | 138          | 2.0 m      | TVD:          | 1379.         | 8 m             | PB'             | TD:     |         | 0.0          | Prop     | osed M   | ): <sub>3</sub> | 625.0    | m Pr    | oposed       | TVD:     | 3625.0 m                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------------|--------------|------------|---------------|---------------|-----------------|-----------------|---------|---------|--------------|----------|----------|-----------------|----------|---------|--------------|----------|-----------------------------------------|
| Trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DOL:     | 12     | DI                |              |            |               |               |                 |                 | Da      | ily     |              | e:       | D        |                 |          |         | Total        | Rot Hr   |                                         |
| Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont   | Torq:    |        | Drag              | η:           |            |               |               |                 | Slack           | Off     | Wgt:    | :            | Wind     | : 1      | Seas            | : 20     | / 3 0   | +            |          | DOD:                                    |
| Description   Communication    |          | asin   | g Size:           |              | 222        | _ Set         | At:           |                 |                 |         |         |              | _        |          | + -             |          |         | -            |          |                                         |
| March   Carlot   Ca   | -        |        |                   | sina:        |            | . / mm        |               | 1374<br>sing Si | nce T           |         | Cali    | 137<br>per:  | /2.1m    | 1        |                 |          | 0       |              |          |                                         |
| Max   Color    |          |        |                   | <u> </u>     | 0.0        | •             |               |                 |                 |         |         |              |          | _        |                 | wear.    |         | . 1          | ешантн   |                                         |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   |          |        |                   |              |            |               | 0.0           | MD              |                 |         |         |              |          |          | _               |          |         |              |          |                                         |
| STORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | M-I    | NORGE 2           | A.S.         |            |               |               |                 | 0-14            |         | Sampl   |              |          |          |                 |          |         |              |          |                                         |
| Date   Coast   More Class   Cover Class   Cover Class   Total Coast   Cover Class      |          | API:   |                   |              |            | 111           |               |                 |                 |         |         |              | 1        |          |                 | % Sa     |         |              |          | Pn:                                     |
| ### Right   TATE   Since   Montantarer   Serial number   John   (Quantity - Since )   TATE   183 in   Mile Did   TATE   TATE   Mile Did   M | Pm:      |        | Pf/Mf:            |              | /          | Carb:         | Cl:           | Ca:             |                 | E       | Bent:   | :            | Solids   | s %HG/I  | LG:             | /        | %       | DS/Bent      | :        | /                                       |
| ### No.   Process   Proces |          |        |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| ### Right   TATE   Since   Montantarer   Serial number   John   (Quantity - Since )   TATE   183 in   Mile Did   TATE   TATE   Mile Did   M |          |        |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drlg G   | las:   |                   | Max Ga       | s:         | Conn Gas      | Tr            | ip Gas          | :               |         | Tri     | p Cl:        | R        | marks    | •               |          |         |              |          |                                         |
| Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bit Nu   | ımber  | IADC              | Size         | e Ma       | nufacturer    | Serial        | number          |                 | į       | Jets    | (Quan        | ntity -  | Size)    |                 | TFA      | М       | D In         | MD Out   | TVD Out                                 |
| Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |        |                   |              |            |               |               |                 | _               | . ,     | / -     | / -          | - /      | - /      | / _             | 0        |         |              |          |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |                   |              |            |               |               |                 | _               | . ,     | / -     | / .          | - /      | - /      | / _             | 0        |         |              |          |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | т        | vne    | Met               | ers          | Hours      | WOB           | RPM           |                 | Moto            | or RP   | PM      | I-Row        | O-Row    | DC.      | Loc             | В        | G       | Char         | ?Pull    | Cost/m                                  |
| Total Longth of Mean   SMA Pearington:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 710    |                   |              |            |               | /             |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Res On James   Rouse Sibne Last Inspection   Purp   167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |        |                   |              |            | ,             | ,             |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Res On James   Rouse Sibne Last Inspection   Purp   167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total    | Tena:  | th of B           | HA:          |            | BHA Desci     | ription:      |                 |                 |         |         |              | <u> </u> |          | <u> </u>        |          |         |              | <u> </u> |                                         |
| Bit Num Liner Stroke SRM Press. M37Min Jet Vel DP AV DC AV Bit 100 BHBP/SUN Pump 301  Survey NO Angle Azimuth Direction TWD B/S Coordinates E/W Coordinates Vertical Section DEG  Survey NO Angle Azimuth Direction TWD B/S Coordinates E/W Coordinates Vertical Section DEG  Survey NO Angle Azimuth Direction TWD B/S Coordinates D/W Coordinates Vertical Section DEG  10-09 BEED DAMP FRES. FLOAT HODDING  01-09 BEED DAMP FRES. FLOAT HODDING  10-09 BEED DAMP FRES. FLOAT HODING  10-09 BEED DAMP FRES. FLOAT HODDING  10-09 BEED DAMP FRES | Tour     |        | <u> </u>          |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Bit Num Liner Stroke SRM Press. M37Min Jet Vel DP AV DC AV Bit 100 BHBP/SUN Pump 301  Survey NO Angle Azimuth Direction TWD B/S Coordinates E/W Coordinates Vertical Section DEG  Survey NO Angle Azimuth Direction TWD B/S Coordinates E/W Coordinates Vertical Section DEG  Survey NO Angle Azimuth Direction TWD B/S Coordinates D/W Coordinates Vertical Section DEG  10-09 BEED DAMP FRES. FLOAT HODDING  01-09 BEED DAMP FRES. FLOAT HODDING  10-09 BEED DAMP FRES. FLOAT HODING  10-09 BEED DAMP FRES. FLOAT HODDING  10-09 BEED DAMP FRES |          |        |                   |              |            |               |               |                 |                 |         |         |              | IIron Or | Towa     |                 | Hours    | Cina    | . Tagt       | Tnanoas  | tion:                                   |
| Survey MD Angle Return Direction TWD N/S Coordinates R/W Coordinates Vertical Section ELS  Survey MD Angle Return Direction TWD N/S Coordinates R/W Coordinates Vertical Section ELS  Note: Provided the Color of the Control of the Control of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of the Color of |          | 1      |                   |              |            |               |               |                 | 1               |         | 1       |              | <u> </u> | <u> </u> |                 | HOULS    | БПІС    | = Last       | Inspec   | LIOII:                                  |
| House From Act-Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bit Nu   | m      | Line              | er           |            | Stroke        | ,             | SPM             | 1               | Pres    | ss. I   | M3/Min       | Jet Ve   | l de     | Av D            | C Av     | Bit k   | J BHH        | P/SQIN   | Pump kW                                 |
| House From Act-Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        |                   |              |            |               | /             |                 | /               |         |         |              |          |          |                 |          |         |              |          |                                         |
| House From Act-Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        | /_                | /_           |            | /             | /             | /               | /               |         |         |              |          |          |                 |          |         |              |          |                                         |
| Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete    | Survey   | MD     | Angle             | Azim         | uth        | Direction     | TVD           | )               | N/S             | Coor    | dina    | tes          | E/W C    | oordir.  | ates            | Verti    | cal S   | ection       |          | DLS                                     |
| Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete    |          |        |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete    |          |        |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete    |          |        |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete    |          |        |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete   Discrete    | Hours    | From   | Act-Cat           | _            | <u> </u>   | Operat        | ions Cov      | erina (         | 24 Hoi          | urs E   | ndin    | na at M      | idniaht  |          |                 |          | Tota    | al Hour      | s Remi   | rted: 24 0                              |
| 01 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |        |                   |              | DOMN I     |               |               |                 |                 | arb b   |         | 19 ac 11     |          |          |                 |          | 1000    | ar mour      | ъ перог  | 21.0                                    |
| 1.001 1930 01-20 DURING MAINTENANCE, NOTICED SNAP RINGS ON 2 CALIPERS OF DRAWNORK BRAKES WERE BROKEN; ISOLATE THE 2 CALIPERS 2.00 2030 01-09 FILSH GUIDERASE; FOOH W/ RUNNING TOOL & L/D SAME WHILE MOVING RIG 20M STAMBOARD 1.50 2230 01-13 R/U TO RUN BOP'S; MEANWHILE OFFLOAD RISER F/ HIGHLAND STAR & BACKLOAD EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |        |                   |              |            |               |               |                 | NTD DII         | TT 21   | N. A.D. | OT TO LITTLE | THEAD    | TOTALO ( | COMPENSO        | 3EOD     |         |              |          |                                         |
| 2.00 2030 01-09 FILSH GUILEBASE; FOOH W/ RINNING TOOL & L/D SAME WHILE MOVING RIG 20M STARBOARD  1.50 2230 01-13 R/U TO RUN BOP'S; MEANWHILE OFFLOAD RISER F/ HIGHLAND STAR & BACKLOAD EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 000    | 11020  |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         | ) T A III II | TIE 0 01 | AT TREBO                                |
| 1.50 2230 01 - 13 R/U TO RUN BOP'S; MEANWHILE OFFLOAD RISER F/ HIGHLAND STAR & BACKLOAD EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          | N; ISC  | )LATE T      | HE Z CA  | ALLPERS                                 |
| -   -   -   -   -   -   -   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |        |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Country:   Norway   Field:   PL259   Well No:6506/3-1   Well ID:UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.50     | 2230   | 01 - 13           | R/U T        | O RUN      | BOP'S; MEAN   | WHILE OFF     | LOAD R          | ISER            | F/ H    | IGHL    | AND STA      | AR & BA  | CKLOAD   | EQUIPM          | ENT      |         |              |          |                                         |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        | -                 |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Country:   Norway   Field:   PL259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        | -                 |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Country:   Norway     |          |        | _                 |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Country   Norway   Field:   PL259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        | _                 |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Country:   NORMAY   NORMAY   NORMAY   Norman     |          |        | _                 |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Safety: TBT PRIOR TO RUNNING 13 3/8" CASING AND CEMENT JOB  24 Hr Summary: RUN 13 3/8" CASING AND SET AT 1379M; CEMENT CASING W/ 1.56SG CEMENT; RETRIEVE R/TOOL & R/U TO RUN BOP'S  Projected Operations: RUN BOP'S AND LAND SAME  Remarks:  Daily Mud Cost: KR118,862 Daily Tangible Cost: KR1,305,106 Daily Well Cost: KR4,310,584 Incidents: ND INCIDENT REPORTED  Cum Mud Cost: KR533,333 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR62,434,022 Total Appr: KR134,000,000 Drill Water: 700.0 Potable Water: 195.0 Fuel: 441.0 Bulk Weight: 180.0 Neat Cement: 141.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJONGE  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L        | L      | <br>L -           | <u> </u>     |            |               |               |                 | _               | _       | _       |              |          |          |                 |          | _       |              |          |                                         |
| Safety: TBT PRIOR TO RUNNING 13 3/8" CASING AND CEMENT JOB  24 Hr Summary: RUN 13 3/8" CASING AND SET AT 1379M; CEMENT CASING W/ 1.56SG CEMENT; RETRIEVE R/TOOL & R/U TO RUN BOP'S  Projected Operations: RUN BOP'S AND LAND SAME  Remarks:  Daily Mud Cost: KR118,862 Daily Tangible Cost: KR1,305,106 Daily Well Cost: KR4,310,584 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR533,333 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR62,434,022 Total Appr: KR134,000,000 Drill Water: 700.0 Potable Water: 195.0 Fuel: 441.0 Bulk Weight: 180.0 Neat Cement: 141.0 Blended:  Country: NDRWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJUNGE  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |        | -                 |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Safety: TBT PRIOR TO RUNNING 13 3/8" CASING AND CEMENT JOB  24 Hr Summary: RUN 13 3/8" CASING AND SET AT 1379M; CEMENT CASING W/ 1.56SG CEMENT; RETRIEVE R/TOOL & R/U TO RUN BOP'S  Projected Operations: RUN BOP'S AND LAND SAME  Remarks:  Daily Mud Cost: KR118,862 Daily Tangible Cost: KR1,305,106 Daily Well Cost: KR4,310,584 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR533,333 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR62,434,022 Total Appr: KR134,000,000 Drill Water: 700.0 Potable Water: 195.0 Fuel: 441.0 Bulk Weight: 180.0 Neat Cement: 141.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJONGE  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |        | _                 |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Safety: TBT PRIOR TO RUNNING 13 3/8" CASING AND CEMENT JOB  24 Hr Summary: RUN 13 3/8" CASING AND SET AT 1379M; CEMENT CASING W/ 1.56SG CEMENT; RETRIEVE R/TOOL & R/U TO RUN BOP'S  Projected Operations: RUN BOP'S AND LAND SAME  Remarks:  Daily Mud Cost: KR118,862 Daily Tangible Cost: KR1,305,106 Daily Well Cost: KR4,310,584 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR533,333 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR62,434,022 Total Appr: KR134,000,000 Drill Water: 700.0 Potable Water: 195.0 Fuel: 441.0 Bulk Weight: 180.0 Neat Cement: 141.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJONGE  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |        | _                 | 1            |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Safety: TBT PRIOR TO RUNNING 13 3/8" CASING AND CEMENT JOB  24 Hr Summary: RUN 13 3/8" CASING AND SET AT 1379M; CEMENT CASING W/ 1.56SG CEMENT; RETRIEVE R/TOOL & R/U TO RUN BOP'S  Projected Operations: RUN BOP'S AND LAND SAME  Remarks:  Daily Mud Cost: KR118,862 Daily Tangible Cost: KR1,305,106 Daily Well Cost: KR4,310,584 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR533,333 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR62,434,022 Total Appr: KR134,000,000 Drill Water: 700.0 Potable Water: 195.0 Fuel: 441.0 Bulk Weight: 180.0 Neat Cement: 141.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJONGE  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |        | _                 |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| 24 Hr Summary: RUN 13 3/8" CASING AND SET AT 1379M; CEMENT CASING W/ 1.56SG CEMENT; RETRIEVE R/TOOL & R/U TO RUN BOP'S  Projected Operations: RUN BOP'S AND LAND SAME  Remarks:  Daily Mud Cost: RR118,862 Daily Tangible Cost: RR1,305,106 Daily Well Cost: RR4,310,584 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: RR533,333 Cum Tangible Cost: RR1,747,951 Cum Well Cost: RR62,434,022 Total Appr: RR134,000,000 Drill Water: 700.0 Potable Water: 195.0 Fuel: 441.0 Bulk Weight: 180.0 Neat Cement: 141.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJONGE  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Safety   | r: mor |                   | шО гога.<br> | יינאדדאזיי | 12 2/0    070 | באוכ איייה כי | EiMEiviiii      | TOP             |         |         |              |          |          |                 |          |         |              |          |                                         |
| Projected Operations: RUN BOP'S AND LAND SAME  Remarks:  Daily Mud Cost: KR118,862 Daily Tangible Cost: KR1,305,106 Daily Well Cost: KR4,310,584 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR533,333 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR62,434,022 Total Appr: KR134,000,000 Drill Water: 700.0 Potable Water: 195.0 Fuel: 441.0 Bulk Weight: 180.0 Neat Cement: 141.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJONGE  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 Hr    | Summ   | ary:              | 10 KU        | -> "O\     | 23 3/6" CAS.  | LING AND C    | M. CEL          | JUD ~:          | 70777   | N 5.7 / | 1 5600       |          |          | TIME -          | /TICOT - | D /**   | TO DI=       | DOD ! C  |                                         |
| Remarks:  Daily Mud Cost: KR118,862 Daily Tangible Cost: KR1,305,106 Daily Well Cost: KR4,310,584 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR533,333 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR62,434,022 Total Appr: KR134,000,000 Drill Water: 700.0 Potable Water: 195.0 Fuel: 441.0 Bulk Weight: 180.0 Neat Cement: 141.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJONGE  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Projec   | ted (  | - KUI<br>Dperatio | n 13 3,      | / 8 " CA   | DING AND SE   | AI 13/9       | M, CEM          | EINT. C         | AD TING | ∍ W/    | 1.50SG       | CEMENI   | , KEIR   | TEAR K          | TOOP 8   | K/U     | TO KUN       | ROF, 2   |                                         |
| Daily Mud Cost: KR118,862 Daily Tangible Cost: KR1,305,106 Daily Well Cost: KR4,310,584 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR533,333 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR62,434,022 Total Appr: KR134,000,000 Drill Water: 700.0 Potable Water: 195.0 Fuel: 441.0 Bulk Weight: 180.0 Neat Cement: 141.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJONGE  Field: PL259 Lease: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |        |                   | RI           | JN BOP     | 'S AND LAND   | SAME          |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Cum Mud Cost: KR533,333       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR62,434,022       Total Appr: KR134,000,000       Neat Cement: 141.0       Blended: Elkins/MOORE/DEJONGE         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig: Phone: 52 88 03 35       Drilling Rep: ELKINS/MOORE/DEJONGE         Field: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u> |        |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Cum Mud Cost: KR533,333       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR62,434,022       Total Appr: KR134,000,000       Neat Cement: 141.0 Blended:         Drill Water: 700.0       Potable Water: 195.0       Fuel: 441.0       Bulk Weight: 180.0       Neat Cement: 141.0 Blended:         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig Phone: 52 88 03 35       Drilling Rep: ELKINS/MOORE/DEJONGE         Field: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Cum Mud Cost: KR533,333       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR62,434,022       Total Appr: KR134,000,000       Neat Cement: 141.0 Blended:         Drill Water: 700.0       Potable Water: 195.0       Fuel: 441.0       Bulk Weight: 180.0       Neat Cement: 141.0 Blended:         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig Phone: 52 88 03 35       Drilling Rep: ELKINS/MOORE/DEJONGE         Field: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u> |        |                   |              |            |               |               |                 |                 |         |         |              |          |          |                 |          |         |              |          |                                         |
| Cum Mud Cost: KR533,333       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR62,434,022       Total Appr: KR134,000,000       Neat Cement: 141.0 Blended:         Drill Water: 700.0       Potable Water: 195.0       Fuel: 441.0       Bulk Weight: 180.0       Neat Cement: 141.0 Blended:         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig Phone: 52 88 03 35       Drilling Rep: ELKINS/MOORE/DEJONGE         Field: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        |                   |              |            |               |               |                 |                 |         |         |              |          |          | -               |          |         |              |          |                                         |
| Drill Water: 700.0 Potable Water: 195.0 Fuel: 441.0 Bulk Weight: 180.0 Neat Cement: 141.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJONGE  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Daily    | Mud (  | Cost: KF          | 2118,86      |            |               |               |                 |                 | aily    | Well    | l Cost:      | KR4,310  | ,584     | Incide          | ents:    | NO I    | NCIDEN       | repor    | TED                                     |
| Drill Water: 700.0 Potable Water: 195.0 Fuel: 441.0 Bulk Weight: 180.0 Neat Cement: 141.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJONGE  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cum Mu   | d Cos  | st: KR5           | 33,333       | Cu         | m Tangible (  | Cost: KR1     | <br>L,747,9     | <sub>51</sub> C | um We   | ell     | Cost:        | KR62,43  | 84,022   | Total           | Appr:    | KR134   | 1,000,0      | 00       |                                         |
| Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/MOORE/DEJONGE Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •        |        |                   |              | otable     | Water: 195    | .0 Fuel       |                 |                 |         |         |              |          |          |                 |          |         |              |          | ed:                                     |
| Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        |                   | -            |            |               |               |                 |                 |         |         |              |          |          |                 | Drill    | ing Re  | ъ:<br>Бр:    | TNIS /M~ | ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ |
| API No: 6506/3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Field:   | Dt 0.  | EU<br>CTCANGIT    |              |            |               |               |                 |                 |         |         | <del></del>  | - I      |          |                 | 1        |         |              |          |                                         |
| THE AND CLASSICAL THE THE REPORT OF THE TABLE AND LEGICAL AND THE TABLE AND LEGICAL AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AND THE TABLE AN |          | PLZ;   | צכ                |              |            |               |               |                 |                 | AFE 1   | No:     | KME:NIO      |          |          |                 |          | 28 - 77 |              | Т        |                                         |

| Measure | ed De | epth:             | 138        | 32.0 m   | TVD:        | 1                                                | 379.8 m                                          |        | PBTD:           |        | 0.0      | Prop    | osed M                                 | ): <u>;</u> | 3625.0   | m Pro   | posed   | TVD:    | 3625.0 m     |
|---------|-------|-------------------|------------|----------|-------------|--------------------------------------------------|--------------------------------------------------|--------|-----------------|--------|----------|---------|----------------------------------------|-------------|----------|---------|---------|---------|--------------|
| DOL:    | 13    | Di                | FS: 8      |          | pud Date:   |                                                  |                                                  |        | Ι               | Daily  | Footage  | e:      | Γ                                      | aily R      | ot Hrs   | :       | Total   |         | as: 36.5     |
| Torq:   |       | Drag              | J:         | Rot      | Wgt:        | P/U W                                            | gt:                                              | Sla    | ack Of          | f Wgt  | :        | Wind    | l: <sub>22</sub>                       | Seas        | : 2.0    | / 0.0   | Bar:    | 743     | POB: 97      |
| Last Ca | sing  | g Size:           |            | 220      | .7 mm Se    | At:                                              | 1                                                | 27/ 2  | m M             | D      | 12'      | 72.1m   |                                        | Shoe '      |          |         | EMW     | Leako   | •            |
| Cum Rot | Hrs   | s On Ca           | sing:      |          | Cim Rot     | Hrs Or                                           | n Casing                                         | Since  | e Last          | . Cali | iper:    | 72.1111 | -                                      | Worst       |          |         |         | emainir | na:          |
| Liner S | Size: | :                 |            | 0.0      | Set At:     |                                                  |                                                  |        |                 |        |          |         | iner To                                |             |          |         |         |         |              |
|         |       |                   | 0.0        | Īт       |             |                                                  | .0 MD                                            |        | 0               | .0 T   |          |         |                                        |             |          | .0 MD   | ZD:     | - G-1.  | 0.0 TVD      |
| Mud Co: |       |                   |            |          | ype: MINER  |                                                  |                                                  | Sc     | olids:          |        |          |         |                                        |             |          |         | MB      |         | 7 / 9<br>Ph: |
|         | API:  |                   |            |          | FC (mm)     |                                                  |                                                  | 0      | JII GB          | 1      |          |         | 00 *********************************** | er:         | 00 , 20  |         |         |         | 1111         |
| Pm: 0.  | . 00  | PI/MI.            | 0.00       | / 0.00   | Carb:       | CI:                                              | 20,000                                           | Ca:    |                 | Bent   | ,•<br>   | 50110   | IS 6HG/.                               | _G•         |          | (AL)    | S/Bent  | · ·     | /            |
| 50      | 1LT   | ROTHER            |            | 480      | 00 1KG (    | CMC HV                                           | TECH                                             | 186    | 1 <sub>MT</sub> | ASP-   | 700      | 200     | ) 1 <sub>K</sub>                       | G SODA      | ASH      | 16      | 1       | MT BEN  | TONITE API   |
|         |       |                   |            |          | 1           |                                                  | _                                                |        |                 |        |          |         |                                        |             |          |         |         |         |              |
| Drlg Ga | as:   |                   | Max Ga     | ıs:      | Conn Ga     | s:                                               | Trip (                                           | Bas:   |                 | Tr     | ip Cl:   | F       | Remarks                                | :           |          |         |         |         |              |
| Bit Nur | nber  | IADC              | Size       | e Ma     | nufacture   | Ser                                              | rial numi                                        | ber    |                 | Jets   | (Quar    | ntity - | Size)                                  |             | TFA      | A MD    | In      | MD Out  | TVD Out      |
|         |       |                   |            |          |             |                                                  |                                                  |        | -               | / -    | /        | - /     | - ,                                    | <u> </u>    | 0        |         |         |         |              |
|         |       |                   |            |          |             |                                                  |                                                  |        | -               | / -    | /_       | - /     | - ,                                    | / -         | 0        |         |         |         |              |
| Ту      | pe    | Met               | ers        | Hours    | WOB         |                                                  | RPM                                              | М      | lotor I         | RPM    | I-Row    | 0-Row   | DC                                     | Loc         | В        | G       | Char    | ?Pull   | Cost/m       |
|         |       |                   |            |          | /           |                                                  | /                                                |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       |                   |            |          | /           |                                                  | /                                                |        |                 |        |          |         |                                        |             |          |         |         |         |              |
| Total I | engt  | th of B           | HA:        |          | BHA Des     | cripti                                           | on:                                              |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       |                   |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       |                   |            |          |             |                                                  |                                                  |        |                 |        |          | Hrs C   | n Jars                                 |             | Hours    | Since   | Last    | Inspect | tion:        |
| Bit Num | n     | Line              | er         |          | Stroke      |                                                  |                                                  | SPM    | Pr              | ess.   | M3/Min   | Jet Ve  | el DP                                  | Av          | C Av     | Bit w   | Ынп     | P/SOTN  | Pump kW      |
|         |       |                   | /          |          | /           | /                                                |                                                  | /      |                 |        |          |         |                                        |             |          | 17//    |         | 7-2     |              |
|         |       |                   |            |          |             |                                                  | <del>                                     </del> |        |                 |        |          |         |                                        |             |          |         |         |         |              |
| Survey  | MD    | Angle             | Azim       | uth      | Direction   | <del>,                                    </del> | TVD                                              |        | /S Coo          | ordina | at oc    | E/W     | Coordir                                | ates        | Vert     | ical Se | ation   |         | DLS          |
| bur vey | IND   | Aigie             | AZIII      | iddi     | Direction   |                                                  | TVD                                              | 111    | /B CC           | JIGHIE | 1000     | E/W     | COOLGII                                | iaces       | VELC     | icai se | CCIOII  |         | DLIS         |
|         |       |                   |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       |                   |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       |                   |            |          |             |                                                  |                                                  | +      |                 |        |          |         |                                        |             |          |         |         |         |              |
| -       |       |                   |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             | <u> </u> |         |         |         |              |
| Hours F | rom   | Act-Cat           | t          |          | Oper        | ations                                           | Coverin                                          | ıg 24  | Hours           | Endi   | ng at M  | idnigh  | t                                      |             |          | Tota    | l Hour  | s Repor | rted: 24.0   |
| 0.50    | 0000  | 01 - 13           | CONT       | TO R/T   | J TO RUN B  | OP'S                                             |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
| 6.50    | 0030  | 01 - 13           | P/U A      | J/M CINA | J DOUBLE O  | FF RISE                                          | R; SKID                                          | BOP 7  | TO CEN          | TRE I  | N MOON   | POOL; I | NSTALL                                 | LMRP A      | ND GUI   | DELINE  | S; FUN  | CTION 7 | TEST BOP'S   |
| 3.50T(  | 0700  | 01 - 20           | DISCO      | OVER IN  | MPROPER IN  | STALLAT                                          | TION OF                                          | [ARGE] | r slee          | EVE IN | UPPER    | INNER   | CHOKE :                                | LINE CA     | USING    | RESTRI  | CTION   | IN FLOV | V AREA       |
|         |       | 01 - 13           | CHANG      | ED OVE   | ER TARGET   | SLEEVE                                           | AND PRE                                          | SSURE  | TESTE           | ED CHC | KE LIN   | E TO 35 | BAR/51                                 | MIN, 69     | 0 BAR/   | 10MIN   |         |         |              |
| 2.50    | 1030  | 01 - 13           | CONNE      | ECT RIS  | SER DOUBLE  | TO BOI                                           | ; MOUNT                                          | BULLS  | SEYE A          | AND BE | CACON A  | ID RUN  | BOP TH                                 | RU SPLA     | SH ZON   | E; TES  | Г С&К   | LINE TO | 35/414 BAF   |
| 11.00   | 1300  | 01 - 13           | CONT       | RUNNII   | NG BOP ON   | RISER T                                          | 10 +/- 2                                         | 50м, т | restin          | IG C&K | LINES    | TO 35/  | '414 BAI                               | R EVERY     | 5 JNT    | 'S      |         |         |              |
|         |       | 01 - 13           |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       | 01 - 13           |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       | 01 - 13           |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       | 01 - 13           |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       | 01 - 13           |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       | 01 - 13           |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       | 01 - 13           |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       |                   |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       | 01 - 13           |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
| Safety: | :     | 01 - 13           |            |          | D.T.C       |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
| Safety: |       |                   |            |          |             | _                                                |                                                  |        |                 | _      | _        |         |                                        |             | _        | _       |         |         |              |
|         |       |                   |            |          | o'S; M/U BO |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
| Remarks | .u. c | , <sub>r</sub> a( | M          | OT WO    | HOOK UP C   | K LINE                                           | S TO SLI                                         | PJNT;  | LAND            | & LA'  | TCH BOF  | & P/T   | EST CON                                | NECTIO      | 1 & CA   | SING; M | I/U 8 : | 1/2" BH | <u>A</u>     |
| II      |       | M - 4,            | SERV       | ICE -    | 30, DOLPI   | <u>IIN - 5</u>                                   | 5, DOLE                                          | HIN S  | ERVIC           | E - 8  |          |         |                                        |             |          | DA      | YS SII  | NCE LAS | T LTI - 64   |
|         |       |                   |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
|         |       |                   |            |          |             |                                                  |                                                  |        |                 |        |          |         |                                        |             |          |         |         |         |              |
| 06:00 C | PS:   | WOW TO            | P/U S      | LIP JN   | TT SINCE 05 | 30 HRS                                           | - 35 KI                                          | OTS W  | IIND,           | 6M SE  | AS       |         |                                        |             |          |         |         |         |              |
| Daily M | Mud ( | Cost: K           | R1,066     | , 8 Da   | ily Tangik  | le Cos                                           | t:                                               |        | Dail            | y Wel  | 1 Cost   | KR4,12  | 7,850                                  | Incid       | ents:    | NO IN   | CIDEN   | repor   | TED          |
| Cum Mud | d Cos | st: KR1           | ,600,1     | 57 Cu    | m Tangible  | Cost:                                            | KR1,74                                           | 7,951  |                 |        | Cost:    |         |                                        | Total       | Appr:    | KR134   | ,000,0  | 00      |              |
| Drill W |       |                   |            |          | Water: 36   |                                                  | Fuel:                                            |        |                 |        |          |         | t: <sub>180</sub> .                    |             |          | nent: 1 |         |         | ed:          |
| Country |       |                   | <u>-  </u> |          | 30          |                                                  | BYFORD I                                         |        | N               |        |          |         | 2 88 03                                | 35          | Drill    | ing Re  | v       | TNIS /M | RE/DEJONGE   |
| Field:  | דע    | 50                |            |          | I           | ease: P                                          |                                                  |        |                 |        | <u> </u> |         |                                        | 6506/3-     | ·1       |         | We      | 11 ID:  | UB5908 -0    |
|         | - 114 |                   |            |          |             | No: 650                                          |                                                  |        | AFI             | E No:  | KWENO-   |         |                                        |             |          | 29-JUL  |         | 1       | : 1 Of 1     |

| Measur           | red D      | epth:    | 138         | 2.0 m        | TVD:         | 137                | 9.8 m          |               | PBTD:           |             | 0.0         | Pro             | posec  | dM E    | : 3        | 625.0         | m Pro            | posed      | TVD:            | 3625                                             | . 0 m |
|------------------|------------|----------|-------------|--------------|--------------|--------------------|----------------|---------------|-----------------|-------------|-------------|-----------------|--------|---------|------------|---------------|------------------|------------|-----------------|--------------------------------------------------|-------|
| DOL:             | 14         | D        | FS: 9       |              | oud Date: 22 |                    |                |               | I               | Daily       | Footage     | e:              |        | Da      | ily Ro     |               |                  | Total      | Rot Hi          |                                                  |       |
| Torq:            |            | Drag     | <del></del> | Rot V        |              | /U Wgt             |                | Sl            | ack Of          | f Wgt       | :           | Win             | ıd:    | 12      | Seas:      | 4.0           | / 0.0            |            |                 | POB:                                             |       |
| Last. C          | asin       | g Size:  |             | 222          | _ Set i      | At:                |                |               |                 |             |             |                 |        |         | Shoe T     |               |                  | EMW        | Leako           | *                                                | 90    |
| -                |            | s On Ca  |             |              | Om Rot H     |                    | Tasing         | 3/4.3<br>Sinc | 3m M<br>ne Last | ບ<br>- Cali | 13'<br>mer: | 72.1m           |        |         | Worst      |               |                  |            | emaini          |                                                  |       |
| Liner            |            |          | 5119        | 0.0          | Set At:      |                    |                | 01110         |                 |             |             |                 | Liner  | _       |            | wear.         |                  | 0 10       | Спант           |                                                  |       |
|                  |            |          | 0.0         |              |              |                    | MD             |               | 0               | .0 T        |             |                 |        |         |            |               | .0 MD            |            |                 | 0.0                                              |       |
| 1                | M-I        | NORŒ     | A.S.        |              | /pe:MINERAL  | OIL BA             | SED            | 1_            |                 |             |             |                 |        |         |            |               |                  | -          | .5 Gel:         | <del>,                                    </del> | / 9   |
| WL               | API:       | 0.0      |             | 2.0          |              |                    | HTHP: 1        | .0 S          | olids           | ;           | % O.        | 70              | .00    | Water   | r:<br>30.0 | )0 % Sa       | and:             | MB         | Т:              | Ph:                                              |       |
| Pm: 0            | .00        | Pf/Mf    | 0.00        | /0.00        | Carb:        | Cl: 20             | ,000           | à:            |                 | Bent        | :           | Soli            | ds %H  | HG/LO   | <b>3</b> : | /             | %D               | S/Bent     | t:              | /                                                |       |
| 5                | 1KG        | BENTO    | NE 34       |              |              |                    |                |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
|                  |            |          |             |              |              |                    |                |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
| Drlg G           | Gas:       |          | Max Ga      | s:           | Conn Gas:    |                    | Trip G         | as:           |                 | Tr          | ip Cl:      |                 | Remar  | rks:    |            |               |                  |            |                 |                                                  |       |
| Bit Nu           | ımber      | IADC     | Size        | Mar          | ufacturer    | Seria              | al numb        | er            |                 | Jets        | (Quar       | ntity           | - Siz  | ze)     |            | TFA           | A MD             | In         | MD Out          | TVI                                              | D Out |
|                  |            |          |             |              |              |                    |                |               | _               | / -         | /           | - /             | / _    | /       | _          | 0             |                  |            |                 |                                                  |       |
|                  |            |          |             |              |              |                    |                |               | -               | / -         | /           | - /             | / _    | /       | -          | 0             |                  |            |                 |                                                  |       |
| т                | ype        | Met      | ers         | Hours        | WOB          | F                  | RPM            | N             | Motor I         | RPM         | I-Row       | 0-Ro            | w D    | c       | Loc        | В             | G                | Char       | ?Pull           | Cos                                              | t/m   |
|                  | урс        | 1100     |             | 110 01 10    | /            | 1                  | /              |               |                 |             | 1 10"       | 0 110           |        |         | 200        |               |                  | CIICI      |                 | 002                                              | 0,    |
|                  |            |          |             |              | ,            |                    | /              |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
| T∩tal            | Lenc       | th of B  | HA:         |              | BHA Descr    | iption             | <u>′</u><br>1: | <u> </u>      |                 |             | <u> </u>    | <u> </u>        |        |         |            |               | <u> </u>         |            | 1               | <del></del>                                      |       |
| 1001             |            | OL D     |             |              |              |                    |                |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
|                  |            |          |             |              |              |                    |                |               |                 |             |             | Unc ·           | Or To  | arc.    |            | Нолга         | g Cinac          | T a a t    | Tnone           | tion:                                            |       |
|                  | i          |          |             | 1            |              |                    | 1              |               | <del>-  </del>  |             | 1           |                 | On Ja  | ars:    | <u> </u>   | nours         | o pruce          | Last       | Inspec          | LIOU:                                            |       |
| Bit Nu           | ım         | Line     | er ,        |              | Stroke       | ,                  | 5              | SPM .         | Pr              | ess.        | M3/Min      | Jet V           | el :   | DP A    | v DO       | C Av          | Bit kW           | BHH        | P/SQIN          | Pump                                             | kW    |
|                  |            |          | /_          |              |              | <u>/</u>           | /              |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
|                  |            | /        | /_          |              | /            | /                  | /              | /_            |                 |             |             |                 |        |         |            |               |                  |            | _               |                                                  |       |
| Survey           | / MD       | Angle    | Azim        | uth          | Direction    | 7                  | IVD            | N             | I/S Coo         | ordina      | ites        | E/W             | Coon   | dina    | ites       | Vert          | ical Se          | ction      |                 | DLS                                              |       |
|                  |            |          |             |              |              |                    |                |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
|                  |            |          |             |              |              |                    |                |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
|                  |            |          |             |              |              |                    |                |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
|                  |            |          |             |              |              |                    |                |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
| Hours            | Fram       | Act-Ca   | +           |              | Operat       | ions C             | hverin         | 7 24          | Hours           | Endir       | ng at M     | idnid           | nt.    |         |            |               | Tota             | l Hour     | s Repo          | rted:                                            | 24 0  |
|                  |            |          |             | DI TATAT TAT | G BOP ON RIS |                    |                |               |                 |             |             |                 |        | ידיואד. | 2          |               | 100a             | 1 HOUL     | ъ керо          | · ca.                                            | 24.0  |
|                  |            |          |             |              |              | JEIC, 11           | BIING          | care .        | LINES           | 10 33       | 7 11 11     | at DVD          | 11(1 ) | OIVIL   |            |               |                  |            |                 |                                                  |       |
|                  |            |          |             |              | SLIP JOINT   | 614 GET            |                |               |                 | 0.0000      | DIMON       | 4 05            |        | 27.7    |            |               |                  |            |                 |                                                  |       |
| Т                |            | -        |             |              | 6KNOT WIND,  |                    |                |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
| Т                | 1          | 01 - 42  | 0600        | HRS: 4       | 4KNOT WIND,  | 6M SEA             | AS, 2.0        | M HE          | AVE, 1          | L.5DEG      | PITCH,      | 3.0D            | EG RO  | OLL     |            |               |                  |            |                 |                                                  |       |
| Т                |            | 01 - 42  | 0800        | HRS: 3       | 6KNOT WIND,  | 5-8M S             | SEAS, 2        | 2.0M          | HEAVE,          | 1.50        | EG PIT      | н, 3.           | 0DEG   | ROLI    | <u> </u>   |               |                  |            |                 |                                                  |       |
| Т                |            | 01 - 42  | 1000        | HRS: 4       | OKNOT WIND,  | 5-8M S             | SEAS, 2        | 2.0M          | HEAVE,          | 1.50        | EG PITO     | сн, 3-          | 4DEG   | ROLI    | Ĺ          |               |                  |            |                 |                                                  |       |
| Т                | 1          | 01 - 42  | 1200        | HRS: 3       | 6KNOT WIND,  | 5-8M S             | SEAS, 1        | .8M           | HEAVE,          | 1.60        | EG PITO     | н, 2.           | 7DEG   | ROLI    | L          |               |                  |            |                 |                                                  |       |
| Т                | 1          | 01 - 42  | 1400        | HRS: 3       | 6KNOT WIND,  | 5-8M S             | SEAS, 1        | .5M           | HEAVE,          | 1.70        | EG PIT      | н, 2.           | 5DEG   | ROLI    | L          |               |                  |            |                 |                                                  |       |
| Т                |            | 01 - 42  | 1600        | HRS: 3       | 2KNOT WIND,  | 4-7M S             | SEAS, 1        | . <u>5</u> M  | HEAVE,          | 1.60        | EG PITC     | т, 2.           | 3DEG   | ROLI    |            |               |                  |            |                 |                                                  |       |
| Т                |            | 01 - 42  | 1800        | HRS: 2       | 8KNOT WIND,  | 4-7M S             | SEAS, 1        | .2M           | HEAVE,          | 1.50        | EG PITO     | H, 2.           | 0DEG   | ROLI    |            |               |                  |            |                 |                                                  |       |
| 3.00             | 1900       | 01 - 13  | P/U S       | LIPJOI       | NT AND LAND  | ING JOI            | INT; IN        | STAL          | L CHOK          | Œ, KI       | LL & BO     | OSTER           | LINE   | ES; I   | HOOK UI    | P TENS        | SION RI          | NG         |                 |                                                  |       |
| 2.00             | 2200       | 01 - 13  | MOVE        | RIG TO       | WELL CENTRI  | E - CHE            | ECK BUL        | LSEY          | ES BOE          | P=1/2D      | EG, LMF     | RP=1/2          | DEG,   | FLEX    | XJNT=3     | /4DEG         |                  |            |                 |                                                  |       |
|                  |            |          |             |              | TCH BOP'S 2: |                    |                |               |                 |             |             | <u> </u>        |        |         |            |               |                  |            |                 |                                                  |       |
|                  |            |          |             |              |              |                    |                |               |                 |             |             | /07-5           |        | . ~     | TD:== ~    | . 1 ^         | /ADEC C          | m          |                 |                                                  |       |
|                  |            |          | BULLS       | LIES:        | BOP 2DEG STI | 5-rWD,             | LIMRY 2        | JEG .         | otR-F.M         | νυ, ۴'L     | irvini, j   | . / ZUE'G       | sib;   | , GU    | LDEBASI    | <u>в 1 3/</u> | 4UEG S           | TR-F.MD    | )               |                                                  |       |
| Safety           | /:<br>/: . | -        |             |              |              |                    |                |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
| 24 15-           | WH         | LE WAS   | HING DO     | NI NWC       | SACKSTORE,   | MAN GO             | T CHEM         | ICALS         | S IN H          | IS EY       | ES; EYE     | S WERI          | E FLU  | JSHED   | AND M      | IAN CO        | ULD REI          | URN T      | O WORK          |                                                  |       |
|                  |            |          |             |              | ON RISER; W  |                    |                |               |                 |             |             |                 |        |         |            |               | OVE RIG          | ; LAN      | D & LAT         | CH BOI                                           | P'S   |
| Projec<br>Remark | rea (      | reratio  | TI · Silv   | EST CAS      | SING TO 200  | BAR; M             | I/U 8 1        | /2" E         | BHA &           | P/U 5       | " DP; D     | ISPLA           | CE TO  | 1.4     | 15SG LI    | '-OBM         |                  |            |                 |                                                  |       |
|                  |            | DN - 3,  | SERVI       | ICE - 3      | 30, DOLPHIN  | r - 54,            | DOLP           | HIN S         | SERVIC          | E - 9       |             |                 |        |         |            |               | D#               | YS SI      | NCE LAS         | T LTI                                            | - 65  |
|                  |            |          |             |              |              |                    |                |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
| DAILY            | FE CO      | OST: NO  | K 1,120     | 0,693        |              |                    | TO             | ral i         | FE COS          | TS: N       | OK 5,79     | 8,991           |        |         |            |               |                  |            |                 |                                                  |       |
|                  |            | M/U BH   |             |              |              |                    |                |               |                 |             |             |                 |        |         |            |               |                  |            |                 |                                                  |       |
|                  |            | Cost: KI |             | 52 Dai       | ly Tangible  | Cost:              |                |               | Dail            | y Wel       | l Cost:     | KD4 4           | 70 00  | 95      | Incide     | ents:         | FIRST            | ' ATD      |                 |                                                  |       |
|                  |            | st: KR1  |             |              | Tangible C   |                    |                | . 0.51        |                 |             | a           | KR4,4<br>KR71,0 |        |         |            |               | KR134            |            | 100             |                                                  |       |
|                  |            | r: 280.  |             |              | Water: 315.  |                    |                |               | ·               |             |             | KR71,0<br>Weigh |        |         |            | at Cen        | KR134<br>ment: 1 | ,000,0     | 000  <br>Blenda | ed:                                              |       |
|                  |            |          | 0           | -cmtc        |              |                    | 4              | 22.0          |                 |             |             |                 |        |         |            | Dri 11        | Lina Re          | 41.0<br>o: |                 |                                                  |       |
| Countr           | N          | ORWAY    |             |              |              |                    | FORD DO        | OLPHI         | IN              |             | Rig Pl      |                 |        |         | 35         |               |                  |            | RE/DEJC         |                                                  |       |
| Field:           | PL2        | 59       |             |              |              | se: <sub>PL2</sub> |                |               | 1.              |             |             |                 |        |         | 506/3-     |               |                  |            | ell ID:         |                                                  |       |
|                  |            |          |             |              | API No       | : 6506/            | 3-1            |               | AF              | E No:       | KWENO-      | 650631          | 1-001  |         | ]          | Date:         | 30-JUL           | -2001      | Page            | : 1 (                                            | of 1  |

| Measured D             | epth:   | 1386      | .0 m              | TVD:                    | 1384.0               | m               | PBTD:                                    |            | 0.0        | Prop     | osed MI   | ): <u>3</u> | 3625.0             | m Prop   | posed    | TVD:       | 3625                                              | .0 m   |
|------------------------|---------|-----------|-------------------|-------------------------|----------------------|-----------------|------------------------------------------|------------|------------|----------|-----------|-------------|--------------------|----------|----------|------------|---------------------------------------------------|--------|
| DOL: 15                | Г       | FS: 10    |                   | nd Date: 22             |                      |                 | ]                                        | Daily      | Footage    | e: 4     | .0 D      |             |                    | 0.5      |          |            |                                                   | -      |
| Torq: 10               | Dra     | g: " "    |                   | gt: <sub>180.0</sub> P/ |                      | 0 0 S           | lack Of                                  | ff Wgt     | 180        |          |           | Seas        | : 4 0              | / 0 0    | Bar:     | 755        | POB:                                              | 93     |
| Last Casin             |         | •         |                   | Set I                   |                      | *               |                                          |            |            | •        |           | Shoe 7      |                    | 1841     |          | Leak       | •                                                 |        |
| Cum Rot Hr             | _       |           | 339.7             | Cum Rot Hr              | s On Casi            | 13/4.<br>ng Sin | 3m M<br>ce Last                          | t Cali     | iper: _    | 72.1m    | 1         | Worst       |                    |          |          | emaini:    |                                                   | Y      |
| Liner Size             |         |           |                   | Set At:                 |                      |                 |                                          |            |            |          | iner To   |             |                    |          | 0 10     |            |                                                   |        |
|                        |         | 0.0       | _                 |                         | 0.0 MI               | )               | 0                                        | .0 T       |            |          |           |             |                    | .0 MD    | <b>.</b> |            | 0.0                                               | TVD    |
| Mud Co: <sub>M-I</sub> | NORGE   | A.S.      |                   | œ:MINERAL               | OIL BASED            | 1.              | 2 1'1                                    |            | le From    | PIT      | Wt: 144   |             |                    |          |          |            | <del>,                                     </del> | / 11   |
|                        |         | HTHP: 3   | 5.0               |                         | : 0.0 HTHP           | :1.0            | Solids                                   | -          |            | il: 70.0 |           | er:<br>30.  | 00 <sup>%</sup> Sa |          | MBT      |            | Ph:                                               |        |
| Pm: 0.00               | Pf/Mf   | :0.00 /   | 0.00 <sup>C</sup> | arb:                    | Cl: 26,000           | Ca:             |                                          | Bent       | : <b>:</b> | Solid    | s %HG/I   | LG:         |                    | %DS      | S/Bent   | ; <b>:</b> | /                                                 |        |
|                        |         |           |                   |                         |                      |                 |                                          |            |            |          |           |             |                    |          |          |            |                                                   |        |
|                        |         |           |                   |                         |                      |                 |                                          |            |            |          |           |             |                    |          |          |            |                                                   |        |
| Drlg Gas:              |         | Max Gas   | :                 | Conn Gas:               | Trip                 | Gas:            |                                          | Tr         | ip Cl:     | R        | emarks:   | :           |                    |          |          |            |                                                   |        |
| Bit Number             | IADC    | Size      | Manu              | ıfacturer               | Serial n             | ımber           |                                          | Jets       | s (Quar    | ntity -  | Size)     |             | TFA                | MD A     | In       | MD Out     | TVI                                               | D Out  |
| 7                      |         | 215.9     |                   | HUGHES                  | 12137                | 67              | 4-14                                     | .3/ -      | _ / .      | - /      | - /       | / _         | 641.               | 3 1382   | .0 m     |            |                                                   |        |
|                        |         |           |                   |                         |                      |                 | _                                        | / -        |            | - /      | - /       | / _         | 0                  |          |          |            |                                                   |        |
| Туре                   | Me:     | ters H    | ours              | WOB                     | RPM                  |                 | Motor :                                  | RPM        | I-Row      | 0-Row    | DC        | Loc         | В                  | G        | Char     | ?Pull      | Cos                                               | t /m   |
| ABD536PF               |         |           | 0.5               | 0.0/2.0                 | 120 /                |                 |                                          |            | 1 10W      | O Itow   | 200       | 100         |                    |          | CIIGI    | 1          | к 309                                             |        |
| ABD330FF               | 1 -     |           | 0.5               | 0.0/2.0                 | 120 /                |                 |                                          |            |            |          |           |             |                    |          |          |            | K 30:                                             | 3313.  |
| Motol Tong             | +b of T | 1177 •    |                   | RHA Descr               | intion: o            | 1 (0 !!         | 3DDF 36                                  | DII DD     | a pre      | 1m cm    | D G (11.  |             | 6 1/6              | ) DOITE  | D.G. 0   | 1 (0 "     | 114 600                                           | -      |
| Total Leng             |         |           |                   | BHA Descr               |                      |                 |                                          |            |            |          |           |             |                    | Z" PONY  | DC, 8    | 1/2"       | NM-STA                                            | JR     |
| - CDR - 8              | 3 3/8"  | ILS - IO  | SONIC             | MWD SUB - N             | MWD - 7* 6           | 1/2"            | DC - 9                                   | X 5" I     | HWIDP -    |          |           |             | 1                  |          |          |            |                                                   |        |
|                        |         |           |                   |                         | -                    |                 |                                          |            |            | Hrs O    | n Jars:   | 55.0        | Hours              | Since    | Last     | Inspec     | tion:                                             | 55.0   |
| Bit Num                | Lin     | er        |                   | Stroke                  |                      | SPM             | Pr                                       | ress.      | M3/Min     | Jet Ve   | l DP      | Av D        | C Av               | Bit kW   | BHHI     | P/SQIN     | Pump                                              | kW     |
| 7                      | 6 /     | 6 / 6     | 5 30              | 4.8/304.8               | / 304.8 45           | 5/ 45/          | 40                                       | 168        | 0.00       | 0.09     | 0.0       | 00 (        | 0.27               | 0.00     | C        | 0.0        | 0.                                                | 00     |
|                        | /       | /         |                   | / /                     | /                    | / /             |                                          |            |            |          |           |             |                    |          |          |            |                                                   |        |
| Survey MD              | Angle   | Azimut    | h I               | Direction               | TVD                  |                 | N/S Co                                   | ordina     | ates       | E/W (    | Coordin   | ates        | Vert               | ical Sed | ction    |            | DLS                                               |        |
| 1383.1                 | 3.95    | 149.0     | 2                 | S30.98E                 | 1380.6               | 5               |                                          | 62.5       | 3 S        |          | 7.5       | 57 W        |                    | -62.53   |          |            | 0.92                                              |        |
| 1411.4                 | 4.29    | 149.0     |                   | S30.98E                 | 1408.8               |                 |                                          | 64.2       |            |          |           | 52 W        |                    | -64.27   |          |            | 0.36                                              |        |
| 1441.8                 |         |           |                   |                         |                      |                 |                                          |            |            |          |           |             |                    |          |          |            |                                                   |        |
|                        | 4.41    | 149.0     |                   | S30.99E                 | 1439.1               |                 |                                          | 66.2       |            |          |           | 33 W        |                    | -66.25   |          | 1          | 0.12                                              |        |
| 1469.6                 | 4.46    | 150.4     | 6                 | S29.54E                 | 1466.8               |                 |                                          | 68.1       | 1 S        |          | 4.2       | 25 W        | <u> </u>           | -68.11   |          |            | 0.13                                              |        |
| Hours From             | Act-Ca  | it        |                   | Operat                  | ions Cover           | ing 24          | Hours                                    | Endi:      | ng at M    | idnight  | t         |             |                    | Total    | Hour     | s Repo     | rted:                                             | 24.0   |
| 1.50 0000              | 01 - 1  | STROKE    | OUT S             | LIP JNT; CI             | OSE BSR US           | SING A          | COUSTIC                                  | C SYST     | TEM; P/I   | EST WE   | LLHEAD    | CONN &      | : 13 3/            | 8" CSG   | TO       |            |                                                   |        |
| 0000                   | 01 - 1  | 3 30 BAR  | /5 MIN            | , 200 BAR/1             | .5MIN - OK           | P/TE            | ST C&K                                   | LINES      | S TO 30/   | 400 BA   | IR - OK   |             |                    |          |          |            |                                                   |        |
| 3.00 0130              | 01 - 1  | 3 L/D LA  | NDING (           | JNT; INSTAL             | L DIVERTE            | R HOUS          | ING ANI                                  | D TEST     | DIVER      | ER SYS   | STEM - C  | OK; R/D     | RISER              | HANDLI   | NG EQ    | •          |                                                   |        |
| 4.00 0430              | 01 - 0  | 7 R/U ANI | D P/U             | 8 1/2" DRII             | LING BHA 8           | k TIH '         | TO 2621                                  | M; SUR     | RFACE TE   | ST LWD   | /MWD W/   | 2000        | LPM, 5             | 5 BAR -  | OK       |            |                                                   |        |
| 2.00 0830              | 01 - 0  | 7 P/U 21  | JNTS (            | OF 5" DP FF             | OM DECK AI           | D TIH           | TO 463                                   | 3M         |            |          |           |             |                    |          |          |            |                                                   |        |
| 0.50 1030              | 01 - 0  | 5 CONT T  | IH W/             | 5" DP FROM              | DERRICK FI           | ROM 46          | 3M TO 8                                  | 838M       |            |          |           |             |                    |          |          |            |                                                   |        |
| 2.00 1100              | 01 – 14 | 1 D/TFST  | T.MRD (           | CONNECTOR T             | n 30 Bab/i           | SMTN            | 200 BZI                                  | P /1 ∩MT   | IN - OK:   | FINCT    | ידרי מרוי | ים אם י     | S IISTN            | C BLIE   | DUD E    | / MATN     | DANIET                                            |        |
| 2.00 1100              |         |           |                   | MULATOR DRI             |                      |                 |                                          |            |            |          |           |             |                    | о шон    | I OD I   | / I-IFALIN | TANDL                                             | •      |
| 1 00 1300              |         |           |                   |                         |                      |                 |                                          |            |            | E PANE   | л оэтис   | - 1EULO     | W POD              |          |          |            |                                                   |        |
|                        |         |           |                   | Y DP HANG C             |                      |                 |                                          |            |            |          |           |             |                    |          |          |            |                                                   |        |
|                        |         |           |                   | 5" DP F/ 83             |                      |                 |                                          |            |            |          |           |             |                    |          | ம் & S∶  | HUT IN     | WELL                                              |        |
| 1.00 1600              | 01 - 15 | 5 DRILL ( | CMT/PL            | UG F/ 1341              | TO 1371M V           | 1/ 200          | U LPM,                                   | 70 RF      | PM, 0-21   | WOB;     | CIRC W/   | / S/W &     | HELD               | TBT      |          |            |                                                   |        |
| 2.50 1700              | 01 - 01 | L PUMP 1  | 5M3 HI            | VIS LT-OBM              | PILL & DIS           | SPLACE          | HOLE V                                   | WITH 1     | L.44 SG    | LT-OBM   | I; DISPI  | LACE C&     | K LINE             | S AND C  | HOKE     | MANIFO:    | LD TO                                             | LT-OBM |
| 1.00 1930              | 01 - 15 | DRILL S   | SHOE @            | 1374M & CI              | EAN RATHOI           | LE TO           | 1382M V                                  | W/ 215     | 50 LPM,    | 176 BA   | R, 70 F   | RPM, 0-     | 3MT WO             | B;WORK   | THRU     | SHOE S     | EVERAL                                            | TIMES  |
| 0.50 2030              | 01 - 02 | 2 DRILL I | NEW FO            | RMATION F/              | 1382 TO 13           | 386M W          | / 2100                                   | LPM,       | 168 BAF    | R, 120   | RPM, 4-   | -10K NM     | I, 0-1M            | T WOB    |          |            |                                                   |        |
| 1.50 2100              | 01 - 03 | L CIRCUL  | ATE BO            | TTOMS UP AN             | D CONDITIO           | ON MUD          |                                          |            |            |          |           |             |                    |          |          |            |                                                   |        |
| h                      |         |           |                   | IOWN (MEDIE             |                      |                 |                                          | LINESS     | BEING      | UNRELA   | red to    | WORK)       |                    |          |          |            |                                                   |        |
| 24 Hr Summ             | ary: TT | ST CSC T  | 0 200             | BAR; M/U BH             | д & ТТН: Г           | RIT.T.          | . τ. τ. τ. τ. τ. τ. τ. τ. τ. τ. τ. τ. τ. |            | 341™∩ 1    | 374M: 0  | CLEAN P   | ATH∩⊺.F     | ; DRTI             | L TO 129 | 86м; т   |            | 1.8490                                            | G      |
| Projected (            | Operati | ons:      | T.T. 0 1          | 1/2" ברוד די            | ~ 1111 L             | (               | .JI UII                                  | / <u>-</u> | 1          | J. 11.11 | X         |             | . 201111           | _ 10 10  | _ U111 I |            | - • O EO                                          | ,      |
| Remarks:               |         | LK.I      | יחדי 2            | L/Z MULE.               |                      |                 |                                          |            |            |          |           |             |                    |          |          |            |                                                   |        |
| POB: CHEVRO            | ON - 3, | SERVIC    | CE - 30           | ), DOLPHIN              | - 54, DC             | LPHIN           | SERVIC                                   | CE - 9     | 1          |          |           |             |                    | DA       | YS SI    | ICE LAS    | T LTI                                             | - 66   |
| HEAVE: 1.              | 2M, PII | CH 1.0DE  | EG, ROI           | LL 1.7DEG;              | CUTTING SK           | IPS ON          | N BOARD                                  | ): 18      | , OFU      | LL       | , 18EMP   | TY          |                    |          |          |            |                                                   |        |
| DAILY FE C             | OST: NO | K 410,84  | 10                |                         | TOTAL FE             | COSTS           | s: NOK                                   | 6,209      | ,831       |          |           |             |                    |          |          |            |                                                   |        |
| 05:30 OPS:             | CONT T  | O DRILL   | @ 1512            | 2M (+/- 25M             | /HR INCL.            | CONN.           | )                                        |            |            |          |           |             |                    |          |          |            |                                                   |        |
| Daily Mud              | Cost: K | R76,074   | Dail              | y Tangible              | Cost:                |                 | Dail                                     | ly Wel     | .1 Cost:   | KR2,81   | 2,192     | Incid       | ents:              | NO IN    | CIDEN    | repor      | RTED                                              |        |
| Cum Mud Co             |         |           |                   | Tangible Co             | ost: <sub>KD1</sub>  | 747 . 95        |                                          |            | Chat:      |          | 44,159    | Total       | Appr:              | KR134,   | 000 0    | 00         |                                                   |        |
| Drill Wate             |         |           |                   | Water: 280.0            |                      |                 |                                          |            | _          |          | t: 180.   | ) Ne        | eat Cem            | nent: 14 | 11 ^     | Blend      | ed:                                               |        |
| Country:               |         | .0        | - •               |                         | Rig: BYFORD          | 412.0           |                                          |            |            |          | 2 88 03   |             | Drill              | ing Rep  | ±.U      |            |                                                   |        |
| Field:                 | UKWAY   |           |                   | 1                       |                      | WLPH:           | 1LIN                                     |            | J 21       |          |           |             |                    | F        |          |            |                                                   |        |
| Field: PL2             | 59      |           |                   |                         | se: <sub>PL259</sub> |                 | 1.                                       |            |            |          | ll No:    |             |                    |          |          | 11 ID:     |                                                   |        |
|                        |         |           |                   | API No:                 | 6506/3-1             |                 | AF:                                      | т NO:      | KWENO-     | 650631-  | -001      |             | vace:              | 31-JUL-  | -2001    | Page       | : 1 (                                             | of 2   |

| Measur | red D            | epth:    | 1386.    | 0 m      | TVD:                      | 1384.0               | m                                            | PBTD    | :         | 0.0      | Prop             | osed MI    | ): 3     | 625.0    | m Pro    | posed      | TVD:      | 3625     | .0 m  |
|--------|------------------|----------|----------|----------|---------------------------|----------------------|----------------------------------------------|---------|-----------|----------|------------------|------------|----------|----------|----------|------------|-----------|----------|-------|
| DOL:   | 15               | DI       | 7S: 10   |          | nd Date: 22               |                      |                                              |         | Daily     | Footage  |                  |            | aily Ro  |          |          |            |           |          |       |
| Torq:  | 10               | Drag     | r: 0.0 F | Rot Wg   | at: 180.0 P               | /U Wgt: 18           | 0.0 SI                                       | lack C  | off Wgt   | : 180.0  |                  |            | Seas:    | 4.0      | / 0.0    | Bar:       | 755       | POB:     | 93    |
| Last C | asin             | g Size:  |          | 339.7    | Set i                     |                      | 1374.                                        |         |           |          | '2.1m            |            | _        |          | 1841     |            | Leako     |          | Y     |
| Cum Ro | t Hr             | s On Ca  |          | 7.0      | Cum Rot Hi                | rs On Casi           | ng Sin                                       | ce Las  | st Cali   | per: 7   | 0                |            | Worst    |          |          |            | emainir   | ng:      | -     |
| Liner  | Size             | :        | 0.0      |          | Et At:                    | 0.0 M                |                                              |         | 7T 0.0    |          |                  | iner Top   | At:      | 0        | .0 MD    | <u> </u>   |           | 0.0      | TVD   |
| Mud Co | . <sub>M_T</sub> | NORGE 2  |          | Тур      | œ: <sub>MINERAL</sub>     |                      |                                              |         |           |          | . <sub>DTT</sub> | Wt: 144    | FV:      |          |          | /P:13      | 5 Gel:    |          | ,     |
| WL     | ADT:             | 0.0      | HTHP: 3. |          |                           | : 0.0 HTHP           |                                              | Solids  |           |          |                  | 00 Wate    |          |          |          | MBT        |           | Ph:      | 11    |
| I Dm:  | API:             | Pf/Mf:   | 0.00 /   | . U      | arb:                      | Cl: 26,000           |                                              |         | Bent      |          |                  | ls %HG/I   |          | <u>/</u> |          | S/Bent     | :         |          |       |
| 0      | .00              |          | 0.00 /   | 7.00     |                           | 26,000               |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  |          |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
| Drlg G | lag:             |          | Max Gas: |          | Conn Gas:                 | Trin                 | Gas:                                         |         | Tr:       | ip Cl:   | F                | Remarks:   |          |          |          |            |           |          |       |
|        |                  |          |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          | _          | 1500      | T        |       |
| Bit Nu | mber             | TALC     | Size     | Manu     | ıfacturer                 | Serial n             | umber                                        |         | Jets<br>/ | (Quan    | tity -<br>/      | - Size)    | , _      | TFA      | MD       | In         | MD Out    | 1771     | O Out |
|        |                  |          |          |          |                           |                      |                                              | _       | <u> </u>  |          | - /<br>- /       | - /<br>- / |          | 0        |          |            |           |          |       |
|        |                  | 3.5      |          | <u> </u> | 1100                      | DD14                 |                                              | Mohara  | DDM.      | 7        | ,                | 7          |          | +        |          | al         | 20.11     |          | . ,   |
| T      | ype              | Met      | ers Ho   | urs      | WOB                       | RPM                  |                                              | Motor   | RPM       | I-Row    | 0-Row            | ) DC       | Loc      | В        | G        | Char       | ?Pull     | Cos      | t/m   |
|        |                  |          |          |          | /                         | /                    |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
| m-+-1  | T                | Ll F Di  |          |          | RHA Desar                 | intion: o            | 1 (0 !!                                      |         |           |          |                  | ~ /        |          | - 1/0    |          | 0          | 1 (0 :: . |          |       |
|        |                  |          | HA: 262. |          |                           | iption: 8            |                                              |         |           |          |                  |            |          |          | Y" PONY  | DC, 8      | 1/2"      | nivi-STA | AR.   |
| - CDI  | .t – 8           | 3 3/8" I | LS - IOS | ONIC     | MWD SUB - 1               | MWD - 7* 6           | 1/2"                                         | ιc - 9  | 9X 5" F   | HWDP - 6 |                  |            |          |          | Q-1      | T = -1 '   | Tn == :   |          |       |
|        | 1                |          |          | 1        |                           | <u> </u>             |                                              |         | 1         | Г        |                  | n Jars:    |          | -        |          | 1          | ì         |          |       |
| Bit Nu | m                | Line     | er ,     | _        | Stroke /                  | ,                    | SPM                                          | F       | ress.     | M3/Min   | Jet Ve           | el DP 2    | Av DO    | 2 Av     | Bit kW   | BHHE       | /SQIN     | Pump     | kW    |
|        | _                |          |          | _        |                           | /                    | <u>/ /</u>                                   |         |           |          |                  |            | -        |          |          | -          |           |          |       |
|        |                  |          |          |          |                           | <u> </u>             | <u>/                                    </u> |         |           |          |                  |            |          |          |          |            |           |          |       |
| Survey | MD               | Angle    | Azimuth  | ı I      | Direction                 | TVD                  | 1                                            | N/S C   | cordina   | ites     | E/W              | Coordin    | ates     | Vert     | ical Se  | ction      |           | DLS      |       |
|        |                  |          |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  |          |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  |          |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  |          |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
| Hours  | From             | Act-Cat  |          |          | Operat                    | ions Cover           | ring 24                                      | Hour    | s Endi:   | ng at M  | idnigh           | t          |          |          | Total    | l Hour     | s Repoi   | rted:    | 24.0  |
| 1.50   | 2230             | 01 - 17  | R/U CMT  | LINE     | S & P/TEST                | TO 80BAR;            | PERFO                                        | RM LOI  | USING     | 1.44 S   | G LT-C           | BM; LOI    | PRES 3   | 1.84 S   | G EMW    |            |           |          |       |
|        |                  | 01 - 17  | 5MIN BL  | EED D    | OWN PRESSUE               | RE 1.82 SG           | EMW,                                         | 15MIN   | BLEED     | DOWN PR  | ESSURE           | 1.80 S     | SG EMW   |          |          |            |           |          |       |
|        |                  | _        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  | -        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  | -        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  | _        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  | -        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  | _        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  | _        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  | _        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  | _        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  | _        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  |          |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  | _        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  | _        |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
| Safety | <br>': ,         | -        | <u> </u> | n        | TOTAL /                   | TTAC' ===            | 70                                           | mc '-   |           | DET:-    |                  | mps =-     |          |          |          |            |           |          |       |
| 24 Hr  | MAI<br>Summ      | N HAD TO | BE SENT  | 1 TO T   | IOWN (MEDIE               | VAC) DUE T           | U ILIN                                       | ies (I  | LLNESS    | BEING    | UNRELA           | TED TO     | WORK)    |          |          | 0.5-       |           |          | _     |
| Projec | ted (            | Deratio  | ons:     | ) 200E   | BAR; M/U BH<br>1/2" HOLE. | A & TIH; I           | KILL C                                       | U'I' CM | T F/ 1    | 341TO 1  | 3 /4M;           | CLEAN R    | A'IHOLE; | DRIL     | ∟ 'TO 13 | 86M; I     | OT TO     | 1.84S    | خ     |
| Remark |                  | peracre  | DRII     | LL 8 1   | 1/2" HOLE.                |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  |          |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  |          |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  |          |          |          |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
|        |                  |          |          | +        |                           |                      |                                              |         |           |          |                  |            |          |          |          |            |           |          |       |
| Daily  | Mud (            | Cost: KF | 276,074  |          | y Tangible                |                      |                                              | Dai     | ly Wel    | l Cost:  | KR2,81           | 2,192      | Incide   |          |          |            | REPOR     | TED      |       |
| Cum Mu | d Cos            | st: KR1  | ,803,393 | Cum      | Tangible C                | ost: KR1,            | 747,95                                       | 1 Cun   | n Well    | Cost:    | KR73,8           | 44,159     | Total    | Appr:    | KR134,   | 000,00     | 00        |          |       |
|        |                  | r: 260.  |          |          | Water: 280.               |                      | 412.0                                        |         |           | Bulk     | Weigh            | t: 180.0   | ) Ne     | at Cen   | ent: 1   | 41.0       | Blende    |          |       |
| Countr |                  |          |          |          |                           | Rig: BYFORD          |                                              |         |           |          |                  | 2 88 03    | 35       | Drill    | ing Rep  | ):<br>MOOR | E/BJOR    | HEIM/S   | SMJ   |
| Field: | PL2              | 59       |          |          | 1                         | se: <sub>PL259</sub> |                                              |         |           | •        |                  | ell No:    | 5506/3-  | 1        |          | We         | 11 ID:    | UB5908   | 3 -0  |
|        |                  | -        |          |          |                           | : 6506/3-1           |                                              | AI      | FE No:    | KWENO-   |                  |            |          |          | 31-JUL   |            | 1         | : 2 (    |       |

| Measured              | Dep   | oth:       | 1698.                                         | 0 m      | TVD:                   | 1695.                | . 0 m    | PB'   | TD:         | 0.0                                          | Prop             | posed M             | ): <u>{</u>    | 3625.0   | m Proj   | posed           | TVD:      | 3625       | .0 m    |
|-----------------------|-------|------------|-----------------------------------------------|----------|------------------------|----------------------|----------|-------|-------------|----------------------------------------------|------------------|---------------------|----------------|----------|----------|-----------------|-----------|------------|---------|
| DOL:                  | 16    | DF         | s: 11                                         | Spu      | d Date: 22             | -JUL-200             | )1       |       | Daily       | Footag                                       | e: 31            | .2.0 D              |                |          | : 11.5   |                 |           | rs: 48     | 3.5     |
| Torq:                 | 8     | Drag       | : <sub>0.0</sub> F                            | ot Wg    | t: <sub>180.0</sub> P/ | /U Wgt:              | 180.0    | Slack | Off Wg      | t: 180.                                      |                  |                     | Seas           | : 4.0    | / 0.0    | Bar:            | 763       | POB:       | 93      |
| Last Cas:             | ing   |            | <del></del>                                   | 339.7    | Set I                  |                      | 1374     |       |             |                                              | 72.1m            |                     | 1              | Test:    | 1841     |                 | Leako     | off?       | Y       |
| Cum Rot I             | Hrs   | On Cas     | sing:                                         |          | Cum Rot Hr             | s On Ca              |          |       |             |                                              | 7 <b>2 .</b> III |                     | Worst          | Wear:    |          |                 | emaini    | ng:        | -       |
| Liner Si              | ze:   |            | 0.0                                           |          | et At:                 | 0.0                  | MD       |       | 0.0         |                                              | L                | iner To             | p At:          | 0        | .0 MD    |                 |           | 0.0        | TVT     |
| Mud Co: <sub>M</sub>  | T 1   |            |                                               | Typ      | e: <sub>MINERAL</sub>  |                      |          |       | i           |                                              | i: ET OM         | Wt.: 150            | 5 FV:          |          | : 53     | TP: 16          | n Gel:    |            | ,       |
| TATT.                 |       |            |                                               | FC       | ٦, ١                   |                      |          | Soli  | ds:         | 8 0                                          | il:<br>67.       |                     | er:<br>33.     |          |          | MB <sup>r</sup> |           | 9 /<br>Ph: | 14      |
| Dm:                   |       |            | HTHP: 1.                                      | . 0      | API                    | : 0.0 HT             |          |       | Ben         |                                              |                  | 00<br>ls %HG/I      |                | 00       |          | S/Bent          | · :       |            |         |
| 0.00                  | 0     | 1 1/111    | 0.00 /0                                       | 0.00     |                        | Cl: 34,5             | 500      |       | Den         |                                              | BOIL             | 25 010/1            |                | /        | 0.01     | 37 DCII1        |           | /          |         |
|                       |       |            |                                               |          |                        |                      |          |       |             |                                              |                  |                     |                |          |          |                 |           |            |         |
|                       |       |            |                                               |          | 1                      |                      |          |       | <u> </u>    |                                              |                  |                     |                |          |          |                 |           |            |         |
| Drlg Gas              | :     | 35 I       | /ax Gas:                                      | 153      | Conn Gas:              | Ti                   | rip Gas: |       | Tr          | rip Cl:                                      | I                | Remarks             | MAX G          | AS 4.7   | 3% WHIL  | E CIR           | C BTM'S   | UP @       | 1698M   |
| Bit Numb              | er :  | IADC       | Size                                          | Manu     | facturer               | Serial               | number   |       | Jet.        | s (Quai                                      | ntity -          | - Size)             |                | TF       | A MD     | In              | MD Out    | TVI        | Out     |
| 7                     |       |            | 215.9                                         | 1        | HUGHES                 | 121                  | 3767     | 4 -   | -14.3/      | <u>     /                               </u> | <u>     /</u>    | - /                 | <u>/</u>       | 641      | .3 1382  | 2.0 m           |           |            |         |
|                       |       | _, _       |                                               | <u> </u> |                        | +                    | -        |       | - / -       | - /                                          | - /              | - /                 | / <sub>-</sub> | 0        |          |                 | i         |            |         |
| Type                  | 9     | Mete       | ers Ho                                        | urs      | WOB                    | RPI                  | M        | Moto  | or RPM      | I-Row                                        | 0-Rov            | v DC                | Loc            | В        | G        | Char            | ?Pull     | Cos        | t/m     |
| ABD536                | БРН   | 316        | 5.0 12                                        | 2.0      | 0.0/7.0                | 120 /                | 180      |       |             |                                              |                  |                     |                |          |          |                 |           | к 922      | 29.92   |
|                       |       |            |                                               |          | /                      | /                    |          |       |             |                                              |                  |                     |                |          |          |                 |           |            |         |
| Total Le              | ngtl  | n of BI    | HA: 262.                                      | 12 m     | BHA Descr              | iption:              | 8 1/2"   | ABD!  | 536PH PD    | C BIT -                                      | NB ST            | AB C/W              | FLOAT          | 6 1/     | 2" PONY  | DC, 8           | 3 1/2"    | NM-STA     | ΔB      |
|                       |       |            |                                               |          | MWD SUB - N            | 1WD - 7*             | 6 1/2"   | DC -  | - 9X 5"     | HWDP -                                       | 6 1/2"           | JARS -              | 8X 5"          | HWDP     |          |                 |           |            |         |
|                       |       |            |                                               |          |                        |                      |          |       |             |                                              | Hrs (            | n Jars:             | 69.7           | Hours    | s Since  | Last            | Inspec    | tion:      | 69.7    |
| Bit Num               |       | Line       | r                                             |          | Stroke                 |                      | SPM      |       | Press.      | M3/Min                                       | Jet V            | el DP               | Av             | C Av     | Bit kW   | БНН             | P/SQIN    | Pumo       | kW      |
| 7                     | 6     |            | 5 / 6                                         | 30       | 4.8/304.8              | / 304.8              |          | ,     | 248         | 0.00                                         |                  |                     |                | 0.24     | 0.00     |                 | 0.0       | 0.         |         |
|                       |       | /          | /                                             |          | /                      | /                    |          | /     |             |                                              |                  |                     |                |          |          |                 |           |            |         |
| Survey M              | D 7   | /<br>Angle | /<br>Azimuth                                  | , ,      | irection               | TV                   | <u> </u> | NT /C | Coordin     | atos                                         | E' / TAT         | Coordin             | atog           | Vort     | ical Se  | ation           |           | DLS        |         |
| _                     |       |            |                                               |          |                        |                      |          | IN/S  |             |                                              | E/W              |                     |                | vert     |          |                 |           |            |         |
| 1555.6                |       | 4.58       | 147.89                                        |          | S32.11E                | 1552                 |          |       | 73.9        |                                              |                  |                     | 85 W           |          | -73.94   |                 |           | 0.13       |         |
| 1584.6                |       | 4.57       | 146.38                                        |          | S33.62E                | 1581                 | L.4      |       | 75.8        | 88 S                                         |                  | 0.4                 | 11 E           |          | -75.88   |                 |           | 0.13       |         |
| 1613.1                |       | 4.54       | 149.28                                        |          | S30.72E                | 1609                 | 8.6      |       | 77.7        | 19 S                                         |                  | 1.6                 | 52 E           |          | -77.79   |                 |           | 0.25       |         |
| 1641.8                | 4     | 4.55       | 147.28                                        |          | S32.72E                | 1638                 | 8.4      |       | 79.7        | 72 S                                         |                  | 2.8                 | 32 E           | <u> </u> | -79.72   |                 |           | 0.17       |         |
| Hours Fr              | om A  | ct-Cat     |                                               |          | Operat                 | ions Cov             | ering 2  | 4 Ho  | urs Endi    | ng at N                                      | Iidnigh          | t                   |                |          | Total    | Hour            | s Repo    | rted:      | 24.0    |
| 11.50 00              | 000   | 01 - 02    | DRILL 8                                       | 1/2"     | HOLE SECTI             | ON F/ 1              | 386 TO 1 | 1698M | 1 TAKING    | A SURV                                       | EY EVEI          | RY CONNE            | ECTION         |          |          |                 |           |            |         |
|                       | (     | 01 - 02    | F/ 1386                                       | TO 15    | 30M, DRILI             | W/ 120               | -180 RPI | м,257 | 70 LPM,     | 0-3MT W                                      | DB, 5-8          | BK NM T             | /Q;AT 1        | .530M I  | NCREASE  | TO 2            | 750 LPI   | M,5-7M     | II' WOB |
|                       | (     | 01 - 02    | CONTROL                                       | ROP 7    | ro 30m/hr <i>a</i>     | WG F/ 1              | 615M; A  | г 167 | 75M, COM    | MENCED '                                     | ro inci          | REASE MU            | JDWEIGH        | IT F/ 1  | 1.45 TO  | 1.5 S           | G         |            |         |
| 1.00T11               | .30 ( | 01 - 60    | DURING (                                      | CONNEC   | CTION, WELL            | FLOWED               | - SHUT   | IN W  | VELL ON     | UPPER A                                      | NULAR            | (1145HF             | R);OBSE        | RVE SI   | CP=200   | PSI,            | TOTAL (   | GAIN =     | 4M3     |
| Т                     | (     | 01 - 60    | BLED OF                                       | F 0.55   | 5M3 TO T/T             | THRU CH              | OKE - SI | HUT I | IN CHOKE    | , SICP=                                      | 200 PS           | I; FILL             | PIPE A         | ND BUN   | IP FLOAT | , SID           | P=300 1   | PSI        |         |
| 3.50T12               | 30 (  | )1 - 60    | CIRC BI                                       | M'S UI   | BY DRILLE              | RS METH              | OD USIN  | G 1.5 | OSG MUD     | ; MAX G                                      | AS WAS           | 4.6% AT             | r bim's        | UP; E    | FINAL GA | AS = 2          | .0%;      |            |         |
| 1.00T16               | 500   | 01 - 60    | FLOWCHE                                       | CK WEI   | LL ON TRIP             | TANK -               | SLIGHT I | FLOW, | 0.15M3      | RETURN                                       | S; CLOS          | SE CHOKE            | E; SICF        | =150 E   | PSI, SII | )P= +/          | - 200 1   | PSI        |         |
| 2.00T17               | 00'   | 01 - 60    | BLED DO                                       | WIN CSO  | PRES. TO               | 0 PSI T              | O TRIP ' | TANK  | WITH 0      | PSI SIC                                      | P AND S          | SIDP REC            | CORDED         | OVER 4   | 15MINUTE | S               |           |            |         |
| Т                     | (     | 01 - 60    | DISPLAC                                       | E RISI   | ER TO 1.5SG            | MUD US               | ING BOOK | STER  | PUMP;CL     | OSE LOW                                      | ER ANN           | JLAR; WI            | HILE RE        | LAXIN    | UPPER    | ANNUL           | AR, GA    | INED 2     | .7 M3   |
| Т                     |       |            |                                               |          | CLOSE LOWE             |                      |          |       |             |                                              |                  |                     |                |          |          |                 | -         |            |         |
| <u> </u>              |       |            |                                               |          | VELL BY CLO            |                      |          |       |             |                                              |                  |                     |                |          |          |                 |           |            |         |
| T                     |       |            |                                               |          | IRC ACROSS             |                      |          |       |             |                                              |                  |                     |                |          |          |                 | HRII Ca-1 | K T.TNF    | AND     |
|                       |       |            |                                               |          |                        |                      |          |       |             |                                              |                  |                     |                |          |          |                 |           |            |         |
| T                     |       |            |                                               |          | OPEN L-A; C            |                      |          |       |             |                                              |                  |                     |                |          |          |                 |           |            |         |
| T                     |       |            |                                               |          | IN 5MIN; C             |                      |          |       |             |                                              |                  |                     |                |          |          |                 |           | L'ABLIS    | H       |
| T<br>Safety:          |       |            |                                               |          | NCREASE TO             |                      | , 5.5K 1 | NM; P | A'IT'EMPT ' | 10 CIRC                                      | W/ 260           | JLPM, 34            | 1.5 BAR        | e – Wei  | LL BEGAI | N FLO           | WING      |            |         |
|                       |       |            |                                               |          | OUT INFLUX             |                      |          |       |             |                                              |                  |                     |                |          |          |                 |           |            |         |
|                       |       |            |                                               |          | E F/ 1386              |                      |          |       |             |                                              |                  |                     | 200 PS         | I; CIR   | C OUT I  | NFLUX           |           |            |         |
| Projected<br>Remarks: |       | eratic     | us: CIRO                                      | COUT     | INFLUX; DI             | SPLACE F             | HOLE TO  | KILL  | MUD; DE     | RILL 8 1                                     | ./2" HC          | LE                  |                |          |          |                 |           |            |         |
|                       |       | 1 - 3,     | SERVICE                                       | - 30     | , DOLPHIN              | - 54,                | DOLPHIN  | SER   | VICE - 9    | )                                            |                  |                     |                |          | DA       | YS SII          | NCE LAS   | T LTI      | - 67    |
| HEAVE: (              | 18.0  | M, PITC    | H 0.7DE                                       | , ROL    | L 1.6DEG;              | CUTTING              | SKIPS (  | N BO  | ARD: 37     | , O FULI                                     | , 37EM           | IPTY                | (ON HI         | GHLAND   | STAR -   | 6 FU            | LL, 59    | EMPTY      | )       |
| DAILY FE              | COS   | ST: NOK    | 416,405                                       | 5        |                        | TOTAL                | FE COST  | rs: N | OK 6,626    | 5,236                                        |                  |                     |                |          |          |                 |           |            |         |
|                       |       |            |                                               |          |                        |                      |          |       |             |                                              |                  |                     |                |          |          |                 |           |            |         |
| Daily Mud             | d Co  | ost: KR    | 156,198                                       | Dail     | y Tangible             | Cost:                |          | D     | aily We     | ll Cost                                      | KR2,79           | 97,881              | Incid          | ents:    | NO IN    | CIDEN           | repor     | RTED       |         |
| Cum Mud (             |       |            |                                               |          | Tangible Co            | ost: <sub>vp</sub>   | 1,747 9  |       | Cum Well    | Chat:                                        |                  | 42,040              | Total          | Appr:    | KR134,   | 000 0           | 00        |            |         |
| Drill Wat             |       |            |                                               |          | ater: 230.0            |                      |          |       |             |                                              |                  | t: <sub>285</sub> . | O Ne           | eat Cer  | ment: 14 | 11 n            | Blende    | ed:        |         |
| Country:              |       |            | <u>,                                     </u> |          |                        | Rig: BYFO            | 400.     |       |             |                                              |                  | 285.                |                | Dril     | ling Rep | : 1.U           |           |            | CMT     |
| Field: PI             | NO    | YAWX       |                                               |          |                        |                      |          | TIN   |             |                                              |                  | 2 88 03<br>ell No:  |                | 1        |          |                 | RE/BJOR   |            |         |
| PI                    | ь259  | 1          |                                               |          |                        | se: <sub>PL259</sub> |          |       | AFE No:     | TATA TATA                                    |                  |                     | J D O O / 3-   |          | 01-AUG   |                 |           | : 1 (      |         |
|                       |       |            |                                               |          | PLT INO.               | -5 / anco            | Τ        |       | 110.        | T/MFTMQ-                                     | Tranco           | -UUT                |                |          | UT-AUG   | -∠UU⊥           | raye      | - т (      | JL 4    |

| Measured              | Depth:                                           | 1698.0              | O m           | : 1695.0      | m                                             | PBTD:    |            | 0.0      | Proj     | posed MI   | ): 3     | 625.0   | m Proj     | posed    | TVD:    | 3625.      | 0 m   |
|-----------------------|--------------------------------------------------|---------------------|---------------|---------------|-----------------------------------------------|----------|------------|----------|----------|------------|----------|---------|------------|----------|---------|------------|-------|
| DOL: 16               | 5 [                                              | FS: 11              | Spud Date:    | 22-JUL-2001   |                                               | Da       | aily 1     | Footage  | e: 31    | L2.0 D     |          |         | : 11.5     |          |         | s: 48      | .5    |
| Torq: 8               | Dra                                              | g: <sub>0.0</sub> R | ot Wgt: 180.0 | P/U Wgt: 18   | 30.0 SI                                       |          |            |          |          |            | Seas:    | 4.0     | / 0.0      | Bar:     | 763     | POB:       | 93    |
| Last Casi             |                                                  |                     |               | et At:        |                                               | 3m MD    |            | 137      |          |            |          |         | 1841       |          | Leako   |            | Y     |
| Cum Rot H             | rs On Ca                                         | aina:               |               | t Hrs On Casi |                                               |          |            |          | 2.111    |            | Worst    |         |            |          | emainir | ıg:        |       |
| Liner Size            | e:                                               | 0.0                 | Set At:       | 0.0 M         | D.                                            | 0.0      | ) TV       | TD       | L        | iner To    | At:      | 0       | .0 MD      |          |         | 0.0        | TVD   |
| Mud Co: <sub>M-</sub> | T MODOT                                          |                     | Type: MINIE   | RAL OIL BASED |                                               |          |            |          | : ET OM  | Wt: 150    | 5 FV: 1  |         |            | P: 16    | n Gel:  |            | ,     |
| WL                    | I NORGE                                          | A.S.                |               |               | (                                             | Solids:  |            |          |          | .00 Wate   |          |         |            | MBT      |         | 9 /<br>Ph: | 14    |
| Dm:                   | Pf/Mf                                            | HTHP: 1.            |               | API: 0.0 HTHE | 7:1.0                                         |          | Bent:      |          |          | ds %HG/I   |          | 00      |            | S/Bent   | :       |            |       |
| 0.00                  |                                                  | 0.00 / 0            | .00 Carb:     | Cl: 34,500    | )                                             |          |            |          | 0011     |            |          |         | 02,        | 9, 20110 |         |            |       |
|                       |                                                  |                     |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
|                       |                                                  |                     | la é          |               |                                               |          | - ·        | G1 -     | 1.       |            |          |         |            |          |         |            |       |
| Drlg Gas:             | 35                                               | Max Gas:            | 153 Conn C    | as: Tri       | p Gas:                                        |          | Tri        | p Cl:    |          | Remarks:   | MAX GA   | AS 4.7  | 3% WHIL    | E CIRC   | BTM'S   | UP @1      | L698M |
| Bit Numbe             | r IADC                                           | Size                | Manufacture   | r Serial n    | umber                                         |          | Jets<br>,  | (Quar    | ntity    | - Size)    | ,        | TFA     | MD A       | In       | MD Out  | TVI        | Out   |
|                       |                                                  |                     |               |               |                                               | -        | <u>/ -</u> |          | - /      | <i>- /</i> | <u> </u> | 0       |            |          |         |            |       |
|                       |                                                  |                     |               |               | -                                             | -        | <u>/ -</u> | / -      | - /      | - /        | <u> </u> | 0       | <u> </u>   |          | i       |            |       |
| Type                  | Me                                               | ters Ho             | urs WOB       | RPM           |                                               | Motor RI | PM         | I-Row    | O-Ro     | w DC       | Loc      | В       | G          | Char     | ?Pull   | Cost       | c/m   |
|                       |                                                  |                     | /             | /             |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
|                       |                                                  |                     | /             | /             |                                               |          |            |          | <u> </u> |            |          |         |            |          |         |            |       |
| Total Leng            | gth of I                                         | BHA: 262.           | 12 m BHA De   | scription: 8  | 3 1/2"                                        | ABD536PI | H PDC      | BIT -    | NB ST    | 'AB C/W    | FLOAT -  | 6 1/2   | 2" PONY    | DC, 8    | 1/2" [  | M-STA      | В     |
| - CDR -               | 8 3/8"                                           | ILS - IOS           | ONIC MWD SUB  | - MWD - 7* 6  | 1/2"                                          | DC - 9X  | 5" Н       | WDP - 6  | 5 1/2"   | JARS -     | 8X 5"    | HWDP    |            |          |         |            |       |
|                       |                                                  |                     |               |               |                                               |          |            |          | Hrs (    | On Jars:   | 69.7     | Hours   | Since      | Last :   | Inspect | ion:       | 59.7  |
| Bit Num               | Lin                                              | er                  | Stroke        |               | SPM                                           | Pre      | ss. I      | M3/Min   | Jet V    | el DP.     | Av DO    | C Av    | Bit kW     | ВННР     | /SQIN   | Pump       | kW    |
|                       | /                                                | /                   | /             | /             | / /                                           |          |            |          |          |            |          |         | - 41       |          |         |            |       |
|                       |                                                  | /                   | /             | /             | ///                                           |          |            |          |          |            |          |         |            |          |         |            |       |
| Survey MD             | Angle                                            | Azimuth             | Direction     | n TVD         | <u>, , , , , , , , , , , , , , , , , , , </u> | N/S Coor | dina       | t.es     | E/W      | Coordin    | at.es    | Vert:   | ical Se    | ction    |         | DLS        |       |
|                       | 5                                                |                     |               |               |                                               | ., .     |            |          |          |            |          |         |            |          |         |            |       |
|                       |                                                  |                     |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
|                       |                                                  |                     |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
|                       |                                                  |                     |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
|                       | <del>                                     </del> | 1                   |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
| Hours Fra             |                                                  |                     |               | rations Cover |                                               |          |            | ng at M  | idnigh   | ıt         |          |         | Total      | Hour     | s Repor | rted:      | 24.0  |
| Т                     |                                                  |                     |               | : ISICP=250 P |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
| 1.50T 223             | 0 01 - 6                                         | MONITOR             | WELL WHILE    | BUILDING 1.52 | MUD II                                        | N PITS - | SIC        | P INCRE  | CASED 1  | F/ 250 T   | O 290 1  | PSI     |            |          |         |            |       |
| Т                     | 01 - 6                                           | 0                   |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
| Т                     | 01 - 6                                           | 0                   |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
| Т                     | 01 - 60                                          | )                   |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
| Т                     | 01 - 6                                           | 0                   |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
| Т                     | 01 - 60                                          | PRES. OF            | PS: CIRC 1.5  | 2SG MUD; MAX  | GAS 8.9                                       | 9% - MW  | CUT :      | го 1.32  | SG (S    | ALT WATE   | R CONT   | TANIMA  | ION)       |          |         |            |       |
| Т                     | 01 - 60                                          | )                   |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
| Т                     | 01 - 60                                          | )                   |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
| Т                     | 01 - 60                                          | )                   |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
| Т                     | 01 - 60                                          | )                   |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
|                       | -                                                | <u> </u>            |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            | ]     |
|                       | -                                                |                     |               |               | _                                             |          | _          | _        |          |            | _        |         | _          |          | _       | _          |       |
|                       | -                                                |                     |               |               | _                                             |          |            | _        | _        |            | _        | _       | _          | _        | _       | _          |       |
|                       | _                                                |                     |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
| Safety: Ti            | BT PRIOR                                         | TO CIRCU            | LATE OUT INE  | LUX           |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
|                       |                                                  |                     |               | 86 TO 1698M;  | WEII. F                                       | LOWF!    | 1698       | M – 4M   | 3 GATN   | 1, STCP=   | 200 PST  | ; CTR   | ב סנודי דו | NFLIX    |         |            |       |
| Projected             | Operati                                          | ons: CTRO           | OUT INFILIX   | DISPLACE HO   | E TO K                                        | TIJ. MID | : חפו      | т.т. 8 1 | /2" HC   | T.F        | 200 101  | ., 0211 | 0 001 1    |          |         |            |       |
| Remarks:              |                                                  | GIII                |               | 210111011101  | 22 10 1                                       | 1100     | , 2101     |          | 72 110   | ,          |          |         |            |          |         |            |       |
|                       |                                                  |                     |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
|                       |                                                  |                     |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
|                       |                                                  |                     |               |               |                                               |          |            |          |          |            |          |         |            |          |         |            |       |
| D 13                  | ~                                                |                     | D 13 - :      | 11 ~ :        |                                               |          |            | 1 ~      |          |            |          |         |            |          |         |            |       |
| Daily Mud             |                                                  |                     | Daily Tangi   |               |                                               |          |            | a        |          | 97,881     | Incide   |         |            |          | REPOR   | TED        |       |
| Cum Mud C             |                                                  |                     |               | e Cost: KR1,  |                                               | 1 Cum W  | iett (     |          |          | 542,040    | Total    | Appr:   | KR134,     | 000,00   |         |            |       |
| Drill Wate            |                                                  | .0 Pota             | ble Water: 2  |               | 400.0                                         |          |            |          |          | nt: 285.0  | ) Ne     | at Cem  | ent: 14    | 11.0     | Blende  |            |       |
| Country:              | NORWAY                                           |                     |               | Rig: BYFORI   | DOLPH                                         | ΠN       |            | Rig Ph   |          | 2 88 03    | 35       | Drill   | ing Rep    | MOOR     | E/BJOR  | HEIM/S     | SMJ   |
| Field: PL2            | 259                                              |                     |               | Lease: PL259  |                                               |          |            |          | We       | ell No:    | 5506/3-  | 1       |            | We:      | ll ID:  | JB5908     | -0    |
|                       |                                                  |                     | API           | No: 6506/3-1  |                                               | AFE      | No:        | KWENO-   | 650631   | -001       |          | Date:   | 01-AUG     | -2001    | Page    | : 2 (      | of 2  |

