E&P Norway		С	Classific.: INTERNAL E&P					
HYDRO O	rmen Lange							
Title: WELL FINAL PL 209	6305/4-1 WELL REPORT			N F C	No. : Rev. : Date :	Click and Click and 2002-10-3	type No. type Rev. 31	
Title FINAL WELL WELL 6305/4	REPORT I-1, LICENCE 209							
Keywords								
Document ca Report	tegory	Docum 37-00-1	Document ID Amendment no. 37-00-NH-G15-00092					
Area code	System code	Procure	ement re	f./Packa	ige no.			
SCM referen	ce	Tag no	•					
Quadrant/Blc 6305/4/1	ck/Well	Licence 209	e no. Project					
Pages/appendices/volume(s)			Replaces					
	Name(s) Peter O. Rønning		Org. unit D&U Norge		Date 2002-11-	15	Signed	
Author(s) Bjarte Mork			D&U Norge		2002-11-	15		
Controlled	Name		Org. unit		Date		Signed	
Controlled	Per Kjærnes		L&U Norge		2002-11-15			
Verified	Name Tone Pedersen		Org. unit D&U Norge		Date 2002-11-	15	Signed	
Approved Flemming Stene			Org. unit D&U Norge		Date 2002-11-15		Signed	
			I					
Rev./ status Date	Reason for iss	sue		Author	Contr.	Disc. appr.	Proj. appr.	Hydro appr.

Classific.: INTERNAL E&P

No. : Click and type No. Rev. : Click and type Rev. Date : 2002-10-31

Final Well Report

6305/4-1

PL 209

E&P Norway		Classific.: INTERNAL E&P		
HYDRO Ormen Lange				
Title: WELL 6305/4-1 FINAL WELL REPORT PL 209		Rev. : Page : Date :	0 1 of 56 2002-10-30	
Prepared by: Operations GeologyVerified by: T. PedersenApproved by: J. Bang			Sign. Sign. Sign.	:
LIST	OF CONTENTS, W	VELL 6305/4-1		
INTRODUCTION:				
Preface	page 2			
Location Map	page 3			
Summary of Well Data	page 4			
SECTION A:	GEOLOGY			
SECTION B:	OPERATIONS			
SECTION C:	COMPOSITE L	-OG		
	LITHOLOGY L	OG		
	POST SITE SU	JRVEY PANEL		

Title:	WELL 6305/4-1	
	FINAL WELL REPORT	Rev. : 0
	PL 209	Page: 2 of 56
		Date : 2002-10-30

PREFACE:

The well was drilled in the PL 209 area, and it was performed as a joint operation between PL 208, PL 209, and PL 250 The licensees' percentage share of the blocks is as follows:

PL 209: Norsk Hydro ASA (operator) Exxon Mobil A/S Norske Shell Den Norske Stats Oljeselskap A/S Petoro A/S	25.00 % 10.00 % 15.00 % 15.00 % 35.00 %
PL 250: Exxon Mobil Den Norske Stats Oljeselskap A/S BP Norge A/S Norsk Hydro ASA A/S Norske Shell (operator) Petoro A/S	5.91 % 8.87 % 9.44 % 14.78 % 16.00 % 45.00 %
PL 208 A/S Norske Shell Petoro A/S BP Norge A/S (operator)	25.00 % 30.00 % 45.00 %

The well was drilled and tested by Norsk Hydro ASA., on behalf of the group, during March and June 2002 (see Location Map, page 3).

All depths in this report are mMD RKB unless otherwise stated

Rev. :	0
Page :	3 of 56
Date :	2002-10-30

Location map:

Ormen Lange, Structural Closure and DHI Area

HYDRO Ormen Lange

Title: WELL 6305/4-1 FINAL WELL REPORT PL 209

Rev. : 0 Page : 4 of 56 Date : 2002-10-30

SUMMARY OF WELL DATA			
LOCATION:	Geo: 63° 34' 17.76" N 05° 17' 55.93" E UTM 7 051 501.9 mN 614 148.3 mE		
	ED 50, UTM Zone 31, CM 03°E		
OPERATOR:	Norsk Hydro		
RIG:	Scarabeo 5		
CONTRACTOR:	Saipem		
KB ELEVATION (to MSL):	25m		
WATER DEPTH (MSL):	1002m		
START OF OPERATIONS:	10.03.2002 @ 22:00hrs		
WELL SPUDDED:	14.03.2002 @ 04:15hrs (36" hole deviated		
WELL RE-SPUDDED:	>1,5°)		
REACHED TD ON:	16.03.2002 @ 03:00hrs		
OFF LOCATION (OFF COST):	26.04.2002 @ 15:00hrs		
STATUS:	02.06.2002 @ 15:00hrs		
FORMATION AT TD:	Plugged and abandoned		
	Kyrre		
TD DRILLER (mRKB):	2975.5m MD		
TD LOGGER (mRKB):	2975m MD		
DRILLING DEPTHS:	36" to 1066.0 m 8½" pilot to 1751.0 m 36" to 1108.0 m 26" to 1756.0 m 12¼" to 2725.0 m 8½" to 2975.0 m		
CASING DEPTHS:	30"to1105.0 m20"to1749.0 m9 5/8"to2719.0 m		

Classific.: INTERNAL E&P

Title:	WELL 6305/4-1		
	FINAL WELL REPORT	Rev. :	0
	PL 209	Page :	5 of 56
		Date :	2002-10-30

SECTION A

GEOLOGY

Rev. : 0 Page : 6 of 56 Date : 2002-10-30

Table of Contents Section A

1	0	Objectives	9
2	R	Results	
3	B	Biostratigraphy	
	3.1	Major points	
	3.2	Stratigraphic Breaks	12
	3.2	Biostratigraphic summary of the cond units	
1	J.J T	Lith saturation and u	14
4	L		
	4.1	Nordland Group (1027,0 - 1701,0m MD)	
	4. 4.	4.1.1 Naust Formation (1027,0 - 1662,0m MD)	
	42	Hordeland Group (1701.0 - 2393.5m MD)	16
	4 .	4.2.1 Brygge Formation (1701,0 - 2100,0m MD)	
	43	Rogaland Group (2393 5 - 2829 0m MD)	17
	4 .5	4.3.1 Balder Formation (2393.5 - 2529.0m MD)	
	4	4.3.2 Sele Formation (2529,0 - 2636,0m MD)	
	4.	4.3.3 Lista Formation (2636,0 - 2755,0m MD)	
	4.	4.3.4 Våle Formation (2755,5 - 2768,5m MD)	
	4.	4.3.5 Egga Tight (2768,5 - 2770,0m MD)	
	4.	4.3.6 Egga Reservoir Unit (2770,0 - 2811,5m MD)	
	4.	4.3.7 Våle Tight (2811,5 - 2823,0m MD	
	4.	4.3.8 Våle Heterolithic (2823,0-2829,5m MD)	
	4.4	Shetland Group (2829,5 - 2975,0m MD)	
	4.	4.4.1 Jorsalfare Formation (2829,0 - 2880,0m MD)	
	4.	4.4.2 Kyrre Formation (2880,0 - 2795,0 m MD)	
5	H	Hydrocarbon Shows	
	5.1	Gas Record	
	5.2	Oil stain and Fluorescence	
6	С	Coring	
	6.1	Conventional Cores	
7	L	Logging	
	7.1	MWD Logs	
	7.1	Winsling Logs	24
	7.4	7 2 1 Valocity Surveys	24 24
	7.	7.2.2 Bottom Hole Temperatures From Wireline Logs	
8	P	Petrophysical Results	
	8.1	Log Ouality	
	8.2	Core Data	20
	83	Formation Pressure measurements	20 77
	0.5		
	8.4	Petrophysical Evaluation Net Sand	
		Ivet Sailu	

Rev. : 0 Page : 7 of 56 Date : 2002-10-30

	Dorosity	20
	Water Saturation.	
8.5	Petrophysical Net Sand Averages	
9 Es	stimated Pore Pressure, Fracture, Overburden and Temperature Gradients	
9.1	Pore Pressure	
9.2	Formation Strength	
9.3	Overburden Gradient	
9.4	Temperature Gradient	
10	Geophysical Results	
11	Post Site Survey Report	
11.1	WELL DATA:	
11.2	SEISMIC DATA:	
12	Standard and Special Studies	

Rev. : 0 Page : 8 of 56 Date : 2002-10-30

SECTION A: LIST OF FIGURES AND APPENDICES

FIGURES	PAGE
Figure 2-1: Formation Tops	10
Figure 3-1 Stratigraphic summary, Well 6305/4-1	
Figure 5-1: Shows Summary 6305/4-1	
Figure 6-1: Conventional Core in the Ooze section, Brygge Fm 6305/4-1	
Figure 6-2: Conventional Cores in the Reservoir Section 6305/4-1	
Figure 6-3: Sidewall Core Summary	
Figure 7-1: MWD/LWD-runs	
Figure 7-2: Wireline Logs 6305/4-1	
Figure 7-3: Bottom Hole Temperatures 6305/4-4-1 Run1	
Figure 7-4: Bottom Hole Temperatures 6305/4-1 Run2	
Figure 8-1 Cored intervals and depth shift well 6305/4-1	
Figure 8-2 CPI and Formation pressures versus depth well 6305/4-1	
Figure 8-3 Summary of the fluid sampling and logging	
Figure 8-4 Petrophysical net sand averages well 6305/4-1	
Figure 8-5 Raw logs and CPI Egga RU well 6305-4-1	
Figure 8-6 Raw logs and CPI Våle Heterolitic and Jorsalfare RU well 6305/4-1	32
Figure 9-1: Pore Pressure-, Fracture-, and Overburden Gradients	
Figure 9-2: Temperature Gradient	
Figure 10-1 Prognosis vs. actual formation tops for well 6305/4-1	
Figure 10-2 Preliminary well tie at reservoil level	
Figure 10-3 Time versus depth plot	
APPENDICES	

APPENDIX I	
APPENDIX II	
APPENDIX III	
APPENDIX IV	

) Correction HYD	E&P NorwayROOrmen Lange	Classific.: INTERNAL E&P
Title:	WELL 6305/4-1 FINAL WELL REPORT PL 209	Rev. : 0 Page : 9 of 56 Date : 2002-10-30

1 Objectives

The exploration well 6305/4-1 is located in the north western part of the direct hydrocarbon indicator (DHI) area of the Ormen Lange Field, in the eastern part of block 6305/4 in PL209. There were three main objectives for the well, all having equal priority. The first objective was to reduce the risk of the worst case scenario of reservoir compartmentalisation. The second objective was to address the potential slide risk due to reservoir drainage of the main production area, and the third objective was to reduce the risk of worst case GIIP through improved knowledge on the hydrocarbon distribution. Further important objectives were to test the reservoir quality closer to the NW margin of the gas field as well as to acquire a new check point for geophysical, geological and petrophysical interpretations.

Title:	WELL 6305/4-1		
	FINAL WELL REPORT	Rev. :	0
	PL 209	Page :	10 of 56
		Date :	2002-10-30

2 Results

The well was spudded 16th March 2002 and reached a total depth of 2975 m MD RKB in the Kyrre Fm. the 26th. April 2002. All drilling objectives were met. All logging and well test objectives were met. The well was permanently plugged and abandoned as a gas discovery the 02nd June 2002.

The main results were as follows:

GROUP	FORMATION	m MD RKB	m TVD RKB	m MSL	Thicknes s m TVD
NORDLAND	Sea floor (Quaternary)	1027.00	1027.00	1002.00	
	Naust Fm	1027.00	1027.00	1002.00	635.00
	Kai Fm	1662.00	1662.00	1637.00	39.00
HORDALAND	Brygge Fm	1701.00	1701.00	1676.00	301.00
	Opal CT	1988.00	1987.00	1962.00	
	Green Clay (Base Oligocene)	2100.00	2099.00	2074.00	190.00
	Brown Clay Marker	2290.00	2289.00	2264.00	103.50
ROGALAND	Balder Fm	2393.50	2392.50	2367.50	135.50
	Sele Fm	2529.00	2528.00	2503.00	107.00
	Lista Fm	2636.00	2635.00	2610.00	119.50
	Våle Fm	2755.50	2754.50	2729.50	13.00
	Egga Member (Tight)	2768.50	2767.50	2742.50	1.50
	Egga Member (Reservoir Unit)	2770.00	2769.00	2744.00	41.50
	Våle Tight Member	2811.50	2810.50	2785.50	11.50
	Våle Heterolithic Member	2823.00	2822.00	2797.00	6.00
SHETLAND	Jorsalfare RU	2829.00	2828.00	2803.00	10.00
	Jorsalfare Isolated Sands	2839.00	2838.00	2813.00	21.00
	Base Jorsalfare Isolated Sands	2860	2859	2834	
	Kyrre Fm	2880.00	2879.00	2854.00	95.50
TD		2975.50	2974.50	2949.50	

Figure 2-1: Formation Tops

The well proved good reservoir quality in the Egga Reservoir Unit which was thinner than prognosed. A "Gas Down To" situation was encountered in the lowermost Egga Formation. Isolated, overpressured water filled sands were found in the underlying units. A single day production test indicates dynamic sealing for parts of 3 of the 4 seismically interpreted faults, which surround the well location

Title:	WELL 6305/4-1		
	FINAL WELL REPORT	Rev. :	0
	PL 209	Page :	11 of 56
		Date :	2002-10-30

3 Biostratigraphy

The biostratigraphical evaluation (1780m - 2973m) of well 6305/4-1 was carried out by Robertson Research Int. Ltd. Micropalaeontological and palynological analyses have formed the basis for the biostratigraphical interpretation of the well. The analyses were carried out on a combination of ditch cuttings, sidewall cores and core samples. 112 samples were analysed for micropalaeontology and 159 samples were analysed for palynology. The results are documented in Robertson's report "Norsk Hydro 6305/4-1 Norwegian Sea Well, Biostratigraphy of the interval 1780m - 2973mTD" and these results have been interpreted and zoned to the Norsk Hydro standard stratigraphy. *Table 3.1* shows a summary of the well chronostratigraphy in accordance with the Norsk Hydro standard zonation for the area. All depths quoted are m MD below RKB.

