BP AMOCO NORGE AS 6404/11-1 SCARABEO 5

GEOLOGICAL COMPLETION REPORT 6404/11-1 **NORWEGIAN SEA NORWAY** Neil Hanley

- CONFIDENTIAL -

April 2002

APPROVAL

PROSPECT: HAVSULE PRE-DRILL TARGETS: EARLY EOCENE (T50) MAASTRICHTIAN (K90) CAMPANIAN (K80) LATE CENOMANIAN (K72)

LOCATION ID:

DATE: NOVEMBER 2001 – MARCH 2002

AUTHOR:

Neil Hanley (Operations Geologist)

APPROVED BY:

John Berry (Licence Geologist)

APPROVED BY:

Samuel R Johnson (Licence Team Leader)

Indexing Information	
Country(s):	NORWAY
Situation:	Offshore
Region(s):	Norwegian Sea
Well name(s):	6404/11-1 (Havsule)

Regional Reports:	
Well report subject code:	Geological Completion Report W28
File name:	6404_11_1_W28 Geol comp.report.doc
Server Location:	\\EUSTVS20F\Projects\P0001 Exploration Drilling Projects\Havsule\

Subjects:

Well Summary Geology/Lithology Pore Pressure/Fracture Gradient Wireline/LWD Operations Appendices

SUMMARY

GENERAL

PL 254 was awarded to a consortium comprising BP Amoco, TotalFinaElf, Norske Conoco and the SDFI (now Petoro AS) as part of the 16th Licencing Round on the 20th May 2000. BP Amoco operate the licence.

The pre-drill objective of well 6404/11-1 was to test three primary reservoir targets at T50, K90 and K80 levels and have an option to test one secondary target at K72 level in the Havsule Prospect. The prospect is a seismically defined north - south trending structural dome located in the north of the Møre Basin in the Norwegian Sea that is thought to have developed during the Tertiary Period in response to compression during opening of the North Atlantic Ocean.

OPERATIONS

BP Amoco took over the dynamically positioned (DP) semi-submersible rig, Scarabeo 5, at 19:00 hrs on 14th November 2001 with the rig arriving at the Havsule location at 15:00 hrs on the 24^{th} November 2001. DP trials were undertaken and after the seafloor transponders were deployed, the 6404/11-1 well was spudded at 21:30 hrs on the 1^{st} December 2001.

A 12 ¹/₄" pilot hole was drilled from seabed to 2195 mBRT in one bit run. No indications of shallow gas or abnormal pore pressures were observed from drilling data or on LWD. After drilling to section TD the bit was pulled and the hole opened to 36" to 1629 mBRT. While repositioning one of the subsea marker buoys it was inadvertently dropped into the hole necessitating a re-spud of the well 28.6m to the north-north west of the original hole location.

The well was re-spudded at 13:30 hrs on the 6th December 2001 using a 42" x 36" hole opener assembly. 26" hole was drilled to 2175 mBRT with seawater and hi-vis sweeps. After displacing to seawater, circulating the hole clean and pulling to 1870 mBRT bubbles were seen flowing from the wellhead. Drillpipe was run to bottom and the hole was made static with 1.20sg mud. Casing was run and cemented without problem, however weather delayed running the BOP's and riser.

The 17" hole section was TD'd 15m shallow to prognosis due to concerns over increasing pore pressure. After running and cementing the 13 3/8" casing it was necessary to run a piggy-back casing hanger to allow the seal assembly to seat in the correct position.

A value of 1.38sg was obtained for the leak-off after drilling out the 13 3/8" casing and drilling 12 $\frac{1}{4}$ " hole commenced. Drilling was halted at 2730 mBRT when pore pressure was seen to have reached 1.25sg and the bit was pulled into the casing shoe. In an attempt to carry on drilling an open-hole leak-off was performed that confirmed the 1.38sg value obtained earlier. Having insufficient kick tolerance to drill ahead, the decision was made to run a 9 $\frac{5}{8}$ " liner. A triple-combo wireline log was run to acquire data over the drilled section.

Liner was set and a 1.47sg leak-off was obtained. Drilling commenced in 8 $\frac{1}{2}$ " hole. No reservoir horizons were identified and the well was TD'd at 02:45 hrs on the 20th February at a depth of 3650 mBRT. Three wireline logging runs were performed.

The 6404/11-1 well was plugged and abandoned as a dry hole at 22:00 hrs on the 10th March 2002 and the rig released to Norsk Hydro.

RESULTS

The shallowest primary target (Early Eocene T50 sandstones) was absent at the well location.

Upper Cretaceous (K90 sandstones) were absent and K80 (Nise Formation) sandstones were poorly developed.

The well was not extended to penetrate the deeper, K72 (Lysing Formation) secondary target.

SUMMARY

General Operations Results

1 WELL DATA SUMMARY

2

10

1.1 General Data	2
1.2 Stratigraphy	4
1.2.1 Summary	4
1.2.2 Forecast v Actual	5
1.3 Casing	6
1.3.1 Summary	6
1.4 Comparision Drillers and Loggers Depths	8
1.4.1 Summary	8
1.5 Temperature Data	9
1.5.1 Summary Plot	9

2 GEOLOGY

2.1 RECENT (1520.0 – 1574.0 mBRT)	
2.1.1 Storegga 2 and 1 (1520.0 –1574.0 mBRT)	
2.2 NORDLAND GROUP (1574.0 – 2222.9 mBRT)	
2.2.1 Naust Formation (1574.0 – 2222.9 mBRT)	
2.3 HORDALAND GROUP (2222.9 – 2525.9 mBRT)	
2.3.1 Brygge Formation (2222.9 – 2525.9 mBRT)	
2.4 ROGALAND GROUP (2525.9 – 2748.0 mBRT)	
2.4.1 Tare Formation (2525.9 – 2600.0 mBRT)	
2.3.2 Tang Formation (2600.0 – 2748.0 mBRT)	
2.5 SHETLAND GROUP (2748.0 – 3650.0 mBRT)	
2.5.1 Springar Formation (2748.0 - 3201.9 mBRT)	
2.4.2 Nise Formation (3206.0 - 3650.0 mBRT)	

3 PORE PRESSURE AND FRACTURE GRADIENT

3.1 Inte	erpretation 1	
3.1.1	Introduction	
3.1.2	Nordland Group	
3.1.3	Hordaland Group	
3.1.4	Rogaland Group	
3.1.5	Shetland Group	
3.2 Inte	erpretation 2	
3.2.1	Introduction	
3.2.2	Discussion	

4 FORMATION EVALUATION

4.1 LWD Logging	
4.1.1 Summary	
4.2 Wireline Logging	
4.2.1 Summary	
4.3 Sidewall Cores	
4.3.1 Summary	
4.4 VSP & Checkshot	

.

24

18

4.4.1	Summary	31
4.4.2	Depth v Transit Time Plot	34
4.5 MD	T Data	35
4.5.1	Pressure Test Summary	35
4.5.2	Fluid Sampling Summary	35
4.6 DST	Г Data	35
4.6.1	Summary	35
4.7 Wir	eline Operations Summary	35
4.8 Cut	tings Sampling Programme	36
4.8.1	Mudlogging Programme	36
4.8.2	ROV Samples	37
4.8.3	Gas Samples	37

REFERENCES

38

39

APPENDIX 1: WIRELINE OPERATIONS ACTIVITY SUMMARY

FIGURES

Figure 1	Location Map	3
Figure 2	Minilog	7
Figure 3	Temperature Plot	9
Figure 4	Prognosed versus Actual	12
Figure 5	Formation Pressure Evaluation	20
Figure 6	Presgraf Plot of the Pore Pressure Gradient Profile	21
Figure 7	The d'exponent with Four Normal Trend Lines	22
Figure 8	D'exponent and Shale Velocity	23
Figure 9a&b	Drilled Gas Plots	23
Figure 10	Depth v Transit Time	34

ENCLOSURES

1:500 Measured Depth Composite Log

1 WELL DATA SUMMARY

1.1 GENERAL DATA

Well Name: Status:	6404/11-1 P&A Dry	
Licence: Drilling Permit No. Operator: Partners:	PL 254 1019-L BP Amoco Norge AS Petoro AS Norske Conoco A/S TotalFinaElf Exploration Norge AS	35.00% 25.00% 20.00% 20.00%

Original Surface		Re-spud Location	:
Location:			
Latitude	64° 10' 10.99" N	Latitude	64° 10' 11.91" N
Longitude	04° 21' 36.92" E	Longitude	04° 21' 36.65" E
Grid	7 116 809.30 mN	Grid	7 116 837.60 mN
	566 128.70 mE		566 124.40 mE
TD Location:			
Latitude	64° 10' 12.401" N		
Longitude	04° 21' 35.455" E		
Grid	7 116 852.57 mN		
	566 108.00 mE		
Projection:	UTM 31N; Common	Meridian 03° E	
Spheroid:	ED 50, 1924 Internati	onal Spheroid	
Seismic Location:	Inline: 3063, Trace 41	84 (Survey RHD99 3D))
Offset from Nearest	Norsk Hydro well	Norsk Hydro well	Norsk Hydro well
Wells	6305/1-1:	6305/5-1:	6305/8-1:
	62.0 kms South-east	85.0 kms South-east	92.8 kms South-east
Drilling Rig:	Scarabeo 5	Rig Type:	Dynamically Positioned
			Semi-submersible
RTE:	25 mAMSL	Total Depth:	3650.0 mBRT
Depth Datum:	RT	Loggers Depth:	3637.5 mBRT
Water Depth:	1495 m	Max Inclination:	Vertical
Rig on Contract:	14 th November 2001	Spud Date:	1 st December 2001
Re-Spud Date:	6 th December 2001		_
TD Date:	20 th February 2002	Rig Released:	10 th March 2002
Report Number:	W28.	Author:	Hanley, Neil