| Measured I             | epth:    | 1698.                | O m             | 1695.0 m                   | PBT     | D:           | 0.0      | Propo              | osed MD | ): 3     | 8625.0 i | m Prop            | osed       | TVD:    | 3625.0 m     |
|------------------------|----------|----------------------|-----------------|----------------------------|---------|--------------|----------|--------------------|---------|----------|----------|-------------------|------------|---------|--------------|
| DOL: 17                | E        | DFS: 12              |                 |                            |         | Daily        | Footage  | : 0.               | 0 Da    | aily Ro  | ot Hrs:  |                   |            |         | rs: 48.5     |
| Torq: 0                | Dra      | g: <sub>90.0</sub> R | Lot Wgt: 0.0    | P/U Wgt: 90.0              | Slack   | Off Wgt      | 0.0      |                    |         | Seas     | : 2.0    | / 0.0             | Bar:       | 762     | POB: 93      |
| Last Casin             |          |                      | 339.7 mm Set    | <b>λ</b> ⊢•                | 4.3m    |              |          | 2.1m               |         | Shoe 7   |          | 1841 <sup>I</sup> |            | Leako   |              |
| Cum Rot Hr             | s On Ca  | agina:               | Om Pot F        | trs On Casing S            |         |              |          | Z. 1III            | 1       | Worst    | Wear:    |                   |            | emaini  |              |
| Liner Size             | :        |                      | Set At:         | 0 0 MD                     |         | 0.0 T        | (AD      | Li                 | ner Top | At:      | 0 (      | ) MD              |            |         | 0.0 TVD      |
| Mud Co: <sub>M-I</sub> |          | 0.0                  | Type: MINERAL   | 0.0 MD                     |         |              | le From: | TA                 | 7+ · 1  | - 577    | _        | ) MD              | D: c /     | Col·    |              |
| MT W-T                 | NORGE    | A.S.                 |                 |                            | Solid   |              |          |                    |         |          |          |                   |            |         | 5 / 7<br>Ph: |
| Pm: API:               | 0.0      | HTHP: 3.             |                 | I: 0.0 HTHP: 1.0           |         | 23.0<br>Bent | % Oi     | 77.0               | 0 suc/t | 23.0     | 00 00    | 0.25              | 5   S/Bent |         | ,            |
| 0.00                   | PI/MI    | : 0.00 /0            | ).00 Carb.      | Cl: <sub>17,000</sub> Ca   | •       | Delic        |          | BOTTUS             | 5 %NG/L | 19.8     | 30/2.6   | 50                | o/ Bellic  | · ·     | /            |
| 2115 1KG               | G VERSA  | VERT                 | 83 1MT BA       | RITE 60                    | 11      | m3 BASE      | FLUID    | 1050               | ) 1K(   | G CA CI  | HLOR 88  | <b>%</b> 650      | 1          | KG VEF  | RSATROL      |
| 1425 1KG               | G LIME   |                      | T T             | T                          |         |              |          |                    |         |          |          |                   |            |         |              |
| Drlg Gas:              | 0        | Max Gas:             | 0 Conn Gas      | Trip Gas                   | 3:      | Tr           | ip Cl:   | Re                 | marks:  | MAX. (   | GAS 8.9  | % W/ 1            | .32SG      | MUD AT  | SHAKERS      |
| Bit Number             | IADC     | Size                 | Manufacturer    | Serial number              | r       | Jets         | s (Quan  |                    |         |          | TFA      |                   |            | MD Out  |              |
| 7                      |          | 215.9                | HUGHES          | 1213767                    | 4 - 1   | 14.3/ -      | . / -    | . /                | - /     | <u> </u> | 641.3    | 1382              | .0 m       |         |              |
|                        |          |                      |                 |                            | -       | / -          | - / -    | - /                | - /     |          | 0        |                   |            |         |              |
| Type                   | Me       | ters Ho              | urs WOB         | RPM                        | Moto    | r RPM        | I-Row    | O-Row              | DC      | Loc      | В        | G                 | Char       | ?Pull   | Cost/m       |
| ABD536PI               | H 31     | 16.0 12              | 2.0 0.0/0.0     | /                          |         |              |          |                    |         |          |          |                   |            |         | к 9229.92    |
|                        |          |                      | /               | /                          |         |              |          |                    |         |          |          |                   |            |         |              |
| Total Leng             | th of E  | 3HA: 262             | 12 m BHA Desci  | ription: 8 1/2             | " ABD5  | 36PH PDO     | C BIT -  | NB STA             | B C/W I | FLOAT -  | 6 1/2    | " PONY            | DC, 8      | 1/2"    | NM-STAB      |
|                        |          |                      |                 | MWD - 7* 6 1/2             |         |              |          |                    |         |          |          |                   |            |         |              |
|                        | , -      |                      |                 |                            |         |              |          | 1                  |         |          | 1        | Since             | Last       | Inspec  | tion: 69.7   |
| Bit Num                | T day    |                      | Charalta        | SPI                        | M       | Dunga        | M3/Min   |                    |         |          |          |                   |            |         |              |
|                        | Lin      | /                    | Stroke          | , ,                        | /       |              |          |                    |         |          |          | Bit kW            |            |         | Pump kW      |
| 7                      | 6 /      | 6 / 6                | 304.8/304.8     | / / /                      | /       | 0            | 0.00     | 0.00               | 0.0     | 10 0     | 0.00     | 0.00              | 0          | .0      | 0.00         |
|                        | /_       | /                    | /               | <u>/   / </u>              | /       |              |          |                    |         |          | 1        |                   |            | 1       |              |
| Survey MD              | Angle    | Azimuth              | n Direction     | TVD                        | N/S (   | Coordina     | ates     | E/W C              | oordin! | ates     | Verti    | cal Sec           | ction      |         | DLS          |
|                        |          |                      |                 |                            |         |              |          |                    |         |          |          |                   |            |         |              |
|                        |          |                      |                 |                            |         |              |          |                    |         |          |          |                   |            |         |              |
|                        |          |                      |                 |                            |         |              |          |                    |         |          |          |                   |            |         |              |
|                        |          |                      |                 |                            |         |              |          |                    |         |          |          |                   |            |         |              |
| Hours From             | Act-Ca   | ıt                   | Operat          | tions Covering             | 24 Hou  | rs Endi:     | ng at M  | idnight            |         |          |          | Total             | Hour       | s Repo  | rted: 24.0   |
| 1.50T0000              | 01 - 6   | 0 MONITOR            | WELL WHILE BUI  | LDING 1.52SG M             | JD IN E | PITS - S     | SICP INC | REASED             | F/ 250  | TO 29    | 0 PSI    |                   |            |         |              |
| 6.00T0130              | 01 - 6   | O CIRC BI            | M'S UP BY DRILL | ERS METHOD USIN            | NG 1.52 | 2SG MUD;     | STAGED   | UP FLO             | W RATES | TO FI    | NAL RAT  | TE OF 3           | 0 SPM      | /485 Li | PM, 600 PSI  |
| Т                      | 01 - 6   | 0 MAX. GAS           | S OF 8.9% WITH  | 1.32SG MAX. MUI            | O WEIGH | T REDUC      | CTION -  | SALT W             | ATER CO | NTAMIN   | ATION 1  | DENTIF            | IED II     | N THE I | MUD          |
| 4.50T0730              | 01 - 6   | n CONT TO            | CIRC & COND MU  | D WITH 530 LPM,            | , 600 I | PSI; MAX     | K. GAS 1 | .6% WH             | ILE CIR | CULATI   | NG       |                   |            |         |              |
|                        |          |                      |                 | DP=150 PSI; OPI            |         |              |          |                    |         |          |          | P=0 PS            | I. DP:     | =90 PS  | Γ            |
| Т                      | 1        | -                    |                 | NOTED AT TRIP 1            |         |              |          |                    |         |          |          |                   |            |         |              |
|                        | <u> </u> |                      |                 |                            |         |              |          |                    |         |          |          |                   | 100-       |         |              |
| 2.0011230              |          |                      |                 | MUD W/ 520 LPN             |         |              |          |                    |         |          |          |                   |            | I. OB M | EIGHT.       |
| 1                      |          |                      |                 | ON DRILLERS MET            |         |              |          |                    |         |          |          |                   |            |         | _            |
|                        |          |                      |                 | DRILLERS METHOI            |         |              |          |                    |         |          |          |                   |            |         |              |
| Т                      |          |                      |                 | , HELD DP PRES             |         |              |          |                    |         |          |          |                   |            |         |              |
| 1.00T 1900             | 01 - 60  | SHUT IN              | WELL 1900HRS;   | SICP=SIDP=120PS            | SI; OPE | IN CHOKE     | E & BLED | OFF 3              | .4 BBLS | IN 5M    | IN TO T  | T/T - D           | P PRES     | S=CSG I | PRES=0 PSI   |
| 1.00T 2000             | 01 - 60  | DISPLACI             | E RISER TO 1.57 | SG MUD WHILE MO            | ONITORI | ING WELL     | ON TRI   | P TANK             | - STAT  | CIC      |          |                   |            |         |              |
| 2.50T 2100             | 01 - 60  | CLOSE M              | PR;CIRC 0.89SG  | PRE-MIX DOWN KI            | ILL & U | JP CHOKE     | E; F/C - | STATIO             | C; DISF | LACE C   | &K TO 1  | 57SG              | MUD;I      | SOLATE  | C&K F/ WELL  |
| 0.50T 2330             | 01 - 60  | RELAX L              | -A - NO SIGNS C | F GAS; CLOSE L-            | -A, OPE | N CHOKE      | E - NO P | RES.; (            | OPEN ME | R, OPE   | N L-A;   | F/C ON            | T/T        | - STAT  | IC           |
|                        |          |                      |                 |                            |         |              |          |                    |         |          |          |                   |            |         |              |
| Safety: 1              | AUG 01   | - SAFETY             | MEETING AND DR  |                            |         |              |          |                    |         |          |          |                   |            |         |              |
|                        |          |                      |                 | JD (MAX. GAS 8.            | 9%)- S  | SIDP=90P     | SI, SIC  | P=OPSI;            | DISPL   | ACE WEI  | LL & RI  | SER TO            | 1.575      | SG - F/ | C STATIC     |
|                        |          |                      |                 | C & COND MUD; P            |         |              |          |                    |         |          |          |                   |            | ,       |              |
| Remarks:               |          |                      |                 |                            |         |              |          |                    |         | _, 2     |          |                   |            | IOE     | m            |
|                        |          |                      | ·               | N - 53, DOLPHI             |         |              |          | 46-                | -       |          |          | DAY.              | rs SIN     | ICE LAS | T LTI - 68   |
|                        |          |                      |                 | CUTTING SKIPS              |         |              |          | , 4UEME            | 'IY     |          |          |                   |            |         |              |
| DAILY FE C             |          | -                    |                 | TOTAL FE COS               | STS: NO | K 7,042      | ,641     |                    |         |          |          |                   |            |         |              |
| 0600HRS:               |          |                      | Ť               |                            | ı       |              |          |                    |         |          |          |                   |            |         |              |
| Daily Mud              |          |                      | Daily Tangible  |                            |         |              | l Cost:  | KR2,716            | 345     | Incide   |          |                   |            | REPOR   | RTED         |
| Cum Mud Co             |          |                      |                 | Cost: KR1,747,             | 951 Ct  | ım Well      |          | KR79,35            |         | Total    | Appr:    | KR134,            | 000,00     | 00      |              |
| Drill Wate             |          | .0 Pota              | ble Water: 230  | .0 Fuel: 400               | 0.0     |              |          | Weight             |         |          | at Ceme  | ent: 14           | 1.0        | Blend   |              |
| Country: 1             | ORWAY    |                      |                 | Rig: <sub>BYFORD DOL</sub> | PHIN    |              | Rig Ph   | one: <sub>52</sub> | 88 03   | 35       | Drill:   | ing Rep           | : MOOF     | E/BJOR  | HEIM/SMJ     |
| Field: PL2             | 59       |                      |                 | se: <sub>PL259</sub>       |         |              |          | We]                | ll No:  | 5506/3-  | 1        |                   |            |         | UB5908 -0    |
|                        |          |                      |                 | : 6506/3-1                 | I       | AFE No:      | KWENO-6  | 550631-            | 001     |          | Date:    | 02-AUG-           | -2001      | Page    | : 1 Of 1     |

| Measured D             | epth:   | 1736.            | 0 m                 | TVD:       | 1733.0 m             |          | PBTD:            |                | 0.0     | Prop             | osed MI   | ): <u>3</u> | 3625.0             | m Prop             | posed    | TVD:       | 3625.0                                           | O m   |
|------------------------|---------|------------------|---------------------|------------|----------------------|----------|------------------|----------------|---------|------------------|-----------|-------------|--------------------|--------------------|----------|------------|--------------------------------------------------|-------|
| DOL: 18                | D       | FS: 13           | _                   | Date: 22   | -JUL-2001            |          | Da               | ily            | Footage | e: 38            | .0 D      |             |                    | : 1.0              |          |            |                                                  |       |
| Torq: 5                | Drag    | a: 0 0 E         | Rot Wgt:            | 195 0 P/   | /U Wgt: 195.         | o Sl     | ack Off          | Wgt            | : 195 ( |                  |           | Seas        | : 20               | / 0.0              | Bar:     | 754        | POB:                                             | 92    |
| Last Casin             | _       | <del></del>      |                     | Set Z      | \+·                  | -        |                  |                |         |                  |           | Shoe 7      |                    | 1841               |          | Leako      | eff2                                             |       |
| Cum Rot Hr             |         |                  | 339.7 mr            |            | s On Casing          |          | 3m MD<br>me Last | Cali           |         | 72.1m            | 1         | Worst       |                    |                    |          | emaini     |                                                  | Y     |
| Liner Size             |         |                  | 34.5                | E At:      |                      |          |                  |                |         | Li               | ner To    |             |                    |                    | 0 10     |            |                                                  |       |
|                        |         | 0.0              | _                   |            | 0.0 MD               |          | -                | TV             |         |                  |           |             |                    | .0 MD              | <b>.</b> |            | 0.0                                              | IVD   |
| Mud Co: <sub>M-I</sub> | NORŒ    | A.S.             |                     |            | OIL BASED            | 1.       |                  | Samp1          | Le From |                  |           |             |                    | : 40 Y             |          | _          | <del>,                                    </del> | 10    |
| WL<br>API:             | 1       | HTHP: 2          |                     | API        | : 0.0 HTHP: 1        |          | Solids:          |                |         | 74.0             | 00 *Wate  | er:<br>26.  | 00 <sup>%</sup> Sa | ind:<br>0.20       |          |            | Ph:                                              |       |
| Pm: 0.00               | Pf/Mf   | 0.00 /           | 0.00 <sup>Car</sup> | rb:        | Cl: 29,000           | Ca:      | ]                | Bent           | :       | Solid            | s %HG/I   | G: 19.      | 00/3.              | 20 %DS             | S/Bent   | . <b>:</b> | /                                                |       |
| 5 1MT                  | BARIT   | E                | 2100                | 1KG CA     | CHLOR 88%            |          |                  |                |         |                  |           |             |                    |                    |          |            |                                                  |       |
|                        |         |                  |                     |            |                      |          |                  |                |         |                  |           |             |                    |                    |          |            |                                                  |       |
| Drlg Gas:              | 12      | Max Gas:         | 0                   | Conn Gas:  | Trip (               | as:      | 20               | Tri            | ip Cl:  | R                | emarks:   | :           |                    |                    |          |            |                                                  |       |
| Bit Number             |         | Size             | Manufa              | acturer    | Serial numl          | ber      |                  | Jets           | (Quar   | ntity -          | Size)     |             | TFA                | MD A               | In       | MD Out     | TVD                                              | Out   |
| 7                      |         | 215.9            | HU                  | JCHES      | 1213767              |          | 4-14.3           | <del>/</del> - | / .     | - /              | - /       | / _         | 641.               | 3 1382             | .0 m     |            |                                                  |       |
|                        |         |                  |                     |            |                      |          | -                | / -            | / .     | - /              | - /       | / _         | 0                  |                    |          |            |                                                  |       |
| Ttmo                   | Met     | ers Ho           | ours                | WOB        | RPM                  | 1        | Motor RE         | PΜ             | I-Row   | 0-Row            | DC        | Loc         | В                  | G                  | Char     | ?Pull      | Cost                                             | /m    |
| Type                   |         |                  |                     |            |                      | 1        | 10001 111        |                | 1 10W   | O ROW            | 1         | ДОС         |                    | 0                  | CHAL     |            |                                                  |       |
| ABD536PH               | 35      | 4.0 1            | 3.0                 | 0.0/1.0    | 180 /                |          |                  |                |         |                  |           |             |                    |                    |          |            | K 8651                                           | 1.12  |
|                        |         |                  |                     | / Dogge    | intion:              | <u> </u> |                  |                |         |                  |           |             |                    |                    |          |            |                                                  |       |
| Total Leng             |         |                  |                     |            | iption: 8 1          |          |                  |                |         |                  |           |             |                    | 2" PONY            | DC, 8    | 1/2"       | NM-STAB                                          | 3     |
| - CDR - 8              | 3/8"    | ILS - IOS        | SONIC MV            | ND SUB - N | MWD - 7* 6 1         | /2" I    | C - 9X           | 5" H           | WDP - 6 | 1                |           |             | 1                  |                    |          |            |                                                  |       |
|                        |         |                  | i                   |            |                      |          | · · ·            |                | 1       | Hrs O            | n Jars:   | 82.5        | Hours              | Since              | Last     | Inspec     | tion: 8                                          | 2.5   |
| Bit Num                | Lin     | er               | S                   | Stroke     |                      | SPM      | Pre              | ss. I          | M3/Min  | Jet Ve           | 1 DP.     | Av D        | C Av               | Bit kW             | BHHE     | /SQIN      | Pump k                                           | κ₩    |
| 7                      | 6 /     | 6 / 6            | 304.                | .8/304.8   | / 304.8 76/          | 84/      | 25               | 55             | 0.00    | 0.09             | 0.0       | 00 0        | 0.27               | 0.00               | 0        | .0         | 0.00                                             | 0     |
|                        |         |                  |                     | / /        | / /                  |          |                  |                |         |                  |           |             |                    |                    |          |            |                                                  |       |
| Survey MD              | Angle   | Azimutl          | n Dii               | rection    | TVD                  | N        | I/S Coor         | dina           | ites    | E/W C            | Coordin   | ates        | Verti              | ical Sec           | ction    |            | DLS                                              |       |
| 1728.4                 | 4.38    | 140.28           |                     | 39.72E     | 1724.7               |          |                  | 35.08          |         | ·                |           | 95 E        |                    | -85.08             |          |            | 0.09                                             |       |
| 1757.7                 |         | 142.59           |                     |            |                      |          |                  |                |         |                  |           |             |                    |                    |          |            |                                                  |       |
| 1                      | 4.22    |                  |                     | 37.41E     | 1753.9               | +        |                  | 86.8           |         |                  |           | 32 E        |                    | -86.80             |          |            | 0.25                                             |       |
| 1786.9                 | 4.25    | 142.20           |                     | 37.80E     | 1783.1               |          |                  | 38.51          |         |                  |           | 54 E        |                    | -88.51             |          |            | 0.04                                             |       |
| 1815.4                 | 4.13    | 142.39           | S.                  | 37.61E     | 1811.5               |          | 9                | 90.16          | 5 S     |                  | 10.9      | 1 E         |                    | -90.16             |          |            | 0.13                                             |       |
| Hours From             | Act-Ca  | t                |                     | Operat.    | ions Coverin         | ıg 24    | Hours E          | Endir          | ng at M | idnight          | :         |             |                    | Total              | Hour     | s Repo     | rted: 2                                          | 24.0  |
| 2.50 <sub>T</sub> 0000 | 01 - 60 | ) PIPE FR        | EE (14M             | TOP;RC     | TATE-120 RPI         | M,5.5    | K NM;IN          | C. P           | UMP TO  | 1620 L           | PM, 134   | BAR &       | CIRC               | BTM'S U            | P - M    | AX GAS     | 3.3%                                             |       |
| 0.50T 0230             | 01 - 60 | FLOWCHE          | CK - ST             | ATIC; RAC  | K BACK STND          |          |                  |                |         |                  |           |             |                    |                    |          |            |                                                  |       |
| 3.00T 0300             | 01 - 60 | CIRC &           | COND MU             | ID W/ 2600 | LPM, 150 R           | PM -     | 1.2% GA          | S AT           | 1ST BO  | TTOMS            | UP        |             |                    |                    |          |            |                                                  |       |
| 1.50T 0600             | 01 - 60 | ) F/C-STA        | TIC; PO             | ЮН; АТ 14  | 120M, TOOK 51        | MT OV    | ERPULL           | - WO           | RK 3X F | '/ 1410          | TO 143    | 39M - O     | K; CON             | T POOH;            | TOOK     | 10MT (     | OVERPULI                                         | L     |
| Т                      | 01 - 60 | AT 1395          | M; WASH             | I & REAM F | 7/ 1410-13801        | M W/     | 100 RPM          | , 32           | 3 LPM,  | 14 BAR           | ; ERRAT   | TIC TOR     | QUE F/             | 1385-1             | 381M;    | POOH '     | TO +/- 1                                         | 1326M |
| 2.00т0730              | 01 - 60 | ) CTRC. W        | / 2580              | T.PM. 265  | BAR - OBSER          | VF. CF   | MENT PT          | ECES           | TN RET  | TIRNS O          | VER SHA   | AKERS       |                    |                    |          |            |                                                  |       |
|                        |         |                  |                     |            | 2220 020220          | ·L 0L    |                  |                |         | 01440 0          | V210 011  |             |                    |                    |          |            |                                                  |       |
| 1.00 0930              |         |                  |                     |            |                      |          |                  |                |         |                  |           |             |                    |                    |          |            |                                                  |       |
|                        |         |                  |                     |            | WORKS DISC           |          |                  |                |         |                  |           |             |                    |                    |          |            |                                                  |       |
| 2.50 1300              | 01 - 21 | PERFORM          | MAINTE              | NANCE ON   | COMPENSATOR          | , TOP    | DRIVE            | AND 1          | KEMS; C | ALIBRA           | TE BOOS   | STER LI     | NE OUT             | PUT USI            | NG T/    | Г          |                                                  |       |
| 1.00T1530              | 01 - 60 | TIH TO           | 1371M;              | BREAK CIR  | C W/ 485 LPI         | м, 22    | BAR, 1           | 00 R           | PM - CC | NT TIH           | TO 152    | 25M         |                    |                    |          |            |                                                  |       |
| 2.00T1630              | 01 - 20 | PROBLEM          | WT IND              | DICATOR; R | R/U CMT LINE         | S & C    | IRC W/           | 840            | LPM, 55 | BAR W            | HILE RE   | EPAIR M     | D WEIG             | HT INDI            | CATOR    |            |                                                  |       |
| 1.50T1830              | 01 - 60 | CONT TI          | н то 16             | 11M; WASH  | F/ 1611 TO           | 1698     | M STAGI          | NG U           | P PUMP  | TO 255           | 0 LPM     |             |                    |                    |          |            |                                                  |       |
| 1.50T 2000             | 01 - 60 | CIRC BI          | M'S UP              | W/ 2580 I  | PM - GAS AT          | BTM'     | S UP 0.          | 5%             |         |                  |           |             |                    |                    |          |            |                                                  |       |
| 1.00 2130              | 01 - 02 | DRILL 8          | 1/2" H              | DLE F/ 16  | 598 TO 1736M         | W/ 2     | .580 LPM         | , 25           | 5 BAR.  | 0-1MT            | WOB, 18   | 30 RPM.     | 5.5K               | NM T/O             | - ADD    | 2SXS       | CACO3/HI                                         | R     |
|                        |         |                  |                     |            | 70M; RE-LOG 1        |          |                  |                |         |                  |           |             |                    | , <u>x</u>         |          |            | - /                                              |       |
| Safety:                | 1       |                  | , /                 | 10 107     | 100 1                | , 10     |                  | , , , 51-1     |         |                  | ~         | - 1201      |                    |                    |          |            |                                                  |       |
| 24 Hr Summ             | ary: 50 | ОП <u>тиши</u> . | יים יים מוסים       |            | G MAINTENANC         | ים י     | מדגמקם           |                | . ama   | Dun's C          | 11D 33.TC | ייירת       | 0 1/0              | " [TOT " "         | =/ 1CC   | 10 по 1    | 72614                                            |       |
| Projected (            |         |                  |                     |            |                      | .c & 1   | KEPAIKS.         | , 111          | a, CIRC | DIM. 2           | OP AND    | י רעדדירי   | 0 1/2              | TOTE 1             | E / TOS  | 0 10 ]     | ./3014                                           |       |
| Remarks:               |         | DRI              | <u>ыь 8 1/2</u>     | ∠" HOLE S  | ECTION               |          |                  |                |         |                  |           |             |                    |                    |          |            |                                                  |       |
|                        | M - 5,  | SERVIC           | E - 27,             | DOLPHIN    | - 53, DOLE           | HIN S    | SERVICE          | - 7            |         |                  |           |             |                    | DA                 | YS SIN   | ICE LAS    | T LTI -                                          | - 69  |
| HEAVE: 1.3             | BM, PIT | CH 0.5DEG        | G, ROLL             | 0.8DEG;    | CUTTING SKIE         | S ON     | BOARD:           | 40,            | 3 FULL  | , 37EMI          | PTY       |             |                    |                    |          |            |                                                  |       |
| DAILY FE CO            | OST: NO | K 416,40         | 5+150140            | 0          | TOT                  | AL F     | E COSTS          | : NOF          | x 7,609 | ,186             |           |             |                    |                    |          |            |                                                  |       |
| 0500HRS: I             | DRILL 8 | 1/2" HO          | LE @ 18             | 78M        |                      |          |                  |                |         |                  |           |             |                    |                    |          |            |                                                  |       |
| Daily Mud (            | Cost: K | R76,962          | Daily               | Tangible   | Cost:                |          | Daily            | Well           | l Cost: | KR2.81           | 3,645     | Incid       | ents:              | NO IN              | CIDEN    | REPOR      | RTED                                             |       |
| Cum Mud Cos            |         |                  | Cum Ta              | angible Co | ost: KR1,74          | 7 0.51   |                  |                | Met:    |                  |           |             |                    | KR134,             |          |            |                                                  |       |
| Drill Wate             |         |                  |                     | ter: 380.0 |                      |          |                  |                |         | KR82,1<br>Weight | 288.      | Ne          | eat Cem            | RRI34,<br>nent: 14 | 11 6     | Blend      | ed:                                              |       |
|                        |         | U                | vac                 |            |                      | 369.0    |                  |                |         |                  | 288.      |             | Dri 11             | ina Rer            | ±1.0     |            |                                                  |       |
| Country: N             | ORWAY   |                  |                     | 1          | Rig: BYFORD D        | OLPH     | LN               |                | 9 FI    |                  |           |             |                    | ing Rep            |          |            |                                                  |       |
| Field: PL2             | 59      |                  |                     |            | se: <sub>PL259</sub> |          | <u> </u>         |                |         |                  |           | 5506/3-     |                    |                    |          | 1          | UB5908                                           | -     |
|                        |         |                  |                     | API No:    | 6506/3-1             |          | AFE              | No:            | KWENO-  | 650631-          | -001      |             | Date:              | 03-AUG-            | -2001    | Page       | : 1 Of                                           | f 1   |

| Measur | red De           | epth:   | 2561.0                | O m          | TVD:                                    | 2556.5 m                 |                 | PBTD:       | 0.0       | Prop             | osed MI    | ): <u>3</u> | 8625.0       | m Prop            | osed     | TVD:       | 3625.0 m               |
|--------|------------------|---------|-----------------------|--------------|-----------------------------------------|--------------------------|-----------------|-------------|-----------|------------------|------------|-------------|--------------|-------------------|----------|------------|------------------------|
| DOL:   | 19               | DI      | FS: 14                |              | te: 22                                  | -JUL-2001                |                 | Dail        | y Footag  |                  |            |             |              |                   |          |            | rs: 72.0               |
| Torq:  | 8                | Drag    | g: <sub>-10.0</sub> R | ot Wgt: 23   | 35.0 P/                                 | /U Wgt: 225.0            | Sla             | ıck Off W   | gt: 225.  |                  |            | Seas        | : 1.0        | / 2.0             | Bar:     | 756        | POB: 92                |
| Last C | asing            | g Size: | <u> </u>              | 339.7 mm     | Set A                                   | +•                       |                 | m MD        |           | 72.1m            |            | Shoe 7      |              | 1841 <sup>I</sup> |          | Leako      |                        |
| Cum Ro | t Hrs            | on Ca   | eina:                 |              | Rot Hr                                  | rs On Casing             |                 |             |           |                  | 1          | Worst       |              |                   |          | emaini     |                        |
| Liner  | Size:            |         |                       | Set A        | t:                                      | 0 0 MD                   |                 | 0.0         | תעידי     | Li               | ner Toj    | p At:       | 0            | 0 MD              |          |            | 0.0 TVD                |
| Mud Co | ): <sub></sub> _ | NORŒ .  | 0.0                   | Tyre: .m     |                                         | 0.0 MD<br>OIL BASED      |                 |             | ple From  | n: T             | M+ · 1 - 7 | C E77*      |              | 0 MD              | D: 12    | c Gel.     | ,                      |
| WL     | M-T              | NORGE . | A.S.                  |              |                                         |                          | Sc              |             |           |                  |            |             |              |                   |          |            | 9 / 13<br>Ph:          |
| Dm.    | API:             | 0.0     | HTHP: 2.              | 0 FC (mm     | API                                     | : 0.0 HTHP: 1            |                 | olids: 23.  |           | 73.0             | 00 suc/    | 27.0        | 00  00       | 1.00              | S/Bent   |            | ,                      |
| Pm: 0  | .00              | PI/MI.  | 0.00 / 0              | .00 Carb:    | (                                       | Cl: 29,000 C             | à:              | bei         | .IL•      | 50110            | S %NG/I    | G: 18.5     | 50/3.        | 90                | o/ Belli | •          | /                      |
| 1200   | 1KG              | LIME    |                       | 2100 1       | KG CA                                   | CHLOR 88% 5              | j               | 1m3 BAS     | SE FLUID  | 34               | 1м         | r bari      | ΓE           | 200               | 1        | KG VEF     | RSATROL                |
| 1135   | 1KG              | VERSA   | VERT                  |              |                                         |                          |                 | -           |           |                  |            |             |              |                   |          |            |                        |
| Drlg G | as:              | 30      | Max Gas:              | 80 Con       | n Gas:                                  | Trip G                   | as:             | 0 1         | rip Cl:   | R                | emarks:    | 0.7%        | GAS AT       | BTM'S             | UP AFT   | ŒR 5 E     | BBL GAIN               |
| Bit Nu | ımber            | IADC    | Size                  | Manufact     | urer                                    | Serial numb              | er              | Jet         | s (Qua    |                  |            |             | TFA          |                   |          | MD Out     |                        |
| 7      |                  |         | 215.9                 | HUGH         | ES                                      | 1213767                  |                 | 4-14.3      | - /       | - /              | - /        | / _         | 641.         | 3 1382            | .0 m     |            |                        |
|        |                  |         |                       |              |                                         |                          |                 | - /         | - /       | - /              | - /        |             | 0            |                   |          |            |                        |
| Т      | ype              | Met     | ers Ho                | urs V        | WOB                                     | RPM                      | M               | otor RPM    | I-Row     | O-Row            | DC         | Loc         | В            | G                 | Char     | ?Pull      | Cost/m                 |
| ABD    | 536PH            | 117     | 79.0 35               | 5.5 0.       | 0/3.0                                   | 180 /                    |                 |             |           |                  |            |             |              |                   |          |            | K 5380.61              |
|        |                  |         |                       |              | /                                       | /                        |                 |             |           |                  |            |             |              |                   |          |            |                        |
| Total  | Lengt            | h of B  | HA: 262.              | 12 m BHA     | A Descr                                 | iption: 8 1,             | /2" A           | BD536PH P   | DC BIT -  | NB STA           | B C/W      | FLOAT -     | 6 1/2        | " PONY            | DC, 8    | 1/2"       | NM-STAB                |
|        |                  |         |                       |              |                                         | 1WD - 7* 6 1,            |                 |             |           |                  |            |             |              |                   |          |            |                        |
|        |                  | -       |                       |              |                                         | <u> </u>                 |                 |             |           |                  |            |             | 1            | Since             | Last     | Inspec     | tion: <sub>104.2</sub> |
| Bit Nu | m                | Line    | ar                    | Str          | oke                                     |                          | SPM             | Press       | M3 /M;    | Jet Ve           | i          |             | <del>'</del> |                   |          |            |                        |
| 7      |                  |         | 6 / 6                 |              |                                         | /304.8 76/               | ,               |             |           |                  |            |             |              | Bit kW            |          |            | Pump kW                |
|        | ,                | · /     | /                     | 304.8/       | 304.87<br>/                             | / 304.8 /6/              | <sup>04</sup> / | 286         | 0.00      | 0.09             | 0.0        | 00 0        | 0.24         | 0.00              | 0        | .0         | 0.00                   |
|        |                  |         | /                     | /            | <u> </u>                                | <u>′   /</u>             | _/_             |             |           |                  |            |             |              |                   |          | l<br>I     |                        |
| Survey | 7 MD             | Angle   | Azimuth               | Direc        | ction                                   | TVD                      | N,              | /S Coordi   | nates     | E/W C            | Coordin    | ates        | Verti        | ical Sec          | ction    |            | DLS                    |
| 2390   | . 4              | 2.08    | 152.82                | S27.         | .18E                                    | 2385.3                   |                 | 117.        | 83 S      |                  | 28.5       | 55 E        |              | -117.83           |          |            | 0.18                   |
| 2419   | .2               | 1.92    | 146.45                | S33.         | .55E                                    | 2414.0                   |                 | 118         | 3.7 S     |                  | 29.0       | )5 E        |              | -118.70           | 1        |            | 0.29                   |
| 2447   | .9               | 1.98    | 149.21                | S30.         | .79E                                    | 2442.7                   |                 | 119.        | 52 S      |                  | 29.5       | 57 E        |              | -119.52           |          |            | 0.12                   |
| 2533   | .5               | 1.60    | 161.93                | S18.         | .07E                                    | 2528.3                   |                 | 121.        | 93 S      |                  | 30.        | 7 E         |              | -121.93           |          |            | 0.19                   |
| Hours  | From             | Act-Cat | t                     |              | Operat:                                 | ions Coverin             | g 24            | Hours End   | ling at 1 | Midnight         |            |             |              | Total             | Hour     | s Repo     | rted: 24.0             |
| 17.00  | 0000             | 01 - 02 | DRILL 8               | 1/2" HOLE    | E SECTI                                 | ON F/ 1736 T             | D 230           | 4M W/ 25    | 30 LPM,   | 286 BAR          | , 180 F    | RPM, 4-     | 8K NM        | T/Q, 0-           | 3MT W    | OB         |                        |
| 1.50T  | 1700             | 01 - 60 | NOTICE 5              | 5 BBL GAII   | N IN AC                                 | TIVE; FLOWCH             | ECK -           | STATIC;     | CIRC BT   | M'S UP           | W/ 2580    | ) PSI,      | 286 BA       | R - MAX           | GAS      | 0.7%       |                        |
| 5.50   | 1830             | 01 - 02 | CONT TO               | DRILL 8      | 1/2" HC                                 | LE F/ 2304 T             | D 256           | 1M          |           |                  |            |             |              |                   |          |            |                        |
|        |                  | 01 - 02 | 2                     |              |                                         |                          |                 |             |           |                  |            |             |              |                   |          |            |                        |
|        |                  |         |                       | R'S AND BO   | OOST RI                                 | SER EVERY 20             | 0 MEI           | ERS; FLU    | SH C&K L  | INES EV          | ERY TOU    | JR          |              |                   |          |            |                        |
|        |                  |         |                       | 2 SXS/HR (   |                                         |                          |                 |             |           |                  |            |             |              |                   |          |            |                        |
|        |                  |         |                       | 2 DZID/IIC C | CACOS                                   |                          |                 |             |           |                  |            |             |              |                   |          |            |                        |
|        |                  | 01 - 02 |                       |              |                                         |                          |                 |             |           |                  |            |             |              |                   |          |            |                        |
|        |                  | 01 - 02 |                       |              |                                         |                          |                 |             |           |                  |            |             |              |                   |          |            |                        |
|        |                  | 01 - 02 |                       |              |                                         |                          |                 |             |           |                  |            |             |              |                   |          |            |                        |
|        |                  | 01 - 02 |                       |              |                                         |                          |                 |             |           |                  |            |             |              |                   |          |            |                        |
|        |                  | 01 - 02 |                       |              |                                         |                          |                 |             |           |                  |            |             |              |                   |          |            |                        |
|        |                  | 01 - 02 |                       |              |                                         |                          |                 |             |           |                  |            |             |              |                   |          |            |                        |
|        |                  | 01 - 02 | BULLSEYE              | ES: RISER    | 1DEG S                                  | TBD-FWD, BOR             | 2DEC            | STBD-FW     | O, LMRP   | 2.5DEG           | STBD-FV    | VD; GUI     | DEBASE       | 1.5 DE            | G STBI   | D-FWD      |                        |
|        |                  | 01 - 02 |                       |              |                                         |                          |                 |             |           |                  |            |             |              |                   |          |            |                        |
|        |                  | 01 - 02 |                       |              |                                         |                          |                 |             |           |                  |            |             |              |                   |          |            |                        |
| Safety | CRA              | NE OPEI | RATIONS M             | OVING SKI    | IPS - NO                                | O INJURIES R             | EPORT           | ED          |           |                  |            |             |              |                   |          |            |                        |
|        |                  |         |                       |              |                                         | TO 2304M; 5              |                 |             | C - STAT  | ric; cir         | RC BTM'    | S UP -      | OK, DI       | RILL 8            | 1/2" H   | OLE TO     | 2561M                  |
|        |                  |         |                       |              |                                         | ING CORING P             |                 |             |           |                  |            |             |              |                   |          |            |                        |
| Remark | s:               |         |                       |              |                                         | - 53, DOLP:              |                 |             |           |                  |            |             |              | ז ערו             | ZS STN   | TCE TAC    | T LTI - 70             |
|        |                  |         |                       |              |                                         | CUTTING SKIP             |                 |             |           | ·, 21 гъмт       | ЭΤΎ        |             |              | LIA.              | LU DIL   | · CH LIPAC | , <u> </u>             |
|        |                  |         | K 416,405             |              | י ודייייייייייייייייייייייייייייייייייי |                          |                 |             |           | _, <u>حيناال</u> |            |             |              |                   |          |            |                        |
|        |                  |         | -                     |              |                                         | TOTAL FE C               | .01D:           | 11/UI\ 0,UZ | .J,JJL    |                  |            |             |              |                   |          |            |                        |
|        |                  |         | 1/2" HOL              | i            | naihl -                                 | Cost:                    |                 | Dailer M    | all Co    |                  |            |             |              |                   |          |            |                        |
|        |                  |         |                       | Daily Ta     |                                         |                          |                 | Daily We    | l Coat:   |                  |            | Incide      |              | NEAR 1            |          |            |                        |
|        |                  |         | ,409,553              |              |                                         | ost: <sub>KR</sub> 1,747 | ,951            | Cum Well    |           | KK82'T           |            | Total       | Appr:        | KR134,            | 000,00   |            | 7.                     |
|        |                  | 320.    | 0 Pota                | ble Water    |                                         |                          | 59.0            |             |           | Weight           |            |             | at Cem       | ent: 22           | 7.0      | Blende     |                        |
| Countr | y: N             | ORWAY   |                       |              |                                         | Rig: BYFORD D            | OLPHI           | N           | Rig P     | hone: 52         |            |             | Drill        | ıng Rep           | MOOF     | RE/BJOR    | HEIM/SMJ               |
| Field: | PL25             | i9      |                       |              | Leas                                    | se: <sub>PL259</sub>     |                 |             |           | We:              | ll No:     | 5506/3-     | 1            |                   | We       |            | UB5908 -0              |
|        |                  |         |                       |              | API No:                                 | 6506/3-1                 |                 | AFE No      | : KWENO-  | -650631-         | -001       |             | Date:        | 04-AUG-           | -2001    | Page       | : 1 Of 1               |

| Measur           | red De                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | epth:    | 3101.       | 5 m       | TVD:      | 3096                | .9 m             | PB'    | ID:          | 0.0          | Propo      | sed MD       | ): 3     | 8625.0   | m Prop            | osed      | TVD:    | 3625       | .0 m   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-----------|-----------|---------------------|------------------|--------|--------------|--------------|------------|--------------|----------|----------|-------------------|-----------|---------|------------|--------|
| DOL:             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D        | FS: 15      |           | Date: 22  |                     |                  |        | Daily        | Footage      |            |              |          |          | 19.0              |           |         |            | -      |
| Torq:            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drag     | g: 10.0 F   | ot Wgt:   | 260.0 P/  | /U Wgt:             | 270.0            | Slack  | Off Wgt      | 260.0        |            |              | Seas     | : 2.0    | / 0.0             | Bar:      | 755     | POB:       | 92     |
| Last C           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g Size:  | •           | 339.7 mm  | Set Z     |                     | *                | . 3m   |              |              | 72.1m      | TVD          | Shoe 7   |          | 1841 <sup>I</sup> |           | Leako   | ff?        | Y      |
| Cum Ro           | t Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s On Ca  | ging:       | C)        | ım Rot Hr | s On Ca             |                  |        |              |              | / Z . IIII | 1            | Worst    | Wear:    |                   |           | emainir | ng:        | 1      |
| Liner            | Size:                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :        |             | 76.7 Set  | At:       | 0 0                 | MD               |        | 0.0 T        | 7 <i>T</i> D | Lir        | ner Top      |          |          |                   |           |         | 0.0        | TT (T) |
| Mud Co           | );                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 0.0         | Tyme:     |           | 0.0                 |                  |        |              | le From      | : W        | t · 150      | - 577    |          | 0 MD              | D: 14     | o Col:  |            | ,      |
| WL               | M-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NORGE    | A.S.        |           | MINERAL   |                     | ED               | Soli   | ds: 24.0     | % O:         |            |              |          |          |                   |           | _       | 8 ,<br>Ph: | / 11   |
| Dm*              | API:                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0      | HTHP: 2     | 2 Chrh    | API       |                     | HP:1.0           | 5011   | 24.0<br>Bent |              | 72.0       | 0 suc/t      | 28.0     | 00 00    | nd:<br>1.25       | 5/Bent    |         |            |        |
| Pm: 0            | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PI/IVIL  | 0.00 /      | ).00 Carr | ,         | Cl: 34,0            | 000 Ca:          |        | Delit        | - <b>·</b>   | 501108     | o ong/L      | .G: 17.  | 70/5.    | 00                | o/ Bellic | •       |            |        |
| 2450             | 1KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CA CH    | LOR 88%     | 28        | 1MT BAR   | ITE                 | 160              | 0 1    | LKG LIME     | ]            | 12         | 1m3          | BASE     | FLUID    | 50                | 1:        | KG OTH  | ER         |        |
| 400              | 1KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VERSA    | VERT        | 300       | 1KG CAL   | CARB 0              |                  |        |              |              | -          |              |          |          |                   |           |         |            |        |
| Drlg G           | as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30       | Max Gas:    | 130 Cd    | onn Gas:  | T                   | rip Gas:         | 0      | Tr           | ip Cl:       | Re         | marks:       | 1.1% 2   | AT BTM   | 'S UP F           | / TOP     | LYSING  | ;          |        |
| Bit Nu           | ımber                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IADC     | Size        | Manufac   | cturer    | Serial              | number           |        | Jets         | s (Quar      |            |              |          | TFA      |                   |           | MD Out  |            | D Out  |
| 7                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 215.9       | HUG       | HES       | 121                 | .3767            | 4 -    | 14.3/ -      | . / .        | - /        | - /          | <u> </u> | 641.     | 3 1382            | .0 m      | 3101.5  | m 30       | 96.9 m |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | <u> </u>  |           |                     |                  | -      | - / -        | . / .        | - /        | - /          | _        | 0        |                   |           |         |            |        |
| T                | ype                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Met      | ers Ho      | urs       | WOB       | RP                  | M                | Moto   | or RPM       | I-Row        | O-Row      | $\mathbb{C}$ | Loc      | В        | G                 | Char      | ?Pull   | Cos        | t/m    |
| ABD!             | 536PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 171      | 19.5 5      | 1.5       | 3.0/6.0   | 180 /               |                  |        |              | 3            | 5          | CT           | A7       | Х        | IN                | BT        | CP      | K 53       | 00.72  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |           | /         | /                   |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
| Total            | Lengt                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | th of B  | HA: 262     | 12 m BI   | HA Descr  | iption:             | 8 1/2"           | ABD5   | 36PH PD      | C BIT -      | NB STA     | B C/W I      | FLOAT -  | 6 1/2    | " PONY            | DC, 8     | 1/2"    | NM-STZ     | AΒ     |
| - CDI            | - CDR - 8 3/8" ILS - IOSONIC MWD SUB - MWD - 7* 6 1/2" DC - 9X 5" HWDP - 6 1/2" JARS - 8X 5" HWDP  Hrs On Jars: 124.7 Hours Since Last Inspection: 124.7  Bit Num Liner Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW BHHP/SQIN Pump kW                                                                                                                                                                                                                                  |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  | Hrs On Jars: 124.7 Hours Since Last Inspection: 124.7                                                                                                                                                                                                                                                                                                                                                                                                                          |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
| Bit Mu           | Bit Num Liner Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW EHHP/SQIN Pump kW                                                                                                                                                                                                                                                                                                                                                                                            |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
| ,                | 7 6 / 6 / 6 304.8/304.8/304.8 76/74/ 286 0.00 0.09 0.00 0.24 0.00 0.0 0.00 0.00 / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                            |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
| G                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  | 7 6 / 6 / 6 304.8/304.8/304.8 76/74/ 286 0.00 0.09 0.00 0.24 0.00 0.0 0.00 0.00 / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                            |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  | 7 6 / 6 / 6 304.8/304.8/304.8 76/74/ 286 0.00 0.09 0.00 0.24 0.00 0.0 0.00 0.00 / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                            |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  | Angle   Azimuth   Direction   TVD   N/S Coordinates   E/W Coordinates   Vertical Section   DLS                                                                                                                                                                                                                                                                                                                                                                                 |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  | 2907.2 1.44 228.04 S48.04W 2902.0 128.73 S 28.62 E -128.73 0.23 2963.3 1.46 230.04 S50.04W 2958.1 129.66 S 27.55 E -129.66 0.03 2993.0 1.66 227.26 S47.26W 2987.8 130.2 S 26.94 E -130.20 0.22 3049.8 1.75 232.80 S52.80W 3044.6 131.28 S 25.65 E -131.28 0.10                                                                                                                                                                                                                 |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
| 3049             | .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.75     | 232.80      | S52       | 2.80W     | 304                 | 4.6              |        | 131.2        | 8 S          |            | 25.6         | 5 E      | <u> </u> | -131.28           |           |         | 0.10       |        |
| Hours            | 2907.2 1.44 228.04 S48.04W 2902.0 128.73 S 28.62 E -128.73 0.23 2963.3 1.46 230.04 S50.04W 2958.1 129.66 S 27.55 E -129.66 0.03 2993.0 1.66 227.26 S47.26W 2987.8 130.2 S 26.94 E -130.20 0.22 3049.8 1.75 232.80 S52.80W 3044.6 131.28 S 25.65 E -131.28 0.10  ours From Act-Cat Operations Covering 24 Hours Ending at Midnight Total Hours Reported: 24.0                                                                                                                   |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
| 12.00            | 2907.2 1.44 228.04 S48.04W 2902.0 128.73 S 28.62 E -128.73 0.23 2963.3 1.46 230.04 S50.04W 2958.1 129.66 S 27.55 E -129.66 0.03 2993.0 1.66 227.26 S47.26W 2987.8 130.2 S 26.94 E -130.20 0.22 3049.8 1.75 232.80 S52.80W 3044.6 131.28 S 25.65 E -131.28 0.10 ours From Act-Cat Operations Covering 24 Hours Ending at Midnight Total Hours Reported: 24.0                                                                                                                    |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  | 2907.2 1.44 228.04 S48.04W 2902.0 128.73 S 28.62 E -128.73 0.23  2963.3 1.46 230.04 S50.04W 2958.1 129.66 S 27.55 E -129.66 0.03  2993.0 1.66 227.26 S47.26W 2987.8 130.2 S 26.94 E -130.20 0.22  3049.8 1.75 232.80 S52.80W 3044.6 131.28 S 25.65 E -131.28 0.10  Cours From Act-Cat Operations Covering 24 Hours Ending at Midnight Total Hours Reported: 24.0  2.00 0000 01 - 02 DRILL 8 1/2" HOLE F/ 2561M TO 2915M W/ 2425 LPM, 286 BAR, 180 RPM, 3-6MT WOB, 4-12K NM T/Q |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 - 05  | AT 2839     | M - GAI   | N IN ACT  | TVE - F             | LOWCHEC          | K - S  | TATIC; (     | CONT DRI     | LL AHEA    | AD           |          |          |                   |           |         |            |        |
| 0.50T            | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 20  | AT 2915     | M, LOST   | 400 PSI   | - FLOWC             | HECK, S'         | TATIC  | : CHECK      | SURFACE      | EQ         | PUMP #       | 1 LEAK   | ING, C   | HANGE T           | O PUMI    | PS #2 8 | k #3       |        |
| 7.00             | 1230                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 02  | DRILL 8     | 1/2" HO   | LE F/ 29  | 15 TO 3             | 101.5M;          | AT 3   | 011M - 0     | SAIN IN      | ACTIVE :   | FLOWC        | HECK -   | STATI    | C; CONT           | DRILI     | L AHEAI | )          |        |
| 1.50             | 1930                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02 - 01  | CIRCULA     | re btm's  | UP W/ 2   | 2425 LPM            | I, 286 B         | AR, 1  | .20 RPM,     | 4K NM -      | MAX GA     | \S 1.1%      | - ANA    | LYSE C   | UTTING            | SAMPLE    | ES - 30 | )% SAN     | D D    |
| 2.00             | 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 01  | CONT TO     | CIRC HO   | LE CLEAN  | 1 - BOOS            | T RISER          | ; TAK  | E SCR'S      | AND FL       | ISH C&K    | LINES        |          |          |                   |           |         |            |        |
| 1.00             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | F/C - S     |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 - 05  |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0000-06     | )() HRS:  | POOH - 1  | OLF: WAS            | SI.TOK:          | 7мт    | DRAG TO      | р(п.т. тм    | TO CASI    | NG SHO       | Œ        |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 - 05  |             | 1110.     |           | -J-L WAG            | 2114(1           | .111   |              | للد بيني     | cruol      | Ы            |          |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 - 05  |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 - 05  |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 – 05  |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
| Safety           | <br>r:                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | IIL 8 1/2   |           |           |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
| Projec<br>Remark | red C                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | peration | ons: POOF   | H W/ 8 1, | /2" BHA;  | P/U 76              | .4M CORE         | BAR    | RELS & T     | 'IH; COR     | E LYSIN    | G FORM       | ATION    |          |                   |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DN - 5,  | SERVICE     | E - 27,   | DOLPHIN   | - 53,               | DOLPHIN          | I SER  | VICE - 7     |              |            |              |          |          | DA:               | S SIN     | ICE LAS | T LTI      | - 71   |
| HEAVE:           | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BM, PIT  | CH 0.3DEC   | ROLL (    | 0.5DEG;   | CUTTING             | SKIPS (          | N BO   | ARD: 24,     | 0 FULL       | , 24EMP    | TY           |          |          |                   |           |         |            |        |
| DAILY            | FE CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OST: NO  | K 416,40    | + 15269   | 93        |                     | TOTA             | L FE   | COSTS:       | NOK 8,5      | 94,689     |              |          |          |                   | _         |         | _          |        |
| 0600HR           | s: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/U COR  | E BIT & (   | ORE BAR   | RELS      |                     |                  |        |              |              |            |              |          |          |                   |           |         |            |        |
| Daily            | Mud (                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cost: K  | R 225 , 559 | Daily 7   | [angible  | Cost:               |                  | D      | aily Wel     | l Cost:      | KR2,859    | , 489        | Incide   | ents:    | NO IN             | CIDENI    | REPOR   | TED        |        |
| -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ,635,112    |           | ngible Co |                     | 1,747 9          |        | tum Well     | Chat:        | KR87,97    |              |          |          | KR134,            |           |         |            |        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r: 405.  |             |           | er: 360.0 |                     |                  |        |              |              | Weight     |              | Ne       | at Cen   | nent: 22          | 7 0       | Blende  | ed:        |        |
| Countr           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ·           |           |           |                     | 372.<br>ORD DOLF |        |              |              | one: 52    |              |          | Drill    | ing Rep           | : MOOP    |         |            | CMT    |
| Field:           | DT 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRWAI    |             |           |           | se: <sub>PL25</sub> |                  | ****** |              |              |            |              | 5506/3-  | .1       |                   |           | 11 ID:  |            |        |
|                  | гь25                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | פפ       |             |           | API No:   |                     |                  | Ī      | AFE No:      | רועיבוועא    |            |              |          |          | 05-AUG-           |           | 1       | : 1        |        |
| <u> </u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |           | 1NO.      | 0000/3              |                  |        | ,            | _ראידיגוארי  | ~~~~T-     | ∪ ∪ <b>⊥</b> |          |          | -£UA-cu           | ∠UU⊥      | Luge    |            | OT T   |

| Measur | nd D                                           | onth:    |                 |       | TVD:                      |                          |         | DDIID:  |            |          | 1,                                           | 1.15       |          |          | Dw       | bood       | шлу.      |                        |
|--------|------------------------------------------------|----------|-----------------|-------|---------------------------|--------------------------|---------|---------|------------|----------|----------------------------------------------|------------|----------|----------|----------|------------|-----------|------------------------|
| DOL:   | 21                                             |          | 3130.<br>FS: 16 |       | oud Date: 22              | 3125.5 m                 |         | PBTD:   |            | 0.0      | _                                            | sed MI     |          |          | m Pro    |            |           | 3625.0 m               |
| Torq:  |                                                |          |                 |       | Wgt: 270.0 P/             |                          | o [S]   |         |            |          |                                              |            |          |          | / 2.0    |            |           | DOR:                   |
|        | 10                                             | g Size:  | *               |       | G                         | +•                       |         |         |            |          | *                                            |            |          |          |          |            |           | 96<br>eff2             |
| -      |                                                | s On Ca  | aina:           |       | / mm                      | s On Casing              |         | 3m M    |            |          | , <b>2.</b> IIII                             |            | Worst    |          | 1841     |            | emaini    | ĭ                      |
| Liner  |                                                |          | <u> </u>        | 84.6  | Set At:                   |                          | DIII    |         |            |          |                                              | ner Top    |          |          |          |            | Спашп     | _                      |
|        |                                                |          | 0.0             |       |                           | 0.0 MD                   |         |         | 0.0 T      |          |                                              |            |          |          | .0 MD    |            | ~ 7       | 0.0 TVD                |
|        |                                                | NORGE .  |                 |       | ype: MINERAL              |                          |         |         |            |          | : <sub>PIT</sub> W                           |            |          |          |          |            |           | 8 / 12<br>Ph:          |
|        | API:                                           |          |                 |       | FC (mm) API               |                          |         | 301105  |            |          | 70.0                                         | o wate     | 30.      | 00 8 56  | 1.2      |            |           | P11.                   |
| Pm: 0  | .00                                            | PI/MI:   | 0.00 /          | 0.00  | Carb: (                   | Cl: 32,000               | Ca:     |         | Bent       |          | Solids                                       | %HG/I      | 17.      | 20/5.    | .60 %L   | )S/Bent    | :         | /                      |
| 3100   | 1KG                                            | CAL C    | ARB 0           |       |                           |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
| D 1 0  |                                                |          | Marr Car        |       | Come Cont                 | I                        |         |         | - Theor    | in al.   | l De                                         |            |          |          |          |            |           |                        |
| Drlg G |                                                | 35       | Max Gas:        |       | Conn Gas:                 |                          |         | 340     |            | ip Cl:   |                                              |            | 6.8%     |          |          | WHILE      | CIRC E    | BTM'S UP               |
| Bit Nu |                                                | IADC     | Size            | Mai   | nufacturer                | Serial num               | ber     |         | Jets<br>/  | (Quar    | ntity -                                      | Size)      | /        | TFA      | _        | In         | MD Out    | TVD Out                |
| 8      |                                                |          | 215.9           |       | S-DBS                     |                          |         | _       | <u>/ -</u> |          | <u>      /                              </u> | <u>- /</u> | ' -<br>/ | 0        | 310      | 1.5 m      |           |                        |
|        |                                                | 1.6      |                 |       | 1100                      | DD14                     |         |         | DDM -      | /        | /                                            | - /        | _        | + -      |          | a1.        | 2D-11     | G /                    |
|        | ype                                            | Met      |                 | ours  | WOB                       | RPM                      | +       | Motor   | RPM        | I-Row    | O-Row                                        | DC         | Loc      | В        | G        | Char       | ?Pull     | ,                      |
| FC     | 274                                            | 28       | 3.5             | 3.0   | 2.0/4.0                   | 100 /                    | +       |         |            |          |                                              |            |          |          |          |            |           | K 65792.2              |
| Total  | Tena                                           | th of R  | HΔ:             |       | BHA Descr                 | iption: 0 1              | /2"-    | /! ECO  | 71 DD      | CODE     | מבאט – י                                     | 76M OTT    |          |          | PT C /72 | M DEC      | TEDADI    | E CODE)                |
|        |                                                |          |                 |       | n - 6 1/2" JARS           |                          |         | . r\2   | ייי אסט    | CORE     |                                              | , O.P. OU. | LIN CUP  | ~17/14/K | -LLO (/3 | IVEU       | باط⇔بت ۵۰ | - COINE/               |
| - 0"6  | J 1/2                                          | , DC -   | HI د مر         | יטף - | U I/Z" UAR                | O O O HW                 | שב      |         |            |          | Hrs On                                       | Jars:      | 130 6    | Hours    | Since    | Last       | Inspec    | tion: <sub>132.6</sub> |
| Bit Nu | m                                              | Line     |                 |       | Stroke                    |                          | SPM     | -       | x022       | M2 /M*!  | Jet Vel                                      | 1          | I        | -        |          |            | 1         |                        |
|        |                                                |          |                 |       | 304.8/304.8               |                          | SPM /   | Pi      |            |          |                                              |            |          |          |          |            |           | Pump kW                |
| 8      |                                                | 6 /      | 6 / 6           |       | 304.8/ 304.8 <sub>/</sub> | / 304.8 65/<br>/ /       |         |         | 129        | 0.00     | 0.00                                         | 0.0        | 00 (     | 0.00     | 0.00     | (          | 0.0       | 0.00                   |
|        | 1                                              |          | /<br>  .        | _     | //                        | <u> </u>                 | $\top'$ |         |            |          |                                              |            |          |          |          | <u> </u>   | <u> </u>  |                        |
| Survey | MD                                             | Angle    | Azimut          | h     | Direction                 | TVD                      | ]       | N/S Co  | ordina     | ates     | E/W C                                        | oordin     | ates     | Vert     | ical Se  | ection     |           | DLS                    |
|        |                                                |          |                 |       |                           |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
|        |                                                |          |                 |       |                           |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
|        |                                                |          |                 |       |                           |                          |         |         |            |          |                                              |            |          |          |          |            | 1         |                        |
|        | i                                              | İ        |                 |       |                           |                          |         |         |            |          |                                              |            |          | <u> </u> |          |            |           |                        |
|        |                                                | Act-Cat  |                 |       |                           | ions Coverin             |         |         |            |          |                                              |            |          |          | Tota     | 1 Hour     | s Repo    | rted: 24.0             |
| 3.50   | 0000                                           | 02 - 05  | CONT PO         | OH F  | '/ 2934M; FLC             | W CHECK AT 1             | 13711   | M & AT  | BOP'S      | S - STA  | ric                                          |            |          |          |          |            |           |                        |
| 2.00   |                                                |          |                 |       | .; L/D MWD AS             |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
| 3.50   | 0530                                           | 02 - 07  | P/U COF         | E BI  | T & TIH W/ C              | ORE BARRELS              | TO '    | 76M; R  | UN INN     | IER CORI | E BARREI                                     | S & M/     | 'U HEAD  | (73M     | RECOVE   | RABLE      | CORE LI   | ENGTH)                 |
| 3.50   |                                                |          |                 |       | & 5" DP; AT               |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
| 2.00   | 1230                                           | 02 - 05  | CONT TI         | H W/  | CORE BHA ON               | 15" DP F/ 1:             | 303 7   | TO 140  | 5M; AT     | 1405M    | , SAT DO                                     | WN W/      | 7MT WT   | ' – WAS  | SH AND   | REAM W     | / 485 1   | LPM, 27.5BAR           |
|        |                                                | 02 - 05  | 40 RPM,         | бК    | NM F/1405 TC              | ) 1417M; CON             | r TII   | H F/ 1  | 417 TC     | 2140M    | AT 214                                       | ЮМ, SA     | AT DOWN  | W/ 4.    | 5MT WT   |            |           |                        |
| 0.50   | 1430                                           | 02 - 05  | AT 2140         | M, S  | TAGE UP PUME              | S TO 1130 L              | PM, '   | 72 BAR  | , 30 R     | PM, 6K   | NM AND                                       | WASH 8     | WORK     | F/ 215   | 0 TO 2   | 125M       |           |                        |
| 2.50   |                                                |          |                 |       | W/ 1130 LPM               |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
| 1.50   | 1730                                           | 02 - 05  | BREAK C         | IRC   | W/ 1535 LPM;              | WASH AND RI              | EAM I   | F/ 304  | 0 TO 3     | 3101M W  | / 1294 I                                     | PM, 10     | )3 BAR,  | 50 RE    | РМ, 6К   | NM T/Q     |           |                        |
| 1.50   |                                                |          |                 |       | UP W/ 1294 I              |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
| 0.50   |                                                |          |                 |       | BALL & PUME               |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
| 3.00   | 2100                                           | 02 - 22  | CORE 8          | 1/2"  | HOLE F/ 310               | 1 TO 3130M T             | W/ 10   | 050 LP  | М, 129     | BAR,     | LOO RPM,                                     | 5-10K      | NM -     | ADD 2    | SXS CA   | 003/HR     |           |                        |
|        |                                                | 02 - 05  |                 |       |                           |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
|        |                                                | 02 - 05  | BULLSEY         | ES:   | RISER ODEG,               | BOP 2DEG STI             | BD-FV   | WD, LM  | RP 2.5     | DEG ST   | BD-FWD;                                      | GUIDEE     | BASE 1.  | 5 DEG    | STBD-F   | WD         |           |                        |
| Safety | <u>                                       </u> | _        | 1               |       |                           |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
|        |                                                | 2277     |                 |       |                           |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
|        |                                                |          |                 |       | BHA; M/U & '              |                          |         |         |            |          |                                              |            |          |          |          |            |           |                        |
| Projec | s:                                             | peration | MIR. CON        | T TO  | CORE 8 1/2"               | HOLE; CIRC               | BTM'    | S UP;   | POOH       | & L/D C  | ORE; M/1                                     | U & TI     | HW/B     | HA       |          |            |           |                        |
| II.    |                                                | ON - 6,  | SERVIC          | E - : | 29, DOLPHIN               | - 55, DOLP               | HIN     | SERVI   | CE - 6     |          |                                              |            |          |          | D#       | AYS SII    | NCE LAS   | ST LTI - 72            |
| HEAVE: | 0.3                                            | 3M, PIT  | CH 0.4DE        | G, R  | OLL 0.5DEG;               | CUTTING SKIE             | S ON    | I BOARI | o: 30,     | 6 FULL   | , 24EMP                                      | TY         |          |          |          |            |           |                        |
| DAILY  | FE CO                                          | OST: NO  | 2,986,          | 554 - | + (305386 LE              | FT F/ 5AUG01             | L)      |         |            | TOT      | AL FE C                                      | OSTS:      | NOK 11   | ,886,6   | 29       |            |           |                        |
|        |                                                |          |                 | SER ( | @ 3070M (CUT              | CORE F/ 310              | 1.5     |         |            |          |                                              |            | 1        |          |          |            |           |                        |
| -      |                                                |          | 277,524         |       | ily Tangible              |                          |         |         |            |          | KR2,986                                      |            |          |          | NO II    |            |           | RTED                   |
|        |                                                |          | ,712,636        |       | n Tangible Co             | _                        |         |         | Well       |          | KR90,95                                      |            | Total    | Appr:    | KR134    | ,000,0     | 00        |                        |
|        |                                                | r: 300.  |                 | able  | Water: 350.0              |                          |         |         |            |          | Weight                                       |            | N∈       | at Cer   | ment: 2  | 27.0       | Blende    |                        |
| Countr | y: N                                           | ORWAY    |                 |       |                           | Rig: <sub>BYFORD D</sub> | OLPH    | IIN     |            | Rig Pl   | none: 52                                     |            | 35       | Drill    | Ling Re  | p:<br>MOOH | RE/BJOR   | HEIM/SMJ               |
| Field: | PL2                                            | 59       |                 |       | Leas                      | se: <sub>PL259</sub>     |         |         |            |          |                                              |            | 5506/3-  | ·1       |          | We         | 11 ID:    | UB5908 -0              |
|        |                                                |          |                 |       | API No:                   | 6506/3-1                 |         | AF      | E No:      | KWENO-   | 650631-0                                     | 001        |          | Date:    | 06-AUG   | -2001      | Page      | : 1 Of 1               |

| Measured D             | epth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3171.5     | m TVD:         | 3167.0 m                 | 1           | PBTD:          |                   | 0.0        | Propo        | sed MI  | ):           | 3625.0   | m Pro      | posed    | TVD:     | 3625.0 m    |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|--------------------------|-------------|----------------|-------------------|------------|--------------|---------|--------------|----------|------------|----------|----------|-------------|
| DOL: 22                | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Spud Date: 22  |                          |             | Da             | aily              | Footage    | e: 41.       | 5 D     |              |          |            | Total    | Rot Hr   | rs: 98.5    |
| Torq: 0                | Drag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | t Wgt: 0.0     |                          | Sla         | ıck Off        | Wgt               | : 0.0      | *** 1.       | J       | <del> </del> | : 1.0    |            | +        |          | POB:        |
| Last Casin             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Set            | λ+ •                     |             | MD             |                   |            | -            | TVD     |              | Test:    |            | 1        | Leako    | ff2         |
| Cum Rot Hr             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sina:      | 39.7 mm        | rs On Casing             | 374.3       | m MD<br>: Last |                   | per:       |              |         | Worst        |          |            |          | emaini   | <u> </u>    |
| Liner Size             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91         | Set At:        |                          | DIIIC       |                |                   |            |              | er To   |              | wear.    |            |          | Спанти   |             |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0        | 1              | 0.0 MD                   |             |                | T C               |            |              |         |              |          | 0 MD       |          |          | 0.0 TVD     |
| Mud Co: <sub>M-I</sub> | NORŒ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A.S.       | Type: MINERAL  | OIL BASED                | 1-          |                | Samp.             | le From    | : PIT W      |         |              |          |            |          |          | U / ±2      |
| WL API:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HTHP: 2.0  |                | I: 0.0 HTHP: 1           | .0 Sc       | olids:         | 24.0              | 0 8 0      | il:<br>70.00 | ) Wate  | er:<br>30.   | 00 % Sa: | nd:<br>1.2 | 25 MB    | Γ:       | Ph:         |
| Pm: 0.00               | Pf/Mf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : 0.00 /0. | 00 Carb:       | Cl: 32,500               | Ca:         |                | Bent              | :          | Solids       | %HG/I   | LG: 17.      | 50/5.:   | 30 SE      | OS/Bent  | :        | /           |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
| Drlg Gas:              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max Gas:   | 85 Conn Gas    | Trip G                   | as:         | 340            | Tr                | ip Cl:     | Re           | marks   | :            |          |            |          |          |             |
| Bit Number             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Size       | Manufacturer   | Serial numb              |             |                | Jets              | (Ouar      | ntity -      | Size)   |              | TFA      | МГ         | ) In     | MD Out   | TVD Out     |
| 8                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 215.9      | S-DBS          |                          |             | _              | / -               | /          | - /          | - /     | / _          | 0        |            |          |          | m 3167.0 m  |
| 9 RR - 9               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 215.9      | HUGHES         |                          |             | 4-15.9         | <del>/</del> 9/ - | / /        | - /          |         | / _          | 794.     |            | 1.5 m    |          |             |
|                        | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ers Hou    |                | RPM                      | $T^{\perp}$ | otor RI        |                   | I-Row      | 0-Row        | DC /    | Loc          | В        | G          | Char     | ?Pull    | Cost/m      |
| Type                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                |                          | 1-10        | OCOL IG        | E 1*1             |            |              |         |              |          |            |          |          |             |
| FC274                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 7.     |                | 0 100 /                  |             |                |                   | 7          | 3            | LT      | XN           | Х        | IN         | JD       | PR       | K 34821.2   |
| BD445HA                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.         |                | /                        |             |                |                   |            |              |         |              |          |            |          |          | 0.00        |
| Total Leng             | th of E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SHA: 254.6 | 5 m BHA Desci  | 11pt10n 8 1              | /2"BI       | 0445HA         | PDC               | BIT - I    | NB STAB      | C/W F   | LOAT -       | 6 1/2"   | PONY       | DC, 8    | 1/2" N   | M-STAB -    |
| CDR - 8 3              | 3/8" IL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S - MWD -  | 7* 6 1/2" DC - | 9X 5" HWDP -             | - 6 1,      | /2" JAI        | RS -              | 8X 5" I    | 1            |         |              | 1        |            |          |          |             |
|                        | 8 6 / 6 / 6 304.8/304.8 65/ / 129 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
| Bit Num                | Bit Num Liner Stroke SPM Press. M3/Min Jet Vel DP AV DC AV Bit kW BHHP/SQIN Pump kW  8 6 / 6 / 6 304.8/304.8/304.8 65/ / 129 0.00 0.00 0.00 0.00 0.00 0.00 0.00  9 RR-9 6 / 6 / 6 304.8/304.8/304.8 / / 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
| 8                      | 6 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 / 6      | 304.8/304.8    | /304.8 65/               | /           | 1:             | 29                | 0.00       | 0.00         | 0.0     | 00 (         | 0.00     | 0.00       | (        | 0.0      | 0.00        |
| 9 RR-9                 | 6 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 / 6      | 304.8/304.8    | /304.8 /                 |             |                |                   | 0.00       | 0.00         | 0.0     | 00 0         | 0.00     | 0.00       | (        | 0.0      | 0.00        |
| Survey MD              | Angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Azimuth    | Direction      | TVD                      | N           | /S Coor        | rdina             | ates       | E/W Co       | ordin   | ates         | Verti    | .cal Se    | ection   |          | DLS         |
|                        | Stroke   SPM   Press. M3/Min   Jet Vel   DP AV   DC AV   Bit   BHHP/SQIN   Pump   kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
|                        | it Num         Liner         Stroke         SPM         Press.         M3/Min         Jet Vel         DP Av         DC Av         Bit kW         EHHP/SQIN         Pump kW           8         6 / 6 / 6         304.8/304.8/304.8         65/         129         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 |            |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
|                        | Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW BHHP/SQIN Pump kW  8 6 / 6 / 6 304.8/304.8/304.8 65/ / 129 0.00 0.00 0.00 0.00 0.00 0.00 0.00  9 RR-9 6 / 6 / 6 304.8/304.8/304.8 / / 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
|                        | 8 6 / 6 / 6 304.8/304.8/304.8 65/ 129 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
|                        | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1          |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
| Hours From             | 9 RR-9 6 / 6 / 6   304.8 / 304.8 / 304.8   /   0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
| 4.50 0000              | 8 6 / 6 / 6 304.8/304.8/304.8 65/ 129 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
|                        | 8 6 / 6 / 6 304.8/304.8/304.8 65/ / 129 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
| 1.00 0430              | 02 - 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PUMP COH   | TO 3069M       |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
| 0.50 0530              | 02 - 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CIRCULATI  | E WHILE BOOSTI | NG RISER                 |             |                |                   |            |              |         |              |          |            |          |          |             |
| 3.50 0600              | 02 - 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F/C - ST   | ATIC; POOH 5 S | TDS WET TO 29            | 926M;       | F/C -          | STAT              | 'IC; PUM   | IP SLUG      | & CONT  | г роон       | TO 158:  | 3M - H     | OLE SL   | ICK      |             |
| 1.00 0930              | 0 02 - 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 AT 1583M | , TOOK 10MT PU | LL; WORK PIPE            | E F/ 1      | .583 TO        | 143               | OM W/N     | MAX. OF      | 7-9MT   | OVERPU       | T.L.     |            |          |          |             |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                |                          |             |                |                   |            |              |         |              |          | DADIT C    |          |          |             |
| 4.50 1030              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | POOH TO SHOE;  |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
| 0 50 1500              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 3 MIN/STD FROM |                          |             |                |                   |            |              |         | LUUM BE      | TOM KV   | 3 10 5     | URFACE   |          |             |
| 0.50 1500              | 02 - 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HELD PRE-  | -JOB SAFETY ME | ETING ABOUT I            | -OTTTN      | IG INNE        | SR &              | OUTER C    | CORE BAR     | RELS    |              |          |            |          |          |             |
| 3.50 1530              | 02 - 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POOH & L.  | /D INNER CORE  | BARRELS - 67.            | .7M CC      | RE REC         | COVER             | ED (96.    | .7%); PO     | OH & I  | L/D OUT      | ER CORI  | E BARR     | ELS      |          |             |
|                        | 02 - 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CORE BIT   | GRADING 7-3-L  | T-XN-X-IN-JD-            | -PR (1      | .4 CUTI        | TERS              | MISSING    | FROM N       | OSE AF  | REA)         |          |            |          |          |             |
| 0.50 1900              | 02 - 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SERVICE T  | TDS AND CLEAR  | RIG FLOOR                |             |                |                   |            |              |         |              |          |            |          |          |             |
| 1.50T1930              | 02 - 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PREPARE (  | CDR/MWD - LOST | COMMUNICATIO             | ONS FR      | OM UNI         | T TO              | TOOL       | N DECK       | - TROU  | JBLE SH      | IOOT SAI | ME         |          |          |             |
| 2.00 2100              | 02 - 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M/U 8 1/:  | 2" BHA & TIH T | O 255M; TEST             | MWD W       | 7/ 2100        | ) LPM             | I, 83 BA   | AR - OK      |         |              |          |            |          |          |             |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | PF/DECK & TI   |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
| H                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | MEETING PRIOR  |                          | TNNER       | CORE           | BARR1             | ET.S       |              |         |              |          |            |          |          |             |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | F/ 3130 TO 31  |                          |             |                |                   |            | 1 - 96 79    | 2 CODE  | PECOM        | : (תשפי  | M/II s.    | יידע ש   | / 9 1/2  | ווי בעדע    |
| Projected (            | Operati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ons:       | / 8 1/2" BHA;  | DDTII 0 1/0"             | HOLE        | <u>« п/р</u>   | CORE              | (07.714    | 1 - 50.7     | 6 COLLE | i NECOVI     | ERED) 1  | 14/ U &    | 1 1111 W | / 0 1/2  | LILA        |
| Remarks:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TIH V      | u, o 1/∠" BHA; | א דידיאת 2 1/2           | UULE        |                |                   |            |              |         |              |          |            |          |          |             |
| POB: CHEVR             | ON - 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SERVICE    | - 30, DOLPHI   | 1 - 55, DOLP             | HIN S       | ERVICE         | - 9               |            |              |         |              |          | DF         | YS SI    | NCE LAS  | ST LTI - 73 |
| HEAVE: 0.              | 3M, PIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CH 0.5DEG, | ROLL 0.7DEG;   | CUTTING SKIP             | SON         | BOARD:         | 23,               | 1 FULL     | , 22EMP      | ΙΎ      |              |          |            |          |          |             |
| DAILY FE C             | OST: NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | к 3,114,30 | )4 TO:         | TAL FE COSTS:            | NOK         | 15,000         | ,933              |            |              |         |              |          |            |          |          |             |
| 0530HRS:               | CONT TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H W/ 8 1/2 | 2" BHA @ 2700M |                          |             |                |                   |            |              |         |              |          |            |          |          |             |
| Daily Mud              | Cost: K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Daily Tangible |                          |             | Daily          | Wel               | 1 Cost:    | KR3,114      | ,304    | Incid        | ents:    | NO II      | NCIDEN   | repor    | RTED        |
| Cum Mud Co             | st: KR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,793,635   | Cum Tangible ( | lost: KR1.74             | 7,951       |                |                   |            | KR94,07      |         | Total        | Appr:    | KR134      | ,000,0   | 00       |             |
| Drill Wate             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | le Water: 345  |                          | 342.0       | 1              |                   | _          | Weight:      |         |              | eat Cem  |            | 27.0     | Blende   | ed:         |
| Country: N             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -          |                | Rig: <sub>BYFORD D</sub> |             | N              |                   |            | none: 52     |         |              | Drill    |            |          | Ş₩/D T∕∇ | HEIM/SMJ    |
| Field: PL2             | CV MAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                | se: PL259                | ANE LIT     |                |                   | 1          |              |         | 5506/3-      | .1       |            |          |          | UB5908 -0   |
| PL2                    | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                | : 6506/3-1               |             | Λυυ            | No:               | IN TOTAL O | 650631-0     |         |              | Date:    | 07         |          |          | : 1 Of 1    |
| L                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | API INC        | - L-5/00co               |             | ישר, דר        | -vo·              | VMFINO-    | )-1800cu     | νUΤ     |              | - 200.   | u/-AUG     | J-2001   | rage     | - T OI T    |

| Measured                                         | Der                                                                                                                                                                                                                                                                                                                                                                                                                                           | th:            |              |          | TVD:                    |                     |              | DE        | TD:             |             | Drone     | sed MD                  | ١.       |          | m Pro      | nosed           |         | -          |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------|-------------------------|---------------------|--------------|-----------|-----------------|-------------|-----------|-------------------------|----------|----------|------------|-----------------|---------|------------|
| DOT .                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 343<br>S: 18 | 37.0 m   |                         |                     | 2.0 m        |           |                 | 0.0         | _         |                         |          |          |            |                 |         | 3625.0 m   |
|                                                  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              |          | pud Date: 22            |                     |              | ~1 1      |                 |             |           |                         |          |          |            |                 |         | rs: 108.5  |
| Torq: 1                                          | L6                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drag           | 0.0          | ) Rot    | Wgt: 280.0 P/           | 'U Wgt:             | 280.0        | Slad      | c Off Wg        | t: 275.     | 0 Wind:   | 6                       | 1        |          | / 2.0      |                 | 752     | POB. 99    |
| Last Cas:                                        | ing                                                                                                                                                                                                                                                                                                                                                                                                                                           | Size:          |              | 339.     | .7 mm Set A             | t:                  | 137          | 74.3m     | MD              | 13          | 72.1m     | TVD                     | Shoe '   | Test:    | 1841       | EMW             | Leako   | off? Y     |
| Cum Rot I                                        | Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                           | On Cas         | sing:        | 108.     | Cum Rot Hr              | s On C              | asing S      | ince      | Last Cal        | iper:       |           | Depth                   | Worst    | Wear:    |            | % R             | Remaini | ng:        |
| Liner Siz                                        | ze:                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | 0.0          |          | Set At:                 | 0.0                 | MD           |           | 0.0             | TVD         | Lir       | ner Top                 | At:      | 0        | .0 MD      |                 |         | 0.0 TVD    |
| Mud Co: <sub>M</sub>                             | -I N                                                                                                                                                                                                                                                                                                                                                                                                                                          | ORGE /         | A.S.         | Т        | ype: <sub>MINERAL</sub> | OIL BAS             | SED          |           | Samp            | ole Fran    | : FLOW W  | t: 1600                 | ) FV:    | 92 PV    | : 41       | YP: 12.         | .0 Gel: | 8 / 11     |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |          | FC(mm) API              |                     |              | Sol       |                 |             | il: 72.00 |                         |          |          |            |                 |         | Ph:        |
| Dm:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              | /0.00    |                         |                     |              |           | Ben             |             | Solids    | 1<br>%HG/L              |          | 00       |            | ou  <br>OS/Bent |         | /          |
| 0.00                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 0.00         |          | <u> </u>                | Cl: 40,             |              |           |                 |             |           |                         |          |          |            |                 |         | /          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               | LIME           |              | 11       | 1MT BAR                 | ITE                 | 25           |           | 1m3 BAS         | E FLUID     | 175       | 1K0                     | GOTHE    | R        | 15         | 00 1            | LKG VEF | SAVERT     |
| -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | LOR 88       |          |                         | ı                   |              |           | <u> </u>        |             |           |                         |          |          |            |                 |         |            |
| Drlg Gas                                         | : :                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38             | Max Ga       | as:<br>4 | Conn Gas:               | 7                   | Trip Gas     | s:<br>15  | 10 Ti           | rip Cl:     | Re        | marks:                  | MAX G    | AS AT    | BTM'S T    | UP W/           | 1.57 50 | S MUD 3%   |
| Bit Numb                                         | er 1                                                                                                                                                                                                                                                                                                                                                                                                                                          | IADC           | Size         | e Ma     | nufacturer              | Seria               | l numbe      | r         | Jet             | s (Quai     | ntity -   | Size)                   |          | TFA      | A ME       | ) In            | MD Out  | TVD Out    |
| 9                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 215.         | .9       | HUGHES                  |                     |              | 4         | -15.9/          | - /         | - /       | - /                     | <u> </u> | 792.     | .3 317     | 1.5 m           |         |            |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |          |                         |                     |              |           | - /             | - /         | - /       | - /                     | ′ -      | 0        |            |                 |         |            |
| Туре                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                      | Met            | ers          | Hours    | WOB                     | RI                  | PM           | Mot       | or RPM          | I-Row       | O-Row     | DC                      | Loc      | В        | G          | Char            | ?Pull   | Cost/m     |
| BD4451                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               | 265            | 5.5          | 10.0     | 1.0/5.0                 | 180                 | /            |           |                 |             |           |                         |          |          |            |                 |         | к 11299.4  |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |          | /                       |                     | ,            |           |                 |             |           |                         |          |          |            |                 |         |            |
| Total Le                                         | na+h                                                                                                                                                                                                                                                                                                                                                                                                                                          | l Of P         | HA:          | F4       | BHA Descr               | iption:             | Q 1/2        | / חמן ווי | 45HZ DD         | י דקי –     | NB CTVD   | C /[JJ E <sup>1</sup> ] | .∩∆Tr –  | 6 1 /2   | יי דארע יי | m o             | 1/2" זא | M-STAR -   |
|                                                  | Total Length of BHA: 254.65 m BHA Description: 8 1/2" BD445HA PDC BIT - NB STAB C/W FLOAT - 6 1/2" PONY DC, 8 1/2" NM-STAB - CDR - 8 3/8" ILS - MWD - 7* 6 1/2" DC - 9X 5" HWDP - 6 1/2" JARS - 8X 5" HWDP Hrs On Jars: 148.2 Hours Since Last Inspection: 148.2                                                                                                                                                                              |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
| CDR - 8                                          | Hrs On Jars: 148.2 Hours Since Last Inspection: 148.2                                                                                                                                                                                                                                                                                                                                                                                         |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
| <del>                                     </del> | Hrs On Jars: 148.2 Hours Since Last Inspection: 148.2                                                                                                                                                                                                                                                                                                                                                                                         |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
| Bit Num                                          | it Num Liner Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW BHHP/SQIN Pump kW 9 6 / 6 / 6 304.8/304.8/304.8 75/75/ 285 0.00 0.09 0.15 0.27 0.00 0.0 0.00                                                                                                                                                                                                                                                                                 |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
| 9                                                | 9 6 / 6 / 6 304.8/304.8/304.8 75/75/ 285 0.00 0.09 0.15 0.27 0.00 0.0 0.00                                                                                                                                                                                                                                                                                                                                                                    |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
|                                                  | 9 6 / 6 / 6 304.8/304.8/304.8 75/75/ 285 0.00 0.09 0.15 0.27 0.00 0.0 0.00  / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                               |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
| Survey M                                         | 9 6 / 6 / 6 304.8/304.8 75/75/ 285 0.00 0.09 0.15 0.27 0.00 0.0 0.00                                                                                                                                                                                                                                                                                                                                                                          |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
| 3281.1                                           | urvey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS 3281.1 2.04 238.38 S58.38W 3275.9 135.08 S 19.45 E -135.08 0.17                                                                                                                                                                                                                                                                                     |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
| 3337.4                                           | 3281.1 2.04 238.38 S58.38W 3275.9 135.08 S 19.45 E -135.08 0.17                                                                                                                                                                                                                                                                                                                                                                               |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
|                                                  | urvey MD         Angle         Azimuth         Direction         TVD         N/S Coordinates         E/W Coordinates         Vertical Section         DLS           3281.1         2.04         238.38         S58.38W         3275.9         135.08 S         19.45 E         -135.08         0.17           3337.4         2.12         243.07         S63.07W         3332.2         136.08 S         17.67 E         -136.08         0.10 |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
|                                                  | 3281.1 2.04 238.38 S58.38W 3275.9 135.08 S 19.45 E -135.08 0.17 3337.4 2.12 243.07 S63.07W 3332.2 136.08 S 17.67 E -136.08 0.10 3394.8 1.82 240.73 S60.73W 3389.6 137.01 S 15.93 E -137.01 0.16                                                                                                                                                                                                                                               |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
| 3451.1                                           | ┱                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.76           | 239          | .93      | S59.93W                 | 344                 | 15.9         |           | 137.8           | 38 S        |           | 14.                     | 4 E      | <u> </u> | -137.8     | 8               |         | 0.04       |
| Hours Fr                                         | om A                                                                                                                                                                                                                                                                                                                                                                                                                                          | ct-Cat         |              |          | Operat:                 | ions Co             | vering       | 24 Hc     | urs End         | ing at N    | Midnight  |                         |          |          | Tota       | l Hour          | rs Repo | rted: 24.0 |
| 1.00 00                                          | 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 - 07         | CONT         | P/U 5"   | DP & TIH -              | TOTAL               | OF 51JN      | TS        |                 |             |           |                         |          |          |            |                 |         |            |
| 2.00 01                                          | 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 - 05         | TIH V        | W/ 5" I  | OP F/ DERRICK           | TO 19               | 20M - F      | ILL P     | IPE EVER        | Y 20 ST     | DS; AT 1  | 350M,                   | BREAK    | CIRC &   | FLUSH      | C&K I           | INES    |            |
| 0.50T03                                          | 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 - 20         | CIRC         | W/ 550   | ) LPM, 33 BAR           | 2, 10 R             | PM WHIL      | EST T     | ROUBLESH        | OOT PRO     | BLEM WIT  | H TRIP                  | TANK E   | PUMP     |            |                 |         |            |
| 1.50 03                                          | 30 C                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 - 05         | CONT         | TIH F/   | / 1920 TO 264           | MO                  |              |           |                 |             |           |                         |          |          |            |                 |         |            |
| 0.50 05                                          | 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 - 01         | BREAK        | K CIRC   | W/ 400 LPM,             | 69 BAR              | ; CIRC       | & STA     | GE UP PU        | MPS TO      | 1000 LPM  | I, 82 E                 | BAR, 10  | 00 RPM   |            |                 |         |            |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |          | / 2640 TO 304           |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
|                                                  | +                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |              |          |                         |                     | 10011 ==     |           |                 |             | 4         | <u> </u>                |          |          | ~          |                 | ~ ~ ~ ~ |            |
| 2.50 06                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |          | WASH F/ 304             |                     |              |           |                 |             | 4 LPM, 2  | 65 BAR                  | c - CIF  | KC BIM   | S UP;      | MAX GA          | S 3.0%  |            |
|                                                  | C                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02 - 01        | OBSER        | KARD TY  | ARGE AMOUNT C           | F. COLT.            | INGS/CA      | VINGS     | AT SURF         | ACE         |           |                         |          |          |            |                 |         |            |
| 3.00 08                                          | 30 0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 – 25         | WASH-        | -REAM A  | AND LOG F/ 31           | OT 00.              | 3169M W      | HILST     | INCREAS         | ING MW      | F/ 1.57   | TO 1.6                  | 0 SG     |          |            |                 |         |            |
| 1.50 11                                          | 30 0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 - 01         | POOH         | TO 315   | 57M; CIRC & C           | OND MU              | D TO 1.      | 60SG      | - BOOST         | RISER;      | BACKGROU  | ND GAS                  | 3 = 0.2  | 28       |            |                 |         |            |
| 0.50 13                                          | 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 - 01         | FLUSH        | H C&K I  | LINES AND TAK           | E SOR'              | S            |           |                 |             |           |                         |          |          |            |                 |         |            |
| 0.50 13                                          | 30 0                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> 2 -</u> 04 | WASH         | & REAM   | / F/ 3157 TO            | 3171M               | - FANN       | OFF B     | IM & BED        | IN BIT      |           |                         |          |          |            |                 |         |            |
| 10.00 14                                         | 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 - 02         | DRILI        | 8 1/2    | 2" HOLE F/ 31           | .71.5 T             | 0 3437M      | W/ 2      | 425 LPM,        | 285 BA      | R, 1-5MT  | WOB,                    | 8-16K    | NM TOF   | QUE        | -               |         |            |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |          | AND BOOST RI            |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01 - 02        |              | SOLL D   |                         | 11 V                |              |           | 0110/           | CF3CU       | -         |                         |          |          |            |                 |         |            |
| Safety: .                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | <u> </u>     | DIGT     |                         | DATE                | · 1/10/18/17 | 7 03      | 11TK7 N 41-7-1- | דיי רואי    | DDTTT     |                         |          |          |            |                 |         |            |
| 24 Hr Sur                                        | עטיי                                                                                                                                                                                                                                                                                                                                                                                                                                          | V: —<br>□OG4EH | CUT          | KTGHT.   | FOREARM WITH            | VINTER              | MERYT)       | L SAFE    | TI MEET.        | TING ENIT   | חצדדידי   | 7 / 5* -                | 1 = :    | 2.45-    |            |                 |         |            |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |          | CIRC & INC. I           |                     |              |           |                 |             |           |                         | 1.5 TO   | 3437M    |            |                 |         |            |
| Remarks:                                         | , op                                                                                                                                                                                                                                                                                                                                                                                                                                          | ULALLO         | wrs. D       | RILL 8   | 1/2" HOLE TO            | O TD; (             | CIRC HOI     | LE CLE    | CAN - PO        | OH; R/U     | TO RUN I  | WL                      |          |          |            |                 |         |            |
|                                                  | /RON                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 5,           | SERV         | TCE -    | 30, DOLPHIN             | - 55,               | DOLPHI       | IN SEF    | RVICE -         | 9           |           |                         |          |          | D          | AYS SI          | NCE LAS | T LTI - 74 |
| HEAVE: (                                         | <br>).2M                                                                                                                                                                                                                                                                                                                                                                                                                                      | , PITO         | <br>СН 0.5   | DEG, R   | OLL 0.5DEG;             | CUTTING             | SKIPS        | ON BO     | DARD: 23        | , 17 FUI    | L, 6EMP   | TY                      |          |          |            |                 |         |            |
| DAILY FE                                         | COS                                                                                                                                                                                                                                                                                                                                                                                                                                           | T: NOF         | 7615         | 344 + 1  | 621413                  | TO                  | CAL FE (     | COSTS     | NOK 17          | , 383 , 890 | )         |                         |          |          |            |                 |         |            |
| 0600HRS:                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          |            |                 |         |            |
| -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              | -        | ily Tangible            | Cost:               |              | ī         | Dailv We        | ll Cost     | KR3,541   | 1.00                    | Tnaid    | lonta:   | בידיים     | חדוג יון        |         |            |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |          |                         |                     |              |           |                 |             |           |                         |          |          | FIRS       |                 |         |            |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |          | m Tangible Co           |                     |              |           | 11011           |             |           |                         |          |          |            |                 |         | -d.        |
| Drill Wat                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              | otable   | Water: 325.0            |                     | el: 33       |           |                 |             | Weight    |                         | )        | ac Cer   | ment: 2    | 27.0            | Blend   |            |
| Country:                                         | NOF                                                                                                                                                                                                                                                                                                                                                                                                                                           | RWAY           |              |          |                         |                     | FORD DOI     | PHIN      |                 | Rig P       | hone: 52  |                         |          |          | ing Re     | P: MOO          | RE/BJOR | HEIM/SMJ   |
| Field: PI                                        | <u> 259</u>                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |              |          | Leas                    | se: <sub>PL25</sub> | 59           |           |                 |             | Wel       | 1 No:6                  | 5506/3-  | -1       |            | W∈              | ell ID: | UB5908 -0  |
| <u> </u>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |              |          | API No:                 | 6506/3              | 3-1          |           | AFE No:         | KWENO-      | 650631-0  | 001                     |          | Date:    | 08-AUG     |                 | Page    | : 1 Of 1   |