3.1 Major points

- The youngest sediments analysed at 1780m are Late Oligocene age and confirm the interpretation of Brygge sediments from this depth.

- The Opal CT level at 1988m typically (for the area) lies within the Early Oligocene section of the Brygge Formation.

- The top of the informal 'Green Clay Formation' coincides with the Oligocene / Eocene at 2100m.

- The informal 'Brown Clay Marker' developed between 2290m – 2393.5m (above the Balder Formation) is Early Eocene age.

- The top of the Rogaland Group and Balder Formation is typically dated as intra – Early Eocene age at 2393.5m.

- A fault was prognosed at the Balder / Sele Formations boundary at 2529m. Any apparent missing section at this intra – Early Eocene level is beyond the limit of biostratigraphic resolution and must be relatively minor i.e. below subzonal level.

- The Early Eocene / Late Paleocene boundary typically lies within the lowermost part of the Sele Formation at 2630m ditch cuttings sample and the top of the Lista Formation at 2636m characteristically is associated with a major benthic microfossil extinction event.

- The top of the Våle Formation at 2755.5m is dated as being within the oldest part of the Late Paleocene. The Early / Late Paleocene boundary typically lies within a thin high gamma claystone within the uppermost part of the Våle Formation which in this well was identified at 2759.6m swc. The age of the various reservoir units identified within the Våle Formation including the Egga Reservoir Unit are discussed in detail in the following section on the biostratigraphic summary of the sand units but in general are of mainly Early Paleocene age.

- The Jorsalfare Formation is of Late Cretaceous, late – early Maastrichtian age, with the Jorsalfare sandstones developed in the upper part between 2829m – 2847m having a more restricted i.e. late Maastrichtian age.

Classific.: INTERNAL E&P

Title:	WELL 6305/4-1		
	FINAL WELL REPORT	Rev. :	0
	PL 209	Page :	12 of 56
		Date :	2002-10-30

- The Kyrre Formation, identified between 2880m to 2875.5m at the well TD is dated as being Late Cretaceous, early Maastrichtian – early Campanian age.

- The oldest sediments studied at 2973m are of Late Cretaceous, early Campanian age and support the interpretation that the well TD was within the Kyrre Formation. Robertson's interpretation that the well TD is at a slightly older i.e. late Santonian level is considered to be result of reworking of microfossils based on correlation and the record of these microfossils with the first positive evidence for an early Campanian age at 2937m.

3.2 Stratigraphic Breaks

Over the studied interval 1780m- 2973m (Late Oligocene – Late Cretaceous, early Campanian) the well succession is considered to be remarkably complete with no stratigraphic breaks detected. Condensed sections are, however, present within the Early Eocene interval, towards the base of the Lista Formation and at the top of the Kyrre Formation. The Cretaceous/Tertiary boundary is considered to be conformable.

3.3 Biostratigraphic summary of the sand units

The main interval of sandstones are developed at an Early Tertiary – Late Cretaceous level. The Egga Sandstone Member, comprising the Egga Tight and Egga Reservoir Unit is restricted to the Early Paleocene. A series of biostratigraphic time lines through this interval provides a detailed correlation with the similar and time synchronous unit developed in the nearby 6305/5-1 well. The Våle Heterolithic Unit developed at the base of the Tertiary Rogaland Group is dated, at least in the lower part from 2826m ditch cuttings sample, as being of an Late Cretaceous, 'latest' Maastrictian age. Regionally this unit spans the K/T boundary.

The Jorsalfare Sandstone reservoir unit, developed between 2829.5m – 2847m, appears to be restricted to a late Maastrictian age.

Rev. : 0 Page : 13 of 56 Date : 2002-10-30

AGE		m MD RKB
Late Oligocene		1780 cu (top not seen)
Early Oligocene		1930 cu
Late Eocene		2100 cu
Middle Eocene		2120 cu
Early Eocene		2290 cu
Late Paleocene		2630 cu
Early Paleocene		2759.6 swc
Late Cretaceous	late Maastrictian	2826 cu
	early Maastrictian	2865 cu
	late Campanian	2889 cu
	?middle Campanian	2931 cu
	early Campanian	2937 cu
		- 2973 cu (base not seen)

Figure 3-1 Stratigraphic summary, Well 6305/4-1

KEY TO SAMPLE TYPES: cu: ditch cuttings; swc: sidewall core; core: core sample.

Rev. : 0 Page : 14 of 56 Date : 2002-10-30

4 Lithostratigraphy

All depths are in mMD RKB (RKB elevation is 25 m).

This summary is compiled predominantly from ditch cuttings and core descriptions. A total of 4 conventional core was cut in the well, see Table 5.1.1 and 5.1.2.

Wireline and MWD logs were used to aid lithological interpretation and the placement of formation boundaries.

The well was drilled with returns to seabed from the sea floor at 1027m to 1756,5m before setting 20" casing at 1749m. In this drilling phase cuttings samples were collected by the use of a ROV (Remote Operated Vessel) at the seabed (wellhead) at each drillpipe connection approximately every 29m. Lag calculations were performed by Geoservices. For details on sampling depths see attached Composite log. The sampling method must be taken into account when interpreting the lithology.

The lithology interpretation is based on MWD logs, cuttings and core descriptions.

4.1 Nordland Group (1027,0 - 1701,0m MD)

4.1.1 Naust Formation (1027,0 - 1662,0m MD)

1027,0-1280,0m MD: From MWD logs and ROV collected cuttings. Clay with rare Sand beds.

Claystones:	m gry-m lt gry, sft, stky, calc, micromic, slty, gen sdy: Clr trnsl Qtz, vf-m, occ
	crs, ang-sbrndd, Shl frag, occ rock frg.
Age:	No biostratigraphic analysis.

1280,0-1375,0m MD: From MWD logs and ROV collected cuttings. Claystones with rare Sand beds. Boulders reported when drilling at 1293m.

Claystones:	m gry, sft, stky, amor, calc, micromic, slty, sdy, I.P. pbly Qtz (Gns). gen more
	sdy.
Sand:	Clr trnsl Qtz, f, Tr m, Tr crs, incr sbndd-rndd.
Age.:	No biostratigraphic analysis.

1375,0-1425,0m MD: From MWD logs and ROV collected cuttings. Claystones with rare Sand beds. Boulders reported when drilling at 1293m.

Claystones:	m gry, sft, stky, amor, calc, micromic, slty, gen incr sdy, pred f-m, I.P.pbly
	Qtz(Gns), md clasts, sbang-sbrndd, Tr Shl Frag.
Age.:	No biostratigraphic analysis.

Rev. : 0 Page : 15 of 56 Date : 2002-10-30

1425,0-1525,0m MD: From MWD logs and ROV collected cuttings. Claystones with rare Sand beds. Increasing shell fragm from 1475m

<u>Claystones:</u>	m gry, dissem, calc, micromic, slty.
Sand:	It gry, gen clr trnsl Qtz, f-m, Tr crs, sbang-sbrndd, mod srt, lse, arg Mtrx?, Tr
	ShI Frag.
Age.:	No biostratigraphic analysis.

1525,0-1625,0m MD: From MWD logs and ROV collected cuttings. Claystones with sand beds.

<u>Claystones:</u>	m gry, dissem, calc, micromic, slty.
Sand1:	It gry, gen clr trnsl Qtz, r rose Qtz, f-m, com Rk Frag (Qtz), sbrndd, mod-pr srt, Ise, arg Mtrx?, Tr blk min.
Sand2:	lt gry, gen clr trnsl Qtz, Tr rose Qtz, gen m, sbang, mod srt, fri, wk sil cmt, Tr blk min.
Age.:	No biostratigraphic analysis.

1625,0-1662,0m MD: From MWD logs and ROV collected cuttings. Claystones with sand beds.

Claystones:	m gry, dissem, calc, micromic, slty.
Sand:	It gry, gen clr trnsl Qtz, r rose Qtz, f-m, sbang-sbrndd, mod srt, lse, arg Mtrx?,
	Tr Shl Frag.
Age.:	No biostratigraphic analysis.

4.1.2 Kai Formation (1662,0 - 1701,0 m MD)

1662-1701m MD: From MWD logs and ROV collected cuttings. Claystones with sand beds.

<u>Claystones:</u>	m gry, dissem, calc, micromic, slty.
Sand:	It gry, gen clr trnsl Qtz, r rose Qtz, f-m, sbang-sbrndd, mod srt, lse, arg Mtrx?,
	Tr Shl Frag.
Age:	No biostratigraphic analysis.

Rev. : 0 Page : 16 of 56 Date : 2002-10-30

4.2 Hordaland Group (1701,0 - 2393,5m MD)

4.2.1 Brygge Formation (1701,0 - 2100,0m MD)

The interval comprises ooze with Claystone and sand lenses. Ooze interval with high porosity.

<u>Claystones:</u> m gry-olv gry & brnsh gry, sft-stky, amor, calc, slty-vf sdy,micromic, micropyr, r Tr Glauc.

<u>Sandstones:</u> clr-trnsl Qtz, f-m, Tr crs, sbang-sbrndd, Tr ang, mod srt, lse.

One 90ft core was cut in the interval 1761m to 1780m. The ooze section appeared as siltstone rather than claystone.

Siltstone (Ooze): olv gry-dk gnsh gry, frm-hd, non calc-slily calc, arg, vf sdy,

	micromic,	Tr micropyr,	r Tr Glau,	gd Tr	sponge	spic.
Age:	Oligocene)				

4.2.2 Green Clay Formation (2100,0 - 2290,0m MD)

This interval comprises claystone with limestone stringers.

Claystones:	pred olv gry-lt gn gry-dk grn gry, sft-loc frm, sbblky, non calc, sl slty, sl micromic, Tr Glau, r micropyr-Pyr
Limestones:	dusky-dk yel brn-dk yel orng, v hd, blky-ang, microxln-xln & v lt gry, mod hd-hd,
Age:	Eocene

4.2.3 Brown Clay Marker (2290,0 - 2393,5m MD)

This interval comprises claystones with limestone stringers.

Claystones:	brnsh gry, dusky yel brn & varicol grnsh, slily slty, non calc, sbfis, micromic,
	occ Tr Pyr nod.
Limestones:	dk yel orng & v lt gry, frm-hd, blky, brit, arg, crptoxln.
Age:	Early Eocene

Rev. : 0 Page : 17 of 56 Date : 2002-10-30

4.3 Rogaland Group (2393,5 - 2829,0m MD)

4.3.1 Balder Formation (2393,5 - 2529,0m MD)

The interval comprises claystones with minor tuff and limestone stringers.

Claystones:	olv gry-olv blk, dk grn gry, blky, frm, non calc, slty, Tr Glauc, r pyr, tr-abd
	micromic.
<u>Tuff:</u>	m dk gry, sbblky, sft, tr Mic, slty, sdy, tr Glauc, tr pyr, r blk spk.
Limestones:	lt gry-v lt gry, wh, dk yel or, sft-hd, blky, arg, microxln.
Age:	Early Eocene

4.3.2 Sele Formation (2529,0 - 2636,0m MD)

The interval comprises claystones with minor tuff and limestone stringers.

Claystones:	pred dusky yel brn-dk yel brn, tr brn gry, mnr m dk gry-dk gry, blky, non calc,
	slily micromic, r micropyr, slily carb.
<u>Tuff:</u>	m dk gry-m lt gry-lt bl gry, sbblky, sft, tr Mic, tr Glauc, tr pyr, r blk spk.
Limestones:	wh-v It gry & yel gry, frm-hd, sbblky,non-slily arg, crptxln.
Age:	Early Eocene / Paleocene

4.3.3 Lista Formation (2636,0 - 2755,0m MD)

The interval comprises claystones with minor tuff (possibly cavings) and limestone stringers. Below 9 5/8" shoe there is abundant cement in the samples down to 2751m.

Claystones:	It grn gry-dk grn gry, mnr It gry-It olv gry, frm, blky, tr micromic, non calc.
Tuff:	m dk gry-m lt gry-lt bl gry, sbblky, sft, tr Mic, slty, r blk spk
Limestones:	m gry-lt gry, tr wh, mnr yel gry, hd, blky, brit, sl arg, crptxln
Age:	Late Paleocene

4.3.4 Våle Formation (2755,5 - 2768,5m MD)

The interval comprises claystone with thin sandstone and limestone stringers

<u>Claystones:</u>	pred m gry-m lt gry, gn gry, mod hd, sbfis-fis, non calc, slty, micromic, Tr micropyr.
	mnr olv gry-brn gry, amor, frm, calc-v calc, sli sity, r glauc, 1 r micromic
Limestones:	It gry, off wh, blky, frm-hd, occ dol, slily arg, crptxln.
Sandstones:	It gry, mod hd, clr Qtz, gen f, tr m, sbrnd, mod srt, calc cmt
Age:	Paleocene

Rev. : 0 Page : 18 of 56 Date : 2002-10-30

4.3.5 Egga Tight (2768,5 - 2770,0m MD)

The interval comprises sandstones grading from moderately hard at the top to friable at base due to decreasing calcite cementation.