Figure 1.1: Location Map

1.2 STRATIGRAPHY

1.2.1 Summary

Chrono/Lithostratigraphy**		Tops			
	-	Depth mBRT	Depth mTVDBRT	Depth mTVDSS	TVT m
	Seabed	1520.0	1520.0	1495.0	
Recent	Storegga 2 and 1	1520.0	1520.0	1495.0	54.0
Late Pliocene – Recent	Nordland Group				
	Naust 'R' P. Slide 2	1574.0	1574.0	1549.0	83.0
	Naust 'R' Upper Flow	1657.0	1657.0	1632.0	25.0
	Naust 'R' Lower Flow	1682.0	1682.0	1657.0	52.0
	Naust 'S'	1734.0	1734.0	1709.0	107.0
	Naust 'U'	1841.0	1841.0	1816.0	90.5
	Naust 'W'	1931.5	1931.5	1906.5	291.1
Early Eocene – Late Oligocene	Hordaland Group				
	Brygge 'A'	2222.9	2222.6	2197.6	86.0
	Brygge 'C'	2308.8	2308.6	2283.6	217.5
Early Palaeocene – Earliest Eocene	Rogaland Group				
	Tare Fm	2525.9	2526.1	2501.1	73.6
	Tang Fm	2600.0	2599.7	2574.7	148.0
Late Santonian - Maastrichtian	Shetland Group				
	Springar Fm	2748.0	2747.7	2722.7	458.0
	Nise Fm	3206.0	3205.7	3180.7	>444.0

* **NOTE:** Nordland Group picks were made in the pilot hole that was drilled 28.6m from the main wellbore and have not been depth shifted to the wireline that was acquired in the respudded hole.

****NOTE:** Chronostratigraphic age interpretation is based on preliminary biostratigraphy

Marker Horizon	Pre-drill Forecast			Actual		
	Depth	Seismic	Error Bar	Depth	VSP	Error
		TWT			TWT	
	mTVDSS	msec	m	mTVDSS	msec	m
Seabed	1495	2028	± 7.5	1495.0		0
Storegga 2 and 1	1495	2028		1495.0		
Nordland Group	1558	2091		1549.0		-9
Naust 'R' P. Slide 2	1558	2091		1549.0		-9
Naust 'R' Upper Flow	1659	2192		1632.0		-27
Naust 'R' Lower Flow	1686	2219		1657.0		-29
Naust 'S'	1747	2281		1709.0		-38
Naust 'U'	1867	2401		1816.0		-51
Naust/Kai						
Base Pliocene	1931	2484	± 30	1907.0		-24
Hordaland Group	2210	2748	± 40	2197.6	2717.6	-12.4
Brygge Fm	2210	2748	± 40			
Rogaland Group	2520	3096	± 50	2501.1	3065.8	-18.9
Top T50 (?Tare)	2520	3096	± 50	2501.1		-18.9
Base T50	2545	3120	± 50			
Top T40b	2605	3184	± 60			
Top T10	2710	-	± 70			
Shetland Group	2731	3316	± 70	2722.7	3272.8	-8.3
Top K90 (Springar Fm)	2731	3316	± 70	2722.7		-8.3
Intra K90 Temp 3	2835	3420	± 80			
Intra K90	2970	3544	± 100			
Top K80 (Nise Fm)	3260	3772	± 120	3180.7		-79.3
Base K80?	3380	3912	± 150			
Тор К76	3720	4072	± 200	NP		
Base K76?	3805	4180	+200	NP		
Top K74	N/A			NP		
				- • -		
Cromer Knoll Group	4360	4440	± 250	NP		
Тор К72	4360	4440	± 250	NP		
Base K72	4610	4740	+250	NP		

1.2.2 Forecast v Actual

Note: NP = Not penetrated

1.3 CASING

1.3.1 Summary

Casing Size	Section TD mBRT	Casing Depth mBRT	Test Depth mBRT	Lithology	Formation	Comments
36 x 30"	1628.0	1622.0	-	Mudstone	Naust Fm Nordland Gp	Surface conductor. No LOT
20"	2175.0	2171.0	2179.0	Mudstone	Naust Fm Nordland Gp	LOT: 1.37sg EMW Tested with 1.11sg mud and 812psi applied surface pressure.
13 3/8"	2449.0	2443.6	2452.0	Mudstone	Brygge Fm Hordaland Gp	LOT: 1.38 sg EMW Tested with 1.25sg mud and 295psi applied surface pressure.
9 5/8" Liner	2730.0	2729.0	2732.0	Mudstone	Tang Fm Rogaland Gp	LOT: 1.47sg EMW. Tested with 1.33sg mud and 540 psi applied surface pressure.

MINILOG

1.4 COMPARISION DRILLERS AND LOGGERS DEPTHS

1.4.1 Summary

Casing	Driller's Depth mBRT	Logger's depth mBRT
30" Conductor	1622.0	Not recorded
20" Casing	2171.4	Not recorded
13 3/8" Casing	2443.6	2440.0
9 5/8" Liner	2729.0	2729.0
TD	3650.0	3637.5

1.5 TEMPERATURE DATA

1.5.1 Summary Plot

Figure 3: Temperature Plot

(1520.0 – 1574.0 mBRT)

2 GEOLOGY

2.1 RECENT

2.1.1 Storegga 2	and 1	(1520.0 –1574.0 mBRT)		
Тор	1520.0 mBRT			
Age	Recent			
Upper boundary pick	Seabed			
Lithology and shows	Returns to seabed.			
	From drilling characteristics and logging response this section is composed of interbedded sands and mudstones.	interpreted to be		
Logging character	LWD gamma and resistivity data was collected in the 12 ¹ / ₄ " pilot hole to aid sha gas detection and in selecting a competent lithology for setting 20" casing.			
	LWD gamma ranged between 60 and 80 API, average 71 API. LWD resistivity between 1.5 and 2.0 ohm.ms, average 1.8 ohm.	ms.		
Drilling characteristics	12 ¹ / ₄ " pilot hole had variable rates of penetration, but averaged	30m/hr.		
	While opening to 36" the hole appeared tight between 1554 mB this may be associated with pebbles/cobbles deposited during the event.	RT and 1557 mBRT, e Storegga Slide		
	After opening the hole to 36" a subsea marker buoy was inadver the hole requiring the well to be re-spud.	tently dropped down		
	A 42 x 36" assembly with 17 ½" pilot bit was used to re-spud th drilled to 1628 mBRT with an average ROP of 20m/hr.	e well. The hole was		
	Drilling fluid; seawater with hi-vis sweeps.			

2.2 NORDLAND GROUP

(1574.0 – 2222.9 mBRT)

2.2.1	Naust Forma	ation	(1574.0 – 2222.9 mBRT)		
Тор		1574.0 mBRT			
Age		Late Pliocene to Recent*			
Upper bounda	ry pick	Increase in resistivity corresponding to pick on seismic.			
Lithology and	shows	The Naust Formation was penetrated in the pilot hole. This was drilled riserles cuttings being circulated to seabed.			
		In the 26" section of the re-spud hole, cuttings were collected by headspace analysis and biostratigraphy.	y the ROV for		
		After installing the 20" casing, cuttings were circulated to surface while 17" hole was being drilled. The basal Naust is composed sequence with occasional traces of sandstone and lithic gravel fit	ce from 2180 mBRT of a grey mudstone ragments.		
		From drilling characteristics and logging response in the pilot h interpreted to be composed primarily of mudstones with occasio	ole this section is onal sand lenses.		
Logging chara	acter	LWD logs were acquired in the 12 ¹ /4" pilot hole.			
		LWD gamma varies between 60 and 100 API, averaging 81 AP LWD resistivity varies between 1.0 and 2.7 ohm.ms, with an av	I. erage of 1.9 ohm.ms		
Drilling chara	cteristics	Average rate of penetration in the pilot hole was 30 m/hr.			
		Average ROP in the 26" hole was 40 m/hr. Occasional hard str between 1897 mBRT and 1925 mBRT.	eaks were encountered		
		Drilling fluid; seawater with hi-vis sweeps.			

* Chronostratigraphic age interpretations are based on preliminary biostratigraphy

		NOI	ICE	PROGNOSIS					ACTUAL		CTUAL	
DEPTH (mBRT)	GROUP	FORMAT	SEQUEN	LITHOLOGY	CASING	GROUP	FORMAT	SEQUEN	LITHOLOGY	CASING	DEPTH (mBRT)	
— 500											500 —	
— 1000											1000 —	
— 1500	07	1520.0m			30" conductor @ 1624 mBRT		1520.0m STOREGGA			30" conductor@ 1622.0 mBRT	1500 —	
— 2000	NORDLAN	KAI? / NAUS	F,		Maximum depth for setting 20° casing 2195 mBRT	NORDLAN	VAUST 0		Returns to seabed	20" casing @ 1970.3 mBRT LOT: 1.37sg	2000 —	
— 2500	ROG, HORDAL.	2235.0m U U U U U U U U U U U U U			13 3/8" casing 2465 mBRT	ROG. HORDAL.	U 0 2525.9m TARE TANG	T98 - T60 T50	?002E V V V V V	13 3/8" casing @ 2443.6 mBRT LOT: 1.38sg 9 5/8" liner @ 2729 mBRT LOT: 1.47sg	2500 —	
— 3000	۵ z	2756.0m 2756.0m 2756.0m	К90	÷¢-		LAND	2748.0m 3206.0m	K90			3000 —	
— 3500	ETLA	3285.0m	K80	÷¢	9 5/8" Liner @ 3525 mBRT	SHET	NISE	K80 K80-K76		Total Donth:	3500 —	
— 4000	н S	KVITNOS	3745.0m K76 K74							3650.0 mBRT (driller) 3637.5 mBRT (logger)	4000 —	
— 4500	CROMER KNOLL	4385.0m 9NISAJ NBAJ	K72	- Ċ .							4500 —	
DEPTH (mBRT)	GROUP	FORMATION	SEQUENCE	LITHOLOGY	CASING	GROUP	FORMATION	SEQUENCE	LITHOLOGY	CASING	DEPTH (mBRT)	

NRH 06/04/2002

Figure 4: Prognosed versus Actual.