| Measure                                                                                 | ed Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | epth:                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | TVD:                                                                                            |                                                                   |                                                     | DR                                    | TD:                                              |                                       | Dropo                              | sed MD         |             |                  | Pro                       | posed                              | TVD:             | _            |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------|------------------------------------|----------------|-------------|------------------|---------------------------|------------------------------------|------------------|--------------|
| DOL:                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       | 3667<br>S: 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                                                                                 |                                                                   | 2.4 m                                               |                                       |                                                  | 0.0                                   | _                                  |                |             |                  | m Pro                     |                                    |                  | 3625.0 m     |
|                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | oud Date: 22                                                                                    |                                                                   |                                                     |                                       | _                                                |                                       |                                    |                | _           |                  |                           |                                    |                  | rs: 117.5    |
| Torq:                                                                                   | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 Drag                                                                                                                                | : 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rot W                       | igt: 127.0 P/                                                                                   | /U Wgt:                                                           | 127.0                                               | Slack                                 | Off Wgt                                          | : 125.0                               | 0 Wind:                            |                |             |                  | / 2.0                     |                                    |                  | POB: 93      |
| Last Ca                                                                                 | asing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g Size:                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 339.                        | 7 mm Set A                                                                                      | At:                                                               | 137                                                 | 4.3m                                  | MD                                               | 137                                   | 72.1m                              | TVD            | Shoe 7      | Test:            | 1841                      | EMW                                | Leako            | off? Y       |
| Cum Rot                                                                                 | t Hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s On Cas                                                                                                                              | sing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 125.6                       | Cum Rot Hr                                                                                      | s On C                                                            | asing S                                             | ince I                                | Last Cali                                        | iper:                                 |                                    | Depth          | Worst       | Wear:            |                           | % R                                | emaini           | ng:          |
| Liner S                                                                                 | Size:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | Set At:                                                                                         | 0.0                                                               | MD                                                  |                                       | 0.0 T                                            | VD                                    | Lin                                | er Top         | At:         | 0.               | 0 MD                      | ·                                  |                  | 0.0 TVD      |
| Mud Co:                                                                                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MODGE 7                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Тζ                          | /pe:MINERAL                                                                                     | OTI, BAS                                                          | SED                                                 |                                       |                                                  |                                       | : PIT W                            | t: 1600        | FV:         |                  | -                         | YP: 8                              | n Gel:           |              |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                           | FC (mm) API                                                                                     |                                                                   |                                                     | Soli                                  | lds: 24.0                                        |                                       |                                    |                |             |                  |                           |                                    |                  | 7 / 9<br>Ph: |
|                                                                                         | API:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       | 24.0<br>Bent                                     |                                       | 74.00                              | one /⊤         | 26.0        | 00 ,             | 1.5                       | S/Bent                             |                  |              |
| Pm: 0.                                                                                  | . 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PI/MI.                                                                                                                                | 0.00 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                        | Carp.                                                                                           | Cl: 29,                                                           | 000 Ca                                              | •                                     | belli                                            | .•                                    | Solids                             | %NG/L          | 19.0        | 00/4.            | 40                        | S/Bell                             | · ·              | /            |
| 1275                                                                                    | 1KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CA CAF                                                                                                                                | B CRSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 800                         | 1KG CA                                                                                          | CARB MI                                                           | Ð                                                   |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| Drlg Ga                                                                                 | as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                                                                                                    | /ax Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                          | 9 Conn Gas:                                                                                     | 7                                                                 | Trip Gas                                            | s:<br>0                               | Tr                                               | ip Cl:                                | Re                                 | marks:         | MAX G       | AS WHT           | IF DRII                   | JJING                              | @ 347 <i>2</i> № | I - 2.37%    |
| Bit Nur                                                                                 | mber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IADC                                                                                                                                  | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | ufacturer                                                                                       |                                                                   | l number                                            | Ť                                     |                                                  | : (Ouar                               | ntity -                            |                |             | TFA              |                           | ) In                               | MD Out           |              |
| 9                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M333                                                                                                                                  | 215.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1012                      | HUCHES                                                                                          |                                                                   | 23129                                               |                                       | -15.9/ -                                         | ,                                     | _ /                                | _ /            |             | 794.             |                           | 1.5 m                              | 12 040           | 172 040      |
| 9                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PDSS                                                                                                                                  | 213.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | HOGHED                                                                                          | 0.5                                                               | 23127                                               | 1                                     | <del>''</del>                                    | . / .                                 | _ /                                | /              | _           | 0                | 2 317                     | 1.5 111                            |                  |              |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       | <del> </del>                       |                |             |                  | 1                         | <u>_</u>                           | 11               |              |
| Ту                                                                                      | /pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Met                                                                                                                                   | ers H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ours                        | WOB                                                                                             | RI                                                                | PM                                                  | Moto                                  | or RPM                                           | I-Row                                 | 0-Row                              | DC             | Loc         | В                | G                         | Char                               | ?Pull            | Cost/m       |
| BD44                                                                                    | 45HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 495                                                                                                                                   | 5.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.0                         | 4.0/5.5                                                                                         | 180                                                               | /                                                   |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  | K 8324.90    |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | /                                                                                               |                                                                   | /                                                   |                                       |                                                  | <u> </u>                              | <u> </u>                           |                |             |                  |                           |                                    |                  |              |
| Total I                                                                                 | Lengt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | th of BI                                                                                                                              | HA: 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .65 m                       | BHA Descr                                                                                       | iption:                                                           | 8.1/2                                               | " BD4                                 | 45HA PDC                                         | BIT - I                               | NB STAB                            | C/W FI         | OAT -       | 6.1/2            | PONY                      | DC - 8                             | 3.1/2"           | NM STAB      |
| - CDR                                                                                   | - CDR - 8.3/8" ILS - MWD - 7 X 6.1/2" DC - 9 X 5" HWDP - 6.1/2" JARS - 8 X 5" HWDP  Hrs On Jars: 148.2 Hours Since Last Inspection: 148.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
|                                                                                         | Hrs On Jars: 148.2 Hours Since Last Inspection: 148.2 Bit Num Liner Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW BHHP/SQIN Pump kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| D:+ :-                                                                                  | Hrs On Jars: 148.2 Hours Since Last Inspection: 148.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
|                                                                                         | Sit Num Liner Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW EHHP/SQIN Pump kW 9 152 / 152 / 152 304.8 / 304.8 / 304.8 74 / 75 / 285 2.39 50.38 100.10 157.64 0.00 0.0 11.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| 9                                                                                       | Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW BHHP/SQIN Pump kW  9 152 / 152 / 152 304.8 / 304.8 / 304.8 74 / 75 / 285 2.39 50.38 100.10 157.64 0.00 0.0 11.30  / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
|                                                                                         | 9 152 / 152 / 152 304.8 / 304.8 / 304.8 74 / 75 / 285 2.39 50.38 100.10 157.64 0.00 0.0 11.30 / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| Survey                                                                                  | 9 152 / 152 / 152 304.8 / 304.8 / 304.8 74 / 75 / 285 2.39 50.38 100.10 157.64 0.00 0.0 11.30  / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| 3566.                                                                                   | 9   152 / 152   152   304.8   304.8   304.8   74   75   285   2.39   50.38   100.10   157.64   0.00   0.0   11.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| 3596.                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| -                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| i                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł                           | S52.64W                                                                                         | 363                                                               | 37.3                                                |                                       | 135.4                                            | 6 S                                   |                                    | 10.98          | 3 E         | <u> </u>         | -135.4                    | 6                                  |                  | 0.25         |
| Hours E                                                                                 | From                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Act-Cat                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Operat:                                                                                         | ions Co                                                           | vering                                              | 24 Ho                                 | urs Endi:                                        | ng at M                               | idnight                            |                |             |                  | Tota                      | l Hour                             | s Repo           | rted: 24.0   |
| 0.50                                                                                    | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 01                                                                                                                               | CIRC &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BOOS'                       | T RISER; TAK                                                                                    | E SOR'                                                            | S.                                                  |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| 5.50                                                                                    | 0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 02                                                                                                                               | DRILL 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1/2                       | " HOLE F/ 34                                                                                    | 137 – 3                                                           | 587M W/                                             | 2345                                  | LPM, 276                                         | BAR, 1                                | 180 RPM,                           | 8 - 1          | 6K NM       | TQ, 4            | - 5.5M                    | T WOB.                             |                  |              |
| 0.50                                                                                    | 0600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 01                                                                                                                               | CIRC &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BOOS'                       | T RISER; TAK                                                                                    | E SOR'                                                            | S & FLUS                                            | SH C 8                                | K LINES                                          | S.                                    |                                    |                |             |                  |                           |                                    |                  |              |
| 0.50                                                                                    | 0630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 02                                                                                                                               | DRILL S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2                         | " HOLE F/ 35                                                                                    | 587 – 3                                                           | 600M                                                |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     | = DND                                 | MAY CA                                           | .c 1 2&                               |                                    |                |             |                  |                           |                                    |                  |              |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | OLE CLEAN W/                                                                                    |                                                                   | -                                                   |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| 2.00                                                                                    | 0900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 01                                                                                                                               | SIMULAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E CO                        | NN. F/CHECK                                                                                     | - STAT                                                            | IC; CIR                                             | CULATE                                | E BTM'S U                                        | JP - MAX                              | C. GAS 0                           | .33%.          |             |                  |                           |                                    |                  |              |
| 0.50                                                                                    | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 01                                                                                                                               | CIRC &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BOOS'                       | T RISER; TAK                                                                                    | E SCR'                                                            | S @ 3600                                            | OM.                                   |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| 3.00                                                                                    | 1130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 02                                                                                                                               | DRILL 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1/2                       | " HOLE F/ 36                                                                                    | OT 00                                                             | 3667M (V                                            | VELL 1                                | TD) W/ 23                                        | 881 LPM,                              | 283 BA                             | R, 180         | RPM,        | 7 - 10           | K NM T                    | Q, 4 -                             | 5.5MT            | WOB.         |
| 1.50                                                                                    | 1430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 01                                                                                                                               | CIRCUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATE B'                      | TM'S UP & CC                                                                                    | NDITIO                                                            | N MUD. (                                            | GAS DE                                | ROPPED TO                                        | LESS T                                | THAN 0.2                           | % AFTE         | R BTM'      | S UP.            |                           |                                    |                  |              |
| 1.50                                                                                    | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01 - 01                                                                                                                               | SIMULAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E CO                        | NN. TAKE SUR                                                                                    | WEY -                                                             | 3641.9M                                             | , 1.90                                | DEG, 232                                         | 2.64 AZ                               | CIRC P                             | TMS (IP        | & B00       | ST RIS           | ER - M                    | AX GAS                             | 0.2%.            | HOLE CLEAN   |
| 1                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | L - STATIC.                                                                                     |                                                                   |                                                     |                                       | -                                                |                                       |                                    |                |             |                  |                           |                                    |                  |              |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                | V = C**     | OF ~             | mam=~                     | CONTE                              | DOOTT            |              |
| 5.50                                                                                    | ±03U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OT - 02                                                                                                                               | r/CHEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C WELL.                     | L - STATIC.                                                                                     | FOME                                                              | . , کا۱۱ک, د                                        | 1.0050                                | א יא א                                           | rwh I                                 | onuE.                              | r / CHEC       | r @ SH      | OE - S           | TAITC.                    | CONT                               | POOH.            |              |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
| 0-5                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     | -                                     |                                                  |                                       |                                    | -              |             | -                |                           |                                    |                  |              |
| Safety:                                                                                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                 |                                                                   |                                                     |                                       |                                                  |                                       |                                    |                |             |                  |                           |                                    |                  |              |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ary: <sub>Dp</sub> 1                                                                                                                  | II. 8 1 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2" #C                       | )_E TO WELL '                                                                                   | TD @ 34                                                           | 567м ст                                             | RC HO                                 | LE CIEAN                                         | .% bWπ                                |                                    |                |             |                  |                           |                                    |                  |              |
| 24 Hr S                                                                                 | Summe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | DLE TO WELL '                                                                                   |                                                                   |                                                     |                                       |                                                  | & POOH                                |                                    |                |             |                  |                           |                                    |                  |              |
| 24 Hr S                                                                                 | Summa<br>ced C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | DIE TO WELL '                                                                                   |                                                                   |                                                     |                                       |                                                  | & POOH                                | i.                                 |                |             |                  |                           |                                    |                  |              |
| 24 Hr S<br>Project<br>Remarks                                                           | Summa<br>ced C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | peratio                                                                                                                               | ns: R/U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | & RI                        |                                                                                                 | LOGS AS                                                           | S PER PR                                            | OGRAM                                 |                                                  |                                       |                                    |                |             |                  | D#                        | AYS SI                             | NCE LAS          | T LTI - 75   |
| 24 Hr S<br>Project<br>Remarks<br>POB: CH                                                | Summa<br>ed C<br>s:<br>HEVRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | peration – 5,                                                                                                                         | ns: R/U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>&amp; RU</u><br>E - 2    | JN WIRELINE I                                                                                   | LOGS AS                                                           | DOLPHI                                              | OGRAM<br>N SER                        | vice - 9                                         |                                       |                                    | MPTY)          |             |                  | D#                        | AYS SI                             | NCE LAS          | T LTI - 75   |
| 24 Hr S<br>Project<br>Remarks<br>POB: CH                                                | Summe<br>ced C<br>s:<br>HEVRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | operation ON - 5, OM, PITO                                                                                                            | ns: R/U<br>SERVIC<br>CH 0.4DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | & RU<br>E - 2<br>G, RO      | ON WIRELINE :                                                                                   | LOGS AS<br>- 54,<br>CUTTING                                       | DOLPHI                                              | OGRAM<br>IN SER                       | VICE - 9<br>ARD: 17                              |                                       |                                    | MPTY)          |             |                  | DA                        | AYS SI                             | NCE LAS          | T LTI - 75   |
| 24 Hr S<br>Project<br>Remarks<br>POB: CH<br>HEAVE:<br>DAILY F                           | Summa<br>ced C<br>s:<br>HEVRC<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Operation ON - 5, ON, PITO OST: 583                                                                                                   | SERVIC<br>CH 0.4DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | & RU<br>E - 2<br>G, RO<br>K | ON WIRELINE :                                                                                   | LOGS AS<br>- 54,<br>CUTTING<br>L FE CO                            | DOLPHI G SKIPS DSTS: NO                             | OGRAM<br>IN SER<br>ON BO<br>OK 17,    | VICE - 9<br>ARD: 17<br>966,895                   | (3 FULL                               | . & 14 E                           | MPTY)          |             |                  | DP                        | AYS SI                             | NCE LAS          | T LTI - 75   |
| 24 Hr S<br>Project<br>Remarks<br>POB: CH<br>HEAVE:<br>DAILY F                           | Summe<br>ced C<br>s:<br>HEVRC<br>0.2<br>TE CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Operation ON - 5, OM, PITO OST: 583                                                                                                   | SERVICE O. 4DE O. REPEAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | & RU<br>E - 2<br>G, RO<br>K | ON WIRELINE :  25, DOLPHIN  DLL 0.4DEG;  TOTA  FION W/ SCHL                                     | LOGS AS  - 54,  CUTTING  L FE CO  UMBERGE                         | DOLPHI G SKIPS DSTS: NO                             | OGRAM ON SER ON BO OK 17,             | VICE - 9<br>ARD: 17<br>966,895<br>G STRING       | (3 FULL                               | . & 14 El                          |                | Incid       | ent c'           |                           |                                    |                  |              |
| 24 Hr S Project Remarks POB: CH HEAVE: DAILY F 05:30 H                                  | Summer ced Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constitution Constit | Operation ON - 5, OM, PITO OST: 583 RECORI                                                                                            | SERVICE SERVICE OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF A CONTROL OF | & RUE - 2<br>G, ROK<br>SECT | ON WIRELINE TOTAL  TOTAL  TION W/ SCHL  Lly Tangible                                            | - 54,<br>CUTTING<br>L FE CO<br>UMBERGE<br>Cost:                   | DOLPHI G SKIPS OSTS: NO                             | OGRAM ON SER ON BO OK 17,             | VICE - 9 ARD: 17 966,895 G STRING                | (3 FUIL<br>@ 3140<br>1 Cost:          | & 14 E                             | ,002           |             |                  | NO II                     | NCIDEN                             | I REPOR          |              |
| 24 Hr S Project Remarks POB: CH HEAVE: DAILY F 05:30 H Daily M                          | Summa ced C s: HEVRO 0.2 FE CC HRS: Mud C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deration  N - 5,  MM, PITO  OST: 583  RECORL  Cost: KR  St: KR3,                                                                      | SERVICE O. 4DE CONTROL O REPEAT 133,402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E - 2 G, RC  K  SECT  Dai   | IN WIRELINE : 25, DOLPHIN DLL 0.4DEG; TOTA TION W/ SCHL Lly Tangible a Tangible Co              | - 54,<br>CUTTING<br>L FE CO<br>UMBERGH<br>Cost:                   | DOLPHI  SKIPS  OSTS: NO  R PEX I                    | OGRAM ON SER ON BO OK 17, OGGIN C     | VICE - 9 ARD: 17 966,895 G STRING                | (3 FULL<br>@ 3140<br>1 Cost:<br>Cost: | % 14 E<br>M.<br>KR3,045<br>KR100,6 | ,002<br>59,526 | Total       | Appr:            | NO IN                     | NCIDEN                             | T REPOR          | TED          |
| 24 Hr S Project Remarks POB: CH HEAVE: DAILY F 05:30 E Daily M Cum Mud                  | Summa  ced C  s: HEVRC  0.2  FE CC  HRS: Mud C  d Cos Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deratic<br>DN - 5,<br>DN - 5,<br>DN - 5,<br>DN - 5,<br>RECORL<br>RECORL<br>Cost: KR3,<br>RECORL<br>Cost: KR3,<br>RECORL<br>Cost: KR3, | SERVICE SERVICE SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVI | E - 2 G, RC  K  SECT  Dai   | N WIRELINE :  25, DOLPHIN DLL 0.4DEG;  TOTA FION W/ SCHL ly Tangible n Tangible Co  Water: 298. | LOGS AS  - 54,  CUTTING  L FE CO  UMBERGH  Cost:  Cost:  Fue  Fue | DOLPHI<br>G SKIPS<br>OSTS: NO<br>R PEX I<br>R1,747, | OGRAM ON SER ON BO OK 17, OGGIN C 951 | VICE - 9  ARD: 17  966,895  G STRING  Paily Well | (3 FULL @ 3140 l Cost: Cost: Bulk     | M.<br>KR3,045<br>KR100,6           | ,002<br>59,526 | Total       | Appr:            | NO IN<br>KR134<br>ment: 2 | NCIDEN<br>,000,0                   | r REPOR          | TED          |
| 24 Hr S Project Remarks POB: CH HEAVE: DAILY F 05:30 E Daily M Cum Muco Drill V Country | Summa  Led C  S:  0.2  0.2  ERS:  Mud C  Water  '': N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Deratic N - 5, MM, PITC DET: 583 RECORL Clost: KR St: KR3, r: 330.0                                                                   | SERVICE SERVICE SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVI | E - 2 G, RC  K  SECT  Dai   | N WIRELINE :  25, DOLPHIN DLL 0.4DEG;  TOTA FION W/ SCHL ly Tangible n Tangible Co  Water: 298. | LOGS AS  - 54,  CUTTING  L FE CO  UMBERGH  Cost:  Cost:  Fue  Fue | DOLPHI  SKIPS  OSTS: NO  R PEX I                    | OGRAM ON SER ON BO OK 17, OGGIN C 951 | VICE - 9  ARD: 17  966,895  G STRING  Paily Well | (3 FULL @ 3140 l Cost: Cost: Bulk     | % 14 E<br>M.<br>KR3,045<br>KR100,6 | ,002<br>59,526 | Total       | Appr:            | NO IN<br>KR134<br>ment: 2 | NCIDEN<br>,000,0                   | r REPOR          | TED          |
| 24 Hr S Project Remarks POB: CH HEAVE: DAILY F 05:30 H Daily M                          | Summa  Led C  S:  0.2  0.2  ERS:  Mud C  Water  '': N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Deratic N - 5, MM, PITC DET: 583 RECORL Clost: KR St: KR3, r: 330.0                                                                   | SERVICE SERVICE SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SOLUTION SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVI | E - 2 G, RC  K  SECT  Dai   | IN WIRELINE : 25, DOLPHIN DLL 0.4DEG; TOTA TION W/ SCHL ly Tangible Tangible Co Water: 298.     | LOGS AS  - 54,  CUTTING  L FE CO  UMBERGH  Cost:  Cost:  Fue  Fue | DOLPHI G SKIPS OSTS: NO R PEX I R1,747,             | OGRAM ON SER ON BO OK 17, OGGIN C 951 | VICE - 9  ARD: 17  966,895  G STRING  Paily Well | (3 FULL @ 3140 l Cost: Cost: Bulk     | M.  KR3,045  KR100,6  Weight:      | ,002<br>59,526 | Total<br>Ne | Appr:<br>eat Cen | NO IN<br>KR134<br>ment: 2 | NCIDEN<br>,000,0<br>27.0<br>p: MDO | T REPOR          | TED          |

| Measured I             | onth:     |            |         | TVD:        |                         |             | DDIID:  | _            |             | 1-                  | 1.15        |         |          | Dw      | posed          | шл.     | 1            |
|------------------------|-----------|------------|---------|-------------|-------------------------|-------------|---------|--------------|-------------|---------------------|-------------|---------|----------|---------|----------------|---------|--------------|
|                        |           | 3667.      |         |             | 3662.4 m                |             | PBTD:   |              | 0.0         |                     | sed MI      |         | 3625.0   | m       |                |         | 3625.0 m     |
| DOL: 25                |           | FS: 20     |         | d Date: 22  |                         | -           | 1       |              | Footage     | <u> </u>            | U           |         | ot Hrs:  |         |                |         | rs: 117.5    |
| Torq: 0                | Drag      | g: 0.0 F   | Rot Wg1 | t: 0.0 P/   | /U Wgt: 0.0             | Sl          | .ack 0f | f Wgt        | : 0.0       | Wind:               | 12          | Seas    | : 1.0    | / 2.0   | Bar:           | 757     | POB: 92      |
| Last Casir             | ng Size:  |            | 339.7 ı | mm Set A    | At: 1                   | 374.        | 3m MI   | )            | 13'         | 72.1m               | TVD         | Shoe 5  | Test:    | 1841    | EMW            | Leako   | off? Y       |
| Cum Rot Hr             | s On Ca   | sing:      | L25.6   | Cum Rot Hr  | s On Casing             | Sinc        | ce Last | Cali         | per:        |                     | Depth       | Worst   | Wear:    |         | % R            | Remaini | ng:          |
| Liner Size             | <b>:</b>  | 0.0        | Se      | et At:      | 0.0 MD                  |             | 0.      | .0 T         | VD          | Lir                 | ner Top     | o At:   | 0.       | 0 MD    |                |         | 0.0 TVD      |
| Mud Co: <sub>M-I</sub> | MODGE     |            | Тур     | e: MINERAL  | OTI, BASED              |             |         |              |             | : <sub>PIT</sub> W  | t: 160      | ) FV:   |          | -       | YP: 8          | n Gel:  | ,            |
|                        |           |            |         |             | : 0.0 HTHP:1            | 5           | Solids: |              |             | il: 74.0            |             |         |          |         |                |         | 7 / 9<br>Ph: |
| API:                   |           |            |         |             |                         | .0 <u> </u> |         | 24.5<br>Bent |             | 74.0                | 0<br>원년(7   | 26.     | 00       | 1.5     | 50  <br>S/Bent |         |              |
| 0.00                   | I I/ I·II | 0.00 /     | 0.00    | ilb.        | Cl: 29,000              | æ.          |         | Derre        |             | DOTION              | 0110/1      | 19.     | 00/4.4   | 40      | D/ DCIT        |         | /            |
| 56 1M                  | r barit   | E          |         |             |                         |             |         |              |             |                     |             |         |          |         |                |         |              |
|                        |           |            |         |             |                         |             |         |              |             |                     |             |         |          |         |                |         |              |
| Drlg Gas:              | 0         | Max Gas:   | 0       | Conn Gas:   | Trip G                  | as:         | 0       | Tr           | ip Cl:      | Re                  | marks:      |         |          |         |                |         |              |
| Bit Number             | IADC      | Size       | Manu    | facturer    | Serial numl             | oer         |         | Jets         | (Quar       | ntity -             | Size)       |         | TFA      | ME      | ) In           | MD Out  | TVD Out      |
| 9                      | M333      | 215.9      | I       | HUCHES      | 0323129                 |             | 4-15.   | .9/ -        | /           | - /                 | - /         | / _     | 794.2    | 2 317   | 1.5 m          | 3667.0  | m 3662.4 m   |
|                        |           |            |         |             |                         |             | -       | / -          |             | - /                 | - /         | / _     | 0        |         |                |         |              |
|                        | Mod       | ione II.   |         | I-IOD       | DDM                     |             | Motor F | ,<br>DM      | ,<br>T Dov. | 0.0                 | ,<br>       | T 0.0   | D        |         | Char           | ?Pull   | Coat /m      |
| Type                   |           |            | ours    | WOB         | RPM                     | 1           | MOCOL P | CPM          | I-Row       | O-Row               | DC          | Loc     | В        | G       |                |         | Cost/m       |
| BD445HZ                | 49        | 5.5 1      | 9.0     | 0.0/0.0     | /                       |             |         |              | 1           | 1                   | WT          | XA      | X        | I       | BT             | TD      | K 8324.90    |
|                        |           |            |         | /           | /                       |             |         |              |             |                     |             |         |          |         |                |         |              |
| Total Leng             | gth of E  | HA: 254    | .65 m   | BHA Descr   | iption: 8.1             | /2" I       | BD445HZ | A PDC        | BIT - I     | NB STAB             | C/W F       | LOAT -  | 6.1/2"   | PONY    | DC - 8         | 3.1/2"  | NM STAB      |
| - CDR -                | 8.3/8"    | ILS - MWI  | ) - 7 I | X 6.1/2" D  | С – 9 Х 5" Н            | WDP -       | - 6.1/2 | 2" JAF       | RS - 8      | X 5" HWI            | DP          |         |          |         |                |         |              |
|                        |           |            |         |             |                         |             |         |              |             | Hrs On              | Jars:       | 165.7   | Hours    | Since   | Last           | Inspec  | tion: 165.7  |
| Bit Num                | Line      | er         |         | Stroke      |                         | SPM         | Pr      | ess.         | M3/Min      | Jet Vel             | DD          | 717 D   | C Av 1   | Ri+ 1-7 | מעם            | D/SOTM  | Pump kw      |
|                        |           | 52 / 15    | 2 20/   | 4.8/304.8   | , ,                     | /           |         | 0            | 0.00        |                     | 0.0         |         | 0.00     | 0.00    |                | 0.0     | 0.00         |
| 9 1                    | .52 / 1   | / 15       | Z 30°   | /           | / 304.0 /               |             |         | U            | 0.00        | 0.00                | 0.0         | 00 (    | 0.00     | 0.00    |                | 0.0     | 0.00         |
|                        | /_        | /          | 1       | / /         | <u>'   /</u>            | /           |         |              |             |                     |             |         | 1        |         |                |         |              |
| Survey MD              | Angle     | Azimut     | n D     | irection    | TVD                     | N           | N/S Coc | rdina        | ites        | E/W C               | oordin      | ates    | Verti    | cal Se  | ection         |         | DLS          |
|                        |           |            |         |             |                         |             |         |              |             |                     |             |         |          |         |                |         |              |
|                        |           |            |         |             |                         |             |         |              |             |                     |             |         |          |         |                |         |              |
|                        |           |            |         |             |                         |             |         |              |             |                     |             |         |          |         |                |         |              |
|                        |           |            |         |             |                         |             |         |              |             |                     |             |         |          |         |                |         |              |
| Hours From             | 3 7 at Co |            |         | Oncomb      | i am a. Carrani m       | - 24        | TTours  | Do di s      |             | عامله المالة ا      |             |         | <u> </u> | mat a   | 1 110          | - Dome- | at ad: 24 0  |
|                        |           |            | 077 77/ |             | ions Coverin            |             |         |              |             |                     |             |         | MATTER   |         |                |         | rted: 24.0   |
| 1.00 0000              | 01 - 05   | CONT PO    | OH W/   | 8.1/2" BHA  | A. L/O MWD &            | CDR         | TOOLS.  | В/О          | HUGHES      | BIT (NC             | ME: PI      | ECE OF  | MATRIZ   | X BROK  | EN FRO         | M ONE ( | OF BLADES).  |
| 1.00 0100              | 02 - 25   | CLEAR R    | IG FLC  | OOR & R/U I | O RUN SCHLUI            | M WIR       | ELINE   | LOGS.        |             |                     |             |         |          |         |                |         |              |
| 1.50 0200              | 02 - 25   | HOLD TB    | T. P/U  | J & M/U SCH | LUM AIT-PEX             | -HNGS       | TOOLS   | TRING        | - RUN       | #1.                 |             |         |          |         |                |         |              |
| 2.00 0330              | 02 - 25   | RIH W/     | SCHLUM  | AIT-PEX-H   | NGS TOOLSTR             | ING -       | - RUN # | 1 TO         | 3180M.      |                     |             |         |          |         |                |         |              |
| 0.50 0530              | 02 - 25   | RECORD     | REPEAT  | r section i | HRU LYSING I            | FORMA       | TION F  | / 318        | 0 - 306     | 50M. RIH            | TO TI       | ).      |          |         |                |         |              |
| 1.00 0600              | 0 02 - 25 | TAG TD     | @ 3665  | 5.7M (WIREI | INE DEPTH -             | TIDE        | CORRE   | CTED)        | & REC       | ORD MAIN            | I LOG E     | 7/ 3663 | - 3100   | OM.     |                |         |              |
|                        |           |            |         | <u> </u>    |                         |             |         |              |             |                     |             |         |          |         | ME DE          | mo 3:   | 1.70%        |
|                        |           |            |         |             | O, SUSPEND MA           |             |         |              |             |                     |             |         |          |         |                |         | L /UM.       |
| 1.00 0730              | 02 - 25   | RE-RECO    | RD MAI  | LN LOG F/ 3 | 3150 - 2690M            | . SHA       | ALLOW R | ESTIT        | VITY RE     | SADING E            | ∐GH &       | NOT RE  | PEA.I.TM | J OVER  | SECTI          | .ON.    |              |
| 0.50T 0830             | 02 - 25   | SHALLOW    | RESIS   | STIVITY REA | DING CORRECT            | ILY.        | DECISI  | ON TA        | KEN TO      | RE-LOG              | SECTIO      | N. RIH  | F/ 269   | 90 – 3  | 150M.          |         |              |
| 1.00T 0900             | 02 - 25   | RE-LOG     | SECTIO  | ON W/ BAD S | HALLOW RESIS            | STIVI       | TY F/   | 3150         | - 26901     | 1.                  |             |         |          |         |                |         |              |
| 2.00 1000              | 02 - 25   | CONTINU    | E TO R  | RECORD MAIN | I LOG F/ 269            | OM -        | CSG SH  | OE @         | 1374M       | W/LINE              | DEPTH)      | . NO E  | XCESS I  | DRAG O  | R O/PU         | ILLS WH | HE LOGGING.  |
| 2.00 1200              | 02 - 25   | POOH &     | L/O SC  | CHLUM AIT-F | EX-HNGS TOO             | LSTRI       | NG - R  | <br>UN #1    |             |                     |             |         |          |         |                |         |              |
| 2.50 1400              | 0 02 - 25 | P/U & M    | /U SCF  | HLUM DSI-GR | R-AMS-OBDT TO           | OLST        | RING -  | RUN          | #2. RT      | 1 TO 318            | 88M.        |         |          |         |                |         |              |
|                        |           |            |         |             |                         |             |         |              |             |                     |             | `       |          |         |                |         |              |
|                        |           |            |         |             | HRU LYSING I            |             |         |              |             |                     |             |         |          |         |                | T C === |              |
| Safety:                |           |            |         |             | MAIN LOG F              |             |         |              |             |                     |             |         |          |         |                |         |              |
| HC                     |           |            |         |             | TOOLSTRING.             |             |         |              |             |                     |             |         |          |         | DLING          | SOURCE  | S.           |
|                        |           |            |         |             | RELINE & MAK            |             |         |              |             |                     |             |         |          |         |                |         |              |
| Projected              | Operati   | ons: RE-1  | RUN PE  | X TOOLSTRII | NG. RUN VSP,            | MDT         | & SID   | EWALL        | CORES.      | P/U CM              | T STIN      | GER & S | SET CMI  | PLUGS   | S TO A         | BANDON  | WELL.        |
| Remarks:               |           |            |         |             | - 53, DOLP              |             |         |              |             |                     |             |         |          |         |                |         | T LTI - 76   |
|                        |           |            |         |             |                         |             |         |              | /6 mm.      | c 11 =              | MDrrx r \   |         |          | IJł-    | 110 OT         | THE     | , TIT - \Q   |
|                        |           |            |         |             | CUTTING SKIE            |             |         |              |             | · ∝ ⊤⊤ ₽.           | ™T, T, T, ) |         |          |         |                |         |              |
| DAILY FE C             | OST: 2,   | 754,760 1  | NOK     | 'OT         | TAL FE COSTS            | 3: 20       | ,721,6  | 54 NO        | K           |                     |             |         |          |         |                |         |              |
| 05:30 HRS:             |           |            | LEVEL   | DELTA TOOL  | •                       |             |         |              |             |                     |             | 1       |          |         |                |         |              |
| Daily Mud              | Cost: K   | R 58 , 462 | _       | y Tangible  |                         |             |         | y Wel        | 1 Cost      | KR2,854             | ,334        | Incid   | ents:    | NO II   | NCIDEN         | T REPOR | TED          |
| Cum Mud Co             | st: KR3   | ,128,770   | Cum '   | Tangible Co | ost: <sub>KR</sub> 1,74 | 7,951       | Cum     | Well         | Cost:       | KR103,5             | 13,860      | Total   | Appr:    | KR134   | ,000,0         | 000     |              |
| Drill Wate             |           |            |         | ater: 475.0 |                         | 0.0         |         |              |             | Weight              |             |         | at Cem   |         |                | Blende  | ed:          |
| Country: I             |           |            |         |             |                         |             | TNI     |              |             | none: <sub>52</sub> |             | 25      | Drill    | ing Re  | 27.U<br>p:     |         | HEIM/MH      |
| Field:                 | NUKWAY    |            |         |             | Rig: BYFORD D           | OTTAR       | TIN     |              | 1 3         |                     |             | 35      |          |         |                |         |              |
| Field: PL2             | 159       |            |         |             | se: <sub>PL259</sub>    |             | 1_      |              |             |                     |             | 5506/3- |          |         |                |         | UB5908 -0    |
|                        |           |            |         | API No:     | 6506/3-1                |             | AFE     | : No:        | KWENO-      | 650631-             | 001         |         | Date:    | 10-AUG  | -2001          | Page    | : 1 Of 2     |

| Measure                                          | d De | nth:     |       |           | TVD:                   |                                              |               |       | PBTE          | ):        |          | Drope               | sed MI  | ١.        |           | Pn       | ന്നാട്ടെ      | TVD:        |                        |
|--------------------------------------------------|------|----------|-------|-----------|------------------------|----------------------------------------------|---------------|-------|---------------|-----------|----------|---------------------|---------|-----------|-----------|----------|---------------|-------------|------------------------|
| DOL:                                             |      |          |       | 567.0 m   |                        |                                              | 3662.4 m      |       |               |           | 0.0      | _                   |         |           | 3625.0    | III      |               |             | 3625.0 m               |
|                                                  | 25   |          | FS: 2 |           | Spud Date:             |                                              |               |       |               |           |          | 0.                  |         | -         |           |          | _             |             | rs: 117.5              |
| Torq:                                            | 0    | Drag     | g: O. | 0 Rot     | Wgt: 0.0               | P/U V                                        | Wgt: 0.0      | Sl    | .ack (        | Off Wgt   | : 0.0    | Wind:               | 12      | Sea       | 3:<br>1.0 | / 2.0    | Bar:          | 757         | POB:<br>92             |
| Last Cas                                         | sing | g Size:  |       | 339       | .7 mm Se               | t At:                                        | 1             | 374.  | 3m            | MD        | 13'      | 72.1m               | TVD     | Shoe      | Test:     | 1841     | EMW           | Leako       | off? Y                 |
| Cum Rot                                          | Hrs  | on Ca    | sing: | 125.      | 6 Cum Rot              | Hrs (                                        | On Casing     | Sino  | ce La         | st Cali   | per:     |                     | Depth   | Worst     | Wear:     |          | % I           | Remainir    | ng:                    |
| Liner Si                                         | ize: |          | 0.0   |           | Set At:                |                                              | 0.0 MD        |       |               | 0.0 T     | /D       | Lir                 | ner Top | At:       | 0         | .0 ME    | )             |             | 0.0 TVD                |
| Mud Co:                                          |      |          |       |           | Type: <sub>MINER</sub> |                                              |               |       |               |           |          | : PIT W             | t: 160  | E.//•     |           |          | i             | o Gel:      | ,                      |
|                                                  |      |          |       |           |                        |                                              |               |       | iolid:        |           |          |                     |         |           |           |          |               |             | 7 / 9<br>Ph:           |
|                                                  |      |          |       |           | FC (mm)                |                                              |               |       | JOIIU         |           |          | il: 74.0            | 0 ****  | 26        | .00       | 1.       |               |             | F11.                   |
| Pm: 0.0                                          | 00   | Pt/Mt:   | 0.00  | / 0.00    | Carb:                  | cl:                                          | 29,000        | Ca:   |               | Bent      | :        | Solids              | %HG/I   | .G:<br>19 | .00/4     | . 40     | DS/Ben        | t:          | /                      |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
| Drlg Gas                                         | g:   | _        | Max G | as:       | Conn Ga                | as:                                          | Trip (        | Gas:  | _             | Tr        | ip Cl:   | Re                  | marks:  |           |           |          |               |             |                        |
|                                                  |      | 0        | ~ '   |           | 0                      |                                              | _             |       | 0             |           | - / -    |                     | ~! \    |           |           | . 1      |               |             |                        |
| Bit Num                                          | ıber | IADC     | Siz   | ze Ma     | anufacturer            | Se                                           | erial numl    | ber   |               | Jets<br>/ | (Quar    | ntity -             | Size)   | /         | TF        | A M      | D In          | MD Out      | TVD Out                |
|                                                  |      |          |       |           |                        |                                              |               |       | -             |           |          | <del>- /</del>      | /       |           | 0         |          |               |             |                        |
|                                                  |      |          |       |           | <u> </u>               | 4                                            |               | _     | -             | / -       |          | - /                 | - /     | _         | 0         | +        | 1             |             |                        |
| Tyr                                              | ре   | Met      | ers   | Hours     | s WOB                  |                                              | RPM           | 1     | Motor         | RPM       | I-Row    | O-Row               | DC      | Loc       | В         | G        | Char          | ?Pull       | Cost/m                 |
|                                                  |      |          |       |           | /                      |                                              | /             |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      |          |       |           | /                      |                                              | /             |       |               |           |          |                     |         |           |           |          |               |             |                        |
| Total Le                                         | engt | h of B   | HA:   | 254 65    | BHA Des                | cript                                        | ion: 8.1      | /2" 1 | BD445         | HA PDC    | BIT -    | NB STAR             | C/W F   | LOAT -    | 6.1/2     | " PONY   | DC -          | 8.1/2"      | NM STAB                |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
| - CDR                                            | - 8  | .3/8" _  | LLS - | MMD =     | 7 X 6.1/2"             | ш -                                          | 9 Х 5" Н      | WDP - | - 0.1         | /Z" UAI   | (5 - 8.  |                     |         |           | 1         | a.       |               | _           |                        |
| <del>                                     </del> | i    |          |       | -         |                        |                                              |               |       |               |           |          | _                   | 1       |           | / Hours   | s Since  | e Last        | TURDEC.     | tion: <sub>165.7</sub> |
| Bit Num                                          |      | Line     | er    |           | Stroke                 |                                              |               | SPM   | I             | Press.    | M3/Min   | Jet Vel             | DP.     | Av :      | DC Av     | Bit k    | W BHI         | IP/SQIN     | Pump kW                |
|                                                  |      | /        | /     |           | /                      | /                                            | /             | /     |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      | /        | /     |           | /                      | /                                            | /             |       |               |           |          |                     |         |           |           |          |               |             |                        |
| Survey I                                         | MD   | Angle    | Δzi   | muth      | Direction              | <u>,                                    </u> | TVD           | ,<br> | J/S C         | ∞rdina    | tea      | E/W C               | oordin  | ateg      | Vert      | ical S   | Section       |             | DLS                    |
| Barvey I                                         | 1.10 | Aigic    | 721   | maar      | DIFECTION              |                                              | 110           |       | <b>1</b> /D C | OCIUMIC   |          | 11/ W C             | 0014111 | ассь      | VCIC      | ICAI D   | CCCIOI        |             | DED                    |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
| Hours F                                          | ram  | ActCa    | t.    |           | Oper                   | ation                                        | s Coverin     | na 24 | Hour          | s Endi    | ng at. M | Iidni <i>a</i> ht.  |         |           |           | Tota     | al Hou        | rs Repoi    | rted: 24.0             |
|                                                  |      |          |       | 1 & T./O  | SCHLUM DI              |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
| 1                                                |      |          |       |           |                        |                                              |               |       |               |           |          | D.T. TO             |         | 0770 D    |           |          | 1.000         | 1.60.474)   |                        |
| 1.0012                                           | 300  | 02 - 25  | P/U   | & M/U I   | BACK UP SC             | HLUM E                                       | PEX TOOLS     | IRING | - R           | JN #3 (   | RE-RUN   | DOE TO              | ANOMAL  | .00S D    | ENSTTY    | DATA .   | 1828 -        | 1624M)      | •                      |
|                                                  |      | -        |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      | -        |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      | -        |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      | _        |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      | -        |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      | -        |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      | -        |       |           |                        |                                              |               |       |               |           | _        |                     |         |           |           |          |               |             |                        |
| T                                                |      | _        |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      | _        |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      |          | +     |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      | _        | +     |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      | -        | -     |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      | -        |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
| Safety:                                          | HOL  | D TBT    | PRIOR | TO M/U    | J SCHLUM PE            | X TOO                                        | LSTRING.      | ALL : | BARRI         | ERS IN    | PLACE    | & DRILL             | FLOOR   | CLEA      | RED BEF   | ORE HA   | NDLING        | SOURCE      | s.                     |
| 24 Hr St                                         | umma | ry: PO   | OH W/ | 8.1/2"    | BHA. R/U               | WIREL                                        | INE & MAK     | E TW  | 0 LOG         | GING R    | JNS (AI  | T-PEX-H             | NGS &   | DSI-G     | R-AMS-C   | BDT).    |               |             |                        |
| Projecte                                         | ed 0 | peration | ons:  | RE-RIN    | PEX TOOLS              | RING                                         | RIIN VSP      | MDT   | & ST          | DEWALL.   | CORES    | P/II ∩M             | T STIN  | CER &     | SET CV    | T DIJIC  | S TO Z        | RANDON      | WET.T.                 |
| Remarks                                          | :    |          |       | IGH ICOLV | TEN TOOLS              | idivo.                                       | KON VBI,      | ППСТ  | 0. 01         | LIVWALLE  | cords.   | 1/0 41              | I DIIIN | OHIC &    | DEI CI    | 11 11100 | <u> </u>      | DAIDOIV     | WHITE.                 |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      |          | _     |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
|                                                  |      |          |       |           |                        |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |
| Daily Mu                                         | ud ( | !ost:    | DEO 4 | co Da     | ily Tangik             | ole Co                                       | st:           |       | Da:           | ily Wel   | l Cost:  | KR2,854             | 224     | Tnai      | denta.    | ד רעו    | אינו די די או | יירויםם יוד | רופידי                 |
|                                                  |      |          |       | 02        |                        |                                              |               |       | C1*           |           |          |                     |         |           |           |          |               |             | יזהיה                  |
| Cum Mud                                          |      |          |       | 770       | m Tangible             |                                              |               | 7,951 | - Cu          | /VCLL     |          | KR103,5             |         |           |           |          |               |             |                        |
| Drill Wa                                         |      |          |       | Potable   | Water: 47              |                                              |               | 0.0   |               |           |          | Weight              |         |           |           |          |               | Blende      |                        |
| Country                                          | : N  | DRWAY    |       |           |                        | Rig                                          | :<br>BYFORD D | OLPH  | IN            |           | Rig Pl   | none: <sub>52</sub> | 88 03   | 35        | Dril:     | ling Re  | ep:<br>MOC    | RE/BJOR     | HEIM/MH                |
| m: -1 -1 .                                       |      |          |       |           | L                      |                                              | PL259         |       |               |           |          |                     | l No:   |           | •         |          |               |             | UB5908 -0              |
| Field: F                                         | PL25 | 9        |       |           | 1                      |                                              |               |       |               |           |          |                     |         |           |           |          |               |             |                        |

| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Magazand I  | onth:                                                                                     |          |         | ידיק:     | m·             |           |          |              | DIIID:                            |          | <del></del>           | 1.15     |                    |                                                  | Dr       | bpoard     | шл.      |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------|----------|---------|-----------|----------------|-----------|----------|--------------|-----------------------------------|----------|-----------------------|----------|--------------------|--------------------------------------------------|----------|------------|----------|--------------------------------------------------|
| Note   Carl   State   Carl   State   Carl   State   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   Carl   |             |                                                                                           |          |         | l.        |                |           |          | P            |                                   |          |                       |          |                    |                                                  | m        |            |          |                                                  |
| March   Control   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Ma   | DOL: 26     | I                                                                                         | DFS: 2   | 21      | Spud Date | 22-J           | JUL-20    | 01       |              | Dail                              | / Foota  | ge: 0                 | .0 D     | aily R             | ot Hrs                                           | :        | Total      | Rot Hr   | rs: 117.5                                        |
| Mart   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Series   Ser   | Torq: 0     | Dra                                                                                       | g: 0.    | . O Rot | Wgt: 0.0  | O P/U          | Wgt:      | 0.0      | Slac         | k Off W                           | t: 0.    | 0 Wind                | : 4      | Seas               | : 1.0                                            | / 2.0    | Bar:       | 758      | POB: 92                                          |
| Martin   File   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Martin   Mar   | Last Casin  | g Size                                                                                    |          | 220     | . 7       | Set At         | :         | 1 2      | 74 2         | MD                                | 1        | 270 1                 | תעוד     |                    |                                                  |          | _          |          | off? ,,                                          |
| Property   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Com   |             |                                                                                           |          |         | Cim B     | nt Hra         | On Ca     |          |              |                                   |          | 3/2.1m                | _        |                    |                                                  |          |            |          | Y                                                |
| Section   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property   Property     |             |                                                                                           | лошід.   | 126     | .1        |                | OII CC    | ering t  | <u></u>      | парс са                           | LIPCI ·  | T -                   |          |                    | wear.                                            |          | 7 6        | .с.пашш  | 19.                                              |
| Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Liner Size  | ::<br>                                                                                    | 0.0      | 0       | Set At:   |                | 0.0       | MD       |              | 0.0                               | TVD      |                       | ner To   | p At:              | 0.                                               | 0 MI     | )          |          | 0.0 TVD                                          |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mud Co:     |                                                                                           |          | ŗ       | Type:     |                |           |          |              | Sam                               | ple Fro  | m: <sub>FLOW</sub>    | Wt:      | FV:                | PV                                               | :        | YP:        | Gel:     |                                                  |
| Print                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WL 3.DT.    |                                                                                           | THE      |         | FC (mm)   | ADT.           | 7.77      | TID.     | So           | lids:                             | %        | Oil:                  | ₩ate     | er:                | % Sa                                             | nd:      | MB'        | Γ:       | Ph:                                              |
| End   Class   0   Mov   Class   0   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Description   2   Descriptio   |             |                                                                                           |          | ·<br>/  |           |                |           |          | <u></u>      | Rei                               | h+•      | Solid                 | e SHC/I  | ·C·                |                                                  | 9        | DS /Bont   | . •      |                                                  |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   | FIII.       | FI/ MI                                                                                    | <u> </u> | /       | Carb.     | CI             | . •       | کا       | 1.           | Бел                               | 10.      | 50110                 | 5 0110/1 | <u></u>            |                                                  |          | DS/ Belli  |          | /                                                |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   |             |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   |             |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc   | Drla Gas:   |                                                                                           | Max (    | as:     | Conn      | Gas:           | т         | rin Ga   | g:           | Т                                 | rip Cl:  | R                     | emarks:  | :                  |                                                  |          |            |          |                                                  |
| PRIL   1833   215.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Diry Gab    | 0                                                                                         |          |         | 0         |                |           | rip ca   |              | U                                 |          |                       |          | MAX G              | AS WHI                                           | LE CIF   | RC @ SH    | OE - 0.  | 2%.                                              |
| Type   Mattern   Most   Most   Sale   Sale   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   Most   | Bit Number  | IADC                                                                                      | Si       | ze M    | anufactui | rer S          | Serial    | numbe    | er           | Jet                               | s (Qu    | antity -              | Size)    |                    | TFA                                              | M        | D In       | MD Out   | TVD Out                                          |
| Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S   | 9 RR-1      | M333                                                                                      | 215      | 5.9     | HUGHES    | 3              | 032       | 3129     | 4            | -15.9/                            | -0.0/    | - 0.0/                | - 0.0/   | / <sub>- 0.0</sub> | 792.                                             | 3 36     | 67.0 m     |          |                                                  |
| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect   |             |                                                                                           |          |         |           |                |           |          |              | - /                               | - /      | - /                   | - /      | / _                | 0                                                |          |            |          |                                                  |
| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect   | Trmo        | Ma                                                                                        | tora     | Hours   | - WO      | R              | DD        | M        | Mo           | tor RPM                           | T_P0     | w O-Pow               | m        | Ιω                 | В                                                | G        | Char       | 2Di1]]   | Cost /m                                          |
| Total Length of Real 253.66 m SHA Percentions 8.1/2* MAMSHA MX RET NA STAR (C/M PICAT) - 6.1/2* NOW 1C - 8.1/2* STRINGS - 8 × 8 MAND - 6.1/2* NOW 1C - 8.1/2* STRINGS - 8 × 8 MAND - 6.1/2* NOW 1C - 8.1/2* STRINGS - 8 × 8 MAND - 6.1/2* NOW 1C - 8.1/2* STRINGS - 8 × 8 MAND - 6.1/2* NOW 1C - 8.1/2* STRINGS - 8 × 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - 8 MAND - |             |                                                                                           |          |         |           |                |           |          | 1-10         |                                   | 1-10     | w O-ROW               | I.C.     | шс                 | ь                                                | G        | Cliat      | ···      | 00.007                                           |
| STATE   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   Stat   | BD445HA     | 7 (                                                                                       | 0.0      | 0.0     | /         |                | 120 /     |          |              |                                   |          |                       |          |                    |                                                  |          |            |          | 0.00                                             |
| STATE   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   Stat   |             |                                                                                           |          |         | /         | ,              | /         |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| STATE   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   Stat   | Total Leng  | th of I                                                                                   | BHA:     | 253.66  | m BHA I   | Descrip        | otion:    | 8.1/2    | 2" BD        | 445HA PD                          | C BIT -  | NB STAE               | 3 (C/W   | FLOAT)             | - 6.1/                                           | '2" PO   | NY DC -    | 8.1/2    | " STRING                                         |
| Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Richard   Rich   |             |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| Stroke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b></b>     |                                                                                           |          | 10 Z    | - 11110   | 0.1            | , _ 01    |          |              | -4,121                            |          | Hrc C                 | n "Tawa" | 100                | Horma                                            | Gin-     | e Tact     | Tnence   | tion:                                            |
| Series   152   152   152   152   304.8   304.8   304.8   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | Bit Num Liner Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW EHHP/SQIN Pump kW       |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| Survey Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bit Num     | Lin                                                                                       | er       |         | Strok     | e              |           | SI       | PM           | Press                             | M3/Mi    | n Jet Ve              | l de     | Av D               | C Av                                             | Bit k    | W BHH      | P/SQIN   | Pump kW                                          |
| Hours From Act-Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 RR-1 1    | .52 / :                                                                                   | 152 /    | 152     | 304.8/3   | 304.8/         | 304.8     | 20/      | /            | 21                                | 0.3      | 2 6.80                | 13.      | 44 2               | 1.18                                             | 0.00     | ) (        | 0.0      | 0.10                                             |
| Hours From Act-Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | /                                                                                         | /        | ,       | /         | /              |           |          | 1            |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| Hours From Act-Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                                           | Τ.,      |         |           | <del>. ′</del> |           |          | ,            |                                   |          |                       |          |                    |                                                  |          |            | <u> </u> |                                                  |
| 2.00 0000 02 - 25 RH W/ BACK UP SCHLUM PEK TOOLSTRING - RUN #3 & RECORD WAIN LOG F/ 2000 - 1590M. RESTONSE AS PER REVIOUS RUN.  1.00 0200 02 - 25 POU & MUU READ S-LEVEL DELITA VSP TOOLSTRING & CHANGE CABLE HEAD FOR READ VSP RUN.  3.00 0430 02 - 25 PUW & MUU READ S-LEVEL DELITA VSP TOOLSTRING - 2400M & 3200M. TOOL STOOD UP @ 2060M - FREED W/ 2000LB O/PULL.  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  1.50 074 075 075 075 075 075 075 075 075 075 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Survey MD   |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| 2.00 0000 02 - 25 RH W/ BACK UP SCHLUM PEK TOOLSTRING - RUN #3 & RECORD WAIN LOG F/ 2000 - 1590M. RESTONSE AS PER REVIOUS RUN.  1.00 0200 02 - 25 POU & MUU READ S-LEVEL DELITA VSP TOOLSTRING & CHANGE CABLE HEAD FOR READ VSP RUN.  3.00 0430 02 - 25 PUW & MUU READ S-LEVEL DELITA VSP TOOLSTRING - 2400M & 3200M. TOOL STOOD UP @ 2060M - FREED W/ 2000LB O/PULL.  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  1.50 074 075 075 075 075 075 075 075 075 075 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| 2.00 0000 02 - 25 RH W/ BACK UP SCHLUM PEK TOOLSTRING - RUN #3 & RECORD WAIN LOG F/ 2000 - 1590M. RESTONSE AS PER REVIOUS RUN.  1.00 0200 02 - 25 POU & MUU READ S-LEVEL DELITA VSP TOOLSTRING & CHANGE CABLE HEAD FOR READ VSP RUN.  3.00 0430 02 - 25 PUW & MUU READ S-LEVEL DELITA VSP TOOLSTRING - 2400M & 3200M. TOOL STOOD UP @ 2060M - FREED W/ 2000LB O/PULL.  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  1.50 074 075 075 075 075 075 075 075 075 075 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| 2.00 0000 02 - 25 RH W/ BACK UP SCHLUM PEK TOOLSTRING - RUN #3 & RECORD WAIN LOG F/ 2000 - 1590M. RESTONSE AS PER REVIOUS RUN.  1.00 0200 02 - 25 POU & MUU READ S-LEVEL DELITA VSP TOOLSTRING & CHANGE CABLE HEAD FOR READ VSP RUN.  3.00 0430 02 - 25 PUW & MUU READ S-LEVEL DELITA VSP TOOLSTRING - 2400M & 3200M. TOOL STOOD UP @ 2060M - FREED W/ 2000LB O/PULL.  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  1.50 074 075 075 075 075 075 075 075 075 075 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | urvey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| 2.00 0000 02 - 25 RH W/ BACK UP SCHLUM PEK TOOLSTRING - RUN #3 & RECORD WAIN LOG F/ 2000 - 1590M. RESTONSE AS PER REVIOUS RUN.  1.00 0200 02 - 25 POU & MUU READ S-LEVEL DELITA VSP TOOLSTRING & CHANGE CABLE HEAD FOR READ VSP RUN.  3.00 0430 02 - 25 PUW & MUU READ S-LEVEL DELITA VSP TOOLSTRING - 2400M & 3200M. TOOL STOOD UP @ 2060M - FREED W/ 2000LB O/PULL.  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  1.50 074 075 075 075 075 075 075 075 075 075 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| 2.00 0000 02 - 25 RH W/ BACK UP SCHLUM PEK TOOLSTRING - RUN #3 & RECORD WAIN LOG F/ 2000 - 1590M. RESTONSE AS PER REVIOUS RUN.  1.00 0200 02 - 25 POU & MUU READ S-LEVEL DELITA VSP TOOLSTRING & CHANGE CABLE HEAD FOR READ VSP RUN.  3.00 0430 02 - 25 PUW & MUU READ S-LEVEL DELITA VSP TOOLSTRING - 2400M & 3200M. TOOL STOOD UP @ 2060M - FREED W/ 2000LB O/PULL.  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUN LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  0.50 0730 02 - 25 TOOLSTRING STOCK @ 3400M. WORK STRING W/ MUX LINE PULL OF TOOLSE (NUMBAL LOGSING TENSION - 3400LB).  1.50 074 075 075 075 075 075 075 075 075 075 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                           | +        |         |           |                |           |          |              |                                   |          |                       |          |                    | <del>                                     </del> |          |            |          |                                                  |
| 1.00   020   02 - 25   FOCH & L/O BACK UP SCHLIM FEX TOOLSTRING & CHANGE CABLE HEAD FOR READ VSP RUN.  1.50   0300   02 - 25   FVU & M/U READ 8-LEVEL DELTA VSP TOOLSTRING.  3.00   0430   02 - 25   RI W/ READ VSP TOOLSTRING TAKING CHECKSHOTS @ 2400M & 3200M. TOOL STOOD UP @ 2060M - FREED W/ 2000LB O/PULL.  0.50   0730   02 - 25   TOOLSTRING FIRE. CONT TO FOCH @ 4000 FIVER. TOOK 2000LB & 2600LB O/PULLS @ 3346M & 3107M RESPECTIVELY.  0.501   0800   02 - 25   TOOLSTRING FREE. CONT TO FOCH @ 4000 FIVER. TOOK 2000LB & 2600LB O/PULLS @ 3346M & 3107M RESPECTIVELY.  1.501   0300   02 - 25   TOOLSTRING FREE. CONT TO FOCH @ 4000 FIVER. TOOK 2000LB & 2600LB O/PULLS @ 3346M & 3107M RESPECTIVELY.  1.501   0300   02 - 25   TOOLSTRING FREE. CONT TO FOCH @ 4000 FIVER. TOOK 2000LB & 2600LB O/PULLS @ 3346M & 3107M RESPECTIVELY.  2.501   1300   02 - 25   TOOLSTRING FREE CONT TO FOCH @ 4000 FIVER. TOOK 2000LB & 2600LB O/PULLS @ 3346M & 3107M RESPECTIVELY.  2.501   1300   02 - 25   TOOLSTRING FREE CONT TO FOCH @ 4000 FIVER. TOOK 2000LB & 2600LB O/PULLS @ 3346M & 3107M RESPECTIVELY.  2.501   1300   02 - 25   TOOLSTRING FREE CONT TO FOCH @ 4000 FIVER. TOOK 2000LB & 2600LB O/PULLS @ 3346M & 3107M RESPECTIVELY.  2.501   1300   02 - 25   TOOLSTRING FREE MILE HOLDING 7000LBS ILINE FULL. COMMUNICATION W/ ITOOLSTRING CONFIRMED, FOCH TO SURFACE.  1.501   1300   02 - 25   TOOLSTRING FREED WHILE HOLDING 7000LBS LINE FULL. COMMUNICATION W/ TOOLSTRING CONFIRMED, FOCH TO SURFACE.  1.501   1300   02 - 25   TOOLSTRING FREED WHILE HOLDING 7000LBS LINE FULL. COMMUNICATION W/ TOOLSTRING CONFIRMED, FOCH TO SURFACE.  1.501   1300   02 - 25   TOOLSTRING FREED WHILE HOLDING 7000LBS LINE FULL COMMUNICATION W/ TOOLSTRING CONFIRMED, FOCH TO SURFACE.  1.501   1300   02 - 25   TOOLSTRING FREED WHILE HOLDING 7000LBS LINE FULL COMMUNICATION W/ TOOLSTRING CONFIRMED, FOCH TO SURFACE.  1.501   1300   02 - 25   TOOLSTRING FREED WHILE HOLDING 7000LBS LINE FULL FULL FULL FULL FULL FULL LINE.  2.501   1300   02 - 25   TOOLSTRING FREED WHILE HOLDING 7000LBS LINE FULL FU | Hours From  |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| 1.50 0300 02-25 F/U & M/U READ 8-LEVEL DELTA VSP TOOLSTRING. 3.00 0430 02-25 F/H W/ READ VSP TOOLSTRING TAKING CHECKSHOTS @ 2400M & 3200M. TOOL STOCKING W 1500 - 3000LB O/PULLS TO FREE. 1.007 0800 02-25 TOOLSTRING STUCK @ 3403M. NORK STRING W MX LINE PULL OF 7000LBS (NORMAL LOGSING TERSION - 3400LBS). 0.507 0800 02-25 TOOLSTRING STUCK @ 3403M. NORK STRING W MX LINE PULL OF 7000LBS (NORMAL LOGSING TERSION - 3400LBS). 0.507 0800 02-25 TOOLSTRING FREE. CONT TO FOOD @ 4000 FT/HR. TOOK 2000LB & 2600LB O/FULLS @ 3446M & 3107M RESPECTIVELY.  3.507 0800 02-25 TOOLSTRING SABLEHEAD STUCK @ +/-3077M, TOP GEOPHONE +/-3090M (BOTH W/LINE DEPTHS). NORK STRING W/ MXA LINE PULL DEPTHS (ABLEHEAD STUCK @ +/-3077M, TOP GEOPHONE +/-3090M (BOTH W/LINE DEPTHS). NORK STRING W/ MXA LINE PULL DEPTHS (ABLEHEAD STUCK @ +/-3077M, TOP GEOPHONE +/-3090M (BOTH W/LINE DEPTHS). NORK STRING W/ MXA LINE PULL DEPTHS (ABLEHEAD STUCK @ +/-3077M, TOP GEOPHONE +/-3090M (BOTH W/LINE DEPTHS). NORK STRING W/ MXA LINE PULL DEPTHS (ABLEHEAD STUCK @ +/-3077M, TOP GEOPHONE +/-3090M (BOTH W/LINE DEPTHS). NORK STRING W/ MXA LINE PULL DEPTHS (ABLEHEAD STRING CONFIRMED, POCH TO SURFACE.  2.507 1300 02-25 TOOLSTRING FREED WILLE HOLDING 7000LBS LINE PULL COMMUNICATION W/ TOOLSTRING CONFIRMED, POCH TO SURFACE.  1.507 1500 02-25 L/O READ 8-LEVEL LELTA VSP TOOLSTRING, NO GEVIOUS SIGNS OF DAMAGE. R/D W/LINE.  4.507 1700 02-05 M/U & TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M, FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  1.007 12300 02-05 TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M, FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  24 Hr Summary: P/U & RH VSP TOOLSTRING. TOOL SUCK WHILE ATTEMPTING TO CORRELATE. FOOH W/ VSP STRING & TIH W/ NIPER TRIP ASSY.  PROJECTED OPERATIONS: THE TOT TO TO. CIRC & COND MID & FOOH. R/U & RUN VSP & REMAINING WIRELINE LOSS.  ROBARCE: ROBARCE: P/U & P/U & RUN VSP & REMAINING WIRELINE LOSS.  PROJECTED OPERATIONS: THE TOT TO CIRC & COND MID & FOOH. R/U & RUN VSP & REMAINING WIRELINE LOSS.  PROJECTED OPERATIONS: T | 2.00 0000   | 02 - 2                                                                                    | 5 RIH    | W/ BAC  | K UP SCH  | LUM PEZ        | X TOOL    | STRING   | 3 - RU       | I & C# I/I                        | RECORD   | MAIN LOG              | F/ 200   | 00 - 15            | 90M.R                                            | ESPON    | SE AS P    | ER PREV  | JIOUS RUN.                                       |
| 3.00 0430 02 -25 RIH WY READ VSP TOOLSTRING TAKING CHECKSHOTS @ 2400M & 3200M. TOOL STOOD UP @ 2060M - FREED W/ 2000LB O/PULL.  0.50 0730 02 -25 ATTEMET TO RECORD GR CORRELATION X 2 F/ 3450 - 3390M - NO GO. TOOL STICKING W/ 1500 - 3000LB O/PULLS TO FREE.  1.007 0800 02 -25 TOOLSTRING STUCK @ 3403M. WORK STRING W/ MAX LINE PULL OF 7000LBS (NDRMAL LOGGING TERSION - 3400LBS).  0.507 0900 02 -25 TOOLSTRING STUCK @ 3403M. WORK STRING W/ MAX LINE PULL OF 7000LBS (NDRMAL LOGGING TERSION - 3400LBS).  3.507 0930 02 -25 TOOLSTRING STUCK @ 3403M. WORK STRING W/ MAX LINE PULL OF 7000LBS (NDRMAL LOGGING TERSION - 3400LBS).  0.507 1300 02 -25 TOOLSTRING STEEL DELTA VSD TOOLSTRING STOOLS (NDRMAL LOGGING TERSION - 3400LBS).  2.507 1300 02 -25 TOOLSTRING FREED WHILE HOLDING 7000LBS LINE PULL COMMUNICATION W/ TOOLSTRING CONFIRMED. POOH TO SURFACE.  1.507 1500 02 -25 LO READ 8-LEVEL DELTA VSD TOOLSTRING. NO GEVIOUS SIGNS OF DAMAGE. R/D W/LINE.  4.507 1700 02 -05 M/U & TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  1.0012300 02 -21 SLEP & CUT DRILL LINE.  0.507 2300 02 -05 TIH W 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  3.6645Y: PAINTER RECEIVED HOT WATER BURN TO NECK FROM WASH DOWN GUN.  24 His Summary: P/U & RIH VSD TOOLSTRING, TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP BASY.  POSSICIOUS OPERATIONS: TOOL STEEK WIND A FROM RSH DOWN GUN.  24 FIR Summary: P/U & RIH VSD TOOLSTRING, TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP BASY.  POSSICIOUS OPERATIONS: TOOL STEEK WIND A FROM RSH DOWN GUN.  24 FIR Summary: P/U & RIH VSD TOOLSTRING, TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP BASY.  POSSICIOUS OPERATIONS: TOOL STEEK & COND MUD & ROOM. RIU & RIN VSP & REMAINING WIRELINE LOGS.  25 AND AND A ROOM RSH CIRC & COND MUD & 3660M.  25 AND A ROOM RSH CIRC & COND MUD & 3660M.  25 AND A ROOM RSH CIRC & COND MUD & 3660M.  | 1.00 0200   | 02 - 2                                                                                    | 5 POOH   | H & L/C | BACK UP   | SCHLUI         | M PEX     | TOOLSI   | RING         | & CHANG                           | CABLE    | HEAD FO               | R READ   | VSP RU             | IN.                                              |          |            |          |                                                  |
| 3.00 0430 02 -25 RIH WY READ VSP TOOLSTRING TAKING CHECKSHOTS @ 2400M & 3200M. TOOL STOOD UP @ 2060M - FREED W/ 2000LB O/PULL.  0.50 0730 02 -25 ATTEMET TO RECORD GR CORRELATION X 2 F/ 3450 - 3390M - NO GO. TOOL STICKING W/ 1500 - 3000LB O/PULLS TO FREE.  1.007 0800 02 -25 TOOLSTRING STUCK @ 3403M. WORK STRING W/ MAX LINE PULL OF 7000LBS (NDRMAL LOGGING TERSION - 3400LBS).  0.507 0900 02 -25 TOOLSTRING STUCK @ 3403M. WORK STRING W/ MAX LINE PULL OF 7000LBS (NDRMAL LOGGING TERSION - 3400LBS).  3.507 0930 02 -25 TOOLSTRING STUCK @ 3403M. WORK STRING W/ MAX LINE PULL OF 7000LBS (NDRMAL LOGGING TERSION - 3400LBS).  0.507 1300 02 -25 TOOLSTRING STEEL DELTA VSD TOOLSTRING STOOLS (NDRMAL LOGGING TERSION - 3400LBS).  2.507 1300 02 -25 TOOLSTRING FREED WHILE HOLDING 7000LBS LINE PULL COMMUNICATION W/ TOOLSTRING CONFIRMED. POOH TO SURFACE.  1.507 1500 02 -25 LO READ 8-LEVEL DELTA VSD TOOLSTRING. NO GEVIOUS SIGNS OF DAMAGE. R/D W/LINE.  4.507 1700 02 -05 M/U & TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  1.0012300 02 -21 SLEP & CUT DRILL LINE.  0.507 2300 02 -05 TIH W 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  3.6645Y: PAINTER RECEIVED HOT WATER BURN TO NECK FROM WASH DOWN GUN.  24 His Summary: P/U & RIH VSD TOOLSTRING, TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP BASY.  POSSICIOUS OPERATIONS: TOOL STEEK WIND A FROM RSH DOWN GUN.  24 FIR Summary: P/U & RIH VSD TOOLSTRING, TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP BASY.  POSSICIOUS OPERATIONS: TOOL STEEK WIND A FROM RSH DOWN GUN.  24 FIR Summary: P/U & RIH VSD TOOLSTRING, TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP BASY.  POSSICIOUS OPERATIONS: TOOL STEEK & COND MUD & ROOM. RIU & RIN VSP & REMAINING WIRELINE LOGS.  25 AND AND A ROOM RSH CIRC & COND MUD & 3660M.  25 AND A ROOM RSH CIRC & COND MUD & 3660M.  25 AND A ROOM RSH CIRC & COND MUD & 3660M.  | 1 50 0300   | 02 - 2                                                                                    | E D/II   | & M/II  | READ 8-I  | FVFT. DI       | רד.πα τ   | TOD TOO  | ו פרדיים. זו | NG                                |          |                       |          |                    |                                                  |          |            |          |                                                  |
| 0.90 0730 02 - 25 ATTEMPT TO RECORD GR CORRELATION X 2 F/ 3450 - 3390M - NO GO. TOOL STICKING W/ 1500 - 3000LB 0/FULLS TO FREE.  1.007 0800 02 - 25 TOOLSTRING STUCK @ 3403M. WORK STRING W/ MAX LINE PULL OF 7000LBS (NORMAL LOGGING TENSION - 3400LBS).  0.507 0900 02 - 25 TOOLSTRING FREE. CONT TO POOH @ 4000 FT/HR. TOOK 2000LB & 2600LB 0/FULLS @ 3346M & 3107M RESPECTIVELY.  3.507 0930 02 - 25 TOOLSTRING CABLEHEAD STUCK @ +/-3077M, TOP GEOPHONE +/-3090M (BOTH W/LINE DEPTHS). WORK STRING W/ MAX LINE PULL  0.2 - 25 F 7000LBS. FIRE AIR GIN & MONITOR SIGNAL IN ATTEMPT TO DETERMINE STUCK POINT.  2.507 1300 02 - 25 TOOLSTRING FREED WHILE HOLDING 7000LBS LINE PULL. COMMUNICATION W/ TOOLSTRING CONFIRMED. POOH TO SURFACE.  1.507 1500 02 - 25 L/O READ 8-LEVEL DELTA VSP TOOLSTRING. NO CEVIOUS SIGNS OF DAMAGE. R/D W/LINE.  4.507 1700 02 - 05 M/U & TIH W/ 8.1/2" WIFER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RFM, 323 LPM EVERY 20 STD.  1.00 2130 02 - 21 SIJP & CUT DRILL LINE.  0.507 2230 02 - 01 CIRC & COND MID @ SHOE W/ UP TO 2010 LEM, 151 BAR, 112 RFM, 8000 N.M TORQ.  1.007 2300 02 - 05 TIH W/ 8.1/2" WIFER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RFM, 323 LPM EVERY 20 STD.  SAfety: PAINTER RECEIVED HOT MATER BURN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VSP TOOLSTRING. TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  PROSECTED OPERATIONS: THE TOTAL CIRC & COND MID & FOOH. R/U & RUN VSP & REMAINING WIRELINE LOSS.  REMAINS: PGS: GHOVEON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LIT - 77  HEAVE: 0.2M, PITCH 0.4BEG, ROLL 0.5BEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COST: 2,717,083 NOK  TOTAL FE COST: 2,717,083 NOK  TOTAL FE COST: 280,00 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 280.0 Fuel: 28 |             |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| 1.0070800 02-25 TOOLSTRING STUCK @ 3403M. WORK STRING W/ MAX LINE FULL OF 7000LBS (NORMAL LOGSING TENSION - 3400LBS).  0.5070900 02-25 TOOLSTRING FREE. CONT TO POOH @ 4000 FT/HR. TOOK 2000LB & 2600LB O/FULLS @ 3346M & 3107M RESPECTIVELY.  3.5070930 02-25 TOOLSTRING CARLEHEAD STUCK @ +/-3077M, TOP GEOPHENE +/-3090M (BOTH W/LINE DEPTHS). WORK STRING W/ MAX LINE PULL 02-25 OF 7000LBS. FIRE AIR GUN & MONITOR SIGNAL IN ATTEMPT TO DETERMINE STUCK POINT.  2.5071300 02-25 TOOLSTRING FREED WHILE HOLDING 7000LBS LINE PULL. COMMUNICATION W/ TOOLSTRING COMPINATED. POOH TO SURFACE.  1.5071530 02-25 L/O READ 8-LEVEL DELTA VSP TOOLSTRING. NO CEVIOUS SIGNS OF DAMAGE. R/D W/LINE.  4.5071700 02-05 M/U & TIH W/ 8.1/2* WIPER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RFM, 323 LFM EVERY 20 STD.  1.0012300 02-05 TIH W/ 8.1/2* WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RFM, 323 LFM EVERY 20 STD.  Safety: PAINTER RECEIVED HOT WATER HERN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VSP TOOLSTRING. TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POOH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  PROSCIENT OF TOOLSTRING TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POOH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  PROSCIENT OF TOOLSTRING TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POOH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  PROSCIENT OF TOOLSTRING TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POOH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  PROSCIENT OF TOOLSTRING TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POOH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  DAYS SINCE LAST LIT - 77  HERVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FUIL & 9 EMPTY).  DAILY FE COST: 2.717,083 NOK TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  DAILY FE COST: 2.717,083 NOK TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  PRINT NORMAL COST: RESP, 462  DAYS SINCE LAST LIT - 77  READER: PL259  Read Cement: 2.7.0 Blended:  PL259  Read Cement: 2.7.0 Blended:  PL259  Read Cement: 2.7.0 Blend | 3.00 0430   | 02 - 2                                                                                    | 5 RIH    | W/ REA  | D VSP TO  | OLSTRII        | NG TAK    | ING CH   | IECKSI       | HOTS @ 2                          | & M004   | 3200M. T              | OOL STO  | OOD UP             | @ 2060                                           | M – FI   | REED W/    | 2000LE   | 3 O/PULL.                                        |
| 0.50T1990   02-25   TOOLSTRING FREE. CONT TO POOH @ 4000 FT/HR. TOOK 2000LB & 2600LB O/FULLS @ 3346M & 3107M RESPECTIVELY.  3.50T1930   02-25   TOOLSTRING CARLEHEAD STICK @ +/-3077M, TOP GEOPHONE +/-3090M (BOTH W/LINE DEFTHS). WORK STRING W/ MAX LINE PULL   02-25   OF 7000LBS. FIRE AIR GUN & MONITOR SIGNAL IN ATTEMPT TO DETERMINE STUCK POINT.  2.50T1300   02-25   TOOLSTRING FREE WHILE HOLDING 7000LBS LINE FULL. COMMUNICATION W/ TOOLSTRING CONFIRMED. POOH TO SURFACE.   1.50T1530   02-25   L/O READ 8-LEVEL LELITA VSP TOOLSTRING. NO GEVICUS SIGNS OF DAMAGE. R/D W/LINE.  4.50T1700   02-05   M/U & TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.00   2130   02-25   SLIP & CUT DRILL LINE.  0.50T1230   02-05   TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.00T12300   02-05   TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.00T12300   02-05   TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.00T12300   02-05   TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.00T12300   02-05   TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.00T12300   02-05   TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.00T12300   02-05   TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.00T12300   02-05   TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.00T12300   02-05   TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.00T12300   02-05   TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.00T12300   02-05   TIH W/ 8.1/ | 0.50 0730   | 02 - 2                                                                                    | 5 ATTI   | EMPT TO | RECORD    | GR CORI        | RELATI    | ON X 2   | 2 F/ 3       | 3450 - 3                          | 390M -   | NO GO. T              | OOL ST   | ICKING             | W/ 150                                           | 0 - 30   | 000LB 0    | /PULLS   | TO FREE.                                         |
| 3.501 0930 02 - 25 TOOLSTRING CABLEHEAD STUCK © +/-3077M, TOP GEOPHONE +/-3090M (BOTH W/LINE DEFTHS). WORK SIRING W/ MAX LINE PULL  02 - 25 OF 7000LBS. FIRE AIR GUN & MONITOR SIGNAL IN ATTEMPT TO DETERMINE STUCK POINT.  2.501 1300 02 - 25 TOOLSTRING FREED WHILE HOLDING 7000LBS LINE PULL. COMMUNICATION W/ TOOLSTRING CONFIRMED. POOH TO SURFACE.  1.501 1530 02 - 25 L/O READ 8-LEVEL DELTA VSP TOOLSTRING. NO GEVIOUS SIGNS OF DAMAGE. R/D W/LINE.  4.501 1700 02 - 05 M/U & TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE © 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  1.00 2130 02 - 21 SLIP & CUT DRILL LINE.  0.501 2230 02 - 05 TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  Safety: PAINTER RECEIVED HOT WATER BURN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VSP TOOLSTRING. TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  PROSE-CHEVRON - 5, SERVICE - 25, DCLPHIN - 53, DOLPHIN SERVICE - 9  PAYS SINCE LAST LTI - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NCK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Mud Cost: KR5,187,232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00T 0800  | 02 - 2                                                                                    | 5 T00I   | LSTRING | STUCK @   | 3403M          | . WORK    | STRIN    | IG W/        | MAX LIN                           | PULL     | OF 7000L              | BS (NOF  | RMAL LO            | OGING                                            | TENSI    | ON - 34    | 00LBS)   |                                                  |
| 3.501 0930 02 - 25 TOOLSTRING CABLEHEAD STUCK © +/-3077M, TOP GEOPHONE +/-3090M (BOTH W/LINE DEFTHS). WORK SIRING W/ MAX LINE PULL  02 - 25 OF 7000LBS. FIRE AIR GUN & MONITOR SIGNAL IN ATTEMPT TO DETERMINE STUCK POINT.  2.501 1300 02 - 25 TOOLSTRING FREED WHILE HOLDING 7000LBS LINE PULL. COMMUNICATION W/ TOOLSTRING CONFIRMED. POOH TO SURFACE.  1.501 1530 02 - 25 L/O READ 8-LEVEL DELTA VSP TOOLSTRING. NO GEVIOUS SIGNS OF DAMAGE. R/D W/LINE.  4.501 1700 02 - 05 M/U & TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE © 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  1.00 2130 02 - 21 SLIP & CUT DRILL LINE.  0.501 2230 02 - 05 TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  Safety: PAINTER RECEIVED HOT WATER BURN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VSP TOOLSTRING. TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  PROSE-CHEVRON - 5, SERVICE - 25, DCLPHIN - 53, DOLPHIN SERVICE - 9  PAYS SINCE LAST LTI - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NCK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Mud Cost: KR5,187,232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 50770000  | 02 - 2                                                                                    | 5 17001  | CUIDING | , anda a  |                | DOGI      | e 4000   | ) היהי/ T    | ID TOOK                           | 2000T D  | 26001                 | D O/DIT  | .10 @ 3            | DAGM C                                           | 2107     | M DECDE    |          | · · · · · · · · · · · · · · · · · · ·            |
| 02 - 25    05 7000LBS. FIRE AIR GIN & MONITOR SIGNAL IN ATTEMPT TO DETERMINE STUCK FOINT.   2.50T 1300    02 - 25    TOLSTRING FREED WHILE HOLDING 7000LBS LINE PULL. COMMUNICATION W/ TOOLSTRING CONFIRMED. POOH TO SURFACE.   1.50T 1530    02 - 25    L/O READ 8-LEVEL DELTA VSP TOOLSTRING. NO CEVIOUS SIGNS OF DAMAGE. R/D W/LINE.   4.50T 1700    02 - 05    M/U & TIH W/ 8.1/2" WIFER TRIP BHA TO CSG SHOE @ 1343M. FILL PIFE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   1.007 2330    02 - 01    SLIP & CUT DRILL LINE.   1.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   3.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   3.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   3.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   3.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   3.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   3.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   3.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   3.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   3.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   3.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.   3.007 2300    02 - 05    TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M. FIL   |             |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| 2.50T 1300 02 - 25 TOLSTRING FREED WHILE HOLDING 7000LBS LINE PULL. COMMUNICATION W/ TOLSTRING CONFIRMED. POOH TO SURFACE.  1.50T 1530 02 - 25 L/O READ 8-LEVEL DELTA VSP TOOLSTRING. NO GEVIOUS SIGNS OF DAMAGE. R/D W/LINE.  4.50T 1700 02 - 05 M/U & TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  1.00 2130 02 - 21 SLIP & CUIT DRILL LINE.  0.50T 2230 02 - 01 CIRC & COND MID @ SHOE W/ UP TO 2010 LPM, 151 BAR, 112 RPM, 8000 N.M TORQ.  1.00T 2300 02 - 05 TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  Safety: PAINTER RECEIVED HOT WATER HENN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VSP TOOLSTRING. TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  Projected Operations: TIH TO TD. CIRC & COND MID & POCH. R/U & RUN VSP & REMAINING WIRELINE LOSS.  Remarks: POB: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LIT - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUITING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NCK  05:30 HRS: CIRC & COND MID @ 3660M.  DAILY Mud Cost: KR58,462  DAILY Tangible Cost: KR1,747,951  DAILY Mud Cost: KR58,462  DAILY Tangible Cost: KR1,747,951  DAILY Mud Cost: KR58,462  DAILY Tangible Cost: KR1,747,951  DAILY Mid Cost: KR2,717,083  DO NEAT Cement: 227.0 Blended:  Country: NORWAY  Rig: BYFORD DOLPHIN  Rig Phone: 52 88 03 35  Drilling Rep: MOORE/BURNEM/MH  Field: PL259  Well No: 6506/3-1  Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.50T 0930  | 02 - 2                                                                                    | 5 T00I   | LSTRING | CABLEHE   | AD STU         | CK @ +    | -/-30'// | /M, TC       | OP GEOPH                          | )NE +/-  | 3090M (B              | OTH W/I  | LINE DE            | EPTHS).                                          | WORK     | STRING     | W/ MAX   | K LINE PULL                                      |
| 1.50T 1530   02 - 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 02 - 2                                                                                    | 5 OF 7   | 7000LBS | S. FIRE A | IR GUN         | MON &     | IITOR S  | GIGNAI       | IN ATT                            | MPT TO   | DETERMI               | NE STUC  | CK POIN            | IT.                                              |          |            |          |                                                  |
| 4.50T 1700 02 - 05 M/U & TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  1.00 2130 02 - 21 SLIP & CUT DRILL LINE.  0.50T 2230 02 - 01 CIRC & COND MUD @ SHOE W/ UP TO 2010 LEM, 151 BAR, 112 RPM, 8000 N.M TORQ.  1.00T 2300 02 - 05 TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  Safety: PAINTER RECEIVED HOT WATER BURN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VSP TOOLSTRING. TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POOH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  PROJECTED OPERATIONS: TIH TO TD. CIRC & COND MUD & POOH. R/U & RUN VSP & REMAINING WIRELINE LOGS.  Remarks: POOB: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LIT - 77  HEAVE: 0.2M, PITCH 0.4LEG, ROLL 0.5DEG; CUTTING SKIRS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Wald Cost: KR58,462 Daily Tangible Cost: KR1,747,951 Cum Well Cost: KR2,717,083 Incidents: FIRST AID  Cum Mud Cost: KR58,187,232 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR106,30,943 Total Appr: KR134,000,000 Drill Water: 210.0 Potable Water: 450.0 Fuel: 280.0 Bulk Weight: 159.0 Next Cement: 227.0 Blended:  Country: NORWAY Rig: Byford DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: MOORE/BJORHEIM/MH  Field: PL259 Well NO:6506/3-1 Well ID:UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.50T1300   | 02 - 2                                                                                    | 5 T001   | LSTRING | FREED W   | HILE HO        | OLDING    | 7000I    | BS LI        | NE PULL                           | COMMU    | NICATION              | W/ TOO   | OLSTRIN            | IG CONF                                          | IRMED    | . POOH     | TO SURI  | FACE.                                            |
| 4.50T 1700 02 - 05 M/U & TIH W/ 8.1/2" WIPER TRIP BHA TO CSG SHOE @ 1343M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  1.00 2130 02 - 21 SLIP & CUT DRILL LINE.  0.50T 2230 02 - 01 CIRC & COND MUD @ SHOE W/ UP TO 2010 LEM, 151 BAR, 112 RPM, 8000 N.M TORQ.  1.00T 2300 02 - 05 TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  Safety: PAINTER RECEIVED HOT WATER BURN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VSP TOOLSTRING. TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POOH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  PROJECTED OPERATIONS: TIH TO TD. CIRC & COND MUD & POOH. R/U & RUN VSP & REMAINING WIRELINE LOGS.  Remarks: POOB: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LIT - 77  HEAVE: 0.2M, PITCH 0.4LEG, ROLL 0.5DEG; CUTTING SKIRS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Wald Cost: KR58,462 Daily Tangible Cost: KR1,747,951 Cum Well Cost: KR2,717,083 Incidents: FIRST AID  Cum Mud Cost: KR58,187,232 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR106,30,943 Total Appr: KR134,000,000 Drill Water: 210.0 Potable Water: 450.0 Fuel: 280.0 Bulk Weight: 159.0 Next Cement: 227.0 Blended:  Country: NORWAY Rig: Byford DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: MOORE/BJORHEIM/MH  Field: PL259 Well NO:6506/3-1 Well ID:UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.50T1530   | 02 - 2                                                                                    | 5 L/O    | READ 8  | B-LEVEL D | ELTA V         | SP TOC    | LSTRIN   | IG. NO       | OBVIOU                            | SIGNS    | OF DAMA               | GE. R/I  | O W/LIN            | Œ.                                               | _        |            |          |                                                  |
| 1.00 2130 02 - 21 SLIP & CUT DRILL LINE.  0.50T 2230 02 - 01 CRC & COND MID @ SHOE W/ UP TO 2010 LEM, 151 BAR, 112 RPM, 8000 N.M TORQ.  1.00T 2300 02 - 05 TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  Safety: PAINTER RECEIVED HOT WATER BURN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VSP TOOLSTRING, TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POOH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  Projected Operations: TIH TO TD. CIRC & COND MUD & POOH. R/U & RUN VSP & REMAINING WIRELINE LOSS.  Remarks: POB: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LTI - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD & 3660M.  Daily Mud Cost: RR3,187,232 Cum Tangible Cost: RR1,747,951 Cum Well Cost: RR106,230,943 Total Appr: RR134,000,000 POINT RECORDS AND ADDITION OF THE POOL APPRING TO CUM Well Cost: RR106,230,943 Total Appr: RR134,000,000 POINT RECORDS AND ADDITION OF THE POOL APPRING TO CUM Well Cost: RR106,230,943 Total Appr: RR134,000,000 POINT RECORDS AND ADDITION OF THE POOL APPRING TO CUM Well Cost: RR106,230,943 Total Appr: RR134,000,000 POINT RECORDS AND ADDITION OF THE POOL APPRING TO CUM Well Cost: RR106,230,943 Total Appr: RR134,000,000 POINT RECORDS AND ADDITION OF THE POOL APPRING TO CUM Well Cost: RR106,230,943 Total Appr: RR134,000,000 POINT RECORDS AND ADDITION OF THE POOL APPRING TO CUM Well Cost: RR106,230,943 Total Appr: RR11 ID: UB5908 TOTAL PRODUCTS AND ADDITION OF THE POOL APPRING TO CUM Well Cost: RR106,230,943 Total Appr: RR11 ID: UB5908 TOTAL PRODUCTS AND ADDITION OF THE POOL APPRING TO CUM Well Cost: RR106,230,943 Total Appr: RR11 ID: UB5908 TOTAL PRODUCTS AND ADDITION OF THE POOL APPRING TO CUM Well Cost: RR106,230,943 Total Appr: RR11 ID: UB5908 TOTAL PRODUCTS AND ADDITION OF THE POOL APPRING TO CUM Well Cost: RR106,230,943 Total Appr: RR11 ID: UB5908 TOTAL PRODUCTS AND ADDI |             |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  | 120 יים  | רר אס      | T.DM III | TEDV OF CORT                                     |
| 0.50T 2230 02-01 CIRC & COND MID @ SHOE W/ UP TO 2010 LFM, 151 BAR, 112 RPM, 8000 N.M TORQ.  1.00T 2300 02-05 TIH W/ 8.1/2" WIPER TRIP BHA F/ 1343 - 1900M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.  Safety: PAINTER RECEIVED HOT WATER BURN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VSP TOOLSTRING. TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  Projected Operations: TIH TO TD. CIRC & COND MUD & POOH. R/U & RUN VSP & REMAINING WIRELINE LOGS.  Remarks: POB: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LTI - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Mud Cost: RR3,187,232 Cum Tangible Cost: Pali y Englished Cost: RR1,747,951 Cum Well Cost: RR106,230,943 Total Appr: RR134,000,000  Drill Water: 210.0 Potable Water: 450.0 Fuel: 280.0 Bulk Weight: 159.0 Potable Water: 227.0 Blended:  Country: Norway  Field: PL259  Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5011700   | 02 - 0                                                                                    | 5 M/U    | α 11π   | W/ 0.1/2  | WIPEI          | K IKIF    | DIA I    | .0 630       | F SHOE @                          | 1343M.   | LIDD BI               | PE & DI  | KEAK CI            | .RC W/                                           | 120 K    | PM, 343    | LIPIN EV | /ERI ZU SID.                                     |
| 1.001 230 0 2-05 TH W / 8.1/2" WIPER TRIP BHA F / 1343 - 1900M. FILL PIPE & BREAK CIRC W / 120 RPM, 323 LPM EVERY 20 STD.  Safety:  PAINTER RECEIVED HOT WATER BURN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VS TOLSTRING. TOLSTRUCK WHILE ATTEMPTING TO CORRELATE. POCH W / VSF STRING & THH W / NIPER TRIP ASSY.  Projected Operations: TH TO TD. CIRC & COND MUD & POCH. R/U & RUN VSF & REMAINING WIRELINE LOGS.  Remarks: POS: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LIT - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NOK  103:30 HRS: CIRC & COND MUD & 3660M.  Paily Mud Cost: KR58,462  Daily Tangible Cost: KR1,747,951  Cum Muld Cost: KR3,187,232  Cum Tangible Cost: KR1,747,951  Cum Well Cost: KR106,230,943  Field: PL259  Rig Phone: 52 88 03 35  Drilling Rep: MOORE/BURNHIM/HH  Well No: 6506/3-1  Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00 2130   | 02 - 2                                                                                    | 1 SLII   | e CUI   | DRILL L   | INE.           |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| Safety: PAINTER RECEIVED HOT WATER BURN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VSP TOOLSTRING. TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POOH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  Projected Operations: TIH TO TD. CIRC & COND MUD & POOH. R/U & RUN VSP & REMAINING WIRELINE LOGS.  Remarks: POB: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LTI - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Mud Cost: KR58,462  Daily Tangible Cost: R1,747,951  Daily Well Cost: R2,0717,083  Drill Water: 210.0  Potable Water: 450.0  Fuel: 280.0  Rig Phone: 52 88 03 35  Drilling Rep: NOORE/BJORHEIM/MH  Field: PL259  Well No: 6506/3-1  Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50T2230   | 02 - 0                                                                                    | 1 CIRO   | C & CON | ID MUD @  | SHOE W         | /UPI      | O 2010   | LPM,         | 151 BA                            | 2, 112   | RPM, 800              | 0 N.M T  | rorq.              |                                                  |          |            |          |                                                  |
| Safety: PAINTER RECEIVED HOT WATER BURN TO NECK FROM WASH DOWN GUN.  24 Hr Summary: P/U & RIH VSP TOOLSTRING. TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POOH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  Projected Operations: TIH TO TD. CIRC & COND MUD & POOH. R/U & RUN VSP & REMAINING WIRELINE LOGS.  Remarks: POB: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LTI - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Mud Cost: KR58,462  Daily Tangible Cost: R1,747,951  Daily Well Cost: R2,0717,083  Drill Water: 210.0  Potable Water: 450.0  Fuel: 280.0  Rig Phone: 52 88 03 35  Drilling Rep: NOORE/BJORHEIM/MH  Field: PL259  Well No: 6506/3-1  Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00T2300   | 0 02 - 0                                                                                  | 5 TIH    | W/ 8.1  | /2" WIPE  | R TRIP         | BHA F     | '/ 1343  | 3 - 19       | 00M. FI                           | L PIPE   | & BREAK               | CIRC V   | v/ 120             | RPM, 3                                           | 23 LPI   | M EVERY    | 20 STI   | o.                                               |
| 24 Hr Summary: P/U & RIH VSP TOOLSTRING. TOOL STUCK WHILE ATTEMPTING TO CORRELATE. POCH W/ VSP STRING & TIH W/ WIPER TRIP ASSY.  Projected Operations: TIH TO TD. CIRC & COND MUD & POOH. R/U & RUN VSP & REMAINING WIRELINE LOGS.  Remarks: POB: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LTI - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Mud Cost: KR58,462  Daily Tangible Cost: Daily Well Cost: KR2,717,083  Daily Well Cost: KR106,230,943  Total Appr: KR134,000,000  Drill Water: 210.0  Potable Water: 450.0  Fuel: 280.0  Rig: BYFORD DOLPHIN  Rig Phone: 52 88 03 35  Drilling Rep: MOORE/BJORHEIM/MH  Field: PL259  Mell No: 6506/3-1  Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                                                                           | _        |         |           |                |           |          |              |                                   |          |                       |          |                    | , ,                                              |          |            | .,       |                                                  |
| Projected Operations: THE TO TD. CIRC & COND MUD & POOH. R/U & RUN VSP & REMAINING WIRELINE LOSS.  Remarks: POB: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LTI - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NOK  Daily Mud Cost: KR58,462  Daily Tangible Cost: Daily Well Cost: RR2,717,083  Daily Mud Cost: RR3,187,232  Cum Tangible Cost: RR1,747,951  Cum Well Cost: RR106,230,943  Total Appr: RR134,000,000  Potal Water: 210.0  Potal Water: 210.0  Potal Water: 210.0  Rig: BYFORD DOLPHIN  Rig Phone: 52 88 03 35  Drilling Rep: MOORE/BJCHEIM/MH  Field: PL259  Well No: 6506/3-1  Well ID: UB5908 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 Un Cime  | TATEK P                                                                                   | œŒ1V     | 파 HOI,  | WAIER B   | OLL NEW        | INECK .   | rkum W   | дон D        | UMIN GUIN.                        |          |                       |          |                    |                                                  |          |            |          |                                                  |
| Remarks: POB: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LTI - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Mud Cost: KR58,462  Daily Tangible Cost: KR1,747,951  Cum Mud Cost: KR3,187,232  Cum Tangible Cost: KR1,747,951  Daily Well Cost: KR106,230,943  Total Appr: KR134,000,000  Drill Water: 210.0  Potable Water: 450.0  Fuel: 280.0  Rig: Phone: 52 88 03 35  Drilling Rep: MOORE/BJORHEIM/MH  Field: PL259  Well No: 6506/3-1  Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  | G & TI   | H W/W      | IPER TR  | IP ASSY.                                         |
| Remarks: POB: CHEVRON - 5, SERVICE - 25, DOLPHIN - 53, DOLPHIN SERVICE - 9  DAYS SINCE LAST LTI - 77  HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK  TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Mud Cost: KR58,462  Daily Tangible Cost: KR1,747,951  Cum Mud Cost: KR3,187,232  Cum Tangible Cost: KR1,747,951  Daily Well Cost: KR106,230,943  Total Appr: KR134,000,000  Drill Water: 210.0  Potable Water: 450.0  Fuel: 280.0  Rig: Phone: 52 88 03 35  Drilling Rep: MOORE/BJORHEIM/MH  Field: PL259  Well No: 6506/3-1  Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Projected   | Operati                                                                                   | ons:     | OT HIT  | TD. CIRC  | C & CON        | ND MUD    | & POO    | H. R/        | U & RUN                           | VSP & I  | REMAININ              | G WIREL  | INE LO             | GS.                                              |          |            |          |                                                  |
| HEAVE: 0.2M, PITCH 0.4DEG, ROLL 0.5DEG; CUTTING SKIPS ON BOARD: 12 (3 FULL & 9 EMPTY).  DAILY FE COST: 2,717,083 NOK TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Mud Cost: KR58,462 Daily Tangible Cost: Daily Well Cost: KR2,717,083 Incidents: FIRST AID  Cum Mud Cost: KR58,462 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR106,230,943 Total Appr: KR134,000,000 Poill Water: 210.0 Potable Water: 450.0 Fuel: 280.0 Bulk Weight: 159.0 Neat Cement: 227.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: MOORE/BJORHEIM/MH  Field: PL259 Well No:6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Remarks:    |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  | -        | ידי אַעע   | NCE TAC  | ا 10 – 10 الله الله الله الله الله الله الله الل |
| DAILY FE COST: 2,717,083 NOK TOTAL FE COSTS: 22,537,269 NOK  05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Mud Cost: KR58,462 Daily Tangible Cost: Daily Well Cost: KR2,717,083 Incidents: FIRST AID  Cum Mud Cost: KR3,187,232 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR106,230,943 Total Appr: KR134,000,000 Drill Water: 210.0 Potable Water: 450.0 Fuel: 280.0 Bulk Weight: 159.0 Neat Cement: 227.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: MOORE/BJCHEIM/MH  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                           |          |         |           |                |           |          |              |                                   |          |                       |          |                    |                                                  | L        | TIC OTT    | ACE LIAS | ·* TIT - \/                                      |
| 05:30 HRS: CIRC & COND MUD @ 3660M.  Daily Mud Cost: KR58, 462   Daily Tangible Cost:   Daily Well Cost: KR2,717,083   Incidents: FIRST AID  Cum Mud Cost: KR3,187,232   Cum Tangible Cost: KR1,747,951   Cum Well Cost: KR106,230,943   Total Appr: KR134,000,000   Cum Vell Water: 210.0   Potale Water: 450.0   Fuel: 280.0   Bulk Weight: 159.0   Neat Cement: 227.0   Blended: Cuntry: NORWAY   Rig Phone: 52 88 03 35   Drilling Rep: MOORE/BJORNEIM/MH   Field: PL259   Well No:6506/3-1   Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HEAVE: 0.   | ZM, PI                                                                                    | CH 0.    | 4DEG, 1 | KULL 0.51 | DEG; CU        | J'I"I'ING | SKIPS    | ON B         | UARD: 12                          | (3 FU    | ⊥ь & 9 Eĭ             | MPIY).   |                    |                                                  |          |            |          |                                                  |
| Daily Mud Cost: $_{KR58,462}$ Daily Tangible Cost: $_{KR1,747,951}$ Daily Well Cost: $_{KR2,717,083}$ Daily Tangible Cost: $_{KR106,230,943}$ Total Appr: $_{KR134,000,000}$ Drill Water: $_{210.0}$ Potale Water: $_{450.0}$ Fuel: $_{280.0}$ Bulk Weight: $_{159.0}$ Neat Cement: $_{227.0}$ Blended: Country: $_{NORWAY}$ Rig: $_{8YFORD}$ DOLPHIN Rig: $_{9L259}$ Rig: $_{9L259}$ Well No: $_{6506/3-1}$ Well ID: $_{UB5908}$ -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DAILY FE C  | OST: 2,                                                                                   | 717,0    | 183 NOK |           | TOTA           | AL FE     | COSTS:   | 22,          | 537,269                           | NOK      |                       |          |                    |                                                  |          |            |          |                                                  |
| Cum Mud Cost: KR3,187,232       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR106,230,943       Total Appr: KR134,000,000       Drill Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo Water: Logo W                                                                    | 05:30 HRS:  | CIRC 8                                                                                    | CONE     | MUD @   | 3660M.    |                |           |          |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| Cum Mud Cost: KR3,187,232       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR106,230,943       Total Appr: KR134,000,000       Drill Water: 210.0       Potal: 280.0       Bulk Weight: 159.0       Neat Cement: 227.0       Blended: NOORE/BJORHEIM/MH         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig: BYFORD DOLPHIN       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Daily Mud   | Cost: 1                                                                                   | TR 58 4  | 62 Da   | aily Tang | gible C        | Cost:     |          |              | Daily We                          | ell Cos  | t: <sub>KP2 71'</sub> | 7 . 0.83 | Incid              | ents:                                            | FTRS     | T AID      |          |                                                  |
| Drill Water: 210.0       Potable Water: 450.0       Fuel: 280.0       Bulk Weight: 159.0       Noat Cement: 227.0       Blended: 227.0         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig Phone: 52 88 03 35       Drilling Rep: MOORE/BJORHEIM/MH         Field: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                           |          |         | um Tangih | ole Cos        |           | 1 -:-    |              |                                   |          |                       |          |                    |                                                  |          |            |          |                                                  |
| Country:         NORWAY         Rig:         BYFORD DOLPHIN         Rig Phone:         52 88 03 35         Drilling Rep:         MOORE/BJORHEIM/MH           Field:         PL259         Well No:         6506/3-1         Well ID:         UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                                                                           |          |         |           |                | _         |          |              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          | KRIU6,                |          |                    |                                                  |          |            |          | 1.                                               |
| Field: PL259 Well No:6506/3-1 Well ID:UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                           |          | rotable | e Water:  |                |           |          |              |                                   |          |                       |          |                    | eat Cen                                          | ent:     | 227.0      |          |                                                  |
| Field: PL259 Well No:6506/3-1 Well ID:UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Country:    | ORWAY                                                                                     |          |         |           | Ri             | g: BYF    | ORD DO:  | LPHIN        |                                   | Rig      | Phone: 52             | 88 03    | 35                 | Drill                                            | ing Re   | ep:<br>MOO | RE/BJOR  | HEIM/MH                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field: pr.2 | 59                                                                                        |          |         |           |                |           |          |              |                                   |          |                       |          |                    | -1                                               |          |            |          |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                           |          |         | AP        |                |           |          |              | AFE No                            | : KWF:NO |                       |          |                    | •                                                | 11 – ATI |            |          |                                                  |

