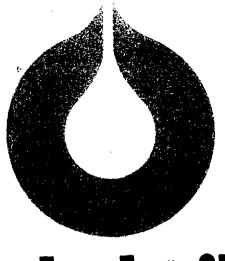
Denne rapport tilhører

STATOIL


LTEK DOK.SENTER

12483180046

KODE

Well 1/9-6 nr 28

Returneres etter bruk

statoil

TBP distillation of condensate from 1/9-6 DST 4 STATOIL **EXPLORATION & PRODUCTION** LABORATORY

> by Kjell Øygard

br. 83

LAB.83.06

Den norske stats oljeselskap a.s

Classification

Requested by	
S.Lyngroth	
Subtitle	

Co-workers

Hans Petter Rønningsen Reidun Kleven Eivind Osjord

Title

TBP distillation of condensate from 1/9-6 DST 4
STATOIL
EXPLORATION & PRODUCTION
LABORATORY

by Kjell Øygard

Approved

Febr. 83

LAB.83.06

Prepared K Dy Gard

Turtianassu

SUMMARY.

This report presents the results from a true boiling point distillation, performed on a 179 ml sample from a single flash of separator condensate, bottle no. 8207521 from 1/9-6 DST 4.

The sample was fractionated by distillation from room temperature to 331°C , the molecular weights and densities were measured at 15°C .

Table 1.

Summary of representative data for condensate from 1/9-6 DST 4.

•	Density at 15°C (g/cm³)	Molecular Weight	Weight % of the condensate
Condensate	0.786	147	100
c ₁₀ +	0.828	223	66.00
c ₂₀ +	0.873	377	23.45

2. METHODS AND EQUIPMENT.

2.1 Distillation.

TBP distillation was performed according to ASTM D-2892, with a Fisher HMS 500.

The fractions were collected according to the boiling point range of the various hydrocarbon groups (D.L.Katz and Firoozabadi, Journ. Petr. Tech., Nov. 1978, s. 1650).

From room temperature to 151.3°C the sample was fractionated at atmospheric pressure, the heavier fraction were separated at reduced pressure (12.5 mbar).

2.2 Compositional analysis.

Component analysis of the gas and the liquid fractions were performed using a Hewlet Packard 5880 gas chromatographic system.

Chromatographic conditions:

Column for the liquid: Chrompack 25m x 0.22mm WCOT,

Cp sil 5 on fused silica,

filmthickness 0.14 µ m.

Column for the gas: Chrompack 50m x 0.23mm WCOT, Cp sil 5 on fused silica, filmthickness 0.3 μ m

Carrier gas: Helium, 22 cm/sek. linear velocity at

10°C.

Detector: Flame ionisation, Nitrogen make up gas,

temp. 320°C.

Injection: All glass splitter, with a packed

"Jennings tube". Split ratio 1:80, temp.

310°C for the liquid. Temp. 200°C

for the gas.

Temp. program: For the first fractions the injection

temp. was 10°C , isothermal for 4 min., then 4°C/min . The injection temp. was

 100° C for the $C_{12}^{-C}C_{19}$ fractions. For the gas -30° C isothermal 4 min., then 8° C/min. to 160° C isothermal.

Gas Chromatograms of the different carbon to carbon cut are enclosed in the appendix.

The molecular weights was determined by freezing point depression using a Knauer molecular weight instrument, with benzene as a reference substance.

The density was determined by Paar DMA 602 frequency densiometer.

Since the residue of C_{20}^{+} - fraction was very viscous, the density could not be measured directly. However, dilution of a C_{20}^{+} sample with toluen in a known ratio C_{20}^{+} fraction/toluene and measuring the density of this solution, the density of C_{20}^{+} could be calculated after the following equation:

$${\circ_{20}}^{+} = \frac{{gc_{20}}^{+}}{\frac{gs}{\rho_s} - \frac{gt}{\rho_t}}$$

 gC_{20}^{\dagger} - the weight of C_{20}^{\dagger}

gt - the weight of toluene

ot - the density of toluene

gs - the weight of the solution

os - the density of the solution

In a series of measurements of $C_{20}^{}$ distillation fractions in this manner, we have found that to the measured values of the desities it should be added empirically 0.009 g/cm³ to obtain a correct value of the density.