2.3 HORDALAND GROUP

(2222.9 – 2525.9 mBRT)

2.3.1	Brygge Form	nation	(2222.9 – 2525.9 mBRT)
Тор		2222.9 mBRT	
Age		Early Eocene to Late Oligocene	
Upper bounda	ary pick	Decrease in resistivity from 2.0 to 1.0 ohm.ms, slight decrease 150 to 135 API. Wireline gamma decreases from approximate API.	in LWD gamma from ly 45 API to below 40
Lithology and	l shows	The Brygge Formation comprises a thick sequence of mudstone limestone stringers. Some of the mudstones are low density oo subdivisions of the Brygge Formation are recognised in the well Brygge 'C'.	es with very rare ze sediments. Two ll: Brygge 'A' and
		The mudstones are grey brown becoming green grey on penetra at 2309 mBRT. In general they are soft to moderately firm, loc traces of glauconite and pyrite.	ation of the Brygge 'C' cally micaceous with
		The limestones are white to off white, crypto- to microcrystalling	ne in texture.
Logging chara	acter	Wireline gamma averages 40 API through the Brygge 'A', with averaging 140 API. Some variation is noted in the LWD gamm relatively characterless at 0.9 ohm.ms. Toward the base of the gamma increases to over 45 API, with LWD gamma being over	a LWD gamma na. Resistivity is Brygge 'A' wireline r 150 API.
		From 2309 mBRT both gamma and resistivty measurements de falls to approximately 0.7 ohm.ms, with wireline gamma average gamma at 130 API.	crease. Resistivty ging 35 API and LWD
		A 13 3/8" casing was set in the middle of the Brygge 'C', and t affects each of the logs accordingly. Wireline gamma increases API, with LWD gamma decreasing to 80 API.	he change in hole size s to approximately 50
Drilling chara	acteristics	Due to the rig experiencing between $3 - 6m$ of heave, it proved drilling parameters in the 17" hole section. Consequently, the rvaried from $10 - 60$ m/hr.	difficult to optimise rate of penetration
		The 13 3/8" casing was set 102m above prognosed T50 reserved was control drilled at 15 m/hr to enable picking of the core point Acquisition Plan.	bir and the 12 ¹ /4" hole nt as per the Data
		From top Brygge to 13 3/8" casing, drilled gas averaged 1.5% was composed of C_1 and C_2 . On drilling out of the casing the r 1.25sg Aquadrill mud. Drilled gas was suppressed to 0.3% and and C_2 .	with 1.11sg mud and nud was change to I was composed of C ₁

2.4 ROGALAND GROUP

(2525.9 - 2748.0 mBRT)

2.4.1 Tare	Formation	(2525.9 – 2600.0 mBRT)
Тор	2525.9 mBRT	
Age	'Earliest' Eocene	
Upper boundary pi	The Tare Formation is picked at a decrease is to a high gamma reading at the base of the H mudstone to tuffaceous mudstone.	n interval transit time which corresponds ordaland Group. Lithology changes from
Lithology and show	The Tare Formation consists of mudstones w Minor limestone stringers and rare loose qua	which are tuffaceous in the upper part. rtz grains are recognized.
	The mudstones are predominantly medium g disseminated pyrite.	rey to grey brown, slightly silty with fine
	In parts the mudstones are tuffaceous, the tuf with dark specks, it is gemerally crumbly wit	f is recognized as light to medium grey, h an ashy texture.
	The limestones are off white to light grey, fir slightly argillaceous with a mudstone texture	m subblocky, micro- to cryptocrystalline,
Logging character	Wireline gamma varies between 30 API and with occasional thin limestone stringers. LW and 75 API.	90 API with the lower values associated /D gamma is higher at between 60 API
	Resistivity averages less than 2.0 ohm.ms, we average neutron porosity values of 0.52 PU r	ith density averaging 2.32 g/cc and recorded.
	Average compressional sonic log values of 1 the Tare Formation having an average of 180 µsec/ft	40 μ sec/ft were recorded, the top 20m of) μ sec/ft. Shear sonic averages 375
	The classic 'bell-shaped' profile of the Tare Havsule location.	Formation logs is poorly developed at the
Drilling characteris	tics As per the Data Acquisition Plan, drilling wa facilitate core point selection.	as controlled to less than 20 m/hr to
	On penetration of the Tare Formation drilled peaking at 5.33% at 2543 mBRT. C_1 and C_2 from 2563 mBRT. Connection gas was obse in the Tare Formation. Maximum connection	gas increased from 0.3% to over 1.0% were present, with traces of C_3 recorded erved from each of the connections made n gas was 3.58% at 2560 mBRT.
	The Tare Formation was drilled with 1.26sg gas suggests that the well was close to balance	mud, however the presence of connection the throughout the Tare.

2.3.2 Tang	ormation (2600.0 – 2748.0 mBI	RT)
Тор	2600.0 mBRT	
Age	Early to Late Palaeocene	
Upper boundary pi	The Tang Formation is picked on an increase gamma ray below the Tare Formation which corresponds with a colour change in the mudstones from medium grey to brow grey.	/n
Lithology and show	A sequence of mudstones with limestone stringers and occasional tuff horizons.	
	The mudstones are predominantly brown grey, soft to firm, silty with finely disseminated pyrite throughout.	
	From 2655 mBRT the mudstones become light grey to occasionally light green grey, micromicaceous. with occasional nodular pyrite.	
	Thin stringers of white to off white cryptocrystalline limestones occur throughout.	
	Tuff horizons of up to 3m in thickness are recognised. These are light to medium grey, dark grey brown and mottled in appearance, occasionally purple to light purple with black specks.	
Logging character	The first 130m of the Tang Formation was drilled in 12 ¹ / ₄ " hole, with the final 18m i 8 ¹ / ₂ ". At the TD of the 12 ¹ / ₄ " section a Supercombo wireline log was run, however this tool could not reach bottom after hanging up at 2718.5 mBRT and therefore wireline data from the deeper part of the hole was lost.	n
	Wireline gamma averages 45 API with occasional 'hot' sections of up to 120 API recognised. LWD gamma displays a similar profile, but ranges between 60 API and 180 API. On drilling out of the casing at 2730 mBRT a hole shale was penetrated with wireline gamma values exceeding 125 API and LWD gamma of over 200 API.	
	Resistivity log decreases from 2.0 ohm.m to 1.0 ohm.m over the first 25m of the Tan Formation and gradually falls to 0.7 ohm.ms at the base of the formation.	g
	Density log averages 2.0 g/cc with a maximum of over 2.5g/cc associated with a limestone stringer at 2620 mBRT. Neutron log averages 0.5 PU and shows a slight increase over the bottom 18m.	
	Both compresional and shear sonic was recorded in the Tang Formation. Average compressional sonic log values of 140 µsec/ft were recorded, with average shear some being 440 µsec/ft.	ic
Drilling characteris	Rates of penetration were held to 20 m/hr to aid core point selection.	
	Average drilled gas was low at less than 0.7% with alkanes up to C_3 recorded. Sever connection gases of over 1% were observed. These suggested that pore pressure had been increasing through the Tang Formation and that the well was close to balance.	al
	Due to concerns over increasing pore pressure, mudweight was increased from 1.26s to 1.30sg at 2730 mBRT. A dummy connection was performed at 2730 mBRT with 1.30sg mud, this did not produce a connection gas peak. However, having insufficient kick tolerance to drill ahead, drilling was halted at this depth. A Supercombo wireling tool was rigged up and run in hole to acquire data over the 12 ¹ / ₄ " section and a 9 5/8 liner was run and cemented.	g nt ne

2.5 SHETLAND GROUP

(2748.0 - 3650.0 mBRT)

2.5.1 Springar F	ormation (2748.0 -3201.9 mBRT	")
Тор	2748.0 mBRT	
Age	Late Campanian to Late Maastrichtian	
Upper boundary pick	The Springar Formation is picked on the change in lithology from light – medium grey mudstones of the Tang Formation to dark grey silty mudstone which corresponds to a decrease in gamma, increase in resistivity and increase in density log values.	
Lithology and shows	The Springar Formation comprises a thick sequence on mudstones with thin limestone stringers throughout. The uppermost 50m consists of silty mudstone to argillaceous siltstone.	
	The silty mudstone is grey to dark grey, moderately firm with traces of glauconite and micropyrite and has a silty calcareous matrix.	
	From 2800 mBRT, the lithology becomes a grey to rarely grey brown homogenous mudstone. It is generally non to slightly calcareous, micromicaceous with traces of disseminated pyrite and carbonaceous specks.	
	Occasional off white to pale grey argillaceous limestone stringers were penetrated throughout.	
Logging character	The Springar Formation is distinguished by relatively characterless logging responses in the mudstones.	
	Wireline gamma is stable at 70 API with LWD gamma at approximately 100 API.	
	Resistivity averages 1.5 ohm.ms, with density and neutron porosity averaging 2.26 g/cc and 0.43 PU respectively.	
	Compressional sonic is 136 µsec/ft with shear sonic at 347 µsec/ft.	
	Variations in each of the logs is noted where limestone stringers are penetrated and where hole wash-outs, as indicated on the calliper log, are seen.	
Drilling characteristics	The Springar Formation was drilled in 8 ¹ / ₂ " hole. As per the Data Acquisition Plan, ROP was controlled to 20 m/hr to allow picking of the K90 core point. Once below the base of the K90 uncertainty, ROP's were allowed to increase.	
	From 2748 mBRT to 2775 mBRT, drilled gas was over 2.0%, with a peak of 8.2% at 2755 mBRT. Below 2775 mBRT drilled gas fell to approximately 1.0% and beneath 2975 mBRT were consistently below 1.0%. Alkanes upto iC_5 were recorded throughout this section. No connection gases were observed.	
	The interval was drilled with a mudweight of 1.33sg.	