| Measured              | Denth:                                                                                                                                                                                                                                         |           |         | TVD:          |                     |           | DD    | BTD:      |          | Dagge     | and M         | ٠.         |           | Drr      | posed       |             | _              |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------------|---------------------|-----------|-------|-----------|----------|-----------|---------------|------------|-----------|----------|-------------|-------------|----------------|
|                       |                                                                                                                                                                                                                                                |           | 667.0 m |               |                     | .4 m      | PB    |           | 0.0      |           | sed MD        |            | 3625.0    | m        |             |             | 3625.0 m       |
| DOL: 2                |                                                                                                                                                                                                                                                | DFS: 2    |         | Spud Date: 22 |                     |           |       |           |          | e: 0.     |               | ally Ro    | ot Hrs:   |          | Total       | Rot Hr      | rs: 117.5      |
| Torq: 800             | 00 Dra                                                                                                                                                                                                                                         | ng: 4.    | .o Rot  | Wgt: 134.0 P/ | /U Wgt:             | 138.0     | Slad  | k Off Wgt | : 134.   | 0 Wind:   | 4             | Seas       | : 1.0     | / 2.0    | Bar:        | 748         | POB:<br>92     |
| Last Casi             | ng Size                                                                                                                                                                                                                                        | :         | 339     | .7 mm Set A   | <b>\t</b> :         | 1374      | .3m   | MD        | 13'      | 72.1m     | TVD           | Shoe '     | Test:     | 1841     | EMW         | Leako       | ff? Y          |
| Cum Rot H             | rs On C                                                                                                                                                                                                                                        | asing:    | 134     | Cum Rot Hr    | s On C              | asing Si  | nce : |           |          |           | Depth         |            | Wear:     |          |             | emainir     | ng:            |
| Liner Siz             | e:                                                                                                                                                                                                                                             |           |         | Set At:       | 0.0                 |           |       |           | · TD     | Lir       | l<br>ner Top  | o At:      |           |          |             |             |                |
|                       |                                                                                                                                                                                                                                                | 0.0       |         |               | 0.0                 |           |       | 0.0 T     |          |           |               |            |           | 0 MD     |             | 1           | 0.0 TVD        |
| Mud Co: <sub>M-</sub> |                                                                                                                                                                                                                                                |           |         | Type: MINERAL |                     |           | ~ 1   |           |          |           |               |            |           |          |             |             | 7 / 9          |
| WL<br>API             |                                                                                                                                                                                                                                                |           |         | FC (mm) API   |                     |           | Sol:  | ids: 23.8 | 0 8 0    |           |               |            |           |          |             |             | Ph:            |
| Pm: 0.00              | Pf/Mi                                                                                                                                                                                                                                          | 0.00      | /0.00   | Carb:         | cl: 32,             | 500 Ca:   |       | Bent      | :        | Solids    | %HG/I         | G: 18.     | 40/5.     | 40<br>81 | OS/Bent     | :           | /              |
| 50 1K                 | G OTHE                                                                                                                                                                                                                                         | .R.       | 35      |               |                     |           |       | 1KG CAC   | ARB FIN  |           |               |            | ARB MEI   |          | .00 1       | KG CA       | CHLOR 88%      |
|                       |                                                                                                                                                                                                                                                |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
| Drlg Gas:             |                                                                                                                                                                                                                                                | Max (     | ac:     | Conn Gas:     | 7                   | rip Gas   | ,     | ТΥ        | ip Cl:   | Re        | marke:        |            |           |          |             |             |                |
| Ding Gas.             | 0                                                                                                                                                                                                                                              | TELL (    |         | 0             |                     | TIP Gas   | 0     |           |          |           |               | MAX G      | AS DUR    | ING B/1  | U - 6.4     |             | 2100M.         |
| Bit Numbe             | r IADC                                                                                                                                                                                                                                         | Si        | ze Ma   | anufacturer   | Seria               | l number  |       |           |          | ntity -   |               | ,          | TFA       | _        | ) In        | MD Out      | TVD Out        |
| 9 RR-                 | 1 M333                                                                                                                                                                                                                                         | 215       | 5.9     | HUCHES        | 03                  | 23129     | 4 -   | -15.9/ -  | 0.0/     | - 0.0/    | - 0.0/        | - 0.0      | 792.      | 3 366    | 7.0 m       | 3667.0      | m 3662.4 m     |
|                       |                                                                                                                                                                                                                                                |           |         |               |                     |           |       | - / -     | /_       | - /       | - /           |            | 0         |          |             |             |                |
| Type                  | Me                                                                                                                                                                                                                                             | ters      | Hours   | s WOB         | RE                  | PM        | Mot   | or RPM    | I-Row    | O-Row     | $\mathbb{DC}$ | Loc        | В         | G        | Char        | ?Pull       | Cost/m         |
| BD445H                | A                                                                                                                                                                                                                                              | 0.0       | 0.0     | 0.0/0.0       | 120                 | ,         |       |           | 1        | 1         | WT            | XA         | Х         | I        | BT          | TD          | 0.00           |
|                       |                                                                                                                                                                                                                                                |           |         | ,             |                     | ,         |       |           |          |           |               |            |           |          |             |             |                |
| Total Len             | ath of                                                                                                                                                                                                                                         | BHY.      | 0.5.5   | BHA Descr     | iption:             | 0 1/0"    | י אם  | AEUN DOC  | מדייי י  | VID CILIA | (0/17         | 5.1 ∪v.u., | _ 6 1 /   | 211 120  | _ 0 1       | 7) II CITTO | באוכן כידוא די |
|                       |                                                                                                                                                                                                                                                |           |         |               |                     |           |       |           | <u>ы</u> | IND STAR  | (C/W I        | · LUAI )   | - 0.1/    | 2 DC     | - 0.1/      | 2 SIK       | TAG STAD       |
| - 5 X 6.              | 1/2" D                                                                                                                                                                                                                                         | : - 12    | х 5" Н  | WDP - 6.1/2"  | JARS -              | 8 X 5"    | HWDP  |           |          | T         | _             |            | T         | ~ ·      |             |             |                |
|                       | Hrs On Jars: 174.7 Hours Since Last Inspection: 174.7  Bit Num Liner Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW EHHP/SQIN Pump kW  9 RR-1 152 / 152 / 152 304.8 / 304.8 / 304.8 74 / 75 / 280 2.40 50.47 100.25 157.89 0.00 0.0 11.30 |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
| Bit Num               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                        |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
| 9 RR-1                | 152 /                                                                                                                                                                                                                                          | 152 /     | 152     | 304.8/304.8   | /304.8              | 74/75     | /     | 280       | 2.40     | 50.47     | 100.          | 25 15      | 57.89     | 0.00     | (           | 0.0         | 11.30          |
|                       | /                                                                                                                                                                                                                                              | /         | '       | / /           | /                   | /         | /     |           |          |           |               |            |           |          |             |             |                |
| Survey MD             |                                                                                                                                                                                                                                                |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
| 3000107 12            |                                                                                                                                                                                                                                                |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
|                       | rvey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS                                                                                                                                                       |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
|                       | rvey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS                                                                                                                                                       |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
|                       |                                                                                                                                                                                                                                                |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
|                       |                                                                                                                                                                                                                                                |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
| Hours Fra             |                                                                                                                                                                                                                                                |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
| 3.00T000              | 3.00T 0000 02 - 05 CONT TIH W/ 8.1/2" WIPER TRIP BHA F/ 1900 - 3600M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.                                                                                                                 |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
|                       |                                                                                                                                                                                                                                                |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
| 1 00T 030             | 3.00T 0000 02 - 05 CONT TIH W/ 8.1/2" WIPER TRIP BHA F/ 1900 - 3600M. FILL PIPE & BREAK CIRC W/ 120 RPM, 323 LPM EVERY 20 STD.                                                                                                                 |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
| 2.001030              |                                                                                                                                                                                                                                                |           |         |               |                     |           |       |           |          |           |               |            |           |          |             |             |                |
|                       |                                                                                                                                                                                                                                                |           |         | LE W/ 650 LPM |                     |           |       |           |          |           |               |            |           |          |             |             |                |
| 3.001040              | 0 02 - 0                                                                                                                                                                                                                                       | 1 CIRC    | 2.5 X   | BTMS UP WHII  | LE WORK             | LNG S'IND | F'/ . | 3665 - 36 | 48M W/   | 2400 LF   | м, 280        | BAR,       | 120 RP    | М, 600   | 0 - 70      | 00 N.M      | TORQ.          |
|                       | 02 - 0                                                                                                                                                                                                                                         | 1 MAX     | GAS PE  | AK OF 6.4% SE | EN FROI             | M +/- 21  | 00M.  | MAX GAS   | PEAK @   | BTMS UP   | 9 - 5%.       | BOOST      | RISER     | AFTER    | BTMS        | UP.         |                |
|                       | 02 - 0                                                                                                                                                                                                                                         | 1 TOT2    | AL OF 1 | .4MT OF CUTTI | NGS RE              | COVERED : | F/ H  | OLE DURIN | G CIRC   | JLATING   | PERIOD        | ).         |           |          |             |             |                |
| 1.00T070              | 0 02 - 0                                                                                                                                                                                                                                       | 5 TAKE    | E SCR'S | & FLUSH CHOK  | Œ & KI              | LL LINES  | . F/0 | CHECK - S | STATIC.  | PULL 2    | STDS W        | ET TO      | 3616M     | W/OUT    | PROBLE      | Μ.          |                |
| 1.00T080              | 0 02 - 2                                                                                                                                                                                                                                       | 0 MAIN    | N HYD H | OSE BURST ON  | UPPER I             | FINGERBO. | ARD I | RACKING A | RM. CII  | RC W/ 23  | 50 LPM        | 1, 266     | BAR, 1    | 20 RPM   | 1 WHILE     | REPLAC      | CE SAME.       |
| 1.50т090              | 0 02 - 0                                                                                                                                                                                                                                       | 1 TRII    | P BACK  | IN HOLE 2 STI | YS & TA             | TD @ 3    | 667M  | - NO FTI  | J. CON   | r TO CTR  | C W/ 2        | 2350 T.E   | M. 166    | BAR.     | 120 RP      | M WHTLE     | . WORKING      |
| 1202,000              |                                                                                                                                                                                                                                                |           |         | 47 - 3666M. I |                     |           |       |           |          |           |               |            | -         | -        |             |             |                |
| 0. 5051.03            | 1                                                                                                                                                                                                                                              | _         |         |               |                     |           |       | TOTED WI  |          | 1110 1111 | DER DO        | 21. 200    | ,61 1(16) |          |             | DERC BOX    | 1 HOLLIN OI    |
|                       |                                                                                                                                                                                                                                                |           |         | STATIC. PULL  |                     |           |       |           |          |           |               |            |           |          |             |             |                |
| 1.50T 110             | 0 02 - 0                                                                                                                                                                                                                                       | 5 F/CI    | HECK -  | STATIC. PUMP  | 4.2M3,              | 1.85SG    | SLUG  | & POOH F  | '/ 3530  | - 2902M   | I. NO E       | XCESS      | DRAG O    | R OVER   | PULLS.      |             |                |
| 0.50T123              | 0 02 - 2                                                                                                                                                                                                                                       | 0 BOLT    | r & WAS | HER F/ TOP DE | RIVE BE             | LL GUIDE  | WORL  | KED LOOSE | & FELI   | L. BOLT   | LANDED        | ON UP      | PER AR    | M & WA   | SHER H      | IT DOG      | HOUSE ROOF     |
|                       | 02 - 2                                                                                                                                                                                                                                         | 0 WINI    | OOW CAU | SING IT TO CF | RACK. SI            | HUT DOWN  | OPE   | RATIONS & | INVES.   | rigate s  | AME.          |            |           |          |             |             |                |
| Safety: BO            | OLT & W.                                                                                                                                                                                                                                       | ASHER     | FROM TO | OP DRIVE BELL | GUIDE               | WORKED I  | LOOSE | C & FELL. | BOLT I   | ANDED O   | N UPPE        | R ARM,     | WASHER    | R HIT I  | DOG ROO     | OF WIND     | OW.            |
| 24 Hr Sum             | mary: T                                                                                                                                                                                                                                        | ІН ТО     | TD. CIF | RC HOLE CLEAN | & CONI              | MUD. PO   | OΗ,   | R/U SCHL  | UM W/LI  | NE & RII  | H W/ M        | DT. CO     | MMENCE    | TAKIN    | G PRE-      | rest pr     | ESSURES.       |
|                       |                                                                                                                                                                                                                                                |           |         | OT FLUID SAMP |                     |           |       |           |          |           |               |            |           |          |             |             |                |
| Remarks:              |                                                                                                                                                                                                                                                |           |         |               |                     |           |       |           |          |           |               | ~~~ 1 AAL  |           |          |             |             |                |
|                       |                                                                                                                                                                                                                                                |           |         | 25, DOLPHIN   |                     |           |       |           |          |           |               |            |           | D        | AYS SIN     | NCE LAS     | T LTI - 78     |
| HEAVE: 0              | .2M, PI                                                                                                                                                                                                                                        | TCH 0.    | 5DEG, F | ROLL 0.6DEG;  | CUTTING             | SKIPS (   | ON BC | DARD: 24  | (4 FULL  | & 20 E    | MPTY).        |            |           |          |             |             |                |
| DAILY FE              | COST: 2                                                                                                                                                                                                                                        | ,705,0    | 18 NOK  | TO            | TAL FE              | COSTS:    | 25,2  | 242,287 N | OK       |           |               |            |           |          |             |             |                |
| 05:30 HRS             | : TAKIN                                                                                                                                                                                                                                        | G MDT     | FLUID S | SAMPLE @ 3091 | .2M.                |           |       |           |          |           |               |            |           |          |             |             |                |
| Daily Mud             | Cost:                                                                                                                                                                                                                                          | KR 58 , 4 | 62 Da   | ily Tangible  | Cost:               |           | Ι     | Daily Wel | l Cost   | KR2,705   | ,018          | Incid      | ents:     | NEAR     | MISS        |             |                |
| Cum Mud C             |                                                                                                                                                                                                                                                |           |         | m Tangible Co | ost: "              | 21.747 0  |       | Cum Well  |          | KR108,9   |               | Total      | Appr:     | KD13¼    | .,000 0     | 00          |                |
| Drill Wat             |                                                                                                                                                                                                                                                |           |         | Water: 435.0  |                     | el: 266.  |       |           |          | Weight:   |               |            | eat Cem   |          |             | Blende      | ed:            |
|                       |                                                                                                                                                                                                                                                |           |         |               |                     |           |       |           |          |           |               | ) [···     | Drill     | ing Re   | 12/.U<br>p: |             |                |
| Country:              | NORWAY                                                                                                                                                                                                                                         |           |         |               |                     | ORD DOLE  | MIH   |           |          | hone: 52  |               | 35         |           | ٠, ١٠٠   |             |             | HEIM/MH        |
| Field: PL             | 259                                                                                                                                                                                                                                            |           |         |               | se: <sub>PL25</sub> |           |       | 1         |          |           |               | 5506/3-    |           |          |             |             | UB5908 -0      |
| I                     |                                                                                                                                                                                                                                                |           |         | API No:       | 6506/3              | 3-1       |       | AFE No:   | KWENO-   | 650631-0  | 001           |            | Date:     | 12-AU    | 7-2001      | Page        | : 1 Of 2       |

| Measur                                                                                                                                     | red D                                                                                         | epth:         | 3667.      | 0 m      | TVD:                  | 3662.4                                | 1 m      | PBT    | TD:          | 0.0      | Prop                                         | osed MD  | ): 3     | 625.0  | m Pro   | posed                    | TVD:                | 3625.0   | O m   |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------|------------|----------|-----------------------|---------------------------------------|----------|--------|--------------|----------|----------------------------------------------|----------|----------|--------|---------|--------------------------|---------------------|----------|-------|
| DOL:                                                                                                                                       | 27                                                                                            | Di            | FS: 22     | Spu      | d Date: 22            | -JUL-2001                             | L        |        | Daily        | Footage  | e: 0                                         | .0 Da    | aily Ro  |        |         |                          | Rot Hr              | s: 117   | 7.5   |
| Torq:                                                                                                                                      | 8000                                                                                          | Drag          | g: 4.0 R   | ot Wg    | t: <sub>134.0</sub> P | /U Wgt: <sub>1</sub>                  | .38.0 S  | lack   | Off Wgt      | : 134.0  |                                              |          | Seas:    | 1.0    | / 2.0   | Bar:                     | 748                 | POB:     | 92    |
| -                                                                                                                                          |                                                                                               | g Size:       | <u> </u>   | 339.71   | Set :                 |                                       | 1374.    |        |              |          | 72.1m                                        |          | Shoe T   |        |         |                          | Leako               | ff?      | Y     |
| Cum Ro                                                                                                                                     | t Hr                                                                                          | s On Ca       | eina:      |          | Cum Rot H             | rs On Cas                             |          |        |              |          | 2.1                                          |          | Worst    |        |         |                          | emainir             |          | _     |
| Liner                                                                                                                                      | Size                                                                                          | ;             | 0.0        |          | et At:                | 0.0                                   | MD       |        | 0.0 T        | VD       | Li                                           | iner Top | At:      | 0      | 0 MD    |                          |                     | 0.0      | I.AD  |
| Mud Co                                                                                                                                     | ): <sub>M T</sub>                                                                             | NORŒ.         |            | Typ      | e: <sub>MINERAL</sub> |                                       |          |        |              | le From  | : DTT                                        | Wt.: 160 | ) FV: 1  |        |         |                          | 5 Gel:              |          |       |
| WL                                                                                                                                         | I <sub>N</sub> I-T                                                                            | NORGE .       | A.S.       |          |                       |                                       |          | Soli   | ds:          |          |                                              | 00 Wate  |          |        |         |                          |                     | Ph:      | 9     |
| Dm:                                                                                                                                        |                                                                                               | 0.0<br>Pf/Mf: | HTHP: 2.   | .5<br>   | arb:                  | [: 0.0 HTH<br>리:                      |          |        | 23.8<br>Bent |          | Solid                                        | s %HG/I  | 27.0     | 00     | 1.5     | 60  <br>S/Bent           | :                   |          |       |
| 0                                                                                                                                          | .00                                                                                           | 2 27 112      | 0.00 / 0   | 0.00     |                       | Cl: 32,50                             | 00       |        |              |          | 50114                                        |          | 18.4     | 10/5.  | 40      | <i>D</i> , <i>D</i> 0110 |                     | /        |       |
|                                                                                                                                            |                                                                                               |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               |               |            |          |                       | <u> </u>                              |          |        | -            | ' al.    | 1_                                           |          |          |        |         |                          |                     |          |       |
| Drlg G                                                                                                                                     | as:                                                                                           | 0             | Max Gas:   | 0        | Conn Gas:             | Tr                                    | ip Gas:  | 0      | Tr           | ip Cl:   | R                                            | emarks:  | MAX GA   | AS DUR | ING B/U | J - 6.                   | 4% FROM             | 2100M    |       |
| Bit Nu                                                                                                                                     | mber                                                                                          | IADC          | Size       | Manu     | facturer              | Serial                                | number   |        | Jets         | (Quar    | tity -                                       | Size)    | ,        | TFA    | ME.     | In                       | MD Out              | TVD      | Out   |
| -                                                                                                                                          |                                                                                               |               |            | -        |                       |                                       |          | -      |              |          | <u>    /                                </u> | - /      | <u> </u> | 0      |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               | 1             |            | <u> </u> |                       |                                       |          | _      | / -          | · / ·    | - /                                          | - /      | ′ –      | 0      |         |                          | 1                   | <u> </u> |       |
| T                                                                                                                                          | ype                                                                                           | Met           | ers Ho     | urs      | WOB                   | RPM                                   |          | Moto   | or RPM       | I-Row    | 0-Row                                        | DC       | Loc      | В      | G       | Char                     | ?Pull               | Cost     | /m    |
|                                                                                                                                            |                                                                                               |               |            |          | /                     | /                                     |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               |               |            |          | /                     | /                                     |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
| Total                                                                                                                                      | Leng                                                                                          | th of B       | HA: 253.   | 66 m     | BHA Descr             | iption:                               | 8.1/2"   | BD44   | SHA PDC      | BIT - I  | NB STAE                                      | B (C/W I | FLOAT)   | - 6.1/ | '2" DC  | - 8.1/                   | 2" STR              | ING STA  | ΔB    |
| - 5                                                                                                                                        | x 6.1                                                                                         | /2" DC        | - 12 X 5   | " HWD    | P - 6.1/2"            | JARS - 8                              | Х 5" Н   | WDP    |              |          |                                              |          |          |        |         |                          |                     |          |       |
| Hrs On Jars: 174.7 Hours Since Last Inspection: 174.7  Bit Num Liner Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW BHHP/SQIN Pump kW |                                                                                               |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
| Bit Nu                                                                                                                                     |                                                                                               |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               | /             | /          |          | /                     | /                                     | / /      |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            | Survey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS    |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
| Survey                                                                                                                                     | MD                                                                                            | Angle         | Azimuth    | n D      | irection              | TVD                                   |          | N/S    | Coordina     | ates     | E/W (                                        | Coordin  | ates     | Vert   | ical Se | ction                    |                     | DLS      |       |
|                                                                                                                                            | Survey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS    |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            | Hours From Act-Cat Operations Covering 24 Hours Ending at Midnight Total Hours Reported: 24.0 |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
| Нолж                                                                                                                                       | Erom                                                                                          | 7 orth Class  | _          | _        | O-2                   | iona Gora                             |          | I IIo. | Dodi         |          | مام المام ا                                  | _        |          |        | Mot o   | 1 110                    | a Dames             | ± ad • 1 | 24 0  |
|                                                                                                                                            | 4.50T 1300 02 - 05 CONT TO POOH F/ 2902M TO SURFACE. F/CHECK @ SHOE & BOP - BOTH STATIC.      |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
| 2.00                                                                                                                                       |                                                                                               |               |            |          |                       | · · · · · · · · · · · · · · · · · · · |          |        |              |          |                                              |          |          |        |         |                          |                     |          | STAR) |
| 1.50                                                                                                                                       |                                                                                               |               |            |          | MDT TOOL              |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
| 2.50                                                                                                                                       |                                                                                               |               |            |          | TW/MDTF               |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
| 0.50                                                                                                                                       | 2330                                                                                          | 02 - 25       | RE-CORRI   | ELATE    | & ATTEMPT             | TO TAKE                               | FLUID S. | AMPL:  | E @ 1673     | BM & 167 | '3.5M (                                      | W/LINE   | DEPTH)   | - NO   | GO (SL  | OW PRE                   | SS BUII             | D UP).   |       |
|                                                                                                                                            |                                                                                               | 02 - 25       | -          |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               | 02 - 25       | NOTE: BI   | LUE PO   | DD PILOT HO           | OSE CONTR                             | OLLING   | CLOS   | E FUNCTI     | ON ON I  | OWER I                                       | NNER CH  | OKE LEA  | AKING. |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               | 02 - 25       | F          | UNCTIO   | ON PLACED :           | IN BLOCK                              | POSITIO  | N.     |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               | -             |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               | -             |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               | -             | 1          |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               | -             | 1          |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               | -             |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               | -             | 1          |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               | -             |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
| Safety                                                                                                                                     | BOI                                                                                           | T & WA        | SHER FROM  | TOP      | DRIVE BELL            | GUIDE WO                              | ORKED LO | OSE    | & FELL.      | BOLT L   | ANDED (                                      | ON UPPE  | R ARM,   | WASHE  | RHITI   | OG ROO                   | OF WIND             | . WC     | ]     |
| 24 Hr                                                                                                                                      | Summe                                                                                         | ary: TI       | H TO TD.   | CIRC :   | HOLE CLEAN            | & COND N                              | MUD. POO | )H, F  | R/U SCHL     | UM W/LI  | NE & R                                       | IH W/ M  | DT. COM  | MENCE  | TAKIN   | PRE-T                    | TEST PR             | ESSURES  | S.    |
|                                                                                                                                            |                                                                                               |               |            |          | FLUID SAME            |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
| Remark                                                                                                                                     | s:                                                                                            |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               |               |            |          |                       |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
| Dailv                                                                                                                                      | Mud (                                                                                         | Cost: ,,      | R 58 , 462 | Dail     | y Tangible            | Cost:                                 |          | Da     | aily Wel     | .1 Cost: | 7D) 70                                       | 5 N10    | Incide   | nte.   | NEAR    | MLGG                     |                     |          |       |
|                                                                                                                                            |                                                                                               |               |            |          | Tangible C            |                                       |          |        |              |          |                                              |          |          |        |         |                          |                     |          |       |
|                                                                                                                                            |                                                                                               |               | ,245,694   |          |                       |                                       |          |        | um Well      |          |                                              |          |          |        |         |                          | 00<br>Blende        | .d:      |       |
|                                                                                                                                            |                                                                                               | r: 190.       | 0 Pola     | mic M    | ater: 435.            |                                       | 200.0    |        |              |          |                                              | t: 159.0 | ) [100   | Dri 11 | ent: 2  | 27.0<br>o:               |                     |          |       |
| Countr                                                                                                                                     | <sup>1</sup> N                                                                                | ORWAY         |            |          |                       | Rig: BYFOR                            | D DOLPH  | IIN    |              | Mag Pl   |                                              | 2 88 03  | 35       |        |         |                          | RE/BJOR             |          |       |
| Field:                                                                                                                                     | PL25                                                                                          | 59            |            |          |                       | se: <sub>PL259</sub>                  |          |        | 3 DT         |          |                                              | 11 No:   | -        |        |         |                          | 11 ID: <sub>[</sub> |          |       |
|                                                                                                                                            |                                                                                               |               |            |          | API No                | : 6506/3-1                            | L        |        | AFE No:      | KWENO-   | 650631                                       | -001     |          | vale:  | 12-AUG  | -2001                    | Page                | 2 Of     | t 2   |

| Measured  | d De                                                                                                                                                                                                                             | epth:   | 366               | 7.0 m  | TVD:            | 3662.4 m             |            | PBTI              | ):           | 0.0                                          | Propo                 | osed M       | D: 3             | 8625.0          | m Pro  | oposed                    | TVD:          | 3625.0 m     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|--------|-----------------|----------------------|------------|-------------------|--------------|----------------------------------------------|-----------------------|--------------|------------------|-----------------|--------|---------------------------|---------------|--------------|
| DOL:      | 28                                                                                                                                                                                                                               | DE      | rs: <sub>23</sub> |        | pud Date: 22    |                      |            |                   | Daily        | Footage                                      | e:                    | Γ            | aily Ro          |                 |        | Total                     | Rot Hi        | rs: 117.5    |
| Torq:     |                                                                                                                                                                                                                                  | Drag    | r:                | Rot    |                 | /U Wgt:              | Sl         | .ack              | Off Wgt      | ;:                                           | Wind                  | : 6          | Seas             | 1.0             | / 2 0  | +                         |               | POB: 92      |
| Last Cas  | sino                                                                                                                                                                                                                             | Size:   |                   | 220    | , Set i         | At:                  | 1374.      | 2                 | MD           | 1 2 1                                        | 72.1m                 | TVD          |                  | Test:           |        |                           | Leako         | ff2          |
| Cum Rot   |                                                                                                                                                                                                                                  |         | sing:             |        | .7 mm Cum Rot H | rs On Casing         |            |                   |              |                                              | /2.1m                 | 1            | 1 Worst          |                 |        |                           | Remaini       | Y            |
| Liner Si  |                                                                                                                                                                                                                                  |         |                   | 134.   | 6  <br>Set At:  |                      |            |                   | 0.0 T        |                                              | Liı                   | ner To       |                  |                 |        |                           |               | 0.0 TVD      |
| Mud Co:   |                                                                                                                                                                                                                                  |         | 0.0               | т      | ype: MINERAL    | 0.0 MD               |            |                   |              |                                              | ı: <sub>PIT</sub> W   | I+ · 1.00    | O E77: 1         |                 | 0 MD   |                           | - Cel.        |              |
| TATT      |                                                                                                                                                                                                                                  |         |                   |        | EC /            |                      |            | Solid             | s:<br>25.0   | 8 0                                          | il:<br>73.0           | _            |                  |                 |        |                           |               | 7 / 9<br>Ph: |
| AF<br>Dm: |                                                                                                                                                                                                                                  | 0.0 :   |                   | 4.5    | Ar.             | I: 0.0 HTHP:         | 1.0<br>Ca: |                   | 25.0<br>Bent |                                              | 73.0                  | 0 <br>  %HG/ | 27.0<br>LG: 18.4 | 00  00          | 1.     | 50<br>DS/Ben <sup>.</sup> |               |              |
| 0.0       | 00                                                                                                                                                                                                                               | Pf/Mf:  | 0.00 /            | / 0.00 | arb.            | Cl: 32,000           | ca.        |                   | Deriv        |                                              | DOTIGE                | 01107        | 18.              | 40/5.4          | 40     |                           |               | /            |
|           |                                                                                                                                                                                                                                  |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
|           |                                                                                                                                                                                                                                  |         |                   |        |                 | <u> </u>             |            |                   | <u> </u>     |                                              |                       |              |                  |                 |        |                           |               |              |
| Drlg Gas  | s:                                                                                                                                                                                                                               | 0       | Max Gas           | 3:     | Conn Gas:       | Trip                 | Gas:       | 0                 | Tr           | ip Cl:                                       | Re                    | marks        | :                | •               |        |                           |               | •            |
| Bit Num   | ber                                                                                                                                                                                                                              | IADC    | Size              | Ма     | nufacturer      | Serial num           | iber       |                   | Jets         | s (Quar                                      | ntity -               | Size)        |                  | TFA             | M      | D In                      | MD Out        | TVD Out      |
|           |                                                                                                                                                                                                                                  |         |                   |        |                 |                      |            | -                 |              | <u>    /                                </u> | - /                   | - ,          | / -              | 0               |        |                           |               |              |
|           |                                                                                                                                                                                                                                  |         |                   |        |                 |                      | -          | -                 | / -          | <u>    /                                </u> | - /                   | - ,          | / -              | 0               |        |                           |               | <u> </u>     |
| Тур       | æ                                                                                                                                                                                                                                | Met     | ers 1             | Hours  | WOB             | RPM                  | 1          | Motor             | RPM          | I-Row                                        | O-Row                 | DC           | Loc              | В               | G      | Char                      | ?Pull         | Cost/m       |
|           |                                                                                                                                                                                                                                  |         |                   |        | /               | /                    |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
|           |                                                                                                                                                                                                                                  |         |                   |        | /               | /                    |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
| Total Le  | engt                                                                                                                                                                                                                             | h of B  | HA:               |        | BHA Descr       | ription:             |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
|           |                                                                                                                                                                                                                                  |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
|           | Hrs On Jars: Hours Since Last Inspection:  Bit Num Liner Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW BHHP/SQIN Pump kW                                                                                                   |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
| Bit Num   |                                                                                                                                                                                                                                  |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
|           |                                                                                                                                                                                                                                  |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
|           |                                                                                                                                                                                                                                  | /       | /                 |        | /               | / /                  | //         |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
| Survey N  | MD                                                                                                                                                                                                                               | Angle   | Azimu             | ıth    | Direction       | TVD                  | 1          | N/S C             | ordina!      | ates                                         | E/W C                 | oordir       | nates            | Verti           | cal S  | ection                    |               | DLS          |
|           | Bit Num         Liner         Stroke         SPM         Press.         M3/Min Jet Vel         DP Av         DC Av         Bit kW         BHHP/SQIN Pump kW                                                                      |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
|           | / / / / / / / / Survey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS                                                                                                                       |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
|           | Survey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS                                                                                                                                       |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
|           | Survey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS                                                                                                                                       |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
| Hours Er  | Survey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS  Hours From Act-Cat Operations Covering 24 Hours Ending at Midnight Total Hours Reported: 24.0                                        |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
|           |                                                                                                                                                                                                                                  |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
|           | Hours From Act-Cat Operations Covering 24 Hours Ending at Midnight Total Hours Reported: 24.0  0.50 0000 02 - 25 RESET MDT TOOL X 2 @ 1674M & 1674.5M IN ATTEMPT TO TAKE BRYGGE FLUID SAMPLE - NO GO (HIGH DRAWDOWN & PUMP STALL |         |                   |        |                 |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
| 2.00 00   | 030                                                                                                                                                                                                                              |         |                   |        |                 |                      |            |                   |              | -                                            |                       |              |                  |                 |        |                           |               |              |
|           |                                                                                                                                                                                                                                  |         |                   |        | PRE-TESTS       |                      |            |                   |              |                                              |                       |              | 7 5 10           | OL OPEI         | NINGS  | - NO 1                    | OST SEA       | AL.          |
|           |                                                                                                                                                                                                                                  |         |                   |        | ION PRESS IN    |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
| 1.00 02   | 230                                                                                                                                                                                                                              | 02 - 25 | SET MI            | DT TOO | DL @ 3091.9M    | (W/L) & ATT          | EMPT       | TO T              | AKE LYS      | SING FL                                      | JID SAME              | PLE - 1      | 70 GO (          | HIGH DI         | RAWDOV | VN & PC                   | MP STAI       | LLING).      |
| 1.00 03   | 330                                                                                                                                                                                                                              | 02 - 25 | SET MI            | DT TOO | DL @ 3091.4M    | (W/L) & ATT          | EMPT       | TO T              | AKE LYS      | SING FL                                      | JID SAME              | PLE - 1      | 70 GO (          | LOSS OF         | F TELE | EMETRY                    | W/ MDT        | TOOL).       |
| 5.50 04   | 430                                                                                                                                                                                                                              | 02 – 25 | SET MI            | DT TO  | OL @ 3091.2M    | (W/L) & TAK          | E LYS      | SING              | FLUID S      | SAMPLE -                                     | - OK. F               | LL 3         | X 450CC          | SAMPLI          | E BOTT | TLES W/                   | WATER         | SAMPLES.     |
| 1.50 10   | 000                                                                                                                                                                                                                              | 02 - 25 | CLOSE             | TOOL   | & COMMENCE      | POOH W/ SCHL         | UM MI      | OT TO             | OSTRINO      | G. NO O                                      | /PULL SE              | ŒN WH        | EN PULL          | ING FRI         | EE FRO | M FORM                    | MATION.       |              |
| 1.00 1    | 130                                                                                                                                                                                                                              | 02 - 25 | EXTRAC            | CT SAN | MPLE BOTTLES    | @ SURFACE &          | R/D        | SCHL              | UM MDT       | TOOLST                                       | RING.                 |              |                  |                 |        |                           |               |              |
| 1.50 12   | 230                                                                                                                                                                                                                              | 02 - 25 | CHANG             | E CABI | LE HEAD FOR 1   | READ VSP RUN         | I. P/U     | J & M             | /U REAI      | O 8-LEVI                                     | EL DELTA              | A VSP        | TOOLSTR          | ING.            |        |                           |               |              |
| 2.00 14   | 400                                                                                                                                                                                                                              | 02 - 25 | RIH W             | / REAI | VSP TOOLST      | RING TAKING          | CHECK      | KSHOT             | S @ 128      | 80M, 240                                     | 00M & 32              | 200M (1      | W/L). N          | O HOLE          | PROBI  | EMS EN                    | ICOUNTE       | RED.         |
| 0.50 16   | 600                                                                                                                                                                                                                              | 02 - 25 | CORREI            | LATE 7 | COOLSTRING O    | N DEPTH OVER         | LYS1       | ING F             | ORMATIO      | ON (REF                                      | LOG IS                | AIT-P        | EX-HNGS          | OF 10           | TH AUC | 3 2001)                   |               |              |
| 1.50 16   | 630                                                                                                                                                                                                                              | 02 - 25 | START             | RECOF  | RDING VSP SU    | RVEY F/ 3523         | BM (W/     | /L) T             | AKING S      | SHOTS @                                      | 10M IN                | ERVAL        | S. NO H          | OLE PRO         | OBLEMS | ENCOU                     | NTERED        | •            |
| 4.00 18   | 800                                                                                                                                                                                                                              | 02 - 25 | START             | RECOF  | RDING VSP WA    | LKAWAY SURVE         | Y @ 2      | 2898M             | (W/L T       | TOP GEO                                      | PHONE DE              | EPTH) I      | JTILISI          | NG THE          | 'HIGH  | HAND S                    | STAR'.        |              |
| 2.00 22   | 200                                                                                                                                                                                                                              | 02 - 25 | CONT I            | RECORI | OING VSP SUR    | VEY F/ 2898          | - 224      | 10M (             | W/L) TZ      | AKING SI                                     | HOTS @ 1              | LOM IN       | TERVALS          | . NO HO         | OLE PF | ROBLEMS                   | ENCOU         | VIERED.      |
| Safety:   | TBT                                                                                                                                                                                                                              | PRIOR   | TO EXI            | RACTI  | NG PVT SAMPL    | E BOTTLES FI         | ROM M      | DT TO             | DOL.         |                                              |                       |              |                  |                 |        |                           |               |              |
|           |                                                                                                                                                                                                                                  |         |                   |        | RE-TESTS & I    |                      |            |                   |              | 'U & RIH                                     | VSP TO                | OLSTR1       | NG. PE           | RFORM V         | 7SP SU | RVEY &                    | WALKAW        | AY.          |
|           |                                                                                                                                                                                                                                  |         |                   |        | E VSP SURVEY    |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           |               |              |
| Remarks:  | :                                                                                                                                                                                                                                |         |                   |        | 25, DOLPHIN     |                      |            |                   |              |                                              |                       |              |                  |                 |        |                           | NCE TAS       | T LTI - 79   |
|           |                                                                                                                                                                                                                                  |         |                   |        | OLL 0.7DEG;     | <u> </u>             |            |                   |              |                                              | . & 2∩ <b>=</b>       | MPTY )       |                  |                 |        | .110 DI                   | LICH LIM      | 13           |
| DAILY FE  |                                                                                                                                                                                                                                  |         |                   |        |                 | TAL FE COST          |            |                   |              |                                              | _ ~ 40 E              |              |                  |                 |        |                           |               |              |
| 05:30 HR  |                                                                                                                                                                                                                                  |         |                   |        |                 | THE COST             | υ· Δ       | , U <del>11</del> | ., N         |                                              |                       |              |                  |                 |        |                           |               |              |
| Daily Mu  |                                                                                                                                                                                                                                  |         |                   |        | ily Tangible    | : Cost.:             |            | Da                | ilv Wel      | ll Cost                                      | : <sub>KR2</sub> ,802 | 000          | Tm = 2.3         | nt~:            | NTO -  | Maron                     | L DEDO        | ריידיי       |
| H         |                                                                                                                                                                                                                                  |         |                   |        | m Tangible C    |                      |            |                   |              |                                              |                       |              | +                | ents:<br>Appor: |        |                           | T REPOR       | יזהיה        |
| Cum Mud   |                                                                                                                                                                                                                                  |         |                   |        |                 |                      |            |                   |              |                                              | KR111,7               |              |                  | at Cem          |        |                           | 000<br>Blende | ed:          |
| Drill Wa  |                                                                                                                                                                                                                                  |         | )                 | rante  | Water: 410.     |                      | 261.0      |                   |              |                                              | Weight                |              |                  |                 | 4      | 227.0                     |               |              |
| Country:  | N                                                                                                                                                                                                                                | ORWAY   |                   |        |                 | Rig: BYFORD I        | DOLPH      | IN                |              | 1/19 F                                       | hone: 52              |              |                  |                 |        |                           |               | RHEIM/MH     |
| Field: P  | PL25                                                                                                                                                                                                                             | 9       |                   |        |                 | se: <sub>PL259</sub> |            | <del></del>       | <b></b>      |                                              |                       |              | 6506/3-          |                 |        |                           | I             | UB5908 -0    |
|           |                                                                                                                                                                                                                                  |         |                   |        | API No          | : 6506/3-1           |            | A                 | TE No:       | KWENO-                                       | 650631-               | 001          |                  | Date:           | 13-AU  | G-2001                    | Page          | : 1 Of 1     |

| Measur  | red D                                                                                                                                                                                                                                                                                          | epth:    | 3667.0            | ) m   | TVD:                  | 366                | 2.4 m   |               | PBT   | D:          | 0.0      | Pro         | posed     | d MD    | : 30       | 525.0  | m Pro          | posed     | TVD:     | 3625       | .0 m   |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-------|-----------------------|--------------------|---------|---------------|-------|-------------|----------|-------------|-----------|---------|------------|--------|----------------|-----------|----------|------------|--------|
| DOL:    | 29                                                                                                                                                                                                                                                                                             | DI       | FS: <sub>24</sub> | Spu   | d Date: 22            | 2-JUL-2            | 001     |               |       | Daily       | Footag   | e:          |           | Da      | ily Ro     |        |                |           | . Rot Hi | rs: 1      | 17.5   |
| Torq:   | 0                                                                                                                                                                                                                                                                                              | Drag     | f: 0.0 R          | ot Wg | t: <sub>0.0</sub> P   | /U Wgt             | : 0.0   | Sl            | ack   | Off Wgt     | :: o.c   | Win         | d:        | 6       | Seas:      | 1.0    | / 2.0          | Bar:      | 756      | POB:       | 89     |
| Last C  | asin                                                                                                                                                                                                                                                                                           | g Size:  | *                 | 39.7  | Set :                 |                    |         | .374.         |       |             |          | 72.1m       |           |         |            |        | 1841           |           | Leako    |            | Y      |
| Cum Ro  | t Hr                                                                                                                                                                                                                                                                                           | s On Ca  | sing: 1           | 24.6  | Cum Rot H             | rs On (            | Casing  | Sinc          | e L   | ast Cal     | iper:    | / Z . IIII  |           |         | Worst      |        |                |           | Remaini  | ng:        | 1      |
| Liner   | Size                                                                                                                                                                                                                                                                                           |          |                   |       | et At:                |                    | MD      |               |       | 0.0 T       |          | I           | iner      | Top     | At:        | 0      | 0 MD           |           |          | 0.0        | TVD    |
| Mud Co  | :                                                                                                                                                                                                                                                                                              | NORŒ .   | 0.0               | Тул   | e: <sub>MINERAL</sub> |                    |         |               |       |             | ole From | n:          | TAT+ • -  | 1.600   | E77.       |        | .0 MD          |           | - Col.   |            |        |
| WL      | M-1                                                                                                                                                                                                                                                                                            | NORGE .  | A.S.              |       |                       |                    |         | S             | olio  | ds: 25.0    |          |             |           |         |            |        |                |           |          | 7 ,<br>Ph: | / 9    |
| Pm:     | API:                                                                                                                                                                                                                                                                                           | 0.0      | HTHP: 2.          | 5 ~   | arb:                  | : 0.0 I            |         | 0   ~<br>Ca:  |       | 25.0<br>Ben |          | 73          | .00 sr    | IC /I   | 27.0       | 0 , 50 | and:<br>1.5    | S/Ben     |          |            |        |
| 0       | .00                                                                                                                                                                                                                                                                                            | PI/MI.   | 0.00 /0           | ۰00 ٠ | ald.                  | Cl: 32             | ,000    | ia.           |       | DEII        | · ·      | 2011        | JS 701    | IG/ Lic | ∃:<br>18.4 | 0/5.   | 40             | 5/ Bell   |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       | T                     |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| Drlg G  | las:                                                                                                                                                                                                                                                                                           | 0        | Max Gas:          | 0     | Conn Gas:             | ı                  | Trip G  | as:           | 0     | Tr          | ip Cl:   |             | Remar     | rks:    |            |        |                |           |          |            |        |
| Bit Nu  | mber                                                                                                                                                                                                                                                                                           | IADC     | Size              | Manu  | facturer              | Seria              | al numb | oer           |       | Jet         | s (Qua   | ntity       | - Siz     | ze)     |            | TF     | A ME           | In        | MD Out   | TV         | D Out  |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       |                       |                    |         |               | _     | / .         | - /      | - /         | _         | /       | _          | 0      |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       |                       |                    |         |               | _     | / -         | - /      | - /         | <u> </u>  | /       | -          | 0      |                |           |          |            |        |
| T       | ype                                                                                                                                                                                                                                                                                            | Met      | ers Ho            | ırs   | WOB                   | R                  | PΜ      | I             | Moto  | r RPM       | I-Row    | O-Ro        | w D       | С       | Loc        | В      | G              | Char      | ?Pull    | Cos        | t/m    |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       | /                     |                    | /       |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       | /                     |                    | /       |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| Total   | Leng                                                                                                                                                                                                                                                                                           | th of B  | HA: 444.          | 04 m  | BHA Descr             | iption             | : MUL   | E SHO         | DE -  | 47 X J      | NTS 3.1  | ./2" PH     | I-6 TT    | UBIN    | G - X/0    | OVER : | го 4.1/        | 2" IF     | _        | •          |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       |                       |                    |         |               |       |             |          | Hrs         | On Ja     | ırs:    |            | Hours  | Since          | Last      | Inspec   | tion:      |        |
| Bit Niv | Hrs On Jars:   Hours Since Last Inspection:                                                                                                                                                                                                                                                    |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| DIC Na  | Bit Num Liner Stroke SPM Press. M3/Min Jet Vel DP Av DC Av Bit kW BHHP/SQIN Pump kW  / / / / / / / BHHP/SQIN Pump kW  Survey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS                                                                               |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         | / / / / / / / Survey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS                                                                                                                                                                                       |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| _       | Survey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS                                                                                                                                                                                                     |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| Survey  | Survey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS                                                                                                                                                                                                     |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         | Turvey MD Angle Azimuth Direction TVD N/S Coordinates E/W Coordinates Vertical Section DLS                                                                                                                                                                                                     |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         | Hours From Act-Cat Operations Covering 24 Hours Ending at Midnight Total Hours Reported: 24.0                                                                                                                                                                                                  |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| Hours   | Hours From Act-Cat Operations Covering 24 Hours Ending at Midnight Total Hours Reported: 24.0 4.00 0000 02 - 25 CONT RECORDING VSP SURVEY F/ 2240 - 790M (W/L) TAKING SHOTS @ 10M INTERVALS. NO HOLE PROBLEMS ENCOUNTERED.                                                                     |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| 4.00    | 4.00 0000 02 - 25 CONT RECORDING VSP SURVEY F/ 2240 - 790M (W/L) TAKING SHOTS @ 10M INTERVALS. NO HOLE PROBLEMS ENCOUNTERED.                                                                                                                                                                   |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| 2.00    | 4.00 0000 02 - 25 CONT RECORDING VSP SURVEY F/ 2240 - 790M (W/L) TAKING SHOTS @ 10M INTERVALS. NO HOLE PROBLEMS ENCOUNTERED.  2.00 0400 02 - 25 POOH & L/O READ 8 LEVEL VSP TOOLSTRING.                                                                                                        |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| 0.50T   | 4.00 0000 02 - 25 CONT RECORDING VSP SURVEY F/ 2240 - 790M (W/L) TAKING SHOTS @ 10M INTERVALS. NO HOLE PROBLEMS ENCOUNTERED.  2.00 0400 02 - 25 POOH & L/O READ 8 LEVEL VSP TOOLSTRING.  0.50T 0600 02 - 26 POOR INSULATION ON SCHLUM CABLEHEAD. RE-BUILD SAME PRIOR TO P/U SIDEWALL COREGUNS. |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| 1.50    | 4.00 0000 02 - 25 CONT RECORDING VSP SURVEY F/ 2240 - 790M (W/L) TAKING SHOTS @ 10M INTERVALS. NO HOLE PROBLEMS ENCOUNTERED.  2.00 0400 02 - 25 POOH & L/O READ 8 LEVEL VSP TOOLSTRING.  0.50T 0600 02 - 26 POOR INSULATION ON SCHLUM CABLEHEAD. RE-BUILD SAME PRIOR TO P/U SIDEWALL COREGUNS. |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| 2.00    | 0800                                                                                                                                                                                                                                                                                           | 02 - 26  | RIG OUT           | OF RA | ADIO SILENO           | Œ. CON             | T RIH   | W/ C          | ORE   | GUNS. C     | ORRELAT  | E @ +/      | -3450     | )M T(   | O REF I    | OG AI  | T-PEX-         | HINGS C   | F 10TH   | AUG 2      | 2001.  |
| 5.50    | 1000                                                                                                                                                                                                                                                                                           | 02 - 26  | SHOOT SI          | DFWAT | LL CORES &            | CORRET             | ΔTF: AS | S REC         | ו חים | F/ 3659     | - 1447   | M. 53       | SHOTS     | TTT     | RED IN     | ТОТАТ  | 1.             |           |          |            |        |
| 1.00    |                                                                                                                                                                                                                                                                                                |          |                   |       |                       |                    |         |               |       |             |          |             | 01010     |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       | VALL COREGI           |                    |         |               |       |             |          |             | т Оп      | - מעם   | TO CITE    | NTOT:  | T /O CO        |           | 1        |            |        |
| 0.50    | 1030                                                                                                                                                                                                                                                                                           |          |                   |       | MISFIRED :            |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         | 1                                                                                                                                                                                                                                                                                              |          |                   |       | EMPTED, 29            |                    |         |               |       |             |          |             |           | ο & .   | 14 LOST    | BAKR   | <u>ттгр – </u> | JJ& KE    | COVERY   | •          |        |
| 1.00    |                                                                                                                                                                                                                                                                                                |          |                   |       | /LINE & CLI           |                    |         |               |       |             |          |             |           |         | o= =       | /6 ::  | Dr             |           | /        | 20 =       |        |
| 5.00    |                                                                                                                                                                                                                                                                                                |          |                   |       | GEAR TO RI            |                    |         |               |       |             |          |             |           | Slni    | OF 3.1     | ./2",  | ₽Н-6 T         | NRTNG     | (AVE.    | ∠U JNT     | L/HK). |
| 1.00    | 2300                                                                                                                                                                                                                                                                                           | 01 - 19  | C/O HANI          | LING  | GEAR & TII            | H W/ 5"            | DP F    | / 444         | M TO  | O INSID     | E SHOE   | @ 1333      | Μ.        |         |            |        |                |           |          |            |        |
| -       |                                                                                                                                                                                                                                                                                                | _        |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                | -        |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                | -        |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| Safety  | RAI                                                                                                                                                                                                                                                                                            | DIO SILI | ENCE IN P         | LACE  | & TBT HELD            | PRIOR              | TO AR   | MING          | & F   | TIW HIS     | I COREGI | JNS.        |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       | VEY. M/U &            |                    |         |               |       |             |          |             | CORE      | S -     | 19 REC     | OVERE  | D. M/U         | CEMEN     | T STING  | ER.        |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       | MENT STING            |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
| Remark  | s:                                                                                                                                                                                                                                                                                             |          |                   |       | , DOLPHIN             |                    |         |               |       |             |          |             |           |         |            |        |                | YS ST     | NCE LAS  | ייין יוצ   | - 80   |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       | L 0.7DEG;             |                    |         |               |       |             |          | ر د 1ء<br>ا | E.WD.     | Υ)      |            |        | L/F            | DI        | LICH LIM | , <u> </u> | 30     |
|         |                                                                                                                                                                                                                                                                                                |          | 193,846 N         |       |                       |                    |         |               |       | 38,421 N    |          | _ u 13      | -11.1E, T | ± / •   |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       |                       |                    | CO215   | ,• 3 <i>.</i> | u, 43 | ν,∓Δ1 Γ     | VAL      |             |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   | 1     | '/ 3190 - 3           |                    |         |               | ъ-    | ailer me    | 11 Co~+  | •           |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          | 265,962           |       | y Tangible            |                    |         |               |       | aily Wel    |          |             |           |         |            |        |                |           | T REPOR  | RTED       |        |
|         |                                                                                                                                                                                                                                                                                                |          | ,370 ,118         |       | Tangible C            |                    |         | 7,951         |       | um Well     |          |             |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                | r: 100.  | 0 Pota            | ble W | ater: 385.            |                    |         | 396.0         |       |             |          | . Weigh     |           |         | Nea        | at Cen | ment: 2        | 27.0      | Blend    |            |        |
| Countr  | y: N                                                                                                                                                                                                                                                                                           | ORWAY    |                   |       |                       | Rig: <sub>BY</sub> |         | OLPH          | IN    |             | Rig P    | hone: 5     |           |         | 35         | Drill  | ling Re        | p:<br>ELK | INS/HOL  | LINSH      | EAD    |
| Field:  | Ountry: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  ield: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                   |          |                   |       |                       |                    |         |               |       |             |          |             |           |         |            |        |                |           |          |            |        |
|         |                                                                                                                                                                                                                                                                                                |          |                   |       | API No                | : 6506/            | 3-1     |               |       | AFE No:     | KWENO-   | -650631     | L-001     |         | I          | Date:  | 14-AUG         | -2001     | Page     | : 1        | of 1   |

| Measur | red D            | epth:   | 3667.0     | m                    | TVD:                                          | 3662.4 1               | n              | PBT              | TD: 1:           | 274.0 m  | Propo              | sed MI           | ): 3         | 625.0  | m Pro    | posed     | TVD:     | 3625       | .0 m   |
|--------|------------------|---------|------------|----------------------|-----------------------------------------------|------------------------|----------------|------------------|------------------|----------|--------------------|------------------|--------------|--------|----------|-----------|----------|------------|--------|
| DOL:   | 30               | Di      |            |                      | ate: 22                                       | -JUL-2001              |                |                  |                  |          | <u>:</u>           |                  |              |        | :        |           |          |            |        |
| Torq:  | 6000             | Drag    | g: 1.0 Ro  | ot Wgt: <sub>1</sub> | 13.0 P                                        | /U Wgt: <sub>11</sub>  | 4.0 SI         | lack             | Off Wgt          | : 113.0  | Wind:              | 5                | Seas:        | 1.0    | / 2.0    | Bar:      | 758      | POB:       | 89     |
| -      |                  | g Size: | •          | 39.7 mm              | Sat 7                                         |                        |                |                  | MD               |          |                    |                  | + '          |        | 1841     |           |          |            | Y      |
| Cum Ro | ot Hr            | s On Ca | sing: 1.   | Cun                  | n Rot Hi                                      | rs On Casi             | ng Sin         | œ L              | ast Cali         | iper:    | Z. III             | Depth            | Worst        | Wear:  | 1011     |           | emainir  | ng:        |        |
| Liner  | Size             |         |            | Set i                |                                               | 0.0 MI                 |                |                  |                  |          |                    | ner Top          |              |        |          | <u> </u>  |          | 0.0        | רוגעדי |
| Mud Co | ): <sub></sub> _ | NORŒ .  | 0.0        | Tyrne:               |                                               | OIL BASED              |                |                  |                  |          | : <sub>PIT</sub> W | + . 1.61/        | D E77: 4     |        | .0 MD    |           | - Col:   |            | ,      |
|        |                  |         |            |                      |                                               |                        |                | Solid            |                  |          |                    |                  |              |        |          |           |          | 7 /<br>Ph: | / 10   |
| Pm:    |                  |         |            |                      |                                               | : 0.0 HTHP             | 1.0            |                  | ds: 25.0<br>Bent |          | 72.0               | 0 STC /T         | 28.0         | 00  00 | 1.5      | S/Bent    |          |            |        |
| 0      | .00              | PI/MI   | 0.00 /0    | .00 Carb.            | '                                             | Cl: 29,000             | Ca:            |                  | Belli            | ·        | SOTIUS             | ong/L            | .G:<br>18.3  | 30/5.  | 60       | 3/ Bell   | ·        |            |        |
| 26     | 1MT              | BARIT   | Ξ          | 500                  | 1KG OTH                                       | IER                    | 2400           | 1                | LTR OTHE         | R        | 125                | 1 <sub>K</sub> ( | G CA CA      | ARB FI | NE       |           |          |            |        |
|        |                  |         |            |                      |                                               | 1                      |                |                  | i                |          |                    |                  |              |        |          |           |          |            |        |
| Drlg G | Gas:             | 0       | Max Gas:   | 0 Co:                | nn Gas:                                       | Trip                   | Gas:           | 0                | Tr               | ip Cl:   | Re                 | marks:           |              |        |          |           |          |            |        |
| Bit Nu | ımber            | IADC    | Size       | Manufac              | turer                                         | Serial n               | mber           |                  | Jets             | (Quar    | itity -            | Size)            |              | TFA    | A MD     | In        | MD Out   | : TVI      | D Out  |
|        |                  |         |            |                      |                                               |                        |                | _                | / -              | . / .    | - /                | - /              | <b>'</b>     | 0      |          |           |          |            |        |
|        |                  |         |            |                      |                                               |                        |                | -                | / -              | . / .    | - /                | - /              |              | 0      |          |           |          |            |        |
| Т      | ype              | Met     | ers Hou    | ırs                  | WOB                                           | RPM                    |                | Moto             | r RPM            | I-Row    | O-Row              | DC               | Loc          | В      | G        | Char      | ?Pull    | Cos        | t/m    |
|        |                  |         |            |                      | /                                             | /                      |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
|        |                  |         |            |                      | /                                             | /                      |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
| Total  | Leng             | th of B | HA: 444.0  | )4 m BH              | A Descr                                       | iption: M              | JLE SH         | OE -             | 47 х л           | NTS 3.1  | /2" PH-            | 6 TUBII          | NG - X/      | OVER 1 | го 4.1/  | 2" IF     |          | •          |        |
|        |                  |         |            |                      |                                               |                        |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
|        |                  |         |            |                      |                                               |                        |                |                  |                  |          | Hrs On             | Jars:            |              | Hours  | Since    | Last      | Inspect  | tion:      |        |
| Bit Nu | ım               | Line    | ar         | C+~                  | roke                                          |                        | SPM            |                  | Press.           | M3/Min   | Jet Vel            | י ערו            | V21 L        | C Av   | Bit kW   | יייווכן   | ) /COTAT | D1 1m-     | lat-7  |
| DIC NO | uu               |         | /          | 501                  | /                                             | /                      | / /            |                  | ricas.           | MS/MIII  | dec ver            | - DP I           | AV DO        | _ AV   | DIC KM   | DODE      | P/SQIN   | Pulip      | KW     |
|        |                  | /_      |            | <del>- '</del>       | <u>/                                     </u> | /                      | <u>/ /</u>     |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
|        |                  |         | /          | <u> </u>             | <i>/ /</i>                                    | / <u> </u>             | <del>/ /</del> |                  |                  |          |                    |                  |              |        |          | <u> </u>  |          |            |        |
| Survey | / MD             | Angle   | Azimuth    | Dire                 | ction                                         | TVD                    |                | N/S              | Coordina         | ates     | E/W C              | oordin           | ates         | Vert   | ical Se  | ction     |          | DLS        |        |
|        |                  |         |            |                      |                                               |                        |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
|        |                  |         |            |                      |                                               |                        |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
|        |                  |         |            |                      |                                               |                        |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
|        |                  |         |            |                      |                                               |                        |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
| Hours  | From             | Act-Ca  | t          |                      | Operat                                        | ions Cover             | ing 24         | Hou              | ırs Endi:        | ng at M  | idnight            |                  |              |        | Total    | l Hour    | s Repoi  | rted:      | 24.0   |
| 0.50   | 0000             | 01 - 19 | BREAK CI   | RC INSID             | E SHOE                                        | @ 1333M &              | STAGE          | PUM              | PS UP TO         | 1020 I   | PM, 47             | BAR.             |              |        |          |           |          |            |        |
| 2.50   | 0030             | 01 - 19 | CONT TO    | TIH W/ 5             | 5" DP F/                                      | / 1333 - 32            | 200M.          |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
| 2.00   | 0300             | 01 - 19 | BREAK CI   | RC & STA             | AGE PUME                                      | PS TO 2280             | LPM,           | 276 1            | BAR, 150         | RPM, 6   | 000 N.M            | TORQ.            | CIRC :       | 1 X B/ | U. MAX   | GAS 1     | .58% SI  | EEN @      | B/U.   |
| 0.50   | 0500             | 01 - 19 | M/U CMT    | STAND &              | BREAK (                                       | CIRC THRU S            | SAME W         | / CM             | T UNIT.          | PRESS I  | EST LIN            | ES TO            | 250 BAI      | R / 5  | MINS -   | OK.       |          |            |        |
| 0.50   | 0530             | 01 - 19 | PUMP 5M3   | TUNED S              | SPACER @                                      | 0.8M3/MIN              | IW/CI          | MT III           | NIT. MIX         | C & PUME | 6.64M3             | 3. 1.99          | G SLURI      | RY USI | NG 4.01  | M3 MIX    | WATER @  | 0.8M       | ß/MIN. |
| 0.30   |                  |         |            |                      |                                               | O CLEAR LIN            |                |                  |                  |          |                    | , _,,            |              |        |          |           |          |            | -,     |
| 0 50   | 0.500            |         |            |                      |                                               |                        |                |                  |                  |          |                    |                  |              |        |          |           | 0 5511   |            |        |
| 0.50   | 0600             |         |            |                      |                                               | √/ 24.2M3 N            | IUD US.        | ING I            | RIG PUME         | PS @ 180 | 10 LPM,            | 200 BA           | R. UND       | ERDISF | LACE PI  | LUG BY    | 0.75M    | 3.         |        |
| 6 ==   | 0.55             |         | PLUG #1    |                      |                                               |                        |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
| 2.50   |                  |         | POOH W/    |                      |                                               |                        |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
|        |                  |         |            |                      |                                               | WORKS PARKI            |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
| 1.00   | 1030             | 01 - 19 | DROP DP    | WIPER DA             | ART, M/U                                      | J CMT STANI            | ), DIS         | PLAC             | E DART &         | CIRC E   | B/U W/ 2           | 2725 LF          | м, 284       | BAR.   |          |           |          |            |        |
| 1.00   | 1130             | 01 - 19 | PRESS TE   | ST LINES             | TO 175                                        | 5 BAR / 5 N            | MINS -         | OK.              | MIX & F          | PUMP 10. | 98M3, 1            | .9SG S           | SLURRY I     | USING  | 6.55M3   | MIXWA     | TER @ 1  | LM3/MI     | N.     |
|        |                  | 01 - 19 | PUMP 0.2   | OM3 DRII             | LWATER                                        | TO CLEAR I             | INES.          | DIS              | PLACE CM         | TT W/ 11 | .8M3 MT            | D USIN           | IG RIG I     | PUMPS  | @ 2325   | LPM,      | 192 BAF  | ₹.         |        |
|        |                  | 01 - 19 | UNDERDIS   | PLACE PL             | JUG BY (                                      | 0.75M3.                |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
|        |                  | 01 - 19 | PLUG #2    | SET F/ 1             | .791 <u>-</u> 1                               | 1491M.                 |                |                  |                  |          |                    |                  |              |        |          |           |          |            |        |
| Safety | WEI              | KLY MU  | STER DRIL  | L & SAFE             | TY MEET                                       | ING HELD.              |                | _                |                  |          |                    |                  |              |        |          |           |          |            |        |
|        |                  |         |            |                      |                                               | MUD. SET 3             | X CMI          | ' PLU            | JG, 3190         | - 3025   | м, 1791            | - 149            | -<br>1M & 14 | 91 -   | 1274M.   | POOH 8    | k L/O D  | P.         |        |
|        |                  |         |            |                      |                                               | T OMT PLUG             |                |                  |                  |          |                    |                  |              |        |          |           |          |            | UG #4. |
| Remark | s:               |         |            |                      |                                               |                        |                |                  |                  |          | <u> </u>           |                  |              |        |          |           |          |            |        |
|        |                  |         |            |                      |                                               | - 52, DO               |                |                  |                  |          | c 10 -             | MDrox * \        |              |        | D        | AIS S     | INCE LA  | от. ПП.    | T - 8T |
|        |                  |         |            |                      |                                               | CUTTING SK             |                |                  |                  |          | & 12 E             | MT-T.X ) •       |              |        |          |           |          |            |        |
|        |                  |         | 189,024 N  |                      | OT                                            | TAL FE COS             | TS: 3          | 54,42            | 41,445 N         | UK       |                    |                  |              |        |          |           |          |            |        |
|        |                  |         | W/ 5" DP ' |                      |                                               | <b>a</b> :             |                | <del>- 1</del> . |                  |          |                    |                  |              |        |          |           |          |            |        |
|        |                  |         | (05,502    | Daily Ta             | _                                             |                        |                |                  | aily Wel         |          |                    |                  | Incide       |        |          |           | repor    | TED        |        |
|        |                  |         |            |                      |                                               | ost: KR1,              | 747,95         | 1 C              | um Well          |          |                    |                  |              |        |          |           | 00       |            |        |
|        |                  | r: 440. | 0 Potal    | ole Wate             |                                               |                        | 386.0          |                  |                  |          | Weight             |                  | ) Ne         | at Cen | ment: 1  | 87.0      | Blende   |            |        |
| Countr | y: <u>N</u>      | ORWAY   |            |                      | I                                             | Rig: <sub>BYFORD</sub> | DOLPH          | IIN              |                  | Rig Ph   | none: 52           | 88 03            | 35           | Drill  | ling Rep | p:<br>ELK | INS/HOL  | LINSH      | EAD    |
| Field: | PL25             | 59      |            |                      | Leas                                          | se: <sub>PL259</sub>   |                |                  |                  |          | Wel                | l No:            | 5506/3-      | 1      |          |           | 11 ID:   |            |        |
|        |                  |         |            |                      |                                               | 6506/3-1               |                |                  | AFE No:          | KWENO-   | 650631-            | 001              |              | Date:  | 15-AUG   | -2001     | Page     | : 1 (      | of 2   |

| Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   Secure   S   | Measured | d De     | epth:     | 3667.0    | ) m      | TVD:        | 366                                              | 52.4 m  | I      | PBTD:       | 1         | 274.0 m        | Pro              | posec          | d MD:    | : 3         | 625.0    | m Pro        | posed        | TVD:     | 3625.0 m   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|-----------|----------|-------------|--------------------------------------------------|---------|--------|-------------|-----------|----------------|------------------|----------------|----------|-------------|----------|--------------|--------------|----------|------------|
| March   Carlo   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Star   | DOL:     | 30       | DI        |           |          | Date: 22    | -JUL-2                                           | 2001    |        |             | Daily     | Footage        | e:               |                | Da       |             |          |              |              | . Rot Hr | s: 117.5   |
| March   Carlo   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Start   Star   | Torq: 6  | 5000     | Drag      | j: 1.0 R  | ot Wgt:  | 113.0 P     | /U Wgt                                           | : 114.0 | Sla    | .ck 0       | ff Wgt    | : 113.         | 0 Win            | d:             | 5        | Seas:       | 1.0      | / 2.0        | Bar:         | 758      | POB: 89    |
| Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case   Case      |          |          |           |           |          | G           |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          | ffo        |
| Marco   Size   2.0   Sept. 222   3.0   Mo   0.2   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Ten   Te   | Cum Rot  | Hrs      | on Ca     | sing: 1   | a ( a    | um Rot Hi   | rs On                                            | Casing  | Since  | Las         | t Cali    | .per:          | 72.111           |                | •        |             |          |              |              |          | _          |
| March   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Liner Si | ize:     |           |           |          |             |                                                  |         |        |             |           |                | I                | iner           | Top      | At:         | 0        | 0 MD         |              |          | O O TVD    |
| March   Col.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mud Co:  | M_T      | NODCE     |           | Type:    | MINERAI.    |                                                  |         |        |             |           |                | : <sub>DTT</sub> | Wt:            | 1610     | FV: 1       |          |              |              | 5 Gel:   |            |
| Delig Gast   0   Note Cast   0   Court Gast   City Gast   0   Total City   Description   Country   - Store   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   City City   Description   Description   City City   Description   City City   Description   Description   City City   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Descr   |          |          |           |           |          |             |                                                  |         | So     | lids        | : 05 0    | 80             | il: 72           | 00 W           | Water    | r:          | % Sa     | ınd:         | MB           | T:       | 1          |
| Delty Class   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dm:      |          |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          | /          |
| Number   Prof.   Since   Mentandaturer   Serial number   Osta (Quencity   Sinc)   TWA   Son in   MO Cut   TWO Out    | 0.0      | 00       |           | 0.00 / 0  | .00      |             | 29                                               | ,000    |        |             |           |                |                  |                |          | 18.3        | 0/5.     | 60           |              |          | /          |
| Number   Prof.   Since   Mentandaturer   Serial number   Osta (Quencity   Sinc)   TWA   Son in   MO Cut   TWO Out    |          |          |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| Number   Prof.   Since   Mentandaturer   Serial number   Osta (Quencity   Sinc)   TWA   Son in   MO Cut   TWO Out    | Drla Cad | a ·      |           | May Cag:  | С        | 'onn Gag:   |                                                  | Trin C  | oa:    |             | ТΥ        | in Cl:         |                  | R <i>e</i> mar | rka:     |             |          |              |              |          |            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          | 0         |           | 0        |             |                                                  | _       |        | 0           |           | _              |                  |                |          |             | 1        |              | I            |          |            |
| TOTAL LENGTH OF BEAL 444.04 m BEAL PRODUCTION: MINE SOCK - 47 X 1975 3.175 PH - 6 THORNEY - XCOVER TO 4.175 TO SHILL COUNTY MINE SOCK - 47 X 1975 3.175 PH - 6 THORNEY - XCOVER TO 4.175 TO SHILL COUNTY MINE SOCK - 47 X 1975 3.175 PH - 6 THORNEY - XCOVER TO 4.175 TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL COUNTY TO SHILL | Bit Num  | ber      | IADC      | Size      | Manufa   | cturer      | Seria                                            | al numb | er     |             | Jets<br>/ | (Quar          | ntity            | - Siz          | ze)<br>/ |             |          | ME.          | ) In         | MD Out   | . TVD Out  |
| Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |           |           |          |             |                                                  |         |        | _           | / -       | /_             | - /<br>- /       | <del>-</del>   | _/       | _           |          |              |              |          |            |
| Potal length of BAN: 644.04   SMA Description: MIES SEGS - 47 X JUNE 3.1/2* E64-6 TERMS - X/AVES TO 4.1/2* IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |           | <u> </u>  |          |             | <del>                                     </del> |         |        |             | DDW.      | <del>- /</del> | /<br>            |                |          |             | <u> </u> | <del> </del> |              | 0D-11    |            |
| Total Length of BRA: 444,04 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Typ      | æ        | Met       | ers Ho    | ırs      |             | F                                                |         | MC     | otor        | RPM       | I-Row          | O-Ro             | w D            | C        | Loc         | В        | G            | Char         | ?Pull    | Cost/m     |
| Rich Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |           |           |          | /           |                                                  | /       |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| Rich Constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          | 1 5 -     |           | D        | / Dogge     | intion                                           | /       |        |             |           |                |                  | <u> </u>       |          |             |          |              |              |          |            |
| Sir Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Le | engt     | n of B    | HA: 444.  | 04 m     | na Desci    | 1PC101                                           | 1. MULE | SHOE   | C - 4       | Г Х Л     | VIS 3.1        | /2" PE           | I-6 T          | UBIN     | G - X/0     | OVER 1   | 0 4.1/       | 2" IF        |          |            |
| Sir Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| Survey ND Angle Asimuth Direction TND N/S Coordinates E/N Coordinates Vertical Section TLS  Survey ND Angle Asimuth Direction TND N/S Coordinates E/N Coordinates Vertical Section TLS  Hours From Act Cat Operations Obvering 24 Hours Ending at Midnisht Total Hours Reported: 24.0  1.00 1230 01-19 ENDER TREAT LINES TO 175 ENDED, DISPLACE DART & CIRC B/U W/ 2940 LEN, 290 BAR.  1.00 140 01-19 ENDER TREAT LINES TO 175 ENDE / 5 MINS - OK. FIRMS SNS TIMES SEACER & MG/MIN W/ CMT UNIT.  01-19 MIN & FIRMS 13.8M3, 1.986 SILEREY USING - OK. FIRMS SNS TIMES SEACER & MG/MIN W/ CMT UNIT.  01-19 MIN & FIRMS 13.8M3, 1.986 SILEREY USING - OK. FIRMS SNS TIMES SEACER & MG/MIN W/ CMT UNIT.  01-19 MIN & FIRMS 13.8M3, 1.986 SILEREY USING - OK. FIRMS SNS TIMES SEACER & MG/MIN W/ CMT UNIT.  01-19 MIN & FIRMS 13.8M3, 1.986 SILEREY USING - OK. FIRMS SNS TIMES SEACER & MG/MIN W/ CMT UNIT.  01-19 MIN & FIRMS 13.8M3, 1.986 SILEREY USING - OK. FIRMS SNS TIMES SEACER & MG/MIN W/ CMT UNIT.  01-19 MIN & FIRMS SEACER & CMT W/ 9.2M3 MID USING RIG PIMES & 2816 LEW, 241 BAR. INDEXDISE ACE FILES OF TIMED  10-10 SOO 01-19 MINO ENSET F/ 1491 - 1274M.  10-10 SOO 01-19 MOP LE WERR MARK MU TOD DRIVE, DISPLACE DART & CIRC B/U W/ 3000 LEW, 280 BAR.  1.00 1500 01-19 MOP LE WERR MARK MU TOD DRIVE, DISPLACE DART & CIRC B/U W/ 3000 LEW, 280 BAR.  2.50 2300 01-19 CO INNELING GEAR & FOOL LAVING OUT 3.12'2 PH 6 CEMENT STINGER F/ 444M TO SUMFACE.  2.50 2300 01-19 CO INNELING GEAR & FOOL LAVING OUT 3.12'2 PH 6 CEMENT STINGER F/ 444M TO SUMFACE.  2.50 2300 01-19 CO INNELING GEAR & FOOL LAVING OUT 3.12'2 PH 6 CEMENT STINGER F/ 444M TO SUMFACE.  2.50 2300 01-19 CO INNELING GEAR & FOOL LAVING OUT FLOG R3. SET FLOG R4 F/ 661 - 411M. DISPLACE MELL TO SERVATER, FOOL & L/O LE.  2.50 2300 01-19 CO INNELING GEAR & FOOL LAVING OUT FLOG R3. SET FLOG R4 F/ 661 - 411M. DISPLACE MELL TO SERVATER, FOOL & L/O LE.  2.50 2300 01-19 CO INNELING GEAR & FOOL FROM MUN STANDER FROM MUN STANDER FROM MUN STANDER FROM MUN STANDER FROM MUN STANDER FROM MUN STANDER FROM MUN STANDER FROM MUN STAN |          |          |           |           |          |             |                                                  | 1       |        | <del></del> |           |                |                  |                |          | <del></del> | i        |              | i            |          |            |
| Hours Prom Act Cat Operations Overling 24 Hours Ending at Midnight Total Hours Reported: 24.0 0.50 1230 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.00 1400 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.00 1400 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.00 1500 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.10 1500 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, SAME WINNERS OF TOWN OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE O | Bit Num  |          | Line      | er<br>/   | St       | troke<br>/  | ,                                                | 5       | SPM ,  | P           | ress.     | M3/Min         | Jet V            | el             | DP A     | v DC        | 2 Av     | Bit kW       | BHH          | P/SQIN   | Pump kW    |
| Hours Prom Act Cat Operations Overling 24 Hours Ending at Midnight Total Hours Reported: 24.0 0.50 1230 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.00 1400 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.00 1400 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.00 1500 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.10 1500 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, SAME WINNERS OF TOWN OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE O |          |          |           |           |          |             | <u>/                                      </u>   | / /     |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| Hours Prom Act Cat Operations Overling 24 Hours Ending at Midnight Total Hours Reported: 24.0 0.50 1230 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.00 1400 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.00 1400 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.00 1500 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, DISPLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR. 1.10 1500 01 - 19 FOOR PT WIFEE DARK, MUT OFM SYMD, SAME WINNERS OF TOWN OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE OF THE SHADE O |          |          |           |           |          | / ,         | <del>/</del>                                     | /       | _/_    |             |           |                |                  |                |          |             |          |              |              | 1        |            |
| 0.50   1230   01 - 19   POOH W   5" DP   F   1791 - 1491M.  1.00   1300   01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PROSE SERGER. DISPLACE SPACER @ CMT W   9.2M3 MID USING RIG PUMPS @ 2816 LEM, 241 BAR. UNDERDISPLACE PLUG BY 0.75M3.  1.00   1500   01 - 19   PROSE # S SET   1491 - 1274M.  1.00   1500   01 - 19   PROSE # S SET   1491 - 1095M.  1.00   1600   01 - 19   DROP DP WIPER DART, M/U TOP DRIVE, DISPLACE DART @ CIRC B/U W/ 3000 LEM, 280 BAR.  1.00   1600   01 - 19   PROSE # S POOH LAYING OUT 5" PD F / 1095 - 444M.  2.50   2030   01 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  1.00   1600   1 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  SAFETY: WEEKLY MINTER BRILL & SAFETY MERTING HEID.  24   HT SUMMENLY MINTER BRILL & SAFETY MERTING HEID.  25   2030   01 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  26   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE    | Survey N | MD       | Angle     | Azimuth   | Dir      | rection     |                                                  | IVD     | N/     | S Cc        | ordina    | ites           | E/W              | Coor           | dina     | ites        | Vert     | ical Se      | ection       |          | DLS        |
| 0.50   1230   01 - 19   POOH W   5" DP   F   1791 - 1491M.  1.00   1300   01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PROSE SERGER. DISPLACE SPACER @ CMT W   9.2M3 MID USING RIG PUMPS @ 2816 LEM, 241 BAR. UNDERDISPLACE PLUG BY 0.75M3.  1.00   1500   01 - 19   PROSE # S SET   1491 - 1274M.  1.00   1500   01 - 19   PROSE # S SET   1491 - 1095M.  1.00   1600   01 - 19   DROP DP WIPER DART, M/U TOP DRIVE, DISPLACE DART @ CIRC B/U W/ 3000 LEM, 280 BAR.  1.00   1600   01 - 19   PROSE # S POOH LAYING OUT 5" PD F / 1095 - 444M.  2.50   2030   01 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  1.00   1600   1 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  SAFETY: WEEKLY MINTER BRILL & SAFETY MERTING HEID.  24   HT SUMMENLY MINTER BRILL & SAFETY MERTING HEID.  25   2030   01 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  26   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE    |          |          |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| 0.50   1230   01 - 19   POOH W   5" DP   F   1791 - 1491M.  1.00   1300   01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PROSE SERGER. DISPLACE SPACER @ CMT W   9.2M3 MID USING RIG PUMPS @ 2816 LEM, 241 BAR. UNDERDISPLACE PLUG BY 0.75M3.  1.00   1500   01 - 19   PROSE # S SET   1491 - 1274M.  1.00   1500   01 - 19   PROSE # S SET   1491 - 1095M.  1.00   1600   01 - 19   DROP DP WIPER DART, M/U TOP DRIVE, DISPLACE DART @ CIRC B/U W/ 3000 LEM, 280 BAR.  1.00   1600   01 - 19   PROSE # S POOH LAYING OUT 5" PD F / 1095 - 444M.  2.50   2030   01 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  1.00   1600   1 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  SAFETY: WEEKLY MINTER BRILL & SAFETY MERTING HEID.  24   HT SUMMENLY MINTER BRILL & SAFETY MERTING HEID.  25   2030   01 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  26   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE    |          |          |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| 0.50   1230   01 - 19   POOH W   5" DP   F   1791 - 1491M.  1.00   1300   01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PROSE SERGER. DISPLACE SPACER @ CMT W   9.2M3 MID USING RIG PUMPS @ 2816 LEM, 241 BAR. UNDERDISPLACE PLUG BY 0.75M3.  1.00   1500   01 - 19   PROSE # S SET   1491 - 1274M.  1.00   1500   01 - 19   PROSE # S SET   1491 - 1095M.  1.00   1600   01 - 19   DROP DP WIPER DART, M/U TOP DRIVE, DISPLACE DART @ CIRC B/U W/ 3000 LEM, 280 BAR.  1.00   1600   01 - 19   PROSE # S POOH LAYING OUT 5" PD F / 1095 - 444M.  2.50   2030   01 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  1.00   1600   1 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  SAFETY: WEEKLY MINTER BRILL & SAFETY MERTING HEID.  24   HT SUMMENLY MINTER BRILL & SAFETY MERTING HEID.  25   2030   01 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  26   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE    |          |          |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| 0.50   1230   01 - 19   POOH W   5" DP   F   1791 - 1491M.  1.00   1300   01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - OK. POMP 5M3 TUNDO SERGER @ 1M3/MIN W/ CMT UNIT.  01 - 19   PROSE SERGER. DISPLACE SPACER @ CMT W   9.2M3 MID USING RIG PUMPS @ 2816 LEM, 241 BAR. UNDERDISPLACE PLUG BY 0.75M3.  1.00   1500   01 - 19   PROSE # S SET   1491 - 1274M.  1.00   1500   01 - 19   PROSE # S SET   1491 - 1095M.  1.00   1600   01 - 19   DROP DP WIPER DART, M/U TOP DRIVE, DISPLACE DART @ CIRC B/U W/ 3000 LEM, 280 BAR.  1.00   1600   01 - 19   PROSE # S POOH LAYING OUT 5" PD F / 1095 - 444M.  2.50   2030   01 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  1.00   1600   1 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  SAFETY: WEEKLY MINTER BRILL & SAFETY MERTING HEID.  24   HT SUMMENLY MINTER BRILL & SAFETY MERTING HEID.  25   2030   01 - 19   C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  26   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE   PROSE    |          | <u> </u> |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             | Т        |              |              |          |            |
| 1.00   1300   01 - 19   DROP DP WIDER DART, M/U CMT STAND, DISFLACE DART & CIRC B/U W/ 2940 LPM, 290 BAR.  1.00   1400   01 - 19   PRESS TEST LINES TO 175 BAR / 5 MINS - CK. PUMP 5M3 TUNED SDACER & IM3/MIN W/ CMT UNIT.    01 - 19   MIX & PUMP 13.3M3, 1.993 SIURRY USING 7.9M3 MIXWATER & IM3/MIN. PUMP 0.27M3 (+0.20M3 TO CLEAR LINES) CF TUNED   01 - 19   STACER, DISFLACE SPACER & OTT W/ 9.2M3 MUD USING RIG PUMPS @ 2816 LPM, 241 BAR. UNDERDISFLACE PLUG BY 0.75M3.    10 - 19   PILWS #3 SET F/ 1491 - 1274M.   1.00   1500   01 - 19   PCOPH W/ 5° DP F/ 1491 - 1095M.   1.00   100   01 - 19   PCOPH W/ 5° DP F/ 1491 - 1095M.   3.59   1700   01 - 19   PILWS PLUG #4 POON LAYING OUT 5° DP F/ 1096 - 444M.   2.59   2030   01 - 19   C/O HANDLING GEAR & POOH LAYING OUT 3.1/2° PH-6 CEMENT STINCER F/ 444M TO SURFACE.   1.00   2300   01 - 19   C/O HANDLING GEAR. P/U & M/U 5° MULESHOE & TIH W/ 5° DP TO 374M.    3.56   1700   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hours Fr | ram      | Act-Cat   | -         |          | Operat      | ions (                                           | bvering | g 24 I | Hours       | s Endi    | ng at M        | Iidnigh          | nt             |          |             |          | Tota         | l Hour       | s Repor  | rted: 24.0 |
| 1.00   400   01 - 19   DRESS TEST LINES TO 175 BAR / 5 MINS - OK. PIMP 5M3 TUNED SEACER @ IM3/MIN. W/ CMT UNIT.    01 - 19   MIX & PUMP 13.3M3, 1.9SG SLIRRY USING 7.9M3 MIXWATER @ IM3/MIN. PUMP 0.27M3 (+0.20M3 TO CLEAR LINES) OF TUNED   01 - 19   SEACER. DISPLACE SPACER & OAT W/ 9.2M3 MID USING RIG PUMPS @ 2816 LPM, 241 BAR. UNDERDISPLACE PLUG BY 0.75M3.   01 - 19   PUDG 83 SET F/ 1491 - 1274M.   1.00   1500   01 - 19   PODH W/ 5° DP F/ 1491 - 1099M.   1.00   1600   01 - 19   PODH W/ 5° DP F/ 1491 - 1099M.   3.50   1700   1 - 19   PODP BUMER DART, M/U TOP DRIVE, DISPLACE DART & CIRC B/U W/ 3000 LPM, 280 BAR.   3.50   1700   1 - 19   PODP SLIG & POOH LAYING OUT 5° DP F/ 1096 - 444M.   2.50   2300   01 - 19   C/O HANDLING GEAR & POOH LAYING OUT 3.1/2° PH-6 CEMENT STINKER F/ 444M TO SUBFACE.   1.00   2300   01 - 19   C/O HANDLING GEAR. P/U & M/U 5° MULESHCE & TIH W/ 5° DP TO 374M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50 1   | 230      | 01 - 19   | POOH W/   | 5" DP F  | 7/ 1791 -   | - 14911                                          | М.      |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| 01 - 19   MIX & PUMP 13.3M3, 1.9SG SLIRRY USING 7.9M3 MIXWATER @ 1M3/MIN. PUMP 0.27M3 (+0.20M3 TO CLEAR LINES) OF TUNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 1   | 300      | 01 - 19   | DROP DP   | WIPER D  | DART, M/U   | J CMT S                                          | STAND,  | DISPL  | ACE :       | DART &    | CIRC I         | 3/U W/           | 2940           | ) LPN    | м, 290      | BAR.     |              |              |          |            |
| 01 - 19   SENCER. DISPLACE SPACER & CMT W 9.2M3 MUD USING RIG PUMPS @ 2816 LEM, 241 BAR. UNDERDISPLACE PLUG BY 0.75M3.   01 - 19   PUMP #3 SET F/ 1491 - 1274M.   1.00   1500   01 - 19   POOH W 5" DP F/ 1491 - 1095M.   1.00   1600   01 - 19   POOH W 5" DP F/ 1491 - 1095M.   1.00   1600   01 - 19   PUMP SLUG & POOH LAYING OUT 5" DP F/ 1096 - 444M.   2.50   2030   01 - 19   C/O HANDLING GEAR & POOH LAYING OUT 3.1/2" PH-6 CEMENT STINGER F/ 444M TO SURFACE.   1.00   2300   01 - 19   C/O HANDLING GEAR & POOH LAYING OUT 3.1/2" PH-6 CEMENT STINGER F/ 444M TO SURFACE.   1.00   24 Hr Summary: RIH TO 3200M. CIRC & COND MUD. SET 3 X CMT PLUG, 3190 - 3025M, 1791 - 1491M & 1491 - 1274M. POOH & L/O DP.   Projected Operations: TH, WEIGHT & P/TEST ONT PLUG #3. SET PLUG #4 F/ 661 - 411M. DISPLACE WELL TO SEAWATER, POOH & TEST PLUG #4.   Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 1   | 400      | 01 - 19   | PRESS TE  | ST LINE  | ES TO 175   | BAR ,                                            | / 5 MIN | IS - 0 | K. P        | UMP 5M    | 3 TUNE         | SPAC             | ER @           | 1M3,     | /MIN W/     | / CMT    | UNIT.        |              |          |            |
| 01-19 PILKS #3 SET F/ 1491 - 1274M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          | 01 - 19   | MIX & PU  | MP 13.3  | 3M3, 1.99   | S SLUI                                           | RRY USI | NG 7.  | 9м3 1       | TAWXIM    | ER @ 11        | /13/MIN          | . PUN          | MP 0.    | .27M3 (     | (+0.20   | мз то        | CLEAR        | LINES)   | OF TUNED   |
| 1.00 1500 01-19 POOH W/ 5" DP F/ 1491 - 1095M.  1.00 1600 01-19 POOP DE WIPER DART, M/U TOP DRIVE, DISPLACE DART & CIRC B/U W/ 3000 LPM, 280 BAR.  3.50 1700 01-19 PUMP SLUG & POOH LAYING OUT 5" DP F/ 1096 - 444M.  2.50 2030 01-19 C/O HANDLING GEAR & POOH LAYING OUT 3.1/2" PH-6 CEMENT STINGER F/ 444M TO SURFACE.  1.00 2300 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  Safety: WEEKLY MUSTER DRILL & SAFETY MEETING HELD.  24 Hr Summary: RIH TO 3200M. CIRC & COND MUD. SET 3 X CMT PLUG, 3190 - 3025M, 1791 - 1491M & 1491 - 1274M. POOH & L/O DP.  Projected Operations: TIH, WEIGHT & P/TEST OMT PLUG #3. SET PLUG #4 F/ 661 - 411M. DISPLACE WELL TO SEANATER, POOH & TRST PLUG #4. Remarks:  Daily Mud Cost: KR65,962 Daily Tangible Cost: Daily Well Cost: KR122,674,174  Drill Water: 440.0 Potable Water: 490.0 Puel: 386.0 Bulk Weight: 133.0 Neat Cement: 187.0 Blended:  Cuntry: NDRWAY Rig SPYGOD DOLPHIN RIG PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PLOSE PL |          |          | 01 - 19   | SPACER.   | DISPLAC  | CE SPACE    | R & CMT                                          | г W/ 9. | 2M3 M  | UD U        | SING F    | IG PUM         | PS @ 2           | 816 I          | LPM,     | 241 BA      | AR. UN   | DERDIS       | PLACE        | PLUG BY  | 7 0.75M3.  |
| 1.00 1600 01-19 DROP DE WIPER DART, M/U TOP DRIVE, DISPLACE DART & CIRC B/U W/ 3000 LFM, 280 BAR.  3.50 1700 01-19 PUMP SLUG & POOH LAYING OUT 5" DP F/ 1096 - 444M.  2.50 2030 01-19 C/O HANDLING GEAR & POOH LAYING OUT 3.1/2" PH-6 CEMENT STINGER F/ 444M TO SURFACE.  1.00 2300 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.60 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.70 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U 8 M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U 8 M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING GEAR. P/U 8 M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  3.80 0 01-19 C/O HANDLING FOOD BART & CIRC BART & CIRC BART & CIRC BART & CIRC BART & CIRC BART & CIRC BART & CIRC BAR |          |          | 01 - 19   | PLUG #3   | SET F/   | 1491 - 1    | L274M.                                           |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| 3.50 1700 01-19 PUMP SLUG & POOH LAYING OUT 5" DP F/ 1096 - 444M.  2.50 2030 01-19 C/O HANDLING GEAR & POOH LAYING OUT 3.1/2" PH-6 CEMENT STINGER F/ 444M TO SURFACE.  1.00 2300 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.  Safety:  Safety:  WEEKLY MUSTER DRILL & SAFETY MEETING HELD.  24 Hr Summary: RIH TO 3200M. CIRC & COND MUD. SET 3 X CMT PLUG, 3190 - 3025M, 1791 - 1491M & 1491 - 1274M. POOH & L/O DP.  Projected Operations: TIH, WEIGHT & P/TEST OMT PLUG #3. SET PLUG #4 F/ 661 - 411M. DISPLACE WELL TO SEAWATER, FOOH & TEST PLUG #4.  Remarks:  Daily Mud Cost:  KR3,436,080 Cum Tangible Cost:  Cum Mud Obst:  KR3,436,080 Cum Tangible Cost:  KR1,747,951 Cum Well Cost:  KR1,747,951 Cum Well Cost:  KR122,674,174 Total Appr:  KR19 Phone: 52 88 03 35 Drilling Rep:  ELENSEY HEALT DISEASES PLUS Blended:  Field:  PL259 Lease:  PL259 Well No: 6506/3-1 Well DISB508 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00 1   | 500      | 01 - 19   | POOH W/   | 5" DP F  | 7/ 1491 -   | - 10951                                          | M.      |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| 2.50 2030 01-19 C/O HANDLING GEAR & POOH LAYING OUT 3.1/2" PH-6 CEMENT STINGER F/ 444M TO SURFACE.  1.00 2300 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00 1   | 600      | 01 - 19   | DROP DP   | WIPER D  | DART, M/U   | J TOP I                                          | DRIVE,  | DISPL  | ACE :       | DART &    | CIRC I         | 3/U W/           | 3000           | O LPN    | м, 280      | BAR.     |              |              |          |            |
| 1.00 2300 01-19 C/O HANDLING GEAR. P/U & M/U 5" MULESHOE & TIH W/ 5" DP TO 374M.    Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.50 1   | 700      | 01 - 19   | PUMP SLU  | IG & P00 | OH LAYING   | GOUT!                                            | 5" DP F | 7/ 109 | 6 -         | 444M.     |                |                  |                |          |             |          |              |              |          |            |
| Safety:   WEKLY MUSTER TRILL & SAFETY MEETING HEID.   24 Hr Summary: RiH TO 3200M. CIRC & COND MUD. SET 3 X CMT PLUG, 3190 - 3025M, 1791 - 1491M & 1491 - 1274M. POOH & L/O DP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.50 20  | 030      | 01 - 19   | C/O HANI  | LING GE  | EAR & POO   | OH LAY                                           | ING OUT | 3.1/   | 2" P        | H-6 CE    | MENT S         | TINŒR            | F/ 4           | 444M     | TO SUF      | RFACE.   |              |              |          |            |
| Safety: WEEKLY MUSTER DRILL & SAFETY MEETING HELD.  24 Hr Summary: RIH TO 3200M. CIRC & COND MUD. SET 3 X CMT PLUG, 3190 - 3025M, 1791 - 1491M & 1491 - 1274M. POOH & L/O DP.  Projected Operations: TIH, WEIGHT & P/TEST CMT PLUG #3. SET PLUG #4 F/ 661 - 411M. DISPLACE WELL TO SEAWATER, POOH & TEST PLUG #4.  Remarks:  Daily Mud Cost: KR65,962 Daily Tangible Cost: Daily Well Cost: KR4,505,305 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR3,436,080 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR122,674,174 Total Appr: KR134,000,000 Drill Water: 440.0 Potable Water: 490.0 Fuel: 386.0 Bulk Weight: 133.0 Neat Cement: 187.0 Blended:  Country: NORMAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00 2   | 300      | 01 – 19   | C/O HAND  | LING GE  | EAR. P/U    | & M/U                                            | 5" MUL  | ESHOE  | & T         | IH W/     | 5" DP 7        | го 374           | М.             |          |             |          |              |              |          |            |
| Safety: WeekLY MUSTER DRILL & SAFETY MEETING HELD.  24 Hr Summary: RiH TO 3200M. CIRC & COND MUD. SET 3 X CMT PLUG, 3190 - 3025M, 1791 - 1491M & 1491 - 1274M. POOH & L/O DP.  Projected Operations: TIH, WEIGHT & P/TEST CMT PLUG #3. SET PLUG #4 F/ 661 - 411M. DISPLACE WELL TO SEAWATER, POOH & TEST PLUG #4.  Remarks:  Daily Mud Cost: KR65,962 Daily Tangible Cost: Daily Well Cost: KR4,505,305 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR3,436,080 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR122,674,174 Total Appr: KR134,000,000 Drill Water: 440.0 Potable Water: 490.0 Fuel: 386.0 Bulk Weight: 133.0 Neat Cement: 187.0 Blended:  Country: NDRWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          | _         |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| Safety: WeekLY MUSTER DRILL & SAFETY MEETING HELD.  24 Hr Summary: RiH TO 3200M. CIRC & COND MUD. SET 3 X CMT PLUG, 3190 - 3025M, 1791 - 1491M & 1491 - 1274M. POOH & L/O DP.  Projected Operations: TIH, WEIGHT & P/TEST CMT PLUG #3. SET PLUG #4 F/ 661 - 411M. DISPLACE WELL TO SEAWATER, POOH & TEST PLUG #4.  Remarks:  Daily Mud Cost: KR65,962 Daily Tangible Cost: Daily Well Cost: KR4,505,305 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR3,436,080 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR122,674,174 Total Appr: KR134,000,000 Drill Water: 440.0 Potable Water: 490.0 Fuel: 386.0 Bulk Weight: 133.0 Neat Cement: 187.0 Blended:  Country: NDRWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          | _         |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| 24 Hr Summary: RIH TO 3200M. CIRC & COND MUD. SET 3 X CMT PLUG, 3190 - 3025M, 1791 - 1491M & 1491 - 1274M. POOH & L/O DP.  Projected Operations: TIH, WEIGHT & P/TEST CMT PLUG #3. SET PLUG #4 F/ 661 - 411M. DISPLACE WELL TO SEAWATER, POOH & TEST PLUG #4.  Remarks:  Daily Mud Cost: KR65,962 Daily Tangible Cost: Daily Well Cost: KR4,505,305 Incidents: ND INCIDENT REPORTED  Cum Mud Cost: KR3,436,080 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR122,674,174 Total Appr: KR134,000,000 Drill Water: 440.0 Potable Water: 490.0 Fuel: 386.0 Bulk Weight: 133.0 Neat Cement: 187.0 Blended:  Country: NDRWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| 24 Hr Summary: RIH TO 3200M. CIRC & COND MUD. SET 3 X CMT PLUG, 3190 - 3025M, 1791 - 1491M & 1491 - 1274M. POOH & L/O DP.  Projected Operations: TIH, WEIGHT & P/TEST CMT PLUG #3. SET PLUG #4 F/ 661 - 411M. DISPLACE WELL TO SEAWATER, POOH & TEST PLUG #4.  Remarks:  Daily Mud Cost: KR65,962 Daily Tangible Cost: Daily Well Cost: KR4,505,305 Incidents: ND INCIDENT REPORTED  Cum Mud Cost: KR3,436,080 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR122,674,174 Total Appr: KR134,000,000 Drill Water: 440.0 Potable Water: 490.0 Fuel: 386.0 Bulk Weight: 133.0 Neat Cement: 187.0 Blended:  Country: NDRWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          | _         |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| 24 Hr Summary: RIH TO 3200M. CIRC & COND MUD. SET 3 X CMT PLUG, 3190 - 3025M, 1791 - 1491M & 1491 - 1274M. POOH & L/O DP.  Projected Operations: TIH, WEIGHT & P/TEST CMT PLUG #3. SET PLUG #4 F/ 661 - 411M. DISPLACE WELL TO SEAWATER, POOH & TEST PLUG #4.  Remarks:  Daily Mud Cost: KR65,962 Daily Tangible Cost: Daily Well Cost: KR4,505,305 Incidents: ND INCIDENT REPORTED  Cum Mud Cost: KR3,436,080 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR122,674,174 Total Appr: KR134,000,000 Drill Water: 440.0 Potable Water: 490.0 Fuel: 386.0 Bulk Weight: 133.0 Neat Cement: 187.0 Blended:  Country: NDRWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Safety:  | WEE      | KLY MU:   | STER DRIL | L & SAF  | ETY MEET    | ING HE                                           | ELD.    |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| Projected Operations: TIH, WEIGHT & P/TEST OMT PLUG #3. SET PLUG #4 F/ 661 - 411M. DISPLACE WELL TO SEAWATER, POOH & TEST PLUG #4.  Remarks:  Daily Mud Cost: KR65,962 Daily Tangible Cost: Daily Well Cost: KR4,505,305 Incidents: NO INCIDENT REPORTED  Cum Mud Cost: KR3,436,080 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR122,674,174 Total Appr: KR134,000,000 Drill Water: 440.0 Potable Water: 490.0 Fuel: 386.0 Bulk Weight: 133.0 Neat Cement: 187.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |          |           |           |          |             |                                                  |         | CMT I  | PLUG        | , 3190    | - 3025         | м, 179           | 91 -           | 1491     | M & 14      | 91 - 3   | 1274M.       | POOH         | & L/O D  | Ρ.         |
| Paily Mud Cost: KR65,962       Daily Tangible Cost:       Daily Well Cost: KR4,505,305       Incidents: NO INCIDENT REPORTED         Cum Mud Cost: KR3,436,080       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR122,674,174       Total Appr: KR134,000,000         Drill Water: 440.0       Potable Water: 490.0       Fuel: 386.0       Bulk Weight: 133.0       Neat Cement: 187.0       Blended:         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig Phone: 52 88 03 35       Drilling Rep: ELKINS/HOLLINSHEAD         Field: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| Cum Mud Cost: KR3,436.0       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR122,674,174       Total Appr: KR134,000,000       Drill Water: 440.0       Potable Water: 490.0       Fuel: 386.0       Bulk Weight: 133.0       Neat Cement: 187.0       Blended: ELKINS/HOLLINSHEAD         Country: NORWAY       Rig: ByFGRD DOLPHIN       Rig: ByFGRD DOLPHIN       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks: | :        |           | <u>-</u>  |          | · · · · · · |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| Cum Mud Cost: KR3,436.0       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR122,674,174       Total Appr: KR134,000,000       Drill Water: 440.0       Potable Water: 490.0       Fuel: 386.0       Bulk Weight: 133.0       Neat Cement: 187.0       Blended: ELKINS/HOLLINSHEAD         Country: NORWAY       Rig: ByFGRD DOLPHIN       Rig: ByFGRD DOLPHIN       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| Cum Mud Cost: KR3,436.0       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR122,674,174       Total Appr: KR134,000,000       Drill Water: 440.0       Potable Water: 490.0       Fuel: 386.0       Bulk Weight: 133.0       Neat Cement: 187.0       Blended: ELKINS/HOLLINSHEAD         Country: NORWAY       Rig: ByFGRD DOLPHIN       Rig: ByFGRD DOLPHIN       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| Cum Mud Cost: KR3,436.0       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR122,674,174       Total Appr: KR134,000,000       Drill Water: 440.0       Potable Water: 490.0       Fuel: 386.0       Bulk Weight: 133.0       Neat Cement: 187.0       Blended: ELKINS/HOLLINSHEAD         Country: NORWAY       Rig: ByFGRD DOLPHIN       Rig: ByFGRD DOLPHIN       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |           |           |          |             |                                                  |         |        |             |           |                |                  |                |          |             |          |              |              |          |            |
| Cum Mud Cost: KR3,436.0       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR122,674,174       Total Appr: KR134,000,000       Drill Water: 440.0       Potable Water: 490.0       Fuel: 386.0       Bulk Weight: 133.0       Neat Cement: 187.0       Blended: ELKINS/HOLLINSHEAD         Country: NORWAY       Rig: ByFGRD DOLPHIN       Rig: ByFGRD DOLPHIN       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Daily Mu | ud (     | lost: ,,, | 065 060   | Daily '  | Tangible    | Cost:                                            |         |        | Dai         | ly Wel    | 1 Cost         | ND/ C            | 0E 30          | 15       | Thaid       | nte:     | אד רוא       | יאים רדי די  | חרסים ח  | TED        |
| Drill Water: 440.0 Potable Water: 490.0 Fuel: 386.0 Bulk Weight: 133.0 Neat Cement: 187.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H        |          |           |           | _        | _           |                                                  |         | OF1    |             |           |                |                  |                |          |             |          |              |              |          |            |
| Country: NORWAY  Rig: BYFORD DOLPHIN  Rig Phone: 52 88 03 35  Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259  Well No: 6506/3-1  Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |           |           |          |             |                                                  | 7       |        | <u> </u>    |           |                |                  |                |          |             |          |              |              |          | ed:        |
| Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |           | U   Joca  |          |             |                                                  | 3       |        | т.          |           |                |                  |                |          | 35          | Drill    | ing Re       | p: _<br>g/.0 |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field:   | N        | JRWAY     |           |          |             |                                                  |         | )TRHTI | N           |           | 1 3            |                  |                |          | 55          | 1        |              |              |          |            |
| TEM TIME TO DOUGH SET THE TABLE TO MINISTER DOUGH TO THE TRACE INTUITING THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE IN THE TRACE  | P        | Т        | 9         |           |          |             |                                                  |         |        | дъ          | Œ N∩:     | KINIENT∕       |                  |                |          |             |          | 1F >==       |              |          |            |