Sandstones:It gry, gen clr trnsl Qtz, v f-f, pred f, sbang-sbrndd, mod-wl srt, mod hd-fri,
wk-mod calc cmt, Mica, Tr Glauc, r Carb, no-pr vis por.Age:Early Paleocene

4.3.6 Egga Reservoir Unit (2770,0 - 2811,5m MD)

The interval comprises sandstone

Sandstones:	It gry, occ It brn gry, pred clr trnsl Qtz, mnr mlky wh Qtz, r rose Qtz, v f-m, occ
	crs-v crs, pred f-crs, sbang-sbrndd, gen lse, occ fri, mod-wl srt, Tr Glauc, Tr
	Mica, r arg, r Carb mat, occ tr Ls / wk calc cmt, gen pr-fr vis por.
Age:	Early Paleocene

4.3.7 Våle Tight (2811,5 - 2823,0m MD

The interval comprises claystones, sandstones and limestone stringers.

<u>Claystone</u> :	dk grn gry, brn blk-olv blk, blky, frm-hd, slty, micromic, occ slick, non calc.
Sandstone:	lt gry, clr Qtz, vf-m, pred f, sbrnd, lse, Tr Glau, r Mica.
Age:	Early Paleocene

4.3.8 Våle Heterolithic (2823,0-2829,5m MD)

Sandstone:	lt gry, clr Qtz, vf-m, pred f, sbrnd, lse, Tr Glau, r Mica.
Claystone:	brn blk-olv blk, blky, frm-hd, slty, micromic, occ slick, non calc
Age:	Early Paleocene? – Late Cretaceous, late Maastrichtian

Rev.: 0 Page: 19 of 56 Date: 2002-10-30

4.4 Shetland Group (2829,5 - 2975,0m MD)

4.4.1 Jorsalfare Formation (2829,0 - 2880,0m MD)

The interval comprises of Sandstones, Claystones and Limestone.

Sandstones:	v It gry-It gry-It grn gry, clr trnsI-mlky wh Qtz, f-crs, pred f-m, sbang-sbrndd,
	mod srt, slily-occ v calc cmt, Tr Glauc, Tr Micromic, occ slily arg, no-pr vis por.
Limestones:	wh-v It gry, sbblky-blky, sft-mod hd, occ slily arg, crptxln
Claystones:	med gry-dk gn gry, occ grn blk, sbblky, occ lam, frm, non-pred v calc, slily slty,
	Tr Micromic
Age:	Maastrichtian

4.4.2 Kyrre Formation (2880,0 - 2795,0 m MD)

The interval comprises of Claystones with Traces of Limestones and Sandstones

<u>Claystones:</u>	pred m gry-dk gn gry, v f blk spt, sbblky, sft-frm, slily stky, non calc-calc, pred non-slily calc, occ v slty, Tr Glauc, Tr v f Carb Frag, r micromic, Tr Pyr mnr brn gry, sft, sbblky-blky, pred non calc, occ mod calc.
Sandstones:	clr trnsl Qtz, f-crs, pred m, sbang-rndd, pred sbrndd, lse, occ calc cmt, arg, n.v.p
<u>Limestones:</u> Age:	v It gry-It gry, occ wh, blky, sft-frm, occ arg, crptxln Late Cretaceous, early Maastrichtian – early Campanian.

Title:	WELL 6305/4-1		
	FINAL WELL REPORT	Rev. :	0
	PL 209	Page :	20 of 56
		Date :	2002-10-30

5 Hydrocarbon Shows

The evaluation of hydrocarbon shows at the wellsite was carried out in a conventional manner. A standard (Geoservice) hydrocarbon total gas detector system (Geoservices Gaslogger) together with a gas chromatograph for automatic and continuous gas analysis, recorded as ppm by volume of C1 through nC5, were operational below 1745m down to the TD of the well (Ref attached Lithology log sect. C).

Hydrocarbon shows on ditch cuttings and cores were evaluated according to procedures described in Norsk Hydro's "Wellsite Geologist's Manual".

5.1 Gas Record

1022 - 1749m MD: This interval was drilled with returns to sea bed. No gas detection possible. For gas chromatograph record in the well, see Lithology Log attached in Section C, and End of Well Report from Geoservices, Well 6305/4-1.

5.2 Oil stain and Fluorescence

A summary of the observed shows is given in Table 4.7.1 below. See also standard core descriptions in Appendix I and Sidewall core descriptions in Appendix II.

INTERVAL (mRKB)	SOURCE	LITHOLOGY	SHOWS DESCRIPTION
2769-2809	Core	Sandstone	wk-Fair pet od,no O stn,no dir Fluor,no vis cut,v wk fast-inst strmg pl wh Fluor cut & slo strmg wh- yel wh Fluor Fluor cut,no vis Res,wh-yel wh Fluor Res.
2813	Core	Sandstone	wk-Fair pet od,no O stn,no dir Fluor,no vis cut,v wk fast-inst strmg pl wh Fluor cut & slo strmg wh- yel wh Fluor Fluor cut,no vis Res,wh-yel wh Fluor Res.

Figure 5-1: Shows Summary 6305/4-1

Rev. : 0 Page : 21 of 56 Date : 2002-10-30

6 Coring

6.1 Conventional Cores

One 60 ft core was cut in the Ooze section of the Brygge Formation (Core #1). Additional 3 x 60 ft cores were cut in the reservoir section.

When Core # 3 was at rig floor it started to expand due to trapped gas. Approximately 1,5 - 2m of core came out of the inner barrel and partly disintegrated on rig floor. The upper part of the inner barrel contained therefore gaps between core pieces. As a result, the measured depths does not fit the actual depth of the reservoir for core # 3.

The cores was cut in 1 m lengths and gypsum was injected to preserve the core before being shipped to shore. A summary of the core is presented in Table 5.1.1 and 5.1.2 below and the core description can be found in Appendix I.

Core No	C: Cut(m) R: Recovery(m)	Rec. %	Lithology	Formations
1	C: 1761.0 - 1780.0 R: 1761.0 - 1778.9	94.3	Ooze	Brygge

Figure 6-1: Conventional Core in the Ooze section, Brygge Fm 6305/4-1

Core No	C: Cut(m) R: Recovery(m)	Rec. %	Lithology	Formations
2	C: 2769 - 2788 R: 2769 - 2787,85	99.2	Sandstone	Egga
3	C: 2788 - 2807 R: 2788 - 2807	100	Sandstone	Egga
4	C: 2807 - 2817,5 R: 2807 - 2817.3	98.1	Sandstone / Claystone	Egga / Vaale Tight

Figure 6-2: Conventional Cores in the Reservoir Section 6305/4-1

Rev. : 0 Page : 22 of 56 Date : 2002-10-30

Sidewall Cores

Using the MSCT 27 sidewall cores were drilled and 26 sidewall cores were recovered. Table 5.2.1 show a summary of the recovered sidewall cores. For detailed description, see Appendix II.

No	Depth m RKB	Recovered cm	Lithology	Formation/Reservoir Unit
1	2847.0	4.6	Sandstone	Jorsalfare Isolated sands
2	2840.0	4.8	Claystone	Jorsalfare Isolated Sands
3	2838.0	4.4	Sandstone	Jorsalfare RU
4	2835.5	3.6	Claystone	Jorsalfare RU
5	2833.2	4.0	Claystone	Jorsalfare RU
6	2832.5	4.4	Sandstone	Jorsalfare RU
7	2831.5	4.5	Sandstone	Jorsalfare RU
8	2830.0	4.7	Sandstone	Jorsalfare RU
9	2828.0	4,6	Sandstone	Våle Heterolithic
10	2827.3	4.3	Sandstone	Våle Heterolithic
11	2826.0	4.6	Sandstone	Våle Heterolithic
12	2825.2	4.5	Sandstone	Våle Heterolithic
13	2823.5	4.5	Sandstone	Våle Heterolithic
14	2821.5	4.4	Claystone	Våle Tight
15	2820.4	4.6	Claystone	Våle Tight
16	2819.0	4.0	Claystone	Våle Tight
17	2767.5	4.6	Claystone	Våle Shale
18	2765.5	4.6	Claystone	Våle Shale
19	2764.5	4.4	Claystone	Våle Shale
20	2761.2	0.0	Claystone	Våle Shale
21	2760.0	4.5	Claystone	Våle Shale
22	2759.6	6.0	Claystone / Breccia	Våle Shale
23	2759.0	5.0	Claystone	Våle Shale
24	2758.7	4.6	Siltstone	Våle Shale
25	2758.0	4.7	Siltstone	Våle Shale
26	2757.0	4.7	Claystone	Våle Shale
27	2755.5	4.9	Claystone	Lista Fm.

Figure 6-3: Sidewall Core Summary

Rev. : 0 Page : 23 of 56 Date : 2002-10-30

7 Logging

7.1 MWD Logs

A MWD service (Schlumberger Anadrill) yielding gamma ray, resistivity, density, neutron, sonic and survey measurements was run in the following sections:

Run #	Sectio n	Sensors	Drilled from	Drilled to	Logge d from	Logge d to	Comments
1	36"	Anderdrift	1026.0	1066.0	1026.0	1066.0	Directional only
2	8½"	PowerPulse-ADN-ARC-GVR- ISONIC	1066.0	1751.0	1026.0	1751.0	
3	36"	PowerPulse	1026.0	1108.0	1026.0	1092.0	
4	36"	PowerPulse	1026.0	1108.0	1026.0	1108.0	
5	26"	PowerPulse-CDR	1105.0	1756.0	1105.0	1749.0	
6	12¼"	PowerPulse-CDR-RAB-ADN- ISONIC	1756.0	2696.0	1749.0	2686.0	
7	12¼"	PowerPulse-CDR-RAB	2650.0	2725.0	2650.0	2723.0	
8	8½"	PowerPulse-VISION675- RAB					Run#8 failed to drill out float & cement.
9	8½"	PowerPulse-VISION675- RAB	2725.0	2768.0	2719.0	2768.0	Image data missing.
10	8½"	PowerPulse-ARC5-RAB	2817.5	2975.5	2719.0	2975.5	Reamed cored section, relogged for image data above reservoir.

Figure 7-1: MWD/LWD-runs

More detailed MWD results can be found in the report "End of Well Report"/Logs, (Schlumberger/Geoservices) Well 6305/4-1.

Rev. : 0 Page : 24 of 56 Date : 2002-10-30

7.2 Wireline Logs

The following table is a summary of wireline logs run in the well and shows run number, log type, date run and logged intervals for each log.

Run #	Tool string	Logged from	Logged to	Tot hrs	Comments
1A	PEX-HALS-SP	2692.0	996.0	9.5	HALS failed
1A	DSI-VSP-GPIT-EMS	2674.0	1765.0	39.5	DSI Logeg down. Tool stuck at 2674. Further logging was cancelled (VSP-GPIT-EM
2B	SP-HRLA-PEX	2975.0	2569.0	6.5	Good efficient log run
2A	CMR+ -HNGS	2900.0	2740.0	10.5	Good efficient log run. Sticky at one station with 45min sampling.
2A	VSP	2960.0	1100.0	12.5	2 x CSAT, 10m level spacing. Good data up to 2000m. Dubious quality checkshot data above 1749m.
2A	MSCT	2847,0	2755.5	8	Efficient run. Recovered 26 out of 27 cores.
2A	MDT	2854.3	2828.0	43	Pressure and fluid sampling. Some points needed repeating. Good pressure profile and good quality samples
2B	FMI-DSI	2964.0	2713.0	10.5	Some computer crashes due to FMI logging down. Very good quality FMI log. DSI log quality very good in open hole. Ringing effect in cased hole resulted in only a short useful log

Figure 7-2: Wireline Logs 6305/4-1

MDT logging

One run with the MDT was performed, including 56 pretests, eight gas samples, one water sample and several fluid logging depths to investigate the fluid type by using the optical fluid analyser. An overview of the sampling and fluid logging operation is given in figure 8-2.

For results and details on sampling see attachment IV.

7.2.1 Velocity Surveys

A zero offset VSP was aquired and processed by Schlumberger. No problems occurred during the acquisition, and the data quality is good up to 2000m MD. From 2000m some noise where experienced which increased inside dual casings (9 5/8" and 20"). Hence the sampling program was reduced in dual casing to 100m check shots.

20" casing shoe; 1749,0m MD 9 5/8" casing shoe; 2718,5m MD

Title:	WELL 6305/4-1		
	FINAL WELL REPORT	Rev. : 0	
	PL 209	Page : 25 of 56	
		Date : 2002-10-30	

For further information see the separate VSP report (ref chapter 11).

7.2.2 Bottom Hole Temperatures From Wireline Logs

The tables below gives a summary of the bottom hole temperatures measured from wireline logs.

Intermediate wireline logging in 12¹/₄" section:

Log suite	Ru n #	Depth (mRKB)	Temp ° C	Time since circ. (hrs)
PEX-HALS-SP	1A	2678.00	58	47
DSI-VSP-GPIT-EMS	1A	2640.00	68	80

	Figure	7-3:	Bottom	Hole	Tem	peratures	6305/4-4-1	Run1
--	--------	------	--------	------	-----	-----------	------------	------

When entered into a Horner plot, this gave a static formation temperature estimate (BHST) of 80 $^{\circ}$ C at 2659 m MD / 2658m TVD RKB.

Wireline logging in 81/2" Section:

Log suite	Ru n #	Depth (mRKB)	Temp ° C	Time since circ. (hrs)
HRLA-PEX-SP	2B	2975.00	69	47
CMR-HNGS	2A	2900.00	68	80
VSP	2A	2960.00		
MSCT	2A			
MDT	2A			
FMI-DSI	2B			

Figure 7-4: Bottom Hole Temperatures 6305/4-1 Run2

When entered into a Horner plot, this gave a static formation temperature estimate (BHST) of 84 ° C at 2975m MD (2974m TVD RKB).

