Ö STATOIL

Final Well Report PL 128 Well 6608/10-10

04Y94*17440

		Fin W	al Well Report PL 128 ell 6608/10-10		
Document no.:	0	Contract no./pro	pject no.:	Filing no.:	· · · · · · · · · · · · · · · · · · ·
04Y94*17440					
Classification: Restricted			Distribution: According t	o distribution lis	;t
Distribution date:	Rev. date: 2004-01-	22	Rev. no.: 0		Copy no.:
Sveinung Tysse Anne Britt Sommer	voll				
Subjects: General informatior Exemptions and no Health, environmen Geology and format Drilling operations	n n-conformanc t, safety and q tion data repor report	es uality t			
Remarks:					
Valid from:		·	Updated:		

Ö STATOIL

Techn. responsible:	Name:	Date/Signature:
Well project manager	Dagfinn Alm	3/2-04 Vigge Larsen
Responsible:	Name:	Date/Signature:
OPR BEV, Manager well eval.	Jan Skagen	1/2-04 Jan Steanen
Recommended:	Name:	Date/Signature:
OPR BOR, Manager expl. drlg.	Harald Mortensen	11/2-04 Havala Mortensey
Approved:	Name:	Date/Signature:
HNO LET NO, Area manager	Roger Inge Johansen	19/2-04 peoplease

Final Well Report PL 128 Well 6608/10-10

Doc. No. 04Y94*17440 Date 2004-01-22

Rev. no.

3 of 75

Table of contents

1	Introduction	6
1.1	Well data record	6
1.2	Well objectives	8
1.3	Result of the wells	8
1.4	Drilling summary	8
1.4.1	Casing	8
1.4.2	Drilling fluids	8
1.5	Data acquisition summary	8
2	Exemptions and non-conformances	10
2.1	Exemptions and non-conformances from NPD's regulations	10
2.2	Exemptions and non-conformances from Statoil's regulations	10
3	Health, safety, environment and quality (HSE&Q)	11
3.1	Stop Card and Synergi reports	11
3.2	Comments to the cards/reports	11
3.3	Experience summary	
3.4	Time distribution	14
4	Geology and formation data report	15
4.1	Geological setting and results	15
4.2	Shallow gas results	15
4.3	Stratigraphy	15
4.3.1	Table of chronostratigraphy	16
4.3.2	Table of lithostratigraphy	17
4.4	Lithostratigraphic description	
4.5	Hydrocarbon indications	
4.6	Geophysical results	
4.7	Data acquisition	30
4.7.1	Cuttings and mud samples	30
4.7.2	Conventional coring	
4.7.3	MWD/LWD	30
4.7.4	Wireline logging	
4.7.5	Data quality	
4.8	Formation pressure	
4.8.1	Reservoir pressure summary	
4.9	Reservoir fluid sampling	
4.10	Leak off test	
4.11	Formation temperature	
4.12	Experiences / recommendations	
5	Drilling operations report	41
5.1	Rig move and positioning	41
5.1.1	Summary	41

Final Well Report PL 128 Well 6608/10-10

Doc. No. 04Y94*17440 Date 2004-01-22

Rev. no.

4 of 75

5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.4 5.4.1 5.4.2 5.5 5.5.1 5.5.2 5.6 5.6.1 5.6.2 5.6.3 5.6.4 5.6.5 5.6.6 5.6.7 5.6.8 5.6.9 App B App C Wellsite sample description......74 App D NPD standard sheet for reporting shallow gas75 App E App F 6

Rev. no.

5 of 75

List of Figures and Tables

Figure 1.1	Index map	7
Figure 1.2	Formation evaluation	9
Figure 3.1	D-time distribution	14
Figure 4.1	Structural map	33
Figure 4.2a	Well stratigraphy	34
Figure 4.2b	Prognosis vs. Actual.	35
Figure 4.3	Pressure plot	36
Figure 4.4	Temperature plot	37
Figure 4.5a	Composite plot	38
Figure 4.5b	Composite plot	39
Figure 4.6	Gas ratio plot	40
Figure 5.1	Photo of cavings over shakers	43
Figure 5.2	Time vs. depth plot	48
Figure 5.3	Wellhead system	50
Table 1.1	Casing	8
Table 1.1 Table 1.2	Casing Drilling fluids	8 8
Table 1.1 Table 1.2 Table 3.1	Casing Drilling fluids	8 8 12
Table 1.1 Table 1.2 Table 3.1 Table 3.2	Casing Drilling fluids Experience summary Time distribution	8 8 12 14
Table 1.1 Table 1.2 Table 3.1 Table 3.2 Table 3.3	Casing Drilling fluids Experience summary Time distribution Operations factor	8 8 12 14 14
Table 1.1 Table 1.2 Table 3.1 Table 3.2 Table 3.3	Casing Drilling fluids Experience summary Time distribution Operations factor	8 8 12 14 14
Table 1.1 Table 1.2 Table 3.1 Table 3.2 Table 3.3 Table 4.1 Table 4.2	Casing Drilling fluids Experience summary Time distribution Operations factor Chronostratigraphy Lithostratigraphy	8 8 12 14 14 14 16 17
Table 1.1 Table 1.2 Table 3.1 Table 3.2 Table 3.3 Table 4.1 Table 4.2 Table 4.3	Casing Drilling fluids Experience summary Time distribution Operations factor Chronostratigraphy Lithostratigraphy Gas peaks	8 8 12 14 14 14 16 17 29
Table 1.1 Table 1.2 Table 3.1 Table 3.2 Table 3.3 Table 4.1 Table 4.2 Table 4.3 Table 4.4	Casing Drilling fluids Experience summary Time distribution Operations factor Chronostratigraphy Lithostratigraphy Gas peaks MWD logging	8 8 12 14 14 14 16 17 29 30
Table 1.1 Table 1.2 Table 3.1 Table 3.2 Table 3.3 Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5	Casing Drilling fluids Experience summary Time distribution Operations factor Chronostratigraphy Lithostratigraphy Gas peaks MWD logging Wireline logging summary	8 8 12 14 14 16 17 29 30 31
Table 1.1 Table 1.2 Table 3.1 Table 3.2 Table 3.3 Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 5.1	Casing Drilling fluids Experience summary Time distribution Operations factor Chronostratigraphy Lithostratigraphy Gas peaks MWD logging Wireline logging summary	8 8 12 14 14 14 16 17 29 30 31 46
Table 1.1 Table 1.2 Table 3.1 Table 3.2 Table 3.3 Table 4.1 Table 4.2 Table 4.3 Table 4.3 Table 4.4 Table 4.5 Table 5.1 Table 5.1	Casing Drilling fluids Experience summary Time distribution Operations factor Chronostratigraphy Lithostratigraphy Gas peaks MWD logging Wireline logging summary Well schematic Well schematic plugged well	8 8 12 14 14 14 16 17 29 30 31 46 47
Table 1.1 Table 1.2 Table 3.1 Table 3.2 Table 3.3 Table 4.1 Table 4.2 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 5.1 Table 5.2 Table 5.2	Casing Drilling fluids Experience summary Time distribution Operations factor Chronostratigraphy Lithostratigraphy Gas peaks MWD logging Wireline logging summary Well schematic Well schematic plugged well Timeplanner	8 8 12 14 14 14 16 17 29 30 31 46 47 49
Table 1.1 Table 1.2 Table 3.1 Table 3.2 Table 3.3 Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 5.1 Table 5.2 Table 5.3 Table 5.4	Casing Drilling fluids Experience summary Time distribution. Operations factor. Chronostratigraphy Lithostratigraphy Gas peaks MWD logging Wireline logging summary. Well schematic. Well schematic plugged well Timeplanner. Drilling fluids summary	8 8 12 14 14 14 16 17 29 30 31 46 47 49 51
Table 1.1 Table 1.2 Table 3.1 Table 3.2 Table 3.2 Table 3.3 Table 4.1 Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 5.1 Table 5.2 Table 5.3 Table 5.4 Table 5.4	Casing Drilling fluids Experience summary Time distribution Operations factor Chronostratigraphy Lithostratigraphy Gas peaks MWD logging Wireline logging summary Well schematic Well schematic plugged well Timeplanner Drilling fluids summary	8 8 12 14 14 14 16 17 29 30 31 46 47 49 51 52

Rev. no.

6 of 75

1 Introduction

1.1 Well data record

Well name	:	6608/10-10	
Type of well	:	Exploration	
Prospect	:	Gråspett	
Country	:	Norway	
Area	:	Nordland II	
License	:	PL 128	
Licencees	:	Statoil ASA (Operator)	40.45 %
		Petoro AS	24.55 %
		Norsk Hydro ASA	13.50 %
		Eni Norge AS	11.50 %
		AS Norske Shell	10.00 %
Drilling unit	:	Stena Don	
Туре	:	The Stena Don is a semi-sub-	nersible drilling, completion and
		workover rig equipped with a	dynamic positioning system
		(class 3)	
Water depth	:	374 m MSL	
Air gap	:	24 m	
On license	:	16.07.03	
Rig release	:	07.08.03	
Formation at TD	:	Are Formation	
Coographia ao ardinatas		66 ⁰ 04' 17 07" N	
Geographic co-ordinates	•	$00 \ 04 \ 17.97 \ N$	
Datum/Spharoid		10 11.40 E ED 1050 / Int 1024	
Datum/Spheroid	·	ED-19307 IIII. 1924	
UTM	:	UTM Zone 32, CM 09° E	
		/ 328 330 m N	
		402 426 m E	
Seismic location	:	Seismic survey ST0103, Inlin	ne 1070, Cross-line 2281.

All depths in this report refer to RKB (Rotary Kelly Bushing) unless otherwise stated.

Fig. 1.1

Rev. no.

8 of 75

1.2 Well objectives

The objective of well 6608/10-10 was to prove hydrocarbons in the Middle and Lower Jurassic sandstones of the Not and Åre Formations; the secondary objective was to prove hydrocarbons in the Upper Jurassic sandstones of the Melke Formation.

1.3 Result of the wells

Well 6608/10-10 was spudded in a water depth of 374 m MSL and drilled to a total depth of 2800 m. No shallow gas was observed by the ROV at the wellhead.

Three sandstone beds were penetrated and proven to be water wet in the Melke Formation. The sandstones in the Fangst and Båt Groups were also water wet. No hydrocarbons were proven in the well. Due to severe hole problems the reservoirs were not logged with wireline logs.

1.4 Drilling summary

1.4.1 Casing

Table 1.1 Casing		
Casing	Shoe depth [m MD / m TVD RT]	LOT / FIT [Equivalent mud weight]
30"	445 / 445	NA
18 ³ / ₄ " WH x 13 3/8" casing	1365 / 1365	FIT: 1.55 g/cm ³

1.4.2 Drilling fluids

Table	1.2	Drilling	fluids
1 auto	1.4	Diming	nuius

Section	Section TD [m MD RT]	Maximum mud weight [g/cm ³]	Mud type
36"	445	1.03	Seawater / high visc. sweeps
	(17 ¹ ⁄2" @ 447)		
17 1/2"	1377	1.03	Seawater / high visc. sweeps
12 1/4"	2800	1.42	Glydril (water based KCl/Pac/glycol)

1.5 Data acquisition summary

See Figure 1.2.