| Measured 1             | Depth:   | 366      | 57.0 m  | TVD:             | 3662.4 m                 |                                                  | PBTD    | :            | 411.0 m  | Propo       | osed M  | D: 3     | 8625.0 i  | m Pro   | oposed    | TVD:      | 3625.0 m     |
|------------------------|----------|----------|---------|------------------|--------------------------|--------------------------------------------------|---------|--------------|----------|-------------|---------|----------|-----------|---------|-----------|-----------|--------------|
| DOL: 31                | L        | DFS: 26  |         | pud Date: 22     |                          |                                                  |         |              | Footage  |             | D       | aily Ro  |           |         | Total     | Rot Hr    | rs: 117.5    |
| Torq:                  | Dra      | ıg:      |         |                  | /U Wgt:                  | Sl                                               | .ack 0  | ff Wgt       | :        | Wind        | : 15    | Seas     | : 1.0     | / 2 0   | +         |           | POB: 89      |
| Last Casin             | ng Size  | :        | 220     | .7 mm Set .      | At:                      | 1 27 4                                           | 3m 1    | √D           | 1 2 7    | 72.1m       | TVD     |          | Test:     |         |           | Leako     |              |
| Cum Rot Hi             |          |          |         | Cum Rot H        | rs On Casing             |                                                  |         |              |          | /2.1m       |         | 1 Worst  |           |         |           | Remainir  |              |
| Liner Size             |          |          | 138.    | Set At:          |                          |                                                  |         | ).0 T        |          | Liı         | ner To  |          |           |         |           |           |              |
| Mud Coi                |          | 0.0      |         | Vme: on a reason | 0.0 MD                   |                                                  | (       |              |          | : PIT W     | i+: 100 | - E77:   |           | 0 MD    |           | o Col:    | 0.0 TVD      |
| Mud Co: <sub>M-1</sub> |          |          |         | Type: SEAWATER   |                          | 9                                                | Solids  | 3:<br>0.00   | % O      |             |         |          |           |         |           | -         | 0 / 0<br>Ph: |
| Pm:                    |          | HTHP:    | 0.0     | FC (mm) AP:      |                          | 0.0 Ca:                                          |         | 0.00<br>Bent |          | il:<br>0.00 | 9UC /1  | 0.00     | )   • 501 | 0.      | 00 DS/Ben |           | ,            |
| 0.00                   | PL/MI    | 0.00     | / 0.00  | Carb.            | CI:                      | ca:                                              |         | Бепс         | ·•       | 501108      | 3 7NG/1 | LG: 0.00 | 0.0       | 00      | DS/Bell   | ٠٠        | /            |
| 400 1L                 | TR OTHE  | R        | 8       | 1m3 BAS          | SE FLUID                 |                                                  |         |              |          |             |         |          |           |         |           |           |              |
|                        |          |          |         |                  |                          |                                                  |         |              |          |             |         |          |           |         |           |           |              |
| Drlg Gas:              | 0        | Max Ga   | as:     | Conn Gas:        | Trip                     | Gas:                                             | 0       | Tr           | ip Cl:   | Re          | marks   | :        |           |         |           |           |              |
| Bit Number             | r IADC   | Size     | e Ma    | nufacturer       | Serial num               | iber                                             |         | Jets         | (Quar    | ntity -     | Size)   |          | TFA       | M       | D In      | MD Out    | TVD Out      |
|                        |          |          |         |                  |                          |                                                  | -       | / -          | /        | - /         | - /     | / _      | 0         |         |           |           |              |
|                        |          | <u> </u> |         |                  |                          |                                                  | -       | / -          |          | - /         | - ,     | / -      | 0         |         |           |           |              |
| Туре                   | Ме       | eters    | Hours   | WOB              | RPM                      | 1                                                | Motor   | RPM          | I-Row    | O-Row       | DC      | Loc      | В         | G       | Char      | ?Pull     | Cost/m       |
|                        |          |          |         | /                | /                        |                                                  |         |              |          |             |         |          |           |         |           |           |              |
|                        |          |          |         | /                | /                        |                                                  |         |              |          |             |         |          |           |         |           |           |              |
| Total Leng             | gth of   | вна:     |         | BHA Descr        | ription:                 |                                                  |         |              |          |             |         |          |           |         |           |           |              |
|                        |          |          |         |                  |                          |                                                  |         |              |          |             |         |          |           |         |           |           |              |
|                        |          |          |         |                  |                          |                                                  |         |              |          | Hrs Or      | Jars    |          | Hours     | Since   | e Last    | Inspect   | tion:        |
| Bit Num                | Lir      | ner      |         | Stroke           |                          | SPM                                              | P       | ress.        | M3/Min   | Jet Vel     | L DP    | Av D     | C Av 1    | Bit 144 | BHH       | P/SOIN    | Pump kW      |
|                        |          |          |         | /                | / /                      | ′ /                                              |         |              |          |             |         |          |           | - 12/   | •         | , = 2     | 1 121        |
|                        |          |          |         |                  | <del>,</del>             | <del>'                                    </del> |         |              |          |             |         |          |           |         |           |           |              |
| Survey MD              | Angle    | Azim     | nıth    | Direction        | TVD                      |                                                  | VI/S CC | ordina       | at eq    | E/W C       | oordir  | nates    | Verti     | cal S   | ection    |           | DLS          |
| Bur vey MD             | Aigie    | AZIII    | laar    | Direction        | TVD                      | 1                                                | .V/D CC | DI GIII E    | 1000     | E/W C       | OOLGII  | iaces    | verti     | car b   | ección    |           | DLIS         |
|                        |          | +        |         |                  |                          |                                                  |         |              |          |             |         |          |           |         |           |           |              |
|                        |          |          |         |                  |                          |                                                  |         |              |          |             |         |          |           |         |           |           |              |
|                        |          |          |         |                  |                          |                                                  |         |              |          |             |         |          |           |         |           |           |              |
|                        |          | _        |         |                  |                          |                                                  |         |              |          |             |         |          |           |         |           |           |              |
| Hours Fra              | n Act-C  | at       |         | Operat           | ions Coveri              | ng 24                                            | Hour    | s Endi       | ng at M  | Iidnight    |         |          |           | Tota    | al Hour   | rs Repoi  | rted: 24.0   |
| 1.50 000               | 0 01 - 1 | .9 CONT  | TIH W   | / 5" DP F/ 3     | 74 - 1267M.              | WASH                                             | DOWN    | W/ 300       | LPM, 3   | BAR &       | TAG TO  | OP OF C  | MT W/ 5   | 5 MT @  | 9 1281M   | 1.        |              |
| 1.00 013               | 0 01 - 1 | .9 PUMP  | SLUG 8  | © POOH W/ 5"     | DP F/ 1281               | - 661                                            | LM.     |              |          |             |         |          |           |         |           |           |              |
| 0.50 023               | 0 01 - 1 | .9 L/O 2 | 2 X SII | NGLE & M/U T     | OP DRIVE. PR             | OVE (                                            | JP FLO  | W PATH       | Ι.       |             |         |          |           |         |           |           |              |
| 0.50T 030              | 0 01 - 1 | .9 CLOSE | E UPPE  | R ANNULAR & .    | ATTEMPT TO P             | RESS                                             | TEST    | CMT PI       | JUG #3 ( | JSING RI    | IG PUMI | PS - NO  | GO. Al    | NULAF   | R LEAKI   | NG.       |              |
| 0.50 033               | 0 01 - 1 | 9 CLOSE  | E MPR 8 | & PRESS TEST     | CMT PLUG #3              | USIN                                             | NG SEA  | WATER        | F/ CMT   | UNIT TO     | 110 1   | BAR / 5  | MINS -    | - OK.   | 0.6M3     | PUMPED    | & RTND.      |
| 1.00 040               | 0 01 - 1 | .9 M/U ( | CMT ST  | AND & BREAK      | CIRC THRU SA             | ME W/                                            | / CMT   | UNIT.        | PRESS T  | TEST LI     | ES TO   | 210 BA   | R / 5 M   | MINS -  | - OK.     |           |              |
|                        | 01 - 1   | 9 MIX 8  | k PUMP  | 19.3M3, 1.9      | 5SG SLURRY U             | SING                                             | 11.2M   | 3 MIXW       | ATER @   | 0.8M3/N     | ⁄IN. P  | JMP 0.2  | OM3 DRI   | ILLWAT  | TER TO    | CLEAR I   | LINES.       |
|                        | 01 - 1   | 9 DISPI  | LACE O  | MT W/ 3.1M3      | MUD USING RI             | G PUN                                            | ÆPS @   | 1200 I       | PM, 46   | BAR. UI     | DERDI:  | SPLACE   | PLUG BY   | Y 0.75  | 5M3.      |           |              |
|                        | 01 - 1   | 9 PLUG   | #4 SE   | Г F/ 661 - 4     | 11M.                     |                                                  |         |              |          |             |         |          |           |         |           |           |              |
| 0.50 050               | 0 01 - 1 | 9 POOH   | W/ 5"   | DP F/ 661 -      | 411M.                    |                                                  |         |              |          |             |         |          |           |         |           |           |              |
| 0.50 053               | 0 01 - 1 | 9 CIRC   | B/U W   | / 4500 LPM,      | 102 BAR.                 |                                                  |         |              |          |             |         |          |           |         |           |           |              |
| 1.00 060               | 0 01 - 1 | 9 DISPI  | LACE C  | HOKE, KILL &     | RISER BOOST              | ER LI                                            | NES T   | O SEAW       | IATER W  | CMT UI      | WIT.    |          |           |         |           |           |              |
| 2.50 070               | 0 01 – 1 | 9 PTMP   | CT.F.AN | UP PILLS -       | 8M3 BASE OTT             | . 301                                            | /IS WET | CHTED        | HT-VTS   | DTII. 3     | зомз н. | T-VTS W  | ASH DTI   | .T. 30  | MS SOT    | WENT D    | III. &       |
| 2.30 070               |          |          |         |                  |                          |                                                  |         |              |          |             |         |          |           |         |           |           |              |
| 2 50 003               |          |          |         | S CLEAN UP P     |                          |                                                  |         | SPLACE       | ıW/SELA  | AWAIER (    | 2 2205  | LPM, I   | Z BAR,    | 170 F   | KMM. 14   | EZM3 SLIC | DES KIN'D.   |
| 2.50 093<br>Safety:    | 0 01 - 1 | 9 PWH    | TATTIV  | G OUT 5" DP :    | F/ 411M 10 S             | URFAC                                            | .E.,    |              |          |             |         |          |           |         |           |           |              |
| 24 Hr Sumr             | mrv: _   |          |         |                  |                          |                                                  |         |              |          |             |         |          |           |         |           |           |              |
|                        |          |          |         | CMT PLUG #3.     |                          |                                                  |         |              |          |             |         |          |           |         |           |           | ER.          |
| Remarks:               | орегие   | P        | ULL &   | L/O RISER. T     | TIH WITH MOS             | г тоо                                            | L. CU   | ľ & RE       | TRIEVE   | WELLHEA     | D. L/C  | DRILL    | PIPE.     | PULL .  | ANCHOR    | S.        |              |
|                        | RON - 4  | , SERV   | ICE -   | 24, DOLPHIN      | 1 - 52, DOL              | PHIN                                             | SERVI   | CE - 9       |          |             |         |          |           | D       | AYS SI    | NCE LAS   | T LTI - 82   |
| HEAVE: 0.              | .3M, PI  | TCH 0.3  | DEG, F  | ROLL 0.5DEG;     | CUTTING SKI              | PS ON                                            | BOAR    | D: 19        | (10 FUL  | L & 9 E     | MPTY).  |          |           |         |           |           |              |
| DAILY FE (             | COST: 3  | 86,144   | NOK     | TOTA             | AL FE COSTS:             | 34,                                              | 813,5   | 89 NOK       |          |             |         |          |           |         |           |           |              |
| 05:30 HRS:             | POOH     | & L/O R  | ISER J  | NT 10 OF 23.     |                          |                                                  |         |              |          |             |         |          |           |         |           |           |              |
| Daily Mud              | Cost:    | KR2,057  |         | ily Tangible     |                          |                                                  |         | ly Wel       | l Cost:  | KR5,018     | ,845    | Incide   | ents:     | NO I    | NCIDEN    | T REPOR   | TED          |
| Cum Mud Co             | ost: KR  | 5,493,6  | 40 Cu   | m Tangible C     | lost: <sub>KR</sub> 1,74 | 17 <b>,</b> 951                                  | Cum     | Well         | Cost:    | KR127,6     | 83,019  | Total    | Appr:     | KR134   | ,000,0    | 000       |              |
| Drill Wate             |          |          |         | Water: 470.      | _ ,                      | 369.0                                            |         |              |          | Weight      |         | 0 Ne     | at Ceme   | ent:    | 168.0     | Blende    |              |
| Country:               |          | I        |         |                  | Rig: BYFORD 1            |                                                  |         |              |          | none: 52    |         | 35       | Drill:    |         |           | INS/HOL   | LINSHEAD     |
| Field: PL2             | 259      |          |         |                  | se: <sub>PL259</sub>     |                                                  |         |              | •        |             |         | 6506/3-  | 1         |         |           |           | UB5908 -0    |
|                        |          |          |         |                  | : 6506/3-1               |                                                  | AF      | E No:        | KWENO-   | 650631-     |         |          | Date:     | 16-AU   |           |           | : 1 Of 2     |

| Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description   Description      | Measur | red D             | epth:    | 36       | 67.0 m |          | IVD:                 | 366          | 2.4 m                                            |       | PBT   | D:       | 411.0 m                                      | Pro                                     | pose      | ed MD     | : 3             | 625.0  | m Pro     | posed    | TVD:     | 3625          | .0 m  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|----------|----------|--------|----------|----------------------|--------------|--------------------------------------------------|-------|-------|----------|----------------------------------------------|-----------------------------------------|-----------|-----------|-----------------|--------|-----------|----------|----------|---------------|-------|
| The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the    | DOL:   | 31                | D        | FS: 26   | 6      | Spud Da  | te: <sub>22</sub>    | -JUL-2       | 2001                                             |       |       | Daily    | Footag                                       | je:                                     |           | Da        | ily Ro          | t Hrs  |           |          |          | rs: 1         | 17.5  |
| The content is a content of content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or content or con   | Torq:  |                   | Drag     | g:       | Rot    | Wgt:     | P                    | /U Wgt       | :                                                | Sl    | Lack  | Off Wg   | :                                            | Win                                     | ıd:       | 15        | Seas:           | 1.0    | / 2.0     | Bar:     | 752      | POB:          | 89    |
| Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont   | Last C | asin              | g Size:  |          | 330    | 9.7 mm   | Set 1                | At:          | 7                                                | 1374. | 3m    | MD       | 13                                           |                                         |           |           | -               |        |           |          |          | off?          | Y     |
| March 1968   1,0   See 187   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   1,0   No.   No.   1,0   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.     | Cum Ro | t Hr              | s On Ca  | sing:    |        | Cim      | Rot H                | rs On (      |                                                  |       |       |          |                                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           | epth      | Worst           | Wear:  |           |          | emaini   | ng:           | -     |
| March   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sectio   | Liner  | Size              | :        | 0.0      |        |          | t:                   | 0.0          | MD                                               |       |       | 0 0 7    | "VD                                          | I                                       | Liner     | r Top     | At:             | 0      | 0 MD      | <u> </u> |          | 0 0           | TVD   |
| Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart   Mart      | Mud Co | ): <sub>M_T</sub> | MODOE    |          |        | Type: cr | קיקידים <i>עו</i> מי |              |                                                  |       |       |          |                                              | n: DIT                                  | Wt:       | 1 0 0 1   | FV:             |        |           | YP: O    | n Gel:   |               | ,     |
| Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service   1,000   Service      | TATT   |                   |          |          |        |          |                      |              |                                                  |       | Solid | ds:      | 8 (                                          |                                         |           |           |                 |        |           |          |          | <del> /</del> | / 0   |
| Ending Coast 0 Now Coast 0 Now Coast 0 Now Coast 1 Prip Coast 0 Now Coast 1 Now Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast 1 Now Coast  | Dm*    |                   |          |          |        |          | API                  |              |                                                  |       |       |          |                                              | Soli                                    | ds %      | HG/L      | 0.00<br>3: 0.00 | . / .  | 0.0<br>20 |          |          |               |       |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      | .00               |          | 0.00     | 7 0.0  | Ч        |                      |              |                                                  |       |       |          |                                              |                                         |           |           | 0.00            | 7 0.   | . 00      |          |          |               |       |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                   |          |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drla G | lag:              |          | Max G    | as:    | Con      | n Gas:               |              | Trin (                                           | lag:  |       | Tr       | ip Cl:                                       |                                         | Rema      | rks:      |                 |        |           |          |          |               |       |
| Cype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                   | 0        |          |        | 0        |                      |              |                                                  |       | 0     |          |                                              |                                         |           |           |                 |        | .         | _        | 150      | T             |       |
| Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect   | BIT N  | ımber             | TALC     | Siz      | ie M   | anuract  | urer                 | Seria        | al num                                           | ber   |       | Jet:     | s (Qua                                       | ntity                                   | - S1<br>/ | .ze)<br>/ |                 | +      | A MD      | In       | MD Out   | TV.           | D Out |
| Notice   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   Motors   M   |        |                   |          |          |        |          |                      |              |                                                  |       | _     | /        | <u>     /                               </u> | <u> </u>                                |           | /         |                 |        |           |          |          |               |       |
| Total tength of SHAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                   | 1,,      |          |        | Τ.       | 700                  | Τ.           |                                                  | Τ,    | Mata  | DDM      | 1                                            | /                                       | Τ.        | 7         |                 | _      |           | al.      | 20.11    |               | . ,   |
| Total Length of 2004: BEAN Description:    Stroke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т      | ype               | Met      | ers      | Hours  | S V      |                      | Ь            |                                                  | 1     | MOCO  | r RPM    | 1-Row                                        | 7 O-Ro                                  | W .       | IC.       | Loc             | В      | G         | Char     | Pull     | Cos           | t/m   |
| Site Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                   |          |          |        |          |                      |              | /                                                |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Site Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total  | T.077 -           | th of D  | U7·      |        | БПУ      | /<br>Desar           | iption       | /<br>n:                                          |       |       |          |                                              | <u> </u>                                |           |           |                 |        |           |          | <u> </u> |               |       |
| Sirvey Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOCAL  | цеng              | CII OI B | пА•      |        | ПА       | LUCUL                | -F-CT()11    |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Sirvey Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                   |          |          |        |          |                      |              |                                                  |       |       |          |                                              | T T                                     | O~ ~      | `a~~:     |                 | Lie    | . ci      | T a a +  | Tnæ:-:   | +i            |       |
| Survey NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 1                 |          |          |        |          |                      |              |                                                  |       |       |          |                                              | 1                                       |           |           |                 |        | э эшсе    |          |          |               |       |
| Hours   Proc   Act-Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bit Nu | m                 | Line     | er<br>/  |        | Str      | oke<br>'             | 1            | ٠,                                               | SPM   |       | Press.   | M3/Min                                       | Jet V                                   | 7el       | DP A      | v DO            | C Av   | Bit kW    | BHH      | P/SQIN   | Pump          | kW    |
| Hours   Proc   Act-Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                   |          |          |        | /        | ·<br>/               | <u>/</u>     | <del>                                     </del> |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Hours   Proc   Act-Cat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                   |          |          |        | /        | <u> </u>             | <del>/</del> | /                                                | /     |       |          |                                              |                                         |           |           |                 | l      |           |          |          |               |       |
| 0.50   1.00   01 - 19   5/U & M/U UNIVERSAL TOCL C/M W/BUSHING RETRIEVAL ADAPTER. TH, WASH DOWN, ENANGE & PULL W/BUSH W/ 30K O/PULL.  2.00   1230   01 - 19   001   125 BAR / 5 MINS - (K. 0.3M3 PUMPED & RIND.  0.50   1430   01 - 19   17   17   17   17   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Survey | MD                | Angle    | Azir     | muth   | Direc    | tion                 | 7            | IVD                                              | 1     | N/S ( | Ccordin  | ates                                         | E/W                                     | Coo       | rdina     | ates            | Vert   | ical Se   | ction    |          | DLS           |       |
| 0.50   1.00   01 - 19   5/U & M/U UNIVERSAL TOCL C/M W/BUSHING RETRIEVAL ADAPTER. TH, WASH DOWN, ENANGE & PULL W/BUSH W/ 30K O/PULL.  2.00   1230   01 - 19   001   125 BAR / 5 MINS - (K. 0.3M3 PUMPED & RIND.  0.50   1430   01 - 19   17   17   17   17   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                   |          |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| 0.50   1.00   01 - 19   5/U & M/U UNIVERSAL TOCL C/M W/BUSHING RETRIEVAL ADAPTER. TH, WASH DOWN, ENANGE & PULL W/BUSH W/ 30K O/PULL.  2.00   1230   01 - 19   001   125 BAR / 5 MINS - (K. 0.3M3 PUMPED & RIND.  0.50   1430   01 - 19   17   17   17   17   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                   |          |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| 0.50   1.00   01 - 19   5/U & M/U UNIVERSAL TOCL C/M W/BUSHING RETRIEVAL ADAPTER. TH, WASH DOWN, ENANGE & PULL W/BUSH W/ 30K O/PULL.  2.00   1230   01 - 19   001   125 BAR / 5 MINS - (K. 0.3M3 PUMPED & RIND.  0.50   1430   01 - 19   17   17   17   17   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                   |          |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| 0.50   1.00   01 - 19   5/U & M/U UNIVERSAL TOCL C/M W/BUSHING RETRIEVAL ADAPTER. TH, WASH DOWN, ENANGE & PULL W/BUSH W/ 30K O/PULL.  2.00   1230   01 - 19   001   125 BAR / 5 MINS - (K. 0.3M3 PUMPED & RIND.  0.50   1430   01 - 19   17   17   17   17   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                   |          | <u> </u> |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| 2.00   130   01 - 19   TO 125 BAR / 5 MINS - CK. 0.3M3 PUMPED & RIND.  0.50   1430   01 - 19   TO 125 BAR / 5 MINS - CK. 0.3M3 PUMPED & RIND.  0.50   1430   01 - 19   TO 125 BAR / 5 MINS - CK. 0.3M3 PUMPED & RIND.  0.50   1430   01 - 19   TH W / 5 DP TO 36M. FOOH LAYING OUT 5 DP F/ 364M TO SURFACE.  1.90   1700   01 - 19   CEAN ALL ORN F/ IRILL FLOCK & HANKLING EQUIPMENT.  2.00   1850   01 - 53   RUIN TO DULL DIVERTER, RISER & BOP.  2.00   2030   01 - 53   RUIN TO DULL DIVERTER, RUIN & BOP.  2.00   2030   01 - 53   RUIN TH MOST TOOL F/ SAME. PARK RUCKER RING.  0.90   2330   01 - 53   RUIN TH MOST TOOL F/ SAME. PARK RUCKER RING.  3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3.01   3. | Hours  | From              | Act-Ca   | t        |        |          | Operat               | ions C       | bverir                                           | ng 24 | Hou   | ırs Endi | .ng at 1                                     | Midnig                                  | ht        |           |                 |        | Tota      | l Hour   | s Repo   | rted:         | 24.0  |
| 0.1 - 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.50   | 1200              | 01 - 19  | P/U      | & M/U  | UNIVERS  | SAL TOO              | OL C/W       | W/BUS                                            | HING  | RETI  | RIEVAL . | ADAPTER                                      | . TIH,                                  | WAS       | SH DOI    | WN, EN          | GAGE 8 | PULL I    | W/BUSH   | W/ 301   | K O/PU        | LL.   |
| 0.0 1430 01-19 170 DEFENSIVE HANG OFF TOOL F/ DEFRICK.  2.00 1500 01-19 18 TH W/ 5" DP TO 364M. POOH LAYING CUT 5" DP F/ 364M TO SURFACE.  2.00 1630 01-19 18 TH W/ 5" DP TO 364M. POOH LAYING CUT 5" DP F/ 364M TO SURFACE.  2.00 1630 01-19 18 TH W/ 5" DP TO 364M. POOH LAYING CUT 5" DP F/ 364M TO SURFACE.  2.00 1630 01-53 RU TO PULL DIVERTER, RISER & BOP.  2.00 2030 01-53 PULL & L/O DIVERTER. P/U & M/U RISER HANDLING JOINT. COLLAPSE INNER BARREL & PREPARE SLIP JNT FOR PULLING.  3.0 1-53 PULL W HANDLING JOINT & L/O SAME. PARK RUCKER RING.  3.0 1-53 PULL W HANDLING JOINT & L/O SAME. PARK RUCKER RING.  3.0 1-53 PULL W HANDLING JOINT & L/O SAME. PARK RUCKER RING.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RISER.  3.0 1-50 PULL RI | 2.00   | 1230              | 01 - 19  | РООН     | LAYIN  | G OUT 5  | 5" DP E              | F/ 342N      | OT N                                             | URFAC | Œ. I  | MEANWHI  | LE CLOS                                      | E BSR                                   | & PR      | ESS T     | TEST C          | MT PLL | JG #4 W.  | / SEAW   | ATER F   | / CMT         | UNIT  |
| 2.00 1500 01 - 19 Th W/ 5" DP TO 364M. FOOH LAYING GUT 5" DP F/ 364M TO SURFACE.  1.50 1700 01 - 19 Th W/ 5" DP TO 364M. FOOH LAYING GUT 5" DP F/ 364M TO SURFACE.  2.00 1830 01 - 53 R/U TO PULL DIVERTER, RISER & BOP.  2.00 2030 01 - 53 R/U TO PULL DIVERTER, P/U & M/U RISER HANDLING JOINT. COLLARSE INNER BARREL & PREPARE SLIP JNT FOR PULLING.  1.00 2230 01 - 53 R/U TO PULL DIVERTER. P/U & M/U RISER HANDLING JOINT. COLLARSE INNER BARREL & PREPARE SLIP JNT FOR PULLING.  0.50 2330 01 - 53 PULL W HANDLING JOINT & L/O SAME. PARK RUCKER RING.  1.00 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                   | 01 - 19  | TO 1     | 25 BAF | R / 5 MI | INS - (              | OK. 0.3      | 3M3 PU                                           | MPED  | & R.  | IND.     |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| 1700 1700 1701 1701 1701 1701 1701 1701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.50   | 1430              | 01 - 19  | L/O      | EMERGE | NCY HAI  | NG OFF               | TOOL E       | F/ DER                                           | RICK. | •     |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| 2.00   1830   01 - 53   R/U TO FULL DIVERTER, RISER & BOP.  2.00   2030   01 - 53   PULL & L/O DIVERTER, P/U & M/U RISER HANDLING JOINT. COLLAPSE INNER BARREL & PREPARE SLIP JNT FOR PULLING.  1.00   2230   01 - 53   UNLATCH BOP & PULL CLEAR OF GUIDE POSTS. SKID RIG 20M TO STARBOARD.  0.50   2330   01 - 53   PULL W   HANDLING JOINT & L/O SAME. PARK RUCKER RING.  1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00   | 1500              | 01 - 19  | TIH      | W/ 5"  | DP TO 3  | 364M. I              | POOH LA      | AYING                                            | OUT 5 | 5" DI | P F/ 36  | 4M TO S                                      | URFACE                                  | :.        |           |                 |        |           |          |          |               |       |
| 200 2030 01-55 PULL & L/O DIVERTER. P/U & M/U RISER HANDLING JOINT. COLLARSE INNER BARREL & PREPARE SLIP JNT FOR PULLING.  1.00 2230 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING JOINT & L/O SAME. PARK RUCKER RING.  5.00 2330 01-55 PULL W/ HANDLING  | 1.50   | 1700              | 01 - 19  | CLEA     | N ALL  | OBM F/   | DRILL                | FLOOR        | & HAN                                            | DLING | G EQU | UIPMENT  |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| 1.00 2230 01 -53 UNLATCH BOP & PULL CLEAR OF GUIDE POSTS. SKID RIG 20M TO STARBOARD.  0.50 2330 01 -53 PULL W HANDLING JOINT & L/O SAME. PARK RUCKER RING.  1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00   | 1830              | 01 - 53  | R/U '    | TO PUI | L DIVER  | RTER, I              | RISER 8      | E BOP.                                           |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| 0.50   230   01 - 53   PILL W   HANDLING JOINT & L/O SAME. PARK RUCKER RING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.00   | 2030              | 01 - 53  | PULL     | & L/C  | DIVERT   | TER. P               | /U & M/      | /U RIS                                           | ER HA | ANDL: | ING JOI  | NT. COI                                      | LAPSE                                   | INNE      | R BAI     | RREL &          | PREPA  | ARE SLII  | P JNT    | FOR PU   | LLING.        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00   | 2230              | 01 - 53  | UNLA     | TCH BO | DP & PUI | LL CLEA              | AR OF C      | GUIDE                                            | POSTS | s. si | KID RIG  | 20M TC                                       | STARE                                   | BOARD     | ).        |                 |        |           |          |          |               |       |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.50   | 2330              | 01 - 53  | PULL     | W/ HA  | NDL ING  | JOINT                | & L/O        | SAME.                                            | PARI  | K RUG | KER RI   | NG.                                          |                                         |           |           |                 |        |           |          |          |               |       |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                   | _        |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Safety:  24 Hr Summary: TAG & P/TEST CMT PLUG #3. POOH & SET CMT PLUG #4. CLEAN UP & DISPLACE RISER TO SEAWATER. R/U TO PULL RISER.  Projected Operations: PULL & L/O RISER. TIH WITH MOST TOOL. CUT & RETRIEVE WELLHEAD. L/O DRILL PIPE. PULL ANCHORS.  Remarks:  Daily Mud Cost: KR2,057,5 Daily Tangible Cost: Daily Well Cost: KR5,018,845 Drilling Reported  Cum Mud Cost: KR5,493,640 Cum Tangible Cost: KR1,747,951 Cum Well Ost: KR127,683,019 Total Appr: KR134,000,000 Drill Water: 420.0 Potal Water: 470.0 Fuel: 369.0 Bulk Weight: 133.0 Neat Cement: 168.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                   | _        |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Safety:  24 Hr Summary: TAG & P/TEST CMT PLUG #3. POOH & SET CMT PLUG #4. CLEAN UP & DISPLACE RISER TO SEAWATER. R/U TO PULL RISER.  Projected Operations: PULL & L/O RISER. TIH WITH MOST TOOL. CUT & RETRIEVE WELLHEAD. L/O DRILL PIPE. PULL ANCHORS.  Remarks:  Daily Mud Cost: KR2,057,5 Daily Tangible Cost: Daily Well Cost: KR5,018,845 Drilling Reported  Cum Mud Cost: KR5,493,640 Cum Tangible Cost: KR1,747,951 Cum Well Ost: KR127,683,019 Total Appr: KR134,000,000 Drill Water: 420.0 Potal Water: 470.0 Fuel: 369.0 Bulk Weight: 133.0 Neat Cement: 168.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                   | _        |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Safety:  24 Hr Summary: TAG & P/TEST CMT PLUG #3. POOH & SET CMT PLUG #4. CLEAN UP & DISPLACE RISER TO SEAWATER. R/U TO PULL RISER.  Projected Operations: PULL & L/O RISER. TIH WITH MOST TOOL. CUT & RETRIEVE WELLHEAD. L/O DRILL PIPE. PULL ANCHORS.  Remarks:  Daily Mud Cost: KR2,057,5 Daily Tangible Cost: Daily Well Cost: KR5,018,845 Drilling Reported  Cum Mud Cost: KR5,493,640 Cum Tangible Cost: KR1,747,951 Cum Well Ost: KR127,683,019 Total Appr: KR134,000,000 Drill Water: 420.0 Potal Water: 470.0 Fuel: 369.0 Bulk Weight: 133.0 Neat Cement: 168.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                   | _        |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| 24 Hr Summary: TAG & P/TEST CMT PLUG #3. POOH & SET CMT PLUG #4. CLEAN UP & DISPLACE RISER TO SEAWATER. R/U TO PULL RISER.  Projected Operations: PULL & L/O RISER. TIH WITH MOST TOOL. CUT & RETRIEVE WELLHEAD. L/O DRILL PIPE. PULL ANCHORS.  Remarks:  Daily Mud Cost: KR2,057,5 Daily Tangible Cost: Daily Well Cost: KR5,018,845 Incidents: No INCIDENT REPORTED  Cum Mud Cost: KR5,493,640 Cum Tangible Cost: KR1,747,951 Cum Well Cost: KR1,7683,019 Total Appr: KR134,000,000 Drill Water: 420.0 Potable Water: 470.0 Fuel: 369.0 Bulk Weight: 133.0 Neat Cement: 168.0 Blended:  Country: NORWAY Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Rel 10.0 Norway Rig Phone: 52 88 03 35 Drilling Rep: ELKINS/HOLLINSHEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                   | _        |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Projected Operations: PULL & L/O RISER. TH WITH MOST TOOL. CUT & RETRIEVE WELLHEAD. L/O DRILL PIPE. PULL ANCHORS.  Remarks:  Daily Mud Cost: KR2,057,5   Daily Tangible Cost:   Daily Well Cost: KR5,018,845   Incidents:   NO INCIDENT REPORTED    Cum Mud Cost: KR5,493,640   Cum Tangible Cost:   KR1,747,951   Cum Well Cost: KR127,683,019   Total Appr: KR134,000,000    Drill Water: 420.0   Potale Water: 470.0   Fuel: 369.0   Bulk Weight: 133.0   Next Cement: 168.0   Blended: Country: NORWAY   Rig: BYFORD DOLPHIN   Rig Phone: 52 88 03 35   Drilling Rep: ELKINS/HOLLINSHEAD    Right ByFORD DOLPHIN   Rig Phone: 52 88 03 35   Drilling Rep: ELKINS/HOLLINSHEAD    Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Safety | r:                |          |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Projected Operations: PULL & L/O RISER. TH WITH MOST TOOL. CUT & RETRIEVE WELLHEAD. L/O DRILL PIPE. PULL ANCHORS.  Remarks:  Daily Mud Cost: KR2,057,5   Daily Tangible Cost:   Daily Well Cost: KR5,018,845   Incidents:   NO INCIDENT REPORTED    Cum Mud Cost: KR5,493,640   Cum Tangible Cost:   KR1,747,951   Cum Well Cost: KR127,683,019   Total Appr: KR134,000,000    Drill Water: 420.0   Potale Water: 470.0   Fuel: 369.0   Bulk Weight: 133.0   Next Cement: 168.0   Blended: Country: NORWAY   Rig: BYFORD DOLPHIN   Rig Phone: 52 88 03 35   Drilling Rep: ELKINS/HOLLINSHEAD    Right ByFORD DOLPHIN   Rig Phone: 52 88 03 35   Drilling Rep: ELKINS/HOLLINSHEAD    Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24 Hr  | Summ              | ary: TA  | G & P/   | /TEST  | CMT PLU  | IG #3.               | POOH &       | SET (                                            | CMT P | LUG   | #4. CLE  | EAN UP                                       | & DISP                                  | LACE      | RISE      | ER TO S         | SEAWAT | ER. R/U   | J TO P   | ULL RIS  | ER.           |       |
| Remarks:    Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Projec | ted (             |          |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Cum Mud Cost: KR5,493,640       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR127,683,019       Total Appr: KR134,000,000       Drill Water: 420.0         Drill Water: 420.0       Potal: 470.0       Fuel: 369.0       Bulk Weight: 133.0       Neat Cement: 168.0       Blended: ELKINS/HOLLINSHEAD         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig: Phone: 52.88.03.35       Drilling Rep: ELKINS/HOLLINSHEAD         Field: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Remark | s:                |          |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Cum Mud Cost: KR5,493,640       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR127,683,019       Total Appr: KR134,000,000       Drill Water: 420.0         Drill Water: 420.0       Potal: 470.0       Fuel: 369.0       Bulk Weight: 133.0       Neat Cement: 168.0       Blended: ELKINS/HOLLINSHEAD         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig: Phone: 52.88.03.35       Drilling Rep: ELKINS/HOLLINSHEAD         Field: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                   |          |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Cum Mud Cost: KR5,493,640       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR127,683,019       Total Appr: KR134,000,000       Drill Water: 420.0         Drill Water: 420.0       Potal: 470.0       Fuel: 369.0       Bulk Weight: 133.0       Neat Cement: 168.0       Blended: ELKINS/HOLLINSHEAD         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig: Phone: 52.88.03.35       Drilling Rep: ELKINS/HOLLINSHEAD         Field: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                   |          |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Cum Mud Cost: KR5,493,640       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR127,683,019       Total Appr: KR134,000,000       Drill Water: 420.0         Drill Water: 420.0       Potal: 470.0       Fuel: 369.0       Bulk Weight: 133.0       Neat Cement: 168.0       Blended: ELKINS/HOLLINSHEAD         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig: Phone: 52.88.03.35       Drilling Rep: ELKINS/HOLLINSHEAD         Field: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                   |          |          |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Cum Mud Cost: KR5,493,640       Cum Tangible Cost: KR1,747,951       Cum Well Cost: KR127,683,019       Total Appr: KR134,000,000       Drill Water: 420.0         Drill Water: 420.0       Potal: 470.0       Fuel: 369.0       Bulk Weight: 133.0       Neat Cement: 168.0       Blended: ELKINS/HOLLINSHEAD         Country: NORWAY       Rig: BYFORD DOLPHIN       Rig: Phone: 52.88.03.35       Drilling Rep: ELKINS/HOLLINSHEAD         Field: PL259       Well No: 6506/3-1       Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Daily  | Mud (             | Cost: KI | 32.05    | 7,5 Da | aily Ta  | ngible               | Cost:        |                                                  |       | Da    | aily We  | ll Cost                                      | : <sub>KR5</sub> 0                      | 18.8      | 45        | Incide          | ents:  | NO IN     | CIDEN    | repor    | RTED          |       |
| Drill Water: 420.0 Potable Water: 470.0 Fuel: 369.0 Bulk Weight: 133.0 Neat Cement: 168.0 Blended:  Country: NORWAY Rig: BYFORD DOLPHIN Rig Phone: 52.88.03.35 Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259 Well No: 6506/3-1 Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                   |          |          |        | _        | _                    |              |                                                  | 7 051 |       |          |                                              |                                         |           |           |                 |        |           |          |          |               |       |
| Country: NORWAY  Rig: BYFORD DOLPHIN  Rig Phone: 52 88 03 35  Drilling Rep: ELKINS/HOLLINSHEAD  Field: PL259  Well No: 6506/3-1  Well ID: UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                   |          |          |        |          |                      |              | 101.                                             |       |       |          |                                              |                                         |           |           |                 |        |           |          |          | ed:           |       |
| Field: PL259 Well No:6506/3-1 Well ID:UB5908 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                   |          | U -      |        |          |                      |              |                                                  |       |       |          |                                              |                                         |           |           | 35              | Dril   | ling Rep  | p:       |          |               | ביאר  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field: | DT C              | OKWAY    |          |        |          |                      |              |                                                  | WILH  | TIN   |          |                                              |                                         |           |           | 506/2           | 1      |           |          |          |               |       |
| 100 000000 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | PL2               | פכ       |          |        | 1        |                      |              |                                                  |       |       | AFE No:  | KM±M√                                        |                                         |           |           |                 |        | 16- atm   |          | 1        |               |       |

| Measur           | red D  | epth:           | 3667.0     | m              | TVD:                | 3662.4 m                                     |            | PBTD     | :            | 411.0 m    | Propo                | osed M  | D: 3       | 8625.0  | m Pro     | oposed    | TVD:         | 3625               | 5.0 m       |
|------------------|--------|-----------------|------------|----------------|---------------------|----------------------------------------------|------------|----------|--------------|------------|----------------------|---------|------------|---------|-----------|-----------|--------------|--------------------|-------------|
| DOL:             | 32     | D               |            | 1              | te: <sub>22</sub> - | -JUL-2001                                    |            |          |              | Footage    | - 1                  | D       | aily Ro    |         |           | Total     | Rot Hi       |                    |             |
| Torq:            | 0      | Drag            |            | 1              |                     | <sup>'U Wgt:</sup> 68.0                      |            | Lack C   | )ff Wgt      | : 68.0     | Wind:                | : 9     | Seas       | : 1.0   | / 2 0     | Bar:      | 755          | POB:               | 86          |
| Last C           |        | g Size:         | 1          |                | Set A               | + •                                          |            |          |              |            |                      |         |            | Test:   |           |           | Leako        | off?               |             |
| -                |        | s On Ca         | sina:      | 39.7 mm        | Rot Hr              | s On Casing                                  |            | 3m l     |              |            | 72.1m                |         | 1 Worst    |         |           |           | Remaini      |                    | Y           |
| Liner            |        |                 | 13         | Set A          |                     |                                              |            |          |              |            | T.ir                 |         | p At:      | WCGI    |           | 0 1       | CIIIAIIII    |                    |             |
|                  |        |                 | 0.0        | 1              |                     | 0.0 MD                                       |            | (        | 7.0 T        |            |                      |         |            |         | ) MD      |           |              |                    | TVD         |
|                  |        | NORŒ .          |            | Type: SE       |                     |                                              |            | 2 7 1 7  | Samp.        | le From    | : PIT W              |         |            |         |           |           |              |                    | <u>/ o </u> |
|                  | API:   |                 |            |                |                     | : 0.0 HTHP:                                  |            | solias   | 0.00         |            | il:<br>0.00          | *Wat    | er:<br>0.0 | ) % Sai | nd:<br>0. |           |              | Ph:                |             |
| Pm: 0            | .00    | Pf/Mf:          | 0.00 /0.   | 00 Carb:       | C                   | 1:                                           | Ca:        |          | Bent         | ; <b>:</b> | Solids               | %HG/1   | LG: 0.0    | o / o.d | )O   81   | DS/Bent   | t:           | /                  |             |
|                  |        |                 |            |                |                     |                                              |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
|                  |        |                 |            |                |                     |                                              |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
| Drlg G           | as:    | 0               | Max Gas:   | 0 Con          | n Gas:              | Trip                                         | Gas:       | 0        | Tr           | ip Cl:     | Re                   | marks   | :          |         |           |           |              |                    |             |
| Bit Nu           | ımber  | T T             | Size       | Manufact       | urer                | Serial num                                   | nber       |          | Jets         | (Quar      | ntity -              | Size)   |            | TFA     | М         | D In      | MD Out       | t TV               | D Out       |
|                  |        |                 |            |                |                     |                                              |            | _        | / -          | / /        | - /                  | - ,     | / -        | 0       |           |           |              |                    |             |
|                  |        |                 |            |                |                     |                                              |            | _        | / -          |            | - /                  | - ,     | / -        | 0       |           |           |              |                    |             |
| т                | уре    | Met             | ers Hou    | ırs V          | 70B                 | RPM                                          | 1          | Motor    | RPM          | I-Row      | 0-Row                | DC      | Loc        | В       | G         | Char      | ?Pull        | Cos                | st/m        |
|                  | 7 PC   |                 |            |                | /                   | /                                            |            |          |              |            | 0 110                |         |            |         |           |           |              |                    |             |
|                  |        |                 |            |                | /                   | ,                                            |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
| Total            | Tena   | th of R         | HA: 262.4  | _ BHA          | /<br>Descr          | iption: BU                                   | T NOC      | E C      | ACTNO (      | TI TUTUR I | A CICNZ              | חדדדה   | V MOTOT    | , MOC   | T TOO     | T ACCV    | 2 V          | 0 II DD            |             |
| i                |        |                 |            |                |                     |                                              |            |          |              |            |                      |         |            |         |           | L ASSI    | - 3 A        | o" DR              |             |
| COLL             | ARS -  | - X/OVEF        | ₹ - 6.1/2" | DRILL CO       | JLLAR -             | - 8.1/2" STI                                 | RING       | STAB -   | - 5 X (      | 5.1/2" 1   |                      |         |            |         |           |           | _            |                    |             |
|                  | _      |                 |            |                |                     | <del>-  </del>                               |            |          |              | I          | Hrs On               | 1       | ı          | Hours   | БШС       | e Last    | Inspec       | CIOII.             |             |
| Bit Nu           | m      | Line            | er         | Stro           | ke                  | ,                                            | SPM        | F        | ress.        | M3/Min     | Jet Vel              | L DP    | Av D       | C Av 1  | Bit ky    | √ BHH     | P/SQIN       | Pump               | kW          |
|                  |        | /               | /          | /              | . /                 | / /                                          |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
|                  |        | /               | /          | /              | /                   | <u>/                                    </u> | <u>/ /</u> |          |              |            |                      |         |            |         |           |           |              |                    |             |
| Survey           | MD     | Angle           | Azimuth    | Direc          | tion                | TVD                                          | 1          | N/S C    | ordina 🗆     | ates       | E/W C                | oordir  | nates      | Verti   | cal S     | ection    |              | DLS                |             |
|                  |        |                 |            |                |                     |                                              |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
|                  |        |                 |            |                |                     |                                              |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
|                  |        |                 |            |                |                     |                                              |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
|                  |        |                 |            |                |                     |                                              |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
| Hours            | From   | Act-Ca          | +          | -              | Onerat:             | ions Coveri                                  | ng 24      | Hour     | e Endi       | na at M    | idni <i>d</i> ht     |         |            |         | Tota      | al Hour   | rs Repo      | rt ed:             | 24 0        |
|                  |        |                 |            |                |                     | YING OUT 23                                  |            |          |              |            | iidiiigiic           |         |            |         | 1000      | ai noui   | . Б. Керо.   | rt <del>ai</del> . | 24.0        |
|                  |        | -               |            |                |                     |                                              |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
| 1.50             |        |                 |            |                |                     | ONE & LAND                                   |            |          |              |            |                      |         |            |         |           |           |              |                    | RISER.      |
| 3.00             | 1330   | 01 - 53         | L/O RISE   | R HANDLIN      | IG EQUI             | P F/ DRILL                                   | FLOOF      | R. SPL   | JIT LMR      | P & BOE    | PS IN CE             | ILLAR I | DECK. S    | ECURE I | EACH 1    | IN SET    | BACK A       | REA.               |             |
| 1.00             | 1630   | 01 - 19         | P/U & M/   | U WEATHER      | REFORD M            | OST TOOL (V                                  | VELLHE     | EAD RE   | TRIEVA       | L TOOL)    | . INSPE              | ECT KN  | IVES &     | TIGHTEN | 1 STOE    | COLLA     | ıR.          |                    |             |
| 2.00             | 1730   | 01 - 19         | TIH W/ M   | OST TOOL.      | INSTA               | LL LOCKING                                   | ASSEN      | /BLIES   | ETA & E      | ACH GUI    | DE ROPE              | ES TO   | GUIDE W    | IRES #1 | L & #3    | 3 IN MC   | ONPOOL       | •                  |             |
| 2.00             | 1930   | 01 - 19         | ENGAGE W   | ELLHEAD W      | / MOST              | TOOL & S/C                                   | ) 6 M      | г WT.    | MAKE C       | UT @ 37    | 71M BY E             | PUMPIN  | G SEAWA    | TER @ 3 | 3240 I    | LPM, 10   | 04 BAR.      |                    |             |
|                  |        | 01 - 19         | NOTE: R    | KB - MUD       | LINE =              | : 366M, 30"                                  | ' CUT      | @ 371    | .M (5M       | BELOW M    | MUD LINE             | Ξ).     |            |         |           |           |              |                    |             |
| 0.50             | 2130   | 01 - 19         | LATCH WE   | LLHEAD &       | LOCK M              | DST TOOL IN                                  | I PLAC     | Œ W/     | ROV. A       | TTEMPT     | TO PULI              | WELLI   | HEAD &     | PGB W/  | 140 N     | /T O/PU   | JLL - N      | o go.              |             |
| 1.00             | 2200   | 01 - 19         | S/O, UNL   | OCK MOST       | TOOL W              | / ROV. FUNC                                  | CTION      | TOOL     | W/ 324       | 0 LPM,     | 145 BAF              | R. MOTO | OR STAL    | LING. I | P/U &     | INSPEC    | T KNIV       | ES - (             | OK.         |
| 1.001            | 2300   | 01 - 19         | S/O & AT   | TEMPT TO       | FUNCTI              | ON TOOL AGA                                  | AIN W      | / 3240   | LPM,         | 145 BAF    | R. MOTOF             | R STAL  | LING. A    | TTEMPT  | TO P      | /U - TC   | OL STU       | CK.                |             |
|                  |        | 01 - 19         | TOOL FRE   | E W/ 45 M      | T O/PU              | LL. KNIFE E                                  | BLADES     | S BENI   | BUT W        | ORN TO     | TOP OF               | TRAVE   | L INDIC    | ATING E | TULL (    | CUT. UN   | IABLE T      | 0 S/0              | DUE TO      |
|                  |        |                 |            |                |                     | 2/O BLADES &                                 |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
|                  |        |                 |            |                |                     | T TOOL "HAV                                  |            |          |              |            |                      |         |            |         |           | יא ∩ דידי | AMCLIOD      | Q #1               | £ #12       |
|                  |        |                 |            |                |                     |                                              |            |          | , NOR        | TITELIN (  | -CINCUNA"            | oz 1101 | rannaran B | OI DIA  | v LUCE    | ZITOIN.   | AIVCHUK!     | υ #± (             | × #14       |
| <b> </b>         |        | 01 - 19         | 1          | •              |                     | ORTENED & F                                  |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
| Safety           | <br>r: | 01 – 19         | NOTE: H    | LGHLAND S      | IAR RE              | LEASED FROM                                  | 1 LOCA     | MOITA    | @ 10:5       | U HRS.     |                      |         |            |         |           |           |              |                    |             |
|                  |        | 2377 - *        |            |                |                     |                                              |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
|                  |        |                 |            |                |                     | IH W/ WEATH                                  |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
|                  |        | peratio         | ons: COMPI | ETE P &        | A OF W              | ELLHEAD, DE                                  | -BALL      | AST R    | IG TO        | SURVIVA    | L DRAFT              | . WORK  | ANCHO!     | RS WHIL | E L/O     | DRILL     | PIPE.        |                    |             |
| Remark<br>POB: C |        | <u> 2N -</u> 3, | SERVICE    | - <u>20</u> DO | LPHIN -             | - 54, DOLP                                   | HIN S      | ERVIC    | <u>E -</u> 9 |            |                      |         |            |         | DA        | YS SIN    | CE LAST      | r <u>L</u> TI      | - 83        |
| HEAVE:           | 0.3    | 3M, PIT         | CH 0.3DEG  | , ROLL 0.      | 4DEG;               | CUTTING SKI                                  | PS ON      | BOAR     | D: 3 E       | MPTY.      |                      |         |            |         |           |           |              |                    | _           |
| DAILY            | FE C   | OST: 18         | 3,734 NOK  | _              | TOTAL               | L FE COSTS:                                  | 34,        | 997,3    | 23 NOK       | _          |                      | _       | _          | _       |           | _         | _            |                    |             |
| 05:30            | HRS:   | POOH W          | / WELLHEAI | 0 & MOST       |                     |                                              |            |          |              |            |                      |         |            |         |           |           |              |                    |             |
| -                |        |                 |            | Daily Ta       |                     | Cost:                                        |            | Dai      | ly Wel       | l Cost:    | KR3,754              | . 521   | Incid      | ents:   | NO T      | NCTDEN    | T REPOR      | S.T.E.D            |             |
| <b>-</b>         |        |                 |            | _              | _                   | ost: KR1,74                                  | 47 05-     |          |              |            | KR3, 754<br>KR131, 4 |         | _          |         |           |           |              | ⁄ىنىد.             |             |
|                  |        | r: 420.         |            |                |                     |                                              |            |          | · -          |            | KR131,4<br>Weight    |         |            | at Ceme |           |           | 000<br>Blend | ed:                |             |
|                  |        |                 | 0 Folds    | ole Water      |                     |                                              | 356.0      |          |              |            |                      |         |            |         | -         | 168.0     |              |                    |             |
| Countr           | , N    | ORWAY           |            |                |                     | Rig: BYFORD :                                | DOLPH      | IN       |              | via h      | none: <sub>52</sub>  |         |            |         | UC        |           | INS/HOL      |                    |             |
| Field:           | PL2    | 59              |            | <del></del>    |                     | se: PL259                                    |            | <u> </u> |              |            |                      |         | 6506/3-    |         |           |           | ell ID:      |                    |             |
|                  |        |                 |            | I              | PI No:              | 6506/3-1                                     |            | AI       | FE No:       | KWENO-     | 650631-              | 001     |            | Date:   | 17-AU     | G-2001    | Page         | : 1                | Of 1        |

| Measured 1             | Depth:   | 3667       | 7.0 m     | TVD:              | 366                | 2.4 m     | PB'     | TD:      | 411.0 m  | Prop       | osed M   | ): <u>3</u> | 625.0     | m Pro      | posed   | TVD:           | 3625.0 m     |
|------------------------|----------|------------|-----------|-------------------|--------------------|-----------|---------|----------|----------|------------|----------|-------------|-----------|------------|---------|----------------|--------------|
| DOL: 33                | 3        | DFS: 28    | Spud      | Date: 22          |                    |           |         | Daily    | Footag   | e:         | D        | aily Ro     | t Hrs:    |            | Total   | . Rot Hr       | s: 117.5     |
| Torq: 0                | Dra      | ag: 0.0    | Rot Wgt   | : 68.0 P          | /U Wgt             | : 68.0    | Slack   | Off Wg   | t: 68.0  | Wind       | :        | Seas        | 0.0       | / 0.0      | Bar:    | 0              | POB:         |
| Last Casir             |          |            | 339.7 m   | Set i             |                    |           | 4.3m    |          |          | 72.1m      | TVD      | 1           | l'est:    |            | -       | Leako          | Ef? Y        |
| Cum Rot Hi             | rs On C  | asing:     | (         | iii<br>Cum Rot Hi | rs On (            |           |         |          |          | / Z . IIII |          | Worst       |           | 1041       |         | Remainin       |              |
| Liner Size             | e:       |            | 138.1     | t At:             |                    |           |         |          |          | Li         | ner To   |             |           |            |         |                | _            |
|                        |          | 0.0        |           |                   |                    | MD        |         | 0.0      |          |            |          |             |           | 0 MD       |         | a 1.           | 0.0 TVD      |
| Mud Co: <sub>M-1</sub> |          |            |           | : SEAWATER        |                    |           | Coli    |          |          |            |          |             |           |            |         | O Gel:         | 0 / 0<br>Ph: |
|                        |          |            |           | (mm) API          |                    |           |         |          |          | 0.00       | ) wat    | 0.00        | )   * Sai | na:<br>0.0 |         |                | PII•         |
| Pm: 0.00               | Pi/Mi    | 0.00 /     | 0.00 Car  | nb:               | cl:                | Ca        | :       | Ben      | t:       | Solid      | s %HG/1  | LG: 0.00    | 0.0       | 00   %I    | OS/Ben  | t:             | /            |
|                        |          |            |           |                   |                    |           |         |          |          |            |          |             |           |            |         |                |              |
|                        |          |            |           |                   |                    |           |         |          |          |            |          |             |           |            |         |                |              |
| Drlg Gas:              | 0        | Max Gas    | s:<br>0   | Conn Gas:         |                    | Trip Gas  | g:<br>0 | Tì       | rip Cl:  | R          | emarks   | :           |           |            |         |                |              |
| Bit Number             | r IADC   | Size       | Manuf     | acturer           | Seria              | al number | r       | Jet      | s (Qua:  | ntity -    | Size)    |             | TFA       | MI         | ) In    | MD Out         | TVD Out      |
|                        |          |            |           |                   |                    |           | _       | . /      | - /      | - /        | - ,      | / _         | 0         |            |         |                |              |
|                        |          |            |           |                   |                    |           | _       | . /      | - /      | - /        | - ,      | / _         | 0         |            |         |                |              |
| Туре                   | Me       | ters I     | Hours     | WOB               | F                  | PM        | Mot.o   | or RPM   | T-Row    | 0-Row      | DC       | Loc         | В         | G          | Char    | ?Pull          | Cost/m       |
| 1712                   | 110      | 1          | iourb     |                   | 1                  |           |         |          | 1 100    | O Itow     | 1        | 100         |           | )          | CHAI    |                | COD C / III  |
|                        |          |            |           |                   |                    | /         |         |          |          |            |          |             |           |            |         |                |              |
| m . 1 .                | .1. 6    | D.113 -    |           | PUA Doggr         | intion             | ·         |         |          |          |            | <u> </u> |             |           |            |         |                |              |
| Total Leng             |          |            |           |                   |                    |           |         |          |          |            |          |             |           |            | ASSY    | - 3 X 8        | 3" DRILL     |
| COLLARS                | - X/OVI  | ER - 6.1,  | /2" DRIL  | L COLLAR          | - 8.1/             | 2" STRIN  | G STAI  | 3 - 5 X  | 6.1/2"   |            |          |             |           |            |         |                | _            |
|                        |          |            | 1         |                   |                    | 1         |         |          |          | Hrs O      | n Jars:  | :<br>       | Hours     | Since      | Last    | Inspect        | ion:         |
| Bit Num                | Lir      | ner        | 5         | Stroke            |                    | SPI       | М       | Press.   | M3/Min   | Jet Ve     | l de     | Av D        | C Av      | Bit 🙀      | BHH     | P/SQIN         | Pump kW      |
|                        | /        | /          |           | /                 | /                  | /         | /       |          |          |            |          |             |           |            |         |                |              |
|                        | /        | /          |           | / .               | /                  | /         | /       |          |          |            |          |             |           |            |         |                |              |
| Survey MD              | Angle    | Azimu      | th Di     | rection           | 7                  | ľVD       | N/S     | Coordin  | ates     | E/W (      | Coordin  | ates        | Verti     | .cal Se    | ection  |                | DLS          |
|                        |          |            |           |                   |                    |           |         |          |          |            |          |             |           |            |         |                |              |
|                        |          |            |           |                   |                    |           |         |          |          |            |          |             |           |            |         |                |              |
|                        |          |            |           |                   |                    |           |         |          |          |            |          |             |           |            |         |                |              |
|                        |          |            |           |                   |                    | +         |         |          |          |            |          |             |           |            |         | +              |              |
|                        |          |            |           |                   |                    |           |         |          |          |            |          |             |           |            |         |                |              |
| Hours Fra              | n Act-C  | at         |           | Operat            | ions C             | bvering   | 24 Ho   | urs End  | ing at M | Midnight   |          |             |           | Tota       | l Hour  | rs Repor       | ted: 24.0    |
| 1.50 <sub>T</sub> 0000 | 0 01 - 1 | .9 POOH W  | V/ MOST 7 | TOOL ASSY         | F/ 342             | 2M TO SUI | RFACE.  |          |          |            |          |             |           |            |         |                |              |
| 0.50T 013              | 0 01 - 1 | .9 C/O KN  | NIFE BLAI | DES & CLEA        | AN SWAF            | RF PORTS  | ON MC   | ST TOOL  | . RE-AT  | TACH GU    | IDE LII  | NES TO      | GUIDE 1   | WIRE #     | 1 & #3  | IN MOO         | NPOOL.       |
| 1.50T 020              | 0 01 - 1 | .9 TIH W/  | MOST TO   | OL ASSY 8         | & RE-LA            | ATCH WELI | LHEAD.  |          |          |            |          |             |           |            |         |                |              |
| 0.50T 033              | 0 01 - 1 | 9 ATTEME   | TO PUI    | T METTHEY         | AD FREE            | E W/ 158  | MT O/   | PULL -   | NO GO.   |            |          |             |           |            |         |                |              |
| 1.50T 040              | 0 01 - 1 | 9 S/O &    | SET DOWN  | 17 MT. II         | NITIATE            | E SECOND  | CUT 0   | .5M HIG  | HER THA  | N FIRST    | BY PUI   | MPING S     | EAWATE    | R @ 32     | 40 LPM  | I, 145 B       | AR.          |
|                        | 01 - 1   | .9 DEPTH   | OF SEABI  | ID - 366M         | (BRT).             | . DEPTH ( | OF SEC  | OND CUT  | - 370.   | 5M (BRT    | ).       |             |           |            |         |                |              |
| 0.50 0530              | 01 – 1   | 9 г.дтсн   | WET.THEAT | ) & DITT.T. I     | w arde             | / 158 MT  | ∩ /DIπ  | .T. COMM | FNCE DE  | _BATI.AS   | חדוום פי | ra mos      | ΠΡ1/Τ1/Δ1 | r. DRAF    | T       |                |              |
|                        |          |            |           | OOL ASSY          |                    |           |         |          |          |            |          |             |           |            |         | & DC ST        | DEMAYS       |
|                        |          |            |           |                   |                    |           |         |          |          | 1110 W I   | <u> </u> | 712111 1    | , 0 5 2   | 31 , 3     | IIIIDI  | <u>u be bi</u> | DEWITE.      |
|                        |          |            |           | HEAD ASS          |                    |           |         |          |          |            |          |             |           |            |         |                |              |
|                        |          |            |           | OOL F/ WI         |                    |           |         |          |          |            | **       |             | 0         | 26::       |         | D = ' =        | n            |
|                        | -        | -          |           |                   |                    |           |         |          |          |            |          | T 19MET     | O PULL    | 30" ₩      | r:LLHE2 | ש F'/ PG       | B - NO GO.   |
| 2.00T 120              | 0 01 - 1 | 9 CUT "I   | OCK RING  | B" W/ WELI        | DING TO            | ORCH. PUI | LL & L  | /O WELL  | HEAD HO  | USING A    | SSY.     |             |           |            |         |                |              |
| 10.00 140              | 0 01 - 4 | 0 COMMEN   | CE L/O F  | REMAING DE        | RILL PI            | IPE, DRII | LL COL  | LARS &   | JARS F/  | DERRIC     | K WHILI  | E CONTI     | NUE TO    | WORK       | ANCHOR  | S.             |              |
|                        | _        |            |           |                   |                    |           |         |          |          |            |          |             |           |            |         |                |              |
|                        | _        |            |           |                   |                    |           |         |          |          |            |          |             |           |            |         |                |              |
| Safety:                | _        |            |           |                   |                    |           | -       |          |          |            |          |             | -         |            |         |                |              |
| 24 Hr Summ             | mary: C  | UT & PUL   | L WELLHE  | AD, L/O S         | SAME. C            | OMMENCE   | LAYIN   | G OUT D  | RILL PI  | PE FROM    | DERRIC   | K WHILE     | WORKI     | NG AN      | CHORS.  |                |              |
| Projected              |          |            |           |                   |                    |           |         |          |          |            |          |             |           |            |         |                |              |
| Remarks:               |          |            |           |                   |                    |           |         |          |          |            |          |             |           |            | ~       | ·              |              |
| POB: CHEVE             |          |            |           |                   |                    |           |         |          |          |            |          |             |           | DA         | AYS SI  | NCE LAS        | r LTI – 84   |
| HEAVE: 0.              |          |            |           |                   |                    |           |         |          |          |            |          |             |           |            |         |                |              |
| DAILY FE C             | COST: 1  | 83,734 N   | OK        | TOTA              | L FE C             | OSTS: 3   | 181, 28 | ,057 NOI | ζ        |            |          |             |           |            |         |                |              |
| 06:00 HRS:             | LAST.    | ANCHOR B   | OLSTERD   | & RIG HAN         | DED OV             | ER TO SI  | _       |          |          |            |          | 01.         |           |            |         |                |              |
| Daily Mud              | Cost:    | KR 37, 472 | Daily     | Tangible          | Cost:              |           |         | aily We  |          |            |          | +           |           |            |         | T REPOR        | ŒD           |
| Cum Mud Co             | ost: KR  | 5,568,58   | 4 Cum T   | angible C         | ost: F             | R1,747,   | 951 C   | um Well  | Cost:    | KR135,     | 123,393  | Total       | Appr:     | KR134      | ,000,0  | 000            |              |
| Drill Wate             | er: 420  | .0 Pot     | table Wa  | ter: 0.0          | Fu                 | uel: 0.0  |         | -        |          | Weight     |          |             | at Cem    |            |         | Blende         |              |
| Country:               |          |            |           |                   | Rig: <sub>BY</sub> | FORD DOL  |         |          |          | hone: 52   |          |             | Drill     |            | n:      | INS/HOLI       | LINSHEAD     |
| Field: PL2             | 50       |            |           |                   | se: <sub>PL2</sub> |           |         |          |          |            |          | 6506/3-     | 1         |            |         |                | B5908 -0     |
| PLIZ                   | زد       |            |           | API No            |                    |           | ĺ       | AFE No:  | KWENO-   |            |          | -           | Date:     | 18-21r     |         |                | 1 of 1       |

| Measured 1             | Depth:     | 36           | 67.0 r | n       | TVD:     | 366                                          | 2.4 m   |       | PBTI  | ):                        | 411.0 m         | Prop               | osed M             | ): <u>3</u> | 3625.0 | m Pro       | posed          | TVD:        | 3625.0     | ) m  |
|------------------------|------------|--------------|--------|---------|----------|----------------------------------------------|---------|-------|-------|---------------------------|-----------------|--------------------|--------------------|-------------|--------|-------------|----------------|-------------|------------|------|
| DOL: 34                | <u>l</u>   | DFS: 2       | 9      | Spud I  | Date: 22 | -JUL-2                                       | 2001    |       |       | Daily                     | Footage         | e:                 | D                  | aily R      |        |             | Total          | . Rot Hr    | s: 117     | .5   |
| Torq:                  | Dra        | ıg:          | Rot    | . Wgt:  | P        | /U Wgt                                       | :       | Sl    | ack ( | Off Wgt                   | :               | Wind               | l:                 | Seas        | : 0.0  | / 0.0       | Bar:           | 0           | POB:       |      |
| Last Casir             | ng Size    | :            | 22     | 9.7 mm  | Set i    | At:                                          | 1       | .374. | 2m    | MD                        | 12              | 72.1m              | TVD                | Shoe '      |        | 1841        | •              | Leako       | ff? .      | Y    |
| Cum Rot Hi             | rs On C    | asing:       |        | 0.      | m Rot H  | rs On                                        |         |       |       |                           |                 | / <b>Z . I</b> III |                    | Worst       | Wear:  |             |                | emainir     |            | 1    |
| Liner Size             |            |              | 138    | 3.⊥     | At:      |                                              |         |       |       |                           |                 | Li                 | iner To            |             |        |             |                |             |            | T T  |
|                        |            | 0.0          |        |         |          |                                              | MD      |       |       | 0.0 T                     |                 |                    |                    |             |        | .0 MD       | ZD: -          | O Gel:      | 0.0 T      |      |
| Mud Co: <sub>M-1</sub> | I NORGE    | A.S.         |        |         | SEAWATER |                                              |         |       | 'olid | o ·                       | 16 FIGH         |                    |                    |             | -      | -           |                |             | 0 /<br>Ph: | 0    |
| API:                   | 0.0        | HTHP:        | 0.0    | G1-     | m) API   |                                              | HIHP: 0 |       | отта  | s:<br>0.00                |                 | 0.0                | 0 8770 /           | 0.0         | 0 6 50 | and:<br>0.0 | 0 S/Ben        |             | , ,        |      |
| Pm: 0.00               | PI/MI      | 0.00         | / 0.0  | 00 Carr | )•       | cl:                                          |         | Ca:   |       | Bent                      | ,•<br>          | SOLIO              | S 6HG/1            | LG: 0.0     | 0 / 0. | راة 00 .    | S/Ben          | L•          |            |      |
|                        |            |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        |            |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
| Drlg Gas:              | 0          | Max G        | as:    | 0 Co    | onn Gas: |                                              | Trip (  | as:   | 0     | Tr                        | ip Cl:          | R                  | emarks             | :           |        |             |                |             |            |      |
| Bit Number             | r IADC     | Siz          | ze M   | /Janufa | cturer   | Seria                                        | al numl | oer   |       | Jets                      | (Quar           | ntity -            | Size)              |             | TFA    | A MD        | In             | MD Out      | TVD        | Out  |
|                        |            |              |        |         |          |                                              |         |       | -     | / -                       | /               | - /                | - /                | / _         | 0      |             |                |             |            |      |
|                        |            |              |        |         |          |                                              |         |       | _     | / -                       | /               | - /                | - ,                | / -         | 0      |             |                |             |            |      |
| Туре                   | Me         | eters        | Hour   | îs      | WOB      | I                                            | RPM     | N     | Motor | RPM                       | I-Row           | 0-Row              | DC                 | Loc         | В      | G           | Char           | ?Pull       | Cost       | /m   |
|                        |            |              |        |         | /        |                                              | /       |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        |            |              |        |         | /        |                                              | /       |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
| Total Leng             | gth of     | BHA:         |        | Bl      | HA Descr | iptior                                       | 1:      | •     |       |                           |                 | •                  | •                  | •           |        | •           |                | *           |            |      |
|                        |            |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        |            |              |        |         |          |                                              |         |       |       |                           |                 | Hrs O              | n Jars             | :           | Hours  | s Since     | Last           | Inspect     | ion:       |      |
| Bit Num                | Lir        | ner          |        | Q+      | roke     |                                              |         | SPM   | 1     | Dress                     | M3/Min          | Jet Vo             | el DP              | λτ. Γ       | _      |             |                | P/SQIN      |            | -TaT |
| DIC IVALLE             | /          | /            |        | عد      | /        | /                                            | /       | /     | -   ' |                           | 141111 / ك<br>ا | JUL VE             | ·+   NF            | nν D        | C AV   | חדר KM      | onn            | r \ D\TIN   | ranto K    | VVV  |
|                        |            | /            |        |         | /        | <u>/                                    </u> | + /     | /_    |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        |            | <del>/</del> |        |         | / .      | /                                            | /       | Τ.    | - /   |                           |                 |                    |                    |             |        |             |                |             |            |      |
| Survey MD              | Angle      | Aziı         | muth   | Dire    | ection   | '                                            | IVD     | N     | 1/S C | cordination of the second | ates            | E/W (              | Coordin            | ates        | Vert   | ical Se     | ction          |             | DLS        |      |
|                        |            |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        |            |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        |            |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        |            |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
| Hours Fra              | n Act-Ca   | at           |        |         | 0perat   | ions (                                       | bverin  | ıg 24 | Hour  | rs Endi                   | ng at M         | idnight            | t                  |             |        | Tota        | l Hour         | s Repor     | ted: 1     | 1.5  |
| 1.50T 000              | 01 - 1     | .9 COMP      | LETE   | L/O RE  | MAING DI | RILL P                                       | IPE, D  | RILL  | COLL  | ARS & J                   | TARS F/         | DERRIC             | K & COI            | NCLUDE      | ANCHOR | R HANDL     | ING WO         | ORK.        |            |      |
| Т                      | 01 - 1     | .9 LAST      | ' ANCH | OR BOL  | STERED 8 | & BYFO                                       | RD DOLI | PHIN  | HANDI | ED OVER                   | TO STA          | MOTA               | 01:12              | AM 19TH     | AUGUS  | ST 2001     |                |             |            |      |
|                        | -          |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        | -          |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        | _          |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        | _          |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        | <b>†</b> _ |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        | <u> </u>   |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        |            |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        | -          |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        | -          |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        | -          |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        | -          |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        | -          |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
|                        | -          |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
| 9.5                    | -          |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
| Safety:                |            |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
| 24 Hr Summ             |            |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
| Projected              | Operat:    | ions:        |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
| Remarks:<br>POB: CHEVE | RON - ?    | , SER        | VICE - | - ??,   | DOLPHIN  | r - ??.                                      | DOLF    | HIN S | SERVI | ICE - ?                   |                 |                    |                    |             |        | DA          | YS SI          | NCE LAS     | r lti -    | - 84 |
| HEAVE: 0.              |            |              |        |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                |             |            |      |
| DAILY FE               |            |              |        |         |          |                                              |         |       |       | )57 NOK                   |                 |                    |                    |             |        |             |                |             |            |      |
| 06:00 HRS:             |            |              |        | ONCONT  |          |                                              |         |       |       |                           |                 | UST 20             | 01.                |             |        |             |                |             |            |      |
| Daily Mud              |            |              | -      |         | Fangible |                                              |         |       | _     |                           | l Cost:         |                    |                    | Tnaia       | anta:  | NTO TA      | י אייז ע דע דע | ייי∨ריים יו | رايال      |      |
|                        |            |              | / 4    |         |          |                                              |         |       |       |                           |                 |                    |                    |             |        |             |                | T REPOR     | יפה        |      |
| Cum Mud Co             |            |              |        |         | ngible C |                                              | ٦.      |       | ·     | . ,,,,,,,                 |                 |                    |                    | ) TOLAL     | at Ca  | KR134       | ,000,0         | D1 ~~ -7    |            |      |
| Drill Wate             |            | .0           | rotabl | Le Wate | er: 0.0  |                                              |         | 0.0   |       |                           |                 |                    | t: <sub>133.</sub> |             | Drill  | ment: 1     | 68.0           | Blende      |            |      |
| Country:               | NORWAY     |              |        |         |          |                                              | FORD D  | OLPH  | IN    |                           | кта ы           |                    | 2 88 03            |             | הדדד   | гтід ке]    |                | INS/HOL     |            | D.   |
| Field: PL2             | 259        |              |        |         |          | se: <sub>PL2</sub>                           |         |       |       |                           |                 |                    |                    | 6506/3-     |        |             |                | ell ID:     |            | -0   |
|                        |            |              |        |         | API No   | 6506/                                        | ′3–1    |       | A     | FE No:                    | KWENO-          | 650631             | -001               |             | Date:  | 19-AUG      | -2001          | Page        | : 1 Of     | 1    |

# **Wellsite Geological Reports**





Wellsite Geologist: Mike Donovan\Ed Linaker Rig: Byford Dolphin Well: 6506/3-1 Date: 31.07.01 Days since spud: 10 Depth (mTVD): 1383.6 Depth (mMD): 1386 Current Operation: Washing to bottom. ROP(m/hr): 30 Progress (m): 4 MWD offset: CDR GR: 11.52m, RES: 8.17m, SONIC: 19.27m, MWD GR: 25.81m, D&I: 26.42m. **Last Survey:** 1362.4 mMD 1360.0 mTVD Inc: 4.11° Azim. 157.77° Csg Size (ins): 13 3/8" | Csg Depth(m): 1374.3 MW (sg): 1.43 PP (sg): 1.03 LOT (sg): 1.84 Operations last 24 hours (midnight to midnight): Pressure tested casing. Installed diverter and function tested. Started picking up 8 1/2" BHA Continue to pickup BHA. Function test LWD. Start to pick up 22 joints of drillpipe, when drillpipe below BOP's function test pods and pressure test annular preventer. Continue to RIH. Tag cement and displace to OB mud. Drillout shoe track and clean rathole. Drill 4m new formation and perform LOT (1.84 sg EMW). Rigged down. 6 o'clock update: Washed to bottom. Continued to drill ahead from 1386m MD to 1529m MD, through the Naust formation (Claystone with minor Sandstone intervals). Operations next 24 hours: Continued to drill ahead looking for first core point and either POOH to pick up core barrel or continue to drill on to the Lysing formation GEOLOGICAL DESCRIPTION Interval (m) Description 1382-1386m CLAYSTONE: greyish green, occasionally dark yellowish green, occasionally medium to dark grey, firm, subblocky, non calcareous, good trace carbonaceous material, micromicaceous in playes, occasionally silty. **SHOWS DATA** Interval (m) Description No Shows GAS DATA Gas Type iC4 ppm nC4ppm iC5 ppm Int. (m) Total(%) C1 ppm C2 ppm C3 ppm nC5 pm Drill Gas 0.22 1382-1386 2000 tr tr tr Gas Peaks Conn. Gas Trip Gas Wiper Trip Gas PORE PRESSURE Interval: 1382-1386 Max. (sg): 1.03 Min. (sg): 1.03 Comments: FORMATION PICKS LAST 24 HOURS Formation Difference Basis of Pick Depth Depth Prognosed mTVDBRT mTVDBRT mMDBRT m +/-