2.4.2	Nise Format	tion (3206.0	3650.0 mBRT)		
Тор		3206.0 mBRT			
Age		Late Santonian to Late Campanian			
Upper bounda	ary pick	The Nise Formation is picked on the increase in gamma values associated change in lithology from mudstone to silty mudstone and argillaceous silt corresponds to a decrease in sonic and increase in density and resistivity l	with the stone. This og values.		
Lithology and	1 shows	The Nise Formation is predominantly composed of argillaceous siltstones with s mudstones, occasional limestone stringers and rare thin sandstone beds.			
		The top 100m comprises an interbedded sequence of grey to grey brown s mudstone and argillaceous siltstones which grades to argillaceous siltston sandstones from 3300 mBRT.	ilty e with rare		
		The argillaceous siltstones are medium dark grey, micromicaceous, with r micropyrite and glauconite nodules. In places thin stringers of very fine g sandstones occur. No shows were observed.	rare grained		
		Below 3500 mBRT the argillaceous content of the formation increases, th composed of silty mudstone.	e Nise being		
		This is light to medium grey, non calcareous with occasional glauconite. dark grey to dark olive grey silty mudstone is recognised.	In places a		
		Thin stringers of white to off white limestones are seen throughout the sec	luence		
Logging chara	racter	Logging response in the Nise Formation is relatively characterless, with the responses occurring where limestones were encountered.	ne main		
		Wireline gamma averages 65 API, with LWD gamma at 90 API. Both ga decrease to 30 and 60 API respectively on penetration of the limestone str	mma logs ringers.		
		Resistivity is constant at 2.5 ohm.ms, with the neutron porosity log average and density of 2.38 g/cc.	ging 0.32 PU		
		Average compressional sonic was 110 $\mu sec/ft,$ with a shear sonic of 234 μ	usec/ft.		
Drilling chara	acteristics	In order to facilitate picking core point at top K80 reservoir, rates of pene maintained at approximately 20 m/hr.	tration were		
		As the argillaceous content of the formation increased over the top 15m, of increased from 0.5% to 2.0%. By 3250 mBRT gas levels were below 1.0 continued so for the remainder of the drilling. Alkanes up to nC_5 were reactive throughout the Nise.	frilled gas % and corded		
		Due to weather, the bit was pulled at 3351 mBRT. On running back in he drilling, a trip gas of 11.9% was recorded. Below this depth connection g observed on every connection. Flow was reported on a connection at 349 the well was shut-in and mudweight was increased from 1.33sg to 1.35sg. continued with connection gases to 3650 mBRT where the well was TD'd drilled gas was 0.6%, with connection gases averaging 1.0%.	ble to resume as was 7 mBRT, Drilling I. Average		

3 PORE PRESSURE AND FRACTURE GRADIENT

The pore pressure in the Havsule well has been evaluated by both Knowledge Systems Inc. and by BP. These two evaluations are presented here as Interpretation 1 and Interpretation 2. The most significant differences in the two interpretations occur in the bottom 700m of the well. Due to the absence of drect measurements (eg MDT pressure points) it is not clear at present which interpretation is most realistic.

3.1 INTERPRETATION 1

3.1.1 Introduction

Realtime pore pressure evaluation was performed at the wellsite by Knowledge Systems Inc. For a detailed review see report 'Final Report - Realtime Geopressure Monitoring While Drilling - from DrillWorks/SERVICES', E. Doyle, 2002.

DxC Exponent, LWD, formation gases, drilling parameters and hole conditions were reviewed to provide information on formation pressure variations while drilling. Post well analysis has been carried out using wireline logs to refine the pore pressure estimation.

3.1.2 Nordland Group

A 12 ¹/₄" pilot hole was drilled from seabed to 2195 mBRT and a normal compaction trend was established using the DxC Exponent, LWD resistivity, ECD and torque. Hole conditions were good and no evidence for hole instability were observed.

A 42 x 36" hole opening assembly was used to re-spud the well 27m to the north-north west of the original location after a subsea marker buoy was accidentally dropped into the original pilot hole. A 26" assembly was used to drill from the 30" conductor shoe to 2175 mBRT using seawater with hi-vis sweeps. No signs of abnormal pore pressure were reported. After circulating the hole clean and pulling to 1870 mBRT bubbles were seen flowing from the wellhead. Drillpipe was run to bottom and the hole displaced to 1.20sg mud after which the hole was static. Analysis of the PWD log from the 12 ¼" pilot hole indicated that the equivalent circulating density of the drilling fluid was 1.07sg. Once the hole was circulated clean and displaced to seawater, gas from the formation was able to enter the wellbore and migrate to surface.

Towards the base of the Nordland Group pore pressure had risen to slightly above normal as evidenced by the shallow water flow at the base of the 26" hole.

3.1.3 Hordaland Group

The top of the Hordaland Group is corresponds to the base of the Naust Formation. A 20" casing was run and cemented and a leak-off value of 1.37sg was obtained.

On penetration of the Hordaland Group, there is a marked cut back in resistivity from 2 to 1 ohm.ms and drilled gas increases to over 1%. Resistivity and gas remain stable suggesting pore pressure was increasing slowly with depth, reaching 1.05sg at 2312 mBRT. Below this depth resistivity decreases and gas remains high indicating that pore pressure was rising more rapidly. By 2449 mBRT pore pressure had risen to 1.15sg and was 0.03sg above the pre-drill maximum anticipated pressure for this depth. Not having the required kick tolerance to drill ahead, the decision was made to run 13 3/8" casing.

After delays setting the 13 3/8" casing, mud weight was increased to 1.25sg and a leak-off value of 1.38sg was obtained. Pore pressure continued to increase and had risen to 1.22sg at the base of the Hordaland Group.

3.1.4 Rogaland Group

Evaluation of the available data indicates that pore pressure had increased to 1.25sg by 2600 mBRT and this level was maintained through the rest of the Rogaland Group.

Connection gases were seen suggesting that the pore pressure was close to balance. Mudweight was increased to 1.30sg and an open hole leak-off was attempted in an effort to improve the kick tolerance to allow drilling into the K90 reservoir target. A value of 1.38sg was again achieved, this gave a maximum allowable pore pressure at the top of the predicted K90 reservoir of 1.27sg. However, as the maximum predicted gas-case value at top K90 was 1.31sg, the decision was made to run 9 5/8" liner. The opportunity was taken to run a Supercombo logging tool to acquire data in the 12 ¼" open hole.

After setting and cementing the casing at leak-off test was performed to 1.47sg with 1.33sg mud. Drilling commenced and pore pressure remained at 1.25sg to the base of the Rogaland Group.

3.1.5 Shetland Group

On penetration of the Shetland Group drilled gas increased from 0.1% to over 2.0%. This corresponds to an increase in the argillaceous content and therefore effective porosity of the lithology and is not thought to be pressure related. Pore pressure remained stable at approximately 1.25sg.

Both DxC Exponent and resistivity logs suggested that pore pressure had increased to 1.28sg by 3200mBRT. The uppermost 250m of the Nise Formation consist of a series of silty mudstones and siltstones, with drilled gas upto 2.4%. However, from drilling parameters and LWD logs pore pressure was interpreted to have fallen to 1.24sg at 3330 mBRT.

The bit was pulled at 3351 mBRT and the rig waited on weather for several days. On running back to bottom a trip gas of 11.9% was recorded. Connection gases were observed on every connection below this depth and possible flow was reported from a connection 3497 mBRT. Pore pressure was interpreted to have increased to 1.29sg at 3500 mBRT, and continued to increase reaching 1.32sg at the well TD.

Figure 5: Formation Pressure Evaluation

3.2 INTERPRETATION 2

3.2.1 Introduction

A review of the drilling parameters used for pore pressure evaluation during drilling supports the wellsite interpretation. The offshore pore pressure evaluation was to a large degree based on the d'exponent and the gas recorded in drilling mud. However with our access to the sonic and density log an alternative evaluation is presented first using the PresGraf software. This suggests that the pore pressure gradient is decreasing from 10.4 ppg (1.25 sg) at 2730 m (as reported by Eamonn Doyle with KSI) to a bit less than 10 ppg (1.20 sg) at TD fig.6).