	PL 128			We	11 6608/10	-10 Gråsnett								
	RKB - MSL: 24 1	n		,, C		Evoluction		U 51/						
, _	Water depth: 374	m MSL	<i>_</i>		rormation	ade by: MART	Date: 26.01.2004							
	Stratigraphy	gy		DEPTU										
ystem	Formations	itholo	asing	m TVD	Conv. Coring	Sampling Cuttings & Mud		Logg MWD &	ging Electric					
Ś	mTVD RKB	Ľ	C				_							
				100										
				200										
		-		300										
	Seabed 398		30" at	400			\neg							
rnary			445 m	500				<u>MWD</u>						
Juate				600				MPR-LITE RES-DIR						
-	<i>B. Quaternary</i> Naust 688	8		700		398 – 1377 mMD:		(GR failed who shoe track)	en drilling 30"					
				800		All returns to seabed								
		" 8 [] "		900				<u>WIRELINE:</u>						
				1000				Logged GR ins surface.	ide casing up to					
٨		* 		1100										
rtiar		□ *		1200										
Τe		"	13 3/8" at	1300										
	Kai 1401		1365 m	1400		Bulk samples (ca. 5 lt):		MWD						
		-		1500		✓ 1390 – 1880 mMD. One sample every 10 m.		MPR-LITE						
	Brygge 1557	* * *		1600		✓ 1887-1968 mMD. One sample every 3 m.		UK-KES-DIK						
	marker			1700		✓ 1970-2300 mMD. One								
	Tare 1799	• *		1800		✓2303-2604 mMD. One		XX/1101011 100107						
~	Tang Springar 1921			1900		sample every 3 m. ✓2610-2800 mMD. One		WIKELINE:						
S	Nise 1944	Ŧ		2000		sample every 6 m. Dry samples:		1365 – 1701 ml Logged PEXlite	мD e-FMI-DSI-HNGS					
aceou				2100		✓ 1390 – 1880 mMD. One sample every 10 m		Unable to get w	vireline logging					
Cret	Kvitnos 2160	*		2200		✓ 1887-1968 mMD. One		tools below 170)1 mMD					
	Lyr 2304	M # # 0		2300		sample every 3 m ✓ 1970-2300 mMD. One								
	Melke 2375 Spekk 2365 Melke Sst. 2405	* M		2400		sample every 3 m ✓2303-2604 mMD. One								
ssic	Not 2402 Not Sst 2480 Ile 2500 Ror/Tilje	м П		2500	No corina	sample every 3 m. ✓ 2610-2800 mMD_One								
Jura	Åre-2 2567	<u> </u>		2600	···· ·····g	sample every 6 m.								
	Åre-1 2731			2700		✓ 1400-2700 mMD. One								
-	TD 2000	m TVD I	e k e	2800		sample every 100 m.								

Rev. no.

10 of 75

2 Exemptions and non-conformances

2.1 Exemptions and non-conformances from NPD's regulations

None

2.2 Exemptions and non-conformances from Statoil's regulations

None

Rev. no.

11 of 75

3 Health, safety, environment and quality (HSE&Q)

3.1 Stop Card and Synergi reports

A total number of 326 Stop Card and 20 Synergi reports were registered while drilling the Gråspett well.

3.2 Comments to the cards/reports

Of the above mentioned cards/reports, there were:

- ➢ 0 LTA's
- \triangleright 0 red incidents
- ➢ 3 yellow incidents (1 HSE & 2 Quality)
- \succ 1 spill to sea
- ➢ 0 first aid incidents
- > 1 falling object and 0 potential falling objects detected

The three yellow incidents were:

- Two persons did not follow the procedure and instructions in connection with work on the BOP.
- Economical impact: Hydraracker failed causing 14.5 hrs down time on the rig.
- Economical impact: Had to POOH for re-programming MWD tool (wrong data transfer rate) causing 9.0 hrs down time.

The one spill to sea were (rated green):

Loss of mixing water during cement operations in the permanent plug and abandonment phase. Consisted of green chemicals only.

The falling object (rated green) was:

> An "rubber gasket" on portside crane had fallen down

Even though none of the incidents above led to serious personnel injuries, they are all taken very seriously and effort is made to prevent similar and other incidents.

Report		10-10
Well	28	6608/
Final	PL 1	Well

Ö STATOIL

Rev. no. 12 of 75

3.3 Experience summary

Table 3.1 Experience summary

Doc	AII.																								
Solution recommended for future Ref.			Use X-lite for conductor	cementing (also possible for Stena	Don as DP rig).	Continue running only 4 joints	when formation allows.		Use Dril-Quip handling clamp for	30"/36" housing joint.			Reduce number of data trans.	points of pressure vs. GR/Res.											1) Dicatoo to mud boforo
Immediate solution									Removed elevator and	landed 30" housing in	pusnings.														
Experience	(subject and description)		X-lite reduced WOC.	30" conductor successfully cemented with X-lite cement	on Stena Don. The conductor did not change angle.	Run 4 joints conductor.	In these hard formations with known support from the formation to the conductor it is time and cost saving to	run 4 joints conductor and not 5 joints as earlier.	Too high stickup on DF when landing 30" housing	joint. Eventioneed 0.2 m eticlate on DE when remaine 20"	Experienced 2,3 m suckup on DF when running 30 housing joint.		Wrong data format in use reduced overall ROP	performance.	For the riser less 17 1/2" section a ROP limitation of 90	m/hr was set by the project to achieve sufficient data	points in the memory log. Unfortunately, the data format	was set up to record equal amount or ECU as GR/Res.	thisters no need tot any pressure data in the memory for this section of the memory had been set up to only record	GR/Res the may ROP could have been binher	Especially down to approx 800-900 m this limited the	especially down to approx. See See III, this minica the	No problems were observed while pulling out of hole or	running casing.	CLass transfer dealline with most an CWO The 10 2/01 after
Time	lmpr. (hrs)			-		5													*				-	_	
Down	time (hrs)																								
Section		36"										17 1/2"													

Final Well Report PL 128 Well 6608/10-10

Doc. No. **04Y94*17440** Date 2004-01-22

Ö STATOIL

Rev. no. 13 of 75

2)Perform contamination tests between low sulphate mud and drilling cement. This to be done with involvement from B&B PE.	Use special no-cross collar below WH housing and run as primary. This new concept eliminates crossed threads.		Special study on the cuttings is ongoing, Conclusion in the Geology end of well report. Consider to reduce the KCl content to 140 g/cm3.
	MU joint w/special no-cross collar to string. PU WH housing and dressed threads on pin. MU WH housing to string.		Back reamed and circulated out of hole. Performed wiper trip.
sulphate Glydril mud to be used in the 12 1/4" reservoir section. Performed FIT with SW. Had to pull BHA to change MWD. Got stuck in casing shoe while pulling out because of poor lifting capacity of SW.	Damaged threads in box on joint in rotary table when attempting to MU 18 3/4" WH housing joint .		Experienced cavings from the well. May be a chemical problem; KCl content of 155 g/cm3 and Glycol 3,6 %. Had to back ream the hole to casing shoe at 1365 m and to do a wiper trip before logging. Cavings seemed to be dehydrated.
	2,5		
		2 1/4"	

Rev. no.

14 of 75

3.4 Time distribution

Table 3.2 Time distribution	
Total time, planned	28.5 days
Total time	22.1 days
Total down time	52.0 hrs
Waiting on weather (WOW)	0.0 hrs

Table 3.3 Operations factor

One Factor: -	$_{_{_{_{_{_{_{}}}}}}}$	00.20/
Ops. Factor	Total_time-WOW	90.3%

Fig. 3.1 D-time distribution

Rev. no.

15 of 75

4 Geology and formation data report

4.1 Geological setting and results

The structural framework on the Dønna Terrace was established during the Upper Jurassic/Lower Cretaceous extensional tectonics in the region. Later structuring is mainly related to the Cretaceous and Tertiary basinal subsidence. The Gråspett structure are two rotated fault blocks north of the Norne and Stær Fields and northwest of the Lerke structure (Fig. 1.1)

Block 6608/10 is situated in the southern part of the Nordland II area. The NE-SW trending Revfallet Fault Complex separates the block in two structural provinces, the Nordland Ridge and the Dønna Terrace. Well 6608/10-10 is located on the Dønna Terrace in the south central part of block 6608/10. (Fig. 4-1)

Well 6608/10-10 penetrates rocks of Quaternary, Tertiary, Cretaceous and Jurassic age. TD of the well is in rocks of Jurassic age in the Åre Formation (Fig. 4.2a).

4.2 Shallow gas results

The well was classified as class 0 - no shallow gas expected. The well was drilled with seawater down to 1377 mMD. No shallow gas was observed.

4.3 Stratigraphy

The stratigraphical division is based on the biostratigraphic report, MWD log curves and on correlation with nearby wells. The stratigraphy of the entire well is shown in Figures 4.2a-b.

Rev. no.

16 of 75

4.3.1 Table of chronostratigraphy

Table 4.1 Chronostratigraphy

	Stratigraphic succession	mN	mMD			
	Studied interval 1390 – 2652 mMD	From	То			
	Lower Pliocence	1390	1470			
	Upper Miocene	1480	1510			
Tertiary	Middle Miocene	1520	1600			
Tertiary	Lower Miocene	1610	1650			
	Hiatus					
	Upper Oligocene	1660				
	Hiatus					
	Upper Eocene	1670				
	Hiatus					
	Middle Eocene	1680	1760			
	Lower Eocene	1760	1870			
	Upper Paleocene	1880	1917			
	Base Tertiary unconformity					
	Campanian	1932	2210			
	Upper Santonian	2220	2280			
Cretaceous	Hiatus					
	Conacian	2290	2310			
	Hiatus					
	Barremian	2313	2334			
	Base Cretaceous unconformity		-			
	Middle Volgian	2373	2379			
	Hiatus		-			
	Callovian	2385	2403			
Jurassic	Hiatus		•			
	Bathonian - Bajocian	2406	2472			
	Aalenian – Toarcian	2475	2526			
	Hiatus					
	Upper Pliensbachian – Sinemurian	2529	2800			
	TD	2800				

Rev. no.