Wellsite Geologist: Mike Donovan\Ed Linaker Rig: Byford Dolphin Well: 6506/3-1 Date: 01.08.01 Days since spud: 11 Depth (mMD): 1698 Depth (mTVD): 1695.6 Current Operation: Weight up mud in pits to 1.52sg ROP(m/hr): 36.7 Progress (m): 312 MWD offset: CDR GR: 11.52m, RES: 8.17m, SONIC: 19.27m, MWD GR: 25.81m, D&I: 26.42m. **Last Survey:** 1641.84 mMD 1638.89 mTVD Inc: 4.55° Azim. 147.28° MW (sg): 1.50 Csg Size (ins): 13 3/8" | Csg Depth(m): 1374.3 | LOT (sg): 1.84 PP (sg): >1.50 Operations last 24 hours (midnight to midnight): Washed to bottom. Continued to drill ahead from 1386m MD to 1698m MD. At +/- 1660m MD began weighting mud up to 1.55sg while drilling. After beginning to circulate 1.5sg mud round hole. Observed a gain in the active while making a connection at 1698m MD. Shut well in. Suspected "U" tubing with uneven mud, but after bleeding off 3.5bbls, the casing pressure returned to 200psi. Circulated 1.5sg mud using driller's method. Shut well in. Opened well and monitored on trip tank 2 bbls bleed back over 45mins, meanwhile circulating riser volume with 1.5sg mud. Problem with choke line (plugged), reverse circulated choke line to clear. Open choke to trip tank - static, Open lower annular, no flow. Start circulating bottoms up - pit gain 45bbls, shut well in. Weight up pits to 1.52sg. 6 o'clock update: Continued to wieght up pits to 1.52sg. Circulated 1.52sg mud into hole using driller's method. **Operations next 24 hours:** Continue to circulate out gas/water influx. Monitor well. Continue to weight up to 1.55sg, make short trip to shoe. Drill ahead from 1698m MD to next target, the Lysing Formation. GEOLOGICAL DESCRIPTION Interval (m) Description 1386-1552m Naust Formation - Predominantly Claystone with occasional Sandy intervals CLAYSTONE: medium to medium dark grey to greyish green, occasionally dark yellowish green, soft to moderately firm, subblocky to amorphous, sticky in places, trace carbonaceous material, occasionally micromicaceous, rare trace pyrite, non to occasionally moderately calcareous. SANDSTONE: colourless, pale yellow brown, rare pale pink, transluscent to clear, fine to silt grained, predominantly very fine grained, subangular to subrounded, moderately sorted, trace carbonaceous material. **Kal Formation - Predominantly Claystone with occasional Sandstone stringers** CLAYSTONE: greenish black to olive black, firm, subblocky, brittle, silty in places, non calcareous. 1552-1604m SANDSTONE: colourless, off white, pale yellow brown, opaque to transluscent, very fine grained to silty, grading to SILTSTONE in places, subangular to sunrounded, moderately sorted. Brygge Formation - Massive Claystone giving way to interbedded Sandstone and Claystone below CLAYSTONE: medium grey to greyish green, commonly pale blue green, occasionally moderate green, soft 1604-1654m to firm, subblocky to amorphous, non to slightly calcareous, silty in places, occasionally tuffaceous, trace carbonaceous specks. SANDSTONE: colourless to pale yellow brown, very fine to silt grained, grading to SILTSTONE in places, subangular to subrounded, moderately sorted. Top Flooding Surface (Brygge Sandstone) - Massive Sandstone with occasional Claystone beds and Limestone stringers. CLAYSTONE: a/a 1654-1698m SANDSTONE: colourless, pale yellow brown, rare pale pink, clear to transluscent, commonly opaque, predominantly very fine grained, occasionally fine to medium grained, subangular to subrounded, moderately sorted, loose, trace glauconite, abundant ?carbonaceous material.. LIMESTONE: pale yellow brown to pale orange brown, occasionally pale pink, soft to moderately hard, subblocky to crumbly, cryptocrystalline to microcrystalline. **SHOWS DATA** Description Interval (m) No Shows. **GAS DATA** Gas Type Total(%) Int. (m) C1 ppm C2 ppm C3 ppm iC4 ppm nC4ppm iC5 ppm nC5 pm Drill Gas 1386-1552 0.26 3176 2 5 2 Drill Gas 1552-1604 0.42 4642 4 9 2 1 1 1 Drill Gas 1604-1654 0.61 6170 3 10 Drill Gas 1654-1698 0.67 6784 3 11 1 Gas Peak 1629 7166 0.7 2 10 1 1 ? Conn. Gas Peak 1671 3.06 30791 1 3 11 1 1 Circ thru Choke 1689 4.73 46623 10 2 3

**PORE PRESSURE** 

1



Wellsite Geologist: Mike Donovan\Ed Linaker

Interval: 1386-1698 Min. (sg): 1.03 Max. (sg): >1.50

Comments: Probable connection gas at 1671m MD.

|             |        | FORMATIO | ON PICKS LAS | T 24 HOURS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|--------|----------|--------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formation   | Depth  | Depth    | Prognosed    | Difference | Basis of Pick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | mMDBRT | mTVDSS   | mTVDSS       | m +/-      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kai         | 1552   | 1524.3   | 1515         | +9.3       | LWD Resistivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Brygge      | 1604   | 1576.2   | 1552         | +24.2      | LWD Sonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tp Flooding | 1654   | 1626     | 1606         | +20        | LWD Resistivity/Sonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Surface     |        |          |              |            | , and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |



Wellsite Geologist: Mike Donovan\Ed Linaker Rig: Byford Dolphin Well: 6506/3-1 Date: 02.08.01 Days since spud: 12 Depth (mMD): 1698 Depth (mTVD): 1695.6 Current Operation: Opening up well ROP(m/hr): -Progress (m): -MWD offset: CDR GR: 11.52m, RES: 8.17m, SONIC: 19.27m, MWD GR: 25.81m, D&I: 26.42m. **Last Survey:** 1641.84 mMD 1638.89 mTVD Inc: 4.55° Azim. 147.28° PP (sg): >1.52 Csg Size (ins): 13 3/8" | Csg Depth(m): 1374.3 | LOT (sg): 1.84 MW (sg): 1.57 Operations last 24 hours (midnight to midnight): Continued to wieght up pits to 1.52sg. Circulated 1.52sg mud into hole using driller's method. Open up well still flowing. Kill well and displace to 1.57sg mud. Open up well 6 o'clock update:. Well static. Circulated and conditioned mud Operations next 24 hours: Continue to circulate and condition mud. Wiper trip to shoe. Drill ahead to next target in the Lysing formation. GEOLOGICAL DESCRIPTION Interval (m) Description **SHOWS DATA** Interval (m) Description No Shows. **GAS DATA** Gas Type Int. (m) Total(%) C1 ppm C2 ppm C3 ppm iC4 ppm nC4ppm iC5 ppm nC5 pm **PORE PRESSURE** Interval: 1698 Min. (sg): >1.52 Max. (sg): >1.52 Comments: **FORMATION PICKS LAST 24 HOURS** Formation Depth Depth Prognosed Difference Basis of Pick mMDBRT mTVDSS mTVDSS m +/-1524.3 +9.3 LWD Resistivity Kai 1552 1515 Brygge 1604 1576.2 1552 +24.2LWD Sonic Top Flooding 1626 1606 LWD Resistivity/Sonic 1654 +20Surface



Tp Flooding

Surface

#### WELLSITE GEOLOGICAL REPORT

Wellsite Geologist: Mike Donovan\Ed Linaker Rig: Byford Dolphin Well: 6506/3-1 Date: 03.08.01 Days since spud: 13 Depth (mMD): 1736 Depth (mTVD): 1732.9 **Current Operation: RIH** ROP(m/hr): 30 MWD offset: CDR GR: 11.52m, RES: 8.17m, SONIC: 19.27m, Progress (m): 38 MWD GR: 25.81m, D&I: 26.42m. **Last Survey:** 1699.28 mMD 1696.15 mTVD Inc: 4.46° Azim. 140.09° MW (sg): 1.57 Csg Size (ins): 13 3/8" | Csg Depth(m): 1374.3 | LOT (sg): 1.84 PP (sg): 1.54 Operations last 24 hours (midnight to midnight): Well static. Circulated and conditioned mud. POOH to shoe. Perform rig maintenance. RIH and tag bottom Circulate bottoms up. Take SCR's and drill ahead from 1698m MD to 1736m MD. POOH to do repeat section with LWD due to suspected problem with resistivity - tool OK RIH 6 o'clock update: Continued to RIH. Drilled ahead from 1736m MD to 1905m MD - Provisional Tare Formation 1741m MD, Provisional Top Springar Formation 1797m MD **Operations next 24 hours:** Drill ahead to next target in the Lysing formation. **GEOLOGICAL DESCRIPTION** Interval (m) Description (Brygge Formation) - Dominantly Sandstone with minor Claystone interbeds and rare Limestone 1698-1736 CLAYSTONE: medium to dark grey, occasionally dark greyish blue, occasionally pale greyish green, mottled, firm, subblocky, micromicaceous in places, occasionally tuffaceous, trace micropyrite, occasional carbonaceous material. SANDSTONE: colourless, pale vellow brown, rare pale pink, clear to transluscent, commonly opaque. predominantly very fine grained, occasionally fine to medium grained, predominatly subangular to angular, occasionally subrounded, moderately sorted, loose, trace pyrite, trace glauconite, abundant ?carbonaceous LIMESTONE: white to off white, firm to moderately hard, subblocky to splintery, microcrystalline. **SHOWS DATA** Interval (m) Description No Shows. GAS DATA Total(%) iC4 ppm Gas Type Int. (m) C1 ppm C2 ppm C3 ppm nC4ppm iC5 ppm nC5 pm Drill Gas 1698-1736 0.2 1993 14 1 PORE PRESSURE Interval: 1698-1736 Min. (sg): 1.54 Max. (sg): 1.54 Comments: Gas levels stable/slightly declining, no connection gas. **FORMATION PICKS LAST 24 HOURS** Formation Basis of Pick Depth Depth Prognosed Difference mMDBRT mTVDSS mTVDSS m +/-1524.3 +9.31515 LWD Resistivity Kai 1552 1604 1576.2 1552 +24.2LWD Sonic Brygge

1606

+20

LWD Resistivity/Sonic

1626

1654



|                                            |                  |                                     | Wellsite G             | eologist: N    | Iike Donovan\E                                | Ed Lina    | ker                     |
|--------------------------------------------|------------------|-------------------------------------|------------------------|----------------|-----------------------------------------------|------------|-------------------------|
| Rig: Byford Dolphin                        |                  | Well: 6506/3-                       | 1                      | Date: 04.0     | 8.01                                          | Days s     | since spud: 14          |
| Depth (mMD): 2560                          |                  | Depth (mTV)                         | D): 2555.5             | Current C      | peration: Drilling                            | ahead 8    | 8 1/2" hole.            |
| ROP(m/hr): 54.2                            | Progress         | s (m): 824                          |                        |                | : 11.52m, RES : 8                             |            |                         |
|                                            |                  |                                     | MWD GR:                | 25.81m, D&     | &I : 26.42m.                                  |            |                         |
| Last Survey:                               |                  | 2533.5 mMI                          | D 2528.                | .97 mTVD       | Inc: 1.60°                                    |            | Azim. 161.93°           |
| MW (sg): 1.57                              | PP (sg):         |                                     | Csg Size (ins)         |                |                                               |            | LOT (sg): 1.84          |
| Operations last 24 h                       | ours (mi         | dnight to mid                       | l <b>night):</b> Conti | nued to RII    | H. Drilled ahead f                            | rom 173    | 36m MD to 2304m         |
| MD. 5bbl gain detecte<br>2304m MD to 2560m |                  | ve. Flow check                      | ed - static. Circ      | culated Bot    | toms up. Drilled a                            | head 8     | 1/2" hole from          |
| 6 o'clock update: Co                       | ontinued t       | to drill ahead fi                   | om 2560m M             | D to 2764n     | MD in the Nise                                | Formati    | ion.                    |
| Operations next 24                         |                  |                                     |                        |                |                                               |            |                         |
| Drill ahead to next tar                    | rget in the      | Lysing format                       | tion. POOH to          | o pick up co   | oring assembly.                               |            |                         |
|                                            |                  | GEC                                 | LOGICAL I              | DESCRIPT       | TION                                          |            |                         |
| Interval (m)                               |                  |                                     | Descriptio             |                |                                               |            |                         |
|                                            |                  |                                     |                        |                |                                               | imeston    | e stringers becoming    |
|                                            |                  | ominated below<br>F : pale to media |                        |                | <b>mastone beas.</b><br>greyish blue green, μ | redomin    | antly firm soft in      |
|                                            |                  |                                     |                        |                | omicaceous, occasio                           |            |                         |
|                                            |                  |                                     |                        |                |                                               |            | prown, predominantly    |
|                                            |                  |                                     |                        |                | oangular, occasional                          |            |                         |
|                                            |                  |                                     |                        |                | nica, trace fine mica                         |            |                         |
|                                            | rocrystalli      |                                     | wnite, moderate        | iy nara, sudd  | locky to splintery, s                         | ngntiy ar  | gmaceous,               |
|                                            |                  |                                     | ssive Claystone        | sequence v     | vith Siltstone inter                          | beds to    | wards the base and      |
|                                            |                  | imestone string                     |                        | sequeries .    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,       |            |                         |
|                                            |                  |                                     |                        |                |                                               |            | ccasionally olive grey, |
|                                            |                  |                                     |                        |                | aces, micromicaceo                            |            |                         |
|                                            |                  |                                     | ding to SILTST         | ONE in plac    | ces, occasional carbo                         | naceous    | material, slightly      |
|                                            | careous in       |                                     | to medium grev         | brown firm     | subblocky to block                            | v slightl  | y crumbly, grading to   |
|                                            |                  |                                     |                        |                |                                               |            | es with weak calcite    |
|                                            |                  | glauconite, trace                   |                        |                |                                               | 1          |                         |
|                                            |                  |                                     |                        |                |                                               |            | d, subblocky to blocky  |
|                                            |                  |                                     |                        | grading to D   | OLOMITE, slightl                              | y argillac | eous in places,         |
|                                            |                  | ine to microcryst                   |                        | manca with     | Siltstone interhed                            | c in nlac  | ces and occasional      |
|                                            |                  | nd Dolomite st                      |                        | quence with    | Show merbed                                   | 3 III piac | ces and occasional      |
|                                            |                  |                                     |                        | y, olive grey, | medium dark brow                              | n, firm,   | occasionally soft,      |
|                                            |                  |                                     | ticky in places, 1     | micromicace    | ous, silty in places, g                       | rading S   | ILTSTONE, non to        |
|                                            |                  | alcareous.                          |                        |                |                                               |            |                         |
|                                            | TSTONE<br>MESTON |                                     |                        |                |                                               |            |                         |
|                                            |                  |                                     | to dark vellowi        | ish orange v   | ery hard, blocky to s                         | uhlocky    | microcrystalline        |
|                                            | )LOMITE          | i. greyish orange                   | to dark jenowi         | on orange, v   | ery nard, blocky to                           | иогоску,   | , interocrystannie.     |
|                                            |                  |                                     | SHOWS                  | DATA           |                                               |            |                         |
| Interval (m)                               |                  |                                     |                        | Descript       | ion                                           |            |                         |
| No                                         | Shows.           |                                     |                        |                |                                               |            |                         |
|                                            |                  |                                     |                        |                |                                               |            |                         |
|                                            |                  |                                     |                        |                |                                               |            |                         |
|                                            |                  |                                     |                        |                |                                               |            |                         |

|                 |           |          | G      | AS DATA | 1      |         |        |         |        |
|-----------------|-----------|----------|--------|---------|--------|---------|--------|---------|--------|
| Gas Type        | Int. (m)  | Total(%) | C1 ppm | C2 ppm  | C3 ppm | iC4 ppm | nC4ppm | iC5 ppm | nC5 pm |
| Drill Gas       | 1736-1797 | 0.3      | 3022   | -       | 1      | 15      | 3      | 1       | -      |
| Drill Gas       | 1797-2420 | 0.5      | 5889   | 28      | 5      | 22      | 2      | 1       | 1      |
| Drill Gas       | 2420-2560 | 0.7      | 7102   | 51      | 9      | 23      | 1      | 1       | -      |
| Gas Peak        | 2180      | 0.6      | 6136   | 37      | 4      | 15      | 1      | 1       | -      |
| Conn. Gas Peak? | 2216      | 1.1      | 11800  | 40      | 6      | 17      | 1      | 1       | 1      |



Wellsite Geologist: Mike Donovan\Ed Linaker

|          |      |     |       |    | 0  |    |   |    |   |
|----------|------|-----|-------|----|----|----|---|----|---|
| Gas Peak | 2245 | 0.7 | 7681  | 36 | 5  | 19 | 4 | 11 | 1 |
| Gas Peak | 2322 | 1.3 | 13489 | 65 | 9  | 21 | 1 | 1  | - |
| Gas Peak | 2354 | 1.5 | 11366 | 69 | 10 | 22 | 1 | 1  | - |
| Gas Peak | 2400 | 1.6 | 13515 | 78 | 12 | 22 | 1 | 1  | - |
| Gas Peak | 2435 | 1.2 | 11313 | 79 | 13 | 23 | 1 | 1  | - |

#### PORE PRESSURE

Interval: 1736-2560 Min. (sg): 1.4 Max. (sg): 1.54

Comments: One possible connection gas at 2216m, but this peak was also coincident with some faster drilling no other connection gas peaks where observed. The Gas in readings taken from the active pit show 50 to 60% of gas is being recycle in the system. The resistivity trend in the Springar and Nise Claystones suggests a stable or decreasing pore pressure. The Isonic is giving erratic values and is currently of no use for pore pressure evaluation.

|             |        | FORMATIC | N PICKS LAS | T 24 HOURS |                          |
|-------------|--------|----------|-------------|------------|--------------------------|
| Formation   | Depth  | Depth    | Prognosed   | Difference | Basis of Pick            |
|             | mMDBRT | mTVDSS   | mTVDSS      | m +/-      |                          |
| Kai         | 1552   | 1524.3   | 1515        | +9.3       | LWD Resistivity          |
| Brygge      | 1604   | 1576.2   | 1552        | +24.2      | LWD Sonic                |
| Tp Flooding | 1654   | 1626     | 1606        | +20        | LWD Resistivity/Sonic    |
| Surface     |        |          |             |            | -                        |
| Tare        | 1741   | 1712.8   | 1690        | +22.8      | LWD Resistivity/Cuttings |
| Springar    | 1797   | 1768.6   | 1756        | +12.6      | LWD GR/Sonic/Cuttings    |
| Nise        | 2420   | 2390.2   | 2342        | +47.8      | LWD GR                   |



Wellsite Geologist: Mike Donovan\Ed Linaker Rig: Byford Dolphin Well: 6506/3-1 Date: 05.08.01 Days since spud: 15 Depth (mMD): 3101 Current Operation: POOH to pick up Coring assembly Depth (mTVD): 3096.9 ROP(m/hr): 39.4 Progress (m): 541 MWD offset: CDR GR: 11.52m, RES: 8.17m, SONIC: 19.27m, MWD GR: 25.81m, D&I: 26.42m. **Last Survey:** 3049.8 mMD 3045.2 mTVD Inc: 1.75° Azim. 232.8° MW (sg): 1.57 PP (sg): 1.54 Operations last 24 hours (midnight to midnight): Continued to drill ahead from 2560m MD to 3101m MD. Circulate bottoms and circulate hole clean. POOH. 6 o'clock update: Continued to POOH. Lay down bit and LWD tools. Start picking up 76m core barrel and corehead. (73m maximum length cut) **Operations next 24 hours:** Continue picking up coring assembly. RIH and cut core no.1 **GEOLOGICAL DESCRIPTION** Interval (m) Description 2560-3088 (Nise Formation) - Massive Claystone sequence with Siltstone interbeds in places and occasional **Limestone and Dolomite stringers** CLAYSTONE: medium to medium dark grey, olive grey, medium dark brown, firm, occasionally soft, subblocky to blocky, slightly sticky in places, micromicaceous, silty in places, grading SILTSTONE, non to locally very calcareous. SILTŠTONE: medium grev to medium grev brown, firm, subblocky to blocky, slightly crumbly, grading to CLAYSTONE in places, trace sand, rarely grading to very fine SANDSTONE in places with weak calcite cement. trace glauconite, trace carbonaceous material. LIMESTONE: very pale orange brown to dark yellow orange, firm to moderately hard, subblocky to blocky occasionally splintery, dolomitic, occasionally grading to DOLOMITE, slightly argillaceous in places, cryptocrystalline to microcrystaline. DOLOMITE: greyish orange to dark yellowish orange, very hard, blocky to sublocky, microcrystalline. 3088-3101 (Lysing Formation) - A Sandstone dominated interbedded Sandstone Claystone sequence, the upper 3m of which well cement with calcite. CLAYSTONE: medium to medium dark grey, medium grey brown, olive grey, subblocky to blocky, crumbly in places, silty, commonly grading to SILTSTONE, trace glauconite, micromicaceous in places, trace carbonaceous material, non to slightly calcareous. SANDSTONE: predominantly loose, colourless to off white, very pale yellow brown, clear to transluscent, predominantly fine to medium grained, rare coarse grained, rounded to subrounded, occasionally angular, subspherical, poor to moderately sorted, occasionally consolidated with moderate to strong calcite cement, occasional light to medium grey argillaceous matrix, trace very fine disseminated micropyrite, trace glauconite, no to poor visible porosity, NO SHOWS **SHOWS DATA** Interval (m) Description No Shows **GAS DATA** Gas Type Int. (m) Total(%) C1 ppm C2 ppm C3 ppm iC4 ppm nC4ppm iC5 ppm nC5 pm Drill Gas 2560-3088 0.5 4659 59 33 15 Drill Gas 3088-3101 0.7 6450 118 28 26 3 2 Gas Peak 2638 1.7 13232 115 23 22 2 Gas Peak 2730 11748 20 23 2 1.2 106 22 Gas Peak 2759 1.3 13471 106 20 2 1 Gas Peak 2.6 23725 317 70 29 2 2828 6 Gas Peak 3062 1.6 11119 189 43 21 2 4 Gas Peak 3095 1.1 10316 29 92 24 9 **PORE PRESSURE** Interval: 1736-2560 Min. (sg): 1.4 Max. (sg): 1.54 Comments:

**FORMATION PICKS LAST 24 HOURS** 



| Formation   | Depth  | Depth  | Prognosed | Difference | Basis of Pick               |  |  |  |  |  |  |
|-------------|--------|--------|-----------|------------|-----------------------------|--|--|--|--|--|--|
|             | mMDBRT | mTVDSS | mTVDSS    | m +/-      |                             |  |  |  |  |  |  |
| Kai         | 1552   | 1524.3 | 1515      | +9.3       | LWD Resistivity             |  |  |  |  |  |  |
| Brygge      | 1604   | 1576.2 | 1552      | +24.2      | LWD Sonic                   |  |  |  |  |  |  |
| Tp Flooding | 1654   | 1626   | 1606      | +20        | LWD Resistivity/Sonic       |  |  |  |  |  |  |
| Surface     |        |        |           |            | -                           |  |  |  |  |  |  |
| Tare        | 1741   | 1712.8 | 1690      | +22.8      | LWD Resistivity/Cuttings    |  |  |  |  |  |  |
| Springar    | 1797   | 1768.6 | 1756      | +12.6      | LWD GR/Sonic/Cuttings       |  |  |  |  |  |  |
| Nise        | 2420   | 2390.2 | 2342      | +47.8      | LWD GR                      |  |  |  |  |  |  |
| Lysing      | 3088   | 3058.3 | 3043      | +15.3      | LWD GR/Resistivity/Cuttings |  |  |  |  |  |  |



Wellsite Geologist: Mike Donovan\Ed Linaker

|                              |                      |               | Wells         | site Geolo                   | gist: Mike    | <b>Donovan</b> | <b>\Ed Lina</b> | ker          |              |  |  |
|------------------------------|----------------------|---------------|---------------|------------------------------|---------------|----------------|-----------------|--------------|--------------|--|--|
| Rig: Byford Dol <sub>l</sub> | ohin                 | Well: 6506    | /3-1          | Dat                          | te: 06.08.01  | ince spud:     | 16              |              |              |  |  |
| D 4 ( MD) 0                  | 100                  | D 4 ( T       | T/D) 0100     | 4                            |               |                |                 | 1            |              |  |  |
| Depth (mMD): 3               |                      | Depth (mT     |               |                              | rrent Oper    | ation: Cutti   | ng core #1      |              |              |  |  |
| ROP(m/hr): 13                | Progress             |               |               | offset: -                    |               | 1 ~ 5          |                 | 1 1 00       | 2.00         |  |  |
| Last Survey:                 | [== ( )              | 3049.8 m      |               |                              | TVD Inc       |                |                 | Azim. 23     |              |  |  |
| MW (sg): 1.57                | PP (sg): 1           |               | Csg Siz       | e (ins):13 3                 | 3/8"   Cs     | g Depth(m)     | : 1374.3        | LOT (sg)     |              |  |  |
| <b>Operations last</b>       |                      |               |               |                              |               |                |                 |              |              |  |  |
| coring assembly.             |                      |               |               |                              |               |                |                 |              |              |  |  |
| 6 o'clock update             |                      |               | 1 from 312    | 28 m MD 1                    | to 3171.5m    | MD (70m        | Cut). Pum       | p out of re  | servoir,     |  |  |
| continue to circul           |                      | ne riser      |               |                              |               |                |                 |              |              |  |  |
| Operations next              |                      |               | _             |                              |               |                |                 |              |              |  |  |
| POOH with and                | recover core #       |               |               |                              |               |                | TD.             |              |              |  |  |
|                              |                      | Gl            | EOLOGIC       |                              | CRIPTIO       | N              |                 |              |              |  |  |
| Interval (m)                 |                      |               |               |                              |               |                |                 |              |              |  |  |
| 3101-3128                    | (Lysing Form         |               | interbedde    | ed Sandsto                   | ne, Claysto   | ne sequenc     | e, the uppe     | r 3m of wh   | ich well     |  |  |
|                              | cement with          |               |               |                              | -             |                | -               |              |              |  |  |
|                              | 80-90% CLAY          | STONE: m      | edium to m    | edium dark                   | grey, mediu   | m grey brow    | n, olive gre    | y, subblocky | to blocky,   |  |  |
|                              | crumbly in place     |               |               |                              | SIONE, tr     | ace glauconi   | te, micromi     | caceous in p | iaces, trace |  |  |
|                              | 10-20% SANI          |               |               |                              | ourloss to of | ff white wor   | nala vallav     | , brown clos | r to         |  |  |
|                              | transluscent, p      | redominanth   | i fine to med | ly 100se, cor<br>dium graine | d rare coars  | n wille, very  | nale yellov     | ibrounded    | 11 10        |  |  |
|                              | occasionally an      |               |               |                              |               |                |                 |              | rate to      |  |  |
|                              | strong calcite       |               |               |                              |               |                |                 |              |              |  |  |
| İ                            | micropyrite, tr      |               |               |                              |               |                | J               |              |              |  |  |
|                              | (Cuttings descri     | riptions)     | •             | •                            | v             |                |                 |              |              |  |  |
|                              | <b>Detailed Core</b> | e description | n report to i | follow.                      |               |                |                 |              |              |  |  |
|                              |                      |               | CTT           | OHIG DAI                     | П 4           |                |                 |              |              |  |  |
| T ( 1 ( )                    |                      |               | SH            | OWS DAT                      |               |                |                 |              |              |  |  |
| Interval (m)                 | N. Gl                |               |               | D                            | escription    |                |                 |              |              |  |  |
|                              | No Shows.            |               |               |                              |               |                |                 |              |              |  |  |
|                              |                      | T =           |               | AS DATA                      |               | T              |                 | T            |              |  |  |
| Gas Type                     | Int. (m)             | Total(%)      | C1 ppm        | C2 ppm                       | C3 ppm        | iC4 ppm        | nC4ppm          | iC5 ppm      | nC5 pm       |  |  |
| Drill Gas                    | 3101-3128            | 0.9           | 8610          | 59                           | 20            | 30             | 3               | 1            | -            |  |  |
| Gas Peak                     | 3107.5               | 1.5           | 15646         | 84                           | 48            | 12             | 5               | 1            | -            |  |  |

#### PORE PRESSURE

Interval: 1382-3128 Min. (sg): 1.11 Max. (sg): 1.54

#### Comments:

|             |        | FORMATIC | N PICKS LAS | T 24 HOURS |                             |  |  |  |  |  |  |  |
|-------------|--------|----------|-------------|------------|-----------------------------|--|--|--|--|--|--|--|
| Formation   | Depth  | Depth    | Prognosed   | Difference | Basis of Pick               |  |  |  |  |  |  |  |
|             | mMDBRT | mTVDSS   | mTVDSS      | m +/-      |                             |  |  |  |  |  |  |  |
| Naust       | 502    | 477      | 464         | +13        | LWD GR/Resistivity          |  |  |  |  |  |  |  |
| Kai         | 1552   | 1524.3   | 1515        | +9.3       | LWD Resistivity             |  |  |  |  |  |  |  |
| Brygge      | 1604   | 1576.2   | 1552        | +24.2      | LWD Sonic                   |  |  |  |  |  |  |  |
| Tp Flooding | 1654   | 1626     | 1606        | +20        | LWD Resistivity/Sonic       |  |  |  |  |  |  |  |
| Surface     |        |          |             |            | -                           |  |  |  |  |  |  |  |
| Tare        | 1741   | 1712.8   | 1690        | +22.8      | LWD Resistivity/Cuttings    |  |  |  |  |  |  |  |
| Springar    | 1797   | 1768.6   | 1756        | +12.6      | LWD GR/Sonic/Cuttings       |  |  |  |  |  |  |  |
| Nise        | 2420   | 2390.2   | 2342        | +47.8      | LWD GR                      |  |  |  |  |  |  |  |
| Lysing      | 3088   | 3058.3   | 3043        | +15.3      | LWD GR/Resistivity/Cuttings |  |  |  |  |  |  |  |



|                                                                                                                                                         | Wellsite Geologist: Mike Donovan\Ed Linaker                                                                                                                                                                  |               |          |               |         |                |             |                 |                              |         |              |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|---------------|---------|----------------|-------------|-----------------|------------------------------|---------|--------------|-----------|
| Rig: Byford Dolp                                                                                                                                        | ohin                                                                                                                                                                                                         | Well: 6506/   | ′3-1     |               | Date    | : 07.08        | 3.01        |                 | D                            | ays s   | ince spud:   | 17        |
|                                                                                                                                                         |                                                                                                                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
| Depth (mMD): 31                                                                                                                                         |                                                                                                                                                                                                              | Depth (mT     |          |               |         |                |             | tion: Cut       |                              |         |              |           |
| ROP(m/hr): 9.2                                                                                                                                          | Progress                                                                                                                                                                                                     | s (m): 43.5   |          | VD offset     |         |                |             |                 | m , D8                       | &I - 1  | 8.95m        |           |
| Last Survey:                                                                                                                                            |                                                                                                                                                                                                              | 3049.8 ml     | MD       | 3045          | .2 m    | ΓVD            | Inc         | : 1.75°         |                              |         | Azim. 23     | 2.8°      |
| MW (sg): 1.57                                                                                                                                           | PP (sg):                                                                                                                                                                                                     |               |          | g Size (ins)  |         |                |             | g Depth(r       |                              |         | LOT (sg)     |           |
| Operations last                                                                                                                                         |                                                                                                                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
| (70m Cut). Pump                                                                                                                                         |                                                                                                                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
| core #1 (67.69m)                                                                                                                                        |                                                                                                                                                                                                              |               |          |               | ore ba  | rrel. Pi       | icke        | d up new        | bit and                      | l LW    | D tools, su  | ırface    |
| tested same and F                                                                                                                                       |                                                                                                                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
| 6 o'clock update                                                                                                                                        |                                                                                                                                                                                                              | o RIH pickiı  | ng up s  | singles fro   | m dec   | k. Cor         | ıtinı       | <u>ied RIH.</u> |                              |         |              |           |
|                                                                                                                                                         | Operations next 24 hours:                                                                                                                                                                                    |               |          |               |         |                |             |                 |                              |         |              |           |
| Continue to RIH ream cored section for LWD data. Drill ahead to TD.                                                                                     |                                                                                                                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
| GEOLOGICAL DESCRIPTION                                                                                                                                  |                                                                                                                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
| Interval (m)                                                                                                                                            |                                                                                                                                                                                                              |               |          | Descriptio    |         |                |             |                 |                              |         |              |           |
| 3128-3171.5                                                                                                                                             | (Lysing Form                                                                                                                                                                                                 |               |          |               | ated ir | terbed         | lded        | Sandsto         | ne Clays                     | stone   | sequence,    | the upper |
|                                                                                                                                                         | 3m of which well cement with calcite.                                                                                                                                                                        |               |          |               |         |                |             |                 |                              |         |              |           |
|                                                                                                                                                         | 80-90% CLAYSTONE: medium to medium dark grey, medium grey brown, olive grey, subblocky to blocky, crumbly in places, silty, commonly grading to SILTSTONE, trace glauconite, micromicaceous in places, trace |               |          |               |         |                |             |                 |                              |         |              |           |
|                                                                                                                                                         | carbonaceous                                                                                                                                                                                                 | material, non | to sligh | itly calcared | ous.    |                |             |                 |                              |         |              |           |
| carbonaceous material, non to slightly calcareous.<br>10-20% SANDSTONE : predominantly loose, colourless to off white, very pale yellow brown, clear to |                                                                                                                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
|                                                                                                                                                         | transluscent, predominantly fine to medium grained, rare coarse grained, rounded to subrounded,                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
| occasionally angular, subspherical, poor to moderately sorted, occasionally consolidated with moderate to                                               |                                                                                                                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
| strong calcite cement,, occasional light to medium grey argillaceous matrix, trace very fine disseminated                                               |                                                                                                                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
|                                                                                                                                                         | micropyrite, trace glauconite, no to poor visible porosity, NO SHOWS. (Cuttings descriptions)                                                                                                                |               |          |               |         |                |             |                 |                              |         |              |           |
| (Cutungs descriptions)                                                                                                                                  |                                                                                                                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
|                                                                                                                                                         | <b>Detailed Cor</b>                                                                                                                                                                                          | e Descriptio  | n repoi  | rt to follow  | 7.      |                |             |                 |                              |         |              |           |
|                                                                                                                                                         |                                                                                                                                                                                                              |               |          | SHOWS         | DAT     | Λ              |             |                 |                              |         |              |           |
| Interval (m)                                                                                                                                            |                                                                                                                                                                                                              |               |          | SHOWS         |         | scriptic       | n n         |                 |                              |         |              |           |
| Interval (III)                                                                                                                                          | No Shows.                                                                                                                                                                                                    |               |          |               | DC      | scriptio       | <i>J</i> 11 |                 |                              |         |              |           |
|                                                                                                                                                         | 110 bilows.                                                                                                                                                                                                  |               |          | GAS D         | ΔΤΔ     |                |             |                 |                              |         |              |           |
| Gas Type                                                                                                                                                | Int. (m)                                                                                                                                                                                                     | Total(%)      | C1 pp    |               |         | C3 pp          | m           | iC4 ppm         | nC4p                         | nm      | iC5 ppm      | nC5 pm    |
| Drill Gas                                                                                                                                               | 3128-3171.5                                                                                                                                                                                                  | 0.9           | 8610     |               |         | 20<br>20       | 111         | 30              | 3                            |         | 1 1          | -         |
|                                                                                                                                                         |                                                                                                                                                                                                              | 1             |          | ORE PR        |         | RE             |             |                 |                              |         |              | 1         |
| Interval: 1382-317                                                                                                                                      | 71                                                                                                                                                                                                           |               |          | Min. (sg      |         |                |             | I               | Max. (sg                     | g): 1.5 | 54           |           |
| Comments:                                                                                                                                               |                                                                                                                                                                                                              |               |          | 1 (-8         | 5/      |                |             | 1 -             |                              | 5/      |              |           |
|                                                                                                                                                         |                                                                                                                                                                                                              |               |          |               |         |                |             |                 |                              |         |              |           |
|                                                                                                                                                         |                                                                                                                                                                                                              | FORM          | IATIO    | N PICK        | S LAS   | T 24           | HO          | URS             |                              |         |              |           |
| Formation                                                                                                                                               | Depth                                                                                                                                                                                                        | Dept          |          | Progno        |         |                |             | ence            |                              | Ba      | sis of Pick  |           |
|                                                                                                                                                         | mMDBRT                                                                                                                                                                                                       | mTVI          |          | mTVE          |         |                | n +         |                 |                              | _u      |              |           |
| Naust                                                                                                                                                   | 502                                                                                                                                                                                                          | 477           |          | 464           |         | <u> </u>       | +13         |                 | LI                           | WD (    | GR/Resisti   | vitv      |
| Kai                                                                                                                                                     | 1552                                                                                                                                                                                                         | 1524          |          | 1513          |         |                | +9.         |                 |                              |         | O Resistivit |           |
| Brygge                                                                                                                                                  | 1604                                                                                                                                                                                                         | 1576          |          | 1552          |         |                | +24         |                 |                              |         | ND Sonic     | J         |
| Tp Flooding                                                                                                                                             | 1654                                                                                                                                                                                                         | 1620          |          | 1606          |         |                | +20         |                 | I.W                          |         | esistivity/S | Sonic     |
| Surface                                                                                                                                                 | 1001                                                                                                                                                                                                         | 1020          | -        | 1000          | -       |                | . ~ .       | -               |                              |         |              |           |
| Tare                                                                                                                                                    | 1741                                                                                                                                                                                                         | 1712.8 169    |          |               | )       | +22.8          |             | .8              | LWD Resistivity/Cuttings     |         |              | ıttings   |
| Springar                                                                                                                                                | 1797                                                                                                                                                                                                         | 1768          |          | 1756          |         |                |             |                 | LWD GR/Sonic/Cuttings        |         |              |           |
| Nise                                                                                                                                                    | 2420                                                                                                                                                                                                         | 2390          |          | 2342          |         | +12.6<br>+47.8 |             |                 | LWD GR/Sonic/Cuttings LWD GR |         |              |           |
| Lysing                                                                                                                                                  | 3088                                                                                                                                                                                                         | 3058          |          | 3043          |         |                | +15         |                 | LWD                          |         | Resistivity/ | Cuttings  |
| ப்ரவாத                                                                                                                                                  | 3000                                                                                                                                                                                                         | 3030          | .0       | JU40          | ,       |                | 1 J         | .0              | LVVD (                       | GIV/ I  | ccoistivity/ | Cuttings  |



Nise

Lysing

Lange

2420

3088

3137.5

2390.2

3058.3

3107.8

#### WELLSITE GEOLOGICAL REPORT

Wellsite Geologist: Mike Donovan\Ed Linaker Rig: Byford Dolphin Well: 6506/3-1 Date: 08.08.01 Days since spud: 18 Depth (mMD): 3437 Current Operation: Drilling ahead 8 1/2" hole. Depth (mTVD): 3432.1 ROP(m/hr): MWD offset: GR - 11.56m, Res - 8.21m, D&I - 18.95m Progress (m): 3394.8 mMD **Last Survey:** 3390 mTVD Inc: 1.8° Azim. 240.7° Csg Size (ins): 13 3/8" | Csg Depth(m): 1374.3 | LOT (sg): 1.84 MW (sg): 1.60 Max PP (sg): 1.54 Operations last 24 hours (midnight to midnight): Continued to RIH picking up singles from deck. Continued RÎH. Reamed cored section for LWD data. Drill ahead from 3171.5m MD to 3437m MD. 6 o'clock update: Continued to drill ahead from 3437m MD tp 3587m MD **Operations next 24 hours:** Continue to Drill ahead to TD. Circulate bottoms up, pull out of hole. Rig up to run Schlumberger wireline. GEOLOGICAL DESCRIPTION Interval (m) Description (Lange Formation) - Predominantly Claystone with occasional Limestone and Sandstone stingers, 3171.5-3437 and rare Dolomite strinnger **CLAYSTONE**: medium to medium dark grey, olive grey, firm, blocky, micromicaceous, occasional very fine carbonaceous material, occasionally silty, occasionally grading to SILTSTONE, non calcareous. SANDSTONE: (often present as rock flour) very pale grey to white, firm, friable in places, blocky, very fine grained, clear to transluscent, colourless to very pale grey, subrounded, subangular, subspherical, moderately sorted, good trace glauconite, trace calcite cement, silty, grading to SILTSTONE, no visible porosity, NO **LIMESTONE**: pale yellowish orange to dark yellowish orange, firm to moderately hard, blocky, crumbly in places, argillaceous, locally very argillaceous, dolomitic, grading to DOLOMITE in places, cryptocrystalline to occasionally microcrystalline. **DOLOMITE**: light brown to moderate yellowish brown, very hard, blocky to angular, microcrystalline. **SHOWS DATA** Interval (m) Description No Shows. **GAS DATA** Gas Type Int. (m) Total(%) C1 ppm C2 ppm C3 ppm iC4 ppm nC4ppm iC5 ppm nC5 pm Drill Gas 3171-3220 1.0 9500 130 20 10 5 Drill Gas 3220-3437 0.75 7000 13 100 5 15 Gas Peak 3258 1.35 10853 141 32 3 Gas Peak 3400 1.37 11323 218 48 15 5 1 **PORE PRESSURE** Interval: 3171-3437 Min. (sg): 1.3 Max. (sg): 1.3 -The completed core description report for core one is with this report. Comments: -Top Lange based on correlation with 6506/6-1. **FORMATION PICKS LAST 24 HOURS** Basis of Pick Formation Depth Depth Prognosed Difference mMDBRT mTVDSS mTVDSS m + / -Naust 502 477 464 +13LWD GR/Resistivity 1524.3 +9.3LWD Resistivity Kai 1552 1515 Brygge 1604 1576.2 1552 +24.2LWD Sonic Tp Flooding 1626 +20 LWD Resistivity/Sonic 1654 1606 Surface LWD Resistivity/Cuttings Tare 1741 1712.8 1690 +22.81797 LWD GR/Sonic/Cuttings Springar 1768.6 1756 +12.6

2342

3043

3117

+47.8

+15.3

-9.2

LWD GR

LWD GR/Resistivity/Cuttings

LWD GR/Resistivity



|                                                                                                         |                                                                                                                                                                                                                         |                           |                |             | _              | me Donovan       |               |               |              |  |  |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|-------------|----------------|------------------|---------------|---------------|--------------|--|--|
| Rig: Byford Dol                                                                                         | phin                                                                                                                                                                                                                    | Well: 6506/               | /3-1           | D           | Date: 09.08    | .01              | Days s        | ince spud:    | 19           |  |  |
| Depth (mMD): 3                                                                                          | 667                                                                                                                                                                                                                     | Depth (mT                 | VD): 3662.     | .0 C        | Current Op     | eration: POC     | )H            |               |              |  |  |
| ROP(m/hr): 25.6                                                                                         | Progress                                                                                                                                                                                                                | s (m): 230                | MWD (          | offset: G   | R - 11.56      | m, Res - 8.21r   | n , D&I - 1   | 8.95m         |              |  |  |
| Last Survey:                                                                                            | 1                                                                                                                                                                                                                       | 3641.9 ml                 | MD             | 3636.9      | mTVD           | Inc: 1.9°        |               | Azim. 23      | 2.6°         |  |  |
| MW (sg): 1.60                                                                                           | Max PP                                                                                                                                                                                                                  | (sg): 1.54                | Csg Siz        | e (ins): 1  | 3 3/8"         | Csg Depth(m      | ): 1374.3     | LOT (sg)      | : 1.84       |  |  |
| <b>Operations last</b>                                                                                  | 24 hours (mi                                                                                                                                                                                                            | dnight to m               | idnight):      | Continu     | ed to drill    | ahead from 3     | 437m MD       |               |              |  |  |
| Circulated while                                                                                        | waiting on boa                                                                                                                                                                                                          | nt for more c             | uttings skip   | os. Conti   | inued drill    | at 11:30 from    | 3600m M       | D to 36671    | n MD         |  |  |
| TD for well 6506                                                                                        | 3/3-1. (approx                                                                                                                                                                                                          | 14:30). Circ              | ulateď botto   | oms up a    | and contin     | ued circulatin   | g until hole  | e clean. flov | wcheck       |  |  |
| and POOH.                                                                                               |                                                                                                                                                                                                                         |                           |                | -           |                |                  |               |               |              |  |  |
| 6 o'clock update                                                                                        | e: Continued t                                                                                                                                                                                                          | o POOH. L                 | aid down b     | it and L    | WD, clear      | rigfloor. Rig    | up Schlum     | berger wire   | line. Pick   |  |  |
| up first toolstring                                                                                     |                                                                                                                                                                                                                         | ı run 1 PEX               | •              |             |                |                  |               |               |              |  |  |
| Operations next 24 hours:                                                                               |                                                                                                                                                                                                                         |                           |                |             |                |                  |               |               |              |  |  |
| POOH with Run 1 PEX. Rig down Run 1. Rig up Run 2 OBT/DSI and RIH.                                      |                                                                                                                                                                                                                         |                           |                |             |                |                  |               |               |              |  |  |
| GEOLOGICAL DESCRIPTION                                                                                  |                                                                                                                                                                                                                         |                           |                |             |                |                  |               |               |              |  |  |
| Interval (m) Description                                                                                |                                                                                                                                                                                                                         |                           |                |             |                |                  |               |               |              |  |  |
| 3437-3667 (Lange Formation) - Predominantly Claystone with occasional Limestone and Sandstone stingers, |                                                                                                                                                                                                                         |                           |                |             |                |                  |               |               |              |  |  |
| and rare Dolomite stringers                                                                             |                                                                                                                                                                                                                         |                           |                |             |                |                  |               |               |              |  |  |
| CLAYSTONE: medium to medium dark grey, olive grey, firm, blocky, micromicaceous, occasional very        |                                                                                                                                                                                                                         |                           |                |             |                |                  |               |               |              |  |  |
|                                                                                                         | fine carbonaceous material, occasionally silty, occasionally grading to SILTSTONE, non calcareous. <b>SANDSTONE</b> : (often present as rock flour) very pale grey to white, firm, friable in places, blocky, very fine |                           |                |             |                |                  |               |               |              |  |  |
|                                                                                                         | grained, clear                                                                                                                                                                                                          | to transluscer            | it. colourless | s to verv r | oale grev. si  | ıbrounded, sub   | angular, sub  | snherical m   | oderately    |  |  |
|                                                                                                         | sorted,good to                                                                                                                                                                                                          | race glauconit            | e, trace calci | te cemen    | t, silty, grad | ing to SILTST    | ONE, no vi    | sible porosit | y, NO        |  |  |
|                                                                                                         | SHOWS.                                                                                                                                                                                                                  | Ü                         |                |             |                | J                |               | -             | •            |  |  |
|                                                                                                         | LIMESTON                                                                                                                                                                                                                | $\mathbf{E}$ : pale yello | wish orange    | to dark y   | ellowish or    | ange, firm to m  | oderately h   | ard, blocky,  | crumbly in   |  |  |
|                                                                                                         |                                                                                                                                                                                                                         |                           |                | eous, dolo  | omitic, grad   | ing to DOLON     | AITE in plac  | ces, cryptocr | ystalline to |  |  |
|                                                                                                         | occasionally n                                                                                                                                                                                                          |                           |                | د دراامین   | lah huarrum i  | war hand blad    | to anoula     |               | allin a      |  |  |
|                                                                                                         | DOLUMITI                                                                                                                                                                                                                | 1 : light brown           |                | OWS D       |                | very hard, block | ky to angula  | r, microcrysi | alline.      |  |  |
| Interval (m)                                                                                            |                                                                                                                                                                                                                         |                           | эп             |             |                | n                |               |               |              |  |  |
| Interval (III)                                                                                          | No Shows.                                                                                                                                                                                                               |                           |                | -           | Descriptio     | )11              |               |               |              |  |  |
|                                                                                                         | NO SHOWS.                                                                                                                                                                                                               |                           | C              | AS DAT      | ГА             |                  |               |               |              |  |  |
| Gas Type                                                                                                | Int. (m)                                                                                                                                                                                                                | Total(%)                  | C1 ppm         | C2 ppn      |                | n iC4 ppm        | nC4ppm        | iC5 ppm       | nC5 pm       |  |  |
| Drill Gas                                                                                               | 3437-3502                                                                                                                                                                                                               | 1.5                       | 14000          | 200         | 35             | 15               | 5             | 2             | -            |  |  |
| Drill Gas                                                                                               | 3502-3667                                                                                                                                                                                                               | 0.8                       | 7000           | 150         | 30             | 12               | 5             | 3             | 1            |  |  |
| Gas Peak                                                                                                | 3440                                                                                                                                                                                                                    | 2.19                      | 20530          | 338         | 71             | 17               | 7             | 1             | -            |  |  |
| Gas Peak                                                                                                | 3472                                                                                                                                                                                                                    | 2.37                      | 22865          | 380         | 72             | 17               | 6             | 2             | -            |  |  |
| Gas Peak                                                                                                | 3526                                                                                                                                                                                                                    | 1.36                      | 10816          | 241         | 51             | 19               | 6             | 1             | -            |  |  |
| Gas Peak                                                                                                | 3596                                                                                                                                                                                                                    | 1.27                      | 9003           | 210         | 49             | 20               | 7             | 2             | 1            |  |  |
| Gas Peak                                                                                                | 3618                                                                                                                                                                                                                    | 1.65                      | 13101          | 240         | 52             | 17               | 6             | 1             | 1            |  |  |
|                                                                                                         |                                                                                                                                                                                                                         |                           |                | E PRES      |                |                  |               |               |              |  |  |
| Interval: 3437-36                                                                                       |                                                                                                                                                                                                                         |                           |                | (in. (sg):  |                | M                | ax. (sg): 1.4 | 1             |              |  |  |
| Comments:                                                                                               | -Top Lange                                                                                                                                                                                                              | based on co               | rrelation wi   | th 6506/    | /6-1.          |                  |               |               |              |  |  |

| FORMA       | TION | DICKS | TACT | 24 HOURS |
|-------------|------|-------|------|----------|
| I. O IVIVIA |      | 11010 |      |          |

|             | FORMATION PICKS LAST 24 HOURS |        |           |            |                             |  |  |  |  |  |  |  |  |
|-------------|-------------------------------|--------|-----------|------------|-----------------------------|--|--|--|--|--|--|--|--|
| Formation   | Depth                         | Depth  | Prognosed | Difference | Basis of Pick               |  |  |  |  |  |  |  |  |
|             | mMDBRT                        | mTVDSS | mTVDSS    | m +/-      |                             |  |  |  |  |  |  |  |  |
| Naust       | 502                           | 477    | 464       | +13        | LWD GR/Resistivity          |  |  |  |  |  |  |  |  |
| Kai         | 1552                          | 1524.3 | 1515      | +9.3       | LWD Resistivity             |  |  |  |  |  |  |  |  |
| Brygge      | 1604                          | 1576.2 | 1552      | +24.2      | LWD Sonic                   |  |  |  |  |  |  |  |  |
| Tp Flooding | 1654                          | 1626   | 1606      | +20        | LWD Resistivity/Sonic       |  |  |  |  |  |  |  |  |
| Surface     |                               |        |           |            | -                           |  |  |  |  |  |  |  |  |
| Tare        | 1741                          | 1712.8 | 1690      | +22.8      | LWD Resistivity/Cuttings    |  |  |  |  |  |  |  |  |
| Springar    | 1797                          | 1768.6 | 1756      | +12.6      | LWD GR/Sonic/Cuttings       |  |  |  |  |  |  |  |  |
| Nise        | 2420                          | 2390.2 | 2342      | +47.8      | LWD GR                      |  |  |  |  |  |  |  |  |
| Lysing      | 3088                          | 3058.3 | 3043      | +15.3      | LWD GR/Resistivity/Cuttings |  |  |  |  |  |  |  |  |
| Lange       | 3137.5                        | 3107.8 | 3117      | -9.2       | LWD GR/Resistivity          |  |  |  |  |  |  |  |  |



| Rig: Byford Dolp                                                                                             | ord Dolphin   Well: 65 |               |              | 6506/3-1     |                    |            | Date: 10.08.01 |        |              |              | Days since spud: 20 |  |  |
|--------------------------------------------------------------------------------------------------------------|------------------------|---------------|--------------|--------------|--------------------|------------|----------------|--------|--------------|--------------|---------------------|--|--|
| Depth (mMD): 36                                                                                              | 667                    | Depth (mT     | VD): 3       | 662.0        | Curr               | ent Opera  | ation: R       | IH w   | ith Wireli   | ne Run 3 -   | PEX                 |  |  |
| ROP(m/hr): -                                                                                                 | Progress               |               |              | VD offset:   |                    | •          |                |        |              |              |                     |  |  |
| Last Survey:                                                                                                 |                        | 3641.9 m      | MD           | 3636         | 3.9 m <sup>-</sup> | TVD Inc    | :: 1.9°        |        |              | Azim. 23     | 2.6°                |  |  |
| MW (sg): 1.60                                                                                                | Max PP                 | (sg): 1.54    | Csg          | g Size (ins) | : 13 3             | /8"   Css  | g Depth        | (m):   | 1374.3       | LOT (sg)     |                     |  |  |
| Operations last 2                                                                                            | 24 hours (mic          | lnight to n   | nidnigl      | ht): Conti   | nued t             | o POOH     | . Laid d       | own    | bit and L    | WD, clear    | rigfloor.           |  |  |
| Rig up Schlumber                                                                                             | ger wireline. I        | Pick up first | toolstr      | ing and R    | IH wi              | th Run 1   | AIT-PE         | X-H    | NGS. Do      | repeat sec   | tion at             |  |  |
| 3180-3060m on w                                                                                              | ay in tag bott         | om and PO     | OH wi        | th and Rig   | dowi               | n Run 1. F | Rig up R       | un 2   | DSI-GR       | -AMS-OB      | DT and              |  |  |
| RIH. Do repeat se                                                                                            |                        |               | on the       | way in, tag  | g botte            | om and Po  | OOH. F         | Rig do | own Run      | 2 DSI-GR     | -AMS-               |  |  |
| OBDT. Rig up Run 3 PEX and RIH.                                                                              |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| 6 o'clock update: Continued to RIH with Run 3 and relog anomalous density data in Brygge formation. POOH and |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| rig down Run 3. Rig up Run 4 VSP-GR and RIH                                                                  |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| Operations next 24 hours:                                                                                    |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| Continue to RIH with Run 4 and shoot VSP survey and walk away survey, POOH and rig down run 4 VSP-GR. Rig    |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| up Run 5 MDT-GR and RIH to take pressures and samples.                                                       |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| GEOLOGICAL DESCRIPTION                                                                                       |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| Interval (m) Description                                                                                     |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| SHOWS DATA                                                                                                   |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| Interval (m) Description                                                                                     |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| No Shows.                                                                                                    |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| GAS DATA                                                                                                     |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
| Gas Type                                                                                                     | Int. (m)               | Total(%)      | C1 pp        |              |                    | C3 ppm     | iC4 pp         | m      | nC4ppm       | iC5 ppm      | nC5 pm              |  |  |
| Drill Gas                                                                                                    | 11111 (111)            | 10441(70)     | 01 PF        | /   U. p     | P                  | оо ррии    | 10.1 PP        |        | e .pp        | 100 pp.ii    | neo pin             |  |  |
| Gas Peak                                                                                                     |                        |               |              |              |                    |            |                |        |              |              |                     |  |  |
|                                                                                                              |                        | 1             | P            | ORE PRI      | ESSU               | RE         |                |        | <u> </u>     |              |                     |  |  |
| Interval: -                                                                                                  |                        |               |              | Min. (sg     | g): 1.             | 4          |                | Max    | x. (sg): 1.4 |              |                     |  |  |
| Comments:                                                                                                    | -Top Lange l           | pased on co   | rrelatio     |              |                    |            |                |        | · 0          |              |                     |  |  |
|                                                                                                              | 1 0                    |               |              |              |                    |            |                |        |              |              |                     |  |  |
|                                                                                                              |                        | FORM          | <b>IATIC</b> | N PICK       | S LAS              | T 24 HC    | URS            |        |              |              |                     |  |  |
| Formation                                                                                                    | Depth                  | Dep           | th           | Progno       | sed                | Differ     | ence           |        | Bas          | sis of Pick  |                     |  |  |
|                                                                                                              | mMDBRT                 | mTVl          |              | mTVD         |                    | m +        |                |        |              |              |                     |  |  |
| Naust                                                                                                        | 502                    | 477           | 7            | 464          |                    | +13        | 3              |        | LWD (        | GR/Resisti   | vity                |  |  |
| Kai                                                                                                          | 1552                   | 1524          | 1.3          | 1515         | j                  | +9.        | 3              |        | LWI          | Resistivit   | у                   |  |  |
| Brygge                                                                                                       | 1604                   | 1576          | 5.2          | 1552         | 2                  | +24        | .2             |        | LV           | VD Sonic     | v                   |  |  |
| Tp Flooding                                                                                                  | 1654                   | 162           | 6            | 1606         | 3                  | +20        | 0              |        | LWD R        | esistivity/S | onic                |  |  |
| Surface                                                                                                      |                        |               |              |              |                    |            |                |        |              | J            |                     |  |  |
| Tare                                                                                                         | 1741                   | 1712          | 2.8          | 1690         | )                  | +22        | .8             | ]      | LWD Res      | sistivity/Cu | ıttings             |  |  |
| Springar                                                                                                     | 1797                   | 1768          | 3.6          | 1756         | 3                  | +12        | .6             |        |              | /Sonic/Cu    |                     |  |  |
| Nise                                                                                                         | 2420                   | 2390          | ).2          | 2342         | 2                  | +47        | .8             |        |              | WD GR        |                     |  |  |
| Lysing                                                                                                       | 3088                   | 3058          | 3.3          | 3043         | 3                  | +15        | .3             | LW     | VD GR/F      | Resistivity/ | Cuttings            |  |  |
| Lange                                                                                                        | 3137.5                 | 3107          | 7.8          | 3117         | 7                  | -9.2       | 2              |        |              | GR/Resisti   |                     |  |  |



| D. D.C. 1D.1                                                                                                                                                                                                                  | 1. 7          | 17 11 0500  |          | rensite d    |        |            |            | _ 0110 (41 |            |      |              | 0.1      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|----------|--------------|--------|------------|------------|------------|------------|------|--------------|----------|
| Rig: Byford Dolp                                                                                                                                                                                                              | ohin \\       | Well: 6506/ | /3-1     |              | Date   | e: 11.08.0 | 01         |            | Day        | S S  | ince spud:   | 21       |
| Depth (mMD): 30                                                                                                                                                                                                               | 667 I         | Depth (mT   | VD): 3   | 3662.0       | Cur    | rent Ope   | era        | tion: RIH  | with cle   | and  | out assemb   | oly      |
| ROP(m/hr): -                                                                                                                                                                                                                  | Progress (    | (m): -      | MV       | VD offset:   | -      | -          |            |            |            |      |              | V        |
| Last Survey:                                                                                                                                                                                                                  |               | 3641.9 m    |          |              |        | TVD I      |            |            |            |      | Azim. 23     | 2.6°     |
| MW (sg): 1.60                                                                                                                                                                                                                 | Max PP (s     | sg): 1.54   | Csg      | g Size (ins) | : 13 3 | 3/8" (     | Csg        | Depth(n    | n): 1374.3 | }    | LOT (sg)     | : 1.84   |
| Operations last                                                                                                                                                                                                               | 24 hours (mid | night to m  | nidnigl  | ht): Contii  | nued   | to RIH v   | wit        | h Run 3 a  | ınd relog  | an   | omalous d    | ensity   |
| data in Brygge foi                                                                                                                                                                                                            | rmation. POOF | I and rig d | own R    | un 3. Rig ı  | ıp Ru  | n 4 VSP    | P-G        | R and R    | H taking   | ; cł | ieckshots a  | ıt 2400m |
| and 3200m. RIH                                                                                                                                                                                                                |               |             |          |              |        |            |            |            |            |      |              |          |
| GR correlation no                                                                                                                                                                                                             |               |             |          |              |        |            |            |            |            |      |              |          |
| overpull. Then 3500lbs overpull at 3402m - tool stuck for about an hour before it came free. POOH, Overpull at 346m (2000lbs) and 3107m (2500lbs). Overpull of 3500lbs at 3086m and tool stuck came free after nearly 4 hours |               |             |          |              |        |            |            |            |            |      |              |          |
| 3346m (2000lbs) and 3107m (2500lbs). Overpull of 3500lbs at 3086m and tool stuck came free after nearly 4 hours.                                                                                                              |               |             |          |              |        |            |            |            |            |      |              |          |
| POOH and rigged down VSP-GR and Schlumberger wireline. Picked up cleanout assembly and RIH. Cut and                                                                                                                           |               |             |          |              |        |            |            |            |            |      |              |          |
| slipped drilling line at the shoe. Circulate and conditioned mud at shoe.                                                                                                                                                     |               |             |          |              |        |            |            |            |            |      |              |          |
| <b>6 o'clock update:</b> Continued to circulate and condition mud at the shoe. Continued to RIH breaking circulation every 20 stands. Tag bottom and circulated bottoms up. Circulated hole clean and boosted riser.          |               |             |          |              |        |            |            |            |            |      |              |          |
| Operations next 24 hours: Continue to circulate and condition mud and boost riser. POOH with conditioning                                                                                                                     |               |             |          |              |        |            |            |            |            |      |              |          |
| assembly. Clear rigfloor. Rig up Schlumberger wireline, pick up wireline Run 5 VSP-GR and RIH.                                                                                                                                |               |             |          |              |        |            |            |            |            |      |              |          |
| GEOLOGICAL DESCRIPTION                                                                                                                                                                                                        |               |             |          |              |        |            |            |            |            |      |              |          |
| Interval (m) Description                                                                                                                                                                                                      |               |             |          |              |        |            |            |            |            |      |              |          |
| SHOWS DATA                                                                                                                                                                                                                    |               |             |          |              |        |            |            |            |            |      |              |          |
| Interval (m) Description                                                                                                                                                                                                      |               |             |          |              |        |            |            |            |            |      |              |          |
| No Shows.                                                                                                                                                                                                                     |               |             |          |              |        |            |            |            |            |      |              |          |
| No Shows.  GAS DATA                                                                                                                                                                                                           |               |             |          |              |        |            |            |            |            |      |              |          |
| Gas Type                                                                                                                                                                                                                      | Int. (m)      | Total(%)    | C1 pp    |              |        | C3 ppm     | n T        | iC4 ppm    | nC4pp      | m    | iC5 ppm      | nC5 pm   |
| Gas Peak Circ.                                                                                                                                                                                                                | 2100          | 6.6         | 6439     |              |        | 42         |            | 10         | 5          |      |              | -        |
| Trip Gas                                                                                                                                                                                                                      | 3667          | 5.0         | 4628     |              | 3      | 53         |            | 9          | 5          |      | 1            | -        |
|                                                                                                                                                                                                                               |               |             | P        | ORE PRI      | ESSU   | IRE        |            |            | •          |      |              |          |
| Interval: -                                                                                                                                                                                                                   |               |             |          | Min. (sg     |        |            |            | N          | 1ax. (sg): | 1.4  | 1            |          |
| Comments:                                                                                                                                                                                                                     | -Top Lange ba | ased on co  | rrelatio | n with 650   | 06/6-  | 1.         |            |            |            |      |              |          |
|                                                                                                                                                                                                                               |               | FORM        | /ATIC    | N PICK       | C T A  | CT 94 L    | 10         | HDC        |            |      |              |          |
| Formation                                                                                                                                                                                                                     | Depth         | Dep         |          | Progno       |        | Diffe      |            |            |            | Ra   | sis of Pick  |          |
| 1 Offiliation                                                                                                                                                                                                                 | mMDBRT        | mTVI        |          | mTVD         |        |            | +/         |            |            | Du   | ois of 1 ick |          |
| Naust                                                                                                                                                                                                                         | 502           | 477         |          | 464          |        |            | <u>-13</u> |            | LW         | D (  | GR/Resisti   | ivitv    |
| Kai                                                                                                                                                                                                                           | 1552          | 1524        |          | 1515         |        |            | -9.3       |            |            |      | O Resistivit |          |
| Brygge                                                                                                                                                                                                                        | 1604          | 1576        |          | 1552         |        |            | 24.        |            |            |      | ND Sonic     | J        |
| Tp Flooding                                                                                                                                                                                                                   | 1654          | 162         |          | 1606         |        |            | +20        |            | LWD        |      | esistivity/S | Sonic    |
| Surface                                                                                                                                                                                                                       |               |             |          |              |        |            | -          |            |            | -    | - J · -      |          |
| Tare                                                                                                                                                                                                                          | 1741          | 1712        | 2.8      | 1690         | )      | +2         | 22.        | 8          | LWD        | Res  | sistivity/Cu | uttings  |
| Springar                                                                                                                                                                                                                      | 1797          | 1768        | 3.6      | 1756         | 3      | +          | 12.        | 6          | LWD        | GR   | 2/Sonic/C    | uttings  |
| Nise                                                                                                                                                                                                                          | 2420          | 2390        | ).2      | 2342         | 2      | +4         | 47.        | 8          |            | L    | WD GR        | -        |
| Lysing                                                                                                                                                                                                                        | 3088          | 3058        | 3.3      | 3043         | 3      | +          | 15.        | 3          | LWD G      | R/1  | Resistivity/ | Cuttings |
| Lange                                                                                                                                                                                                                         | 3137.5        | 3107        | '.8      | 3117         | 7      | -!         | 9.2        |            | LW         | D (  | GR/Resisti   | ivity    |
|                                                                                                                                                                                                                               | 0.20110       | 0101        |          | 0111         | •      | <u> </u>   | ٠.~        |            | 2,11       |      |              | · - • J  |



| Rig: Byford Dolp                                                                                                 | lphin   Well: 6506/3-1 |              |          |              | Date:  | : 12.08.01  |           | Days s                             | Days since spud: 22        |         |  |  |
|------------------------------------------------------------------------------------------------------------------|------------------------|--------------|----------|--------------|--------|-------------|-----------|------------------------------------|----------------------------|---------|--|--|
| Depth (mMD): 36                                                                                                  | 667                    | Depth (mT    | VD): 36  | 62.0         | Curre  | ent Opera   | tion: Att | empting to s                       | ample with                 | MDT     |  |  |
| ROP(m/hr): -                                                                                                     | Progress               |              |          | D offset: -  |        | p           |           | <u></u>                            |                            |         |  |  |
| Last Survey:                                                                                                     | 1 -8                   | 3641.9 ml    |          |              |        | VD Inc      | : 1.9°    |                                    | Azim. 23                   | 2.6°    |  |  |
| MW (sg): 1.60                                                                                                    | Max PP                 | (sg): 1.53   | Csg S    | Size (ins):  | 13 3/  | /8" Css     | Depth(1   | n): 1374.3                         | LOT (sg)                   |         |  |  |
| Operations last 2                                                                                                |                        |              | idnight  | ): Continu   | ued to | o circulate | e and cor | dition mud                         |                            |         |  |  |
| Continued to RIH                                                                                                 |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| and boosted riser.                                                                                               |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| bottom and circul                                                                                                |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| decided due to we                                                                                                |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| up Run 5 - MDT-GR and RIH. Took pretests (10 prior to sample 6 good, 2 supercharged, 2 tight, further 4 while    |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| attempting to sample) in the Brygge.                                                                             |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| 6 o'clock update: Continued to attempt a sample in the Brygge - no go. RIH to Lysing take 6 pretests and attempt |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| sample  Operations next 24 hours: Continue sampling in the Lysing Formation. POOH attempt sample in th Brygge.   |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
|                                                                                                                  |                        |              |          |              |        |             | OOH att   | empt sample                        | e in th Bryg               | ge.     |  |  |
| POOH and rig do                                                                                                  | wn Run 5 M             | DI-GR. Rig   | up Kun   | 6 VSP-G      | K and  | d KIH.      |           |                                    |                            |         |  |  |
| GEOLOGICAL DESCRIPTION                                                                                           |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| Interval (m) Description                                                                                         |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
|                                                                                                                  |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| SHOWS DATA                                                                                                       |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| Interval (m) Description                                                                                         |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| No Shows.                                                                                                        |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| GAS DATA                                                                                                         |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
| Gas Type                                                                                                         | Int. (m)               | Total(%)     | C1 ppm   | 1 C2 ppi     | m      | C3 ppm      | iC4 ppm   | nC4ppm                             | iC5 ppm                    | nC5 pm  |  |  |
|                                                                                                                  |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
|                                                                                                                  |                        |              |          |              |        |             |           |                                    |                            |         |  |  |
|                                                                                                                  |                        |              |          | RE PRE       |        |             |           |                                    |                            |         |  |  |
| Interval: -                                                                                                      |                        |              |          | Min. (sg):   |        |             | ]         | Max. (sg): 1.4                     | 4                          |         |  |  |
| Comments:                                                                                                        | -Top Lange             | based on cor | relation | with 6506    | 6/6-1  |             |           |                                    |                            |         |  |  |
|                                                                                                                  |                        | EODI         | LATITOR  | I DICKO      | TAG    | T 04 TTO    | TIDO      |                                    |                            |         |  |  |
| Г                                                                                                                | D. 4                   |              |          | N PICKS      |        |             |           | n                                  | · CD: I                    |         |  |  |
| Formation                                                                                                        | Depth<br>mMDBRT        | Dept         |          | Prognose     |        | Differe     |           | Ва                                 | sis of Pick                |         |  |  |
| Naust                                                                                                            | 502                    | mTVI 477     |          | mTVDS<br>464 | ) S    | m +<br>+13  |           | LWD                                | CD/Dogisti                 | · ·i+·· |  |  |
| Kai                                                                                                              | 1552                   | 1524         |          | 1515         |        | +9.         |           |                                    | GR/Resisti<br>D Resistivit |         |  |  |
|                                                                                                                  | 1604                   | 1576         |          | 1513         |        | +9.         |           |                                    | WD Sonic                   | y       |  |  |
| Brygge<br>Tp Flooding                                                                                            | 1654                   | 1620         |          | 1606         |        | +24         |           |                                    |                            | onic    |  |  |
| Surface                                                                                                          | 1034                   | 1020         | 0        | 1000         |        | +20         | '         | LWDK                               | esistivity/S               | OHIC    |  |  |
| Tare                                                                                                             | 1741                   | 1712         | 8        | 1690         |        | +22         | 8         | I W/D Pa                           | sistivity/Cu               | ıttings |  |  |
| Springar                                                                                                         | y c                    |              |          |              |        |             |           |                                    | U                          |         |  |  |
| Nise                                                                                                             | 2420                   | 2390         |          | 2342         |        | +12         |           | LWD GR/Sonic/Cuttings              |                            |         |  |  |
| Lysing                                                                                                           | 3088                   | 3058         |          | 3043         |        | +47         |           | LWD GR LWD GR/Resistivity/Cuttings |                            |         |  |  |
| Lange                                                                                                            | 3137.5                 | 3107         |          | 3117         |        | -9.2        |           |                                    | GR/Resisti                 |         |  |  |
| Lange                                                                                                            | 0101.0                 | 3107         | .0       | 3117         |        | -3.2        | ·         | יעיים                              | an nesisti                 | vily    |  |  |



# WELLSITE GEOLOGICAL REPORT

Wellsite Geologist: Mike Donovan\Ed Linaker

| Rig: Byford Dolp                   | l Dolphin   Well: 6506/3-1   Date: 13.08.01 |               |          |                   | Days since spud: 23 |                |           |                          |              |            |
|------------------------------------|---------------------------------------------|---------------|----------|-------------------|---------------------|----------------|-----------|--------------------------|--------------|------------|
| Depth (mMD): 36                    | 667                                         | Depth (mT     | VD): 3   | 662.0             | Cun                 | ent Opera      | ation: Co | ntinuing witl            | ı VSP surv   | ey         |
| ROP(m/hr): -                       | Progress                                    |               |          | VD offset         |                     | •              |           |                          |              | V          |
| Last Survey:                       |                                             | 3641.9 m      | MD       | 363               | 6.9 m               | ΓVD Inc        | :: 1.9°   |                          | Azim. 23     | 2.6°       |
| MW (sg): 1.60                      | Max PP                                      | (sg): 1.53    | Csg      | g Size (ins       | ): 13 3             | /8" Cs         | g Depth(1 | n): 1374.3               | LOT (sg)     |            |
| Operations last 2                  | 24 hours (mic                               | lnight to n   | nidnigl  | <b>ht):</b> Conti | nued t              | to attempt     | a sample  | in the Bryg              | ge - no go.  | RIH to     |
| Lysing take 8 pret                 |                                             |               |          |                   |                     |                |           |                          |              |            |
| VSP-GR and RIH                     |                                             |               |          |                   |                     |                |           |                          |              |            |
| Begin shooting VS                  |                                             | 0m levels P   | ull up t | o 2898m           | and st              | art (18:10-    | ·22:45) W | alkaway VS.              | P survey. C  | ontinued   |
| with VSP survey a                  | t 10m levels.                               | CD            | . 10     | 1 1 DC            | 2011                | . 1 1          | 1 D       | 0 VCD C                  | ו וית ח      | D 7        |
| 6 o'clock update<br>CST-GR Problem |                                             |               |          | ieveis, PC        | JUH                 | ına rıggea     | down Ki   | In 6 VSP-G               | K. Pickea u  | ip Kun 7   |
| Operations next                    |                                             |               |          | blehead. 1        | RIH w               | ith Run 6      | CST-GR    | to TD and                | shot sidewa  | all cores. |
| POOH with Run                      |                                             |               |          |                   |                     |                |           |                          |              |            |
|                                    |                                             | GI            | EOLO     | GICAL I           | FSC                 | RIPTIO         | V         |                          |              |            |
| Interval (m)                       |                                             |               |          | Descriptio        |                     |                | · •       |                          |              |            |
| ,                                  |                                             |               |          |                   |                     |                |           |                          |              |            |
|                                    |                                             |               |          | SHOWS             | DAT                 | A              |           |                          |              |            |
| Interval (m)                       |                                             |               |          |                   | De                  | scription      |           |                          |              |            |
|                                    | No Shows.                                   |               |          |                   |                     |                |           |                          |              |            |
| a m                                | T . ( )                                     | I III + 1/0/) | 01       | GAS D             |                     | <u> </u>       | 104       |                          | Lor          | Or.        |
| Gas Type                           | Int. (m)                                    | Total(%)      | C1 pp    | om C2 p           | opm                 | C3 ppm iC4 ppn |           | nC4ppm                   | iC5 ppm      | nC5 pm     |
|                                    |                                             |               |          |                   |                     |                |           |                          |              |            |
|                                    |                                             | 1             | P        | ORE PR            | ESSU                | RE             |           |                          | I            |            |
| Interval: -                        |                                             |               |          | Min. (s           |                     |                | ]         | Max. (sg): 1.            | 45           |            |
| Comments:                          | -Top Lange l                                | pased on co   | rrelatio |                   |                     |                | •         |                          |              |            |
|                                    |                                             |               |          |                   |                     |                |           |                          |              |            |
|                                    |                                             |               |          |                   |                     | ST 24 HC       |           |                          |              |            |
| Formation                          | Depth<br>mMDBRT                             | Dep<br>mTVI   |          | Progno            |                     |                |           | Basis of Pick            |              |            |
| Naust                              | 502                                         | 47            |          | mTVI<br>464       |                     | m +<br>+1      |           | LWD                      | GR/Resisti   | vity       |
| Kai                                | 1552                                        | 1524          |          | 151               |                     | +9.            |           |                          | D Resistivit |            |
| Brygge                             | 1604                                        | 1576          |          | 155               |                     | +24            |           |                          | WD Sonic     | · <i>J</i> |
| Tp Flooding                        | 1654                                        | 162           |          | 160               |                     | +2             |           |                          | esistivity/S | Sonic      |
| Surface                            |                                             |               |          |                   |                     |                |           |                          | J            |            |
| Tare                               | 1741                                        |               | 1712.8   |                   | 0                   | +22            |           | LWD Resistivity/Cuttings |              |            |
| Springar                           | 1797                                        | 1768          |          | 175               |                     | +12            |           |                          | R/Sonic/Ci   | uttings    |
| Nise                               | 2420                                        | 2390          |          | 234               |                     | +47            |           |                          | WD GR        |            |
| Lysing                             | 3088                                        | 3058          |          | 304               |                     | +15            |           | LWD GR/                  |              |            |
| Lange                              | 3137.5                                      | 3107          | ′.8      | 311               | 7                   | -9.5           | 2         | LWD                      | GR/Resisti   | vity       |



Tare

**Springar** 

Nise

Lysing

Lange

1741

1797

2420

3088

3137.5

1712.8

1768.6

2390.2

3058.3

3107.8

#### WELLSITE GEOLOGICAL REPORT

Wellsite Geologist: Mike Donovan\Ed Linaker Rig: Byford Dolphin Well: 6506/3-1 Date: 14.08.01 Days since spud: 24 Depth (mMD): 3667 Depth (mTVD): 3662.0 Current Operation: Continuing with P&A Progamme. ROP(m/hr): -Progress (m): -MWD offset: -Last Survey: 3641.9 mMD 3636.9 mTVD Inc: 1.9° Azim. 232.6° Csg Size (ins): 13 3/8" | Csg Depth(m): 1374.3 | LOT (sg): 1.84 MW (sg): 1.60 Max PP (sg): 1.53 Operations last 24 hours (midnight to midnight): Continued VSP survey at 10m levels, POOH and rigged down Run 6 VSP-GR. Picked up Run 7 CST-GR Problem with cablehead troubleshoot. Continue to repair cablehead. RIH with Run 6 CST-GR to TD and shot sidewall cores. (Shot 53, Recovered 29, Empty 2, Misfire 8, Lost 14, Recovery 55%) POOH with Run 7 and rigdown Schlumberger wireline. Commence P&A programme. 6 o'clock update: Continued P&A programme. Operations next 24 hours: Continue P&A programme. GEOLOGICAL DESCRIPTION Interval (m) Description **SHOWS DATA** Interval (m) Description No Shows **GAS DATA** C2 ppm Gas Type Int. (m) Total(%) C1 ppm C3 ppm iC4 ppm nC4ppm iC5 ppm nC5 pm PORE PRESSURE Interval: -Min. (sg): 1.45 Max. (sg): 1.45 -Top Lange based on correlation with 6506/6-1. Comments: **FORMATION PICKS LAST 24 HOURS** Formation Depth Depth **Prognosed** Difference Basis of Pick mTVDSS mMDBRT **mTVDSS** m +/-Naust 502 477 464 +13 LWD GR/Resistivity Kai 1552 1524.3 +9.3 LWD Resistivity 1515 +24.21604 1576.2 1552 LWD Sonic Brygge LWD Resistivity/Sonic Tp Flooding 1654 1626 1606 +20Surface

1690

1756

2342

3043

3117

+22.8

+12.6

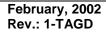
+47.8

+15.3

-9.2

LWD Resistivity/Cuttings

LWD GR/Sonic/Cuttings


LWD GR

LWD GR/Resistivity/Cuttings

LWD GR/Resistivity

# **Enclosure 2**

# Contractors' End of Well Summaries and Reports





# MI Norge AS Drilling Fluids Summary







# **CHEVRON**

# **Drilling Fluids Summary**

Well: 6506/3-1

| Prepared by:<br>Tom Rapp | Verified by: | Approved by:<br>Henning Balzer |
|--------------------------|--------------|--------------------------------|
| Date:                    | Date:        | Date:                          |
| Revision: 0              | Date:        |                                |

# **CONTENT**

| General                     |        |     |
|-----------------------------|--------|-----|
|                             |        | 2   |
| Summary                     |        |     |
|                             |        | 3   |
| 36" Section                 |        |     |
|                             |        |     |
|                             |        |     |
| _                           |        |     |
|                             |        |     |
|                             |        |     |
|                             |        |     |
|                             |        |     |
|                             |        |     |
|                             |        | 6   |
| 17 1/2" Section             |        |     |
|                             |        |     |
|                             |        |     |
| Drilling Fluid Performance: |        | 8   |
| • •                         | e:     |     |
| Hole Problems:              |        | 8   |
|                             |        |     |
| Other Problems:             |        | 9   |
| Recommendations:            |        | 9   |
| Volume Breakdown:           |        | .10 |
|                             |        | .10 |
| 8 1/2" Section              |        |     |
|                             |        |     |
| •                           |        |     |
| Drilling Fluid Performance: |        | .13 |
| ,,                          |        |     |
|                             |        |     |
|                             | e:     |     |
| Hole Problems:              |        | .15 |
| Other Problems:             |        | .15 |
| Recommendations:            |        | .15 |
| Volume Breakdown:           |        | .16 |
|                             |        | .16 |
| Clean Up                    |        |     |
| Riser and Surface Cleanup:  |        | .17 |
|                             |        | .17 |
| Appendix                    |        |     |
| -                           | kdown: |     |
| Environmental information:  |        |     |
| Shaker screen usage:        |        |     |
| Daily Mud properties        |        |     |

#### **GENERAL**

Well: 6506/3-1

**OPERATOR:** Chevron

WELL: 6506 / 3-1

AREA: Haltenbanken

CHEVRON SUPERVISORS: M. Elkins, R. Moore

DRILLING CONTRACTOR: Dolphin

RIG: Byford Dolphin

M-I NORGE ENGINEERS: K. Low, R. Campbell,

K. Low, R. Campbell, D. Fraser-Wilson, P. Hammond

| Hole section | Mud system    | Drilled to, mMD/TVD | Casing, in. / Shoe depth |
|--------------|---------------|---------------------|--------------------------|
| 36"          | SW/Bentonite  | 456/456             | 30/451                   |
| 17 ½"        | SW/Bentonite  | 1382/1382           | $13\frac{3}{8}/1374$     |
| 8 1/2"       | Versavert OBM | 3667/3662           | N/A                      |

## Summary of objectives

Three sections were drilled, where two were riserless. Two sections were drilled with water-based mud and one with oil based mud.

Well: 6506/3-1

The well was successfully drilled to a total depth of 3667 meters.

A suite of logs successfully completed.

The well was abandoned by setting cement plugs from 3109 - 3025m, from 1791 - 1491m and from 1491 - 1274m across the 13 3/8" casing shoe. The final top plug was set from 661 - 451m.

The wellhead was then cut and retrieved after displacing to seawater above the top plug.

#### Details of 36" hole section

36" hole drilled from: 366 m 36" hole drilled to: 456 m Hole length: 90 m

Well: 6506/3-1

Drilling fluid: Seawater/Bentonite

Total Cost for section: 176,442.28 NOK
Cost per meter: 1,960.47 NOK
Cost per cubic meter: 1,208.51 NOK

Max. Inclination: 4.0°

#### Summary of drilling events

The well was spudded at 0030 hrs on 22<sup>nd</sup> of July. After running the BHA and testing the Anderdrift tool, the seabed was tagged at 366 metres. Drilling was rapid, the open hole being cleaned with seawater and pumping 8 m³ pre-hydrated sweeps as required. At TD 15 m³ of hi-viscosity sweep was pumped to finally clean the hole. A check revealed no gas present and the well was displaced to 1.2 sg Gel mud. The casing was run and cemented without problems.

#### **Drilling fluid performance**

Prehydrated gel mud at 70 kg/m³ was mixed, with a yielded viscosity in excess of 150 sec/qt, this was used to sweep the hole while drilling. The hole was displaced to 1.20 sg Gel mud (concentration of 55kg/m³ bentonite) at TD. Kill mud at 1.60 sg was prepared as a contingency.

#### Hole problems

There were no hole problems experienced in this section.

#### Cost comments

Third party costs for CMC were justified because the time schedule for drilling was inadequate to allow sufficient period for full hydration, thus the requirement for CMC. Additional costs were also incurred because an extra volume of spud mud had to be built using CMC, this was due to the drill water supply becoming exhausted. Further costs were incurred after additional mud had to be made up to ream and fill the hole and casing.

Well: 6506/3-1

Estimated cost: 79,096.00 NOK
Actual cost: 176,442.28 NOK
Difference: +123.1 %

#### Other problems

None.

#### Recommendations

The mud system used and the properties achieved were satisfactory for this section. They are to be recommended for future intervals of this type. However problems with logistics could be significantly simplified through the use of Guar Gum to make sweep volumes.

# 36" Section Volumes Breakdown

| Breakdown Category                 | Volume<br>m <sup>3</sup> | Cost/m <sup>3</sup><br>Mud | Cost<br>NOK |
|------------------------------------|--------------------------|----------------------------|-------------|
| Mud volume built                   | 432                      |                            |             |
| Mud transferred to 8.5" pilot hole | 301                      |                            |             |
| Total Utilised                     | 146                      | 1,208.51                   | 176,442.28  |

Well: 6506/3-1

# 36" Section Mud Loss Summary

| Loss Category  | Volume m <sup>3</sup> |
|----------------|-----------------------|
| Shakers        | N/A                   |
| Dumped         | 146                   |
| Total Utilised | 146                   |

#### Details of 17 1/2" hole section

30" conductor set at:
451 m
17 ½" hole drilled from:
456 m
17 ½" hole drilled to:
1382 m
Hole length:
926 m

Well: 6506/3-1

Drilling fluid: Seawater/Bentonite/CMC

Total Cost for section: 796,670.56 NOK
Cost per meter: 860.33 NOK
Cost per cubic meter: 623.37 NOK

Max. Inclination: 4.5°

#### Summary of drilling events

The 30" casing, shoe and 3 metres of new formation were cleaned out, by pumping seawater and a hi-viscosity sweep with a 26" bit. An 8 ½" pilot hole was drilled to 1382 metres to enable easier handling of any shallow gas in this riserless section. No gas was observed, and the hole was cleaned, by pumping seawater and hi-viscosity sweeps on each half stand drilled. The hole was swept with 30 m³ of hi-viscosity sweep at TD and then displaced to 1.20 sg Gel mud. The trip out showed the hole to be in good condition and at the 30" shoe the hole was circulated clean.

A 12  $\frac{1}{4}$ " x 17  $\frac{1}{2}$ " hole opener assembly was picked up and the hole was reamed out to a depth of 1379 metres without problems. Remaining hi-viscosity mud left on surface was swept round at TD and the open hole displaced to 1.20 sg Gel/CMC mud. On the trip out slight over pull was experienced but easily worked through. The kill mud density was reduced from 1.60 sg to 1.20 sg and used to displace the hole prior to running casing.

A restriction that was encountered while running the 13 3/8" casing caused the string to fold over at seabed, and buckled in two places. The string was then retrieved and any tight spots were reamed using conventional gel sweeps. The hole was displaced using 200 m³ of KCl mud at 1.40 sg. The concentration of KCl at 93 kg/m³ provided adequate inhibition with respect to the active clay formation. The casing string was then re-run and cemented without problems.

#### **Drilling fluid performance**

The 8 ½" pilot hole section was drilled with prehydrated gel mud at 70 kg/m³ with the addition of 1 kg/m³ of CMC to allow rapid mixing and to keep up with the drilling rate. The displacement mud for the pilot hole was also built from prehydrated gel using a concentration of 55 kg/m³ bentonite.

Well: 6506/3-1

For the 17 ½" hole opening assembly the mud system required a change from pre-hydrated gel / CMC to seawater / CMC used due to lack of drill water for the pre-hydration of the bentonite. The seawater CMC was mixed at 15 kg/m³ to allow the mixing to keep pace with the rate at which it was being pumped. The displacement mud for the section was built by reducing the density of the kill mud from1.60 to1.20 sg. The gel mud had been retained from the start of the section to give the displacement mud additional rheology.

During the wiper trip, after the problematic casing run, the sweep mud used was pre-hydrated gel. The displacement mud was built from 1.13 sg KCl brine cut back with seawater and CMC and then weighted to 1.40 sg. A total of 90 m³ brine was used, less would have resulted in a volume being lost to dead volume in the brine tank. Programmed concentration was 50 kg/m³ but this was increased to 93 kg/m³ when the mud was built.

#### Solid control equipment performance

Not used.

#### Hole problems

There was no evidence of boulders or fill after tripping, however an in hole restriction was experienced when the first string of 13 3/8" casing run, the string was later found to be bent on bottom. Due to the damaged sustained, the damage part of the string was laid out, and the same string was re-run.

There <u>may</u> have been some partial hydration of clay stone in the interval between 700 – 900 metres as a result of displacing to uninhibited Gel mud. This <u>may</u> have resulted in hydration and subsequent swelling of the clays, which could have caused the casing to stand up. The wiper trip showed very little, if any, signs of tight hole. After the wiper trip had been made with the KCl mud in the hole no signs of hydration were observed. The casing was run and cemented without further problem.

#### Cost comments

The plan was to drill the section with pre-hydrated gel mud but due to problems with delivery of drill water from the supply vessel it was necessary to use seawater and CMC. To give as much volume as possible the gel mud was prehydrated to 1.5 time's normal and cut back with seawater. This however was only done with the last of the drill water since the extent of the shortfall was not known until the vessel arrived on location. Further costs were then incurred after additional mud had to be made up to ream the hole with. A further volume had to then be made up in order to fill the casing.

Well: 6506/3-1

The costs do not include the price of the 90m<sup>3</sup> of KCl brine since this was purchased directly from another Mud Company.

Estimated cost: 427,790.00 NOK
Actual cost: 796,670.56 NOK
Difference: +86.2 %

## Other problems

None.

#### Recommendations

Ensure adequate supply of drill water to allow for the use of the cheaper pre-hydrated gel for sweep during the section.

(Note: The short fall in drill water was a result of using a shared vessel during the early stages of the well. For the latter stages a dedicated vessel was sourced).

The use of KCl for the displacement mud provided an enhanced level of inhibition and although it is not certain that this alone was responsible for the smooth running of the 13.3/8" casing, it can only have helped.

# 17 1/2" Section Volumes Breakdown

| Volume Category     | Volume<br>M <sup>3</sup> | Cost/m <sup>3</sup><br>Mud | Cost<br>NOK |
|---------------------|--------------------------|----------------------------|-------------|
| Mud volume imported | 301                      |                            |             |
| Mud volume built    | 977                      |                            |             |
| Mud volume exported | 0                        |                            |             |
| Total Utilised      | 1278                     | 623.37                     | 796,670.56  |

Well: 6506/3-1

# 17 1/2" Section Mud Loss Summary

| Loss Category  | Volume m <sup>3</sup> |
|----------------|-----------------------|
| Dumped         | 1278                  |
| Total Utilised | 1278                  |

#### Details of 8 1/2" Hole Section

 8 ½ " hole drilled from:
 1382 m

 8 ½ " hole drilled to:
 3667 m

 13 3/8" casing set at
 1374 m

 Hole length:
 2285 m

Drilling fluid VERSAVERT OBM

Total Cost for section: 1,918,333.17 NOK
Cost per meter drilled: 839.33 NOK
Cost per cubic meter utilised: 8,060.22 NOK

Max. Inclination: 4.5 °

#### Summary of drilling events

It was evident that the initial load out of oil based mud was contaminated with 18 m<sup>3</sup> (a figure derived from calculating the volume of water addition required to change the Oil/Water ratio from that notified to the rig) of water from the boat's tanks. Consequently the Oil/Water ratio started of at 68/32. It was therefore necessary to make up 50 m<sup>3</sup> of base oil premix to correct this, in addition it was also necessary to substantially increase the water phase salinity with powdered calcium chloride.

While drilling at a depth of 1675 metres the mud weight was being increased from 1.45 sg to 1.50 sg (with a plan to later raise it to 1.55 sg). At 1698 metres with the active and half of the annulus at a density of 1.50 sg an influx of 4 m3 into the well bore was experienced. The equivalent mud weight required to circulate out the influx was also 1.50 sg.

The system was maintained at this weight for a full circulation. Influx returns at surface were routed to an empty pit and the system weight was maintained at 1.50 sg. At this time additional mud volume was weighted up to 1.50 sg to replace the diverted volume and to provide a buffer against any losses. It was then observed that there still remained 80 to 90 psi on the drill pipe. The mud weight was raised to 1.57 sg, which was deemed sufficient to kill the well.

The 13 3/8" casing contents were treated with an enhanced premix plus calcium chloride whilst weighting up. A total of 10 –12 m³ formation brine was incorporated into the mud. The riser was displaced using the booster pump to mud that had been previously treated with emulsifiers, calcium chloride and then weighted up. This created mud, which was in good enough condition to run back into the hole. The hole was circulated bottoms-up and a problem-free wiper trip was conducted to the shoe.

Static seepage losses of 1 m3 per hour were observed on running back to bottom. These losses were attributed to the Brygge sand. Similar dynamic losses were observed whilst drilling ahead but they were cured using an initial treatment of 0.6kg/m³ of Coarse and Medium Calcium Carbonate. The concentration was

thereafter maintained by mixing 25 kg of each material over a 30 minutes period. Later the rate of addition was reduced to one sack of medium and coarse over each hour.

Well: 6506/3-1

The well was then drilled to coring point at 3101metres, during this time the hole remained in good condition and the mud properties were run at optimum specification. A core was cut from 3101 metres to 3171.5 metres through the Lysing sand. Over-pulls were experienced at 2400 metres and 1520 metres. Approximately 67 metres of core, which represented a 97% recovery were recovered to surface. The hole appeared to be in good condition.

On running back in the hole to drill it was necessary to wash and ream from 3050 metres to 3171 metres. Substantial quantities of cavings and a quantity of old cuttings were seen at the shakers. In response the mud weight was raised to 1.60 sg. This tactic was partially successful. Drilling continued to 3667 metres TD and on circulating bottoms-up more cavings were again seen but not in such large quantities as before increasing the weight to 1.60 sg. The hole was circulated clean and the string pulled to surface without problems.