Presgraf/gyllenhammar wd=1495,ag=25,bht=ns,cec=1.,vcl=0.40,c=5200,p0=0.40,10k=0.68/141,havsule_pseudo_den.rho,of

Figure 6. PresGraf plot of the pore pressure gradient profile. The D45 curve is the pore pressure gradient calculated from the shale velocity using the PresGraf New compaction trend.

3.2.2 Discussion

The following review of the drilling parameters is with the emphasis on the last few hundred meters drilled, from 3000 meters to TD.

The d'exponent shows a gradual increase with depth down to 3500 meters. This increase is less than the normal trend chosen by Eamonn. He followed a standard procedure of shifting the trend for each bit run. These shifts should ideally be parallel shifts so that the slope is kept constant. Figure 7 show the d'exp for the whole well and one can see that the upper 700 meters follow a rather steep trend. Calculating the pore pressure using the Eaton equation with parallel trend lines illustrated as normal trend 2, 3 and 4 suggests a sharp increase in pore pressure gradient, then a drop back and then an increase again. To make a smother curve, the trend was shifted parallel as well as the slope was shifted. An alternative is shown here, the normal trend 1 being adopted from the Caspian Sea. The pore pressure calculated appears reasonable. Figure 7 shows that the general slow increase in pore pressure gradient from 3000 meters down to TD is not supported by the shale velocity and not by the d'exp with the alternative normal trend. But the d'exp does show a decreasing trend from 3500 meters to TD. This is not supported by the sonic log. The gas data are inconclusive. From 2900 meters down to TD the background gas drops from 1% to 0.7% (fig. 9a and b). The gas picks on figure 9b are all but one less than 2%.

Havsule

Figure 7. The d'exponent with four normal trend lines.

Figure 8. From left to right, d'exponent, d'exp normal trend, torque, dt normal trend and the shale sonic velocity.

Figure 9a and b. The total gas to the left and the recorded gas picks as red diamonds.

As the d'exponent appears to be the only pore pressure indicator supporting a potential increase in the pore pressure gradient from 3500 meters to TD one may look for alternative explanations to increased drilling performance.

4 FORMATION EVALUATION

4.1 LWD LOGGING

4.1.1 Summary

Bit	LWD	LWD Tool	Hole	Drilled interval		Remarks
Run	Run No	String	Size	mBDT	mBDT	
1	1	GR/CDR	12 ¼" Pilot Hole	1495.0	2195.0	Realtime and memory GR/CDR data was collected in the pilot hole for pore pressure monitoring, shallow gas evaluation and casing point selection. Both realtime and memory data were of good quality and no tool failures were experienced.
2	-		42 x 36"	1495.0	1629.5	Hole opening assembly. LWD not required in this hole section. Spud marker dropped in hole.
3	-		42 x 36"	1495.0	1628.0	Respud. LWD not required in this hole section.
4	2	MWD	26"	1628.0	2175.0	MWD only. LWD not required in this hole section.
5	3	GR/CDR	17"	2171.0	2449.0	Realtime GR/CDR was recorded in the 17" hole section. Data quality was good and no tool failures were experienced.
6	-		17"	-	-	Wiper/check trip
7	-		12 1/4"	-	-	13 3/8" wellhead clean out run
8	-		-	-	-	Lead impression tool.
9	4	GVR8/GR/CDR	12 1/4"	2449.0	2730.0	There was a critical requirement to have working resistivity and gamma tools to identify top reservoir. GRV8 (resistivity-at-bit) was run to allow early evaluation of the top reservoir to facilitate the coring decision. Rate of penetration was held to below 20 m/hr to enable the collection of good realtime data while drilling. The shallow, T50, target was absent at the well location and drilling continued toward the deeper, K90, level. At 2370 mBRT, drilling was halted due to concerns over increasing pore pressure.
Bit	LWD	Tool String	Hole	Drilled	interval	Remarks

Run	Run		Size			
No.	No.		ins	mBRT	mBRT	
						Both realtime and memory data were of good quality, no tool failures were experienced.
10	-		12 ¼"	-	-	Wiper/check trip
11	-		12 1/4"	-	-	BOP test tool
12	-		12 1/4"	-	-	Wiper/check trip
13	5	ARC-5 / GR	8 1/2"	2730.0	3650.0	There was a critical requirement for a working LWD tool to identify top K90 and K80 reservoirs in the 8 ¹ / ₂ " hole. Realtime gamma readings were approximately twice as high as the anticipated levels and, as a precaution, the interval 2732 – 2748mBRT was re-logged to confirm that the tool was operating correctly. The re-logged interval confirmed that general trends were adequate for decision-making. No reservoir sands were penetrated in the 8 ¹ / ₂ " hole and the tool was pulled at section TD at 3650mBRT. Memory data was downloaded, gamma ray memory values conformed to those expected in this section. On investigation, an error in configuring the tool was found to be the cause of the high gamma values.

4.2 WIRELINE LOGGING

4.2.1 Summary

Run	Date	Tool String	Hole	Logged interval		Max	Time	Opr time	Lost time	Remarks
No.			Size			Тетр	since circ.			
			ins	mBRT	mBRT	°C	(hrs:min)	(hrs:min)	(hrs:min)	
1A1	01/02/02	Pex / HRLA / EMS / DSI / SP	12 ¼"	2718.5	2440.0	36	17:20	14:30	0:00	Last circulation on bottom 31/01/02 @ 20:40
										hrs.
										Tool hung-up at 2718.5 mBRT, unable to reach
										hole TD of 2730 mBRT due to limestone ledge.
										GR to surface (1449mBRT) DSI to 2071mBRT
2A1	21/02/02	VSP/GR	8 ½"	3645.0	1700.0	80	20:20	17:40	0:00	Last circulation on bottom 20/02/02 @ 08:00
										hrs. Shear pin on compensator line failed.
										Computer and telemetry problems encountered.
2B1	21/02/02	Pex / NGS / HRLA / DSI / SP / EMS	8 ½"	3640.5	2649.8	86	37:30	10:00	0:00	SP failed - no SP data acquired. Wireline TD
										at 3637.5mMD.
2C1	22/02/02	MSCT / GR	8 ¹ /2"	3593.0	2739.5	87	48:30	11:25	0:00	Cut 27, recovered 26.

4.3 SIDEWALL CORES

4.3.1 Summary

Well Num	ber:	6404/11-1	Date:	22-02-2002							
Logging V	Vitness:	Ian Clement / Alex McNab			Q 1/2?						
Logged In	terval:	2739.5 – 3593.2 m	Hole size:	8 ¹ /2	2"						
Attempted		27									
Plug	Plug	Lithology		T	Shows						
(mMD)	(cm)			r	r	G	1	r	r	G	
(IIIIVID) 3593.2	4 5	Dark grey MUDSTONE firm	n to moderately hard								
3373.2	1.5	occasional glauconite nodules	. silty in part.								
		micromicaceous, locally gradi	ing to silty mudstone,								
		interbedded with light grey SI	LTSTONE to very fine								
		SANDSTONE flasers and fla	res on a mm scale, dominately								
		colourless clear quartz, sub an	igular to angular, well sorted,								
		sub spherical, rare smokey qu	artz, occasional glauconite								
		nodules, possible white to light	nt brown feldspar, argillaceous								
		matrix in part, wen cemented,	no visible porosity.								
3577.4	4.75	Dark grey MUDSTONE with	rare lenses and flares of grey								
		brown SILTSTONE, firm to	moderately hard, occasional								
		glauconite, no visible porosity	7.								
3558.5	4.8	Dark grey MUDSTONE, don	ninantly homogenous with								
		very rare microlaminations of	moderate grey to grey brown								
		argillaceous SILTSTONE fir	m to moderately hard, rare								
		micromica.									
3487.8	4.8	Dominantly medium grey brow	wn sandy SILTSTONE with								
		rare dark grey argillaceous fla	res and lenses of dark grey								
		MUDSTONE.									
		SU TSTONE moderately gra	y brown grading to very fine								
		sandstone predominately silty	to very fine quartz grains sub								
		angular to sub spherical, well	sorted, glauconite,								
		micromicaceous, well cemente	ed in part, no visible porosity.								
3462.6	4.7	Predominately dark grey MU	DSTONE with discontinuous								
		moderately hard SILTSTON	n to medium grey, firm to								
		grey quartz SANDSTONE fi	rm to moderately hard								
		cemented, silty, micromicaced	bus, locally abundant								
		glauconite, no visible porosity	7.								
3449.5	5.0	Medium grey SILTSTONE fi	irm to moderately hard, well								
		moderately well sorted sub ar	regular to dominantly angular								
		sub spherical, micromicaceou	s, glauconitic, with dark grev								
		MUDSTONE laminations and									
			- •								