Rev. : 0 Page : 26 of 56 Date : 2002-10-30

8 Petrophysical Results

8.1 Log Quality

Both the 12.25" and 8.5" hole section were drilled using 1.3 s.g. KCl Polymer Glycol water based mud.

In the 12.25" hole section the density and neutron logs were of good quality, while the HALS log failed. The LWD resistivity was however of good quality. The DSI-VSP_GPIT_EMS was stuck near bottom of the 12.25" hole section and the down log was therefore used in the further evaluation. The log quality of the DSI log was good. Due to hole problems (swelling clay?) near the bottom of the hole section and the GPIT and EMS logging were cancelled, while the VSP was run inside the 9 5/8" casing during logging of the 8.5" reservoir section.

In the reservoir section the hole condition was very good, resulting with good quality logs. Both a high resolution density log and the enhanced resolution density log were successfully recorded. The DSI was run twice over the main Egga reservoir unit.

The composite log was constructed by Logtek and reported into Petrobank.

8.2 Core Data

1.5" plugs conventional were drilled out due to unconsolidated core material and based on experience from the previous well 6305/8-1 drilled in the Ormen Lange Field. Conventional helium core porosity, air permeability and grain size were measurement every 25cm

were possible. The conventional core plugs have been cleaned by soxhlet extraction flooding of toluene and methanol. The clean samples have been dried until constant weight was reached in a humidity oven at 60 degrees and with a relative humidity of 40%. From 2800m MD RKB the plugs were critical point dried due to increasing smectite content.

Core depth shifts were determined by comparison of core gamma ray logs to reference wireline gamma ray logs and by comparing of core and log porosities. The recovered interval and depth shifts are summarized in Figure 8.1.

Core	Formation/	Recovered cored	Recovery	Shift to log	Recovery
No.	reservoir	interval	(m)	depth (m)	Interval (m)
	zone	Drillers depth mRKB			Log depth mRKB
1	Brygge				
2	Egga Ru	2769.0-2788.0	19.2	-0.2	2768.8-2787.8
	Egga Tight				
3	Egga Ru	2788.0-2806.4	18.4	-0.2	2787.8-2606.2
4	Egga RU	2807.0-2817.3	10.3	-0.7	2806.3-2816.6
	Våle Tight				

Figure 8-1 Cored intervals and depth shift well 6305/4-1

Title:	WELL 6305/4-1		
	FINAL WELL REPORT	Rev. :	0
	PL 209	Page :	27 of 56
		Date :	2002-10-30

8.3 Formation Pressure measurements

One run with the MDT was performed, including 56 pretests, eight gas samples, one water sample and several fluid logging depths to investigate the fluid type by using the optical fluid analyser. An overview of the sampling and fluid logging operation is given in figure 8-2. The detailed MDT tables are presented in attachment IV and in ref chapt. 12 "Standard and Special studies", "Formation Evaluation Report, Well 6305/4-1" a comprehensive evaluation of the formation testing (logging and DST) can be found.

The EggaReservoir Unit is gas filled down to a shale layer at the base of EggaRU. A thin sand of approximately1.5-2 meter at the base of EggaRU is water filled and a water sample was encountered. The isolated sand has a pressure in the order 1.5 to 2 bar higher than the EggaRU gaszone. Above the isolated sand a shale layer of 0.5 meters is encountered both from the core and thewirelinelogs, see figure 8-2. The formation pressures in the EggaRU gas zone are on the same gasgradient as the other wells on the OrmenLange.

The Våle Heterolitic and Jorsalfare reservoir units are water filled with a pressure approximately 16 bar higher than the water pressure in well 6305/7-1. The absolute pressures in the bottom part of the Jorsalfare are increasing versus depth and confirm the observation from formation pressure seen in the other wells.

Figure 8-2 CPI and Formation pressures versus depth well 6305/4-1

HYDRO Ormen Lange

Title: WELL 6305/4-1 FINAL WELL REPORT PL 209

Rev. : 0 Page : 28 of 56 Date : 2002-10-30

Depth	Comments						
2788.8m	3 x 250cc, 2 x 450cc bottles and 3 x 1 gal.						
(Sampling)	chambers						
	Max. drawdown 4.3 bar (Martineau probe						
	used)						
	Total time 12:58hrs, 981 liters						
	8 out of 8 captured						
2807.7m	No samples were captured						
(Logging)	Max. drawdown ~200 bar (Standard probe						
	used)						
	Total time 00:30hrs, 2-3 liters						
2808.3m	No samples were captured						
	Max. drawdown ~220 bar (Standard probe						
(Logging)	used)						
	Total time 00:26hrs, 6 liters						
2811.1m	1 x 250cc bottles						
(Sampling/Logging)	Max. drawdown prior to sampling ~90 bar						
	(Standard probe used)						
	Max. drawdown after sampling ~130 bar						
	Total time 02:36hrs, 41 liters						
2811.2m	No samples were captured						
(Logging)	Max. drawdown ~100 bar (Martineau probe						
	plugged, completed with standard probe)						
	Total time for 2 logging-jobs, 01:49hrs, 2-3						
	liters						
2811.3m	No samples were captured						
(Logging)	Max. drawdown ~100 bar (Martineau probe						
	used)						
	Total time 00:07hrs, 5-6 liters						

Figure 8-3 Summary of the fluid sampling and logging

Rev. : 0 Page : 29 of 56 Date : 2002-10-30

8.4 Petrophysical Evaluation

A summary of the petrophysical evaluation for 6305/4-1 is described below. For further details refer to Petrophysical Status Report September 2002.

Net Sand

The net sand intervals were determined by applying a shale volume fraction cut off of 0.40 and cemented intervals using density neutron cut off values The choice of shale cut off has been quantitatively verified by comparing calculated net sand intervals with core photographs, core description and conventional core analysis

Shale volumes have been calculated using shale volumes derived from gamma ray and density/neutron cross plot techniques respectively. The minimum calculated shale volumes from the two methods were used as the final value.

Parameters were chosen from histograms and cross plots. Sand and shale intervals were qualitatively verified using core photographs, core description and XRD data. The Vsh from log analysis has been normalized to qualitatively compare it with the xrd analysis.

Porosity

Porosity has been calculated using porosity model based upon the density log calibrated to the overburden corrected core helium porosity. No clay correction has been performed on the calculated porosity from logs.

The matrix density ρ_{ma} has been estimated from histograms of core grain density. The pseudo fluid density ρ_{fl} has been estimated by regression analysis of measured bulk density versus in situ estimated corrected core porosity. A forced fit was applied through the zero porosity line and the matrix density from the grain density histograms. Log and core data were zoned before estimating the pseudo fluid densities. The zones were gas, residual and water zones respectively.

Water Saturation

The Archie equation was used to calculate the water saturation from logs. Electrical parameters for the saturation equation were determined from laboratory analysis of core samples for the first three wells drilled in the Ormen Lange Field In this well 6305/4-1 a SCAL study is ongoing and will be available the first quarter of 2003. The formation water resistivity is calculated by using picket plots from the water zone n well 6305/7-1 and 6395/8-1.

Classific.: INTERNAL E&P

Title: WELL 6305/4-1 FINAL WELL REPORT PL 209

Rev.: 0 Page: 30 of 56 Date: 2002-10-30

8.5 Petrophysical Net Sand Averages

The reservoir zonation and log derived petrophysical net sand averages are presented in **Error! Reference source not found.**

The petrophysical analysis show a gas down to in the Egga Reservoir unit at 2809.3m MD RKB and an isolated sand (1.5 to 2 bar higher pressure) in the bottom of th Egga RU below.

The Våle Heterolitic and Jorsalfare sands are water bearing and with a 16 bar higher pressure than well 6305/7-1. The petrophysical evaluation and the wireline logs are presented in Figure 8-4 and 8-5.

	W	ell 6305/4	4-1			PHI log	PHIH core	SW log	KHAC core	KHAC core
ZONE	TOP MSL	Bottom MSL	Gross [m]	Net Sand [m]	NTG	Aritmetric	Aritmetric	Porosity weighted	Aritmetric	Geometric
EGGA TIGHT	2742.6	2744.1	1.5	1.4	0.967	0.236	0.261	0.93	256	165
EGGA RU	2744.1	2785.6	41.5	38.2	0.920	0.295	0.262		473	142
EGGA GAS	2744.1	2783.3	39.2	36.2	0.922	0.297	0.264	0.46	492	138
EGGA ISOLATED SAND	2783.3	2785.6	2.3	2.1	0.891	0.264	0.231	0.96	223	198
VAALE TIGHT	2785.6	2797,1	11.5	3.1	0.234	0.234	0.231	0.99	238	231
VAALE HETEROLITIC	2797,1	2803.1	6.0	6.0	0.291	0.291		0.94		
JORSALFARE RU	2803.1	2813.1	10.0	5.7	0.242	0.242		0.93		
JORSALFARE Isolated Sands	2813.1	2834.1	21.0	5.6	0.214	0.214		0.95		

Figure 8-4 Petrophysical net sand averages well 6305/4-1

Rev. : 0 Page : 31 of 56 Date : 2002-10

Figure 8-5 Raw logs and CPI Egga RU well 6305-4-1

Classific.: INTERNAL E&P

Title: WELL 6305/4-1 FINAL WELL REPORT PL 209

Rev. : 0 Page : 32 of 56 Date : 2002-10-30

Figure 8-6 Raw logs and CPI Våle Heterolitic and Jorsalfare RU well 6305/4-1

Classific.: INTERNAL E&P

Title: WELL 6305/4-1 FINAL WELL REPORT PL 209

Rev. : 0 Page : 33 of 56 Date : 2002-10-30

9 Estimated Pore Pressure, Fracture, Overburden and Temperature Gradients

9.1 Pore Pressure

The pore pressures in well 6305/4-1 are based on well site observations, gas data, MDT pressure readings and calculations based on logs (MWD and Dxc). All depths are quoted as mRKB unless otherwise stated. The Pore pressure-, Fracture- and Overburden gradients are given in Fig. 8.1.

From sea bottom to 2130m a generally hydrostatic pressure is regarded as most likely and a normal dxc-, sonic- and resistivity trend was established. The onset of pore pressure increase came in deeper than prognosed.

The pore pressure increased stepwise until 2600m (middle Sele fm) were it reached approximately 1,20sg while prognosed maximum was 1,16sg in base Hordaland. The pressures derived from logs and drilling parameters coincided also with the Total Gas pattern. A sharp pressure regression was observed from middle Sele fm. down to top Våle fm.

The MDT-pressure points confirmed one water / gas gradient within the main Egga reservoir and a slightly overpressurised water zone below a barrier underneath the Egga reservoir. The reservoir pressure was as prognosed.

A slight pressure increase was interpreted from logs in the Kyrre fm. but this was not reflected in the Total Gas readings. Pore Pressure at TD was interpreted to 1,09sg.

9.2 Formation Strength

No mudlosses were observed during drilling of this well.

Two LOT's was performed. At 1794m TVD it gave 1,41sg and 1,57sg at 2718m TVD, both slightly lower than prognosed. The LOT at 1749 was a bit dubious as it break of with an unusual shape and some mud was not bled back after the test.

9.3 Overburden Gradient

Overburden gradient is based on regional studies, calculated values and the density log.

9.4 Temperature Gradient

Horner plots was calculated at 2660m giving 72° C and at 2975m giving 84°C. This gives an average formation temperature gradient of 4,31°C / 100m TVD assuming -1,8°C at seafloor. It was prognosed a gradient of 4,4°C. The small discrapency may be due to the uncertainty of the method used. The result was within the range of data from nearby wells.

The average gradient may be further divided into one gradient of 4,52°C from seafloor to 2660m and then one gradient of 3,81°C from 2660m to 2975m.

However, the long marine riser is known to cool down the mud to such an extent that the use of only Horner plots to estimate the formation temperature becomes doubtful. The well was tested and a temperature of 86,9°C was estimated at 2783,5m. This would give an average formation temperature gradient of 4,84°C/ 100m TVD wich is higher than prognosed. With a gradient of 4,84°C/ 100m TVD the BHST at TD (2975m) equals to 96,1°C.

The formation temperature gradient is given in Fig. 9.2.

PL 209

Rev. : 0 Page : 34 of 56 Date : 2002-10-30

Figure 9-1: Pore Pressure-, Fracture-, and Overburden Gradients

Figure 9-2: Temperature Gradient

10 Geophysical Results

The formation tops came in according to prognosis, within the estimated uncertainty range, as shown in Table 10.1. The largest deviation from the prognosis (about 35 m) occured at Top Sele level, most likely as a result of interference with a nearby fault (ref. NH-00033813, Well Programme Fig. 8).