3. RESULTS.

The composition of the whole condensate from the TBP distillation is given in table 2.

The calculated density of the distillate

S = Cum. weight Cum. volum

and % by volum distilled are given in table 3 whereas the calculated molecular weight and densities are given in table 4.

Table 5 gives the weight % of the fraction overlap of each cut. The gas chromatograms of each fractions are enclosed in the appendix.

The composition of the gas and the light end fractions determined by gas chromatography is given in table 6.

Table 2. TBP distillation of single flash oil from separator liquid 1/9-6 DST 4.

Hydrocarbon group	boiling ranges(^O C)	<pre>% by weight destillation</pre>	<pre>% by weight distilled</pre>	Density at 15°C(g/cm ³)	% by volum of condensate	Mol. weight
gass	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.410	0.410	0.410*	0.788	29.7*
C ₅	<36.5	8.152	8562	0.626*	10.261	68.5*
c ₆	69.2	4.567	13.129	0.682	5.276	85*
C ₇	98.9	6.380	19.509	0.726	6.924	95*
c ₈	126.1	7.839	27.348	0.747	8.270	106
c,	151.3	7.518	34.866	0.769	7.703	116
c ₁₀ +	>151.3	66.000		0.828	62.788	223
c ₁₀	174.6	5.875	40.741	0.781	5.926	133
c ₁₁	196.4	. 5.290	46.031	0 - 778	5.358	152
c ₁₂	216.8	4 231	50.262	0.785	4.229	164
c ₁₃	235.9	5.014	55.276	0.802	4.926	179
C ₁₄	253.9	4.375	59.651	0.815	4.230	193
C ₁₅	271.1	3.695	63.346	0.817	3.557	209
C ₁₆	287.3	3.379	66.725	0.824	3.231	218
c ₁₇	303.0	3.922	70.647	0.825	3.747	239
c ₁₈	317.0	3.140	73.787	0.831	2.977	250
c ₁₉	331.0	2 766	76.553	0.841	2.592	264
C ₂₀ +	>331.0	23.447	100.000	0.873	21.116	377

^{*} Calculated valus from the GC-composition.

Table 3: Cumulativ weight, cumulativ vol. and calculated $S = \frac{\text{cum.weight}}{\text{cum. vol.}}$ and % by volume

of distillate from from 1/9-6 DST 4.

Fraction	Cum. weight	Cum.	Cum.weight Cum.vol.	<pre>% by volume distilled</pre>	
yas	0.582	1.420	0.410	0.788	
c ₅	12.164	19.922	0.611	10.049	
c ₆	18.652	29.435	0.634	16.325	
c ₇	27.716	41.920	0.661	23.249	
c ₈	38.852	56.832	0.684	31.519	
င္ခဲ့	49.532	70.722	0.700	39.222	
c ₁₀	57.879	81.407	0.711	45.148	
c ₁₁	65.394	91.068	0.718	50.506	
c ₁₂	71.411	98.693	0.724	54.735	
c ₁₃	78.534	107.575	0.730	59.661	
C ₁₄	84.750	115.203	0.734	63.891	
c ₁₅	90.000	121.616	0.740	67.448	
C ₁₆	94.801	127.442	0.743	70.679	
c ₁₇	100.373	134.198	0.748	74.426	
C ₁₈	104.834	139.565	0.751	77.403	
c ₁₉	108.763	144.238	0.754	79.995	

Measured and calculated molecular weights and
 densities from destillation of 1/9-6-DST 4

	Condensate	c ₁₀ ⁺	C ₂₀ ⁺
Measured mol. weights		223	377
Calculated mol. weight using C ₁₀ mol.weight	146,5		
Calculated mol. weight using C ₂₀ mol.weight	146,5	224,3	
Measured densities (g/cm ³)	0.786	0.828	0.873
Calculated density (g/cm ³) using C ₁₀ density	0.779		
calculated density (g/cm ³) using C ₂₀ density	0.779	0.829	

Table 5.
 Distribution and % overlap of each carbon to carbon cut
 from destillation of 1/9-6 DST 4.

