, PLOYY			
D-31	Denne rap tilhører	port OSTATOIL	
	LTEK	DOK.SENTE	R
	L.NF KOE	^{A.} 12483250001 DE Well 1/9-6 Returneres etter b	<u>nr 32</u> ruk
			•
Co-work			
net the-Sørenssen	· · · · ·		
Title			
WATER	ANALYSIS		
	1/9-6 DST 1		
ST EXPLORATIO			ι,
LAB	DRATORY		v
A.L	. Berge		
Prepared	A	LAB 82.39	
28/10-82 Aug Ling Bug e	je 28/10-82 per	Thomassen	
DUE 21 AT			;

Classification

Requested by

Steinar Lyngroth. FLT

Subtitle

Co-workers

D. Malthe-Sørenssen

Title

WATER ANALYSIS

1/9-6

DST 1

STATOIL EXPLORATION & PRODUCTION LABORATORY

A.L. Berge

FEB. 82

LAB 82.39

Prepared Approved

 Prepared
 Approved

 28/10-82
 Aud Aykling Berge
 28/10-82

1. INTRODUCTION

Statoil production laboratory (PROLAB) received thirteen, 1 1 plastic bottles with water from well 1/9-6 DST 1 sampled at depth 3771.6 m - 3776.7 m RKB. The water samples were 3 from bottom hole sampler and 8 from water in the test string. PROLAB was asked to see if the water was representative for the formation, and to see to what extent they were diluted with mud filtrate or sea water. The test string was balanced with seawater before test.

2. SAMPLE DESCRIPTION

The water samples contained particles and had a brown colour and smelled oil except for the samples from the bottom hole sampler. The brown colour increased from upper sample in the bottom hole sampler to sample no. 2. Sample marked no. 1 and lower, were clear but contained dark particles. (Table 1).

3. METHODS OF ANALYSIS USED BY PROLAB

The samples were filtrated through 0.45 m millipore filters. The samples were stabilized by adding concentrated nitric acid (1:1000) prior to the ionic analysis. Most of the analysis were carried out according to ASTM methods using atomic absorption. The following ions were determined by wet chemistry.

Ions	Methods
Cl (including Br and I)	ASTM D512
so ₄ ²⁻	ASTM D516
Lignosulphonate (LS)	Light absorption at 280 mm (1)

LAB. 82.39

Total dissolved solids are determined by drying the residue at 120[°]C over night. Density was measured by PAAR 401 densito- meter. Conductivity was determined by using a Philips Conduc- tivity Meter PW 9501/01. These measurements were done at carefully controlled temperatures.

Relativ standard deviation, RSD, is determined (experimentally and/or theoretically) on every measured value.

RSD = $s/\bar{x} \cdot 100\%$ where $\bar{x} = \frac{\sum_{i=1}^{n}}{n}, x_i \quad (i=1...n)$

is measured values in n independent measurements

and, s =
$$\begin{bmatrix} n & 1/2 \\ \Sigma (x_i - \bar{x})^2 \\ i = 1 \\ n - 1 \end{bmatrix}$$

2

LAB. 82.39

Ξ.

Table 1. Formation water 1/9-6 DST 1 sample description

Sample n	o. Colour	Depths (ft)
Upper	brown	12249
Middle	brown	12361
Lower	Clear	12374
10	brown	12000
9	brown	11600
8	dark brown	11300
7	dark brown	11000
6	dark brown	10600
5	dark brown	10300
4	dark brown	10000
3	dark brown	9600
2	dark brown	9300
1	clear	9000

Results of ionanalysis of water samples from well 1/9-6 Table 2.

Sample No.	UPPER	MIDDLE	LOWER	No.10	NO.9	No.8	No.7	No.6	No.1	RSD%
Density 20 ⁰ C, g/cm ³	1.0841	1.0776	1.0245	1.0775	1.0775	1.0750	1.0672	1.0517	1.0242	0.01
pH at 20 ⁰ C	6,29	6.31	8.11	6.37	6.42	6.99	7.68		7.84	•
Total dissolved solid, %	12.08	11.09	3.80	11.15	11.14	10.87	9.77	6.55	3.84	-
Conductivity at 20 ⁰ C,	130.6	124.7	46.9	124.3	123.5	120.3	108.7	89.09	45.1	~
Lignosulphonate, ppm	635	844	37	821	. 898	1033 1	513 2	453	30	
Ion				Cor	nsentrat	tion ppm				
+ « 	20057	4 7 6 8 8		000000	25453				0 F C F O F F	-
ca 2 +	9625	8556		8556	20800 7800				ネーク・1 よの記	- ~
Mg ^{2+ .}	812	715		715	798				1230	2
+ *	641	781		612	645				327	7
Fent	65.5	112.8		8	18.	7			32	m
Ba2+	0.0>	5 <0.05	<0.05	<0.0>	5 <0.	05 <0.05	5 <0.05	<0.05	<0.05	
cı.	67108	62126	19655	61965	62078	60090	53629	40218	19558	ر
so4 2-	535	807	2665	836	835	1014	1555	2472	2714	۲-
HCO3·*		282								
Sum ion. 8	12.27	11.58		11.41	11.6				3.63	3.7