17 of 75

4.3.2 Table of lithostratigraphy

Table 4.2 Lithostratigraphy

Table of lithostratigraphy											
Period	Group /	0	TWT								
	Formation	mMD	m TVD	m MSL	sec.						
QUATERNARY	NORDLAND GROUP. (Sea Floor)	398.0	398.0	374.0	0.506						
	Naust Formation	688.0	688.0	664.0	0.794						
	Kai Formation	1401.0	1401.0	1377.0	1.383						
TERTIARY	HORDALAND GROUP	1557.0	1557.0	1533.0	1.521						
	Brygge Formation	1557.0	1557.0	1533.0	1.521						
	Tuff Marker	1665.5	1665.5	1641.5	-						
	ROGALAND GROUP	1799.0	1799.0	1775.0	1.788						
	Tare Formation	1799.0	1799.0	1775.0	1.788						
	Tang Formation	1884.0	1884.0	1860.0	1.836						
	SHETLAND GROUP	1921.0	1921.0	1897.0	1.877						
CRETACEOUS	Springar Formation	1921.0	1921.0	1897.0	1.877						
	Nise Formation	1944.0	1944.0	1920.0	-						
	Kvitnos Formation	2160.0	2160.0	2136.0	-						
	CROMER KNOLL GP.	2304.0	2304.0	2280.0	2.192						
	Lyr Formation	2304.0	2304.0	2280.0	2.192						
	VIKING GROUP	2365.0	2365.0	2341.0	2.235						
	Spekk Formation	2365.0	2365.0	2341.0	2.235						
	Melke Formation	2375.5	2375.5	2351.5	2.242						
	Melke Fm, Sst mbr	2405.0	2405.0	2381.0	2.284						
JURASSIC	FANGST GROUP	2462.0	2462.0	2438.0	2.304						
	Not Formation	2462.0	2462.0	2438.0	2.304						
	Not Fm, Sst mbr	2480.0	2480.0	2456.0	2.321						
	Ile Formation	2500.0	2500.0	2476.0	-						
	BÅT GROUP	2504.0	2504.0	2480.0	-						
	Ror Formaton	2504.0	2504.0	2480.0	-						
	Tilje Formation	2529.0	2529.0	2505.0	-						
	Åre 2 Formation	2567.0	2567.0	2543.0	2.363						
	Åre 1 Formation	2731.0	2731.0	2707.0	2.478						
	TD	2800.0	2800.0	2776.0	-						

Rev. no.

18 of 75

4.4 Lithostratigraphic description

NORDLAND GROUP

398.0 - 1557 mMD, 398 – 1557 mTVD (374.0 – 1533.0 mTVD MSL)

The Nordland Group comprises the Quaternary, the Naust and the Kai Formations. The upper part of the Nordland Group, including Quaternary and the major part of the Naust Formation, was drilled with all returns to the seabed. Lithology down to 1377 mMD is inferred from the recorded MWD memory log and information from the offset wells.

Quaternary 398.0 - 688.0 mMD, 398.0 - 688.0 mTVD (374.0 - 664.0 mTVD MSL)

System: Tertiary Series: Pleistocene (samples analysed from 1390 mMD)

The Quaternary sediments consist mainly of thick clay units interbedded with sandy intervals and layers. Based on the MWD gamma ray and resistivity logs the sandy layers are inferred to be silty and argillaceous.

Naust Formation	688.0 – 1401.0 mMD, 688.0 – 1401.0 mTVD
	(664.0 – 1377.0 mTVD MSL)

System: Tertiary Series: Upper Pliocene (samples analysed from 1390 mMD) Depositional environment: Marine, inner shelf

The boundary to the overlying Quaternary sediments is picked at an increase on the resistivity log after a 14 m drop (trough) above, consistent with previous wells in the area. The MWD logs suggest that the predominant lithology in the Naust Formation is claystone. Cuttings returns were initiated below 1377 mMD, from which depth well-site descriptions were undertaken.

The claystone is olive grey to medium dark grey. It is soft to slightly firm, amorphous, slightly hygroturgid, slightly silty, with trace micromica, trace fine calcite and is slightly to non calcareous.

Rev. no.

19 of 75

Kai Formation

1401.0 – 1557.0 mMD, 1401.0 – 1557.0 mTVD (1377.0 – 1533.0 mTVD MSL)

System: Tertiary Series: Upper Pliocene – Middle Miocene Depositional environment: Marine, inner, mid to outer shelf

The top of the Kai Formation is picked at a very slight downward trendshift on resistivity log readings, followed by higher gamma ray response than seen in the overlying Naust Formation. The Kai Formation consists mainly of claystone with minor to good traces of sand.

The claystone is olive grey to medium dark grey and occasionally dark green grey. The claystone is persistently soft, with silty and sandy laminae or floating very fine arenaceous component. There are traces to abundant amounts of glauconite specks and often good traces of pyrite and pyrite nodules. The claystone has slight to moderate traces of micromica, and it is generally non calcareous and only very occasionally very slightly calcareous

The sand is present as loose quartz grains which are clear, transparent, milky white and translucent in colour. The sand is composed of very fine to medium occasionally coarse grains. It is poorly sorted, angular to subrounded and has moderate to poor sphericity. Traces of microfossil fragments are also encountered as well as traces of pyrite and pyritised fossil fragments

HORDALAND GROUP

1557.0 – 1799.0 mMD, 1557.0 – 1799.0 mTVD (1533.0 – 1775.0mTVD MSL)

The top of the Hordaland Group is picked at the break of a slightly decreasing gamma ray trend and a slight decreasing trend in resistivity, before the resistivity subtly increases again for about 25m. The Hordaland Group comprises the Brygge Formation.

Brygge Formation

1557.0 – 1799.0 mMD, 1557.0 – 1799.0 mTVD (1533.0 – 1775.0mTVD MSL)

System: Tertiary Series: Middle Miocene – Lower Eocene Depositional environment: Marine, mid to outer shelf to upper bathyal

The Brygge Formation consists of an upper claystone / silty claystone unit with some traces of sand.

The claystone is initially predominantly olive grey, becoming olive grey to brownish grey, occasionally medium dark grey, rare dark green to dark greenish grey. It is soft to slightly

Final Well Report PL 128 Well 6608/10-10

Doc. No. 04Y94*17440 Date 2004-01-22

Rev. no.

20 of 75

firm in part and silty in part. The claystone contains micromica, traces to occasionally abundant glauconite specks and is generally non calcareous, occasionally very slightly calcareous.

From 1665.5 mMD an undifferentiated tuffaceous claystone zone was encountered. The transition is recognized by a shift in the MWD gamma ray and resistivity logs. Generally there is a shift to lower values compared to the very steady values just prior to this zone. A some more irregular appearance is seen on the resistivity log and gamma ray log when the maximum frequency of tuff events are observed from the ditch cuttings towards the base of Brygge Formation.

In the tuffaceous zone the claystone becomes predominantly light greenish grey to blue grey, light grey, firm to moderately hard, subblocky to platy and locally waxy. The claystone has trace of glauconite, trace white specks and occasional trace micropyrite. It is locally sucrosic and is non calcareous.

Just above the base of the Brygge there is a moderate brown to pale yellow brown claystone interval seen from 1770 mMD to 1799 mMD which comprises 10 to 30 % of the sample.

The sand present, is predominantly loose quartz, graines which are clear, milky, occasionally yellow and rarely red, transparent to translucent, very fine to fine, occasionally medium, moderate to poorly sorted and angular to subrounded.

Traces of limestone is also seen. The limestone is grey white to white, firm, subblocky, argillaceous and microcrystalline with traces of glauconite

ROGALAND GROUP

1799.0 – 1921.0 mMD, 1799.0 – 1921.0 mTVD (1775.0 – 1897.0 mTVD MSL)

The top of the Rogaland Group is picked by gamma ray correlation with neighbour well 6608/10-9 logs and shows a steady decreasing trend for the first 27m or so. The resistivity log response is building to lower conductivity than the variable lower resistivity in the Brygge Tuff/Tuffaceous unit above.

Rev. no.

21 of 75

Tare Formation

1799.0 – 1884.0 mMD, 1799.0 – 1884.0 mTVD (1775.0 - 1860.0 mTVD MSL)

System: Tertiary Series: Upper Eocene – Upper Paleocene Depositional environment: Marine, outer shelf to upper bathyal

The Tare Formation is composed of claystone and tuffaceous claystone with minor stringers limestone.

In the upper part of the Tare Formation the claystone is olive grey to medium dark olive grey/olive black and medium dark grey. It is soft to firm with some glauconite specks. In the lower part the claystone gets an increasingly tuffaceous looking appearance. The tuffaceous claystone is predominantly medium blue grey to blue grey and medium green grey to light greenish grey as well as light grey. It is firm and has a waxy appearance.

The traces of limestone are white to cream white, very pale grey and are moderately hard to hard, angular, brittle and cryptocrystalline to microcrystalline. Traces of nodular pyrite are also found throughout this section

Tang Formation

1884.0 – 1921.0 mMD, 1884.0 – 1921.0 mTVD (1860.0 - 1897.0 mTVD MSL)

System: Tertiary Series: Upper Paleocene Depositional environment: Marine, outer shelf to upper bathyal

The top of the Tang Formation is picked at an increase in the gamma log response. There is little change in the resistivity log, but there is a small downwards shift compared to the overlying formation. The Tang Formation consists predominantly of claystone with traces of limestone.

The claystone is predominantly dark green grey to medium bluish grey in colour, though it is also bright green grey, medium dark green grey and olive grey to olive black. It is generally firm to moderately hard in parts and angular to blocky. In parts it is tuffaceous and is occasionally slightly silty. Traces of micromica and nodular pyrite are also seen. The claystone is also consistently non calcareous.

The traces of limestone are white to cream white, very pale grey and are moderately hard to hard, angular, brittle and cryptocrystalline to microcrystalline

Rev. no.

22 of 75

SHETLAND GROUP

1921.0 – 2304.0 mMD, 1921.0 – 2304.0 mTVD (1897.0 – 2280.0 mTVD MSL)

The top of the Shetland Group is defined by a trend shift towards higher values both on the gamma ray and resisitivity log. In this well the Shetland Group comprises the Springar, Nise and Kvitnos Formations.

Springar Formation

1921.0 – 1944.0 mMD, 1921.0 – 1944.0 mTVD (1897.0 – 1920.0 mTVD MSL)

System: Cretaceous Series: Upper Cretaceous Stage: Campanian Depositional environment: Marine, outer shelf

The Springar Formation consists of claystone. The claystone is medium dark grey to dark grey, occasionally dark greenish grey and traces of light to moderate brown in the upper part. It is soft to moderately hard, angular to subblocky and blocky, occasionally slightly silty and contains traces of micromica, disseminated micropyrite, and nodular pyrite as well as local traces of glauconite and is generally non calcareous.

Nise Formation

1944.0 – 2160.0 mMD, 1944.0 – 2160.0 mTVD (1920.0 – 2136.0 mTVD MSL)

System: Cretaceous Series: Upper Cretaceous Stage: Campanian Depositional environment: Marine, outer shelf to upper bathyal

The Nise Formation consists of claystone with minor stringers of dolomite.

The claystone is medium dark grey, occasionally dark grey and dark olive grey. It is soft to moderate hard, angular to blocky and subblocky. The calystone contains trace of micromica, disseminated pyrite and pyrite nodules, occasionally trace of galuconite and it is non calcareous.

The dolomite is pale to moderate dark yellow brown and occasionally cream. It is hard becoming firm to hard, blocky to angular, sub splintery in part, sucrosic in part, microcrystalline and occasionally grading to limestone.

Rev. no.

23 of 75

Kvitnos Formation

2160.0 – 2304.0 mMD, 2160.0 – 2304.0 mTVD (2136.0 – 2280.0 mTVD MSL)

System: Cretaceous Series: Upper Cretaceous Stage: Campanian to Coniacian Depositional environment: Marine, outer shelf to upper bathyal to middle shelf

The Kvitnos Formation consists of claystone with minor stingers of limestone and dolomite.