Well Number:		6404/11-1	Date:	22-02-2002							
Logging V	Vitness:	Ian Clement / Alex McNab									
Logged In	terval:	2739.5 – 3593.2 m	Hole size:	8 ¹ /	2"						
Attempted	d:	27	Recovered	26							
Plug	Plug	Lithology a	and Shows		Ø	1		Sho	OWS		
Depth	Length			Р	F	G	Т	Р	F	G	
(mMD)	(cm)										
3442.5	5.0	Medium grey to off white SAN	NDSTONE dominantly very	Х							
		fine quartz with rare fine grain	s, sub angular to angular, sub								
		spherical, dominantly well sort	ted, locally moderately								
		sorted, firm to moderately hard	a, cemented, locally abundant								
		pope to very poor visible pore	sity rare discontinuous lansas								
		of dark gray MUDSTONE	sity, fare discontinuous fenses								
3425.7	3.4	Medium grey to off white SAN	NDSTONE dominantly very								
5425.7	5.4	fine quartz with rare fine grain	s sub angular to angular sub								
		spherical, dominantly well sort	ted. locally moderately								
		sorted, firm to moderately hard	1. cemented. locally abundant								
		glauconite, micromicaceous in	part with rare dark mica,								
		grades to SILTSTONE in par	t, no visible porosity, rare								
		discontinuous lenses of dark g	rey MUDSTONE.								
3407.4	4.8	Dark grey MUDSTONE inter	bedded with medium grey to								
		grey brown SILTSTONE as d	liscontinous lenses and flares.								
		SILTSTONE grading to very	fine SANDSTONE in part,								
		sub angular, sub spherical, we	ll sorted, moderately well								
		cemented quartz grains, no vis	ible porosity.								
3379.1	4.7	Medium grev to grev brown S.	ANDSTONE to	X			Х				
		SILTSTONE silty to very find	e quartz, sub angular to								
		angular, sub spherical, well so	rted, micromicaceous,								
		glauconite, moderately well ce	emented, rare areas of poor								
		visible porosity.									
		Discontinuous lenses and lami	nations of dark grey								
		MUDSTONE.									
		T									
2220.0	4.0	I face of gas bubbles on core s	urrace.								
5529.0	4.9	Dominantiy dark grey, firm to	langes of group brown								
		SILTSTONE grading to very	fine SANDSTONE medium								
		grey in part, predominately sil	ty to very fine quartz sub								
		angular sub spherical modera	telv well sorted abundant								
		glauconite, micromicaceous, d	ark mica, well cemented.								
		argillaceous matrix in part, no	visible porosity.								
3296.1	4.8	Dominantly grey brown to me	dium grey SILTSTONE								
		grading to very fine SANDST	ONE, abundant argillaceous								
		matrix, no visible porosity with	h lenses and flares of dark								
		grey MUDSTONE.									
				1							

Well Number:	6404/11-1	Date:	22-02-2002

Logging V	Vitness:	Ian Clement / Alex McNab									
Logged In	nterval:	2739.5 – 3593.2 m	8 ¹ /2"								
Attempted	d:	27	26	26							
Plug	Plug	Lithology and S	Shows		Ø			Sho	ws		
Depth	Length			Р	F	G	Т	Р	F	G	
(mMD)	(cm)										
3284.8	4.8	Interlaminated medium grey to grey grading to very fine SANDSTONE MUDSTONE , no visible porosity.	y brown SILTSTONE 2 with flares of dark grey								
3277.5	3.7	Interlaminated dark grey MUDSTO to grey brown SILTSTONE gradin SANDSTONE , firm to moderately quartz, sub angular, sub spherical, y glauconite, micromicaceous, abund no visible porosity.	DNE with medium grey ng to very fine hard, very fine to silty well cemented, ant argillaceous matrix,								
3252.0	4.8	Dominantly medium grey to grey b grading to very fine SANDSTONE of dark grey firm to moderately har SILTSTONE grading to very fine S grey to grey brown, silty to very fin angular, sub spherical, well to mod glauconite, micromicaceous in part cemented, rare poor to no visible p	X								
3241.3	5.0	Grey brown SILTSTONE , microm glauconite nodules, rare very fine q to angular, sub spherical, moderate argillaceous matrix, interlamination MUDSTONE .	icaceous, locally uartz grains, sub angular ly well sorted, as of dark grey silty								
3238.1	4.8	Grey brown to medium dark grey S with lenses of dark grey MUDSTO hard, abundant mica, rare glauconit quartz grains.	ILTY MUDSTONE NE , firm to moderately e nodule, very rare silty								
3208.7	3.3	Dark grey to grey black MUDSTO to moderately hard, slightly fissile, grading to SHALE .									
3205.9		LOST									
Well Num	ber:	6404/11-1 Dat	e:	22-	02-2	002			·		
Logging V	Vitness:	Ian Clement / Alex McNab									
Logged In	terval:	2739.5 – 3593.2 m Hol	e size:	8 ¹ /	2"						

GEOLOGICAL	COMPLETION	REPORT 6404/11-1
------------	------------	-------------------------

Attempted	l:	27 Recovered	26								
Plug	Plug	Lithology and Shows		Ø			Sho	ws			
Depth	Length		Р	F	G	Т	Р	F	G		
(mMD)	(cm)										
3313.9	4.8	Dark grey to greyish black MUDSTONE, firm to									
		moderately hard, micromicaceous, with rare micro									
		laminations of light to medium grey argillaceous									
		SILTSTONE.									
2282.6	15	Light to modium grow SU TSTONE firm to moderately									
5265.0	4.5	hard micromicsecous argillacous yory fine quartz grains									
		with thin dark grey to gravish black MUDSTONE									
		laminations									
3051.0	4.5	Dark grey to grey black MUDSTONE , firm to moderately									
		hard, homogenous, micromicaceous, rare silty quartz									
		grains.									
2075 5	4.0										
2975.5	4.8	Dark grey to grey black MUDSTONE , firm to moderately									
		arains									
2826.7	4.7	Dark grey to grey black MUDSTONE, soft to firm,									
		micromicaceous, mm glauconite nodules, rare silty quartz									
		grains.									
2776 5	47	Madium to dort arou brown grouish groop MUDSTONE									
2770.5	4./	firm fissile micromicaceous locally abundant pyrite									
		In the interonneaccous, locally abundant pyric.									
2745.8	5.0	Medium to dark grey brown, grey green MUDSTONE,									
		homogenous, firm, fissile, micromicaceous.									
2720.5	15	Dark grow to growish block MUDSTONE have seen									
2739.5	4.5	firm micromicacoous rare silty quartz grains									
		initi, incroniteaceous, fare sitty quartz grains.									

4.4 VSP & CHECKSHOT

4.4.1 Summary

DEPTH	T/TIME	SHOT	FIX	TIME	STACK	FILE	REMARKS
619				02.11		26	Tool evaluation Test
019				02.11		20	1001 evaluation Test
2500	1525.9	59.61	57.61	03:05	1	28	PIH Checkshot
2510	1520.0	39-01	57-01	03.05	1	20	KIII Checkshot
2310	1320.9						
2640	2027.2	64 72	62 72	04.24	2	20	Main VSD
3620	2027.5	04-75	02-75	04.54	2	20	
3630	2023.3	74.80	74.80	04.44	2	20	
3610	2019.7	/4-80	/4-00	04.44	5	20	
3600	2010.1	95 01	<u> </u>	04.56	4	20	
3500	2021.2	0.3-91	01-91	04.30	4	20	
2580	2008.5	04 102	02 102	05.07	5	20	
3570	2004.0	94-105	92-105	03.07	5	20	
3570	2000.9	104 111	104 111	05.15	6	20	
3550	1997.3	104-111	104-111	05.15	0	20	
2540	1995.8	112 121	112 121	05.25	7	20	
2520	1969.9	115-121	112-121	03.23	/	20	
2520	1980.5	122 120	122 120	05.22	0	20	
3520	1985.5	122-129	122-129	05:55	0	28	
2500	1979.0	121 125	120 125	05.40	0	20	
3500	1975.4	131-135	130-135	05:40	9	28	
3490	19/1.9	127 141	126 141	05.47	10	20	
3480	1968.6	13/-141	136-141	05:47	10	28	
3470	1965.1	142 150	142 150	05.55	11	20	
3460	1961.7	142-150	142-150	05:55	11	28	
3450	1958.1	150 156	150 156	06.00	10	20	
3440	1954.1	152-156	152-156	06:02	12	28	
3430	1950.5	157 161	157 1 (1	06.00	10	20	
3420	1946.9	15/-161	157-161	06:08	13	28	
3410	1943.8	1 (2) 1 (7)	160 167	0614	14	20	
3400	1939.3	163-167	162-167	06:14	14	28	
3390	1935.8	1 (0, 17)	1 (0, 17)	06.04	1.5	20	
3380	1932.4	168-176	168-176	06:24	15	28	
3370	1928.6	171 175	171 175	06.40	1.5	22	computer crash, reboot
3360	1924.8	1/1-1/5	1/1-1/5	06:40	15	33	shot numbers??/stack no 15 again??
3350	1921.4	100 105	176 106	06.51	1.6	22	
3340	1916.9	180-185	176-186	06:51	16	33	
3330	1913.3	107 101	107 101	06.50	17	22	
3320	1909.1	187-191	187-191	06:58	17	33	
3310	1905.3	102 107	102 107	07.05	10	22	
3300	1901.6	193-197	192-197	07:05	18	33	
3290	1897.6	100.000	100.000	07.11	10	22	
3280	1893.8	198-202	198-202	07:11	19	33	
3270	1889.9	202.205	202.205	07.10			
3260	1885.5	203-207	203-207	07:18	20	33	
3250	1881.5	000.010	000 010	07.2			
3240	1877.3	208-212	208-212	07:24	21	33	
3230	1873.1	016 005	014 004	07.21			
3220	1868.8	216-221	214-221	07:31	22	33	
3210	1864.8			o -			
3200	1860.4	222-226	222-226	07:37	23	33	