The value given for HCO_3^- ppm is probably a minimum value due to difficulties in establishing the level in stored water. *

l ,

5. DISCUSSION

5.1. Ionanalysis

As can be seen from table 2 both Cl⁻ and Na⁺ concentration decreased from the upper bottom hole sample throughout the samples from the test string, indicating an increasing infiltration of seawater (and mudfiltrate) in the samples. Simultanously there is an increasing amount of sulfate in the samples, also suggesting an increasing amount of seawater in the samples. Both seawater and mudfiltrate have a lower concentration of Cl⁻ and Na⁺ than the formation water but a higher sulfate concentration. In accordance with an increasing mudfiltrate infiltration in the samples from bottom hole sampler and the test string (sample no. 6) an increased concentration of lignosulphonate could be observed (table 2).

4

They are all mixed with seawater or mudfiltrate but to a different degree. The samples from the bottom hole sampler represents probably the best samples.

Assuming that there is no sulfate in the formation water it would be possible to estimate the original salt concentration in the formation water using the dilutionfactor found from the dilution of sulfate in the sample compared to the concentration of sulfate in seawater.

Accordingly the concentration of the different ions in the formation water have been estimated. (See appendix 1 for calculation). A good correlation between the salt concentration in the upper, middel bottom hole samples and sample no. 10 and 9 from the test string was found (table 3) suggesting that the concentrations given in table 3 for Na^+ , Cl^- , K^+ , Ca^{++} should be a good approximation of representative formation water values.

Similarly the conductivity and hence resistivity can be estimated from the new calculated salt concentrations. The corrected conductivity at 20[°]C is given in table 3.

SAMPLE	UPPER	MIDDEL	no. 10	no. 9
<pre>% diluted</pre>	19.71	29.7	30.80	30.77
		Concentrat	ion (ppm.)	
c1 ⁻	78262	80110	80 840	80976
Mg ²⁺	709	497	486	606
Ca ²⁺	11859	11949.7	12131.4	12893.4
к+	718	972.8	738.8	786.3
<u>Na</u> ⁺	51761	55690.1	54513.2	45914.6
	143309	149219.5	148709.6	141176.3
Conductivit	y at 20 ⁰ C cor	related from "	Equivalent NaC	Cl" concen-
tion append	ix 3			
mho/cm	167.6	172.3	172.0	162.10

Table 3. Estimated ion concentration in formation water and % dilution with seawater. Calculation see appendix 1.

5.2 Comparison between total dissolved solids measured and calculated.

The consistency on the analysis can also be checqued by comparing measured and calculated numbers for total dissolved (TDS). The results in table 4 shows that it is good agreement between TDS from residue after evaporation, and TDS correlated form density.

Table 4. Comparision of ca	lculated	and 5 me	asured	total dis:	solved s	olid da	ta (%)			
		٠								
Sample no.	UPPER	MIDDLE	LOWER	No.10	N0.9	No.8	No.7	No.6	No.1	RSD&
Residue after evaporation	12.08	11.09	3.80	11.15	11.14	10.87	9.77	6.55	3.84	-
Calculated from Cl (Cl 1.65)11.07	10.25	3.24	10.22	10.24	9.91	8.85	6.64	3.23	1
Correlated from density	11.79	10.93	3.69	10.92	10.92	10.58	9.53	7.43	3.64	0.1
Correlated from conductivit	y10.46	9.87	3.22	9.83	9.75	9.43	8.37	6.57	3.08	ىي ا
Equvalent NaCL	12.07	11.38		11.22	10,69				ω.5 1	ι
Calculated from table 1	12.27	11.58		11.41	11.61				3.63	3.7

5.3 Formation water analysis which are recommended.

Sample named upper bottom hole sample seems to be the most representative sample for the formation water of the four samples given in table 4.

However, since the water is to some degree diluted with mudfiltrate we cannot give a fully correct composition of the formation water. The low Ba concentration <0.05 ppm can be due to precipitation with $\operatorname{So}_{A}^{2-}$ forming BaSo_A.