The claystone is olive grey to medium dark grey, firm to moderate hard, blocky, locally angular, non calcareous only slightly calcareous near the base and slightly silty. It has traces of micromica, pyrite and occasionally glauconite.

The dolomite is pale to moderate dark yellow brown, firm to hard, blocky to angular, sub splintery in part, sucrosic in part and microcrystalline and occasionally grading to limestone.

The limestone is grey white to white, locally pale yellow brown, firm to moderate hard, blocky, locally argillaceous and grading to dolomite.

CROMER KNOLL GROUP

2304.0 – 2365.0 mMD, 2304.0 – 2365.0 mTVD (2280.0 – 2341.0 mTVD MSL)

The top of the Cromer Knoll Group, which comprises the Lyr Formation in this well, is defined by a significant increase in resistivity values compared to the Shetland Group. The gamma ray readings show a continued slow increase throughout the interval compared to the general level in the Shetland Group.

Lyr Formation

2304.0 – 2365.0 mMD, 2304.0 – 2365.0 mTVD (2280.0 – 2341.0 mTVD MSL)

System: Cretaceous Series: Lower Cretaceous Stage: Coniacian to Barremian Depositional environment: Marine, middle shelf

The Lyr Formation consists of claystone with interbedded limestone and dolomite stringers, and occasional thin sandstone stringers.

The claystone of the Lyr Formation is described as olive grey to medium dark grey, but also occasional dark greenish grey, light grey and pale yellow brown colours are seen. The claystone is very soft to hard, sticky, slightly silty to silty in part, subblocky to flaky and occasionally splintery. It contains some traces of micromica and abundant small nodules of

Final Well Report PL 128 Well 6608/10-10

Doc. No. 04Y94*17440 Date 2004-01-22 🖒 STATOIL

Rev. no.

24 of 75

pyrite. It is generally non to slightly calcareous in parts but occasionally very calcareous as the pale yellow brown material graded to argillaceous limestone. The formation also seems to be more sensitive to water than in the upper parts, often washin

The formation also seems to be more sensitive to water than in the upper parts, often washing away in the samples.

The limestone is pale grey, grey white, pale yellow brown later and occasionally medium grey. It is blocky, angular, occasionally flaky, firm to moderately hard, crumbly, chalky in part, often very argillaceous, micritic to microcrystalline and dolomitic in part.

The dolomite is yellow brown to greyish brown in colour. It is moderate hard to very hard, slightly argillaceous to argillaceous, and microcrystalline to micritic.

The sandstone is composed of clear, and milky translucent quartz grains. Some yellow brown grains are also seen. It is predominantly very fine to fine, well sorted, angular to subangular and appears as loose grains throughout the entire formation.

There are traces of pyrite as nodules and occasionally as cubes and occasional glauconite throughout the entire formation.

VIKING GROUP

2365.0 – 2462.0 mMD, 2365.0 – 2462.0 mTVD (2341.0 – 2438.0 mTVD MSL)

The top of the Viking Group is picked at a very sharp and large increase in the gamma log response together with a drop in the resistivity readings when entering the Spekk Formation and marks an unconformity from the Cretaceous into the Jurassic. The Viking Group comprises the Spekk and the Melke Formations in this well.

Spekk Formation

2365.0 – 2375.5 mMD, 2365.0 – 2375.5 mTVD (2341.0 – 2351.5 mTVD MSL)

System: Jurassic Series: Middle Jurassic Stage: Middle Volgian Depositional environment: Marine, inner shelf

The Spekk Formation is only 10.5 meters thick and consists of a dark organic rich claystone with thin limestone/dolomitic limestone stringers.

The claystone is described as olive grey, medium dark grey, becoming predominantly olive black to very dark grey, soft to moderately hard, angular to subblocky, splintery and flaky in parts. It is locally silty, non calcareous with micromica, traces of micropyrite and contains carbonaceous material.

Rev. no.

25 of 75

The limestone is very pale grey, white, pale yellow brown, soft to moderately hard. It is angular, flaky, subblocky, very argillaceous in part, dolomitic in part and microcrystalline to micritic.

Melke Formation

2375.5 - 2462.0 mMD, 2375.5 - 2462.0 mTVD (2351.5 - 2438.0 mTVD MSL)

System: Jurassic Series: Middle Jurassic Stage: Middle Volgian to Bathonian - Bajocian Depositional environment: Marine, inner shelf (restricted circulation) – inner shelf

The Melke Formation can be divided into two sections, an upper part (30.5m) consisting of claystone, and by the Melke sand stone interval which exhibits three coarsening upwards sequences. This is seen on the gamma ray response as the formation grades from clays to silty claystone to fine sand which is generally a poorly developed dirty sandstone section with some limestone stringers.

The claystone is olive black to very dark grey becoming predominantly olive grey with occasionally dark grey, dark greenish grey and light brown. It is soft to firm, occasionally moderately hard, slightly silty to very silty and arenaceous as well as often locally sticky. The cuttings are amorphous to subblocky occasionally blocky, angular and rarely splintery. It contains micromica and traces of pyrite and nodular pyrite as well as microcarbonaceous material. The claystone is locally non to slightly calcareous and grades to argillaceous siltstone in part.

The limestone is yellowish white to pale yellowish brown and pale grey. It is firm, crumbly, argillaceous and micritic and is often dolomitic.

Sand is seen as loose quartz consists of predominantly clear, occasionally milky and yellow brown grains. The sand is very fine to fine, rarely medium, generally fine, well sorted and angular to subrounded. Locally, rare fragments of white to light grey, very fine calcareous cemented sandstone are seen.

FANGST GROUP

2462.0 - 2504.0 mMD, 2462.0 - 2504.0 mTVD (2438.0 - 2480.0 mTVD MSL)

The top of the Fangst Group is defined by an increase in the gamma ray readings associated with a slight decrease in the resistivity readings. The Fangst Group comprises the Not and Ile Formations in this well.

Rev. no.

26 of 75

Not Formation

2462.0 - 2500.0 mMD, 2462.0 - 2500.0 mTVD (2438.0 - 2476.0 mTVD MSL)

System: Jurassic Series: Middle Jurassic Stage: Bathonian – Bajocian to Aalenian -Toarcian Depositional environment: Marine inner shelf – inner shelf/restricted circulation

The Not Formation consists of a silty and occasionally sandy claystone with thin stringers of limestone in the upper part of the formation down to 2480m MD, followed by the Not sandstone member.

The claystone is olive grey to medium dark grey, locally greenish grey, firm to moderately hard, locally soft and sticky in part. It is silty to very finely arenaceous in part, grading to siltstone in part and has traces of micromica and pyrite. It is very slighty to generally non calcareous.

Initially from 2480 – 2500m MD the sand consist of loose quartz, graines which are clear, milky, yellow brown in part, very fine to fine, generally fine, rare medium, well sorted with some clay matrix. The sand is often very micaceous with traces of chlorite as well as traces of carbonaceous material and pyrite.

Below 2500m MD, the sand consists again of predominantly loose quartz being initially very fine to fine, rare medium, becoming very fine to medium generally fine and then very fine to coarse. The graines are initially well sorted becoming poorly sorted, subangular to subrounded and has occasional locally calcareous cement. The sand containes mica, traces of carbonaceous material and traces of pyrite with pyrite coating on some grains.

Thin stringers of limestone are seen both in the claystone as well as the upper section of the sand.

The limestone is light grey, pale grey, white grey, crumbly, argillaceous and micritic to microcrystalline and grades to dolomite in places.

Ile Formation

2500.0 - 2504.0 mMD, 2500.0 - 2504.0 mTVD (2476.0 - 2480.0 mTVD MSL)

System: Jurassic Series: Middle Jurassic Stage: Aalenian -Toarcian Depositional environment: Marine inner shelf/restricted circulation

The Ile Formation consists of sandstone. The sand consists of loose quartz, graines which are clear, generally very fine, well sorted, subangular to subrounded, loose and micaceous. The sand is locally argillaceous and calcareous cemented, pyritic and with trace of carbonaceous material.

Rev. no.

27 of 75

BÅT GROUP

2504.0 - 2800.0 mMD, 2504.0 - 2800.0 mTVD (2480.0 - 2776.0 mTVD MSL)

The top of the Båt Group is defined by a more erratic gamma ray pattern associated with a decrease in resistivity readings. The Båt Group consists of the Ror, Tilje and Åre Formations in this well.

Ror Formation

2504.0 - 2529.0 mMD, 2504.0 - 2529.0 mTVD (2480.0 - 2505.0 mTVD MSL)

System: Jurassic Series: Middle Jurassic Stage: Aalenian - Toarcian Depositional environment: Marine inner shelf/restricted circulation

The Ror Formation consists of sandstone with a claystone interval in the lower part.

The sand consists of loose quartz, graines which are predominantly clear, very fine to coarse grained and poorly sorted. It appears to be bimodal with coarse to very coarse, very fine to fine and medium sized grains in the upper part. The grains are subangular to subrounded with some locally silica cement, traces of clay matrix material and pyrite coating in places. Traces of mica and carbonaceous material are also present.

The claystone is olive grey to brownish grey and dark greenish grey. It is firm, blocky to subblocky, silty, and carbonaceous in parts with micropyrite present. It is non calcareous.

Tilje Formation

2529.0 – 2567.0 mMD, 2529.0 – 2567.0 mTVD (2505.0 – 2543.0 mTVD MSL)

System: Jurassic Series: Lower Jurassic Stage: Upper Pliensbachian to Sinemurian Depositional environment: Marginal marine to fluviodeltaic

The Tilje formation consists of sandstone interbedded with siltstone and claystone.

The sand is initially very fine to coarse becoming very fine to fine with occasional medium and coarse grains. It is initially poorly sorted and becomes moderate to well sorted by the end of the interval. The grains are clear, milky and yellow brown and are angular to subrounded with moderate to good sphericity. Some very fine white, pale grey and yellow brown sandstone are friable with weak or no silica cement. A fair amount of pale brown argillaceous and silty material are seen as the sandstone grades towards siltstone. Mica and pyrite are also seen.

Rev. no.

28 of 75

The siltstone is brownish grey to brown, dark brownish grey, firm, blocky to sub blocky. It is often very micaceous with some carbonaceous material and is often very sandy grading to argillaceous sandstone.

The claystone is medium dark grey, dark grey and dark greenish grey. It is moderately hard, occasionally soft, angular, subblocky, sub-splintery and flaky in part as it becomes sub fissile to fissile. It is occasionally silty, containing traces of micromica and pyrite and is non calcareous.

Åre Formation 2567.0- 2800.0 mMD, 2567.0- 2800.0 mTVD (2543.0 – 2776.0 mTVD MSL)

System: Jurassic Series: Lower Jurassic Stage: Upper Pliensbachian to Sinemurian Depositional environment: Marginal marine to fluviodeltaic

The Åre Formation consists of a silty sandstone interbedded with claystone and siltstone. In the upper part, above 2731 mMD, coal is only seen a few times, while below coal is a constant member of the lithology.