DEPTH	T/TIME	SHOT	FIX	TIME	STACK	FILE	REMARKS
2100	1956 0						
2190	1850.2	220 224	227 224	07.45	24	22	
2170	1032.1	250-254	227-234	07:43	24		
3170	1047.7	235 241	225 241	07.52	25	22	
3150	1838.8	255-241	233-241	07.52	23	- 55	
3140	1834.0	242 247	242 247	07.58	26	33	
3130	1830.5	242-247	242-247	07.58	20	55	
3120	1825.7	248-252	248-252	08.04	27	33	
3110	1821.3	210 232	210 252	00.01	27	55	
3100	1817.2	253-257	253-257	08.10	28	33	
3090	1812.9	200 201	200 201	00.10	20		
3080	1808.2	263-267	258-267	08:18	29	33	
3070	1804.3	200 201	200 207	00110	_>		
3060	1799.8	268-272	268-272	08:24	30	33	
3050	1795.3						
3040	1790.3	274-278	273-278	08:35	31	33	
3030	1785.8						
3020	1780.2	286-293	279-293	08:47	32	33	Poor coupling
3010	1776.2						
3000	1771.7	297-301	294-301	08:55	33	33	
2990	1767.1						
2980	1762.2	302-306	302-306	09:02	34	33	
2970	1757.6						
2960	1753.6	307-314	307-314	09:12	35	33	
2950	1748.8						
2940	1744.0	317-321	317-321	09:21	36	33	
2930	1739.3						
2920	1735.1	322-327	323-327	09:31	37	33	
2910	1730.5						
2900	1725.9	328-334	330-334	09:41	38	33	
2890	1721.3						
2880	1715.4	335-340	336-340	09:49	39	33	
2870	1710.9						
2860	1706.4	341-347	341-347	09:58	40	33	
2850	1701.5						
2840	1696.2	348-357	352-357	10:13	41	33	
2830	1692.0						
2820	1686.9	358-363	359-363	10:26	42	36	Telemetry errors
2810	1682.0			10.00	10		
2800	1677.1	364-369	365-369	10:33	43	36	
2790	1672.2	270 274	270 274	10.40		26	
2780	1667.6	370-374	370-374	10:40	44	36	
2770	1662.9	200.204	275 204	10.40	45	26	
2760	1057.5	580-584	513-384	10:48	45	36	
2750	1652.6	296 200	201 200	10.57	10	26	
2720	1040.8	300-390	301-390	10:57	40	30	
2730	1042.1	202 207	202 207	11.26	17	20	Computer crash, re beet
2720	1621.2	373-37/	372-371	11:50	4/	50	Computer crash, re-boot
2710	1625.8	398,402	308, 102	11.43	/18	38	
2690	1620.5	550-402	390-402	11.43	+0		
2680	1615 5	403-408	404-408	11.51	49	38	
2670	1610.4	+03-+00	+0+-+00	11.21	77		
2660	1605.1	409-416	410-416	11.59	50	38	
2000	1000.1		.10 110		20		

DEPTH	T/TIME	SHOT	FIX	TIME	STACK	FILE	REMARKS
2650	1600.0						
2640	1595.2	417-421	417-421	12:14	51	38	
2630	1590.2				-		
2620	1586.0	422-426	422-426	12:22	52	38	
2610	1581.4						
2600	1577.0	427-431	427-431	12:28	53	38	
2590	1572.5						
2580	1568.0	433-437	432-437	12:35	54	38	
2570	1563.3						
2560	1558.4	438-442	438-442	12:40	55	38	
2550	1553.4						
2540	1549.3	443-447	443-447	12:46	56	38	
2530	1542.9						
2520	1535.2	448-452	448-452	12:51	57	38	
2510	1529.5						
2500	1523.9	453-457	453-457	12:57	58	38	
2490	1518.5						
2480	1512.4	458-462	458-462	13:03	59	38	
2470	1506.7						
2460	1502.3	463-467	463-467	13:09	60	38	
2450	1496.5						
2440	1489.4	468-472	468-472	13:15	61	38	
2430	1483.7			10110	01		
2420	1476.9	473-477	473-477	13:21	62	38	
2410	1471.4			10.21			
2400	1466.8	478-482	478-482	13:27	63	38	
2390	1461.2			10127			
2380	1455.3	483-487	483-487	13:34	64	38	
2370	1449.6						
2360	1444.5	488-492	488-492	13:40	65	38	
2350	1438.9						
2340	1432.4	493-497	493-497	13:46	66	38	
2330	1426.9						
2320	1422.3	498-502	498-502	13:52	67	38	
2310	1417.0						
2300	1410.6	503-507	503-507	14:07	68	38	
2290	1405.6						
							Broke compensator weak link
2200	1358.8	509-511	509-511	14:47	69	40	Checkshot
2180	1354.7						
2100	1316.1	512-514	512-514	14:56	70	40	
2080	1313.9						
2000	1256.5	515-520	516-520	15:05	71	40	CASING ARRIVAL
1990	1256.0						
1900	1202.4	522-524	521-524	15:12	72	40	CASING ARRIVAL
1890	1200.8						
1800	1137.9	525-527	525-527	15:20	73	40	CASING ARRIVAL
1790	1128.0						
1700	1100.3	528-530	528-530	15:27	74	40	РООН
1690	1095.9						

4.4.2 Depth v Transit Time Plot

Figure 6: Depth v Transit Time

4.5 MDT DATA

4.5.1 Pressure Test Summary

No MDT tests were performed in this well.

4.5.2 Fluid Sampling Summary

No MDT samples were obtained from the well.

4.6 DST DATA

4.6.1 Summary

No drill stem tests were conducted in the well.

4.7 WIRELINE OPERATIONS SUMMARY

- Rapid mobilization of Supercombo for logging 12 ¹/₄" hole. Some problems with tool telemetry while rigging up quickly mitigated by Schlumberger crew. Logging commenced from 2718.5 mBRT as tool couldn't reach bottom due to hanging up on limestone ledge.
- Computer and telemetry problems on VSP run
- Shear pin on rig compensator line failed
- SP log not acquired during 8 ¹/₂" Pex run
- No downtime
- Good hole conditions no tool sticking
- Excellent pre-job planning
- Lead wireline engineer highly experienced and very competent. Involved in planning phase, built the logging programme. Motivated crew to perform to a high level.

4.8 CUTTINGS SAMPLING PROGRAMME

Hole Sec	ction	Depth Interval	Frequency	Description	
		(mBRT)			
		1520			
	42x36"			No samples require	ed
12 1/4"		1 (2)			
Pilot		1628			
Hole		1628			
	2.00		Every		
	26″		connection	Samples collected	by ROV. See table 4.8.2
		2175			
		2175	10m	Wet Samples:	1 x 5 litre bulk per sample depth
			10m	Dry Samples:	1 x 250g per sample depth
1	7"		30m	Geochemistry:	2 x 1 litre tin per sample depth
			Start, end	Mud Samples:	2 x 1 litre mud sample
		2449	of section		
		2449	3m	Wet Samples:	1 x 5 litre bulk per sample depth
			3m	Dry Samples:	1 x 250g per sample depth
12	1/4"		30m	Geochemistry:	2 x 1 litre tin per sample depth
			Start, end	Mud Samples:	2 x 1 litre mud sample
		2730	of section		
		2730	3m	Wet Samples:	1 x 5 litre bulk per sample depth
			3m	Dry Samples:	1 x 250g per sample depth
8	1/2"		30m	Geochemistry:	2 x 1 litre tin per sample depth
			Start, end	Mud Samples:	2 x 1 litre mud sample
		3650	of section		

4.8.1 Mudlogging Programme

Samples colle	ected by ROV.		
Sample Number	Depth (mBRT)	Lag depth (mBRT)	Comment
1	1637	1634 - 1652	Empty
2	1652	1652 - 1677	Empty
3	1681	1677 - 1704	Empty
4	1710	1704 - 1731	Skipped sample (poor visibility)
5	1739	1731 – 1764	Lost sample pod
6	1768	1764 - 1792	Empty
7	1797	1792 - 1816	Empty
8	1826	1816 - 1836	Lost sample pod
9	1852	1836 - 1860	Empty
10	1881	1860 - 1892	Skipped sample (poor visibility)
11	1909	1892 - 1922	Empty
12	1938	1922 - 1942	Empty
13	1966	1942 - 1989	Empty
14	1995	1989 - 2000	Empty
15	2024	2000 - 2026	Empty
16	2052	2026 - 2052	Sample collected from cuttings pile around conductor
17	2081	2052 - 2088	Skipped sample (poor visibility)
18	2110	2088 - 2129	Skipped sample (poor visibility)
19	2140	2129 - 2153	Empty
20	2167	2153 - 2175	Empty
21	2175		Sample collected from cuttings pile around conductor
22	2175		Empty
23	2175		Sample collected from cuttings pile around conductor
24	2175		Sample collected from cuttings pile around conductor

4.8.2 ROV Samples

4.8.3 Gas Samples

Hole Section	Depth (mBRT)	Gas peak (%)	Background Gas (%)	Description
17" section	2214 2238 2440	1.0% 2.6% 3.0%	0.6% 0.6% 1.3%	1 x 1 litre samples collected in Teflon bags per sample depth
12 ¹ /4" section	2730	3.2%	0.7%	1 x 1 litre samples collected in Teflon bags per sample depth
8 ¹ /2" section	2747 2748 2751 2838 3235 3351	2.5% 2.7% 4.4% 1.8% 2.4% 9.8%	$\begin{array}{c} 0.1 - 0.4\% \\ 0.1 - 0.4\% \\ 1.2 - 3.0\% \\ 0.5 - 0.9\% \\ 0.25 - 0.6\% \\ 0.25 - 0.6\% \end{array}$	1 x 1 litre samples collected in Teflon bags per sample depth

REFERENCES

6404/11-1 Drilling Programme

6404/11-1 Data Acquisition Plan

Shallow Geoharzard Assessment

A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid- and northern Norway BP Amoco Norge AS, September 2001