6305/4-1	Progn.	Actual	Δ	Progn.	Actual	+/-	Δ
Horizon	TWT (ms)	TWT(ms)	TWT(ms)	TVD (msl)	TVD (msl)		TVD(msl)
Seabed	1345,0	1355,8	10,8	997,0	1002,0	2,0	5,0
B.Naust	2008,0	2017,6	9,6	1672,0	1675,8	10,0	3,8
Opal CT	2316,0	2321,4	5,4	1974,0	1961,1	30,0	-12,9
T.Balder	2741,0	2745,2	4,2	2380,0	2367,6	40,0	-12,4
T.Sele	2903,0	2880,6	-22,4	2538,0	2503,1	50,0	-34,9
T.Lista	2983,0	2983,6	0,6	2623,0	2610,1	50,0	-12,9
T.Vaale	3074,0	3090,9	16,9	2725,0	2729,6	-20/+30	4,6
T.Egga	3083,0	3102,1	19,1	2735,0	2742,6	-25/+35	7,6
Vaale Tight	3127,0	3136,9	9,9	2787,0	2785,6	40,0	-1,4
T.Josalfare	3142,0	3150,6	8,6	2804,0	2803,1	40,0	-0,9
T.Kyrre	3183,0	3188,8	5,8	2860,0	2854,1	50,0	-5,9
TD	3250,0	3257,0	7,0	2950,0	2949,0	50,0	-1,0

Figure 10-1 Prognosis vs. actual formation tops for well 6305/4-1

Another observation is the relative large difference of 19 ms between prognosis and the checkshot calculated seismic TWT at reservoir level. The well location at the very edge of the seabed scarp has probably affected the seismic imaging at depth; the reprocessed PSDM is therefore expected to give a better seismic tie. A preliminary well tie (Fig 10.1) is therefore presented in this document, as the final well tie will be performed on the reprocessed PSDM seismic dataset. A time-depth plot is presented in figure 10.2

Rev. : 0 Page : 37 of 56 Date : 2002-10-30

Figure 10-2 Preliminary well tie at reservoil level

Figure 10-3 Time versus depth plot

Classific.: INTERNAL E&P

Title: WELL 6305/4-1 FINAL WELL REPORT PL 209

Rev.: 0 Page: 38 of 56 Date: 2002-10-30

11 Post Site Survey Report

11.1 WELL DATA:

1	Distance from rig floor to sea level	:	25 m
2	Water depth (MSL)	:	1002 m
3a	Setting depth for conductor (m RKB)	:	1105 m
3b	Leak Off / Formation Integrity Test (g/cc)	:	N/A
4a	Setting depth for casing on which BOP mounted	:	1749 m

4b Leak Off / Formation Integrity Test (g/cc) : 1,41 sg The Leak Off Test was a bit dubious as the pump pressure dropped off soon after the pump was shut down. In addition, some mud was not bled back after the test.

5 Depth (m RKB & two way time) to formation/section/layer tops:

Seabed	:	1027 m / 1343 ms (seismic TWTT)
Top Naust S (TNS)	:	1132 m / 1464 ms (seismic TWTT)
Intra Naust S2 (INS2)	:	1198,5 m / 1544 ms (seismic TWTT)
Intra Naust S4 (INS4)	:	1265 m / 1613 ms (seismic TWTT)
Intra Naust S5 (INS5)	:	1361 m / 1696 ms (seismic TWTT)
Top Naust U (TNU)	:	1387,5 m / 1723 ms (seismic TWTT)
Intra Naust U1 (INU1)	:	1428 m / 1758 ms (seismic TWTT)
Top Naust W (TNW)	:	1507 m / 1840 ms (seismic TWTT)
Base Naust (BNAUST)	:	1701 m / 2008 ms (seismic TWTT)
OPAL_CT	:	1987 m / 2322 ms (VSP TWTT)

Note:

No chronostratigraphic information was collected in the top-hole section of the well (from seabed down to 1749 m). Consequently, the interpretation of the different formations in this area is based on the MWD logs, seismic character and previous work. Mud logging commenced at 1749 m. All formation tops are based upon MWD logs and cuttings analysis.

No VSP information exists above 1770.8 m.

6 Depth interval (m RKB & TWT) and age of sand bodies shallower than 1000 m under the seabed. Note, which layers if any contain gas:

No sand layers have been observed in the upper 1000 metres.

7 By what means is the presence of gas proven:

E&P Norway HYDRO Ormen Lange

Title:	WELL 6305/4-1	
	FINAL WELL REPORT	Rev. : 0
	PL 209	Page : 39 of 56
		Date : 2002-10-30

The interval between 1027 m (seabed) and 1749 m was drilled with returns to seabed. Therefore, no direct gas detection possible.

An 8 1/2" pilot hole was run from 1027 m down to 1751 m in order to obtain high-quality tophole logs. No clear log indications of shallow gas were recorded, but minor increase in the resistivity and decrease in the gamma responses are observed at 1192 m, 1234-1239 m, 1360 m, 1396 m, 1713 m, and 1730 m. However, at least four of these events are associated with density peaks suggesting carbonate (calcite) layers and not gas.

Below 1749 m gas analyses were accomplished using flame ionisation detectors (FID) with gas measured as percentage methane (C1) equivalent in air, and chromatographic analyses expressed in parts per million.

8 Composition and origin of gas: C1 and C2

9 Describe all measurements taken in gas bearing layers:

No gas peaks were recorded in the top-hole section. Background gas levels were recorded below 1761 m:

Section (m RKB)	Background %	Composition
1761 m - 1840 m	0,12% - 0,49%	C1
1840 m - 2410 m	0,12% - 0,94%	C1 and C2

E&P Norway HYDRO Ormen Lange

Title: WELL 6305/4-1 FINAL WELL REPORT PL 209

Rev. : 0 Page : 40 of 56 Date : 2002-10-30

11.2 SEISMIC DATA:

10 Given depth (m RKB & TWT) of unconformities at the well location:

Intra Naust S2 (INS2)	:	1203 m / 1544 ms (seismic TWTT)
Top Naust U (TNU)	:	1392 m / 1723 ms (seismic TWTT)
Top Naust W (TNW)	:	1514 m / 1840 ms (seismic TWTT)
Base Naust (BNAUST)	:	1697 m / 2008 ms (seismic TWTT)

11 Given depth and extent of sand layers (communication, continuity, truncation etc.):

Thin sand layers were predicted at 1392 m \pm 8 m (TNU) and at 1428 m \pm 8 m (INU1).

12 Given depth and extent of any gas blanking ("gass-skygging"), seismic anomalies etc.:

Seismic amplitude anomalies indicative of shallow gas were mapped at TNU (1392 m \pm 8 m RKB). This level corresponds to 1387,5 m in the well logs.

13 Note any indication of gas originating from deeper levels. Give description in cases where gas comes from deeper layers: N/A

14 Agreement between the site survey interpretation and the well data

14a Shallow gas:

No shallow gas warning was issued for the well and no gas was observed in the top-hole section. However, background gas is reported to be in the range 0,12 and 0,94 % between 1761 m and 2410 m.

14b Sand bodies:

Thin sand layers were predicted at 1392 m \pm 8 m and at 1428 m \pm 8 m (RKB). The MWD logs gave no distinct indication of sand layers at these two levels.

Horizon	Prognosed (m RKB)	Observed (m RKB)	Difference (m)
Seabed	1026 ± 2	1027,0	1(deeper)
Top Naust S	1130 ± 6	1132,0	2 (deeper)
Intra Naust S2	1203 ± 7	1198,5	4,5 (shallower)
Intra Naust S4	1273 ± 8	1265,0	8 (shallower)
Intra Naust S5	1363 ± 8	1361,0	2 (shallower)
Top Naust U	1392 ± 8	1387,5	4,5 (shallower)
Intra Naust U1	1428 ± 8	1428,0	0
Top Naust W	1514 ± 9	1507,0	7 (shallower)
Base Naust Fm	1697 ± 10	1701,0	4 (deeper)
OPAL_CT	1999 ± 30	1987,0	12 (shallower)

14c Unconformities/Formation Tops:

Title:	WELL 6305/4-1		
	FINAL WELL REPORT	Rev. :	0
	PL 209	Page :	41 of 56
		Date :	2002-10-30

The differences between the prognosed and observed depths to different unit boundaries were within the uncertainty limits. The difference between the predicted and observed depth may be caused by discrepancies in either the seismic pick, the velocity model used for depth conversion or a combination of both.

14d Correlation to Nearby Wells:

In general, the drilling conditions experienced in well 6305/4-1 are as predicted. In tie-well 6305/5-1 problems with borehole instability was experienced in the Eocene deposits. No such problems were reported from well 6305/4-1, but loss of mud to the formation was experienced during the leak off test at 1749 m.

Rev. : 0 Page : 42 of 56 Date : 2002-10-30

12 Standard and Special Studies

As per 30.10. 2002:

Schlumberger / Geoservices End of Well Reports / Logs 6305/4-1 Robertson Research: Well 6305/4-1 Biostratigraphy of the interval 1780-2973m Norsk Hydro: Norsk Hydro standard biostratigraphic interpretation of well 6305/4-1 and update of the stratigraphic well correlations, Ormen Lange Field. Read Well Services: VSP-data processing report – zero offset VSP in well 6305/4-1 ResLab: Corimag – digital core images, well 6305/4-1 Petrotech: Corrected Test Separator Gas/Condensate Ratios, Final Report Norsk Hydro: Formation Evaluation Report, well 6305/4-1

Classific.: INTERNAL E&P

 Title:
 WELL 6305/4-1

 FINAL WELL REPORT
 Rev. : 0

 PL 209
 Page : 43 of 56

 Date : 2002-10-30

APPENDIX I

CORE DESCRIPTIONS

PL 209

Rev. : 0 Page: 44 of 56 Date : 2002-10-30

Core Report Geologists: E.Skottlien, K.Kalgraff, F.Johansen, C.Dons, T Carlsen					Fi W Da So	eld ell ate cal	e	: Ormen Lange : 6305/4-1 : 2002-07-05 : 1 : 200					
Depth	Core	Grain Size	Lith	Lithological Description	Oi	l Stn	D	ir Flu	(Cut Flu	1	Vis Cut	Shows Description
n MD RKB	No.	pblive c m f vf stt cl	Struct		pr	m go	d pr	m go	d pr	mg	jd p	r m g	d
1760 -													
1761 -			a "	Alternating argillaceous Siltstones									No Shows (Not
1762 -			* "	<u>Arg Sitst:</u> olv gry-dk gnsh gry, tm-hd, non-slily calc, arg, micromic. Tr micropyr, r Tr Glau. Tr sponge spic.							T		reservoir)
1763 -			м —	······································					T		T		1
1764 -			8 u	Arg Sltst: brnsh gry, fm, non-I.P.slily calc, arg-v arg,I.P.		+	T		t	Ħ	T		1
1765 —			и и М	grad Clst, micromic, Tr micropyr, r Tr Glau, r Tr sponge spic			T		t				
1766 -			·····			+			T		t		-
1767 -			ти и и						t		+		-
1768 -			<u>г</u> п						T				1
1769 -			<u></u>						T		T		-
1770 —	1		н ^с . н.			+	T		T		t		-
1771 -			М н н			+	T		t		t		-
1772 -			<u>" - "</u>			+			T		t		-
1773 -			. .				\uparrow		t	\square	+		1
1774 -			<u>.</u> °	Arg Sltst: olv gry-dk gnsh gry, hd, non calc, arg, Tr		+	\uparrow		t		+		1
1775 —			" <mark>"</mark> "	micromic, Tr micropyr, Tr Glau, Tr sponge spic.	\square	+	\uparrow		t	\uparrow	+	+	1
1776 -			" " "			+	\uparrow		t	+	$^{+}$		1
1777 -			* "			+	+		╞	+	╈		1
1778 -			. – .	Arg Sltst: brnsh gry, sft- fm, non calc, v arg-grad Clst, Tr		+	\top		┢	+	╈	++	1
1779 -	\succ		. .	micromic, Tr Glau, r Tr sponge spic.		+	\uparrow		┢	+	+	++	1
1780 -	\leq		п		\square								

PL 209

Rev. : 0 Page: 45 of 56 Date : 2002-10-30

Lococo HyDRO	Core Rep Geologists: E.Skot F.Joha T Carls)Ort tlien, K.Kalgraff, nsen, C.Dons, sen	Field Well Date Scale		Orme 6305/4 2002-0 1 : 200	n Lang I-1 07-05 0	ge
Depth C m MD RKB N	No. Grain Size	Lith Lithological Description Struct	Oil Stn pr m gd	Dir Flu pr m g	Cut Flu d pr m gd	Vis Cut pr m gd	Shows Description
2769 - 2770 - 2771 - 2772 - 2773 - 2774 - 2775 - 2776 - 2777 - 2778 - 2779 - 2781 - 2782 - 2783 - 2784 - 2785 - 2786 - 2787 -	2	Sandstone Sst: It gry-It brn gry,gen clr Qtz,f,sbang-sbrndd,mod-wl srt, fri,mod calc,mica,Tr Glauc,n.v.p. Sandstone Sst: It gry,gen clr Qtz,vFf,Tr m,pred f,sbang-sbrndd,Tr ang, mod-wl srt,fri-lse,wk-r calc cmt,Tr mica,r Glauc,fr vis por. Sandstone Sat, It gry,clr Qtz,pred F-m,r crs,sbang-sbrndd,mod srt,fri-lse,Tr calc cmt,r mica,Tr Glauc,fri vis por. M Sandstone Sat, It gry,clr Qtz,pred F-m,r crs,sbang-sbrndd,mod srt,fri-lse,Tr calc cmt,r mica,Tr Glauc,fri vis por. M Sandstone Sat, It gry,clr Qtz,vFf,gen f,ang-sbrndd,wl srt,lse-fri,wk calc cmt,Tr Glauc,fr-pr vis por Sandstone Sat, It gry,clr Qtz,vFf,gen f,ang-sbrndd,wl srt,lse-fri,wk calc st,Tr Glauc,fr-pr vis por M Sandstone Sat, It gry,gen clr rose Qtz,F-m,pred f,sbang-ang,mod-wl srt,fri,I.P. wk calc cmt,Tr mica,Tr Glauc,pr vis por.					Wk pet odour,no O stn, no dir Fluor,v wk fast strmg blsh wh-slo strmg wh Fluor cut,no vis cut,bl wh Fluor Res, no vis Res as for 2770m as for 2770m
Winlog templat	te version 20010309-AJC L	l og output date 08:54:40 2002-07-05					