The sandstone predominantly consists of loose quartz but with some pale brownish grey, greyish brown argillaceous and silty sandstone, occasionally white and clean, generally very fine to fine grained. The graines are well sorted and angular to subrounded. They are coarser in the lower part, very fine to very coarse, predominantly fine to medium, poorly sorted, angular to sub-angular with occasionally sub-round grains. The grains are clear, milky, occasionally pale yellow brown & smoky. The sandstone has weak to no silica cement and often contains abundant pale brown, greyish brown & white (Kao?) silty and argillaceous material. It is frequently very micaceous including traces of chlorite in addition to traces of pyrite and pyrite nodules and traces of carbonaceous material.

The claystone is olive grey, dark greenish grey, dark grey becoming olive black, dark brownish black and greyish brown. It is moderately hard to occasionally hard, blocky to subblocky, becoming more flaky and sub splintery and is subfissile to fissile in part and slightly silty to silty. It is locally very carbonaceous in the lower section with carbonaceous laminae in places. Traces of micromica and micropyrite are also seen and the claystone is non calcareous

The siltstone is generally brownish grey, greyish brown, occasionally dark brownish grey to brownish black and is generally firm but occasionally soft. It is very argillaceous, often sandy grading to very fine argillaceous sandstone, becoming very micromicaceous and carbonaceous and non calcareous.

Some traces of limestone are seen . The limestone is white to pale grey, firm to moderate hard and microcrystalline.

Final Well Report PL 128 Well 6608/10-10

Doc. No. 04Y94*17440 Date 2004-01-22

Rev. no.

29 of 75

The coal below 2730m is black to dark brownish black, medium hard, brittle, shining / waxy texture, earthy in part and with some evidence of slickensides. Traces of micromica and micropyrite are present and at times the coal grades to very carbonaceous shale / claystone.

TD: 2800.0 mMD, 2800.0 mTVD, (2800.0 mTVD MSL)

4.5 Hydrocarbon indications

All cuttings were returned to seabed while drilling down to 1377m MD. There were no indications of gas saturations from the MWD resistivity log or by monitoring the wellhead using short range sonar/visual CCD on the ROV.

There were no shows seen in the drilled cuttings and gas readings were very low although heavy components were present. Gas ratio analysis did not indicate oil (Fig 4.6). MWD resistivities in the sandstones for the Viking, Fangst and Båt Groups indicates that the sands are water wet.

1 4010 4.5 0	as peaks	$(\mathbf{I}\mathbf{D})$							
DEPTH	GAS	C ₁	C ₂	C ₃	iC ₄	nC ₄	C ₅	TYPE	BG
m RKB	%	ppm	ppm	ppm	ppm	ppm	ppm		%
2313	0.11	840	30	19	10	7	6	FG	0.06
2373	0.24	2141	73	36	14	10	6	FG	0.19
2500	0.09	864	25	12	4	2	1	FG	0.02
2591	0.14	1305	37	18	5	4	2	FG	0.03
2750	0.24	2156	94	37	8	5	2	FG	0.15
2752	0.27	2502	110	44	10	6	3	FG	0.15
2576	0.45	4296	182	66	14	6	2	FG	0.15
2778	0.36	3338	155	62	13	7	5	FG	0.15
2790	0.29	2714	134	56	11	7	6	FG	0.15
2800	0.34	3045	31	13	4	3	2	TG	0.06

Table 4.3 Gas peaks (FID)

4.6 Geophysical results

Refer to Figure 4.3.

The observed formation tops in the Tertiary and Cretaceous and Jurassic sections were encountered well within the uncertainties of the prognosis. The observed reservoir zonation within the Fangst Group and upper part of the Båt Group is very close to the prognosed zonation, even though the seismic resolution limits the possibility to interpret which

Rev. no.

30 of 75

formations that are present. The lack of VSP data limits the ability to update the seismic interpretation and velocity model in the area.

4.7 Data acquisition

4.7.1 Cuttings and mud samples

A standard mud logging unit was used for the well (details in Final Well Report, Geoservices.)

➤ Cuttings were sampled from 1390 mMD to 2800 mMD (TD).

➢ Mud samples were sampled every 100 m from 1400 mMD to 2700 mMD. (Figure 1.2).

4.7.2 Conventional coring

No cores were cut due to dry well.

4.7.3 MWD/LWD

The MWD-logging was performed by Baker Hughes Inteq. Table 4.4 MWD logging

Run	Depth interval	Collar	Tool type	Comments
no.	mMD	diam.		
1	445 – 1377	8 1/4"	MPR	MPR-lite service 17 ¹ / ₂ " section. GR failed
				when drilling cement, and memory data was
				not recovered on the rig.
2	1377 - 2800	8 ¼"	MPR	MPR-lite service 12 1/4" section. Missing
				realtime data from 2677 – 2693 due to WITS
				problem with depth measurement from mud
				logging computer. Else the tool worked OK.
				The missing part was re logged on the way out.

Rev. no.

31 of 75

4.7.4 Wireline logging

 Table 4.5 Wireline logging summary

	Wireline logging program											
#	TOOL COMBINATION	RUN	INTERVAL m MD RKB									
1	FMI - DSI - PEXlite - HNGS - ERCD	1A	374.0 – 1701.0 m									
2	FMI - DSI - PEXlite - HNGS - ERCD	1B	no logging, unable to pass 1397 m									
3	FMI - DSI - PEXlite - HNGS - ERCD	1C	no logging, unable to pass 1491 m									
4	PEXlite-MDT (TLC)	1D	no logging, unable to pass 1500 m									

The wireline logging was performed by Schlumberger. Different log curves are shown in Figure 4.5 A and B.

As seen from Table 4.6, the logging tool was not able to pass 1701 m. It was decided to log the PEXlite up to the casing shoe, and log the GR inside the casing to the seabed. Between logging run 1A and 1B a wiper trip was performed and KCL content was reduced from 140 to 120 kg/m³. The mud weight was increased from 1.42 to 1.46 sg. The logging tool stood up at 1397 m, several attempts were made to pass but with no success. A new wiper trip was performed. The third attempt stood up at 1491 m. Several attempts were made to pass 1491 m, due to no success it was decided to try with TLC.

Run 1D stood up at the same depth as run 1C. After working it down to 1500 m maximum compression of 8000 lbs for the PEXlite tool was reached. The tool could not be worked further down without risking tool damage or stuck situation. After this the logging program was aborted.

4.7.5 Data quality

Due to bad hole conditions the logging tools was not able to pass 1701 m. Due to this there is no wireline logging data in the reservoir zone.

The MWD logging performance was not satisfactory in this well, but the data quality was good. The service from the personnel was also good. The mud logging crew worked well and the mud loggers did an excellent job to keep up with the sampling requirements especially when drilling fast. On the mud logging data side, things were generally good.

4.8 Formation pressure

The resistivity log from MWD and the D-exponent is used to calculate the pore pressure in this well using different methods, but it is difficult to verify since there is no sonic data and

Rev. no.

32 of 75

that a PDC bit is used. The resistivity and the D-exponent from MWD follows the same trend as the prognosed pore pressure. The calculated pore pressure from the resistivity log is slightly higher than the predicted pressure and the D-exponent is little bit lower. Data from 6608/10-8 and 6608/10-9 is used to predict the prognosed pore pressure. The formation pressure is well known in this area since several wells have been drilled here, and the formation pressure is therefore expected to be the same as the prognosed pressure.

The overburden gradient is calculated using the density log from wireline run 1A from 1300 down to 1701 mMD. Above the 13 3/8" casing shoe and beneath 1701 mMD data from 6506/12-1, 6608/11-2 and 6608/10-1 is used.

4.8.1 Reservoir pressure summary

There are no MDT measurements in the well. It is expected to be normal pressure in the reservoir zone due to no hydrocarbons.

4.9 Reservoir fluid sampling

No samples were collected.

4.10 Leak off test

No LOT was performed in this well. A FIT of 1.55 g/cc was performed under the 13 3/8" casing shoe, see Figure 4.5.

4.11 Formation temperature

An average temperature gradient of 4.2 $^{\circ}$ C /100 meter is calculated from seabed down to TD of the well. This gradient gives a formation temperature of 104.8 $^{\circ}$ C at TD.

4.12 Experiences / recommendations

In spite of the hole conditions and the fact that there were no wireline logging in the reservoir section, the wireline operation went well.

The KCl content in the mud used in 6608/10-10 represents the largest concentrations compared to the previous nearby wells. It is believed that this KCl content caused the instability in the Brygge, Tare and Tang Formations. In future wells a casing should be considered ran to case off the problems zone in order to get necessary logging data.

PI128, Blocks 6608/10 & 11 Structual Geology Map

PL 128		v	Well 6	608/	10-1	0	Gråspett	A ST	ATOIL						
RKB - MSL: 24 m			m		V	Vell	Strat								
Wat	er dep	th: 374	4 m MSL			V CII	Dua	igraf	JIIy	Made by: MART	Date: 26.01.2004				
_		Stratig	raphy	_	Saiamia	gy	F 0	DEPTH							
systen	series	Group	Formatior	is	Markers	ithold	Casing	m TVD RKB	2 Lithology Descriptions						
01	01)	mivDkr	в	TWT(s)	Π	Ŭ	0							
								100							
						Â,		200							
								300							
ry			Seabed	398	0.506		30" at	400	Possible boulders	near surface					
ernai	./Holc	lland				"	445 m	500		lical surface.					
Quat	Pleist	Nore						600	Claystone with tra	aces of sandstone.					
			<u>B. Quaternary</u> Naust (588	0.794	≈ ≈ ≈		700	Uniform clayston	es with minor sandy	and/or silty intervals.				
								pyrite.	mera, snell tragmen	is, glauconite and					
								900							
						" 		1000							
y						* ~ "		1100							
tiar						□ *		1200							
Tei		q				" □	13 3/8"	1300							
		rdlan	Kai 14	01	1.383		at 1365 m	1400	Clavstone with tra	ces of sandstone and	l limestone.				
		No				-		1500							
		pui	Brygge 15	57	1.521	* * *		1600	Claystone with mi glauconite.	nor sandstone and lo	ocally very abundant				
		ordala	marker	دد				1700	Tuffaceous clayst	one with minor lime	stone stringers, traces				
		g. H(Tare 17	799	1 799			1800	Claustone with str	ingers of limestone	traces of sand purits				
	~~~~	$\left\{ {{_{{\rm Ro}}}} \right\}$	Tang Springer 10	84	1.786 <u>1.836</u> 1.877-	* == 4 "		1900	and chert.	ingers of infestorie,	traces of sand, pyrice				
S	r	pu	Nise 19	944	1.011	<b>#</b>		2000							
ceou	Uppe	Shetla						2100							
Creta		01	Kvitnos 22	160				2200	Claystone with lin	nestone stringers and	d traces of sand.				
	Lower	C. Kn	Lyr 23	04	2.192	м [*] ##*		2300	Claystone with lin	nestone stringers and	l traces of dolomite				
~~~~	Upper	Viking	Melke 2375 Spekk 2 Melke Sst. 24	657 05	<u>2.242</u> 2.284	•••*•		2400	Silty/sandy clayste	one in three coarseni	ing upwards				
sic	Middle	Fangst	Not 2462 Ile 2500 Ror/Tilie	480 2504	2.321	M [2500	Sandstone with tra	or mica and glaucon	fragments and mica				
uras			Åre-2 2:	567	2.363	с ————————————————————————————————————		2600	Interbedded sands	tones, siltstones and	claystones with				
ſ	Lower	Båt				" ^О " М		2700	Sandstone interbe	dded with siltstone a	nd claystone,				
			Åre-1 2'	731	2.478		l	2800	carbonaceous.						
	TD 2800 m TVD RKB Fig. 4.2a														