The logging programme comprised 5 runs. During the 4<sup>th</sup> run (VSP), the tool became stuck at the top of the Lysing sands but was eventually pulled free. A wiper trip was made. The bottoms up sample of mud that was tested showed virtually no deviation in its properties from the programmed values. The MDT run was then successfully completed. Following that the VSP and SWC runs were also successfully completed. The Logging equipment was rigged down and the hole was plugged back by setting 4 balanced cement plugs.

A clean-up programme was run as per M-I recommended procedure and the hole and riser were successfully displaced to seawater. The mud, base oil and slops were back-loaded to the boat.

#### **Drilling fluid performance**

The mud delivered on the boat for this section was undoubtedly contaminated by water. However the precise source of this water could not be ascertained. The pit volume available on the rig was not sufficient to make any substantial treatment prior to displacing the hole, so this treatment was done during drilling out the shoe and new formation.

Well: 6506/3-1

The Oil/Water ratio was the first property to be addressed and this was increased gradually to 72/28 with adequate additions of other chemicals being made to raise and maintain the programmed Chloride and Alkalinity levels. For the most part treatment was made by premix additions but some direct additions were necessary as well. Just prior to reaching TD, the O/W ratio was raised to 74/26 with premix and this had the effect of reducing the rheology to a more compatible value for Logging and cementing operations.

Reference to the table below will provide information about the average properties maintained but particular notice is drawn to the weight increases at 1698 metres and

3171 metres in response to hole conditions. The first to a water influx, and the second to cavings seen after washing through the cored section. In the latter case the Oil/Water ratio was gradually increased to counter the viscosity increase (mainly PV) from barite additions.

Care was taken to ensure that adequate concentrations of emulsifiers were run to offset any tendency towards solids water-wetting due to cuttings and barite incorporation into the mud.

The Rheology was deliberately maintained on the high side of the programmed range to promote good hole cleaning at relatively low pump rates. However there were minor problems associated with these higher viscosities due to the long riser the mud returning from the well was quite cool and particularly cold after tripping. Therefore it was necessary to run coarse screens on the shakers until the mud had warmed and the viscosity had dropped sufficiently to re-fit 165 or finer screens.

Despite this the Low Gravity Solids (LGS) content was maintained (< 200 kg/m³) with relatively light premix additions. Similarly there was little or no tendency towards progressiveness of the Gels indicating no fines accumulation in the mud. Just prior to reaching TD the rheology was reduced with premix for logging and cementing operations.

The HTHP value remained steady throughout the section ranging from 1.8 - 2.2 cc. The Electrical stability climbed steadily with increasing shear to a value of 800+volts.

The mud weight ranged from the planned 1.45 sg, at the start of the section to, 1.57 sg following the kick and finally to 1.60 sg in response to the tight hole and cavings seen at the shakers. The kick was taken while the mud weight was being raised from 1.45 sg to the programmed 1.55 sg.

The solids removal efficiency was calculated to be approximately 75%.

The cuttings were firm and discrete throughout, their quality increasing as the WPS reached and exceeded 130 k mg/l.

Well: 6506/3-1

Minor seepage losses were observed at different depths during this section and so Calcium Carbonate of coarse and medium grade was added more or less continually at very light concentrations to mitigate these losses.

#### Typical drilling properties

| Properties                           | Planned     | Actual      |
|--------------------------------------|-------------|-------------|
| MW (sg)                              | 1.45 – 1.58 | 1.45- 1.60  |
| YP (lbs/100ft <sup>2</sup> )         | NA          | 8.0 - 16.0  |
| PV (cP)                              | NA          | 36 - 53     |
| Gel 10 sec (lbs/100ft <sup>2</sup> ) | 7 – 12      | 7 – 10      |
| Gel 10 min (lbs/100ft <sup>2</sup> ) | < 25        | 9 - 14      |
| 3 rpm (lbs/100ft <sup>2</sup> )      | 8 – 13      | 7 - 14      |
| Excess lime (kg/m <sup>3</sup> )     | 8 – 10      | 1.8 - 7.2   |
| HTHP fluid loss (cc/30min)           | < 2         | 2 - 3.1     |
| Chlorides (mg/l)                     | 150,000     | 83K – 142K  |
| Activity of water                    | 0.85 - 0.89 | 0.78 - 0.91 |
| O/W ratio                            | 75/25-85/15 | 68/32-75/25 |
| Electric stability (Volts)           | > 600       | 531 - 876   |
| LGS (kg/m <sup>3</sup> )             | < 200       | 68 - 146    |

#### Cost comments

Estimated cost: 1,614,268.00 NOK
Actual cost: 1,595,117.55 NOK
Difference: -1.2 %

#### Solid control equipment performance

The solids control equipment comprised 3 Thule VSM 100 shakers and one Swaco variable high-speed centrifuge. The latter was tried but did not work. In addition, if run alone it would have stripped too much Barite from the mud.

The shakers performed well but with the high rheologies run to ensure good hole cleaning and the low surface temperature due to the long riser, it was not possible to run finer than 180 mesh screens for most of the section. Consequently the sand content rose to over 1% and for the most part ran around 1.5% peaking at 2% for a short time in the Brygge section.

Generally however, despite the paucity of equipment, the removal efficiency over the section was calculated to be 75%.

The addition of a fourth and possible a fifth shaker would substantially improve the efficiency of solids removal and allow finer screens to be run which in turn would result in lower sand content, reduced pump parts' wear and lower mud cost through reduced dilution.

Well: 6506/3-1

#### Hole problems

There were no significant hole problems. An influx of water was taken at 1698 metres. The well was successfully killed. There were a few tight spots observed on tripping but these were easily washed. Some cavings were encountered after 1700 metres but these all but disappeared when the weight was raised. Finally there were minor seepage losses from 1700 metres but these were eliminated by light additions of Calcium Carbonate (coarse and medium) whilst drilling ahead. A subsequent wireline caliper log indicated a large washed out section from 2117 metres to 2400 metres and it was from here that the cavings were generated.

#### Other problems

Due to the water influx, the stock of Calcium Chloride was low at one point but a new shipment was received before drilling ahead.

#### Recommendations

On locations where the riser length is such that it causes significant cooling of the mud, close consideration should be given to the ability of the solids removal equipment. In particular the shale shakers, to handle the relatively high pump rates required for hole cleaning alongside the high funnel viscosity's induced by this cooling effect.

One solution to this problem is to increase the Oil/Water ratio but this passes the cost onto the Client when it ought to be the Contractor who provides adequate equipment to handle these depth associated mud flow handling problems.

# 8 1/2" Section Volumes Breakdown

| Volume Category        | Volume<br>M <sup>3</sup> | Cost/m <sup>3</sup><br>Mud | Cost<br>NOK  |
|------------------------|--------------------------|----------------------------|--------------|
| Mud volume imported    | 300                      |                            |              |
| Mud volume built       | 260                      |                            |              |
| Mud volume back loaded | 322                      |                            |              |
| Total Utilised         | 238                      | 6,702.18                   | 1,595,117.55 |

Well: 6506/3-1

# 8 1/2" Section Mud Loss Summary

| Loss Category                   | Volume m <sup>3</sup> |
|---------------------------------|-----------------------|
| Lost To Skips                   | 10                    |
| Lost On Cuttings                | 90                    |
| Left In Hole                    | 82                    |
| Lost In Hole                    | 10                    |
| Evaporation                     | 0                     |
| Lost to Slop                    | 35                    |
| Lost as fluid transfers to boat | 11                    |
| Total Utilised                  | 238                   |

#### Riser and Surface Cleanup

A clean-up programme was run as per M-I recommended procedure and the riser was successfully displaced to seawater. The mud, base oil and slops were backloaded to the boat.

Well: 6506/3-1

The following Clean Up Pills were pumped -

8 m<sup>3</sup> Base Oil.

30 m<sup>3</sup> Water Based hi-viscosity Pill weighted to 1.30 sg.

30 m<sup>3</sup> Hi-viscosity Safesurf OE Wash Pill.

30 m<sup>3</sup> Safesolve OE Solvent Pill. 10 m<sup>3</sup> Hi-viscosity Safesurf OE Clean Up Pill.

Pills were pumped at a rate to give a minimum of 10 minutes contact time and excellent results were achieved.

After flushing the choke and kill lines with a solvent pill the returned pills used for the riser clean up were utilised to clean surface lines, pits and equipment.

#### Cost comments

Estimated cost: n/a NOK 323,215.62 NOK Actual cost: Difference: n/a %

#### Recommendations

For a future clean up it is recommended that 5 kg/m<sup>3</sup> Nutplug course be added to the initial weighted pill to give a scouring effect, not only will this aid removal of mud adhering to the riser bore but will increase the efficiency of the remaining pills.

Need to look carefully at the logistics of the riser clean up and in particular interface and slops generation issues.



OPERATOR: WELL:

AREA : DRILLING FLUID:

RIG: Byford Dolphin
SECTION: 36 "
OPERATION: Drilling

Norsk Chevron AS

6506/3-1

Spud mud

START VOLUME: 0 m3 SECTION FACTOR: 0.5 SF START DEPTH: 367 m ACT. DAYS - SECTION: 2.0 days SECTION LENGTH: 89 m EST. DAYS - SECTION: 3.0 days 1.268 SG SECTION RATE: 5 310.63 Nok AVER. DENSITY -D1: 165 848.20 Nok SECTION FLUID COST: UNWT. DENSITY -D0: 1.05 SG METERS/DAY 44.50 m/day FLUID SPEC. No.: 1 # MUD USAGE/M: FLUID RATE- \$FR: 161.28 Nok/m3 1.640 m3/m

 MUD USAGE/M3 DRILLED:
 2.50 m3/m3
 WT. FLUID RATE-\$FRW:
 371.03 Nok/m3

 RECAP COST/M
 668.32 Nok/m
 RECAP COST:
 59 480.29 Nok

| DATE                       | 2001  | 21.jul | 22.jul | 23.jul | 24.jul | 25.jul | 26.jul | 27.jul | 28.jul | 29.jul | 30.jul | 31.jul | 01.aug | TOTAL | 1       |
|----------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|---------|
| FSR                        | No:   | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     |       | 1       |
| DEPTH                      | m     | 367    | 456    |        |        |        |        |        |        |        |        |        |        |       | Cost/un |
| VOLUME BUILT               | m3    | 162    | 285    |        |        |        |        |        |        |        |        |        |        | 447   | -       |
| VOLUME RECEIVED FROM SHORE | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | 1       |
| VOLUME RECEIVED FROM FIELD | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | į –     |
| VOLUME LOST ON BOAT        | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | 4       |
| CENTRIFUGE                 | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | 1       |
| SHAKERS                    | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | d.      |
| EVAPORATION                | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | d .     |
| DOWN HOLE LOSS             | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | d       |
| LOST TO SLOP               | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | d       |
| LEFT IN HOLE               | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | 4       |
| LOST TO SEA                | m3    |        | 146    |        |        |        |        |        |        |        |        |        |        | 146   | .]      |
| BACK LOADED                | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | d       |
| TRANSFERRED                | m3    |        | 301    |        |        |        |        |        |        |        |        |        |        | 301   |         |
| FINAL VOLUME               | m3    | 162    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | d and   |
| Daily section length       | m     | 0      | 89     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 89    | 4       |
| HOLE VOL. MADE             | m3    | 0.0    | 58.4   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 58.4  |         |
| DAILY DILUTION FAC.        | m3/m3 | N/A    | 2.5    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | 2.5   |         |

| CHEMICALS:                 | Unit | Price/unit |           |            |      |      |      |      |      |      |      |      |      |      |            | Third party | Total consumption |
|----------------------------|------|------------|-----------|------------|------|------|------|------|------|------|------|------|------|------|------------|-------------|-------------------|
| Barite                     | mt   | 862.00     | 45        | 85         |      |      |      |      |      |      |      |      |      |      | 130        |             | 130.0             |
| Bentonite Wyoming          | mt   | 1797.00    | 9         | 24         |      |      |      |      |      |      |      |      |      |      | 33         |             | 33.0              |
| Bentonite Wyoming Soda Ash | kg   | 2.34       | 100       | 100        |      |      |      |      |      |      |      |      |      |      | 200        |             | 200.0             |
| CMC EHV                    | kg   | 10.00      |           |            |      |      |      |      |      |      |      |      |      |      | 0          | 12          | 125.0             |
| Lime                       | kg   | 1.85       |           |            |      |      |      |      |      |      |      |      |      |      | 0          |             | 0.0               |
| Daily fluid costs          |      |            | 60 106 06 | 105 742 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 165 040 20 |             |                   |

| Sign M-I Norge | Sign Chevron: |
|----------------|---------------|
|                | <del>-</del>  |



OPERATOR: WELL: AREA:

DRILLING FLUID:

OPERATION:

RIG: SECTION: Norske Chevron AS

6506/3-1

0300/3-1

Spud mud Byford Dolphin 17 1/2 " Drilling

| START VOLUME:         | 301 m3         | SECTION FACTOR:       | 0.5 SF         |
|-----------------------|----------------|-----------------------|----------------|
| START DEPTH:          | 456 m          | ACT. DAYS - SECTION:  | 6.0 days       |
| SECTION LENGTH:       | 926 m          | EST. DAYS - SECTION:  | 4.0 days       |
| SECTION RATE:         | 38 253.06 Nok  | AVER. DENSITY -D1:    | 1.180 SG       |
| SECTION FLUID COST:   | 279 771.11 Nok | UNWT. DENSITY -D0:    | 1.05 SG        |
| METERS/DAY            | 154.33 m/day   | FLUID SPEC. No.:      | 1 #            |
| MUD USAGE/M:          | 1.380 m3/m     | FLUID RATE- \$FR:     | 161.28 Nok/m3  |
| MUD USAGE/M3 DRILLED: | 8.89 m3/m3     | WT. FLUID RATE-\$FRW: | 286.36 Nok/m3  |
| RECAP COST/M          | 436,52 Nok/m   | RECAP COST:           | 404 217.73 Nok |

| DATE                       | 2001  | 23.jul | 24.jul | 25.jul | 26.jul | 27.jul | 28.jul | 29.jul | 30.jul | 31.jul | 01.aug | 02.aug | 03.aug | TOTAL | 1       |
|----------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|---------|
| FSR                        | No:   | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18     |       | 1       |
| DEPTH                      | m     | 459    | 1382   | 1382   | 1382   | 1382   | 1382   |        |        |        |        |        |        |       | Cost/ur |
|                            |       |        |        |        |        |        |        |        |        |        |        |        |        |       | 1       |
| VOLUME BUILT               | m3    | 88     | 383    | 136    |        | 205    | 165    |        |        |        |        |        |        | 977   | ř.      |
| VOLUME RECEIVED FROM SHORE | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | i       |
| VOLUME RECEIVED FROM FIELD | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | Ī       |
| VOLUME LOST ON BOAT        | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | i       |
| CENTRIFUGE                 | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | Ī       |
| SHAKERS                    | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | i       |
| EVAPORATION                | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | Ī       |
| DOWN HOLE LOSS             | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | j       |
| LOST TO SLOP               | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | Ī       |
| LEFT IN HOLE               | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | Ī       |
| LOST TO SEA                | m3    | 81     | 505    | 322    |        | 205    | 165    |        |        |        |        |        |        | 1278  | 5       |
| BACK LOADED                | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | Ī       |
| TRANSFERRED                | m3    |        |        |        |        |        |        |        |        |        |        |        |        | 0     | j       |
| FINAL VOLUME               | m3    | 308    | 186    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | j       |
| Daily section length       | m     | 3      | 923    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 926   | i i     |
| HOLE VOL. MADE             | m3    | 0.5    | 143.2  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 143.7 | 7       |
| DAILY DILUTION FAC.        | m3/m3 | 174.0  | 3.5    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | 8.9   | , T     |

| CHEMICALS:        | Unit  | Price/unit |           |            |           |      |           |           |      |      |      |      |      |      |            | Third party  | Total consumption  |
|-------------------|-------|------------|-----------|------------|-----------|------|-----------|-----------|------|------|------|------|------|------|------------|--------------|--------------------|
| CHEWICALS.        | Offic | FIICE/UIII |           |            |           |      |           |           |      |      |      |      |      |      |            | Tilliu party | Total Collsumption |
| Barite            | mt    | 862.00     |           | 29         |           |      |           | 186       |      |      |      |      |      |      | 113        | 102          | 215.0              |
| Bentonite Wyoming | mt    | 1797.00    | 10        | 28         | 21        |      | 2         | 14        |      |      |      |      |      |      | 75         |              | 75.0               |
| Soda Ash          | kg    | 2.34       | 75        | 375        | 1225      |      | 200       |           |      |      |      |      |      |      | 650        | 1225         | 1875.0             |
| CMC EHV           | kg    |            |           | 425        | 5575      |      | 2550      |           |      |      |      |      |      |      | 0          | 8550         | 8550.0             |
| Lime              | kg    | 1.85       |           |            |           |      |           |           |      |      |      |      |      |      | 0          |              | 0.0                |
| Defoam NS         | kg    |            |           |            |           |      | 50        |           |      |      |      |      |      |      | 0          | 50           | 50.0               |
| KCI               | kg    |            |           |            |           |      |           |           |      |      |      |      |      |      | 0          | 20070        | 20070.0            |
| Daily fluid cost: |       |            | 25 199.45 | 109 674.86 | 38 944.60 | 0.00 | 58 703.25 | 47 248.96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 279 771.11 |              |                    |

KCI from Baker Hughes Inteq
Sign M-1 Norge Sign Chevron:



OPERATOR: WELL: AREA: DRILLING FLUID: RIG: SECTION: OPERATION:

Versavert Byford Dolphin 8 1/2 '' Drilling

Norsk Chevron AS 6506/3-1

SECTION FACTOR:
ACT. DAYS - SECTION:
EST. DAYS - SECTION:
AVER. DENSITY - D1:
UNWT. DENSITY - D0:
FLUID SPEC. No.:
FLUID RATE- SFR:
WT. FLUID RATE-SFRW:
BEFAB POST: 1.1 SF 15.6 days 18.2 days 1.563 SG 0.92 SG 41 # 4 346.02 Nok/m3 4 119.93 Nok/m3 START VOLUME: START DEPTH: 0 m3 1382 m 1382 m 2285 m 269 388.52 Nok 1 242 002.24 Nok 146.57 m/day 0.099 m3/m 2.71 m3/m3 661.43 Nok/m START DEPTH:
SECTION LENGTH:
SECTION RATE:
SECTION FLUID COST:
METERS/DAY
MUD USAGEM:
MUD USAGEMS DRILLED:
BECAP COSTM

|                            |       |        |        |        |        | RECAP COST. | M      | 661.43 | 3 Nok/m | RECAP COS | T:     | 1 511 370.77 | Nok    |        |        |        |        |        |        |        |       |
|----------------------------|-------|--------|--------|--------|--------|-------------|--------|--------|---------|-----------|--------|--------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| DATE                       | 2001  | 29.jul | 30.jul | 31.jul | 01.aug | 02.aug      | 03.aug | 04.aug | 05.aug  | 06.aug    | 07.aug | 08.aug       | 09.aug | 10.aug | 11.aug | 12.aug | 13.aug | 14.aug | 15.aug | 16.aug | TOTAL |
| FSR                        | No:   | 13     | 14     | 15     | 16     | 17          | 18     | 19     | 20      | 21        | 22     | 23           | 24     | 25     | 26     | 27     | 28     | 29     | 30     | 31     |       |
| DEPTH                      | m     | 1382   | 1382   | 1409   | 1698   | 1698        | 1736   | 2560   | 3101    | 3131      | 3171   | 3437         | 3667   | 3667   | 3667   | 3667   | 3667   | 3667   | 3667   | 3667   | Cos   |
|                            |       |        |        |        |        |             |        |        |         |           |        |              |        |        |        |        |        |        |        |        |       |
| VOLUME BUILT               | m3    |        |        | 18     | 68     | 84          | 7      | 15     | 21      | 1         |        | 31           | 1      | 13     |        | 1      |        |        |        |        | 260   |
| VOLUME RECEIVED FROM SHORE | m3    | 164    |        | 136    |        |             |        |        |         |           |        |              |        |        |        |        |        |        |        |        | 300   |
| VOLUME RECEIVED FROM FIELD | m3    |        |        |        |        |             |        |        |         |           |        |              |        |        |        |        |        |        |        |        | 0     |
| VOLUME LOST ON BOAT        | m3    |        |        |        |        |             |        |        |         |           |        |              |        |        |        |        |        |        |        | 11     | 11    |
| CENTRIFUGE                 | m3    |        |        |        |        |             |        |        |         |           |        |              |        |        |        |        |        |        |        |        | 0     |
| SHAKERS                    | m3    |        |        | 5      |        | 3           |        | 8      | 13      | 4         | 9      | 8            | 12     | 13     |        | 15     |        |        |        |        | 90    |
| EVAPORATION                | m3    |        |        |        |        |             |        |        |         |           |        |              |        |        |        |        |        |        |        |        | 0     |
| DOWN HOLE LOSS             | m3    |        |        |        |        |             |        |        | 9       |           |        |              | 1      |        |        |        |        |        |        |        | 10    |
| LOST TO SLOP               | m3    |        |        |        |        |             |        |        |         |           |        |              |        | 40     |        |        |        |        |        | 5      | 45    |
| LEFT IN HOLE               | m3    |        |        |        |        |             |        |        |         |           |        |              |        |        |        |        |        |        |        | 82     | 82    |
| LOST TO SEA                | m3    |        |        |        |        |             |        |        |         |           |        |              |        |        |        |        |        |        |        |        | 0     |
| BACK LOADED                | m3    |        |        |        |        |             |        |        |         |           |        |              |        | 96     |        |        |        | 38     | 50     | 138    | 322   |
| TRANSFERRED                | m3    |        |        |        |        |             |        |        |         |           |        |              |        |        |        |        |        |        |        |        | 0     |
| FINAL VOLUME               | m3    | 164    | 164    | 313    | 381    | 462         | 469    | 476    | 475     | 472       | 463    | 486          | 474    | 338    | 338    | 324    | 324    | 286    | 236    | 0      | 0     |
| Daily section length       | m     | 0      | 0      | 27     | 289    | 0           | 38     | 824    | 541     | 30        | 40     | 266          | 230    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 2285  |
| HOLE VOL. MADE             | m3    | 0.0    | 0.0    | 1.0    | 10.6   | 0.0         | 1.4    | 30.2   | 19.8    | 1.1       | 1.5    | 9.7          | 8.4    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 83.7  |
| DAILY DILUTION FAC.        | m3/m3 | N/A    | N/A    | 5.1    | 0.0    | N/A         | 0.0    | 0.3    | 1.1     | 3.6       | 6.1    | 0.8          | 1.5    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    | 2.7   |

| CHEMICALS:         | Unit | Price/unit |            |      |            |            |            |           |           |           |          |      |            |          |             |      |          |      |             |                         | т            | hird party Tota | I consumption |
|--------------------|------|------------|------------|------|------------|------------|------------|-----------|-----------|-----------|----------|------|------------|----------|-------------|------|----------|------|-------------|-------------------------|--------------|-----------------|---------------|
| Barite             | mt   | 862.00     |            |      |            |            | 83         | 5         | 34        | 28        |          |      | 11         |          | 56          |      |          |      |             |                         | 217          | 26              | 243.0         |
| EDC 95/11 base oil | m3   | 3688.80    |            |      |            | 50         | 60         |           | 5         | 12        |          |      | 25         |          |             |      |          |      |             |                         | 152          | 8               | 160.0         |
| Versavert PE       | kg   | 11.32      |            |      |            | 1300       | 1440       |           | 260       | 200       |          |      | 1000       |          |             |      |          |      |             |                         | 4200         |                 | 4200.0        |
| Versavert SE       | kg   | 11.08      |            |      |            | 600        | 600        |           | 200       | 100       |          |      | 300        |          |             |      |          |      |             |                         | 1800         |                 | 1800.0        |
| Lime               | kg   | 1.85       |            |      |            | 1375       | 1425       |           | 1200      | 1600      |          |      | 1700       |          |             |      |          |      |             |                         | 7300         |                 | 7300.0        |
| VG-Plus            | kg   | 14.98      |            |      |            | 850        |            |           |           | 50        |          |      | 175        |          |             |      | 50       |      |             |                         | 1125         |                 | 1125.0        |
| Calcium Chloride   | kg   | 2.30       |            |      |            | 4200       | 1050       | 2100      | 2100      | 2450      |          |      | 700        |          |             |      | 2100     |      |             |                         | 14700        |                 | 14700.0       |
| Versatrol          | kg   | 5.18       |            |      |            | 750        | 650        |           | 200       |           |          |      |            |          |             |      |          |      |             |                         | 1600         |                 | 1600.0        |
| Versavert F        | kg   | 18.00      |            |      |            | 400        | 75         |           | 675       | 100       |          |      | 200        |          |             |      |          |      |             |                         | 1450         |                 | 1450.0        |
| Water              | m3   |            |            |      |            |            |            |           |           |           |          |      |            |          |             |      |          |      |             |                         | 0            |                 | 0.0           |
| Bentone 128        | kg   | 24.28      |            | 125  |            |            |            |           |           |           |          |      |            |          |             |      |          |      |             |                         | 125          |                 | 125.0         |
| CaCo3 Coarse       | kg   | 1.36       |            |      |            |            |            |           |           |           |          |      |            |          |             |      |          |      |             |                         | 0            | 3325            | 3325.0        |
| CaCo3 Medium       | kg   | 1.24       |            |      |            |            |            |           |           |           |          |      |            |          |             |      |          |      |             |                         | 0            | 2800            | 2800.0        |
| CaCo3 Fine         | kg   | 1.43       |            |      |            |            |            |           |           |           |          |      |            |          |             |      |          |      |             |                         | 0            | 125             | 125.0         |
| SafeSolve OE       | kg   | 25.54      |            |      |            |            |            |           |           |           |          |      |            |          |             |      |          |      |             |                         | 0            | 2200            | 2200.0        |
| SafeSurfe OE       | kg   | 16.94      |            |      |            |            |            |           |           |           |          |      |            |          |             |      |          |      |             |                         | 0            | 1600            | 1600.0        |
| Duptec NS          | kg   | 57.01      |            |      |            |            |            |           |           |           |          |      |            |          |             |      |          |      |             |                         | 0            | 500             | 500.0         |
| Daily fluid cost:  |      |            | 675 666.80 | 0.00 | 634 467.60 | 280 154.52 | 346 073.24 | 28 839.44 | 61 798.79 | 86 518.31 | 4 119.92 | 0.00 | 127 717.50 | 4 119.92 | -264 002.09 | 0.00 | 4 119.92 | 0.00 | -125 701.25 | -165 396.38 -456 494.00 | 1 242 002.24 |                 |               |

| Sign Anchor/MI: | Sign Chevron: |  |
|-----------------|---------------|--|



Section date to/from:

Dischause and allegation of an extension

# **ENVIRONMENTALINFORMATION**



Platform: Byford Dolphin
Month: July
Year: 2001
Well: 6506/3-1
Section: 36

21.07-22.07-2001

-(1)- Mixed total = Rcvd as Mixed in fluid + Added on rig - To-shore as Mixed in fluid. -(2)- Descrepancy = Mixed total (total usage) - Total discharge = 0 (as control on massbalance) Demands in dischargepermit shall be covered by the mudprogram. If the real discharge overrides planned discharge, then this should be documented and explained.

|       |                          |        |        | Planned   |          |          |        | -(1)-   |           |           |         |           |          |             | -(2)-    |
|-------|--------------------------|--------|--------|-----------|----------|----------|--------|---------|-----------|-----------|---------|-----------|----------|-------------|----------|
| Group | Product                  | Unit   | Parcom | usage     | Rcvd     | To-shore | Added  | Mixed   | Discharge | Retention | Left    | Injection | То       | Transferred | Discrep- |
|       | name                     | (kg/l) | class  | according | as       | as       | on     | total   | in whole  | on        | in well |           | destruc- | to next     | ancy     |
|       |                          |        |        | to mud-   | mixed in | mixed    | rig    | in      | mud       | cuttings  |         |           | tion     | well/       |          |
|       |                          |        |        | programe  | fluid    | in fluid |        | section |           |           |         |           |          | section     |          |
|       | Spud mud mud:            |        |        |           |          |          | 447 m3 | 447 m3  | 146 m3    | 3         |         |           |          | 301 m3      |          |
|       | Barite                   | mt     |        |           |          |          | 130    | 130     | 42        | 2         |         |           |          | 88          |          |
|       | <b>Bentonite Wyoming</b> | mt     |        |           |          |          | 33     | 33      | 11        |           |         |           |          | 22          |          |
|       | Soda Ash                 | kg     |        |           |          |          | 200    | 200     | 65        | 5         |         |           |          | 135         |          |
|       | CMC EHV                  | kg     |        |           |          |          |        |         |           |           |         |           |          |             |          |
|       | Lime                     | kg     |        |           |          |          |        |         |           |           |         |           |          |             |          |
|       |                          |        |        |           |          |          |        |         |           |           |         |           |          |             |          |
|       |                          |        |        |           |          |          |        |         |           |           |         |           |          |             |          |
|       |                          |        |        |           |          |          |        |         |           |           |         |           |          |             |          |
|       |                          |        |        |           |          |          |        |         |           |           |         |           |          |             |          |
|       |                          |        |        |           |          |          |        |         |           |           |         |           |          |             |          |
|       |                          |        |        |           |          |          |        |         |           |           |         |           |          |             |          |
|       |                          |        |        |           |          |          |        |         |           |           |         |           |          |             |          |
|       |                          |        |        |           |          |          |        |         |           |           |         |           |          |             |          |

| Signatur MI Norge A/S                                                    | Signatur Chevron drilling supervisor |
|--------------------------------------------------------------------------|--------------------------------------|
|                                                                          |                                      |
|                                                                          |                                      |
| For more documentation and explenations, refer to Chevron og MI reports. |                                      |
|                                                                          |                                      |
| Discharge exceeding planned discharge:                                   |                                      |



# **MUD VOLUME DISTRIBUTION**



| PLATFORM | Byford Dolphin |
|----------|----------------|
| MONTH:   | July           |
| YEAR:    | 2001           |
| WELL:    | 6506/3-1       |
| SECTION: | 36             |

| HOLE    | HOLE | HOLE   | CUTTINGS | CUTTINGS | MUD   | MUD         | MUD FROM | MUD    | MUD     | SURFACE      | MUD    | MUD TO  | MUD   | EVAPOR- | TRANSFE- | MUD TYPE |
|---------|------|--------|----------|----------|-------|-------------|----------|--------|---------|--------------|--------|---------|-------|---------|----------|----------|
| SIZE    | TO   | LENGTH | VOLUME   | MASS     | MIXED | RECEIVED    | LAST     | RETUR- | LEFT IN | LOSS         | TO SEA | DEST-   | INJE- | ATED    | RRED TO  | USED IN  |
|         |      |        |          |          |       | FROM SHORE/ | SECTION  | NED    | WELL    | (by cuttings | •      | RUCTION | CTED  | WATER   | NEXT     | INTERVAL |
|         |      |        |          |          |       | FIELD       |          |        |         | retention)   |        |         |       | PHASE   | SECTION  |          |
|         | m    | m      | m3       | kg       | m3    | m3          | m3       | m3     | m3      | m3           | m3     | m3      | m3    | m3      | m3       |          |
| 36      | 456  | 89     | 58.4     |          | 447   |             |          |        |         |              | 146    |         |       |         | 301      | Spud mud |
|         |      |        |          |          |       |             |          |        |         |              |        |         |       |         |          |          |
|         |      |        |          |          |       |             |          |        |         |              |        |         |       |         |          |          |
|         |      |        |          |          |       |             |          |        |         |              |        |         |       |         |          |          |
| TOTALT: |      | 89     | 58.4     |          | 447   |             |          |        |         |              | 146    |         |       |         | 301      |          |

#### TOTAL

| MUD FROM LAST WELL/SECTION           |        |
|--------------------------------------|--------|
| MUD TRANSFERRED TO NEXT WELL/SECTION | 301 m3 |

#### **RETENTION ON OILY CUTTINGS - RETORTE ANALYSIS**

| Gravity baseoil:      | sg   |
|-----------------------|------|
| Cuttings gravity:     | sg   |
| Average for section : | g/kg |







Platform: Byford Dolphin
Month: July
Year: 2001
Well: 6506/3-1

Section: 17.5" pilot hole
Section date to/from: 23.07-28.07-2001

-(1)- Mixed total = Rcvd as Mixed in fluid + Added on rig - To-shore as Mixed in fluid. -(2)- Descrepancy = Mixed total (total usage) - Total discharge = 0 (as control on massbalance) Demands in dischargepermit shall be covered by the mudprogram. If the real discharge overrides planned discharge, then this should be documented and explained.

| Group | Product           | Unit   | Parcom | Planned usage     | Rcvd     | To-shore    | Added                                            | -(1)-<br>Mixed | Discharge | Retention      | Left    | Injection | То               | Transferre | -(2)-<br>Discrep- |
|-------|-------------------|--------|--------|-------------------|----------|-------------|--------------------------------------------------|----------------|-----------|----------------|---------|-----------|------------------|------------|-------------------|
|       | name              | (kg/l) | class  | according to mud- | mixed in | as<br>mixed | rig                                              | total<br>in    | in whole  | on<br>cuttings | in well |           | destruc-<br>tion | well/      | ancy              |
|       |                   |        |        | programe          | fluid    | in fluid    |                                                  | section        |           |                |         |           |                  | section    |                   |
|       | Spud mud mud:     |        |        |                   | 301 m3   |             | 977 m3                                           |                |           |                |         |           |                  |            |                   |
|       | Barite            | mt     |        |                   | 88       |             | 215                                              |                |           |                |         |           |                  |            |                   |
|       | Bentonite Wyoming | mt     |        |                   | 22       |             | 75                                               |                |           |                |         |           |                  |            |                   |
|       | Soda Ash          | kg     |        |                   | 135      |             | 1 875                                            |                |           |                |         |           |                  |            |                   |
|       | CMC EHV           | kg     |        |                   | 84       |             | 8 550                                            | 8 634          | 8 634     |                |         |           |                  |            |                   |
|       | Lime              | kg     |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       | Defoam NS         | kg     |        |                   |          |             | 50                                               | 50             | 50        |                |         |           |                  |            |                   |
|       | KCI               | kg     |        |                   |          |             | 20 070                                           | 20 070         | 20 070    |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             | <b>†</b>                                         |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             |                                                  |                |           |                |         |           |                  |            |                   |
|       |                   |        | 1      |                   | †        | 1           | †                                                |                |           |                |         |           |                  |            |                   |
|       |                   |        |        |                   |          |             | 1                                                |                |           |                |         |           |                  |            |                   |
|       |                   |        | 1      |                   |          |             | <del>                                     </del> |                |           |                |         | +         |                  |            |                   |
|       |                   |        | 1      |                   |          |             | <del>                                     </del> |                |           |                |         | +         |                  |            |                   |
|       |                   |        | +      |                   |          |             | +                                                |                |           | <b>†</b>       |         | +         | 1                |            |                   |

| Discharge   | avcoading | hannad   | diecharao.   | The KCI | uead wae | hobdod | due to be | le problems. |
|-------------|-----------|----------|--------------|---------|----------|--------|-----------|--------------|
| Discharge ( | exceeding | piailieu | uisciiai ye. | THE KOL | useu was | HEEGEU | aue to no | ie problems. |

For more documentation and explenations, refer to Chevron og MI reports.

| Signatur MI Norge A/S | Signatur Chevron drilling supervisor |
|-----------------------|--------------------------------------|



# **MUD VOLUME DISTRIBUTION**



| PLATFORM | Byford Dolphin   |
|----------|------------------|
| MONTH:   | July             |
| YEAR:    | 2001             |
| WELL:    | 6506/3-1         |
| SECTION: | 17.5" pilot hole |

| HOLE           | HOLE | HOLE   | CUTTINGS | CUTTINGS | MUD | MUD       | MUD FROM | MUD    | MUD     | SURFACE      | MUD    | MUD TO  | MUD | EVAPOR- | TRANSFE- | MUD TYPE |
|----------------|------|--------|----------|----------|-----|-----------|----------|--------|---------|--------------|--------|---------|-----|---------|----------|----------|
| SIZE           | TO   | LENGTH | VOLUME   | MASS     |     | RECEIVED  |          | RETUR- | LEFT IN | LOSS         |        | _       | -   | ATED    | RRED TO  | USED IN  |
|                |      |        |          |          |     | FROM SHOP | SECTION  | NED    | WELL    | (by cuttings | ;<br>• | RUCTION |     | WATER   |          | INTERVAL |
|                |      |        |          |          |     | FIELD     |          |        |         | retention)   |        |         |     | PHASE   | SECTION  |          |
|                | 1    | m      | m3       | kg       | m3  | m3        | m3       | m3     | m3      | m3           | m3     | m3      | m3  | m3      | m3       |          |
| 17.5" pilot ho | 1382 | 926    | 143.7    |          | 977 |           | 301      |        |         |              | 1278   |         |     |         |          | Spud mud |
|                |      |        |          |          |     |           |          |        |         |              |        |         |     |         |          |          |
|                |      |        |          |          |     |           |          |        |         |              |        |         |     |         |          |          |
|                |      |        |          |          |     |           |          |        |         |              |        |         |     |         |          |          |
| TOTALT:        |      | 926    | 143.7    |          | 977 |           | 301      |        |         |              | 1278   |         |     |         |          |          |

#### **TOTAL**

| MUD FROM LAST WELL/SECTION           | 301 m3 |
|--------------------------------------|--------|
| MUD TRANSFERRED TO NEXT WELL/SECTION |        |

#### **RETENTION ON OILY CUTTINGS - RETORTE ANALYSIS**

| Gravity baseoil:      | sg   |
|-----------------------|------|
| Cuttings gravity:     | sg   |
| Average for section : | g/kg |







 Platform:
 Byford Dolphin

 Month:
 July/August

 Year:
 2001

 Well:
 6506/3-1

 Section:
 8.5

Section date to/from: 29/07 - 16/08-2001

-(1)- Mixed total = Rcvd as Mixed in fluid + Added on rig - To-shore as Mixed in fluid. -(2)- Descrepancy = Mixed total (total usage) - Total discharge = 0 (as control on massbalance) Demands in dischargepermit shall be covered by the mudprogram. If the real discharge overrides planned discharge, then this should be documented and explained.

| Group | Product            | Unit   | Parcom | Planned usage       | Rcvd           | To-shore          | Added  | -(1)-<br>Mixed | Discharge | Retention | Left    | Injection | То       | Transferre       | -(2)-<br>Discrep- |
|-------|--------------------|--------|--------|---------------------|----------------|-------------------|--------|----------------|-----------|-----------|---------|-----------|----------|------------------|-------------------|
|       | name               | (kg/l) | class  | according           |                |                   | on     | total          |           | on        | in well |           | destruc- |                  | ancy              |
|       |                    |        |        | to mud-<br>programe | mixed in fluid | mixed<br>in fluid | rig    | in<br>section  | mud       | cuttings  |         |           | tion     | well/<br>section | İ                 |
|       | Versavert mud:     |        |        | pr v grunne         | 300 m3         | 322 m3            | 260 m3 |                |           | 90 m3     | 92 m3   |           | 56 m3    |                  |                   |
|       | Barite             | mt     |        |                     | 293            | 293               | 217    | 217            |           | 82        | 84      |           | 51       |                  |                   |
|       | EDC 95/11 base oil | m3     |        |                     | 155            | 176               | 152    | 130            |           | 49        | 50      |           | 31       |                  |                   |
|       | Versavert PE       | kg     |        |                     | 6 000          | 5 865             | 4 200  | 4 335          |           | 1 639     | 1 676   |           | 1 020    |                  |                   |
|       | Versavert SE       | kg     |        |                     | 2 400          | 2 415             | 1 800  | 1 785          |           | 675       | 690     |           | 420      |                  |                   |
|       | Lime               | kg     |        |                     | 4 500          | 6 785             | 7 300  | 5 015          |           | 1 896     | 1 939   |           | 1 180    |                  |                   |
|       | VG-Plus            | kg     |        |                     | 3 900          | 2 889             | 1 125  | 2 136          |           | 808       | 826     |           | 503      |                  |                   |
|       | Calcium Chloride   | kg     |        |                     | 12 900         | 15 870            | 14 700 | 11 730         |           | 4 436     | 4 534   |           | 2 760    |                  |                   |
|       | Versatrol          | kg     |        |                     | 3 000          | 2 645             | 1 600  | 1 955          |           | 739       | 756     |           | 460      |                  |                   |
|       | Versavert F        | kg     |        |                     | 1 800          | 1 869             | 1 450  | 1 381          |           | 522       | 534     |           | 325      |                  |                   |
|       | Water              | kg     |        |                     | 69             | 40                |        | 29             |           | 11        | 11      |           | 7        |                  |                   |
|       | Bentone 128        | kg     |        |                     |                | 72                | 125    | 53             |           | 20        | 21      |           | 13       |                  |                   |
|       | CaCo3 Coarse       | kg     |        |                     |                | 1 912             | 3 325  | 1 413          |           | 534       | 546     |           | 333      |                  |                   |
|       | CaCo3 Medium       | kg     |        |                     |                | 1 610             | 2 800  | 1 190          |           | 450       | 460     |           | 280      |                  |                   |
|       | CaCo3 Fine         | kg     |        |                     |                | 144               | 250    | 106            |           | 40        | 41      |           | 25       |                  |                   |
|       | SafeSolve OE       | kg     |        |                     |                |                   | 2 200  | 2 200          |           |           |         |           | 2 200    |                  |                   |
| •     | SafeSurfe OE       | kg     |        |                     |                |                   | 1 600  | 1 600          |           |           |         |           | 1 600    |                  |                   |
|       | Duptec NS          | kg     |        |                     |                |                   | 500    | 500            |           |           |         |           | 500      |                  |                   |

Discharge exceeding planned discharge:

| For more documentation and explenations, refer to Chevron og MI reports. |                                      |
|--------------------------------------------------------------------------|--------------------------------------|
|                                                                          |                                      |
|                                                                          |                                      |
| Signatur MI Norge A/S                                                    | Signatur Chevron drilling supervisor |







| PLATFORM | Byford Dolphin |
|----------|----------------|
| MONTH:   | July/August    |
| YEAR:    | 2001           |
| WELL:    | 6506/3-1       |
| SECTION: | 8.5            |

| HOLE<br>SIZE |         |            | CUTTINGS<br>VOLUME |        |     | MUD<br>RECEIVED | MUD FROM |     | -  | SURFACE<br>LOSS         | MUD<br>TO SEA | MUD TO<br>DEST- | MUD<br>INJE- | _     | _ | MUD TYPE<br>USED IN |
|--------------|---------|------------|--------------------|--------|-----|-----------------|----------|-----|----|-------------------------|---------------|-----------------|--------------|-------|---|---------------------|
| OIZL         | LENGIII |            | VOLOIVIL           | WI NOO |     | FROM SHOR       |          |     |    | (by cuttings retention) |               | RUCTION         | CTED         | WATER | _ | INTERVAL            |
|              | m       | m m3 kg m3 |                    | m3     | m3  | m3              | m3       | m3  | m3 | m3                      | m3            | m3              | m3           | m3    |   |                     |
| 8.5          | 3667.0  | 2285       | 83.7               | 250958 | 260 | 300             |          | 322 | 92 | 90                      |               | 56              |              |       |   | Versavert           |
|              |         |            |                    |        |     |                 |          |     |    |                         |               |                 |              |       |   |                     |
|              |         |            |                    |        |     |                 |          |     |    |                         |               |                 |              |       |   |                     |
|              |         |            |                    |        |     |                 |          |     |    |                         |               |                 |              |       |   |                     |
| TOTALT:      |         | 2285       | 83.7               | 250958 | 260 | 300             |          | 322 | 92 | 90                      |               | 56              |              |       |   |                     |

#### TOTALT

| MUD FROM LAST WELL/SECTION           |  |
|--------------------------------------|--|
| MUD TRANSFERRED TO NEXT WELL/SECTION |  |

#### **RETENTION ON OILY CUTTINGS - RETORTE ANALYSIS**

| Gravity baseoil:      | 0.814 | sg   |
|-----------------------|-------|------|
| Cuttings gravity:     | 3     | sg   |
| Average for section : |       | g/kg |

# Rig Name

# **BYFORD DOLPHIN**

## Operator

CHEVRON



Well Number: Start date : Finish date : 6506/3-1 21.07.2001 18.08.2001

Waste Handling: Slurrification:

| Manufacturer | Model    | Age                                                                                                                              | Interval Size                                                                                                                                                       | 36            | 17.5                | 8.5       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------|----------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|-----------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |          |                                                                                                                                  | Mud Type                                                                                                                                                            | WBM           | WBM                 | OBM       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  | Lost at Shakers                                                                                                                                                     | 0             | 0                   | 90        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| THULE        | VSM 100  |                                                                                                                                  | No. Shakers used                                                                                                                                                    | 0             | 0                   | 3         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| THULE        | VSM 100  |                                                                                                                                  | Lost at C/F                                                                                                                                                         | 0             | 0                   | 0         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| THULE        | VSM 100  |                                                                                                                                  | Lost to Slops                                                                                                                                                       | 0             | 0                   | 45        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| į            |          |                                                                                                                                  | Avge section ROP                                                                                                                                                    | 32.6          | 102                 | 38        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  | Avge Max ROP                                                                                                                                                        | 195           | 240                 | 104       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  | Avge Flow Lt/Min                                                                                                                                                    | 3950          | 3200                | 2400      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  | Start Depth                                                                                                                                                         | 353           | 456                 | 1382      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  | End Depth                                                                                                                                                           | 456           | 1382                | 3667      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  | Metres Drilled                                                                                                                                                      | 103           | 926                 | 2285      | <br> <br>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  | Interval Days                                                                                                                                                       | 2             | 8                   | 15.6      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Туре         | Supplier | Ir                                                                                                                               | terval S                                                                                                                                                            | creen L       | Itilisatio          | n         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     | n/a           | n/a                 |           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     | n/a           | n/a                 |           | } <br>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>-</u>     |          |                                                                                                                                  |                                                                                                                                                                     | n/a           | n/a                 | <br> <br> | [<br>]<br>!                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     | n/a           | n/a                 |           | <br>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| i            |          |                                                                                                                                  |                                                                                                                                                                     | n/a           | n/a                 |           | ;i                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>-</u>     |          |                                                                                                                                  |                                                                                                                                                                     | n/a           | n/a                 | <br> <br> | <br> <br>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| square       | Thule    |                                                                                                                                  | 4                                                                                                                                                                   | n/a           | n/a                 | 4         | <br>!                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     | n/a           | n/a                 |           | }                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     |               |                     |           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     |               |                     |           | <br>!                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| square       | Thule    |                                                                                                                                  | 10                                                                                                                                                                  |               |                     | 10        | <del></del>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>-</u>     |          |                                                                                                                                  |                                                                                                                                                                     |               |                     |           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     |               |                     |           | } <br>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| i            |          |                                                                                                                                  |                                                                                                                                                                     |               |                     |           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| square       | Thule    |                                                                                                                                  | 6                                                                                                                                                                   | n/a           |                     | 6         | <br>                              | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |          |                                                                                                                                  |                                                                                                                                                                     |               |                     |           | } <br>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| square       | Baroid   |                                                                                                                                  | 4                                                                                                                                                                   |               |                     | 4         | ;<br>!                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | Baroid   |                                                                                                                                  | 6                                                                                                                                                                   | n/a           | n/a                 |           | <br>!                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  | 7                                                                                                                                                                   | n/a           | n/a                 | 7         | } <br>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| !<br>!       |          |                                                                                                                                  |                                                                                                                                                                     | n/a           | n/a                 |           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| !            |          |                                                                                                                                  |                                                                                                                                                                     | n/a           | n/a                 |           | <u> </u>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     |               |                     | <br> <br> |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     | n/a           | n/a                 | <br> <br> | <br> <br>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u> </u>     |          |                                                                                                                                  |                                                                                                                                                                     | n/a           | n/a                 | <u> </u>  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     |               |                     | <br> <br> | }                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     | <br> <br>     |                     | <br> <br> | <br> <br>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  | !                                                                                                                                                                   |               |                     |           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          |                                                                                                                                  |                                                                                                                                                                     |               |                     | L         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | THULE    | THULE VSM 100 THULE VSM 100  THULE VSM 100  Type Supplier  Square Thule  Square Thule  square Thule  square Baroid square Baroid | THULE VSM 100 THULE VSM 100 THULE VSM 100  THULE VSM 100  THULE VSM 100  THULE VSM 100  Thule Square Thule  Square Thule  Square Thule  Square Baroid Square Baroid | THULE VSM 100 | Lost at Shakers   0 | THULE     | Lost at Shakers   0   0   90   90 | Lost at Shakers   No. Shakers used   No. Shakers used   No. Shakers used   No. Shakers used   No. Shakers used   No. Shakers used   No. Shakers used   No. Shakers used   No. Shakers used   No. Shakers used   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lost at C/F   No. Shakers used   Lo |

06-03-2001 Revision 03

| ( | )pe              | erate     | or:       | CHE     | VRO              | N          |                                                             |    |    |    |              |                         |      |    |    | Well: 6506/3-1 |               |      |      |       |        | Rig: Byford Dolphin |       |       |      |               |       |  |
|---|------------------|-----------|-----------|---------|------------------|------------|-------------------------------------------------------------|----|----|----|--------------|-------------------------|------|----|----|----------------|---------------|------|------|-------|--------|---------------------|-------|-------|------|---------------|-------|--|
|   | <b>SR</b><br>10. | Date 2001 | Depth     | MW      | Т                | FV         | <b>VG-meter readings @ 50C</b><br>600 300 200 100 60 30 6 3 | AV | PV | ΥP | Gel<br>10 se | <b>Gel</b><br>ec 10 min | НТНР | рН | Pf | Mf             | CI-<br>x 1000 | тн   | Ca++ | KCI   | Solids | MBT                 | HGS   | LGS   | Sand | Glycol<br>208 | K+    |  |
|   | •                | •         | m         | sg      | °C               | s/qt.      | rpm rpm rpm rpm rpm rpm rpm                                 | cР | cР | Pa | Pa           | Pa                      | ml   | •  | ml | ml             | kg/m3         | mg/l | mg/l | kg/m3 | %      | kg/m3               | kg/m3 | kg/m3 | %    | %             | kg/m3 |  |
|   |                  | 36" Se    | ection: S | Seawate | er / Ber         | ntonite    |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   | 1                | 21-07     | 367       | 1.03    |                  | 100+       |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   | 2                | 22-07     |           | 1.03    |                  | 100+       |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   |                  | 17 1/3    | 2" Secti  | on: Sea | awater /         | / Bentor   | nite                                                        |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   | 3                | 23-07     | 459       | 1.03    |                  | 100+       |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   | 4                | 24-07     | 1382      | 1.05    |                  | 100+       |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   | 5                | 25-07     | 1382      | 1.05    |                  | 100+       |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   | 6                | 26-07     | 1382      | 1.05    |                  | 100+       |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   | 7                | 27-07     | 1382      | 1.40    |                  | 100+       |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   | 8                | 28-07     | 1382      | 1.40    |                  | 100+       |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   | 9                | 29-07     | 1382      | 1.44    |                  | 100+       |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   |                  |           |           |         |                  |            |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   |                  |           |           |         |                  |            |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               | _     |  |
|   |                  |           |           |         |                  |            |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   |                  |           | Minimur   | 1.03    | 0.00             | 0.00       |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   |                  |           | Maximur   | 1.44    | 0.00             | 0.00       |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   |                  |           |           |         |                  | #DIV/0!    |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   |                  |           |           |         |                  |            |                                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |
|   |                  |           |           |         | Daily <u>dri</u> | lling prop | perties FSR 1-9                                             |    |    |    |              |                         |      |    |    |                |               |      |      |       |        |                     |       |       |      |               |       |  |

## Mud Properties, daily record

Operator: Chevron Well: 6506/3-1 Rig: Byford Dolphin

| F   | SR | Date      | Depth   | MW    | Т    | F.Vis    |        |       | VG-    | meter | readings | @ 50 C       |     |     | AV       | PV       | ΥP       | Gel     | Gel      | ES         | Мр  | Excess   | HTHP   | CaCI2      | WPS        | Solids | Oil      | Water    | O/W   | Sand   | HGS        | LGS       |
|-----|----|-----------|---------|-------|------|----------|--------|-------|--------|-------|----------|--------------|-----|-----|----------|----------|----------|---------|----------|------------|-----|----------|--------|------------|------------|--------|----------|----------|-------|--------|------------|-----------|
| r   | 0. | 2001      |         |       | Temp |          | 600    | 300   | 200    | 100   | 60       | 30           | 6   | 3   |          |          |          | 10 sec  | 10 min   |            |     | Lime     | 250°   | (          | Chloride   | s      |          |          | RATIO |        |            |           |
|     | ∀  | $\forall$ | m       | sg    |      | s/qt.    |        |       |        |       | rpm      | rpm          | rpm | rpm | cР       | cР       | Pa       | Pa      | Pa       | volts      | ml  | kg/m3    | ml     | kg/m3      | k Cl       | vol %  | vol %    | vol %    | vol % | vol %  | kg/m3      | kg/m3     |
|     | 8  | 1/2"      | Section | : Ver | save | rt - 0   | il bas | sed s | syste  | m     |          |              |     |     |          |          |          |         |          |            |     |          |        |            |            |        |          |          |       |        |            |           |
| -   | 3  | 29-07     | 1382    | 1.44  | n/a  | 100+     | 119    | 71    | 55     | 37    | n/a      | n/a          | 14  | 12  | 60       | 48       | 11.5     | 7       | 9        | 531        | 2.1 | 7.6      | 2.6    | 129        | 83         | 20     | 56       | 24.0     | 70/30 | Trace  | 609        | 125       |
| -   | 4  | 30-07     | 1382    | 1.44  | n/a  | 100+     | 119    | 71    | 55     | 37    | n/a      | n/a          | 14  | 12  | 60       | 48       | 11.5     | 7       | 9        | 531        | 2.1 | 7.6      | 2.6    | 129        | 83         | 20     | 56       | 24.0     | 70/30 | Trace  | 609        | 125       |
| -   | 5  | 31-07     | 1409    | 1.44  | n/a  | 100+     | 123    | 75    | 57     | 39    | n/a      | n/a          | 15  | 12  | 62       | 48       | 13.5     | 8       | 1        | 629        | 2.8 | 10.4     | 3.0    | 168        | 108        | 20     | 56       | 24.0     | 70/30 | 0.75   | 574        | 140       |
|     |    | 01-08     | 1699    |       |      |          |        |       |        | 45    | n/a      | n/a          | 18  | 16  |          | 53       | 16.0     | 10      | 14       | 672        | 2.0 | 7.2      | 2.0    | 207        | 133        | 20     | 56       | 24.0     | 70/30 | Trace  |            | 140       |
|     |    | 02-08     | 1695    |       | 22   | 92       |        | 44    | 33     | 21    | n/a      | n/a          | 8   | 7   | 38       | 32       | 6.0      | 5       | 7        | 672        | 2.0 | 7.2      | 3.0    | 147        | 94         | 23     | 59       | 18.0     | 77/23 | 0.25   | 830        | 68        |
|     |    | 03-08     | 1736    |       | 20   | 100+     |        |       | 50     | 34    | n/a      | n/a          |     | 11  |          | 40       | 13.5     | 7       | 10       | 704        | 2.5 | 9.3      | 2.2    | 172        | 110        | 23     | 57       | 20.0     | 74/26 | 0.20   | 798        | 82.4      |
|     |    | 04-08     | 2560    |       | 35   | 95       | 111    |       |        | 37    | n/a      | n/a          |     | 14  | 56       | 42       | 13.5     | 9       | 13       | 808        | 0.7 | 2.6      | 2.0    | 215        | 138        | 22.6   | 55.5     | 21.0     | 73/27 | 1.00   | 776        | 102       |
|     |    | 05-08     | 3101    |       | 33   | 95       | 104    |       |        | 33    | n/a      | n/a          | 13  | 12  | 52       | 38       | 14.0     |         | 11       | 854        | 3.4 | 12.6     | 2.2    | 253        | 162        | 24     | 55       | 21.0     | 72/28 | 1.25   | 744        | 129       |
|     |    | 06-08     | 3131    |       | 23   | 100+     |        |       |        | 38    | n/a      | n/a          |     |     | 58       | 45       | 13.0     |         | 12       | 746        | 3.2 | 11.8     | 3.1    | 217        | 139        | 24.0   | 53.0     | 23.0     | 70/30 | 1.25   | 721        | 146       |
|     |    | 07-08     | 3171    |       | 23   | 100+     |        |       |        | 37    | n/a      | n/a          |     |     | 59       | 46       | 12.5     | 8       | 12       | 790        | 3.2 | 11.8     | 2.0    | 220        | 141        | 22.8   | 53.0     | 23.0     | 70/30 | 1.25   | 733        | 137       |
|     |    | 08-08     |         | 1.60  | 34   | 92       |        | 65    |        | 34    | n/a      | n/a          | 14  | 12  | 53       | 41       | 12.0     | 8       | 11       | 770        | 3.2 | 11.8     | 2.0    | 296        | 190        | 24.0   | 55.0     | 21.0     | 72/28 | 1.50   | 763        | 110       |
|     |    | 09-08     |         | 1.60  | 35   | 80       | 90     | 53    |        | 27    | n/a      | n/a          | 10  | 9   | 45       | 37       | 8.0      | 7       | 9        | 876        | 3.2 | 11.8     | 2.0    | 226        | 145        | 25.5   | 55.5     | 20.0     | 74/26 | 1.50   | 797        | 114       |
|     |    | 10-08     |         | 1.60  |      | 80       | 90     |       |        | 27    | n/a      | n/a          | 10  | 9   | 45       | 37       | 8.0      | 7       | 9        | 876        | 3.2 | 11.8     | 2.0    | 226        | 145        | 25.5   | 55.5     | 20.0     | 74/26 | 1.50   | 797        | 114       |
|     |    | 11-08     |         | 1.60  | n/a  | 83       | 90     | 53    |        | 27    | n/a      | n/a          | 10  | 9   | 45       | 37       | 8.0      | 7       | 9        | 815        | 3.5 | 13.0     | 2.0    | 234        | 150        | 24.5   | 55.5     | 20.0     | 74/26 | 1.50   | 796        | 114       |
|     |    | 12-08     |         | 1.60  |      | 100+     |        | 55    |        |       | n/a      | n/a          | 10  | 9   | 46       | 36       | 9.5      | 7       | 9        | 830        | 3.2 | 11.8     | 2.5    | 253        | 162        | 25.0   | 55.0     | 20.0     | 73/27 | 1.50   | 769        | 140       |
|     |    | 13-08     |         | 1.60  | 23   | 100+     |        | 55    |        | 27    | n/a      | n/a          | 10  | 9   | 46       | 36       | 9.5      | 7       | 9        | 830        | 3.2 | 11.8     | 2.5    | 253        | 162        | 25.0   | 55.0     | 20.0     | 73/27 | 1.50   | 769        | 140       |
|     |    | 14-08     |         | 1.60  | 23   | 100+     |        | 55    |        | 27    | n/a      | n/a          | 10  | 9   | 46       | 36       | 9.5      | 7       | 9        | 830        | 3.2 | 11.8     | 2.5    | 253        | 162        | 25.0   | 55.0     | 20.0     | 73/27 | 1.50   | 769        | 140       |
|     |    | 15-08     |         | 1.60  | 23   | 100+     |        | 55    |        |       | n/a      | n/a          | 10  | 9   | 46       | 36       | 9.5      | /       | 9        | 830        | 3.2 | 11.8     | 2.5    | 253        | 162        | 25.0   | 55.0     | 20.0     | 73/27 | 1.50   | 769        | 140       |
| - 2 | 11 | 16-08     | 3667    | 1.60  | 23   | 100+     | 91     | 55    | 42     | 27    | n/a      | n/a          | 10  | 9   | 46       | 36       | 9.5      | /       | 9        | 830        | 3.2 | 11.8     | 2.5    | 253        | 162        | 25.0   | 55.0     | 20.0     | 73/27 | 1.50   | 769        | 140       |
|     |    |           |         |       |      |          |        |       |        |       |          |              |     |     |          |          |          |         |          |            |     |          |        |            |            |        |          |          |       |        |            |           |
|     |    |           | Minimun | 1 44  | 20   | 80       | 7/     | 44    | 33     | 21    | 0        | 0            | 8   | 7   | 20       | 22       | ,        | -       | 1        | 531        | 1   | 3        | 2      | 129        | 83         | 20     | F2       | 18       | 70/30 | 0      | 574        | 40        |
|     |    |           | Maximur |       |      | 95       | 138    |       |        | 21    | 0        | 0            | -   | 16  | 38<br>69 | 32       | 6        | 5<br>10 | 1.4      | 876        | 1   | _        | 2      |            |            | 26     | 53       |          | 74/26 | 0<br>2 |            | 68<br>146 |
|     |    |           | Average |       | 35   | 95<br>88 | 103    |       |        | 45    | #DIV/OI  | 0<br>#DIV/0! | 18  |     | 52       | 53<br>41 | 16<br>11 | 7       | 14<br>10 | 876<br>759 | 3   | 13<br>10 | 3<br>2 | 296<br>216 | 190<br>138 | 26     | 59<br>55 | 24<br>21 | 72/28 | 1      | 830<br>735 | 123       |
|     |    |           | Average | 1.30  | 26   | 00       | 103    | 03    | 48     | 32    | #517/0!  | #010/0!      | 12  | 11  | 52       | 41       | - 11     | ,       | 10       | 139        | 3   | 10       | 2      | 210        | 138        | 23     | 35       | 21       | 12/28 | '      | /35        | 123       |
|     |    |           |         |       | Dail | v drilli | na pro | perti | ies FS | R 13- | 31       |              |     |     |          |          |          |         |          |            |     |          |        |            |            |        |          |          |       |        |            |           |
|     |    |           |         |       |      |          |        |       |        |       |          |              |     |     |          |          |          |         |          |            |     |          |        |            |            |        |          |          |       |        |            |           |
|     |    |           |         |       |      |          |        |       |        |       |          |              |     |     |          |          |          |         |          |            |     |          |        |            |            |        |          |          |       |        |            |           |

# Halliburton Cementing Services End of Well Report





# **Cementing Services**

# **End of Well Report**

Customer: Chevron
Field: Exploration
Well: 6506/3-1

Rig : Byford Dolphin

Prepared by : Sølve Grude

Date : 02/13/02

#### **Table of Contents**

| Introduction                                | 2  |
|---------------------------------------------|----|
| Summary cementing services, well 6506/3-1   | 3  |
| Job Summaries                               | 4  |
| 30" conductor                               | 4  |
| 13 3/8" casing                              | 4  |
| Plug & abandon                              | 5  |
| Slurry Designs                              | 6  |
| 30" conductor                               | 6  |
| 13 3/8" surface casing                      | 7  |
| P&A 1                                       | 8  |
| P&A # 2+3                                   | 9  |
| P&A # 4                                     | 10 |
| Actual usage and discharge numbers, summary | 11 |

### **Introduction**

This report is based on information obtained from:

- Operation reports filled out by our offshore operators.
- Recommendations and procedures issued by Halliburton field engineer.

The job reports, simulation printouts etc. are all filed at the Halliburton office in Tananger and can be supplied if required.

### Summary cementing services, well 6506/3-1

| Job description           | + | - C | omments & future recommendations                            |
|---------------------------|---|-----|-------------------------------------------------------------|
| 30" conductor             |   |     | The conductor was cemented using 1,56 SG lead cement        |
| 30 conductor              |   | -   | and 1,92 SG tail cement                                     |
|                           |   |     | All indications are that cement was brought all the way     |
|                           |   |     | back to sea floor                                           |
| $13^{3}/_{8}$ " casing    |   |     | The surface casing was cemented using 1,56 SG lead          |
| 13 /8 Casing              |   | "   | cement and 1,92 SG tail cement                              |
|                           |   |     | A single SSR 13 3/8" top plug was installed to minimise     |
|                           |   | "   | risk due to drilling shoe track with 8 ½" BHA               |
|                           |   |     | The 13 3/8" SSR top plug was preinstalled onshore to        |
|                           |   | "   | minimise rig time. Due to a quite lengthy hanger assembly   |
|                           |   |     | 2 ea 5" x 28" centralisers were installed on the drill pipe |
|                           |   |     | joints to avoid transportation damages to the plug.         |
|                           |   |     | Cement was observed on the shakers during drilling of the   |
|                           |   | "   | 8 ½" open hole. Most likely this cement was left behind     |
|                           |   |     | due to drilling the 13 3/8" shoe track with 8 ½" BHA        |
|                           |   |     | The LOT was achieve and no remedial cement jobs were        |
|                           |   | "   | necessary                                                   |
| Plug & abandon, plug #1   |   |     | Plug # 1 was cemented using a 1,90 SG slurry with           |
| Trug & abandon, prug π1   |   | "   | moderately controlled fluid loss properties                 |
|                           |   |     | Spacer-500E+ with surfactants was pumped ahead and          |
|                           |   | "   | behind the cement slurry                                    |
| Plug & abandon, plug #2   |   |     | Plug # 2 was cemented using a 1,90 SG slurry with           |
| Trug & abandon, prug π2   |   | "   | moderately controlled fluid loss properties                 |
|                           |   |     | A HIVIS-pill was not placed below this cement plug.         |
|                           |   | "   | Halliburton recommend that such pill is placed whenever     |
|                           |   |     | a cement plug is spotted shallower than TD, nevertheless    |
|                           |   |     | no problems were observed.                                  |
|                           |   |     | Water based spacer was not pumped on this plug to           |
|                           |   |     | minimise contaminated mud on the rig.                       |
| Plug & abandon, plug #3   |   |     | Plug # 3 was cemented using a 1,90 SG slurry with           |
| Trug & dodingon, prug #3  |   |     | moderately controlled fluid loss properties                 |
|                           |   |     | Spacer-500E+ with surfactants was pumped ahead and          |
|                           |   |     | behind the cement slurry                                    |
|                           |   |     | The plug was load tested with 5 MT and pressure tested to   |
|                           |   |     | 110 bar 12 hours after the cement job.                      |
| Plug & abandon, plug #4   |   |     | Plug # 4 was cemented using 1,95 SG cement.                 |
| 1 135 & dodinon, prog " 1 |   |     | The plug was pressure tested to 125 bar after 9 hours after |
|                           |   | -   | the cement job.                                             |
|                           |   |     | Water based spacer was not pumped on this plug to           |
|                           |   |     | minimise contaminated mud on the rig.                       |

<sup>+</sup> Experience exceeding expected service quality or other positive incidents.

<sup>-</sup> Indicate problems on job etc. (No mark indicates service provided as planned)

### **Job Summaries**

#### 30" conductor

#### Job execution, July 28th-2001

- 1. RIH with 30" conductor
- 2. Pump sea water
- 3. Pump lead 38 m<sup>3</sup> of 1,56 SG lead cement
- 4. Displace cement with rig pumps
- 5. WOC
- 6. POOH

#### 13 3/8" casing

#### Job execution, July 26th-2001

- 1. RIH with  $13^{3}/_{8}$ " casing
- 2. Circulated sea water
- 3. Pumped 128 m<sup>3</sup> of 1,56 SG lead cement
- 4. Pump 17 m<sup>3</sup> of 1,92 SG tail cement
- 5. Dropped dart and pumped with cmt unit to shear top plug.
- 6. Displaced cement with rig pumps
- 7. Checked for backflow; OK
- 8. Pressure tested the casing

#### Plug & abandon

#### Job execution, August 15th & 16th-2001

- 1. RIH with 3 ½" stinger to TD
- 2. Circulated mud
- 3. Pumped 5 m<sup>3</sup> Spacer 500E+
- 4. Spotted balanced plug # 1
- 5. Displaced with mud
- 6. Pull out of plug
- 7. Circulated mud
- 8. Pull out to plug # 2 setting depth
- 9. Spotted balanced plug # 2
- 10. Displaced with mud
- 11. Pull out of plug
- 12. Circulated mud
- 13. Pumped 5 m<sup>3</sup> Spacer 500E+
- 14. Spotted balanced plug # 3
- 15. Displaced with mud
- 16. Pull out of plug
- 17. Circulated mud
- 18. WOC
- 19. Load and pressure tested plug # 3
- 20. Pulled out of plug
- 21. Circulated mud
- 22. Spotted balanced plug # 4
- 23. Displaced with mud
- 24. Pull out of plug
- 25. Circulated mud
- 26. POOH
- 27. WOC
- 28. Pressure tested cement plug # 4

### **Slurry Designs**

| 30" conductor       |         |                       |                                   |      |                     |
|---------------------|---------|-----------------------|-----------------------------------|------|---------------------|
| Total Depth, MD/TVD | [m]     | $^{\pm}447/_{\pm}447$ | BHST <sub>/BHCT</sub>             | [°C] | ± 8/ <sub>± 8</sub> |
| Casing size         | ["]     | 30                    | Mud Type                          |      | SW / Bent.          |
| Cement volume-lead  | $[m^3]$ | ± 24                  | Slurry contract ref, lead STL10 / |      |                     |
| Cement volume-tail* | $[m^3]$ | ± 24 + "shoe"         | Slurry contract ref, tail         |      | STT10/2             |
| Hole Size           | ["]     | 36                    | Mud Weight                        | [SG] | ± 1,20              |
| OH excess           | [%]     | 200                   | TOC, MD                           | [m]  | ML @ 367            |

<sup>\*</sup> It is recommended that tail volume is equal to or higher than the lead volume.

|                | Cement slurry design & lab   | oratory re | sults |                                       |
|----------------|------------------------------|------------|-------|---------------------------------------|
| Slurry design  | Norcem class "G" Cement      | Lead       | Tail  | Units                                 |
| -              | CaCl <sub>2</sub> liquid     |            | 4,35  | lhk                                   |
|                | Econolite                    | 3,20       |       | lhk                                   |
|                | NF-6                         | 0,10       | 0,10  | lhk                                   |
|                | Sea Water                    | 95,07      | 42,07 | lhk                                   |
|                |                              |            |       |                                       |
|                | Density                      | 1,56       | 1,92  | $\mathbf{SG}$                         |
|                | Total Mix Fluid              | 98,37      | 46,52 | lhk                                   |
|                | Yield                        | 129,42     | 77,58 | lhk                                   |
| Lab reference: | Thickening Time at BHCT      |            |       |                                       |
| NS07-Z-720-2   | Time to 30 BC                | 7:43       | 3:56  | hrs:min                               |
| NS00-Z-243-1   | Time to 70 BC                | 12:52      | 4:40  | hrs:min                               |
|                | Time to 100 BC               | 12 +       | 5:02  | hrs:min                               |
|                |                              |            |       |                                       |
|                | Rheology at BHCT             |            |       | RPM                                   |
|                |                              | 40         | 92    | 300                                   |
|                |                              | 36         | 83    | 200                                   |
|                |                              | 31         | 71    | 100                                   |
|                |                              | 29         | 65    | 60                                    |
|                |                              | 26         | 58    | 30                                    |
|                |                              | 23         | 30    | 6                                     |
|                |                              | 17         | 22    | 3                                     |
|                | Plastic Viscosity            | 14         | 32    | cР                                    |
|                | Yield point                  | 26         | 60    | $^{\mathrm{lb}}/_{\mathrm{100~ft^2}}$ |
|                | Compressive strength at BHST | ± 50       | ± 200 | psi [12 h]                            |

**Spacer:** Minimum 20 m<sup>3</sup> of sea water

|                     | 13 3/8" surface casing |                         |                           |         |               |  |
|---------------------|------------------------|-------------------------|---------------------------|---------|---------------|--|
| Total Depth, MD/TVD | [m]                    | $^{\pm1375}/_{\pm1375}$ | BHST <sub>/BHCT</sub>     | [°C]    | $^{31}/_{25}$ |  |
| Casing size         | ["]                    | 20 x 13 3/8             | Mud Type                  |         | SW / Bent.    |  |
| Cement volume-lead  | $[m^3]$                | ± 128                   | Slurry contract re        | f, lead | STL40 / 5     |  |
| Cement volume-tail* | $[m^3]$                | min 15 +                | Slurry contract ref, tail |         | STTNT / 4     |  |
|                     |                        | "shoe"                  |                           |         |               |  |
| Hole Size           | ["]                    | 17 ½                    | Mud Weight                | [SG]    | ± 1,20        |  |
| OH excess           | [%]                    | 100                     | TOC, MD                   | [m]     | ML @ 367      |  |

| Cement slurry design & laboratory results |                              |        |       |                                       |  |
|-------------------------------------------|------------------------------|--------|-------|---------------------------------------|--|
| Slurry design                             | Norcem class "G" Cement      | Lead   | Tail  | Units                                 |  |
|                                           | HR-4L                        | 1,00   |       | lhk                                   |  |
|                                           | Econolite                    | 3,20   |       | lhk                                   |  |
|                                           | NF-6                         | 0,10   | 0,10  | lhk                                   |  |
|                                           | Sea Water                    | 94,36  |       | lhk                                   |  |
|                                           | Fresh Water                  |        | 43,78 | lhk                                   |  |
|                                           | Density                      | 1,56   | 1,92  | SG                                    |  |
|                                           | Total Mix Fluid              | 98,66  | 43,88 | lhk                                   |  |
|                                           | Yield                        | 129,72 | 74,93 | lhk                                   |  |
| Lab reference:                            | Thickening Time at BHCT      |        |       |                                       |  |
| NS01-Z-401                                | Time to 30 BC                | 5:19   | 3:40  | hrs:min                               |  |
|                                           | Time to 70 BC                | 5:55   | 4:49  | hrs:min                               |  |
|                                           | Time to 100 BC               | 6:13   | 5:04  | hrs:min                               |  |
|                                           | Rheology at BHCT             | typ    | ical  | RPM                                   |  |
|                                           |                              | 40     | 92    | 300                                   |  |
|                                           |                              | 36     | 83    | 200                                   |  |
|                                           |                              | 31     | 71    | 100                                   |  |
|                                           |                              | 29     | 65    | 60                                    |  |
|                                           |                              | 26     | 58    | 30                                    |  |
|                                           |                              | 23     | 30    | 6                                     |  |
|                                           |                              | 17     | 22    | 3                                     |  |
|                                           | Plastic Viscosity            | 14     | 32    | cР                                    |  |
|                                           | Yield point                  | 26     | 60    | $^{\mathrm{lb}}/_{\mathrm{100~ft^2}}$ |  |
|                                           | Compressive strength at BHST | ± 50   | ± 200 | psi [12 h]                            |  |

**Spacer:** Minimum 20 m<sup>3</sup> of sea water

| P&A 1           |         |         |                      |        |             |
|-----------------|---------|---------|----------------------|--------|-------------|
| Plug Depth, M D | [m]     | 3190    | BHST                 | [°C]   | 100         |
| Plug Depth, TVD | [m]     | 3190    | ВНСТ                 | [°C]   | 90          |
| Hole size       | ["]     | 8 1/2   | OH Excess            | [%]    | 25          |
| Spacer 500E+    | $[m^3]$ | 5 ahead | Spacer Weight        | [SG]   | 1,75        |
| TOC             | [m]     | 2975    | Slurry contract ref. | Slurry | 28 / MPFL14 |

|                | Cement slurry design & lab   | oratory results              |                                      |
|----------------|------------------------------|------------------------------|--------------------------------------|
| Slurry design  | Norcem class "G" Cement      | Main                         | Units                                |
|                | HR-5L                        | 1,30                         | lhk                                  |
|                | CFR-3L                       | 0,75                         | lhk                                  |
|                | Halad-99LE+                  | 6,00                         | lhk                                  |
|                | NF-6                         | 0,10                         | lhk                                  |
|                | Fresh Water                  | 37,90                        | lhk                                  |
|                | Density                      | 1,90                         | SG                                   |
|                | Total Mix Fluid              | 46,05                        | lhk                                  |
|                | Yield                        | 77,10                        | lhk                                  |
| Lab reference: | Thickening Time at BHCT      |                              |                                      |
| NS01-Z-448     | Time to 30 BC                | 3:05                         | hrs:min                              |
|                | Time to 70 BC                | 3:12                         | hrs:min                              |
|                | Time to 100 BC               | 3:13                         | hrs:min                              |
|                | Rheology                     |                              | RPM                                  |
|                |                              | 32                           | 300                                  |
|                |                              | 22                           | 200                                  |
|                |                              | 12                           | 100                                  |
|                |                              | 6                            | 60                                   |
|                |                              | 4                            | 30                                   |
|                |                              | 2                            | 6                                    |
|                |                              | 1                            | 3                                    |
|                | Plastic Viscosity            | 30                           | cР                                   |
|                | Yield Point                  | 2                            | $\frac{\text{lb}}{100 \text{ ft}^2}$ |
|                | Density top/bottom           | $\frac{1,90}{1,90}$          | $^{\rm SG}/_{ m SG}$                 |
|                | API gel strength             | <sup>2</sup> / <sub>34</sub> | $cP, {}^{10}s/_{10 \text{ min}}$     |
|                | API Free Water               | 0                            | %                                    |
|                | API fluid loss               | 250                          | cm3/30 min                           |
|                | Compressive strength at BHST | ± 2000                       | psi [24 h]                           |

| P&A # 2+3       |         |             |                      |        |             |
|-----------------|---------|-------------|----------------------|--------|-------------|
| Plug Depth, M D | [m]     | 1791 & 1491 | BHST                 | [°C]   | 46          |
| Plug Depth, TVD | [m]     | 1791 & 1491 | BHCT                 | [°C]   | 37          |
| Hole size       | ["]     | 8 1/2       | OH Excess            | [%]    | 25          |
| Spacer 500E+    | $[m^3]$ | 5 ahead **  | Spacer Weight        | [SG]   | 1,75        |
| TOC, plug # 3   | [m]     | 1274 *      | Slurry contract ref. | Slurry | 28 / MPFL14 |

<sup>\*</sup> It is not recommended to exceed 300 metres length on balanced plugs. \*\*Pump spacer ahead of plug # 3

|                | Cement slurry design & lab   | oratory results |                                                 |
|----------------|------------------------------|-----------------|-------------------------------------------------|
| Slurry design  | Norcem class "G" Cement      | Main            | Units                                           |
|                | HR-5L                        | 0,20            | lhk                                             |
|                | CFR-3L                       | 0,75            | lhk                                             |
|                | Halad-99LE+                  | 5,00            | lhk                                             |
|                | NF-6                         | 0,10            | lhk                                             |
|                | Fresh Water                  | 39,78           | lhk                                             |
|                | Density                      | 1,90            | SG                                              |
|                | Total Mix Fluid              | 45,83           | lhk                                             |
|                | Yield                        | 76,88           | lhk                                             |
| Lab reference: | Thickening Time at BHCT      |                 |                                                 |
| NS01-Z-449     | Time to 30 BC                | 4:00            | hrs:min                                         |
|                | Time to 70 BC                | 4:34            | hrs:min                                         |
|                | Time to 100 BC               | 4:42            | hrs:min                                         |
|                | Rheology                     |                 | RPM                                             |
|                |                              | 70              | 300                                             |
|                |                              | 49              | 200                                             |
|                |                              | 28              | 100                                             |
|                |                              | 20              | 60                                              |
|                |                              | 12              | 30                                              |
|                |                              | 9               | 6                                               |
|                |                              | 7               | 3                                               |
|                | Plastic Viscosity            | 63              | cР                                              |
|                | Yield Point                  | 7               | $\frac{\text{lb}}{100 \text{ ft}^2}$            |
|                | Density top/bottom           | 1,90/1,90       | $\frac{\mathrm{SG}}{\mathrm{SG}}$               |
|                | API gel strength             | 0/32            | $cP$ , $^{10}$ $^{\circ}$ / $_{10 \text{ min}}$ |
|                | API Free Water               | 0               | %                                               |
|                | API fluid loss               | 127             | cm3/30 min                                      |
|                | Compressive strength at BHST | ± 1000          | psi [24 h]                                      |

| P&A # 4         |         |             |                      |       |             |
|-----------------|---------|-------------|----------------------|-------|-------------|
| Plug Depth, M D | [m]     | 661         | BHST                 | [°C]  | 13          |
| Plug Depth, TVD | [m]     | 661         | ВНСТ                 | [°C]  | 13          |
| Hole size       | 13 :    | 3/8" csg ID | OH Excess            | [%]   | na          |
| Spacer 500E+    | $[m^3]$ | 5 ahead     | Spacer Weight        | [SG]  | 1,75        |
| TOC             | [m]     | 411         | Slurry contract ref. | Slurr | y 4 / STTNT |

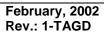
|                | Cement slurry design & laboratory results |       |            |  |  |  |
|----------------|-------------------------------------------|-------|------------|--|--|--|
| Slurry design  | Norcem class "G" Cement                   | Main  | Units      |  |  |  |
|                | NF-6                                      | 0,10  | lhk        |  |  |  |
|                | Sea Water                                 | 42,53 | lhk        |  |  |  |
|                |                                           |       |            |  |  |  |
|                | Density                                   | 1,95  | SG         |  |  |  |
|                | Total Mix Fluid                           | 42,63 | lhk        |  |  |  |
|                | Yield                                     | 73,69 | lhk        |  |  |  |
| Lab reference: | Thickening Time at BHCT                   |       |            |  |  |  |
| NS01-Z-315     | Time to 30 BC                             | 5:02  | hrs:min    |  |  |  |
|                | Time to 70 BC                             | 5:03  | hrs:min    |  |  |  |
|                | Time to 100 BC                            | 5:04  | hrs:min    |  |  |  |
|                |                                           |       |            |  |  |  |
|                | Compressive strength at BHST              | ± 900 | psi [24 h] |  |  |  |

### Actual usage and discharge numbers, summary

 Field:
 Exploration
 Year:
 2001

 Rig:
 Byford Dolphin
 Well:
 6506/3-1

| Product             | SFT class | Unit | Density | Watercont | Usage |             | Dis          | scharges   |        |         |
|---------------------|-----------|------|---------|-----------|-------|-------------|--------------|------------|--------|---------|
|                     |           |      | [SG]    | [Vol-%]   |       | Destruction | Left in well | Reinjected | To sea | Balance |
| Bayferrox130        | 1         | kg   | 5,000   |           |       |             |              |            |        | OK      |
| Bentonite           | 2         | kg   | 2,650   |           |       |             |              |            |        | OK      |
| CaCl2 liquid        | 1         | ltr  | 1,318   | 78        | 1 100 |             | 1 050        |            | 50     | OK      |
| Cement cl. "G"      | 1         | MT   | 3,220   |           | 239   |             | 239          |            |        | OK      |
| Cement , industrial | 1         | MT   | 3,100   |           |       |             |              |            |        | OK      |
| CFR-3L              | 13        | ltr  | 1,178   | 78        | 302   |             | 302          |            |        | OK      |
| Econolite           | 2         | ltr  | 1,363   | 74        | 4 020 |             | 4 004        |            | 16     | OK      |
| FDP-C-552           | 16        | ltr  | 1,057   |           |       |             |              |            |        | OK      |
| Flexplug-OBM        | 3         | kg   | 1,750   |           |       |             |              |            |        | OK      |
| Flexplug-W          | 3         | kg   | 2,260   |           |       |             |              |            |        | OK      |
| Gascon469           | 1         | ltr  | 1,100   | 85        |       |             |              |            |        | OK      |
| Halad-344           | 5         | kg   | 1,600   |           |       |             |              |            |        | OK      |
| Halad-99LE+         | 5         | ltr  | 1,018   | 96        | 2 097 |             | 2 097        |            |        | OK      |
| Halad-413L          | 5         | ltr  | 1,067   | 89        |       |             |              |            |        | OK      |
| Halad-600LE+        | 5         | ltr  | 1,097   | 80        |       |             |              |            |        | OK      |
| FDP-575             | 1         | ltr  | 1,480   | 50        |       |             |              |            |        | OK      |
| HR-15               | 4         | kg   | 1,940   |           |       |             |              |            |        | OK      |
| K-35                | 1         | kg   | 2,530   |           |       |             |              |            |        | OK      |
| HR-15L              | 4         | ltr  | 1,106   | 89        |       |             |              |            |        | OK      |
| HR-25L              | 2         | ltr  | 1,040   | 95        |       |             |              |            |        | OK      |
| WG-17               | 5         | kg   | 0,600   |           |       |             |              |            |        | OK      |
| HR-4L               | 4         | ltr  | 1,182   | 71        | 1 330 |             | 1 200        |            | 130    | OK      |
| HR-5L               | 4         | ltr  | 1,165   | 87        | 207   |             | 207          |            |        | OK      |
| Latex 2000          | 5         | ltr  | 0,982   | 50        |       |             |              |            |        | OK      |
| Microblock          | 1         | ltr  | 1,390   | 80        |       |             |              |            |        | OK      |
| Micromax            | 1         | kg   | 4,800   |           |       |             |              |            |        | OK      |
| Musol E             | 16        | ltr  | 0,950   |           | 360   |             | 288          |            | 72     | OK      |
| NF-6                | 7         | ltr  | 0,940   | 8         | 278   |             | 278          |            |        | OK      |
| SCR-100L            | 2         | ltr  | 1,078   | 86        |       |             | ĺ            |            |        | OK      |
| Sem-7               | 16        | ltr  | 1,000   |           | 180   |             | 144          |            | 36     | OK      |
| Spacer 500E+        | 5         | kg   | 2,300   |           | 524   |             | 456          |            | 68     | OK      |
| SSA-1               | 1         | kg   | 2,630   |           |       |             | ĺ            |            |        | OK      |
| SSA-1, blend        | 1         | мŤ   | 3,043   |           |       |             | ĺ            |            |        | OK      |
| Stabiliser 434C     | 5         | ltr  | 1,040   | 65        |       |             | ĺ            |            |        | OK      |
| X-lite              | 1         | MT   | 2,055   |           |       |             | l            |            |        | OK      |


 Field:
 Exploration
 Year:
 2001

 Rig:
 Byford Dolphin
 Well:
 6506/3-1

| Product             | SFT class | Unit | Density | Watercont | Usage |             | Discharg     | ges        |        |         |
|---------------------|-----------|------|---------|-----------|-------|-------------|--------------|------------|--------|---------|
|                     |           |      | [SG]    | [Vol-%]   |       | Destruction | Left in well | Reinjected | To sea | Balance |
| Bayferrox130        | 1         | MT   | 5,000   |           |       |             |              |            |        | OK      |
| Bentonite           | 2         | MT   | 2,650   |           |       |             |              |            |        | OK      |
| CaCl2 liquid        | 1         | MT   | 1,318   | 78        | 1,45  |             | 1,38         |            | 0,07   | OK      |
| Cement cl. "G"      | 1         | MT   | 3,220   |           | 239   |             | 239          |            |        | OK      |
| Cement , industrial | 1         | MT   | 3,100   |           |       |             |              |            |        | OK      |
| CFR-3L              | 13        | MT   | 1,178   | 78        | 0,36  |             | 0,36         |            |        | OK      |
| Econolite           | 2         | MT   | 1,363   | 74        | 5,48  |             | 5,46         |            | 0,02   | OK      |
| FDP-C-552           | 16        | MT   | 1,057   |           |       |             |              |            |        | OK      |
| Flexplug-OBM        | 3         | MT   | 1,750   |           |       |             |              |            |        | OK      |
| Flexplug-W          | 3         | MT   | 2,260   |           |       |             |              |            |        | OK      |
| Gascon469           | 1         | MT   | 1,100   | 85        |       |             |              |            |        | OK      |
| Halad-344           | 5         | MT   | 1,600   |           |       |             |              |            |        | OK      |
| Halad-99LE+         | 5         | MT   | 1,018   | 96        | 2,13  |             | 2,13         |            |        | OK      |
| Halad-413L          | 5         | MT   | 1,067   | 89        | ·     |             | ·            |            |        | OK      |
| Halad-600LE+        | 5         | MT   | 1,097   | 80        |       |             |              |            |        | OK      |
| FDP-575             | 1         | MT   | 1,480   | 50        |       |             |              |            |        | OK      |
| HR-15               | 4         | MT   | 1,940   |           |       |             |              |            |        | OK      |
| K-35                | 1         | MT   | 2,530   |           |       |             |              |            |        | OK      |
| HR-15L              | 4         | MT   | 1,106   | 89        |       |             |              |            |        | OK      |
| HR-25L              | 2         | MT   | 1,040   | 95        |       |             |              |            |        | OK      |
| WG-17               | 5         | MT   | 0,600   |           |       |             |              |            |        | OK      |
| HR-4L               | 4         | MT   | 1,182   | 71        | 1,57  |             | 1,42         |            | 0,15   | OK      |
| HR-5L               | 4         | MT   | 1,165   | 87        | 0,24  |             | 0,24         |            |        | OK      |
| Latex 2000          | 5         | MT   | 0,982   | 50        |       |             |              |            |        | OK      |
| Microblock          | 1         | MT   | 1,390   | 80        |       |             |              |            |        | OK      |
| Micromax            | 1         | MT   | 4,800   |           |       |             |              |            |        | OK      |
| Musol E             | 16        | MT   | 0,950   |           | 0,34  |             | 0,27         |            | 0,07   | OK      |
| NF-6                | 7         | MT   | 0,940   | 8         | 0,26  |             | 0,26         |            |        | OK      |
| SCR-100L            | 2         | MT   | 1,078   | 86        |       |             |              |            |        | OK      |
| Sem-7               | 16        | MT   | 1,000   |           | 0,18  |             | 0,14         |            | 0,04   | OK      |
| Spacer 500E+        | 5         | MT   | 2,300   |           | 0,52  |             | 0,46         |            | 0,07   | OK      |
| SSA-1               | 1         | MT   | 2,630   |           | ·     |             | ·            |            |        | OK      |
| SSA-1, blend        | 1         | MT   | 3,043   |           |       |             |              |            |        | OK      |
| Stabiliser 434C     | 5         | MT   | 1,040   | 65        |       |             |              |            |        | OK      |
| X-lite              | 1         | MT   | 2,055   |           |       |             |              |            |        | OK      |