PL 209

Rev. : 0 Page: 46 of 56 Date : 2002-10-30

Core Geologists:	Repor E.Skottlien, F.Johansen T Carlsen	t K.Kalgraff, C.Dons,	Fie We Dat Sca	eld ell te ale		: :	Orm 630 200 1 : 2	nen 5/4 2-0 200	1 Lan -1 7-05	ge
Depth Core Grain Siz m MD RKB No.	ze Lith	Lithological Description	Oil S pr. m	i ad	Dir pr r	Flu m ad	Cut F	iu ad 1	Vis Cut	Shows Description
2788 - - - 2789 - - - 2790 - - - 2791 - - - 2792 - - - 2793 - - - 2794 - - - 2795 - - - 2796 - - - 2797 - - - 2798 - - - 2799 - - - 2800 - - - 2801 - - - 2802 - - - 2803 - - - 2804 - - - 2805 - - - - 2806 - - - - 2808 - - - - 2810 - - - - 2810 - - - </th <th></th> <th>Sandstone Sst_ item it gry,cir Qtz,f-m,pred sbrnd,mnr ang,wi srt,ise-fri, Tr Glau, Tr mica,pr-fr vis por. Sandstone Sat_ m gry,cir Qtz,vf-m,pred f,pred ang-sbang,mod-wi srt, ise-fri,mica, Tr Glauc,pr-fr vis por. Sandstone Sat_ ti gry,cir Qtz,pred f-m,r v crs,sbang-ang,wi srt,fri-ise,r mica,r Glauc,fr vis por. Sandstone Sat_ ti gry,cir Qtz,pred f-m,r v crs,sbang-ang,wi srt,fri-ise,r mica,r Glauc,fr vis por. Sandstone Sat_ n it gry,cir Qtz,f,ang,v wi srt,v hd,wi calc cmt,Tr mica, Tr Glauc,no vis por. Claystone Claytone Clst_ dk gn gry,biky,hd,Tr Mica,Tr Glauc,Tr vf Qz grs,non calc</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>wk HC odour,no O stn, no dir Fluor,fast strmg v pl blsh wh-slo strmg wh Fluor cut, no vis cut, no vis Res,wh-slily yel wh Fluor Res. strong HC odour,no O stn,no dir Fluor,no vis cut,fast-inst strmg pl blsh wh also slo strmg wh-yel wh Fluor cut,No vis Res,bri wh-yel wh Fluor Res</th>		Sandstone Sst_ item it gry,cir Qtz,f-m,pred sbrnd,mnr ang,wi srt,ise-fri, Tr Glau, Tr mica,pr-fr vis por. Sandstone Sat_ m gry,cir Qtz,vf-m,pred f,pred ang-sbang,mod-wi srt, ise-fri,mica, Tr Glauc,pr-fr vis por. Sandstone Sat_ ti gry,cir Qtz,pred f-m,r v crs,sbang-ang,wi srt,fri-ise,r mica,r Glauc,fr vis por. Sandstone Sat_ ti gry,cir Qtz,pred f-m,r v crs,sbang-ang,wi srt,fri-ise,r mica,r Glauc,fr vis por. Sandstone Sat_ n it gry,cir Qtz,f,ang,v wi srt,v hd,wi calc cmt,Tr mica, Tr Glauc,no vis por. Claystone Claytone Clst_ dk gn gry,biky,hd,Tr Mica,Tr Glauc,Tr vf Qz grs,non calc								wk HC odour,no O stn, no dir Fluor,fast strmg v pl blsh wh-slo strmg wh Fluor cut, no vis cut, no vis Res,wh-slily yel wh Fluor Res. strong HC odour,no O stn,no dir Fluor,no vis cut,fast-inst strmg pl blsh wh also slo strmg wh-yel wh Fluor cut,No vis Res,bri wh-yel wh Fluor Res

E&P Norway	Classific.: INTERNAL E&P
HYDRO Ormen Lange	
Title: WELL 6305/4-1	
PI 200	Rev. : U Page : 47 of 56
	Date : 2002-10-30

APPENDIX II

SIDEWALL CORE DESCRIPTIONS

HYDRO Ormen Lange

Title: WELL 6305/4-1 FINAL WELL REPORT PL 209

Rev. : 0 Page : 48 of 56 Date : 2002-10-30

NORS	K	S	SIDEW	ALL (COF	RE DESC	CRIPT	ION		WELL	63)5/ 4	-1			
HYDR	0									RIG	Sc	arat	œ	5		
Run: Drilled :	2A Date: 27 Misse	29.04.02 ed: 0		Loggir Lost	<mark>ig:</mark> 1	MCST Empty	1	Recoverd:	26	Geolog	F ist T	<mark>age</mark> .Carl	lsen/	1 o /F.Jo	of 3 ohan	sen
Nb.	Depth	Recoverd			l it	hologyand	shows	escription				A Direc	uore t	sœr	nce Curt	
	mRKB	am						200 iption			Tr	M	G	Tr	M	G
27	2755.5	4.9	<u>Clst</u> : gn	blk, fm	1-hd,	, micromic, 1	non cal	C.								
26	2757.0	4.7	<u>Clst:</u> gn	blk, fm	n-hd,	, micromic,	non cal	C.								
25	2758.0	4.7	<u>Slts</u> t: br	nblk, fr	m, a	arg, microm	ic, Tr M	ica, non calc.	1							
24	2758.7	4.6	<u>Sltst:</u> bri	nblk, fri	m, a	ırg, micrami	c, Tr Me	ca, non calc.								
23	2759.0	5	Clst: gn	blk, hd	, mic	cromic, slily	calc.									
22	2759.6	6	<u>Clst/Br</u>	<u>ec</u> olv	blk (Clst, slilyca	lc, mud	invaded Brec	2							
21	2760.0	4.5	<u>Clst:</u> olv	blk, fm	n, m	icromic, mc	d calc.									
20	2761.2	0	Empty													
19	2764.5	4.4	<u>Clst</u> : olv	blk-gn	blk,	sch, frm-ho	l, micror	nic, non - slily	/calc.							
18	2765.5	4.6	<u>Clst</u> : olv	blk-gn	blk,	sch, frm-ho	l, micror	nic, slily-mod	calc.							
					WELL 6305/4-1 RIG Scarabeo 5 g: MCST Page 1 of 3 1 Empty 1 Recoverd: 26 Geologist T.Carlson/F.Johans Hucrescence Direct Oct Direct Oct Tr M G Tr M n of 3 Hucrescence Direct Oct Direct Oct Tr M G Tr M n, arg, micromic, non calc. n, arg, micromic, Tr Mca, non calc. n, arg, micromic, Tr Mca, non calc. Nicromic, slilycalc. Nicromic, slilycalc. Nicromic, mod calc. n, micromic, mod calc. Nicromic, mod calc. Nicromic, mod calc. Tr Trace MEMedium		m									

HYDRO Ormen Lange

Title: WELL 6305/4-1 FINAL WELL REPORT PL 209

Rev. : 0 Page : 49 of 56 Date : 2002-10-30

HYDRC Run: Drilled :	2A Date: 27 Misse															
Run: Drilled :	2A Date:									RIG	Sc	arat	eo	5		
Drilled :	27 Misse	29.04.02	2	Loggir	ng: N	ICST					P	age		2 0	of 3	
No.	Depth m RKB	ed: 0 Recoverd cm		Lost	1 Lith	Empty ology an	v 1 dshowsd	Recoverd:	26	Geologi	st T	.Carl Fl Direc	sen/ uore :t	F.Jo	ohans lœ Cut	en.
17	2767.5	4.6	<u>Clst:</u> olv	/ blk-gn	blk, s	ch, frm-l	hd, micron	nic, sl-mod ca	alc.		Tr	M	G	Tr	M	G
16	2819.0	4	<u>Clst:</u> olv	v gry-brr	n gry, 1	frm-v hd	l, v micron	nic grd arg <u>Sl</u>	<u>ist</u> , n	on calc.						
15	2820.4	4.6	<u>Clst:</u> olv	/ gry-brr	n gry, 1	frm-hd, v	/micromio	grd arg <u>Slts</u>	ţ, nor	n calc.						
14	2821.5	4.4	<u>Clst:</u> olv	v gry, hd	l, v mi	icromicç	grd <u>Sltst</u> , n	on calc.								
13	2823.5	4.5	<u>Sst</u> It g strks, n Shows: strmg p	ry, clr Q o vis po no HC- I blsh w	tz, vf- r. odour h cut l	f, sbang ^r , no O s Fluor, no	-sbmd, fri, tn, no dir f o vis Res,	wl srt, Tr Gla Fluor, no vis o v pl bl wh Re	au, ra cut, v s Flu	arg slo or.				x		
12	2825.2	4.5	<u>Sst</u> Itg strks, T Shows	ry, clr Q r Kao cr as for 28	tz, vf∹ nt?, n 823,5r	f, sbang on calc, m	-sbmd, wl no-pr vis	srt, fri, Tr Gla por.	auc, i	arg				x		
11	2826.0	4.6	<u>Sst:</u> It g Glauc, i Shows	ry, clr Q r Tr calc as for 28	tz, vf- cmt, 823,5r	m, pred r arg, nc m	f, sbang s p-pr vis po	brnd, mod-w r.	lsrt,	Tr				x		
10	2827.3	4.3	Sst: It g Glauc, i No shơ	ry, clr Q r Tr calc w	tz, vf- ∶cmt,	m, pred r arg, nc	f, sbang s p-pr vis po	brnd, mod-w r.	lsrt,	Tr						
	1										L I	r:Tr	ace l	M:M	ediu	m

HYDRO Ormen Lange

Title: WELL 6305/4-1 FINAL WELL REPORT PL 209

Rev. : 0 Page : 50 of 56 Date : 2002-10-30

NORS	〈	S	SIDEW	ALL C	OR	E DESC	RIPT	10	N	WE	LL	630)5/4-	-1			
HYDR	C									RIG	;	Sca	arak	eo	5		
Run: Drilled :	2A Date: 27 Misse	29.04.02	2	Loggin Lost	g: M 1	CST Empty	1	Re	coverd: 26	Geo	logist	Pa t T	age .Carl	sen/	3 c /F.Jo	of 3 ohans	sen
													Fl	uore	sœn	œ	
No.	Depth m RKB	Recoverd cm			Litho	ology and sl	hows d	esa	ription			[Direc	xt 🛛		Cut	
			0.1.1	1.0	,	16	<u> </u>			1 1 1 1		Tr	Μ	G	Tr	Μ	G
9	2828.0	4.6	hd, Tr G por.	ry, cir Qi Blauc, r T	z, vr-r Tr calo	n, pred 1-m c cmt, Tr Ka	, sban ao mtri	gsc x?, r	Tr arg lam	/i srt, fri∹ , no-pr vi	SII İS						
8	2830.0	4.7	<u>Sst</u> : as No sho	for 2831 w.	1,5m.												
7	2831.5	4.5	<u>Sst</u> : It g calc cm No sho	gry, clr Q it, Kao m w.	tz, vf- ntrx?,	f, sbang-sb Tr Glauc, n	ornd, fri o-vis p	i, oc oor.	c slilyhd, w	/l srt, Tr							
6	2832.5	4.4	Sst: It g Glauc, No sho	gry, clr Q Tr calc c w	tz, vf- mt, Tr	m, pred vf-1 • Kao mtrx?	wlsrt, T	r									
5	2833.2	4	<u>Clst</u> : dk	gn gry-o	olvgry	y, frm-mod l	nod calc										
4	2835.5	3.6	<u>Clst</u> : olv	/ gry, frm	n, Tr N	∕lica, miαα	nic, m	od c	alc, slty.								
3	2838.0	4.4	<u>Sst:</u> It <u>c</u> Tr calc No sho	gry, arg c cmt, Tr (w.	lk spe Glauc,	ecs, fri, clr C , Tr arg lam	Qtz, vf-ı ı, no vi	m, p s pc	oref f-m, sba or.	ang-sbrr	nd,						
2	2840.0	4.8	<u>Clst:</u> olv No sho	v gry, frm w.	n-slily	hd, Tr Mica	, micro	amia	c, mod calc.								
1	2847.0	4.6	Sst: It g Kao mt	ry, clr Qt rx?, Tr ca w.	z, vf-f alc cn	, pred f, sb nt, no vis po	ang-sb or.	ornd,	, wl srt, fri, ٦	Fr Glauc	, Tr						
	1	<u> </u>	1									T	r:Tra	ace I	M:M	ediu	m
Comment	as:										1						