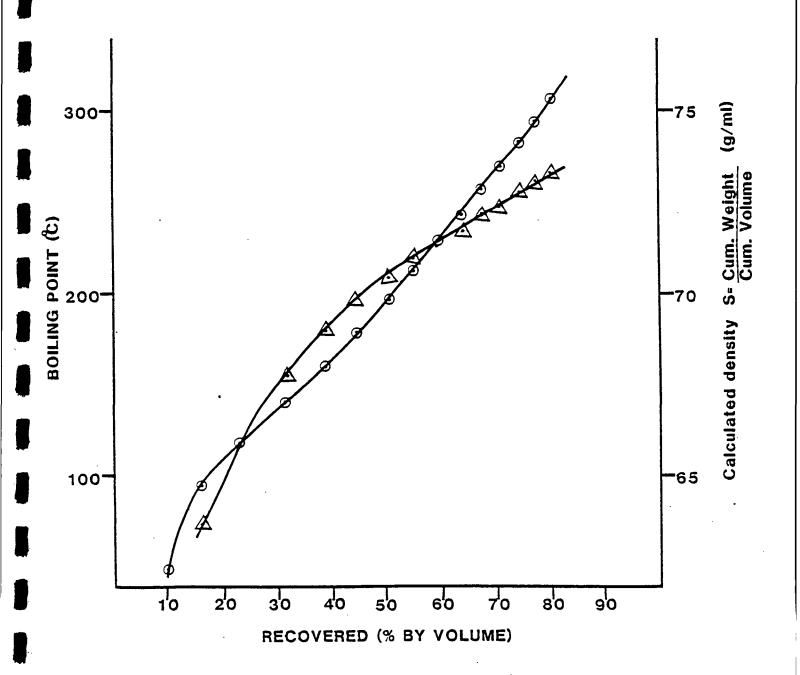
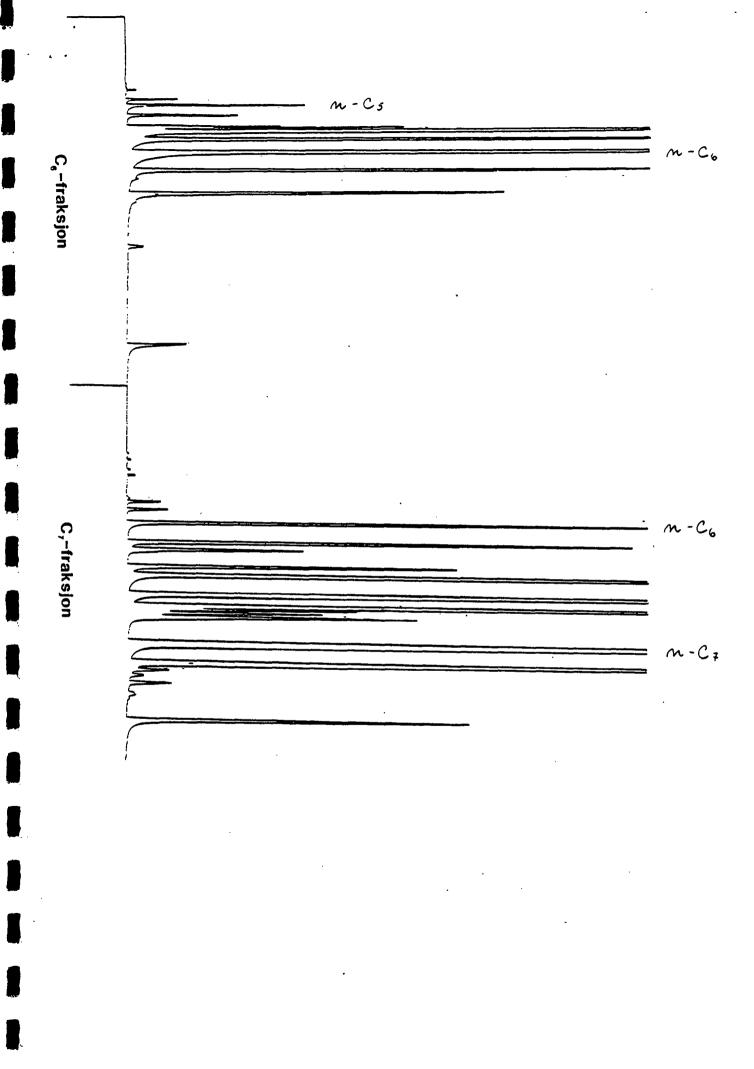