PL 128				,	Well 6608/10-10 Gråsp				pett	ett 💧 STATOIL						
Water denth: 374 m MSI					Prognosis vs. Actual						Made by	Made by: MART Date: 26.01.2004				
vv at	er dep	Stratig	raphy							s	tratigraphy		Duit	. 20.0		
System	Series	Group	Formation mTVD RI	15 (B	Seismic Markers TWT (s)	Lithology	Casing	DEPTH m TVD RKB		Group	Formation mTVD	Lithology	;	Casıng	Series	System
						Å	- 20%	100 200 300				Ą	r			
Quaternary	Pleist./Holo.	Nordland	Seabed B. Quaternary	,	0.506	8 [±] [±]	446 m	500 600		Nordland	B. Quaternary	, , , , , , , , , , , , , , , , , , ,	4	45 m	Pleist./Holo.	Quaternary
Tertiary		Rog Hordaland Nordland	Kai 1 Brygge 1 Tare 1 Tang	393 545 812 863	0.794 1.383 1.521 1.788 	」 * I << □ * I = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	13 3/8" at 1370 m	700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800		Rog Hordaland Nordland	Kai 14 Brygge 1: Tuff <u>166</u> marker Tare 1 Tang			3/8" at 365 m		Tertiary
Cretaceous	Upper	Shetland	Springar I	906	1.877			2000 2100 2200		Shetland	Springar 1921 Nise 1944 Kvitnos 2				Upper	Cretaceous
~~~~	Lower		Lyr 22 <u>Spekk 22</u> Melke 7	285 347/ 357	2.192 2.242	•••• •••• ••••	Optional	2400	-	Kn.	Lyr 23 Melke 2375 Spekk 2		* •		Lower	
ల	Opper	Former	Melke Sst. 24 Not 2464	428	2.284	* <u>M</u>	9 5/8" liner	2500		Viking Fangst	Melke Sst. 24 Not 2462 _{Not Sst 24}	05 *	M		Upper Middle	63
urassiu	Middle	r angst	Not Sst. 24 Tilje/Åre2 2	495  563	2.321 2.363	м _с о		2600			Ror/Tilje 2: Åre-2 25	67 <b>—</b>	M			urassio
Ju	Lower	Båt	Åm 1 Co-124 J	27.40	2 478			2700		Båt	9		M		Lower	Ju
		072 11	Are I Coal Marker	2743	2.478			2800			Are-1 27	31	<b></b>			
<ul> <li>Option</li> <li>Option</li> </ul>	onal 9 5/ esence c	8" liner of hvdroc	dependent arbons		TD 28	00 m TVI	) RKB				TD	2800 m T	D RKB	3	Fig. 4	1.2b












Rev. no.

41 of 75

# 5 Drilling operations report

# 5.1 Rig move and positioning

#### 5.1.1 Summary

The semi-submersible and dynamic positioned (DP) rig Stena Don was moved from the well 6608/10-D1BH at the Norne field to the Gråspett location 6608/10-10. The transit time was 3 hours and no towing vessel was needed.

At location transponders and taut wire were deployed, meanwhile service and maintenance on rig equipment were carried out.

## 5.2 Drilling top hole section

#### 5.2.1 Summary

The 36" hole was drilled from sea bed at 398 m to section TD at 447 m (depth of  $17 \frac{1}{2}$ " bit). Low weight on bit was used to ensure vertical hole. The top hole section was drilled using sea water and high viscosity pills as drilling fluid. The maximum inclination measured by the Anderdrift tool was 1.5° at TD. The hole was displaced to 1.35 g/cm³ mud prior to pulling out. No overpull was experienced when pulling out of hole.

The top hole was drilled with high flow, 4500 lpm, high rotational speed of 50 - 125 PRM and low WOB, 0-3 mt. The average ROP was 2.7 m/hrs (18 hrs. total drilling time).

The 30" conductor was run to 445 m and cemented in place with 30" WH and 3 metres stick up and an angle of 1.0  $^{\circ}$  inclination. The cement slurry used for the conductor was X-LITE, 1.52 g/cm³ on surface and 1.54 g/cm³ down hole due to compression, and 300% OH excess was used.

Drilled out the 30" conductor shoe and cleaned the rat hole in 2 hours.

# 5.2.2 Experiences / recommendations

- <u>Four joints of conductor</u> It is recommended to reduce number of conductor joints from five to four when formation capacity allows.
- <u>Cement slurry / Waiting on cement:</u> Use X-LITE cement, to avoid waiting on cement to set up to allow for release of the 30" conductor running tool.



Rev. no.

42 of 75

# 5.3 Drilling 17 1/2" section

#### 5.3.1 Summary

The 17 1/2" section was drilled out of the 30" conductor and to section TD at 1377 m in one bit run. A pendulum rotary assembly with a milled tooth bit, IADC-code 115, was used. The 17 1/2" section was drilled with an average on bottom ROP of 63.7 m/hr, included the 2 hrs used on drilling out the 30" conductor. Wrong data format in the W^{MWD} tool in use reduced the overall ROP. Seawater and high viscosity pills were used as drilling fluid. At section TD the hole was circulated clean and displaced to 1.30 g/cm³ mud. The hole was slick with no tight spots, max overpull 10 ton.

Drilled section with about 4500 lpm, 120 - 150 rpm, 5 - 25 ton WOB. These parameters resulted in a high ROP compared to offset wells.

The 13 3/8" casing was run and set at 1365 m with an average running speed of 9.2 joints per hour. The casing was successfully cemented, and a single plug system was utilized. Had full returns during the cement job and bumped the cement plug with 97% pump efficiency.

Ran and installed the riser and the BOP, and pressure tested the well to 275 bar.

The 13 3/8" casing shoe and rat hole was drilled out and cleaned in 3.5 hours. Below the 13 3/8" casing shoe a formation integrity test (FIT) was performed to  $1.55 \text{ g/cm}^3 \text{ EMW}$ .

## 5.3.2 Experiences / recommendations

• <u>13 3/8" casing running time:</u>

Prior to spud of the well, the project had run a process with focus on "technical limit" of running 13 3/8" casing. The casing crew, Stena offshore personnel and Statoil representatives attended a workshop. This resulted in increased efficiency running the 13 3/8" casing with this rig, the average running speed was 9.2 joints per hour.

- <u>No-cross coupling below wellhead:</u> It is recommended to use a special No-cross collar on this first casing joint below the well head to avoid damaged threads during make up of wellhead to casing.
- <u>MWD sampling rate:</u> It is important to optimize MWD sampling rate to allow for high ROP in this section.



Rev. no.

43 of 75

# 5.4 Drilling 12 1/4" section

#### 5.4.1 Summary

The 12 1/4" section was drilled from the 13 3/8" casing shoe at 1365 m and vertically to the well TD at 2800 m in one bit run. After performing the FIT the well was displaced to KCl/Pac/glycol water based drilling fluid. The mud weight started out at 1.40 g/cm³ and was increased to 1.42 g/cm³ while drilling before reaching 1800 m. The rate of penetration was 30 - 100 m/hr down to 2307 m, where the ROP was restricted to be able to evaluate possible coring point. The section was drilled using a packed rotary assembly and a PDC bit, IADC-code M323.

The section was drilled with 3800 lpm / 80-180 rpm / 2-18 mT WOB. No bit balling was observed.

Pulling out the BHA after reaching section TD, the string got stuck at 2743 m. The string came free by jarring up with 50 ton overpull. Started to back ream and the string stalled out several times between 2719 and 2705 m. There were no indications of hole packing off. Continued back reaming to 2000 m and worked several tight spots, otherwise the hole was OK. Continued pumping out of hole and reamed tight spots from 2000 m to 1670 m. At this point it was observed a large increase of cuttings/cavings over the shakers, large and rounded cement cavings/lumps of 2-5 cm. A wiper trip to TD and preparations for wireline logging was performed.

Fig. 5.1 Cavings over shakers



Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

44 of 75

Running in hole with wireline log #1 the string hung up at 1700 m and it was not possible to pass at several attempts. Pulled out of hole and performed a clean up run with bit and also increased the mud weight from 1.42 to 1.46 g/cm³. During the clean up run large amounts of cavings were observed over the shakers. Wireline log #1 was rerun and meet restriction at 1397 m, unable to pass same. Did a second clean up run, again large amounts of cavings were in the returns. Performed a second re-run of wireline log#1, string stood up at 1491 m. Pulled WL-tool string #1 out of hole and removed radioactive sources. Ran PEXlite / MDT as TLC. The TLC tool string stood up at 1500 m.

Ended the logging operations and prepared for permanent plug and abandonment of the well.

# 5.4.2 Experiences / recommendations

What caused the severe hole stability problems:

Ref chapther 4.12.