APPENDIX III

WELL SUMMARY

GEOLOGICAL WELL SUMMARY

E&P N	lorwa	ау	Classific.: INTERNAL E&P	
HYDRO Ormen	Lange			
Title: WELL 6305/4- FINAL WELL I PL 209	-1 REPOR	T	Rev. : 0 Page : 52 of 56 Date : 2002-10-30	
Coord: 63°34' 17.76"N UTM: 7	051 501.9	mN	On location: 10.03.02 @	WELL:
05°17' 55.93"E	614 148.3	mE	Spud: 14.03.02 @ 04:15hrs Respud: 16.03.02 @ Constraint 0.05.02 @	6305/4-1
Zone: ED-50 UTM Zone 31 C	JM 3° E		At TD: 26.04.02 @ 15:00 P&A finished: 02.06.02 @ 15:00hrs	LICENCE:
Rig: Scarabeo 5	Allfie 502d		TD Driller: 2975,5m MD/2974,5m TVD TD Logger: 2975,5m MD/2974,5m TVD	PL 209
Waterdepth: 1002 m MSI KE	3: 25 m		Wireline Logg: Schlumberger WS	COUNTRY:
Stopped in: Kyrre Formation			Mudlogging: Geoservices	Norway
OPERATOR: NORSK HYDI	RO ASA	OWNED BY:	Hydro, Petoro, Statoil, NorskeShell, Exx	onMobil
TARGETS: Tertiary Egga Ro	eservoir L	Init	RESULTS: Good reservoir quality in the E which was thinner than prognosed. A "Gas was encountered in the lowermost Egga F	gga Reservoir Unit Down To" situation ormation
CASING (MD / TVD RK	(B)	MUD TYPE / WEIGHT		
30" at 1105.0m / 1105.0r 20" at 1749.0m / 1749.0 9 5/8" at 2719.0m / 2720.0 TD at 2975.0m / 2974.0	m)m)m)m	Seawater -HiVis pills WBM. 1.30sg WBM. 1.30sg WBM. 1.30sg (Mud weights <u>from</u> csg depths to the left)		
	LOGS	F	CORES	
Anderdrift PowerPulse-ADN-ARC- GVR-Isonic <u>Main well</u> PowerPulse PowerPulse-CDR PowerPulse-CDR-RAB- ADN-Isonic PowerPulse-CDR-RAB PowerPulse-CDR-RAB PowerPulse-Vision675-RAB PowerPulse-Vision675-RAB PowerPulse-ARC5-RAB <u>Wireline</u> SP-HALS-PEX DSI-VSP (0-offset) SP-HRLA-PEX HNGS-CMR+ VSP (0-offset) MSCT MDT(Pressure and fluids) EMI-DSI	36" 8½" 36" 26" 12¼" 12¼" 12¼" 8½" 8½" 8½" 1A 1A 2B 2A 2A 2A 2B	1026,0 - 1066,0 m 1066,0 - 1751,0 m 1026,0 - 1108,0 m 1026,0 - 1108,0 m 1026,0 - 1108,0 m 1105,0 - 1756,0 m 2650,0 - 2725,0 m Failed 2725,0 - 2768,0 m 2817,5 - 2975,5 m 2692,0 - 996,0 m 2674,0 - 1765,0 m 2975,0 - 2569,0 m 2900,0 - 2740,0 m 2900,0 - 2140,0 m 2847,0 - 2755,5 m 2854,7 - 2827,5 m 2964,0 - 2713,0 m	Core#1: Cut 1761,0-1780,0m, Rec 1761,0 Core#2: Cut 2796,0-2788,0m, Rec 2769,0 Core#3: Cut 2788,0-2807,0m, Rec 2788,0 Core#4: Cut 2807,0-2817,5m, Rec 2807,0)-1778,9m 94,3%)-2787,9m 99,2%)-2807,0m 100,0%)-2817,3m 98,1%

Classific.: INTERNAL E&P

Title: WELL 6305/4-1 FINAL WELL REPORT PL 209

_

Rev. : 0 Page : 53 of 56 Date : 2002-10-30

		8							30"			
	- 1900 -	- 1700 -	- 1600 -	1500 -		- 1400 -	- 1300 -	- 1200 -	- 1100 -		- 1000 -	6 Depth m MD RKB
5	۲					NO DATINGS						System
0	OCENE											Series
6	ALAND					NORDLAN	9					Group
20	GGE		KAI			NAU	ST					Formation
and the second s	2 1 = 0 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	*= 01	100 H	M	M	м	M	121 2 22	M			Lithology
	Tr crs.sbang-si mod srt.jse	Brygge (1701 Clay with Sand gry-olv gry.sti- micromic.silly	— Kai (1662m)		it gry.gen ch Q sbang-sbmdd.r Mirx?	Circu with care 5		Clay with rare : gry-mit gry.sft micromic.gen i vf-m,ang.Shi Fi olv gry-dusity y non calo,micro		Naust (Seab	All depths in m	Desc
	brindid, Tir ang, op	Im) <u>Henses</u> : Cls.m stky.amor.calc, vf.sdy.loc.f-m,			tz,f-m,Tr.ors, mod.srt,lse,arg	Sand bade: Sch		Sand beds: m .stky.calc, idy.alty.chr Qtz, nag.r md lumps, el bm.fri.sbfis, mic.sty.		ed @ 1027m)	MD RKB	ription
	- 2800 -		- 2700 -	- 2600 -	- 2500 -	- 2400 -		- 2200 -		- 2100 -	- 2000 -	Depth m MD RKB
	EOUS					TERT	IARY					System
	INAST E.P	ALEO L	ATE PALEOCENE		EARL	'Y EOCENE		MODLE	OCENE	EAR	ILY OLIGOCENE	Series
	DNA		68	GALAND				우	RDALAND			Group
	N SHOT	ALE N	LISTA	SELE		MLDER	BROWNWARD	GREE	N CLAY	_	BRYGGE	Formation
1000	* * * *	er Here Here Here Here Here Here Here H	*	M	M			*	N N N N N N N N N N N N N N N N N N N	-*	2 0 2 2 * 3	Lihology
server a state of the state of	Tr Glaus, n.v.p. Väle Tight (2811,5m) Väle Heterolithic (2823m) Jorsaffare (2829) Base Jorsaffare Sand (2847m – Kyrre (2880m) Clavatore wopcasional	Bigga Res. Unit (2770m) Sandstone: It gry-II bm gry, gen dr Ctz f,sbang-sbridd, mod wi st fit mod oak mice	Clavation, trace Limestone: Clavation, trace Limestone: Clavation of the Clavation of the Clavation gry-gm gry, fmr-mod hd, bley, non cale, si micronic, tr dism micropyr, r Tf - Yale (2755, 5m) - Econ Tuber (2765, 5m)	Clavstone: pred dsky yel bm, dk yel bm, tr bm gry, biky, non calc, sl micromic, non sity, r micropyr, sl carb, hom ap	m gry, dk gm gry, bik spk, non calc, micromic, sty ap "- Sele (2529m)	Balder (2393,5m) Clavatones and Tuffaceous Clavatones: olv gry-ll gm gry- dk gm gry, olv gry, sit-fm, sbbity, non calc, sity sity, sity micromic, abd-tr Glauc, Tr.	<u>Clavstones</u> : bmsh gry-dsky yei bm, sti-fm, biky-sbfiss, non cale, sily sty, micromic, Pyr Nod.	sobiky, non calo, si sty, si micromic, tr-loc abd Gilauc, r micropyr — Brown Clay Marker (2290m)	Claystone with traces of Sitistone: Clayofy gry-II gm gry, incr dk gm gry, sit-frm.	Green Clay Marker (2100m)	Opal CT (1988m) <u>Siliceous Goze</u> : bmsh gry-dk yei bm, stl-fm, non cak, mod-v ang grig Chit, r micromic, r glauc	Located on: UTM Zone 31 CM 63*E: 7 051 501.9 mN 614 148.3 mE Water depth: 1003 m, RKB: 25 m

Watog template GHP180501-AUC Document date 2002-10-14

Classific.: INTERNAL E&P

 Title:
 WELL 6305/4-1

 FINAL WELL REPORT
 Rev. : 0

 PL 209
 Page : 54 of 56

 Date : 2002-10-30

APPENDIX IV

MDT tables

PL 209

Rev. : 0 Page : 55 of 56 Date : 2002-10-30

FORMATION PRESSURE WORKSHEET

		Well Na	ime:	630	5/4-1]	Rig:	s	carabeo	5]	Date:	29 0	4 2002]	Witness	sed by	:	Steve Wi	liams / Tr	uls Carlse	n / Finn	Johansen	
		Pressu	re Units:		Bar		RKB - I	MSL:	25]m.		MSL -	Sbd:	1002]m.	Log rur	n no.		2A				Page : 1 of 3	5
Run No.	Test No.	Depth mMD RKB	Depth mTVD RKB	Depth mTVD MSL	Initial Hy Pres Quartz	/drostatic ssure Strain	Form Pres Quartz	nation ssure Strain	Final Hy Pres Quartz	/drostatic ssure Strain	Diff.	Time hh: Set	hh:mm mm Retract	Formation Pressure sg EMW	Fluid Gradient g/cc	Mud Gradient g/cc	Test Temp. degC	Good Data? Y/N	Drillers Stop Depth	Probe Used PS1/PS2	Pretest Volume cc	Quartz Mobility md/cp	Remarks	Fmn Name
2A	1	2854.3	2853.4	2828.4	366.720	371.520			366.720	371.570	Q 0.000	16:27	16:29	-	-	1.310	75.3	Ν	Probe >	PS2	1.9	0.0	Dry test	JosalF
2A	2	2854.7	2853.8	2828.8	366.810	371.620	298.243	302.290	366.796	371.710	Q 0.014	16:36	16:39	1.065	2.061	1.310	76.1	Y	Probe >	PS2	20	105.0	Good Perm	JosalF
2A	3	2847	2846.1	2821.1	365.810	370.650	296.686	300.810	365.810	370.680	Q 0.000	16:46	16:48	1.063	2.061	1.310	76.1	Y	Probe >	PS2	20	70.1	Good Perm	JosalF
2A	4	2838.1	2837.2	2812.2	364.670	369.520	295.788	299.900	364.680	369.490	Q 0.010	16:54	16:58	1.063	1.170	1.310	76.1	Y	Probe >	PS2	20	103.0	Good Perm	JosalF
2A	5	2832.5	2831.6	2806.6	363.980	368.870	295.145	299.270	364.017	368.830	Q 0.037	17:05	17:08	1.063	1.096	1.310	76.2	Y	Probe >	PS2	20	27.0	Low Perm	JosalF
2A	6	2828	2827.1	2802.1	363.409	368.290	294.697	298.790	363.434	368.240	Q 0.025	17:13	17:17	-	-	1.310	76.2	Ν	Probe >	PS2	20	54.0	Off depth due to air leak	Vale H
2A	7	2827.5	2826.6	2801.6	363.372	368.260	294.648	298.740	363.347	368.240	Q 0.025	17:23	17:25	-	-	1.310	76.3	Ν	Probe >	PS2	20	136.0	Off depth due to air leak	ValeH
2A	8	2828	2827.1	2802.1	363.488	368.290			363.485	368.340	Q 0.003	17:51	17:53	-	-	1.311	76.1	Ν	Probe >	PS2	2	0.0	Dry test	ValeH
2A														-	-	-			Probe >				Re-correlate - DO +1.0m	
2A	9	2828	2827.1	2802.1	363.354	368.170	294.661	298.750	363.324		Q 0.030	18:16	18:19	1.062	0.999	1.310	77.7	Y	Probe >	PS2	20	97.0	Good Perm	ValeH
2A	10	2827.5	2826.6	2801.6	363.270	368.160	294.612	298.740	363.309	368.210	Q 0.039	18:24	18:27	1.062	0.999	1.310	77.5	Y	Probe >	PS2	20	262.0	Very Good Perm	ValeH
2A	11	2824	2823.1	2798.1	362.840	367.700	294.276	298.410	362.840	367.720	Q 0.000	18:32	18:35	1.063	0.947	1.310	77.3	Y	Probe >	PS2	20	286.0	Very Good Perm	ValeH
2A	12	2823.3	2822.4	2797.4	362.750	367.550	294.211	298.320	362.750	367.630	Q 0.000	18:42	18:45	1.063	0.947	1.310	77.2	Y	Probe >	PS2	20	307.0	Very Good Perm	ValeH
2A	13	2811.3	2810.4	2785.4	361.260	366.080	289.304	293.400	361.270	366.100	Q 0.010	18:50	18:56	1.049	#REF!	1.310	76.8	Y	Probe >	PS2	20	30.0	Low perm - strange gradient	Egga
2A	14	2810.2	2809.3	2784.3	361.064	365.960	288.884	292.970	361.116	366.040	Q 0.052	19:03	19:08	1.048	-	1.310	76.1	Y	Probe >	PS2	20	25.0	Low perm - strange gradient	Egga
2A	15	2808.2	2807.3	2782.3	360.800	365.720	287.507	291.560	360.809	365.730	Q 0.009	19:14	19:20	1.044	#REF!	1.310	75.7	Y	Probe >	PS2	20	15.0	Low perm - strange gradient	Egga
2A	16	2807.2	2806.3	2781.3	360.720	365.600	287.510	291.510	360.762	365.530	Q 0.042	19:28	19:33	1.044	#REF!	1.310	75.5	Y	Probe >	PS2	20	195.0	Very Good Perm	Egga
2A	17	2806.5	2805.6	2780.6	360.648	365.430	287.508	291.520				19:40	19:50	1.045	#REF!	1.310	75.5	Y	Probe >	PS2	20.0	35.0	Possible supercharging	Egga
2A	18	2805.5	2804.6	2779.6	360.501	365.310	287.500	291.500	360.501	365.380	Q 0.000	19:56	20:02	1.045	0.082	1.310	75.5	Y	Probe >	PS2	20.0	842.0	Good gas mobility	Egga
2A	19	2804.2	2803.3	2778.3	360.386	365.180	287.472	291.490				20:06	20:15	1.045	0.220	1.310	75.4	Y	Probe >	PS2	20.0	560.0	Good gas mobility	Egga
	NB	: Formati	on press	ure EMV	/ calculat	ed from F	RKB		-	-		-			AVERAGE	1.310						-		