BP Amoco Norge AS, August 2001

BP, May 2001

NPD Bulletin No. 4, Edited by A. Dalland, D. Worsley, and K. Ofstad

APPENDIX 1: WIRELINE OPERATIONS ACTIVITY SUMMARY

Run Number	Time/Date	Comments/Activities
	01/02/02	
	01:00	Tools lifted onboard from Far Swan.
	03:00	Tools lifted to Catwalk.
1A1	01/02/02	PEX-HRLA-EMS-DSI-SP
	06:00	Tool Box talk on drill floor
	06:15	Rigged up compensator and sheaves.
	06:45	Handover, started to rig up tools.
	09:00	Toolstring rigged up. Checked toolstring.
	09:15	Changed EMS position to under HRLA
	09:30	Started before calibrations
	10:00	Standby for drillfloor work.
	10:15	Continued calibrations and prejob checks.
	10:50	Held safety meeting regarding loading of radioactive sources in Doghouse.
	11:20	Loaded radioactive sources
	11:40	KIH.
	11:55	At 270m bases multing wireling. Weit while bases are tied back
	12:00	At 570m, noses rubbing wireline. Wait while noses are fied back.
	12.30	At POP's continued to PIU
	13.03	At DOP's continued to KIH.
	15.50	Took up and down weights (2800lbs up 3200lbs down stratch correction).
		± 0.6 m Tide correction of ± 1.2 m
	13.35	Pull back into shoe
	13:40	At 2420m Start down log (3500 ft/hr)
	13:45	At shoe (depth 2440m).
	14:00	Slowed logging speed as approached bottom. Tagged bottom early at 2718.5m.
		Pulled up to 2713m and RIH to check TD stood up at same depth (possibly
		standing up on a Limestone ledge off bottom).
	14:05	Slacked off to 2722m and picked up slowly, opened callipers and started main
		log (1750 ft/hr).
	14:45	At shoe, calibrate callipers to casing ID (12.347"). Check depth (+0.2m
		correction).
	14:55	RIH to 2670m for repeat section, while replaying mainlog on depth.
	15:30	At 2670m, pull up slowly while opened callipers and start repeat section.
	15:55	At 2530m, stopped repeat section. Continued to POOH to shoe.
	16:00	At 2500m. Start logging up with GR and DSI in casing.
	16:15	At shoe continued up log at 1750 ft/hr. Cement not good at shoe, better 2425 to
		2405m and 2315 to 2285m. Change in character at 2220m.
	17:08	Stop log at 2071m. RIH to 2150m.
	17:12	Log up with GR only at 3500 ft/hr to surface at 1499m.
	17:45	At BOP's
	17:50	Tools through BOP's increase speed and POOH to suface.
	18:40	Out of hole. (Maximum Temp 2x36°C, 1 failed).
	18:55	Unloading Radioactive sources complete, performed after calibrations.
	19:25	After calibrations completed. Started rigging down
	20:30	Rig down complete floor to Saipem.
		1 otal time run 1A1 = 14 hours 30 minutes
2A1	21/02/02	VSP - GR

Run Number	Time/Date	Comments/Activities	
	00:05	Safety meeting with drill crew on drill floor.	
	00:20	Start rigging up compensator and sheaves.	
	00:45	Pick up tools.	
	00:55	Check tool telemetry.	
	01:15	Function test arms.	
	01:20	RIH to 100m.	
	01:25	Move air hoist cable away from sheaves in derrick and charge compensator.	
	01:45	Compensator on. Check rig up length $L1 = 75.8m$	
	01:50	RIH to 620m.	
	02:00	Tool evaluation tests.	
	02:15	RIH	
	02:35	1556m start gamma down log. Test guns and adjust tuning to 70 msec	
	02:50	2500m check-shot. Fine tune hydrophones.	
	03:05	RIH to 2628m. Check rig up length. $L2 = 75.4m (+0.4m)$	
		-1.0m deep on gamma correlation to PEX log for 12 ¼" hole.	
	03:20	In open hole.	
		2744m hanging up, pull back into shoe and run down at 10,00m/hr to get through, continue RIH.	
	03:50	3320m hanging up.	
		3335m hanging up.	
		3343m hanging up.	
		Loss of tension builds slowly suggesting accumulated drag rather than ledges.	
	04:00	RIH OK at 6000m/hr.	
		3440m hanging up, pick up, no sticking.	
	04:05	3600m, do tensions, Down 2300 lbs, Up 3200 lbs, +1.45 stretch correction.	
		L1-L2 = +0.4m, Tidal correction $-0.35m$, Correlation $-1.0m$, Final correction $+0.5m$	
	04:15	Tagged at 3648.8m, picked up tension at 3645m. TD 3645m	
	04:20	Log gamma up. 3640m first station. Fine tune geophones.	
	04:30	Continue out of hole at 20m intervals with VSP log, two geophones at 10m spacing.	
	07:35	At 3180m – also seeing signs of tool telemetry problem, but no impact on operations.	
	10:10	2820m- restart surface systems due to erratic tool responses (both GR and CSATs) causing surface systems to lock up. Probable cause erratic tool telemetry.	
	10:15	Continue from 2820m	
	11:00	At 2720m (inside shoe). Repeated tool telemetry problems cause surface systems to lock up; reboot PC's and power down complete system. Possible ACTS (cable head tension) or tool head problem.	
	11:25	Continue from 2720m.	
	13:55	At 2300m. Last VSP survey station.	
	14:03	VSP complete. Pull up for check-shots.	
	14:10	Shear pin breaks in rig compensator line. Wait for Saipem to replace.	
	14:40	Start check-shots at 2200m	
	15:27	1700m - stop check shots due to signal loss. POOH	
	16:35	At surface, start rig down. Trouble shoot telemetry problem; found to be electrical connection between TCC and ACTS (ie. ACTS and tool head OK for re-use)	
	17:45	Rig down complete	
		Thermometers 80, 80, 80 Deg C	
		Total time run $2A1 = 17$ hours 40 minutes	
2B1	21/02/02	NGS-PEX-HRLA-FMS-DSI-SP	
	17:45	Start rig up	

Run Number	Time/Date	Comments/Activities	
	18.35	Safety meeting on drill floor	
	18:45	Load radioactive sources	
	18:55	Rig up compensator	
	19:10	Compensator on check surface length $L1 = 76.9m$	
	19:18	RIH	
	20:05	2600m: measure rig up length 2. L2 = 76.9m	
		Tension down 2500 lbs, tension up 3700 lbs, correlation with 12 ¹ / ₄ " gamma	
		1.0m deep.	
	20:20	In open hole, down-log not corrected 1m deep. Casing shoe at 2731m.	
	21:25	Tagged bottom, no overpull picking off bottom, stretch correction 2.92m, Tide	
		Loggers TD 3645m	
	21.30	Start up log at 2000 ft/br	
	23:50	Back in casing at 2731m	
	23:30	Stopped log at 2644m	
	21.00	Prepare rush data 1m off depth for transfer to office	
		Playback to correct depth whilst running in for repeat	
	00:10	RIH to 3275m, open calipers	
	00:35	Log up on repeat from 3275m	
	00:55	Stop repeat at 3145m, close calipers, POOH	
	02:30	On surface, Remove sources and rig down tools.	
	03:45	Tools rigged down.	
		Thermometers 86, 86, 85 Deg C	
		Total time run 2B1 = 10 hours 00 minutes	
2C1	22/02/02	MSCT	
	03:55	Pick up tools	
	04:20	Change logging head	
	05:00	Test tools	
	05:15	Install protector – zero tools	
	05:25	Compensator	
	05:30	RIH	
	05:35	Top Drive hoses rubbing line – tie back	
	05:47	Continue RIH	
	06:15	Test telemetry at 1700m	
	06:40	Test at shoe 2710mMD. Very slow hydraulic pressure increase – oil thick due to	
	07.00	cold temp. in riser – wait for oil to warm up.	
	07:00		
	07:30	Start depth correlation at 3620mMD	
	07:40	Stop correlation log. Poor log character	
	07:45	Palas to use if a double some lation Subtract 0.2m Now on double to Double 1	
	08:00	Start core programme at 2502m, going up hale for priority 1 donths	
	08:30	Start core programme at 5595m, going up note for priority 1 depths.	
	09:03	Brohlam with Limit Switch indicates core arm not fully deployed. However core	
	09:08	based rotation indicates core bit able to rotate and therefore core arm must	
		actually be deployed. Override limit switch and continue manually. Core OK	
	09.15	Continue core programme, no more limit switch problems	
	09:13	Add 0.3 m to depth after correlation log at 3427m	
	09:33	Continue core programme	
	10.12	Verify depth control OK at 3283m	
	10:12	Complete up hole priority 1 points at 3208 7m RIH to deeper priority 2 points	
	10:55	Gamma correlation over 3325m area Add 0.2 m Relog and subtract 0.1m	
	11:10	At 3313 9m Limit switch problem again – override and core using manual	
		control. OK	

Run Number	Time/Date	Comments/Activities	
	11:15	Continue core programme for priority 2 points, logging uphole. No more limit switch problems.	
	12:10	Verify depth at 2826.7m and continue.	
	12:35	Cut last core at 2739.5m	
	12:40	РООН	
	14:10	Deactivate heave compensator	
	14:20	Tools at surface. Start rig down. Recovered 26 cores out of 27 cut attempted.	
	15:20	Rig down complete. Hand rig floor back to Saipem.	
		Thermometers 87, 87 Deg C	
		Total time run 2C1 = 11 hours 25 minutes	