Since mud filtrate had not been sampled during drilling as a control of the dilution of the formation water samples, the corrected values given in table 3 may deviate from the real values by < 5 %.

6. CONCLUSION

The brown colour and the presence of lignosulphonate demonstrate that all samples are contaminated with mud. The most representative sample is the sample marked upper from the bottom hole sampler.

7. REFERENCES

- CRC Handbook of Chemistry and Physics 60th edition page D-261.
- Spetrophometric Determination of Signosulphonicacid and Hamic acid in water. Fegenius Z, ChalChem 296, 406-407 ' (1979).
- 3) Schlumberger Log interpretation chart 1978 edition.

APPENDIX 1

Calculation of Cl⁻ concentration in formation water, when assumed no SO²⁻₄ concentration in formation water.

% seawater in the sample = X
S_s = sulfate concentration in sample
S_{sw} = sulfate concentration in seawater.

$$X = \frac{S_{SW} \times 100}{S_{SW}}$$

Estimated Cl⁻ concentration in formation water. X = % of seawater in the sample. Y = % of formationwater in the sample.

 $C_s = Cl^-$ concentration in sample. $C_{sw} = Cl^-$ concentration in seawater. $C_f = Cl^-$ concentration in formation water.

 $Y \times C_f + X C_{sw} = C_f$.

Sum "equ Na	Nation. Cl^{-} Ca^{2} + Mg^{2} + K^{+} SO_{4}^{2} -	2
Cl" concentrat	Factor* 1 1 0,81 1,26 0,9 0,5	
ion& 12.07	upper 43907 67108 7796 1023 557 268	2
11.38	Middel A. NaCL concen 42688 62126 6930 901 703 404	
11.22	no 10. 41392 61965 6930 901 551 418	х Э
10.69	no 9. 35452 62078 7360 1005 581 418	,
3.51	no 1. 11912 19558 424 1550 294 1357	

* See reference 3.

L

Appendix 2.

A transformation of ionic concentrations from table 1 into "equivalent NaCL" concentration.

APPENDIX 3

A transformation of ionic concentrations from table 3 into "equivalent NaCl" concentration.

Sample	Factor*	Upper	Middel	no.10	no. 9
Ion		Concer	ntration ppm		
c1 ⁻	1	78262	80110	80840	80976
Mg ²⁺	1.22	864	606.3	592.9	739.3
Ca ²⁺	1.2	14230.8	14339.6	14557.7	15472.1
к+	0.9	646.2	875.5	664.9	707.7
<u>Na</u> ⁺	1	51761	55690.1	54513.2	141176.3
Sum "eq	NaCl" %	14.58	15.16	15.12	13.91

* See reference 3

10

أطغت

Classification

Requested by

Steinar Lyngroth. FLT

Subtitle

Co-workers

D. Malthe-Sørenssen

Title WATER ANALYSIS 1/9-6 DST 1 STATOIL **EXPLORATION & PRODUCTION** LABORATORY A.L. Berge LAB 82.39 FEB. 82 Approved Prepared 28/10-82 28/10-82 Gmassen Immasse Aud Lykling Berge 9.03.21 A

1. INTRODUCTION

Statoil production laboratory (PROLAB) received thirteen, 1 1 plastic bottles with water from well 1/9-6 DST 1 sampled at depth 3771.6 m - 3776.7 m RKB. The water samples were 3 from bottom hole sampler and 8 from water in the test string. PROLAB was asked to see if the water was representative for the formation, and to see to what extent they were diluted with mud filtrate or sea water. The test string was balanced with seawater before test.

2. SAMPLE DESCRIPTION

The water samples contained particles and had a brown colour and smelled oil except for the samples from the bottom hole sampler. The brown colour increased from upper sample in the bottom hole sampler to sample no. 2. Sample marked no. 1 and lower, were clear but contained dark particles. (Table 1).

3. METHODS OF ANALYSIS USED BY PROLAB

The samples were filtrated through 0.45 m millipore filters. The samples were stabilized by adding concentrated nitric acid (1:1000) prior to the ionic analysis. Most of the analysis were carried out according to ASTM methods using atomic absorption. The following ions were determined by wet chemistry.

Ions	Methods
Cl (including Br and I)	ASTM D512
so ₄ ²⁻	ASTM D516
Lignosulphonate (LS)	Light absorption at 280 mm (1)

LAB. 82.39

Total dissolved solids are determined by drying the residue at 120[°]C over night. Density was measured by PAAR 401 densito- meter. Conductivity was determined by using a Philips Conduc- tivity Meter PW 9501/01. These measurements were done at carefully controlled temperatures.