FORMATION PRESSURE WORKSHEET

	Well N	ame:	630	5/4-1]	Rig:	s	Scarabeo	5]	Date:	29 0	4 2002]	Witnes	sed by:	:	Steve Wil	lliams / Tru	uls Carlse	n / Finn	Johansen]
	Pressu	ire Units:		Bar]	RKB - I	/ISL:	25]m.		MSL -	- Sbd:	1002] m.	Log rur	n no.		2A				Page : 2 of 3	\$
Run No. Test No.	Depth mMD RKB	Depth mTVD RKB	Depth mTVD MSL	Initial H Pre Quartz	ydrostatic ssure Strain	Form Pres Quartz	nation ssure Strain	Final Hy Pres Quartz	drostatic ssure Strain	Diff.	Time hh Set	hh:mm :mm Retract	Formation Pressure sq EMW	Fluid Gradient g/cc	Mud Gradient g/cc	Test Temp. deqC	Good Data? Y/N		Probe Used PS1/PS2	Pretest Volume cc	Quartz Mobility md/cp	Remarks	Fmn Name
2A 2	2802.8	2801.9	2776.9	360.200	364.980	287.441	291.450	360.647	365.370	Q 0.447	20:20	20:27	1.046	0.226	1.311	75.4	Y	Probe >	PS2	20	170.0	Good gas mobility	Egga
2A 2	2801.2	2800.3	2775.3	359.944	364.810	287.411	291.410	359.951	364.760	Q 0.007	20:34	20:39	1.046	-	1.310	75.3	Y	Probe >	PS2	20	174.0	Good gas mobility	Egga
2A 2	2 2800	2799.1	2774.1	359.795	364.580	287.411	291.450	359.830	364.580	Q 0.035	20:47	20:50	1.047	-	1.310	75.3	Y	Probe >	PS2	20	377.0	Good gas mobility	Egga
2A 2	3 2798.5	2797.6	2772.6	359.627	364.370	287.358	291.380	359.630		Q 0.003	20:57	21:03	1.047	0.360	1.310	75.1	Y	Probe >	PS2	20	206.0	Good gas mobility	Egga
2A 2	4 2795.7	2794.8	2769.8	359.605	364.450	287.321	291.330	359.308	364.100	Q 0.297	21:11	21:15	1.048	0.166	1.311	74.9	Y	Probe >	PS2	20	215.4	Good gas mobility	Egga
2A 2	5 2793	2792.1	2767.1	358.894	363.690	287.277	291.320	358.918	363.750	Q 0.024	21:20	21:24	1.049	#REF!	1.310	74.6	Y	Probe >	PS2	20	1755.6	Exellent gas moblity	Egga
2A 2	5 278 8	2787.1	2762.1	358.253	363.090	287.176	291.210	358.285	363.110	Q 0.032	21:30	21:37	1.050	#REF!	1.310	74.4	Y	Probe >	PS2	20	232.5	Good gas mobility	Egga
2A 2	2784.5	2783.6	2758.6	357.780	362.520	287.101	291.100	357.827	362.590	Q 0.047	21:47	21:53	1.051	0.218	1.310	74.4	Y	Probe >	PS2	20	94.8	Reasonable gas perm	Egga
2A 2	3 2781	2780.1	2755.1	357.300	362.110	287.046	291.070	357.370	362.120	Q 0.070	21:57	22:02	1.052	0.211	1.310	74.2	Y	Probe >	PS2	20	492.0	Good gas mobility	Egga
2A 2	2778	2777.1	2752.1	356.943	361.710	286.984	291.020	357.011	361.780	Q 0.068	22:08	22:14	1.053	0.178	1.310	73.8	Y	Probe >	PS2	20	122.0	Reasonable gas perm	Egga
2A 3	2776	2775.1	2750.1	356.722	361.440	286.949	290.960	356.783	361.570	Q 0.061	22:19	22:28	1.054	0.178	1.310	73.5	Y	Probe >	PS2	20	26.0	Low gas permeability	Egga
2A 3	2774	2773.1	2748.1	356.462	361.220	286.986	290.970	356.503	361.340	Q 0.041	22:33	22:39	-	#REF!	1.310	73.3	Ν	Probe >	PS2	20	142.0	Supercharging ?	Egga
2A 3	2 2773.6	2772.7	2747.7	356.476	361.240	286.913	290.890	356.450	361.240	Q 0.026	22:45	22:51	1.055	#REF!	1.311	73.3	Y	Probe >	PS2	20	256.1	Good gas mobility	Egga
2A 3	3 2772.5	2771.6	2746.6	356.303	361.080	286.898	290.870	356.313		Q 0.010	22:55	22:59	1.055	#REF!	1.310	73.4	Y	Probe >	PS2	20	131.5	Fair gas mob	Egga
2A 3	\$ 2772.5	2771.6	2746.6	356.327	362.120	286.900	290.880	356.306	361.100	Q 0.021	23:03	23:09	1.055	#REF!	1.310	73.5	Y	Probe >	PS2	20	142.3	Fair gas mob	Egga
2A 3	5 2770.5	2769.6	2744.6	356.134	360.920	286.856	290.880	356.167	360.820	Q 0.033	23:15	23:18	1.056	-	1.311	73.6	Y	Probe >	PS2	20	168.0	Good gas mobility	Egga
2A 3	2769.3	2768.4	2743.4	355.973	360.710			355.998	360.700	Q 0.025	23:24	23:30	-	-	1.311	73.4	Ν	Probe >	PS2	11.2		Dry test	Egga
2A 3	2769.5	2768.6	2743.6	356.155	360.690	287.024	290.920	356.097	360.810	Q 0.058	00:07	00:17	1.057	-	1.311	73.6	Y	Probe >	PS2	20.0	11.0	Drifting pressure	EggaT
2A 3	3 2811	2810.1	2785.1	361.351	366.000	289.430	293.280	361.345	366.040	Q 0.006	00:29	00:34	1.050	#REF!	1.311	75.9	Y	Probe >	PS2	20.0	10.9	Low perm	Egga
2A 3	2810	2809.1	2784.1	361.258	365.940			361.289	365.920	Q 0.031	00:40	00:44	-	-	1.311	76.6	Ν	Probe >	PS2	12.0		Tight	Egga
N	B: Forma	tion press	ure EMV	/ calculat	ed from F	RKB								AVERAGE	1.310								

PL 209

Rev. : 0 Page : 56 of 56 Date : 2002-10-30

<u>....</u> FORMATION PRESSURE WORKSHEET Well Name: 6305/4-1 Scarabeo 5 Date: 29 04 2002 Witnessed by: Steve Williams / Truls Carlsen / Finn Johansen Rig: Bar RKB - MSL: 25 m. MSL - Sbd: 1002 m. 2A Log run no. Page: 3 of 3 Pressure Units: Depth Depth Depth Initial Hydrostatic Formation Final Hydrostatic Time hh:mm ormatic Fluid Mud Test Probe Pretest Quartz Remarks Fmn Goo mMD mTVD mTVD Pre Pre Pr hh Pressur Gradier Gradi Temp Used Volume Mobilit Nam RKB Diff. sg EMW RKB Stra Stra Strain PS1/PS2 MSL Quartz Quartz Quartz Set Retra g/cc degC Y/N сс md/cp Q 0.084 36.9 Low gas permeability 280 2807. 2782. 361.063 365.64 287.63 291.51 360.97 365.73 00:49 00:5 1.04 1.311 77. Y Probe > PS2 2 Egga Q 0.067 1.31 31.0 Low gas permeability 280 2806. 2781 360.88 365.55 287.63 291.53 360.94 365.63 01:0 01:1 1.04 77. × Probe > PS2 2 igga LOCATE SAMPLE DEPTH robe > 2773. 2772.8 2747. 356.62 361.32 287.00 290.9 356.64 361.32 Q 0.014 01:2 01:2 1.055 1.311 76. Probe > PS2 217.0 Good gas mobility igga 43 2773. 27724 2747 356.62 361.28 287.008 290.91 356 58 361.300 Q 0.031 01:4 01:5 1 055 1 311 75. Y Probe > PS2 20 114.0 Fair gas mob Egga 362.20 74. Ν robe > ow perr 279 2792.1 2767 359.06 363.66 287.38 291.24 359.15 363.80 Q 0.08 02:2 02:2 1.049 #REF 1.31 76. Y Probe > PS2 20 680.0 Good gas perm igga 291.25 359.07 2792. 2791.6 2766.0 359.06 363.75 287.364 363.770 Q 0.012 02:3 02:4 1.049 #REF 1.311 76. Y Probe > PS2 20 218.0 Good gas perm Egga 359.40 287.99 03:1 279 2792.1 2767. 359.17 287.710 03:0 1.050 #REF 1.31 77. Probe > PS1 34.0 Looking for sampling point Egga 48 2792. 2791.8 2766.8 359,104 359.42 287.340 287.63 03:1 03:3 1.049 #REF 1.311 77. Y Probe > PS1 2 29.0 Looking for sampling point Egga #REF 1.311 20 27.8 Looking for sampling point 2792.3 2791.4 2766. 359.08 359.39 287.460 287.76 03:3 03:4 1.050 76. Probe > PS1 Egga 20 47.0 SAMPLING DEPTH 2788 2787.9 2762.9 358.56 358.89 287.816 288.11 03:4 03:5 1.052 1.31 76. v Probe > PS1 igga LOWER EGGA SAMPLING robe > 2811. 2810.4 2785. 359.83 360.05 290.56 290.83 359.78 360.08 Q 0.054 17:1 17:3 1.054 #REF 1.305 79.4 Probe > PS1 20 11.1 formation collapse igga 20 2811. 2810.3 2785 359.85 360.11 289 44 289.69 359.93 360.22 Q 0.077 17.4 18:5 1.050 #RFF 1 305 79 Y Probe > PS1 ок Probe / pump plugged Egga 52 359.85 19:1 19:3 1.05 1.305 Probe > PS2 20 2811 2810.4 2785. 364.60 289.44 293.37 359.90 364.69 Q 0.044 #REF 78. ΟК Too high drawdown Egga 2811 2810.2 2785. 359.91 364.60 289.38 293.31 360.20 364.88 Q 0.28 19:3 22:1 1.050 #REF 1.306 78. × Probe > PS2 2 οк SAMPLING DEPTH gga 56 2808. 2807.4 2782. 359.85 364.63 287.62 291.57 359.91 364.57 Q 0.059 22:2 22:4 1.044 1.307 80. Y Probe > PS2 20. Low Too high drawdown Egga 2807 2806.9 2781.9 359.78 364.50 287.592 291.55 22:47 23:2 1.044 #REF 1.307 78.7 Probe > PS2 20. 38.0 Flowed water and gas Egga robe > NB: Formation pressure EMW calculated from RKB VERAGE 1.310

38	<u></u>	1	MDT	FORMA	TIONI	LUID S	SAMPLI	NG RESULT	rs															
											¤ 5 9	Run#	Date	oolstrin	g									
		Wel	IName:		6305/4	i-1						2 A	30-apr-02	LEH- TCC- ACTS-										
		R ig	:		Scara	beo 5																		
		W itr	ess(es)	:	Steve W	/illiams/1	Truis Caris	en / Finn Johan	sen															
# una	ample #	robe used	Chambertype	ADT Slot	ottle volume	ottle serial number	ample depth	eological horizon	ormation pressure Quartz)	Aobility	bead space fluid	bead space volume	illing technique	ime opened chamber	olume pumped prior sampling	hump-out load	Dbserved fluid on Fluid malyser	sampling temp	ampling resistivity	Ainimum flowing ressure (Quartz)	Draw down during owing	illing time	Dpening pressure	Dpening temperature
Ē		-	Ĕ	-	cc		m M D	Ŭ	Bar	m D/cP		cc		hh:mm	Litres	rpm - %		DegC	Ohmm	Bar	Bar	mm:ss	Bar	DegC
2 A	1	PS1	SPMC	#6	250	154	2788.8	Egga	287.326	47	H20	10.3	Low shock	10:03	495	65% - 1000	Gas	77.2	noisy	286.7	0.60	1 m in	365	14
2 A	2	PS1	MPSR	#4	450	756	2788.8	Egga	287.326	47	H2O	12.5	Low shock /OP	10:15	503	65% - 1000	Gas	77.2	noisy	286.7	0.60	30 secs	348	14
2 A	3	PS1	MRSC	#1	3785	131	2788.8	Egga	287.326	47	H20	30	Low shock /OP	10:30	515	65% - 1000	Gas	77.2	noisy	286.7	0.60	6 mins	340	10
2 A	4	PS1	SPMC	#2	250	100	2788.8	Egga	287.326	47	H2O	10.2	Low shock	13:00	714	65% - 1000	Gas	77.5	noisy	286.7	0.60	30 secs	365	14
2A	5	PS1	MRSC	#2	3785	166	2788.8	Egga	287.326	47	H20	30	Low shock /OP	13:11	722	65% - 1000	Gas	77.6	noisy	286.7	0.60	6 mins	340	10
2 A	6	PS1	SPMC	#3	250	153	2788.8	Egga	287.326	47	H2O	7.2	Low shock	16:05	957	65% - 1000	Gas	77.6	noisv	286.7	0.6	40 secs	362	14
2 A	7	PS1	MPSR	#5	450	800	2788.8	Egga	287.326	47	H2O	12	Low shock /OP	16:17	967	65% - 1000	Gas	77.7	noisy	286.7	0.6	70 secs	345	14
2 A	8	PS1	MRSC	#3	3785	172	2788.8	Egga	287.326	47	H2O	30	Low shock /OP	16:33	981	65% - 1000	Gas	77.7	noisy	286.7	0.6	6.5 m in s	340	10
2 A	9	PS2	<mark>S P M C</mark>	#1	250	90	2811.1	Base Egga	289.382	25	Air	11.1	Low shock/OP	21:45	30	500 rpm	Water	81	0.084	221.5	68.0	70 secs	534	14
														_										
	-																	-						
	-			-	1		1							1	l									
				1	1	i i	İ			1	1			1	1		İ	1	1	1	l	l		1
\parallel																								