## **Enclosure 3**

Composite Log & CPI







## **Appendix**

**Appendix A - Whole Core Descriptions** 

**Appendix B - Wireline Logging Events** 

**Appendix C - Dewpoint Report, Formation Water Samples** 



## **Appendix A**

**Whole Core Descriptions** 





| Well Number:     | 6506/3-1                                                             | Core Number:                               | 1   |            |   |   |      |    |   |
|------------------|----------------------------------------------------------------------|--------------------------------------------|-----|------------|---|---|------|----|---|
| Date:            | 07/08/01                                                             | Core diameter                              | 4"  | ,          |   |   |      |    |   |
| Logging Witness: | E. Linaker                                                           |                                            |     |            |   |   |      |    |   |
| Cored interval:  | 3101.5m <b>to</b> 3171.5m                                            | Hole size:                                 | 81/ | <b>5</b> " |   |   |      |    |   |
| Recovered length | 67.69m                                                               | Percentage recovery                        | _   | 5.7%       |   |   |      |    |   |
| Chip Depth       |                                                                      | thology and shows                          | 70  | Ø          |   |   | Sho  | wc |   |
| Cmp Depth        |                                                                      | nology and shows                           | -   |            |   |   | SIIC |    |   |
|                  |                                                                      |                                            | P   | F          | G | T | P    | F  | G |
| 3101.5           | <b>DOLOMITE</b> : pale yellow                                        | vish brown to greyish orange, very hard,   |     |            |   |   |      |    |   |
|                  |                                                                      | auconite, trace carbonaceous material,     |     |            |   |   |      |    |   |
|                  |                                                                      | o DOLOMITIC LIMESTONE in places,           |     |            |   |   |      |    |   |
|                  | no visible porosity, no sho                                          |                                            |     |            |   |   |      |    |   |
| 3102             | Siltstone with common 1-2mm bands of Sandstone.                      |                                            |     |            |   |   |      |    |   |
|                  | <b>SILTSTONE</b> : medium dark grey, firm to moderately hard, blocky |                                            |     |            |   |   |      |    |   |
|                  |                                                                      | ite, grading to CLAYSTONE.                 |     |            |   |   |      |    |   |
|                  | <b>SANDSTONE</b> : light grey                                        | , firm to moderately hard, blocky, very    |     |            |   |   |      |    |   |
|                  | fine grained, clear, colourle                                        | ess, commonly pale grey, transluscent,     |     |            |   |   |      |    |   |
|                  | subangular to subrounded,                                            | subspherical, moderately sorted,           |     |            |   |   |      |    |   |
|                  | moderate calcite cement, a                                           | rgillaceous matrix in places, common to    |     |            |   |   |      |    |   |
|                  | locally abundant glauconit                                           | e, no visible porosity, NO SHOWS (some     |     |            |   |   |      |    |   |
|                  | mineral fluorescence).                                               |                                            |     |            |   |   |      |    |   |
| 3103             | CLAYSTONE : medium g                                                 | grey, occasionally medium dark grey, firm  |     |            |   |   |      |    |   |
|                  |                                                                      | to splintery, occasionally subfissile,     |     |            |   |   |      |    |   |
|                  | _                                                                    | ce carbonaceous material, slightly         |     |            |   |   |      |    |   |
|                  | calcareous.                                                          |                                            |     |            |   |   |      |    |   |
| 3104             |                                                                      | 1-3mm bands of Sandstone.                  |     |            |   |   |      |    |   |
|                  |                                                                      | grey, occasionally medium dark grey, firm  |     |            |   |   |      |    |   |
|                  |                                                                      | to splintery, occasionally subfissile,     |     |            |   |   |      |    |   |
|                  |                                                                      | ce carbonaceous material, silty grading to |     |            |   |   |      |    |   |
|                  | SILTSTONE in places, slig                                            |                                            |     |            |   |   |      |    |   |
|                  |                                                                      | , firm to moderately hard, blocky, very    |     |            |   |   |      |    |   |
|                  |                                                                      | ess, commonly pale grey, transluscent,     |     |            |   |   |      |    |   |
|                  |                                                                      | subspherical, moderately sorted,           |     |            |   |   |      |    |   |
|                  |                                                                      | rgillaceous matrix in places, common to    |     |            |   |   |      |    |   |
|                  |                                                                      | e, common to locally abundant coarse       |     |            |   |   |      |    |   |
| 2105             |                                                                      | NO SHOWS (some mineral fluorescence).      |     |            |   |   |      |    |   |
| 3105             | 5mm Claystone bed with                                               | grey, occasionally medium dark grey, firm  |     |            |   |   |      |    |   |
|                  |                                                                      | to splintery, occasionally subfissile,     | X   |            |   |   |      |    |   |
|                  |                                                                      | ce carbonaceous material, silty grading to |     |            |   |   |      |    |   |
|                  | SILTSTONE in places, slig                                            |                                            |     |            |   |   |      |    |   |
|                  |                                                                      | to colouless, firm to moderately hard,     |     |            |   |   |      |    |   |
|                  |                                                                      | e, very fine grained, clear, colourless,   |     |            |   |   |      |    |   |
|                  |                                                                      | luscent, subangular to subrounded,         |     |            |   |   |      |    |   |
|                  |                                                                      | erately sorted, moderate calcite cement,   |     |            |   |   |      |    |   |
|                  |                                                                      | atrix, common to locally abundant          |     |            |   |   |      |    |   |
|                  |                                                                      | ally abundant coarse mica, poor to no      |     |            |   |   |      |    |   |
|                  |                                                                      | WS (some mineral fluorescence).            |     |            |   |   |      |    |   |



| Well Number:     | 6506/3-1                      | Core Number:                                                                | 1        |            |   |   |     |    |   |
|------------------|-------------------------------|-----------------------------------------------------------------------------|----------|------------|---|---|-----|----|---|
| Date:            | 07/08/01                      | Core diameter                                                               | 4"       | ,          |   |   |     |    |   |
| Logging Witness: | E. Linaker                    |                                                                             |          |            |   |   |     |    |   |
| Cored interval:  | 3101.5m <b>to</b> 3171.5m     | Hole size:                                                                  | 81/      | ź"         |   |   |     |    |   |
| Recovered length | 67.69m                        | Percentage recovery                                                         | -        | .7%        |   |   |     |    |   |
| Chip Depth       |                               | nology and shows                                                            |          | Ø          |   |   | Sho | ws |   |
|                  |                               |                                                                             |          | $\tilde{}$ |   |   |     |    |   |
|                  |                               |                                                                             | P        | F          | G | Т | P   | F  | G |
|                  |                               |                                                                             |          |            |   |   |     |    |   |
| 3106             | Claystone with common 1       | mm Sandstone bands.                                                         |          |            |   |   |     |    |   |
| 0100             |                               | rey, occasionally medium dark grey, firm                                    | X        |            |   |   |     |    |   |
|                  | to moderately hard, blocky    | to splintery, occasionally subfissile,                                      | <b>1</b> |            |   |   |     |    |   |
|                  |                               | minated carbonaceous material, silty                                        |          |            |   |   |     |    |   |
|                  | grading to SILTSTONE in       | places, slight trace glauconite,                                            |          |            |   |   |     |    |   |
|                  | micaceous, non calcareous.    |                                                                             |          |            |   |   |     |    |   |
|                  | <b>SANDSTONE</b> : light grey | to colouless, firm to moderately hard,                                      |          |            |   |   |     |    |   |
|                  | blocky, occasionally friable  | , very fine to fine grained, clear,                                         |          |            |   |   |     |    |   |
|                  | colourless, commonly pale     | grey, transluscent, subangular to                                           |          |            |   |   |     |    |   |
|                  |                               | poor to moderately sorted, moderate                                         |          |            |   |   |     |    |   |
|                  |                               | argillaceous matrix, common to locally                                      |          |            |   |   |     |    |   |
|                  |                               | to no visible porosity, NO SHOWS                                            |          |            |   |   |     |    |   |
|                  | (some mineral fluorescence    |                                                                             |          |            |   |   |     |    |   |
| 3107             |                               | to very pale grey, firm to moderately                                       |          |            |   |   |     |    |   |
|                  |                               | ocky, fine to medium grained, clear,                                        | X        | X          |   |   | X   |    |   |
|                  |                               | ite to very pale grey, transluscent,                                        |          |            |   |   |     |    |   |
|                  |                               | subspherical, moderately sorted, common                                     |          |            |   |   |     |    |   |
|                  |                               | , trace carbonaceous material, moderate                                     |          |            |   |   |     |    |   |
|                  |                               | lerate visible porosity. SHOWS: bright                                      |          |            |   |   |     |    |   |
|                  |                               | w white natural fluorescence, no cut, slow                                  |          |            |   |   |     |    |   |
| 2100             | blooming milky white crush    |                                                                             |          |            |   |   |     |    |   |
| 3108             | CLAYSTONE - madium a          |                                                                             |          |            |   |   |     |    |   |
|                  |                               | rey, occasionally medium dark grey, firm                                    | X        |            |   |   |     |    |   |
|                  |                               | to splintery, occasionally subfissile, minated carbonaceous material, silty |          |            |   |   |     |    |   |
|                  |                               | places, common coarse micaceous, non                                        |          |            |   |   |     |    |   |
|                  | calcareous.                   | places, common coarse inicaccous, non                                       |          |            |   |   |     |    |   |
|                  | SANDSTONE : as 3106m.         |                                                                             |          |            |   |   |     |    |   |
| 3109             | Claystone with common <       |                                                                             |          |            |   |   |     |    |   |
| 3107             | CLAYSTONE: as 3108m           | Timi panastone banas                                                        |          |            |   |   |     |    |   |
|                  |                               | to colouless, firm to moderately hard,                                      |          |            |   |   |     |    |   |
|                  |                               | e, very fine to fine grained, clear,                                        |          |            |   |   |     |    |   |
|                  |                               | grey, transluscent, subangular to                                           |          |            |   |   |     |    |   |
|                  | • -                           | poor to moderately sorted, moderate                                         |          |            |   |   |     |    |   |
|                  |                               | argillaceous matrix, common to locally                                      |          |            |   |   |     |    |   |
|                  |                               | isible porosity, NO SHOWS (some                                             |          |            |   |   |     |    |   |
|                  | mineral fluorescence).        | • •                                                                         |          |            |   |   |     |    |   |
| 3110             |                               | o medium dark grey, firm to moderately                                      |          |            |   |   |     |    |   |
|                  |                               | splintery to subfissile, micromicaceous,                                    |          |            |   |   |     |    |   |
|                  |                               | is 1/3mm wide, slight trace carbonaceous                                    |          |            |   |   |     |    |   |
|                  | material non calcareous.      |                                                                             |          | L          | L |   |     |    |   |
|                  |                               |                                                                             |          |            |   |   |     |    |   |



| Well Number:     | 6506/3-1                      | Core Number:                                 | 1   |            |   |   |     |      |   |
|------------------|-------------------------------|----------------------------------------------|-----|------------|---|---|-----|------|---|
| Date:            | 07/08/01                      | Core diameter                                | 4"  | )          |   |   |     |      |   |
| Logging Witness: | E. Linaker                    | Core diameter                                |     |            |   |   |     |      |   |
| Cored interval:  | 3101.5m <b>to</b> 3171.5m     | Hole size:                                   | 81/ | <b>5</b> " |   |   |     |      |   |
| Recovered length | 67.69m                        | Percentage recovery                          | _   | .7%        |   |   |     |      |   |
| Chip Depth       |                               | nology and shows                             | 70  | Ø          |   |   | Sho | ws   |   |
| Cmp Depth        |                               | iology and shows                             | _   |            |   |   |     | 1113 |   |
|                  |                               |                                              | P   | F          | G | T | P   | F    | G |
| 2111             | CI 4 141                      | 10 0 14 1                                    |     |            |   |   |     |      |   |
| 3111             | CLAYSTONE : madium to         | o medium dark grey, firm to moderately       |     |            |   |   |     |      |   |
|                  |                               | splintery to subfissile, micromicaceous,     |     |            |   |   |     |      |   |
|                  | slight trace carbonaceous m   |                                              |     |            |   |   |     |      |   |
|                  |                               | to colouless, firm to moderately hard,       |     |            |   |   |     |      |   |
|                  |                               | , predominantly very fine to occasionally    |     |            |   |   |     |      |   |
|                  | fine grained, clear, colourle |                                              |     |            |   |   |     |      |   |
|                  | subangular to subrounded, s   |                                              |     |            |   |   |     |      |   |
|                  | moderate calcite cement, oc   |                                              |     |            |   |   |     |      |   |
|                  | locally abundant coarse mic   |                                              |     |            |   |   |     |      |   |
|                  | (some mineral fluorescence    |                                              |     |            |   |   |     |      |   |
| 3112             | Claystone with common <       |                                              |     |            |   |   |     |      |   |
| 3112             | <b>CLAYSTONE</b> : as 3111m.  |                                              |     |            |   |   |     |      |   |
|                  | SANDSTONE : light grey        | to colouless, firm to moderately hard,       |     |            |   |   |     |      |   |
|                  |                               | , predominantly very fine to occasionally    |     |            |   |   |     |      |   |
|                  | fine grained, clear, colourle | ss, commonly pale grey, transluscent,        |     |            |   |   |     |      |   |
|                  | subangular to subrounded, s   | subspherical, poor to moderately sorted,     |     |            |   |   |     |      |   |
|                  |                               | ecasional argillaceous matrix, common to     |     |            |   |   |     |      |   |
|                  |                               | ca, rare glauconite, no visible porosity,    |     |            |   |   |     |      |   |
|                  | NO SHOWS (some mineral        |                                              |     |            |   |   |     |      |   |
| 3113             |                               | 1-2mm Sandstone bands, occasional            |     |            |   |   |     |      |   |
|                  | 5mm by 3mm Sandstone l        | enses.                                       |     |            |   |   |     |      |   |
|                  | CLAYSTONE: as 3111m           |                                              |     |            |   |   |     |      |   |
| 2114             | SANDSTONE : as 3112m          | 4 2                                          |     |            |   |   |     |      |   |
| 3114             |                               | 1-2mm Sandstone bands, occasional            |     |            |   |   |     |      |   |
|                  | 5mm by 3mm Sandstone l        | o medium dark grey, firm to moderately       |     |            |   |   |     |      |   |
|                  |                               | splintery to subfissile, micromicaceous,     |     |            |   |   |     |      |   |
|                  |                               | naterial, occasional trace micropyrite, non  |     |            |   |   |     |      |   |
|                  | calcareous.                   | atteriar, occusionar trace interopyrite, non |     |            |   |   |     |      |   |
|                  | SANDSTONE : as 3112m          |                                              |     |            |   |   |     |      |   |
| 3115             |                               | one and Sandstone (1mm bands).               |     |            |   |   |     |      |   |
| 3113             |                               | medium dark grey, firm to moderately         |     |            |   |   |     |      |   |
|                  |                               | splintery to subfissile, micromicaceous,     |     |            |   |   |     |      |   |
|                  | slight trace carbonaceous m   | aterial, occasional trace micropyrite,       |     |            |   |   |     |      |   |
|                  |                               | JE in places, non calcareous.                |     |            |   |   |     |      |   |
|                  |                               | to colouless, firm to moderately hard,       |     |            |   |   |     |      |   |
|                  |                               | , predominantly very fine to occasionally    |     |            |   |   |     |      |   |
|                  |                               | ilty, grading to SILTSTONE in places,        |     |            |   |   |     |      |   |
|                  | -                             | pale grey, transluscent, subangular to       |     |            |   |   |     |      |   |
|                  |                               | poor to moderately sorted, moderate          |     |            |   |   |     |      |   |
|                  |                               | argillaceous matrix, common to locally       |     |            |   |   |     |      |   |
|                  |                               | glauconite, no visible porosity, NO          |     |            |   |   |     |      |   |
|                  | SHOWS (some mineral fluo      | orescence).                                  |     |            |   |   |     |      |   |



| Well Number:            | 6506/3-1                                          | Core Number:                                                                                          | 1   |     |   |   |     |    |   |
|-------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----|-----|---|---|-----|----|---|
| Date:                   | 07/08/01                                          | Core diameter                                                                                         | 4"  |     |   |   |     |    |   |
| <b>Logging Witness:</b> | E. Linaker                                        |                                                                                                       |     |     |   |   |     |    |   |
| Cored interval:         | 3101.5m <b>to</b> 3171.5m                         | Hole size:                                                                                            | 81/ | ź"  |   |   |     |    |   |
| Recovered length        | 67.69m                                            | Percentage recovery                                                                                   | 96  | .7% |   |   |     |    |   |
| Chip Depth              | Lith                                              | nology and shows                                                                                      |     | Ø   |   |   | Sho | ws |   |
|                         |                                                   |                                                                                                       |     |     |   |   |     |    |   |
|                         |                                                   |                                                                                                       | P   | F   | G | T | P   | F  | G |
| 3116                    | Claystone with occasional                         | <1-1mm Sandstone bands.                                                                               |     |     |   |   |     |    |   |
|                         | <b>CLAYSTONE</b> : medium to                      | o medium dark grey, firm to moderately                                                                |     |     |   |   |     |    |   |
|                         | hard, subblocky to blocky,                        | splintery to subfissile, micromicaceous,                                                              |     |     |   |   |     |    |   |
|                         | slight trace carbonaceous m                       | naterial, silty, occasionally grading to                                                              |     |     |   |   |     |    |   |
|                         | SILTSTONE, non calcareo                           | us.                                                                                                   |     |     |   |   |     |    |   |
|                         | SANDSTONE : as 3115m                              |                                                                                                       |     |     |   |   |     |    |   |
| 3117                    |                                                   | laystone with common <1-2mm Sandstone bands.  LAYSTONE: medium grey to medium dark grey, occasionally |     |     |   |   |     |    |   |
|                         |                                                   |                                                                                                       |     |     |   |   |     |    |   |
|                         | _ ·                                               | rownish grey, firm to moderately hard, subblocky to blocky,                                           |     |     |   |   |     |    |   |
|                         |                                                   | casionally subfissile, micromicaceous, silty in places, grading to LTSTONE, non calcareous.           |     |     |   |   |     |    |   |
|                         |                                                   |                                                                                                       |     |     |   |   |     |    |   |
|                         |                                                   | o pale grey, firm, friable in places,                                                                 |     |     |   |   |     |    |   |
|                         |                                                   | ccasionally fine grained, clear,                                                                      |     |     |   |   |     |    |   |
|                         |                                                   | ransluscent, subangular, to subrounded,                                                               |     |     |   |   |     |    |   |
|                         |                                                   | conite, moderate calcite cement, no                                                                   |     |     |   |   |     |    |   |
| 2110                    | visible porosity, NO SHOW Claystone with common < |                                                                                                       |     |     |   |   |     |    |   |
| 3118                    |                                                   | rey to medium dark grey, occasionally                                                                 |     |     |   |   |     |    |   |
|                         |                                                   | erately hard, subblocky to blocky,                                                                    |     |     |   |   |     |    |   |
|                         |                                                   | romicaceous, non calcareous.                                                                          |     |     |   |   |     |    |   |
|                         | SANDSTONE : as 3117m                              | Tomicaccous, non carcarcous.                                                                          |     |     |   |   |     |    |   |
| 3119                    | Claystone with common <                           | 1-2mm Sandstone bands.                                                                                |     |     |   |   |     |    |   |
| 311)                    | CLAYSTONE: as 3118m                               |                                                                                                       |     |     |   |   |     |    |   |
|                         |                                                   | o pale grey, firm, friable in places,                                                                 |     |     |   |   |     |    |   |
|                         |                                                   | ccasionally fine grained, clear,                                                                      |     |     |   |   |     |    |   |
|                         | colourless, very pale grey, t                     | ransluscent, subangular, to subrounded,                                                               |     |     |   |   |     |    |   |
|                         |                                                   | iconite, moderate calcite cement, no                                                                  |     |     |   |   |     |    |   |
|                         | visible porosity, NO SHOW                         | VS.                                                                                                   |     |     |   |   |     |    |   |
| 3120                    | Claystone with occasional                         |                                                                                                       |     |     |   |   |     |    |   |
|                         |                                                   | o medium dark grey, firm to hard, blocky                                                              |     |     |   |   |     |    |   |
|                         |                                                   | us, occasional coarse mica, non to                                                                    |     |     |   |   |     |    |   |
|                         | slightly calcareous.                              |                                                                                                       |     |     |   |   |     |    |   |
|                         |                                                   | o pale grey, firm, friable in places,                                                                 |     |     |   |   |     |    |   |
|                         |                                                   | ccasionally fine grained, clear,                                                                      |     |     |   |   |     |    |   |
|                         |                                                   | ransluscent, subangular, to subrounded,                                                               |     |     |   |   |     |    |   |
|                         | SHOWS.                                            | ite cement, no visible porosity, NO                                                                   |     |     |   |   |     |    |   |
| 2121                    |                                                   | 1mm 1mm Sandstone hands                                                                               | 1   |     |   |   |     |    |   |
| 3121                    | occasional Sandstone lens                         | 1mm-1mm Sandstone bands,                                                                              |     |     |   |   |     |    |   |
|                         | CLAYSTONE : as 3120m.                             |                                                                                                       |     |     |   |   |     |    |   |
|                         | SANDSTONE: as 3120m.                              |                                                                                                       | 1   |     |   |   |     |    |   |
|                         | Diffibbione . as 3120III.                         |                                                                                                       | 1   |     |   |   |     |    |   |



| Well Number:     | 6506/3-1 Core Number: 1     |                                                                                                                     |     |     |          |   |     |    |   |
|------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------|-----|-----|----------|---|-----|----|---|
| Date:            | 07/08/01                    | Core diameter                                                                                                       | 4"  | ,   |          |   |     |    |   |
| Logging Witness: | E. Linaker                  |                                                                                                                     |     |     |          |   |     |    |   |
| Cored interval:  | 3101.5m <b>to</b> 3171.5m   | Hole size:                                                                                                          | 81/ | ź"  |          |   |     |    |   |
| Recovered length | 67.69m                      | Percentage recovery                                                                                                 | 96  | .7% |          |   |     |    |   |
| Chip Depth       | Lit                         | hology and shows                                                                                                    |     | Ø   |          |   | Sho | ws |   |
|                  |                             | -                                                                                                                   | P   | F   | G        | Т | P   | F  | G |
|                  |                             |                                                                                                                     | Г   | Г   | G        | 1 | Г   | Г  | G |
| 3122             |                             | l Claystone and Sandstone.                                                                                          |     |     |          |   |     |    |   |
|                  |                             | to pale grey, firm, friable in places,                                                                              |     |     |          |   |     |    |   |
|                  |                             | occasionally fine grained, clear,                                                                                   |     |     |          |   |     |    |   |
|                  |                             | transluscent, subangular, to subrounded,                                                                            |     |     |          |   |     |    |   |
|                  |                             | ace glauconite, moderate calcite cement,                                                                            |     |     |          |   |     |    |   |
|                  | no visible porosity, NO SH  |                                                                                                                     |     |     |          |   |     |    |   |
|                  |                             | o medium dark grey, firm to hard, blocky                                                                            |     |     |          |   |     |    |   |
|                  |                             | us, occasional coarse mica, common                                                                                  |     |     |          |   |     |    |   |
|                  |                             | ceous material, slightly to non                                                                                     |     |     |          |   |     |    |   |
|                  |                             | alcareous.  T.A.VSTONE: medium to medium dark grey firm to moderately                                               |     |     |          |   |     |    |   |
| 3123             |                             | LAYSTONE: medium to medium dark grey, firm to moderately                                                            |     |     |          |   |     |    |   |
|                  |                             | rd, blocky to subfissile, micromicaceous, rare very fine rbonaceous material, common micropyrite veins 1/4 to 1/3mm |     |     |          |   |     |    |   |
|                  |                             |                                                                                                                     |     |     |          |   |     |    |   |
|                  | wide, upto 1cm long (? foss |                                                                                                                     |     |     |          |   |     |    |   |
| 3124             |                             | l Claystone and Sandstone.                                                                                          |     |     |          |   |     |    |   |
|                  |                             | o medium dark grey, firm to moderately                                                                              |     |     |          |   |     |    |   |
|                  |                             | nicromicaceous, rare very fine                                                                                      |     |     |          |   |     |    |   |
|                  | carbonaceous material, non  |                                                                                                                     |     |     |          |   |     |    |   |
|                  |                             | to pale grey, firm, friable in places,                                                                              |     |     |          |   |     |    |   |
|                  |                             | occasionally fine grained, clear,                                                                                   |     |     |          |   |     |    |   |
|                  |                             | transluscent, subangular, to subrounded,                                                                            |     |     |          |   |     |    |   |
|                  |                             | to SILTSTONE, common glauconite,                                                                                    |     |     |          |   |     |    |   |
|                  | porosity, NO SHOWS.         | ccasional coarse biotite mica, no visible                                                                           |     |     |          |   |     |    |   |
| 3125             | Claystone with common <     | 1-1mm Sandstone bands, occasional                                                                                   |     |     |          |   |     |    |   |
|                  | Sandstone lenses 2mm by     |                                                                                                                     |     |     |          |   |     |    |   |
|                  | CLAYSTONE : as 3124m        |                                                                                                                     |     |     |          |   |     |    |   |
|                  |                             | to pale grey, firm, friable in places,                                                                              |     |     |          |   |     |    |   |
|                  |                             | ained, rare medium grained, clear,                                                                                  |     |     |          |   |     |    |   |
|                  |                             | transluscent, subangular, to subrounded,                                                                            |     |     |          |   |     |    |   |
|                  |                             | to SILTSTONE, common glauconite,                                                                                    |     |     |          |   |     |    |   |
|                  |                             | ccasional coarse biotite mica, no visible                                                                           |     |     |          |   |     |    |   |
| 2126             | porosity, NO SHOWS.         | d 2 Candatana handa                                                                                                 |     |     |          |   |     |    |   |
| 3126             |                             | <1-2mm Sandstone bands.                                                                                             |     |     |          |   |     |    |   |
|                  |                             | o medium dark grey, firm to hard,                                                                                   |     |     |          |   |     |    |   |
|                  | specks, non calcareous.     | , occasional very fine carbonaceous                                                                                 |     |     |          |   |     |    |   |
|                  |                             | aray firm friehla in rlassa blaslav                                                                                 |     |     |          |   |     |    |   |
|                  |                             | grey, firm, friable in places, blocky, very                                                                         |     |     |          |   |     |    |   |
|                  |                             | ess, very pale grey, transluscent,                                                                                  |     |     |          |   |     |    |   |
|                  |                             | subspherical, moderately sorted,                                                                                    |     |     |          |   |     |    |   |
|                  | SHOWS.                      | ace glauconite, no visible porosity, NO                                                                             |     |     |          |   |     |    |   |
|                  | BIIOWB.                     |                                                                                                                     | Ц   |     | <u> </u> |   |     |    |   |



| Well Number:            | 6506/3-1                                      | Core Number:                                                                                                                  | 1   |     |   |          |     |    |   |
|-------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----|-----|---|----------|-----|----|---|
| Date:                   | 07/08/01                                      | Core diameter                                                                                                                 | 4"  |     |   |          |     |    |   |
| <b>Logging Witness:</b> | E. Linaker                                    |                                                                                                                               |     |     |   |          |     |    |   |
| Cored interval:         | 3101.5m <b>to</b> 3171.5m                     | Hole size:                                                                                                                    | 81/ | ź"  |   |          |     |    |   |
| Recovered length        | 67.69m                                        | Percentage recovery                                                                                                           | 96  | .7% |   |          |     |    |   |
| Chip Depth              | Litl                                          | hology and shows                                                                                                              |     | Ø   |   |          | Sho | ws |   |
|                         |                                               |                                                                                                                               |     |     |   | <b>T</b> |     |    | ~ |
|                         |                                               |                                                                                                                               | P   | F   | G | T        | P   | F  | G |
| 3127                    |                                               | one and Sandstone in 1-2mm bands.                                                                                             |     |     |   |          |     |    |   |
|                         | <b>CLAYSTONE</b> : as 3126m                   |                                                                                                                               |     |     |   |          |     |    |   |
|                         |                                               | grey, firm, friable in places, blocky, very                                                                                   |     |     |   |          |     |    |   |
|                         |                                               | ss, very pale grey, transluscent,                                                                                             |     |     |   |          |     |    |   |
|                         | _                                             | subspherical, moderately sorted,                                                                                              |     |     |   |          |     |    |   |
|                         |                                               | ace glauconite, common coarse mica, no                                                                                        |     |     |   |          |     |    |   |
|                         | visible porosity, NO SHOW                     |                                                                                                                               |     |     |   |          |     |    |   |
| 3128                    |                                               | <b>LOMITE</b> : dark yellowish orange to pale yellowish brown, ved, blocky, trace mica, trace glauconite, microcrystalline to |     |     |   |          |     |    |   |
|                         |                                               | ard, blocky, trace mica, trace glauconite, microcrystalline to                                                                |     |     |   |          |     |    |   |
|                         |                                               | ryptocrystalline.                                                                                                             |     |     |   |          |     |    |   |
| 3129                    |                                               | AYSTONE: medium to medium dark grey, firm to moderately                                                                       |     |     |   |          |     |    |   |
|                         |                                               | d, subfissile to fissile, micromicaceous, rare very fine                                                                      |     |     |   |          |     |    |   |
|                         |                                               | nmon micropyrite veins 1/4 to 1/3mm                                                                                           |     |     |   |          |     |    |   |
|                         |                                               | sil burrows), non calcareous.                                                                                                 |     |     |   |          |     |    |   |
| 3130                    | CLAYSTONE: as 3129m.                          | •                                                                                                                             |     |     |   |          |     |    |   |
| 3131                    | Claystone with occasional                     | <1mm Sandstone bands.                                                                                                         |     |     |   |          |     |    |   |
|                         | <b>CLAYSTONE</b> : as 3129m.                  |                                                                                                                               |     |     |   |          |     |    |   |
|                         |                                               | grey, firm, fiable in places, blocky, very                                                                                    |     |     |   |          |     |    |   |
|                         |                                               | ss, very pale grey, transluscent,                                                                                             |     |     |   |          |     |    |   |
|                         |                                               | subspherical, moderate to poorly sorted,                                                                                      |     |     |   |          |     |    |   |
|                         |                                               | ommon coarse mica, no visible porosity,                                                                                       |     |     |   |          |     |    |   |
|                         | NO SHOWS.                                     |                                                                                                                               |     |     |   |          |     |    |   |
| 3132                    |                                               | ark grey, firm to moderately hard,                                                                                            |     |     |   |          |     |    |   |
|                         | -                                             | lty, grading to SILTSTONE, non                                                                                                |     |     |   |          |     |    |   |
|                         | calcareous.                                   |                                                                                                                               |     |     |   |          |     |    |   |
| 3133                    | Claystone with occasional                     |                                                                                                                               |     |     |   |          |     |    |   |
|                         | CLAYSTONE : as 3132m.                         |                                                                                                                               |     |     |   |          |     |    |   |
| 2121                    | SANDSTONE : as 3131m.                         |                                                                                                                               |     |     |   |          |     |    |   |
| 3134                    | Claystone with occasional                     |                                                                                                                               |     |     |   |          |     |    |   |
|                         | CLAYSTONE : as 3132m.                         |                                                                                                                               |     |     |   |          |     |    |   |
| 2125                    | SANDSTONE : as 3131m.                         | 4 6 14 1 1                                                                                                                    |     |     |   |          |     |    |   |
| 3135                    | Claystone with common < CLAYSTONE : as 3132m. |                                                                                                                               |     |     |   |          |     |    |   |
|                         |                                               | grey, firm, fiable in places, blocky, very                                                                                    |     |     |   |          |     |    |   |
|                         |                                               | ess, very pale grey, transluscent,                                                                                            |     |     |   |          |     |    |   |
|                         |                                               | subspherical, moderate to poorly sorted,                                                                                      |     |     |   |          |     |    |   |
|                         |                                               | ommon coarse mica, silty commonly                                                                                             |     |     |   |          |     |    |   |
|                         |                                               | o visible porosity, NO SHOWS.                                                                                                 |     |     |   |          |     |    |   |
| 3136                    | Claystone with common <                       | · ·                                                                                                                           |     |     |   |          |     |    |   |
|                         | CLAYSTONE : as 3132m.                         |                                                                                                                               |     |     |   |          |     |    |   |
|                         | SANDSTONE : as 3135m.                         |                                                                                                                               |     |     |   |          |     |    |   |
|                         |                                               |                                                                                                                               |     |     | • |          |     |    |   |



| Well Number:            | 506/3-1 Core Number: 1                                                                                                                                                             |                                                                                                                                                                                                                                                                 |     |     |   |   |     |    |   |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|---|---|-----|----|---|
| Date:                   | 07/08/01                                                                                                                                                                           | Core diameter                                                                                                                                                                                                                                                   | 4"  | ,   |   |   |     |    |   |
| <b>Logging Witness:</b> | E. Linaker                                                                                                                                                                         |                                                                                                                                                                                                                                                                 |     |     |   |   |     |    |   |
| Cored interval:         | 3101.5m <b>to</b> 3171.5m                                                                                                                                                          | Hole size:                                                                                                                                                                                                                                                      | 81/ | ź"  |   |   |     |    |   |
| Recovered length        | 67.69m                                                                                                                                                                             | Percentage recovery                                                                                                                                                                                                                                             | 96  | .7% |   |   |     |    |   |
| Chip Depth              | Lit                                                                                                                                                                                | chology and shows                                                                                                                                                                                                                                               |     | Ø   |   |   | Sho | ws |   |
|                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 | P   | F   | G | Т | P   | F  | G |
| 3137                    | Sandstone lenses 3mm by CLAYSTONE: medium to splintery to subfissile, mice SANDSTONE: pale grey grained to silt, clear, colou subangular to subrounded, moderate calcite cement, g | to medium dark grey, firm to hard, romicaceous, non calcareous. , firm, friable in places, blocky, very fine rless, very pale grey, transluscent, subspherical, moderate to poorly sorted, good trace glauconite, common coarse                                 |     |     |   |   |     |    |   |
| 3138                    | claystone: medium to splintery to subfissile, microcalcareous.  SANDSTONE: pale grey grained to silt, clear, colou subangular to subrounded, moderate calcite cement, g            | Claystone with common <1mm Sandstone/Siltstone bands. CLAYSTONE: medium to medium dark grey, firm to hard, splintery to subfissile, micromicaceous, silty in places, non                                                                                        |     |     |   |   |     |    |   |
| 3139                    | CLAYSTONE : medium thard, blocky to splintery, o                                                                                                                                   | to medium dark grey, firm to moderately occasionally subfissile, micrmicaceous, oceous specks, silty, occasionally grading reous.                                                                                                                               |     |     |   |   |     |    |   |
| 3140                    | hard, blocky to splintery, o common very fine carbona                                                                                                                              | to medium dark grey, firm to moderately occasionally subfissile, micrmicaceous, aceous specks, micropyrite veins 1/4mm rrows?), silty, occasionally grading to ous.                                                                                             |     |     |   |   |     |    |   |
| 3141                    | CLAYSTONE: medium thard, blocky to splintery, of common very fine carbona wide, 5mm long (fossil but                                                                               | to medium dark grey, firm to moderately occasionally subfissile, micrmicaceous, oceous specks, micropyrite veins 1/4mm crows?), silty, occasionally grading to nm bands, trace glauconite, non                                                                  |     |     |   |   |     |    |   |
| 3142                    | hard, blocky to splintery, of<br>common very fine carbonal<br>wide, 5mm long (fossil but<br>SILTSTONE rarely in <1n<br>calcareous.<br>SILTSTONE: light to light                    | to medium dark grey, firm to moderately occasionally subfissile, micrmicaceous, oceous specks, micropyrite veins 1/4mm rrows?), silty, occasionally grading to nm bands, trace glauconite, non tht medium grey, firm, blocky, occasionally grading to very fine |     |     |   |   |     |    |   |



| Well Number:     | 6506/3-1                     | Core Number:                                                                 | 1        |     |   |   |     |    |   |
|------------------|------------------------------|------------------------------------------------------------------------------|----------|-----|---|---|-----|----|---|
| Date:            | 07/08/01                     | Core diameter                                                                | 4"       | ,   |   |   |     |    |   |
| Logging Witness: | E. Linaker                   |                                                                              |          |     |   |   |     |    |   |
| Cored interval:  | 3101.5m <b>to</b> 3171.5m    | Hole size:                                                                   | 81/      | 2"  |   |   |     |    |   |
| Recovered length | 67.69m                       | Percentage recovery                                                          | 96       | .7% |   |   |     |    |   |
| Chip Depth       | Liti                         | hology and shows                                                             |          | Ø   |   |   | Sho | ws |   |
|                  |                              |                                                                              |          |     |   |   |     |    |   |
|                  |                              |                                                                              | P        | F   | G | Т | P   | F  | G |
| 3143             |                              | o medium dark grey, firm to moderately                                       |          |     |   |   |     |    |   |
|                  |                              | , micromicaceous, occasional very fine                                       |          |     |   |   |     |    |   |
|                  | carbonaceous material, non   |                                                                              |          |     |   |   |     |    |   |
| 3144             | Claystone with occasional    |                                                                              |          |     |   |   |     |    |   |
|                  | CLAYSTONE : As 3143n         | 1.                                                                           |          |     |   |   |     |    |   |
|                  | SILTSTONE : As 3142m.        |                                                                              |          |     |   |   |     |    |   |
| 3145             | Claystone with occasional    |                                                                              |          |     |   |   |     |    |   |
|                  | CLAYSTONE : As 3143n         | 1.                                                                           |          |     |   |   |     |    |   |
|                  | SILTSTONE : As 3142m.        |                                                                              | <u> </u> |     |   |   |     |    |   |
| 3146             | Claystone with common <      |                                                                              |          |     |   |   |     |    |   |
|                  |                              | o medium dark grey, firm to moderately                                       |          |     |   |   |     |    |   |
|                  |                              | , micromicaceous, occasional very fine                                       |          |     |   |   |     |    |   |
|                  | carbonaceous material, non   |                                                                              |          |     |   |   |     |    |   |
|                  |                              | firm, friable in places, blocky, very fine                                   |          |     |   |   |     |    |   |
|                  |                              | eless, very pale grey, transluscent,                                         |          |     |   |   |     |    |   |
|                  |                              | subspherical, moderate to poorly sorted, ood trace glauconite, common coarse |          |     |   |   |     |    |   |
|                  |                              | ing to SILTSTONE, no visible porosity,                                       |          |     |   |   |     |    |   |
|                  | NO SHOWS.                    | ing to SIL131 OIVE, no visible polosity,                                     |          |     |   |   |     |    |   |
| 3147             |                              | tone and Siltstone, bands <1mm thick.                                        |          |     |   |   |     |    |   |
|                  | <b>CLAYSTONE</b> : as 3146m  |                                                                              |          |     |   |   |     |    |   |
|                  |                              | medium grey, firm blocky, sandy, grading                                     |          |     |   |   |     |    |   |
|                  |                              | , micromicaceous, trace glauconite, trace                                    |          |     |   |   |     |    |   |
|                  | coarse mica, slightly calcar |                                                                              | <u> </u> |     |   |   |     |    |   |
| 3148             |                              | tone and Siltstone, bands <1mm thick.                                        |          |     |   |   |     |    |   |
|                  | CLAYSTONE : as 3146m         | •                                                                            |          |     |   |   |     |    |   |
| 21.10            | SILTSTONE : as 3147m.        | 1004                                                                         | -        |     |   |   |     |    |   |
| 3149             | , .                          | tone and Siltstone, bands <1-1mm                                             |          |     |   |   |     |    |   |
|                  | thick.                       |                                                                              |          |     |   |   |     |    |   |
|                  | CLAYSTONE : as 3146m         | nedium grey, firm blocky, sandy,                                             |          |     |   |   |     |    |   |
|                  |                              | fine SANDSTONE, micromicaceous,                                              |          |     |   |   |     |    |   |
|                  |                              | se mica, slightly calcareous.                                                |          |     |   |   |     |    |   |
| 3150             |                              | tone and Siltstone, bands <1mm thick.                                        | 1        |     |   |   |     |    |   |
| 3130             | , .                          | o medium dark grey, firm to moderately                                       |          |     |   |   |     |    |   |
|                  |                              | , micromicaceous, locally abundant                                           |          |     |   |   |     |    |   |
|                  |                              | fine carbonaceous material, non                                              |          |     |   |   |     |    |   |
|                  | calcareous.                  | the constraint in in in in in in in in in in in in in                        |          |     |   |   |     |    |   |
|                  | SILTSTONE : as 3149m.        |                                                                              |          |     |   |   |     |    |   |
| 3151             |                              | one and Siltstone, bands <1mm thick.                                         |          |     |   |   |     |    |   |
|                  | CLAYSTONE : as 3150m         |                                                                              |          |     |   |   |     |    |   |
|                  | <b>SILTSTONE</b> : as 3149m. |                                                                              |          |     |   |   |     |    |   |
|                  | SILIBIUNE . as 3149III.      |                                                                              | 1        |     |   |   |     |    |   |



| Well Number:            | 6506/3-1                                                        | Core Number:                                                                     | 1   |            |   |   |     |          |   |
|-------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|-----|------------|---|---|-----|----------|---|
| Date:                   | 07/08/01                                                        | Core diameter                                                                    | 4"  | ,          |   |   |     |          |   |
| <b>Logging Witness:</b> | E. Linaker                                                      |                                                                                  |     |            |   |   |     |          |   |
| Cored interval:         | 3101.5m <b>to</b> 3171.5m                                       | Hole size:                                                                       | 81/ | <b>2</b> " |   |   |     |          |   |
| Recovered length        | 67.69m                                                          | Percentage recovery                                                              | 96  | .7%        |   |   |     |          |   |
| Chip Depth              | Lit                                                             | hology and shows                                                                 |     | Ø          |   |   | Sho | ws       |   |
|                         |                                                                 |                                                                                  |     |            |   |   |     |          |   |
|                         |                                                                 |                                                                                  | P   | F          | G | Т | P   | F        | G |
| 3152                    |                                                                 | tone and Siltstone, bands <1mm thick.                                            |     |            |   |   |     |          |   |
|                         | CLAYSTONE : as 3150m                                            |                                                                                  |     |            |   |   |     |          |   |
|                         |                                                                 | medium grey, firm blocky, sandy, rarely                                          |     |            |   |   |     |          |   |
|                         |                                                                 | STONE, micromicaceous, trace                                                     |     |            |   |   |     |          |   |
| 2152                    | glauconite, trace coarse mic                                    |                                                                                  |     |            |   |   |     | <u> </u> |   |
| 3153                    |                                                                 | Claystone with common <1mm Siltstone bands.<br>CLAYSTONE : as 3150m.             |     |            |   |   |     |          |   |
|                         | SILTSTONE: as 3152m.                                            | •                                                                                |     |            |   |   |     |          |   |
| 3154                    |                                                                 | 1mm Siltstano hands, accesional 1mm                                              |     |            |   |   |     |          |   |
| 3134                    |                                                                 | laystone with common <1mm Siltstone bands, occasional 4m y 1cm Siltstone lenses. |     |            |   |   |     |          |   |
|                         | CLAYSTONE : as 3150m.                                           |                                                                                  |     |            |   |   |     |          |   |
|                         | SILTSTONE : pale grey, r                                        |                                                                                  |     |            |   |   |     |          |   |
|                         | occasionally, grading to ver                                    |                                                                                  |     |            |   |   |     |          |   |
|                         |                                                                 | se mica, slightly calcareous.                                                    |     |            |   |   |     |          |   |
| 3155                    |                                                                 | grey, firm to moderately hard, blocky to                                         |     |            |   |   |     |          |   |
| 3133                    |                                                                 | occasionally coarse mica, silty in places,                                       |     |            |   |   |     |          |   |
|                         | 1                                                               | ninated micropyrite, rare micropyrite                                            |     |            |   |   |     |          |   |
|                         | viens 1/4mm wide by 3mm long (fossil burrows?), non calcareous. |                                                                                  |     |            |   |   |     |          |   |
| 3156                    | Siltstone with common <1                                        | mm Claystone bands, occasional                                                   |     |            |   |   |     |          |   |
|                         | Sandstone lenses upto 4m                                        | m thick.                                                                         |     |            |   |   |     |          |   |
|                         |                                                                 | rey, firm to moderately hard, blocky to                                          |     |            |   |   |     |          |   |
|                         |                                                                 | occasionally coarse mica, silty in places,                                       |     |            |   |   |     |          |   |
|                         |                                                                 | ninated micropyrite, non calcareous.                                             |     |            |   |   |     |          |   |
|                         |                                                                 | nt medium grey, firm to moderately hard,                                         |     |            |   |   |     |          |   |
|                         |                                                                 | andy, occasionally grading to very fine                                          |     |            |   |   |     |          |   |
|                         | SANDSTONE, slightly calc                                        |                                                                                  |     |            |   |   |     |          |   |
|                         |                                                                 | , firm, firable in places, blocky, clear                                         |     |            |   |   |     |          |   |
|                         |                                                                 | e grey, very fine grained, subrounded to ilty grading to SILTSTONE. moderately   |     |            |   |   |     |          |   |
|                         |                                                                 | glauconite, no visible porosity, NO                                              |     |            |   |   |     |          |   |
|                         | SHOWS.                                                          | gradeonite, no visible potosity, 140                                             |     |            |   |   |     |          | İ |
| 3157                    |                                                                 | nm Claystone and Siltstone, occasional                                           |     |            |   |   |     |          |   |
| 3137                    | 1-2mm Sandstone bands.                                          | in Claystone and Shtstone, occasional                                            |     |            |   |   |     |          |   |
|                         | CLAYSTONE : as 3156m                                            |                                                                                  |     |            |   |   |     |          |   |
|                         | <b>SILTSTONE</b> : as 3156m.                                    |                                                                                  |     |            |   |   |     |          |   |
|                         | <b>SANDSTONE</b> : as 3156m.                                    |                                                                                  |     |            |   |   |     |          |   |
| 3158                    | Finely interbedded <1-1m                                        | m Claystone and Siltstone, occasional                                            |     |            |   |   |     |          |   |
|                         | 1-2mm Sandstone bands.                                          | - /                                                                              |     |            |   |   |     |          |   |
|                         | <b>CLAYSTONE</b> : as 3156m                                     | •                                                                                |     |            |   |   |     |          |   |
|                         | SILTSTONE : as 3156m.                                           |                                                                                  |     |            |   |   |     |          |   |
|                         | <b>SANDSTONE</b> : as 3156m.                                    |                                                                                  |     |            |   |   |     |          |   |
| 3159                    |                                                                 | tone/Siltstone/Sandstone <1-1mm thick.                                           |     |            |   |   |     |          |   |
|                         | CLAYSTONE : as 3156m                                            |                                                                                  |     |            |   |   |     |          |   |
|                         | SILTSTONE: as 3156m.                                            |                                                                                  |     |            |   |   |     |          |   |
|                         | <b>SANDSTONE</b> : as 3156m.                                    |                                                                                  |     |            |   |   |     |          |   |



| Well Number:     | 6506/3-1                                                 | Core Number:                                                                     | 1   |     |   |   |     |    |   |
|------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|-----|-----|---|---|-----|----|---|
| Date:            | 07/08/01                                                 | Core diameter                                                                    | 4"  | ,   |   |   |     |    |   |
| Logging Witness: | E. Linaker                                               |                                                                                  |     |     |   |   |     |    |   |
| Cored interval:  | 3101.5m <b>to</b> 3171.5m                                | Hole size:                                                                       | 81/ | ź"  |   |   |     |    |   |
| Recovered length | 67.69m                                                   | Percentage recovery                                                              | 96  | .7% |   |   |     |    |   |
| Chip Depth       |                                                          | hology and shows                                                                 |     | Ø   |   |   | Sho | ws |   |
| r r              |                                                          |                                                                                  |     | Ĩ   |   |   |     |    |   |
|                  |                                                          |                                                                                  | P   | F   | G | T | P   | F  | G |
|                  |                                                          |                                                                                  |     |     |   |   |     |    |   |
| 3160             | Finely interbedded Clays                                 | tone and Siltstone <1-2mm thick.                                                 |     |     |   |   |     |    |   |
|                  | <b>CLAYSTONE</b> : as 3156m                              |                                                                                  |     |     |   |   |     |    | 1 |
|                  | <b>SILTSTONE</b> : light to light                        | nt medium grey, firm to moderately hard,                                         |     |     |   |   |     |    | l |
|                  |                                                          | andy, commonly grading to very fine                                              |     |     |   |   |     |    | 1 |
|                  | SANDSTONE, slightly calc                                 |                                                                                  |     |     |   |   |     | l  |   |
| 3161             | Finely interbedded Claystone and Siltstone <1-2mm thick. |                                                                                  |     |     |   |   |     |    | 1 |
|                  | <b>CLAYSTONE</b> : as 3156m                              |                                                                                  |     |     |   |   |     |    | l |
|                  | <b>SILTSTONE</b> : as 3160m.                             |                                                                                  |     |     |   |   |     |    |   |
| 3162             | Claystone with common <                                  |                                                                                  |     |     |   |   |     |    |   |
|                  | <b>CLAYSTONE</b> : medium g                              |                                                                                  |     |     |   |   |     | 1  |   |
|                  | splintery, micromicaceous,                               |                                                                                  |     |     |   |   |     | 1  |   |
|                  |                                                          | y in places, occasional very fine                                                |     |     |   |   |     |    | 1 |
|                  | disseminated micropyrite, r                              |                                                                                  |     |     |   |   |     |    | 1 |
|                  |                                                          | nt medium grey, firm to moderately hard,                                         |     |     |   |   |     |    | 1 |
|                  |                                                          | race very fine carbonaceous material,                                            |     |     |   |   |     |    | 1 |
|                  |                                                          | to very fine SANDSTONE, slightly                                                 |     |     |   |   |     |    | 1 |
|                  | calcareous.                                              | C C 11 ' 1 11 1 1                                                                |     |     |   |   |     |    | 1 |
|                  |                                                          | , firm, firable in places, blocky, clear                                         |     |     |   |   |     |    | 1 |
|                  |                                                          | e grey, very fine grained, subrounded to                                         |     |     |   |   |     |    | 1 |
|                  |                                                          | ilty grading to SILTSTONE. moderately to locally abundant glauconite, no visible |     |     |   |   |     |    | 1 |
|                  | porosity, NO SHOWS.                                      | to locally abundant glaucoline, no visible                                       |     |     |   |   |     |    | 1 |
| 3163             |                                                          | tone and Siltstone <1-2mm thick.                                                 |     |     |   |   |     |    |   |
| 3103             | CLAYSTONE: as 3162m                                      |                                                                                  |     |     |   |   |     |    | 1 |
|                  |                                                          | nt medium grey, firm to moderately hard,                                         |     |     |   |   |     |    | 1 |
|                  |                                                          | race very fine carbonaceous material,                                            |     |     |   |   |     |    | 1 |
|                  |                                                          | g to very fine SANDSTONE, trace                                                  |     |     |   |   |     |    | l |
|                  | glauconite, slightly calcared                            |                                                                                  |     |     |   |   |     |    | 1 |
| 3164             | Finely interbedded Clayst                                | tone and Siltstone <1-1mm thick.                                                 |     |     |   |   |     |    |   |
|                  | <b>CLAYSTONE</b> : as 3162m                              |                                                                                  |     |     |   |   |     |    | 1 |
|                  | <b>SILTSTONE</b> : as 3163 m.                            |                                                                                  |     |     |   |   |     |    |   |
| 3165             |                                                          | tone and Siltstone <1-1mm thick.                                                 |     |     |   |   |     |    | l |
|                  | <b>CLAYSTONE</b> : as 3162m                              |                                                                                  |     |     |   |   |     |    | 1 |
|                  | <b>SILTSTONE</b> : as 3163 m.                            |                                                                                  |     |     |   |   |     |    | ļ |
| 3166             |                                                          | l <1-2mm Siltstone bands.                                                        |     |     |   |   |     |    | 1 |
|                  |                                                          | o medium dark grey, firm to occasionally                                         |     |     |   |   |     |    | 1 |
|                  |                                                          | splintery, micromicaceous, rare trace                                            |     |     |   |   |     |    | 1 |
|                  | very fine carbonaceous mat                               |                                                                                  |     |     |   |   |     |    |   |
|                  |                                                          | nt medium grey, firm blocky,                                                     |     |     |   |   |     |    |   |
| 01.67            | micromicaceous, slightly ca                              |                                                                                  |     |     |   |   |     |    |   |
| 3167             | Claystone with occasional                                |                                                                                  |     |     |   |   |     |    |   |
|                  | CLAYSTONE: as 3166m                                      |                                                                                  |     |     |   |   |     |    | l |
|                  |                                                          | nt medium grey, firm blocky,                                                     |     |     |   |   |     |    |   |
|                  | -                                                        | fine sand, trace glauconite, slightly                                            |     |     |   |   |     |    |   |
|                  | calcareous.                                              |                                                                                  | 1   |     |   |   |     |    |   |



|                         |                                                             | <u> </u>                                  |     |            |   |   |     |    |   |  |
|-------------------------|-------------------------------------------------------------|-------------------------------------------|-----|------------|---|---|-----|----|---|--|
| Well Number:            | 6506/3-1 Core Number:                                       |                                           |     |            | 1 |   |     |    |   |  |
| Date:                   | 07/08/01 Core diameter 4"                                   |                                           |     |            |   |   |     |    |   |  |
| <b>Logging Witness:</b> | E. Linaker                                                  |                                           |     |            |   |   |     |    |   |  |
| Cored interval:         | 3101.5m <b>to</b> 3171.5m                                   | Hole size:                                | 81/ | <b>2</b> " |   |   |     |    |   |  |
| Recovered length        | 67.69m                                                      | Percentage recovery                       | 96  | .7%        |   |   |     |    |   |  |
| Chip Depth              | Lit                                                         | hology and shows                          |     | Ø          |   |   | Sho | ws |   |  |
|                         |                                                             |                                           |     |            |   |   |     |    |   |  |
|                         |                                                             |                                           | P   | F          | G | T | P   | F  | G |  |
|                         |                                                             |                                           |     |            |   |   |     |    |   |  |
| 3168                    |                                                             | tone and Siltstone, <1-2mm thick.         |     |            |   |   |     |    |   |  |
|                         | CLAYSTONE: as 3166m.                                        |                                           |     |            |   |   |     |    |   |  |
|                         | <b>SILTSTONE</b> : light to light medium grey, firm blocky, |                                           |     |            |   |   |     |    | İ |  |
|                         | micromicaceous, trace very                                  | y fine sand, occasionally grading to very |     |            |   |   |     |    | İ |  |
|                         | fine SANDSTONE, trace g                                     | glauconite, occasional coarse mica,       |     |            |   |   |     |    | İ |  |
|                         | slightly calcareous.                                        |                                           |     |            |   |   |     |    |   |  |
| 3169                    | Claystone with common <                                     | <1-1mm Siltstone bands.                   |     |            |   |   |     |    |   |  |
|                         | CLAYSTONE: as 3166m.                                        |                                           |     |            |   |   |     |    |   |  |
|                         | SILTSTONE: as 3168m.                                        |                                           |     |            |   |   |     |    | İ |  |
| 3169.19                 | Siltstone with fine Claysto                                 | one bands.                                |     |            |   |   |     |    |   |  |
|                         | <b>CLAYSTONE</b> : as 3166m                                 | <b>.</b>                                  |     |            |   |   |     |    |   |  |
|                         | SILTSTONE: as 3168m.                                        |                                           |     |            |   |   |     |    |   |  |

## Appendix B

**Wireline Logging Events** 

### **Wireline Logging - Sequence of Events**

| Run      | Time/Date       | Comments/Activities                                                                           |
|----------|-----------------|-----------------------------------------------------------------------------------------------|
| Number 1 | 10/08/01        | AIT-PEX-HNGS (Weak point -ECRD - 8000lbs)                                                     |
| 1        | 02:10           | Tool box talk Prior to rigging up Schlumberger run 1.                                         |
|          | 02:15           | Start rigging up Run 1 - AIT-PEX-HNGS                                                         |
|          | 03:00           | Check tools.                                                                                  |
|          | 03:15           | Load radioactive sources.                                                                     |
|          | 03:30           | At 100m set compensator line.                                                                 |
|          | 03:45           | At BOP's                                                                                      |
|          | 04:15           | At casing shoe (encountered at 1374m). Continue RIH. Noticed ACTS (head                       |
|          |                 | tension) was giving readings 800lbs too high.                                                 |
|          | 05:20           | At 3180m begin uplog repeat section to 3060m. Through the Lysing formation.                   |
|          | 05:40           | Finished uplog of repeat section (+2m depth correction on repeat log). Continued              |
|          | 05.45           | to RIH                                                                                        |
|          | 05:45           | At 3100m hanging up slightly. Pull up - OK                                                    |
|          | 05:47           | Continue to RIH - OK.                                                                         |
|          | 06:10           | Tagged bottom at 3665.5m and start main uplog.                                                |
|          | 07:07 <b>RT</b> | Stop logging, but kept logging tool moving up slowly. While Dolphin slack off                 |
|          |                 | compensator line to replace broken compensator shear pin. Hole sticky again at 3100m.         |
|          | 07:27 <b>RT</b> | Compensator shear pin OK. RIH to 3170m.                                                       |
|          | 07:33           | Restart main uplog. After restart shallow resistivities were reading very high, and           |
|          | 07.55           | not repeating repeat log over this section. Suspected AIT failed. Continued with              |
|          |                 | uplog of PEX-HNGS.                                                                            |
|          | 08:35 <b>TT</b> | At 2690m Resistivity appears to start reading correctly/normal. Decide to RIH to              |
|          |                 | 3150m to relog for resistivty                                                                 |
|          | 08:50 <b>TT</b> | Restart main uplog from 3150m.                                                                |
|          | 09:50 <b>TT</b> | Back past 2690m.                                                                              |
|          | 12:05           | At shoe, continue on up to 1300m to check caliper. Caliper reading 12.16", (Casing - 12347"). |
|          | 12:10           | Close caliper and POOH                                                                        |
|          | 12:45           | Tools at BOP's, announcement made about radioactive.                                          |
|          | 13:05           | Tools at surface.                                                                             |
|          | 13:10           | Radioactive sources handling complete.                                                        |
|          | 13:20           | Start after calibration.                                                                      |
|          | 13:30           | Finished after calibrations start rigging down Run 1 AIT-PEX-HNGS                             |
|          | 14:05           | Rig down Complete                                                                             |
|          |                 |                                                                                               |
|          |                 | Total time run $1 = 11$ hours 55 minutes                                                      |
|          |                 | (Incl. 1:15 Tool Time and 0:20 Rig time)                                                      |
| 2        | 10/08/01        | DSI-GR-AMS-OBDT (Weak Point - ECRD - 8000lbs)                                                 |
|          | 14:05           | Start rigging up Run 2 DSI-GR-AMS-OBDT.                                                       |
|          | 15:10           | Finished checking tools and RIH.                                                              |
|          | 16:40           | At 3188m pull up slowly opening caliper and begin repeat log up 2980m.                        |
|          | 17:05           | At 2980m. RIH                                                                                 |

| Run    | Time/Date      | Comments/Activities                                                          |
|--------|----------------|------------------------------------------------------------------------------|
| Number |                |                                                                              |
| 2      | 10/08/01       |                                                                              |
|        | 17:30          | Tag bottom (3665.8m)gently pull up slowly and open caliper and start main    |
|        |                | uplog.                                                                       |
|        | 21:45          | Inside casing with Run 2 check caliper in casing and close. POOH with Run 2. |
|        | 22:20          | Tools at surface. Lay cable down for crane operations.                       |
|        | 22:30          | Rig down Run 2.                                                              |
|        | 22:50          | Run 2 DSI-GR-AMS-OBDT rig down completed.                                    |
|        |                |                                                                              |
|        |                | Total time run $2 = 8$ hours 45 minutes                                      |
| 3      | 10/08/01       | PEX (Weak Point - ECRD - 8000 lbs)                                           |
| 3      | 22:50          | Rig up Run 3 PEX                                                             |
|        | 23:00          | Check tools.                                                                 |
|        | 23:15          | Lift cable up after crane operations.                                        |
|        | 23:45          | Load radioactive sources.                                                    |
|        | 11/08/01       |                                                                              |
|        | 00:00          | RIH                                                                          |
|        | 00:05          | At 100m engage compensator.                                                  |
|        | 00:40          | Begin logging anomalous density readings from 2000m.                         |
|        | 01:35          | Finished log at 1590m, anomalous readings repeated, POOH.                    |
|        | 02:20          | Tools at surface.                                                            |
|        | 02:30          | Rigged down Run 3 PEX                                                        |
|        | 02:45          | Rig down complete.                                                           |
|        |                |                                                                              |
|        |                | Total time run $3 = 3$ hours 55 minutes                                      |
|        |                |                                                                              |
| 4      | 11/00/01       | NOD OD (NV. L.D. 4 N. H. 4000 4 F400H.)                                      |
| 4      | 11/08/01       | VSP-GR (Weak Point -Yellow - 4800 to 5400lbs)                                |
|        | 02:45<br>03:00 | Change head for VSP run.                                                     |
|        | 03:00          | Rig up Run 4 READ VSP-GR (8 receiver).                                       |
|        | 05:45          | RIH taking checkshot at 1280m.  Took pick up weight at shoe Tension 2000lbs. |
|        | 06:30          | At 2060m tool stood up, picked up, freed with 2000lbs overpull               |
|        | 07:00          | Continued to RIH. Checkshot at 2400m.                                        |
|        | 07:00          | Checkshot at 3200m and continued to RIH.                                     |
|        | 07:40          | At 3450m begin GR correlation pass. Sticky overpull up to 3000lbs at 3440m   |
|        | 07.40          | came free, 3000lbs overpull at 3425m came free, 3000lbs overpull at 3417m    |
|        |                | came free, still sticky up to 3410m again with 3000lbs overpull, came free.  |
|        | 07:55          | At 3390m, due to the sticky hole the GR data was no good RIH.                |
|        | 08:00          | At 3475m begin GR correlation pass. Again sticky upto 1500lbs overpull in    |
|        |                | places.                                                                      |
|        | 08:06          | Tool stuck at 3402m, with maximum pull 7200lbs (normal logging tension       |
|        |                | 3400lbs). Worked toolstring alternately pulling up and slacking off.         |
|        | 08:50          | Tool free, POOH at 4000 ft/hr.                                               |
|        | 08:55          | At 3346m overpull of 800lbs.                                                 |
|        | 09:00          | At 3106m overpull of 3000lbs.                                                |

| Run<br>Number | Time/Date | Comments/Activities                                                                                                                                            |
|---------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| number        | 00.02     | A4 2002 as assembly of 2000 2500Hz                                                                                                                             |
|               | 09:03     | At 3082m overpull of 3000-3500lbs overpull, tools stuck. Worked toolstring but alternately pull up to maximum cable tension of 7000lbs and slacking off. Fired |
|               |           | VSP guns to see if any of the receivers were in contact with the side of the hole,                                                                             |
|               |           | receiver 1 appeared to be, but working the tool at various speed and slacking                                                                                  |
|               |           | cable to 3120m seem to have no effect.                                                                                                                         |
|               | 11:35     | Pull up until cable tension at 7000lbs, and maintained until decided on forward                                                                                |
|               | 11.55     | plan.                                                                                                                                                          |
|               | 12:50     | Tool suddenly came free while checking out fishing equipment, POOH gradually                                                                                   |
|               |           | increasing pulling speed to 4000 ft/hr                                                                                                                         |
|               | 14:30     | Slow down to 2000 ft/hr until all toolstring in shoe.                                                                                                          |
|               | 14:50     | All toolstring inside shoe, POOH.                                                                                                                              |
|               | 15:15     | Tool at surface. No obvious case for tool sticking, check tools - OK. Rigged                                                                                   |
|               |           | down Run 4 VSP-GR                                                                                                                                              |
|               | 15:45     | Rig down complete                                                                                                                                              |
|               | 16:45     | Rigged down sheaves and clear rig floor.                                                                                                                       |
|               |           | Total time run 4 = 14 hours                                                                                                                                    |
|               |           |                                                                                                                                                                |
|               | 16:45     | Pick up clean out assembly and RIH, breaking circulation every 20 stands.                                                                                      |
|               |           | Cut and slipped drilling line at the shoe.                                                                                                                     |
|               |           | Broke circulation and circulated and conditioned mud at the shoe                                                                                               |
|               |           | Continued to RIH breaking circulation every 20 stands.                                                                                                         |
|               |           | Circulate bottoms up and circulate and condition mud.                                                                                                          |
|               |           | Started POOH, but a hydraulic hose on the upper pipe racking arm burst                                                                                         |
|               |           | circulated while repairing same. Tagged bottom and circulated bottoms up.                                                                                      |
|               |           | POOH with conditioning assembly, laid down and cleared rig floor.                                                                                              |
|               |           | 24 hours 45 minutes for conditioning trip.                                                                                                                     |
|               |           | y                                                                                                                                                              |
| 5             | 12/08/01  | MDT-GR (Weak Point - ECRD - 8000lbs)                                                                                                                           |
| 3             | 17:30     | Rigged up sheaves                                                                                                                                              |
|               | 18:00     | Started Rigging up Run 5 MDT-GR                                                                                                                                |
|               | 19:10     | Finished rigging up, checked tools.                                                                                                                            |
|               | 19:30     | Finished checking tools RIH.                                                                                                                                   |
|               | 19:45     | At 100m engage compensator.                                                                                                                                    |
|               | 20:15     | RIH (Broke two weakpoints while engaging compensator.)                                                                                                         |
|               | 20:30     | Noticed Quartz gauge on PS2 wasn't giving a signal continue RIH.                                                                                               |
|               | 20:35     | Check pick up tension a +/- 1250m 2900lbs (head tension 1590lbs).                                                                                              |
|               | 20:45     | Start correlating down (-1m correction). Continued RIH checking correlation.                                                                                   |
|               | 21:05     | Pretest 1 - 1655m - Dry test, very slow build up.                                                                                                              |
|               | 21:14     | Pretest 2 - 1662m - Slightly supercharged.                                                                                                                     |
|               | 21:26     | Pretest 3 - 1673m - Good test, mobility - 119md.                                                                                                               |
|               | 21:33     | Pretest 4 - 1678.5m - Good test, mobility - 22.8md                                                                                                             |
|               | 21:43     | Pretest 5 - 1685m - Dry test, very slow build up.                                                                                                              |
|               | 22:03     | Pretest 6 - 1686.1m - Good test, mobility - 11.7md                                                                                                             |

| Run    | Time/Date | Comments/Activities                                                                                                                                                                                                                                     |
|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number |           |                                                                                                                                                                                                                                                         |
|        | 22:10     | Pretest 7 - 1690m - Good test, mobility - 91.2md                                                                                                                                                                                                        |
|        | 22:21     | Pretest 8 - 1710m - Good test, mobility - 3.7md                                                                                                                                                                                                         |
|        | 22:35     | Pretest 9 - 1724m - Good test, mobility - 6md                                                                                                                                                                                                           |
|        | 22:45     | Dropped below last point in the Brygge formation for correlation check                                                                                                                                                                                  |
|        |           | (correction +0.5m)                                                                                                                                                                                                                                      |
|        | 22:50     | Weak point on compensator line broke, held by shackle, decided to go for last point and sample and replace weakpoint while RIH to the Lysing. Picked up and ran past 1732.5m to double check correlation, after loss of weak point, (-1.0m correction.) |
|        | 23:00     | Picked up to 1710m and RIH                                                                                                                                                                                                                              |
|        | 23:10     | Pretest 10 - 1732.5m - Supercharged.                                                                                                                                                                                                                    |
|        | 23:22     | Pulled up above 1675m for correlation check (correction +0.7m). RIH and up to check correlation.                                                                                                                                                        |
|        | 23:35     | At 1673m to attempt to sample, Pretest 11 - very slow build up, must be slightly                                                                                                                                                                        |
|        | 23.33     | off depth.                                                                                                                                                                                                                                              |
|        | 23:45     | Dropped down 0.5m to 1673.5m, Pretest 12 - still very slow build up.                                                                                                                                                                                    |
|        | 23:50     | Dropped another 0.5m to 1674m Pretest 13 - Good test 13.8md                                                                                                                                                                                             |
|        | 23:55     | Start sampling 1674m                                                                                                                                                                                                                                    |
|        | 13/08/01  | zunt einig 101 im                                                                                                                                                                                                                                       |
|        | 00:00     | Begin pumping out with MRPS #2 (300rpm, 90bar DD)                                                                                                                                                                                                       |
|        | 00:04     | Autoreset probe, restart pump (DD 46bar) back to mud on OFA                                                                                                                                                                                             |
|        | 00:10     | Stopped pumping out, reset probe, started pumping out - still mud on OFA, leak                                                                                                                                                                          |
|        |           | around packer, but still getting DD                                                                                                                                                                                                                     |
|        | 00:20     | Retracted probe and reset probe (DD 40bar initially dropped to 10-20bar) - still                                                                                                                                                                        |
|        |           | mud.                                                                                                                                                                                                                                                    |
|        | 00:33     | Dropped another 0.5m and retry at 1674.5m Pretest 14 - good test.                                                                                                                                                                                       |
|        | 00:41     | Started pumping - large drawdown, pump stalling.                                                                                                                                                                                                        |
|        | 00:45     | Abandon sampling in the Brygge for now and RIH to Lysing Formation. Took 3 Pretests in the Lysing, Attempted to sample at 3091.9m.                                                                                                                      |
|        | 02:25     | Started pumping. (300rpm, DD 100bar). Drawdown reduced to zero, pump                                                                                                                                                                                    |
|        | 02.23     | stalled, reinitialised pumpout, pump working again, some telemetry problems observed.                                                                                                                                                                   |
|        | 02:50     | Restarted Pumpout again. (300rpm, DD 60bar).                                                                                                                                                                                                            |
|        | 03:05     | Increased pump to 400rpm, DD 100bar.                                                                                                                                                                                                                    |
|        | 03:20     | Plugging, flowline pressure 180bar.                                                                                                                                                                                                                     |
|        | 03:30     | Decided to move from sampling point getting too tight.                                                                                                                                                                                                  |
|        | 03:40     | Set probe at 3091.4m, Pretest 21 - Good test - 30.6md mobilty.                                                                                                                                                                                          |
|        | 04:15     | Changed to CTSM, telemetry keeps going down while initializing. High DD.                                                                                                                                                                                |
|        | 04:15     | Dropped down to correlate.                                                                                                                                                                                                                              |
|        | 04:23     | Stopped at 3091.2m Took Pretest 22 - Good test                                                                                                                                                                                                          |
|        | 04:45     | Started pumping. (300rpm DD 22bar).                                                                                                                                                                                                                     |
|        | 05:12     | Increased pump rate to 400rpm, DD 27bar.                                                                                                                                                                                                                |
|        | 05:17     | Increased pump rate to 500rpm, DD 30bar.                                                                                                                                                                                                                |
|        | 05:35     | Drawdown 40bar.                                                                                                                                                                                                                                         |
|        | 05:45     | Drawdown up to 70bar.                                                                                                                                                                                                                                   |
|        | 05:50     | Pumping at 400rpm, water moving.                                                                                                                                                                                                                        |
|        | 05.50     | i amping at tootpin, water moving.                                                                                                                                                                                                                      |

| Run<br>Number | Time/Date                                    | Comments/Activities                                                                                                                                                                                                             |
|---------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 06:00                                        | Reduced pump rate to 300rpm, DD 70bar.                                                                                                                                                                                          |
|               | 06:55                                        | Drawdown up to 100bar, seeing more gas coming through.                                                                                                                                                                          |
|               | 07:55                                        | Opened bottle 5 MPSR#856. Closed lower seal valve.                                                                                                                                                                              |
|               | 08:00                                        | Closed bottle 5, temperature 101.1 deg C, shutin pressure $430 + 245 = 675$ bar.                                                                                                                                                |
|               | 08:10                                        | Pumping at 300rpm, DD 60bar.                                                                                                                                                                                                    |
|               | 08:17                                        | DD 65bar.                                                                                                                                                                                                                       |
|               | 08:38                                        | Pump stalled. Restarted no problem (44lt pumped).                                                                                                                                                                               |
|               | 08:39                                        | Pump rate increased to 400rpm, DD 70bar.                                                                                                                                                                                        |
|               | 08:50                                        | Pump rate reduced to 300rpm, DD 76bar.                                                                                                                                                                                          |
|               | 09:20                                        | Opened bottle 4, MPSR #753. Closed lower seal valve.(pumped 6.4lt after pump stalled)                                                                                                                                           |
|               | 09:26                                        | Closed bottle 4, temperature 101.9 deg C, shutin pressure 430 +250 = 680bar. Continued pumping at 300rpm, DD 70bar.                                                                                                             |
|               | 09:42                                        | Opened bottle 3 MPSR #712, DD 65bar.                                                                                                                                                                                            |
|               | 09:49                                        | Closed bottle 3, temperature $100.8 \text{ deg C}$ , shutin pressure $430 + 255 = 685 \text{bar}$ . Continued pumping at $300 \text{rpm}$ , DD $70 \text{bar}$ .                                                                |
|               | 09:55                                        | Retracted probe and started POOH                                                                                                                                                                                                |
|               | 11:40                                        | Tools on surface, start rigging down Run 5 MDT-GR.                                                                                                                                                                              |
|               | 12:30                                        | Rig down completed.                                                                                                                                                                                                             |
|               |                                              | Total time run 5 = 19 hours                                                                                                                                                                                                     |
|               |                                              | Total time run $S = 19$ nours                                                                                                                                                                                                   |
| 6             | 13/08/01                                     | VSP-GR (Weak Point - Pink - 4500 to 6000lbs)                                                                                                                                                                                    |
|               | 12:30                                        | Started rig up of Reed VSP- Run 6 VSP-GR and swapped logging heads.                                                                                                                                                             |
|               | 13:50                                        | RIH                                                                                                                                                                                                                             |
|               | 13:57                                        | At 100m, put compensator on.                                                                                                                                                                                                    |
|               | 14:50                                        | At 1280m, 1st checkshot, and continued to RIH.                                                                                                                                                                                  |
|               | 15:20                                        | At 2400m, 2nd checkshot, picked up at 1800 ft/hr to check logging tension (3000lbs).                                                                                                                                            |
|               | 15:50                                        | At 3200m, last checkshot.                                                                                                                                                                                                       |
|               | 15:55                                        | POOH to correlate GR over Lysing Formation (+3m correction). Logging tension 3500-3600lbs.                                                                                                                                      |
|               | 16:05                                        | Continued to RIH.                                                                                                                                                                                                               |
|               | 16:20                                        | Tagged TD at 3524m tool zero.                                                                                                                                                                                                   |
|               | 16:25                                        | At 3524m. start shooting VSP survey, 10m levels. Bottom two receivers caliper not open properly picked up to 3523m, and continue with survey. (logging                                                                          |
| 1             |                                              | not open properly premed up to be zern, and continue with our coll. (10881118                                                                                                                                                   |
|               |                                              | tension 4000lbs).                                                                                                                                                                                                               |
|               | 18:10                                        | tension 4000lbs). At 2898m Start Walkaway VSP.                                                                                                                                                                                  |
|               | 22:45                                        | tension 4000lbs).                                                                                                                                                                                                               |
|               | 22:45<br><b>14/08/01</b>                     | tension 4000lbs). At 2898m Start Walkaway VSP. Continued VSP at 10m intervals to 2240m.                                                                                                                                         |
|               | 22:45<br>14/08/01<br>00:00                   | tension 4000lbs). At 2898m Start Walkaway VSP. Continued VSP at 10m intervals to 2240m.  Continued VSP at 10m intervals to 1270m and 20m intervals to 950m.                                                                     |
|               | 22:45<br>14/08/01<br>00:00<br>04:05          | tension 4000lbs). At 2898m Start Walkaway VSP. Continued VSP at 10m intervals to 2240m.  Continued VSP at 10m intervals to 1270m and 20m intervals to 950m. POOH with VSP-GR.                                                   |
|               | 22:45<br>14/08/01<br>00:00<br>04:05<br>04:15 | tension 4000lbs). At 2898m Start Walkaway VSP. Continued VSP at 10m intervals to 2240m.  Continued VSP at 10m intervals to 1270m and 20m intervals to 950m. POOH with VSP-GR. Tools at surface, begin rigging down Run 6 VSP-GR |
|               | 22:45<br>14/08/01<br>00:00<br>04:05          | tension 4000lbs). At 2898m Start Walkaway VSP. Continued VSP at 10m intervals to 2240m.  Continued VSP at 10m intervals to 1270m and 20m intervals to 950m. POOH with VSP-GR.                                                   |

| Run<br>Number | Time/Date | Comments/Activities                                                                                                             |
|---------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|
|               |           |                                                                                                                                 |
| 7             | 14/08/01  | CST-GR (Weak Point - Green - 5450 to 6900 lbs)                                                                                  |
|               | 06:00     | Rebuild head.                                                                                                                   |
|               | 06:45     | Rigged up Run 7 CST-GR.                                                                                                         |
|               | 07:40     | RIH                                                                                                                             |
|               | 08:10     | Put compensator on.                                                                                                             |
|               | 08:40     | At shoe, continued to RIH.                                                                                                      |
|               | 09:45     | At 3450m. Correlate up with GR at 1800ft/hr (correction -0.2m) logging tension 3300-3400lbs.                                    |
|               | 09:55     | RIH                                                                                                                             |
|               | 10:00     | Start shooting sidewall cores at 3650m.                                                                                         |
|               | 10:05     | Overpull 3000lbs at +/- 3636m on bullet.                                                                                        |
|               | 10:25     | Free, continued shooting sidewall cores.                                                                                        |
|               | 11:20     | Pull up to Lysing Correlate GR (correction +0.9). Continued to shoot sidewall cores                                             |
|               | 12:55     | Stuck at 2987m (NB not a bullet last one shot at 3065m.) 3000lbs overpull.                                                      |
|               | 12:58     | Free. Continued shooting sidewall cores.                                                                                        |
|               | 14:25     | After last bullet fired from lower gun, waited while rigfloor tightened compensator line                                        |
|               | 14:30     | RIH to 1760m and Pulled up to correlate GR (+0.4 correction).                                                                   |
|               | 14:40     | Started shooting sidewall cores from the second gun.                                                                            |
|               | 15:35     | Finished sidewall cores (53 shot). POOH.                                                                                        |
|               | 15:38     | At shoe.                                                                                                                        |
|               | 16:25     | Rig into radio silence                                                                                                          |
|               | 16:50     | Tools at surface. (53 cores shot, 29 Recovered, 2 Empty, 8 Misfires, 14 Lost. Recovery 55%)                                     |
|               | 17:30     | Waiting for phones to come back up to phone regarding recovery - no further CST run required, started rigging down Schlumberger |
|               | 18:00     | Rig down completed.                                                                                                             |
|               |           | Total time run 7 = 12 hours                                                                                                     |
|               |           |                                                                                                                                 |

## **Appendix C**

# Dewpoint Report, Formation Water Samples

### **DewPoint**

## Formation Water Samples Well 6506/3-1

Made for Chevron AS by DewPoint A/S

September 2001

#### **Summary**

Three MDT water samples was taken at 3091.2 m MD in well 6506/3-1. The well was drilled with oil based mud and the samples had 6-9 vol-% contamination. The water is very fresh with a total salinity of 11366 mg/l and with a low CaCO<sub>3</sub> saturation at initial conditions. The content of organic acids is 2370 mg/l and the water contains 2.8 mg/l of phenols. The fist is a high value and the second a typical value for North Sea oilfield waters.

From the composition of the flash gas, the content and concentration of organic acids and phenols it has been concluded that the water has been in contact with a hydrocarbon accumulation or with migrating hydrocarbons. The low solution gas content points to no contact with hydrocarbons today.

#### **Ions**

All three sample-chambers contained very fresh formation water with a total salinity of 11366 +- 216 mg/l. The samples are of good quality with excellent ion balances, Table 1. The measured density is consistent with the reported salinity. Except for Ca<sup>2+</sup> no other divalent cat-ions where found. The total aquifer salinity is among the lowest seen on the Norwegian shelf and similar to water system in Ormen Lange.

The density of the formation water in situ has been calculated to be 1.017 g/cc from the salinity<sup>1</sup>. The pH of the water can be calculated to be 5.2 at initial conditions (430 bar and 102 °C) from the carbonate equilibrium and the concentration of organic acids, Table 2. This equals a pH value of 6.5 at standard conditions due to change in the carbonate equilibrium. The formation water is undersaturated with regard to CaCO<sub>3</sub> both at initial and at atmospheric conditions.

#### **Solution gas**

The compositions of the flash gas from the water samples are given in Table 3. The component distribution in MPSR 712 is unusual. It is believed that this composition is inaccurate due to the large amount of air (76.3 %) that contaminated the flashed gas. The other two flash gas compositions are very consistent. The component distribution in the flash gas has been compared with calculated solution gas from assuming equilibrium between a hydrocarbon fluid and the water at initial conditions and doing a three phase flash calculation with an EOS¹, Table 4. A gas-condensate from the area has been taken to be the hydrocarbon fluid, Table 5. Except for the CO₂ partition, this calculation is not very sensitive to the composition of the hydrocarbon fluid. The measured and calculated component distribution has been compared in Figure 1.

The amount of gas dissolved in the water samples is low. The samples are far from saturation with the measured gas-water ratio of 1.0 Sm<sup>3</sup>/m<sup>3</sup>. Table 4 shows that a GWR of about 3 Sm<sup>3</sup>/m<sup>3</sup> should be expected at saturation at initial conditions.

#### **Organic Acids**

The total amount of organic acids in the three analysed water sample is 2370 +- 54 mg/l. Table 6. This is a high concentration compared with other formation waters.

2

Carboxylic acids with different number of carbon atoms are present in the samples, but about 75 mole-% is acetic acid. The source for the organic acids has been biological degradation of organic material.

#### **Phenols**

The water contained 2.81 +- 0.45 mg/l of phenols, Table 7. About w-50 % is phenol and the rest different isomers of methyl- and ethyl phenols. The value is quite typical for oilfield waters produced from the Norwegian shelf<sup>5</sup>.

The analysis was difficult due to interference with other dissolved organic components in the water. The source is probably the oil based mud contamination in the three samples.

#### **Discussion**

No hydrocarbons were found in the target zones of well 6506/3-1. One objective with the water sample analysis was to assess if hydrocarbons had been in contact with the sampled water phase.

The composition of the flash gas strongly indicates that the water has been in contact with hydrocarbons, Figure 1. A CO<sub>2</sub> rich gas-condensate from the Haltenbanken area was used to calculate the partitioning with the water phase. The partitioning is not very sensitive on the nature of the hydrocarbon system, except for CO<sub>2</sub>. CO<sub>2</sub> will also have source in bacterial activity before the temperature got too high. No attempt was made to tune the composition of the contacting hydrocarbon system to agree with the measured flash gas composition. The measured component distribution is similar to the predicted gas and proves that the water has been in contact with hydrocarbons at one point in time. However, it can not be in contact today due to the relative large undersaturation. The oil based mud contamination creates an uncertainty in this calculation. If this oil had dissolved some residual hydrocarbons during circulation a significant part of the released gas could derive from the OBM phase. The composition of the gas released from mud was also calculated and compared to the gas released from the water and to the measured composition, Figure 2. The compositions do not suggest that this OBM phase has significantly affected the released gas.

The high concentration of organic acids show that organic matter in contact with the water has been broken down by bacterial activity. Organic acids are important because these constituents are related to the origin and/or migration of an oil as well as to the degradation of an oil accumulation. The solubility of oragnic components in formation water decrease with increasing salinity.

Phenols are some of the natural occurring constituents in hydrocarbon fluids that have the highest solubility in water. It will therefore accumulate in the water phase when hydrocarbons migrate through or the water is in direct contact with an accumulation. The typical total phenol concentration in produced water from oil and gas fields on the Norwegian shelf is 1- 15 mg/l<sup>5</sup>. The three samples have a phenol content between 3.4 and 2.3 mg/l. One would normally conclude from this that the formation water has been in contact with a hydrocarbon fluid at some stage. But again the oil based mud

contamination may influence this conclusion. A sample of the mud filtrate returned from 3110 m MD has been send to analysis in order to rule out that the OBM could be the source for the phenols seen in the water samples.

#### **Conclusion**

- The composition of the solution gas, the organic acid content and the phenol concentration strongly indicates that the sampled water has been in contact with a hydrocarbon accumulation or that HC has been migrating through at a point in time.
- The water is strongly undersaturated with gas, which should rule out that the water is in close contact with a hydrocarbon accumulation today.
- An additional phenol analysis of the mud filtrate returned from the sampled depth is being undertaken. This may rule out that the 6-9 vol-% mud contamination could be the source for the phenols found in the water.

#### References

1) Calsep A/S: PVTsim v. 11.0

May (2001)

2) Petrotech AS: Well 6506/3-1 Validity checks and analysis of

MDT samples-Water

Project 101067 (5-Sep-01)

3) UiB: Analyser av formasjonsvann – Organiske syrer

(5-Sep-01)

4) UiB: Analyser av formasjonsvann – Fenoler

(13-Sep-01)

5) SFT: Utslipp på norsk kontinentalsokkel 1998

(27-Dec-2000)

#### **Appendix**

(Editor: internal appendix to the DewPoint Report)

- Table 1. Composition and properties of water samples
- Table 2. Average water sample composition after correcting for the carbonate equilibrium at down hole and standard conditions
- Table 3. Composition and amount of solution gas in samples
- Table 4. Calculation of flash gas composition by assuming the water to be saturated with hydrocarbons from contact with a gas-condensate at initial conditions (430 bar and 102 °C)
- Table 5. Assumed composition of equilibrium hydrocarbon phase
- Table 6. Concentration of organic acids in water samples
- Table 7. Concentration of phenols in water samples<sup>4</sup>
- Figure 1. Component distribution of solution gas compared with the composition calculated from equilibrium between a condensate and formation water at intitial conditions (430 bar and 102 °C)
- Figure 2. Comparison between the composition of gas released from base oil, gas released from water phase and the measured flash gas composition.

Table 1. Composition and properties of water samples<sup>2</sup>

|                    | MPSR 712           | 3091.2m | MPSR 753           | 3091.2m | MPSR 856    | 3091.2m |
|--------------------|--------------------|---------|--------------------|---------|-------------|---------|
| Ion                | mg/l               | meq/l   | mg/l               | meq/l   | mg/l        | meq/l   |
| Li+                | 1                  | 0.1     | 2                  | 0.3     | 1           | 0.1     |
| Na+                | 3747               | 162.9   | 3860               | 167.8   | 3994        | 173.7   |
| K+                 | 97                 | 2.5     | 49                 | 1.3     | 55          | 1.4     |
| Ca++               | 131                | 3.3     | 111                | 2.8     | 167         | 4.2     |
| Mg++               |                    | 0.0     |                    | 0.0     |             | 0.0     |
| Sr++               |                    | 0.0     |                    | 0.0     |             | 0.0     |
| Fe++               |                    | 0.0     |                    | 0.0     |             | 0.0     |
| Sum                | 3975               | 168.8   | 4020               | 172.1   | 4216        | 179.4   |
| Cl-                | 4355               | 122.7   | 4424               | 124.6   | 4754        | 133.9   |
| SO4                | 43                 | 0.4     | 31                 | 0.3     | 23          | 0.2     |
| CO3                |                    | 0.0     |                    | 0.0     |             | 0.0     |
| Br-                | 50                 | 0.6     | 37                 | 0.5     | 42          | 0.5     |
| HCO3-              | 2760               | 45.2    | 2733               | 44.8    | 2635        | 43.2    |
| Sum                | 7208               | 169.0   | 7225               | 170.2   | 7454        | 177.9   |
| Salinity           |                    |         |                    |         |             |         |
| NaCl (mg/l)        | 8102               |         | 8284               |         | 8748        |         |
| Total (mg/l)       | 11183              |         | 11245              |         | 11670       |         |
| pН                 | 6.43@27.3°C        |         | 7.18@32.0°C        |         | 7.25@36.9°C |         |
| Resistivity @ 20°C | 0.673              |         | 0.574              |         | 0.627       |         |
| Density @ 15°C     | 1.0065             |         | 1.0064             |         | 1.0069      |         |
| Pi (bar)           | 430.7              |         | 430.7              |         | 430.7       |         |
| Ti (°C)            | 102                |         | 102                |         | 102         |         |
| Density @ Pi,Ti    | 1.017 <sup>1</sup> |         | 1.017 <sup>1</sup> | 1 1     | 1.0171      |         |

<sup>1)</sup> Density calculated with PVTsim for bottom hole conditions

Table 2. Average water sample composition after correcting for the carbonate equilibrium at down hole and standard conditions<sup>1</sup>

|               | 430bar/102°C | 1 bar/15°C |
|---------------|--------------|------------|
|               | mg/l         | mg/l       |
| Na+           | 3867.0       | 3867.0     |
| K+            | 67.0         | 67.0       |
| Ca            | 136.3        | 136.3      |
| Cl-           | 4511.0       | 4511.0     |
| SO4           | 32.3         | 32.3       |
| HAc           | 644.4        | 37.2       |
| HCO3-         | 955.4        | 338.0      |
| CO3           | 0.0          | 0.0        |
| Ac-           | 1697.4       | 2294.5     |
| CO2           | 7799.8       | 173.0      |
| pН            | 5.2          | 6.5        |
| CaCO3 precip. | 0.0          | 0.0        |

Table 3. Composition and amount of solution gas in samples<sup>2</sup>

|                      | MPSR 712  | 3091.2m | MPSR 753  | 3091.2m | MPSR 856  | 3091.2m |
|----------------------|-----------|---------|-----------|---------|-----------|---------|
|                      | weight -% | mole-%  | weight -% | mole-%  | weight -% | mole-%  |
| N2                   | 0.584     | 0.507   | 6.869     | 5.750   | 6.881     | 5.642   |
| CO2                  | 40.579    | 22.449  | 41.849    | 22.298  | 37.529    | 19.587  |
| C1                   | 47.711    | 72.405  | 47.917    | 70.038  | 50.119    | 71.758  |
| C2                   | 1.814     | 1.469   | 1.365     | 1.064   | 2.150     | 1.642   |
| C3                   | 1.946     | 1.074   | 1.037     | 0.552   | 1.694     | 0.883   |
| iC4                  | 0.486     | 0.204   | 0.213     | 0.086   | 0.344     | 0.136   |
| nC4                  | 1.031     | 0.432   | 0.225     | 0.091   | 0.379     | 0.150   |
| iC5                  | 0.358     | 0.121   | 0.080     | 0.026   | 0.123     | 0.039   |
| nC5                  | 0.465     | 0.157   | 0.057     | 0.019   | 0.095     | 0.030   |
| C6                   | 0.528     | 0.149   | 0.055     | 0.015   | 0.080     | 0.021   |
| C7                   | 2.845     | 0.709   | 0.066     | 0.017   | 0.169     | 0.040   |
| C8                   | 0.747     | 0.177   | 0.053     | 0.012   | 0.054     | 0.012   |
| C9                   | 0.097     | 0.020   | 0.029     | 0.006   | 0.044     | 0.009   |
| C10+                 | 0.810     | 0.126   | 0.186     | 0.028   | 0.337     | 0.050   |
| Air in sample mole-% |           | 76.334  |           | 6.431   |           | 10.749  |
| GWR Sm3/m3           |           | 1.0     |           | 0.9     |           | 0.9     |
| OBM in sample vol-%  |           | 8       |           | 6       |           | 9       |

Table 4. Calculation of flash gas composition by assuming the water to be saturated with hydrocarbons from contact with a gas-condensate at initial conditions (430 bar and  $102~^{\circ}\text{C}$ )

|                  | Form. water   | Flash gas   | Flash gas   |
|------------------|---------------|-------------|-------------|
|                  | 430bar, 102°C | 1 bar, 15°C | 1 bar, 15°C |
|                  | mole-%        | mole-%      | mole-%      |
| H2O              | 99.59490      | 1.22450     |             |
| N2               | 0.01062       | 2.69322     | 2.72661     |
| CO2              | 0.09666       | 20.83101    | 21.08925    |
| C1               | 0.28607       | 72.27794    | 73.17396    |
| C2               | 0.00951       | 2.40731     | 2.43715     |
| C3               | 0.00171       | 0.43135     | 0.43670     |
| iC4              | 0.00013       | 0.03382     | 0.03424     |
| nC4              | 0.00020       | 0.05025     | 0.05087     |
| iC5              | 0.00005       | 0.01288     | 0.01304     |
| nC5              | 0.00005       | 0.01163     | 0.01177     |
| C6               | 0.00002       | 0.00489     | 0.00495     |
| C7               | 0.00006       | 0.01493     | 0.01512     |
| C8               | 0.00002       | 0.00572     | 0.00579     |
| C9               | 0.00000       | 0.00047     | 0.00048     |
| C10+             | 0.00000       | 0.00008     | 0.00008     |
| GWR Sm3/m3       |               | 2.95        |             |
| Density @ Pi, Ti | 1.017         |             |             |
| Density @ sc     | 1.007         |             |             |

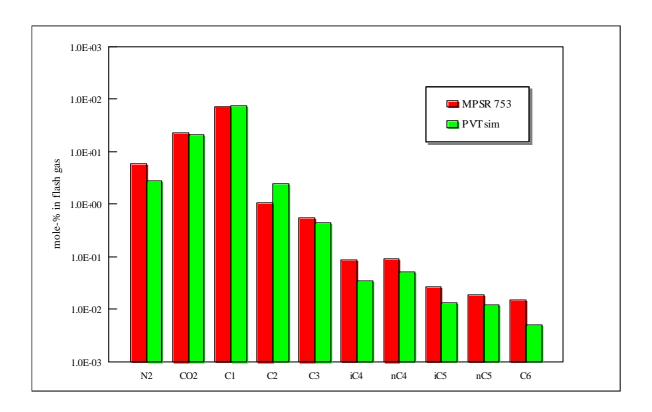



Figure 1. Component distribution of solution gas compared with the composition calculated from equilibrium between a condensate and formation water at intitial conditions (430 bar and  $102^{\circ}$ C)

Table 5. Assumed composition of equilibrium hydrocarbon phase

|      | mole-% |
|------|--------|
| N2   | 2.042  |
| CO2  | 11.437 |
| C1   | 75.630 |
| C2   | 4.901  |
| C3   | 2.023  |
| iC4  | 0.421  |
| nC4  | 0.569  |
| iC5  | 0.268  |
| nC5  | 0.265  |
| C6   | 0.413  |
| C7   | 0.584  |
| C8   | 0.496  |
| C9   | 0.128  |
| C10+ | 0.821  |

Table 6. Concentration of organic acids in water samples<sup>3</sup>

| Sample | Conc C1     | ConcC2-     | Conc C2     | Conc C3      | Conc C4     | Conc C5      | Conc C6     | Conc C6+     | Tot conc. | Tot conc. |
|--------|-------------|-------------|-------------|--------------|-------------|--------------|-------------|--------------|-----------|-----------|
|        | formic acid | malone acid | acetic acid | propane acid | butane acid | pentane acid | hexane acid | higher acids | as C2     | as C2     |
| MPSR   | mmole/l     | mmole/l     | mmole/l     | mmole/l      | mmole/l     | mmole/l      | mmole/l     | mmole/l      | mmole/l   | mg/l      |
| 712    | 0.18        | 0.31        | 29.24       | 1.75         | 0.56        | 0.52         | 0.18        | 0.64         | 38.86     | 2332      |
| 753    | 0.45        | 0.24        | 28.99       | 1.06         | 0.97        | 1.55         | -           | 0.89         | 40.80     | 2448      |
| 856    | 0.37        | 0.28        | 28.68       | 1.81         | 1.06        | traces       | -           | 0.35         | 38.87     | 2332      |

Table 7. Concentration of phenols in water samples<sup>4</sup>

| Sample | Phenol | 2-meth- | 3-meth- | 4-meth- | 2,4 dimeth- | 4-eth- | 3,5 dimeth- | Total   |
|--------|--------|---------|---------|---------|-------------|--------|-------------|---------|
|        |        | phenol  | phenol  | phenol  | phenol      | phenol | phenol      | Phenols |
| MPSR   | mg/l   | mg/l    | mg/l    | mg/l    | mg/l        | mg/l   | mg/l        | mg/l    |
| 712    | 1.41   | 0.73    | 0.40    | 0.31    | 0.47        | 0.09   | 0.00        | 2.69    |
| 753    | 1.30   | 0.33    | 0.42    | 0.11    | 0.16        | -      | 0.01        | 3.41    |
| 856    | 1.15   | 0.57    | 0.27    | 0.35    | 0.33        | -      | 0.02        | 2.33    |

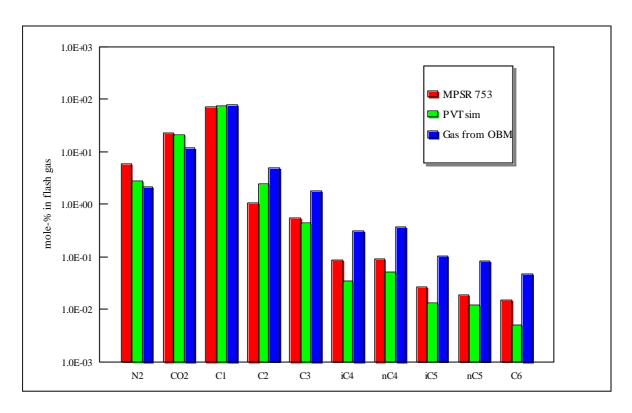



Figure 2. Comparison between the composition of gas released from base oil, gas released from water phase and the measured flash gas composition.