Relativ standard deviation, RSD, is determined (experimentally and/or theoretically) on every measured value.

RSD = $s/\bar{x} \cdot 100\%$ where $\bar{x} = \frac{\begin{array}{c} n \\ \Sigma \times_{i} \\ i=1 \\ n \end{array}}{, \times_{i} (i=1 \dots n)}$

is measured values in n independent measurements

and, s =
$$\begin{bmatrix} n & 1/2 \\ \Sigma (x_i - \bar{x})^2 \\ i = 1 \\ n - 1 \end{bmatrix}$$

LAB. 82.39

۰۵.

Table 1. Formation water 1/9-6 DST 1 sample description

Sample no.	Colour	Depths (ft)
Upper	brown	12249
Middle	brown	12361
Lower	Clear	12374
10	brown	12000
9	brown	11600
8	dark brown	11300
7	dark brown	11000
6	dark brown	10600
5	dark brown	10300
4	dark brown	10000
3	dark brown	9600
2	dark brown	9300
1	clear	9000

3

الألت ومحمد ومحمد ومر

Results of ionanalysis of water samples from well 1/9-6 Table 2.

L

Sample No.	UPPER	MIDDLE	LOWER	No.10	N0.9	No. 8	No.7	No.6	No.1	RSD%
Density 20 ⁰ C, g/cm ³	1.0841	1.0776	1.0245	1.0775	1.0775	1.0750	1.0672	1.0517	1.0242	0.01
pH at 20 ⁰ C	6,29	6.31	8.11	6.37	6.42	6.99	7.68		7.84	, –
Total dissolved solid, %	12.08	11.09	3.80	11.15	11.14	10.87	9.77	6.55	3.84	-
Conductivity at 20 ⁰ C,	130.6	124.7	46.9	124.3	123.5	120.3	108.7	89.09	45.1	-
Lignosulphonate, ppm	635	844	37	821	868 1	033 1	513 2	453	30	
Ion				Cor	ısentrat	ion ppm				
+										
Na 2.	43907	42688		41392	35452	-			11912	
Ca <†	9625	8556		8556	9087				523	2
Mg ²⁺	812	715		715	798				1230	2
K+	641	781		612	645				327	7
Fen+	65.5	112.8		8	18.	7			32	m
Ba ²⁺	· <0 • 0	5 <0.05	<0.05	<0.0>	5 <0.(05 <0.05	<0.05	<0.05	<0.05	
	67108	62126	19655	61965	62078	06009	53629	40218	19558	-
so4 ²⁻	535	807	2665	836	835	1014	1555	2472	2714	-
HCO3-*		282							•	
Sum ion. 8	12.27	11.58		11.41	11.6	-			3.63	3.7

The value given for HCO₃ ppm is probably a minimum value due to difficulties in establishing the level in stored water. *

5. DISCUSSION

5.1. Ionanalysis

As can be seen from table 2 both Cl^- and Na^+ concentration decreased from the upper bottom hole sample throughout the samples from the test string, indicating an increasing infiltration of seawater (and mudfiltrate) in the samples. Simultanously there is an increasing amount of sulfate in the samples, also suggesting an increasing amount of seawater in the samples. Both seawater and mudfiltrate have a lower concentration of Cl^- and Na^+ than the formation water but a higher sulfate concentration. In accordance with an increasing mudfiltrate infiltration in the samples from bottom hole sampler and the test string (sample no. 6) an increased concentration of lignosulphonate could be observed (table 2).

They are all mixed with seawater or mudfiltrate but to a different degree. The samples from the bottom hole sampler represents probably the best samples.

Assuming that there is no sulfate in the formation water it would be possible to estimate the original salt concentration in the formation water using the dilutionfactor found from the dilution of sulfate in the sample compared to the concentration of sulfate in seawater.

Accordingly the concentration of the different ions in the formation water have been estimated. (See appendix 1 for calculation). A good correlation between the salt concentration in the upper, middel bottom hole samples and sample no. 10 and 9 from the test string was found (table 3) suggesting that the concentrations given in table 3 for Na^+ , Cl^- , K^+ , Ca^{++} should be a good approximation of representative formation water values.

Similarly the conductivity and hence resistivity can be estimated from the new calculated salt concentrations. The corrected conductivity at 20[°]C is given in table 3.