## 5.5 Permanent P&A

## 5.5.1 Summary

Ran in hole with cement stinger (292 m of 3 ¹/₂" DP and 5" DP to surface) to plug back the water filled Not/Åre sands. The string took weight at 1498 m. Washed past this restriction and continued washing down to 2800 m. While circulating prior to the cement job, large amounts of cavings came over the shakers.

Two open hole non-gas tight cement plug was planned for. Plug #1 was set at 2800 - 2575 m. The cement stinger was pulled out to 2565 m to avoid cement in returns. Cement plug #2 was set from 2565 to 2442 m and was cut short due to loss of mixing water. A cement plug #3 therefore had to be placed to cover the intended interval from 2442 to 2350 m.

Due to severe washouts the intended Perigon cement support tool (CST) was replaced by a 10.7 m³ high viscosity pill of 1.70 g/cm³ in the interval 1565 - 1465 m as support for the transition zone cement plug. The caliper had shown hole diameter larger than  $17 \frac{1}{2}$ ".

Plug #4, in the transition zone between open hole and 13 3/8" casing, was placed between 1460 and 1260 m. The cement plug was tested to 88 bar, which is 72 bar above the EMW FIT of 1.55 g/cm³ at the 13 3/8" casing shoe. A 13 3/8" EZSV plug was the set at 655 m and tested to 88 bar. Displaced the well to seawater and set a surface cement plug, plug #5, from 650 to 450 m. Washed BOP and pulled Wear Bushing (WB). Pulled the BOP.

Cut the 20" x 30" casing at 403 m for 2.5 hrs, when the PDM stalled out. Engaged and locked MOST to Wellhead and pulled to 230 MT overpull without pulling 20" x 30" casing free.



Rev. no.

45 of 75

Disengaged MOST, and function tested/inspected tool and continued cutting 20" x 30" casing. Observed cement in returns to sea bed. Pulled WH free with 80 tons overpull and retrieved same to surface. Removed bull's eye brackets from the Wellhead in the moon pool area. Laid out 20"x30" casing on deck. The ROV retrieved the transponders.

A canvas sleeve was installed on the 30" conductor wellhead to reduce the necessary over pull needed when pulling it.

The rig was transferred to Norne operations well 6608/B-4BH, the 07.08.2003 at 21:30 hrs.

# 5.5.2 Experiences / recommendations

• Software crash on the cement unit:

The computer on the cement unit crashed. As a consequence of this the cement operation had to be done manually, as first time on Stena Don. As a result some operations went wrong; as loss of mixing water to the sea and pumping of 6.3 m³ spacer into the mixing water.



Rev. no.

46 of 75

# 5.6 Figures and tables

# 5.6.1 Well schematic

o RKB on: 24 m <b>2003</b>	SURV CSG/OH			<u>OH:</u> DR	<u>OH:</u> GR DIR DIR	OH GR DIR	
s referes to _ Stena Do : August :	S501 ML			None	None	Z	
All depths RKB-MSI <b>Finished</b>	LWD LWD			None	None	Nane	
				_			
	SHOE	ΔM		445	1 365		
ATIC	CSG.	DVT		445	1 365		
HEM,			398,0	Seabec	Seabec		
scr	Ť	TVD	398,0	Seabed	Seabed		
ELL	FIT	1			FIT 1.55 g/cm3		
NAL W	CASING	TEST PRESS [BAR]		NIA	275 1.03 g/cm3		
0-10 FINAL		CENTRALIZERS		Nane	Type: NW-ST A4 1 ctr/jt on bottom 6 jnts above this 4 slick joints, then 1 ctr/jt on next 2 jts		
		TYPE / NOTES		4 jnts. 30", 309.7 lb/ft, X-52, SL-60 incl 30" WH housing & shoe joint. Canvas sleeve installed on WH.	18 3/4" WH hanger incl. extension jnt. x-over to 13 3/8" 72 lb/ft, P-110, New Vam		
<b>6608/1C</b> Gråspett Stena Doi		SIZE		30"	13 3/8"	A Z	
Vell: -ield: Rig:	Щ	UT MD	398,0	447 447	1 377 1 377	2 800	1
	Р	SIZE	Sea Bed	36	17 1/2"	12 1/4"	1



Rev. no.

47 of 75

5.6.2 P&A well schematic

RKB : 24 m <b>03</b>	ц		č.													
eres to F na Don <b>gust 20</b>	บี		40					<u>⊢</u>								
epths refe MSL Ste <b>hed: A</b> u	TESTS					70 bar above FI	70 bar	above FI								
All de RKB- <b>Finis</b>							1									
ELL		RKB		Seawater		Cmt. Plug # 5	EZSV 1.46 sg WBM	Cmt. Plug # 4	1.70 sg	Hi-Vis 1.46 sg WBM		Cmt. Plug # 3	Cmt. Plug # 2	Cmt. Plug # 1		
D	DE				5	-		65					_			
ONE	G. SHC	₽ Q			15 44			65 1 3								
NDG	cs	F Q	8,0	tbed	4	25	60	-	60	ß	850	42	75		00	
AB/	TOC	2 0	3,0 39	ped Sea	ŕ	55 65	60 12		60 14	05 15	50 23	42 24	75 25		00 28	
AND		4	39	Sea	ŕ	65	3		14	15	2 3	24	25		28	
GED /	LOT / FI						FIT 1.55 g/cm [:]									
- PLUGG		TEST PRESS [BAR]		N/A			275 1.03 g/cm³									
SCHEMATIC	0	PERMEABLE HC BEARING ZONES		None			None			None						
-10	CASING	TYPE / RAD. MARKERS		4 jnts. 30", 309.7 lb/tt, X-52, SL-60 incl 30" WH housing & shoe joint. Convoction controlled of WH			18 3/4" WH hanger incl. extension jnt. x-over to 13 3/8" 72 lb/ft, P-110, New Vam									
6608/10 Sråspett Stena Don		SIZE		30"			13 3/8"									
Well: ( Field: C Rig: S	Ш	QV DM	398,0	445 445			1 377 1 377			2 800	2 800					
<u> </u>	ЮН	SIZE	Sea Bed	36"			17 1/2"			12 1/4"						



Rev. no.

48 of 75

5.6.3 Time/depth curve





Rev. no.

49 of 75

5.6.4 Timeplanner

Wed	27.08.2003	10:24	Updat	ted							TIM	El	PLANNER 👌 STATOIL	
Wed	16.07.2003	18:00	Start	date							Stena	D	on DRY WELL	Time ahead of budget:
Thu	07.08.2003	21:30	Finish	date							6608/	10	-10 Gråspett Vertical well	6,4 days
D			Budg.	Acc. budg.	Opt.	Acc. opt.	Budg./ Opt.	Plan	Actual	Acc. actual	Actual			
A Y	START DATE	START TIME	time (hrs)	time (days)	time (hrs)	time (days)	depth (mMD)	time (hrs)	time (hrs)	time (days)	Depth (mMD)		Activity description	Company
													36" hole section (398 - 448 m)	
Wed	16.07.2003	18:00	12,0	0,5	9,0	0,4	0	2,0	3,0	0,1	0	F	Transit from Norne to well location. Mix spud mud. Service rig equipment.Adjust rig heading.	
Wed	16.07.2003	21:00	6,0	0,8	4,5	0,6	0	4,5	2,0	0,2	398	F	Deploy DP-transponders. Performed DP trials.	
wed Thu	16.07.2003	23:00 08:00	8,0 24,0	1,1 2,1	6,0 18,5	0,8 1,6	448 448	6,0 18,5	9,0 19,5	0,6 1,4	398 447	F F	MU 30" CART & cmt stand. MU and RIH with 36" BHA. Finalize spud position w/ROV beacon Drill 36" hole (26" HO depth: +/- 445 m).	
Fri	18.07.2003	03:30	4,0	2,3	3,0	1,7	448	3,0	1,0	1,4	447	F	Circulate hole clean and displace hole to 1.30 sg mud.	
Fri	18.07.2003	04:30 23:00	8,0 14,0	2,6 3,2	6,0 11,0	2,0 2,4	448 448	6,0 11,0	18,5	2,2 2,5	447 447	F F	POOH with 36" BHA. Rack same. PU 30" conductor and install slope indicators. Run conductor and cement stinger.	
Sat	19.07.2003	07:00	5,0	3,4	4,0	2,6	448	3,5	2,5	2,6	447	F	Circulate, pump and displace cement.	
Sat Sat	19.07.2003 19.07.2003	09:30 15:00	6,0 7,0	3,6 3,9	4,5 5,5	2,8 3,0	448 448	4,5 4,5	5,5 5,5	2,9 3,1	447 447	F F	Retrieve running tool and landing string. MU Cmt stand for 13 3/8" casing. MU and RIH with 17 1/2" BHA.	
Sat	19.07.2003	20:30	4,0	4,1	3,0	3,1	448	3,0	2,5	3,2	447	F	Drill out cement & 30" shoe.	
Secti	on time (day	s)	4,1		3,1			2,8	3,2			⊢	Section time ahead of/behind (-) budg:0,9 days, Tot. time ahead of/behind (-) budg:0,9 days	
Sat	10.07.2002	22.00	49.0	61	37.0	47	1274	27.0	24.0	42	1277	F	17 1/2" hole section (448 - 1377 m)	
Sun	20.07.2003	23:00	48,0 4,0	6,1 6,3	3,0	4,7 4,8	1374	37,0	24,0	4,2 4,3	1377	r F	Circulate hole clean.	
Mon	21.07.2003	01:00	6,0	6,5	4,5	5,0	1374	4,5	7,5	4,6	1377	F	Displace hole to 1.30 sg mud. POOH. Rack back 17 1/2" BHA.	
Mon Tue	21.07.2003	08:30 02:30	24,0 6,0	7,5 7,8	18,5	5,8 5,9	1374 1374	18,5	18,0 6,0	5,4 5,6	1377 1377	F F	RU and run 20" x 13 3/8" casing. Circulate, pump and displace cement. Release RT	
Tue	22.07.2003	08:30	7,0	8,0	5,5	6,2	1374	5,5	3,0	5,7	1377	F	POOH and wash well head area. LD cement head, RT and 17 1/2" BHA.	
Tue Wed	22.07.2003 23.07.2003	11:30 16:00	68,0 12.0	10,9 11.4	53,0 9,0	8,4 8,8	1374 1374	27,0 9,0	28,5 6,0	6,9 7,2	1377 1377	F F	Run BOP / Riser and pressure test same. Test 13 3/8" csg/ BOP connector to 275 bar/ 15 min. MU and RIH with 12 1/4" BHA.	
Wed	23.07.2003	22:00	8,0	11,7	6,0	9,0	1374	6,0	5,5	7,4	1377	F	Perform choke drill. Drill out shoe track and 3 m new formation using SW/Hivis.	
Thu Section	24.07.2003	03:30	2,0	11,8	1,5	9,1	1374	1,5	16,0	8,1	1377	F	Circulate & perform FIT. POOH to reprogram MWD.	
See	on thire (day.	,,	,,,		5,9			-,,	-,,				Section time anead orbeining (-) badg.2,7 days, rote time anead orbeining (-) badg.0,7 days	
Thu	24.07.2003	19:30	8,0	12,1	6,0	9,3	1377	6,0	1,5	8,1	1377	F	12 1/4" hole section (1374 - 2800 m) Displace well to 1.40 sg WBM.	