	Weight % of	Weight % of
Component	the condensate	fraction overlap
gas	0.410	90 -10
c ₅	8.152	70 -30
c ₆	4.567	2-82-16
c ₇	6.380	5-75-20
C ₈	7.839	12-84-4
с ₈	7.518	12-86-2
C ₁₀	5.875	10-85-5
c ₁₁	5.290	16-75-9
C ₁₂	4.231	15-72-13
C ₁₃	5.014	14-73-13
C ₁₄	4.375	13-69-18
C ₁₅	3.695	18-71-11
C ₁₆	3.379	10-76-14
c ₁₇	3.922	14-66-20
C ₁₈	3.140	10-69-21
c ₁₉	2.766	10-77-13

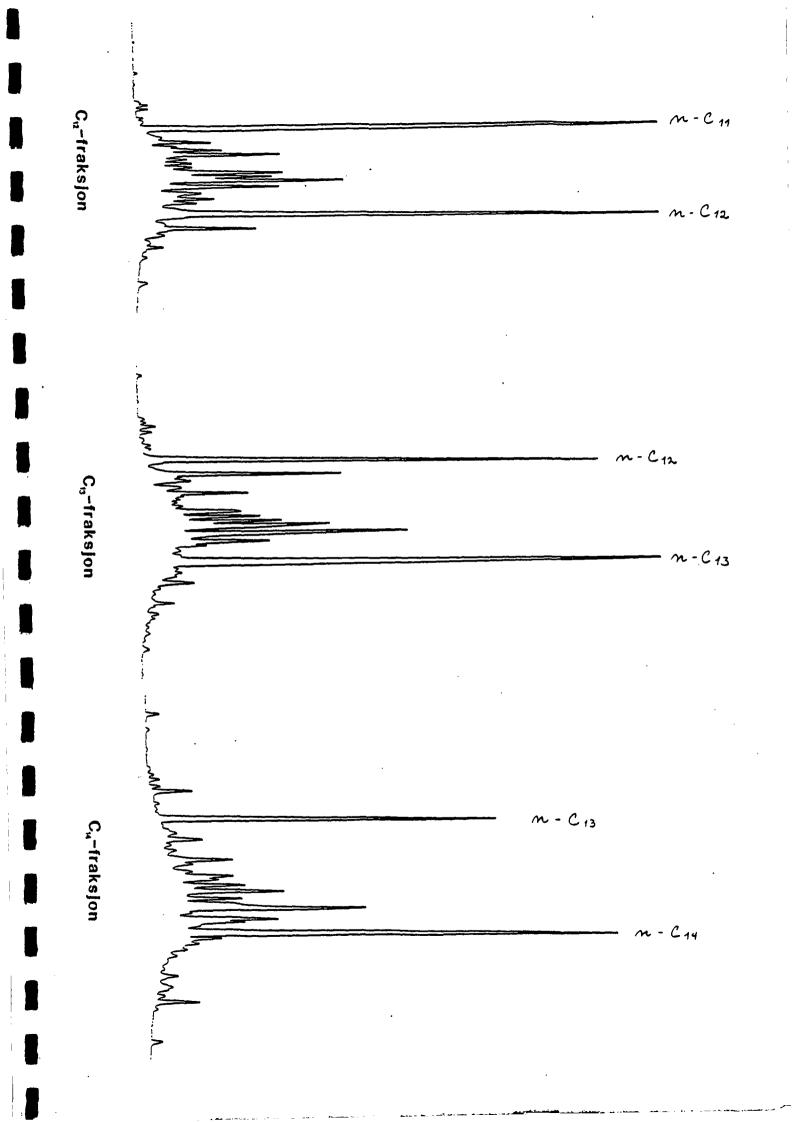
Table 6

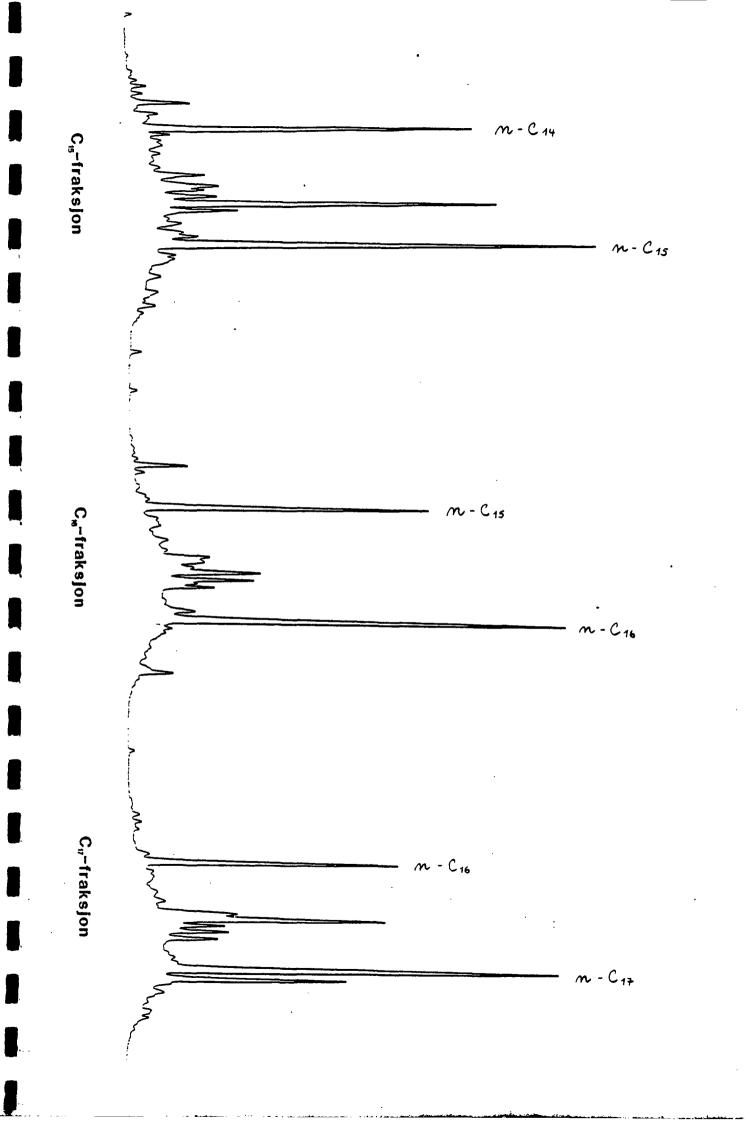
Total composition of the gas and the light-end fractions determined by G.C. Weight % of the condensate: 8.562%.

Hydrocarbon group	Weight % of condensate
C ₁	0.067
c_2^{-}	0.180
c ₃	0.621
i-C ₄	0.451
n-C ₄	1.451
i-C ₅	1.374
n-C ₅	1.927
c ₆	1.890
· c ₇	0.551
c ₈	0.049


- ⊙ Boiling point VS. % by volume recovered
 △ Calculated dessity of distillate recovered
- S= Cum .weight VS. % by volume recovered Cum. Volume

Gas


C₃-fraksjon m -C5


-

C, -fraksjon

C,-fraksjon