SAMPLE	UPPER	MIDDEL	no. 10	no. 9
<pre>% diluted</pre>	19.71	29.7	30.80	30.77
		Concentra	tion (ppm.)	
c1 ⁻	78262	80110	80840	80976
Mg ²⁺	709	497	486	606
Ca ²⁺	11859	11949.7	12131.4	12893.4
к+	718	972.8	738.8	786.3
<u>Na</u> ⁺	51761	55690.1	54513.2	45914.6
	143309	149219.5	148709.6	141176.3
Conductivit	y at 20 ⁰ C cor	related from "	Equivalent Na(Cl" concen-
tion append	1X 3			
mho/cm	167.6	172.3	172.0	162,10

Table 3. Estimated ion concentration in formation water and % dilution with seawater. Calculation see appendix 1.

5.2 Comparison between total dissolved solids measured and calculated.

The consistency on the analysis can also be checqued by comparing measured and calculated numbers for total dissolved (TDS). The results in table 4 shows that it is good agreement between TDS from residue after evaporation, and TDS correlated form density.

5

LAB. 82.39

	2 	•				0 T T C C C C T C C C C C C C C C C C C				
Sample no.	UPPER	MIDDLE	LOWER	No. 10	NU . 9	No.8	No.7	No.6	No.1	RSD%
Residue after evaporation	12.08	11.09	3.80	11.15	11.14	10.87	9.77	6.55	3.84	
Calculated from Cl ⁻ (Cl ⁻ 1.6	5)11.07	10.25	3.24	10.22	10.24	9.91	8.85	6.64	3.23	
Correlated from density	11.79	10.93	3.69	10.92	10.92	10.58	9.53	7.43	3.64	0.1
Correlated from conductivi	ty10.46	9.87	3.22	9.83	9.75	9.43	8.37	6.57	3.08	ω
Equvalent NaCL	12.07	11.38		11.22	10,69				3.51	I
Calculated from table 1	12.27	11.58		11.41	11.61				3.63	3.7
							•	•		
Equvalent NaCL	- 12.07	11.38		11.22	10,69				ພ • ບັ 1	I
Calculated from table 1	12.27	11.58		11.41	11.61				3.63	3.7
		·								
		,								

5.3 Formation water analysis which are recommended.

Sample named upper bottom hole sample seems to be the most representative sample for the formation water of the four samples given in table 4.

However, since the water is to some degree diluted with mudfiltrate we cannot give a fully correct composition of the formation water. The low Ba concentration <0.05 ppm can be due to precipitation with $\operatorname{So}_{4}^{2-}$ forming BaSo₄.

Since mud filtrate had not been sampled during drilling as a control of the dilution of the formation water samples, the corrected values given in table 3 may deviate from the real values by \leq 5 %.

LAB. 82.39

6. CONCLUSION

T

1

The brown colour and the presence of lignosulphonate demonstrate that all samples are contaminated with mud. The most representative sample is the sample marked upper from the bottom hole sampler.

7. REFERENCES

- CRC Handbook of Chemistry and Physics 60th edition page D-261.
- Spetrophometric Determination of Signosulphonicacid and Hamic acid in water. Fegenius Z, ChalChem 296, 406-407 (1979).
- 3) Schlumberger Log interpretation chart 1978 edition.

Å.

APPENDIX 1

Calculation of Cl⁻ concentration in formation water, when assumed no SO²⁻₄ concentration in formation water.

% seawater in the sample = X
S_s = sulfate concentration in sample
S_{sw} = sulfate concentration in seawater.

$$X = \frac{S_{sw} \times 100}{S_{sw}}$$

Estimated Cl⁻ concentration in formation water. X = % of seawater in the sample. Y = % of formationwater in the sample.

 $C_s = Cl^-$ concentration in sample. $C_{sw} = Cl^-$ concentration in seawater. $C_f = Cl^-$ concentration in formation water.

 $Y \times C_f + X C_{sw} = C_f$.

Sum "equ NaCl" concentration% 12.07 11.38 11.22 10.69

I ;

Appendix 2.

APPENDIX 3

A transformation of ionic concentrations from table 3 into "equivalent NaCl" concentration.

Sample	Factor*	Upper	Middel	no.10	no. 9
Ion		Concer	ntration ppm		
C1 ⁻	1	78262	80110	80840	80976
Mg ²⁺	1.22	864	606.3	592.9	739.3
Ca ²⁺	1.2	14230.8	14339.6	14557.7	15472.1
к+	0.9	646.2	875.5	664.9	707.7
<u>Na</u> ⁺	11	51761	55690.1	54513.2	141176.3
Sum "eq	NaCl" %	14.58	15.16	15.12	13.91

* See reference 3

10

بالبلا بين