Thu	24.07.2003	21:00	110,0	16,7	85,5	12,9	2420	43,0	57,0	10,5	2458	F	Drill 12 1/4" hole to check for hydrocarbons (2420 - 2560 m). MW to be 1.42 sg from 1800 m.	
Sun Sun	27.07.2003 27.07.2003	06:00 06:00	0,0 45.0	16,7 18.6	0,0 35,0	12,9 14.3	2420 2800	0,0 30,0	0,0 23.5	10,5 11,5	2458 2800	F F	Circulate hole clean and POOH. Cont drill 12 1/4" hole to TD at ±/-2800 m.	
Mon	28.07.2003	05:30	24,0	19,6	18,5	15,1	2800	42,5	45,0	13,4	2800	F	Circulate well clean, back reamed to 13 3/8" shoe. Perform wiper trip no 1.	
Wed	30.07.2003	02:30	0,0	19,6	0,0	15,1	2800	0,0 28.0	8,5 26.0	13,7	2800	F	Perform open hole logging, Not able to pass 1700 m with WL run #1 (A).	
Thu	31.07.2003	13:00	0,0	19,6	0,0	15,1	2800	24,0	20,0	15,6	2800	F	Wiper trip no 3 to TD. Increase MW to 1.46 sg. PO to shoe, circulate hole clean. POOH.	
Fri	01.08.2003	09:00	0,0	19,6	0,0	15,1	2800	18,0	5,5	15,9	2800	F	Perform open hole logging, Not able to pass 1397 m with WL re-run of #1 (B).	
Sat	01.08.2003	14:50	0,0 0,0	19,6 19,6	0,0 0,0	15,1	2800	24,0 5,0	24,5 4,5	16,9	2800	г F	W/L logging, 2nd re run of #1 (C). Not able to pass 1491 m.	
Sat	02.08.2003	19:30	75.0	22.7	58.0	17.5	2800	23.0	20.5	17.9	2800	F	TLC logging, run no1 (PAX/MDT). Not able to pass 1500 m. POOH and LD TLC. ( Budget and optimum time was for 3 WL runs.)	
Secti	on time (day	s)	10,9		8,5			10,1	9,9	<i>.</i>			Section time ahead of/behind (-) budg:1,1 days, Tot. time ahead of/behind (-) budg:4,8 days	
													Not in use	
Sun Sun	03.08.2003	16:00 16:00		22,7		17,5	2800 2800			17,9 17.9				
Secti	on time (day	s)		22,7		1,0	2000			1.10				
L													Not in use	
Sun	03.08.2003	16:00		22,7		17,5	2800			17,9				
Sun Secti	03.08.2003 on time (day:	16:00 s)		22,7		17,5	2800			17,9				
													Not in use	
Sun	03.08.2003	16:00		22,7		17,5	2800			17,9			i tot m use	
Sun Secti	03.08.2003 on time (day	16:00 s)		22,7		17,5				17,9		┝		
													Ding 6. About Jon	
Sun	03.08.2003	16:00	14,0	23,3	11,0	18,0	2800	11,0	10,5	18,4	2800	F	Fing & Adamuon PU cement stinger and RIH to TD. Circulate.	
Mon	04.08.2003	02:30	34,0	24,7	26,5	19,1	1200	44,5	40,5	20,0	1265	F	Plug open hole w/ 3 cmt plugs. (Planned 2).Set hi-vis/hi-wt pill &cement plug across 13 3/8" sho	. POOH.
Tue Wed	05.08.2003 06.08.2003	19:00 05:00	12,0 6.0	25,2 25.5	9,0 4.5	19,5 19.6	1190 410	9,0 4.0	10,0 3.5	20,5 20.6	1265 450	F F	KIH with bridge plug. Pressure test cmt. with bridge above BOP. Set bridge plug. Displace well Set surface cement plug. POOH	o SW.
Wed	06.08.2003	08:30	8,0	25,8	6,0	19,9	410	4,0	6,0	20,9	450	F	RIH w/ jet assembly and WB RT. Retrieve WB.	
Wed Thu	06.08.2003	14:30 10:30	38,0 26.0	27,4 28 5	29,5 20.0	21,1 22.0	410 410	18,5 12.0	20,0	21,7	450 403	F F	Pull Riser / BOP. Cut & retrieve 20" x 30" csg / WH	
Thu	07.08.2003	21:30	0,0	28,5	20,0	22,0	0	0,0	11,0	22,1	0	F	END OF WELL.	
Thu F	07.08.2003	21:30	5,8		4,4			4,3	4,2				Section time ahead of/behind (-) budg:1,3 days, Tot. time ahead of/behind (-) budg:6,1 days	



Rev. no.

50 of 75

5.6.5 Wellhead system





Rev. no.

51 of 75

5.6.6 Drilling fluids

referes to RKB Stena Don: 24 m August 2003	Total Volume Old Volume	New Volume Usage [m³]	423 0 180	918 0 918	906 0 208	
All depths RKB-MSL Finished:	MBT	[kg/m3]			14 - 25	
	KCI	[kg/m³]			120 - 162	•
	Glycol	[%]			3,5 - 4	
	Sulphate	[mg/ltr]			175 - 195	
	Hd		- 6 8	- 8	8 - 2'2	
АТА	d٨	[Pa]			14,5 - 20	
DS D/	API FL	[m]			3,00 - 4,00	
FLUI	FV	[sec]	>200	>200	60 - 80	•
LING	٨d	[cP]			19 - 21	
DRIL	Fann 3 rom	[lb/sqft]			4 - 0	
	Fann 100 rpm	[lb/sqft]			16 - 38	ed here.
	10 min.	[Pa]			4 - 6	olumes list
	10 sec.	[Pa]			£ ،	ded in the v
	S91	[kg/m³]			23 - 128	is not inclu
	MM	[g/cm³]	1,03 - 1,35	1,03 - 1,30	1,40 - 1,46	&A section
-10 t	MUD TYPE		SW/ Bentonite sweeps	SW/ Bentonite sweeps	Glydril (KCL/ Pac/Glycol) 99% KCI	NOT E: The F
6608/1( Gråspet Stena Do	DN	dM D	446	1 365		
	CAS	SIZE	30"	13 3/8"	NA	
Well: Field: Rig:	LE	d d	447	1 377	2 800	
	Ĥ	SIZE	36"	17 1/2"	12 1/4"	



Rev. no.

52 of 75

5.6.7 Cementing data

	RKB 1: 24 m <b>003</b>	DISPLACEMENT	Fluids and Rates	Sea water 1200 lpm	Sea water 3000 lpm	WBM 2500 lpm
	All depths referes to RKB-MSL Stena Dor <b>Finished: August 2</b>	SPACER		Min. 30 m3 Sea water	Casing volume Sea water	3 х б,9 m3 Tuned Spacer
			24 hrs C. S. [psi]	800	L: 550 T: 1820	3300
			API Fluid loss [ cc/30min ]	n/a	n/a	136
			API Free Water [%]	n/a	n/a T: 1,1	0
			Thickening time [hrs to 30 Bc]	02:10	L: 5:50 T: 3:50	03:10
	АТА	DESIGN	Stat. / Circ. Temp [°c]	6-8	44/34	104 / 86
	CEMENT D/	IT SLURRY I	Yield [Itt/100kg]	104,50 Code DWLSP	L: 130,20 Code STL40 T: 75,09 Code MPT14	77,52 Code MFL05
		CEMEN	Density [g/cm³]	1,53	L: 1,56 T: 1,92	1,90
			Tail [ttr/100kg]	4,50 0,10 53,67	0,50 - 0,50 0,10 - 42,87	10,00 2,50 0,60 0,10 33,20
			Lead [tr/100kg]		- 3,20 2,40 0,10 93,38	
			Components	X-lite cmt (100 kg) CaCl2 liquid NF-6 Sea water	Norcem "G" Cmt. (100 kg) Halad-613L E conolte HR-4L NF-6 Sea water Fresh Water	Norcem "G" Cmt. (100 kg) Halad-613L HR-5L CFR-5LE+ NF-6 Fresh water
		VOLUME/ EXCESS		42 m³ 300%	Lead: 116 m ³ Tail: 20 m ³ 100% (Lead)	Plug #1: 20,5 m Plug #2: 9,0 m3 Plug#3: 9,0m3 Plug#3: 9,0m3
		TOC	QVT ØM	398	398	2 260
	-10 t	SHOE/ DEPTH	Q T Q M	445	1 365	2 800
	6608/1( Gråspet Stena Dor		SIZE	30"	13 3/8"	OH Plug #1, #2 & #3
	Well: Field: Rig:	ĹĒ	dvt dm	445	1377	2 800
		어	SIZE	36"	17 1/2"	12 1/4"



Rev. no.

4

53 of 75

## 5.6.8 Bottom hole assemblies well

Wellbore: NO 6608/10-10

BHA seq: 1 BHA category: Drilling BHA description: Drilling 36" hole.

#### BHA no: 1

String component	OD in	ID in	Length m	Acc length m
BIT	17,500		0,40	0,40
FLOAT SUB	11,250	3,000	0,90	1,30
HOLE OPENER	36,000	3,000	4,33	5,63
X-OVER	9,500	3,000	1,23	6,86
ANDERDRIFT	8,000	2,813	3,18	10,04
DRILL COLLAR	8,000	2,813	112,42	122,46
X-OVER	8,000	2,813	0,91	123,37
HW DRILL PIPE	5,000	3,000	84,60	207,97
DP 5"				207,97

BHA seq: 2 BHA category: Drilling BHA description: 17 1/2" Pendulum BHA

BHA no: 2

		String component	OD in	ID in	Length m	Acc length m
		ROCK BIT	17,500		0,40	0,40
		BIT SUB W/FLOAT	9,480	3,000	0,91	1,31
		X-OVER	9,560	3,000	0,37	1,68
		MWD MPR	8,250	2,813	5,01	6,69
		MWD DCP	8,312		11,17	17,86
		SAVER SUB	8,312	2,813	0,65	18,51
		STAB STRING W/FLOAT	17,500	2,813	2,02	20,53
		8" DRILL COLLAR	8,000	2,813	9,39	29,92
		STAB STRING	17,500	2,938	2,22	32,14
		8" DRILL COLLAR	8,000	2,813	74,89	107,03
		JAR	8,000	3,000	9,60	116,63
		8" DRILL COLLAR	8,000	2,813	18,76	135,39
		X-OVER	8,000	2,813	0,91	136,30
		5" HW DRILL PIPE	5,000	3,000	84,60	220,90
		5" DRILL PIPE				220,90
BHA seq:	3	BHA category: Drilling BHA c	description:	12 1/4" P	acked BHA	

BHA no: 3

String component	OD in	ID in	Length m	Acc length m
PDC BIT	12,250		0,35	0,35
BIT SUB	8,250		0,64	0,99
NEAR BIT STAB	12,250	3,000	0,75	1,74
MWD MPR	8,250	3,000	3,72	5,46

#### Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

		MOD STAB	12,250	2,813	1,32	6,78
		MWD DCP	8,375		11,28	18,06
		SAVER SUB	8,250	2,813	0,75	18,81
		FLOAT SUB	8,000	2,813	0,89	19,70
		STAB. W/TOTCO	12,250	2,813	1,64	21,34
		8" DRILL COLLAR	8,000	2,813	84,28	105,62
		JAR	8,000	3,000	9,60	115,22
		8" DRILL COLLAR	8,000	2,813	18,76	133,98
		X-OVER	8,000	2,813	0,91	134,89
		5" HW DRILL PIPE	5,000	3,000	84,60	219,49
		5" DRILL PIPE				219,49
BHA seq:	4	BHA category: Drilling	BHA description:	12 1/4" V	Viper trip BHA	
BHA no:	4					
		String component	OD	ID	Length	Acc length
			in	in	m	m
		PDC BIT	12,250		0,35	0,35
		STAB. NB W/FLOAT	12,250		2,20	2,55
		8" DRILL COLLAR	8,000	2,813	18,78	21,33
		STAB STRING	12,250		1,64	22,97
		8" DRILL COLLAR	8,000	2,813	65,40	88,37
		JAR	8,000	2,813	9,60	97,97
		8" DRILL COLLAR	8,000	2,813	18,76	116,73
		X-OVER	8,000	2,813	0,91	117,64
		5" HW DRILL PIPE	5,000	3,000	84,60	202,24
		5" DRILL PIPE				202,24
BHA seq:	5	BHA category: Drilling	BHA description:	12 1/4" V	Viper trip BHA	
BHA no:	4					
		String component	OD	ID	Length	Acc length
			in	in	m	m
		PDC BIT	12,250		0,35	0,35
		STAB. NB W/FLOAT	12,250		2,20	2,55
		8" DRILL COLLAR	8,000	2,813	18,78	21,33
		STAB STRING	12,250		1,64	22,97
		8" DRILL COLLAR	8,000	2,813	65,40	88,37
		JAR	8,000	2,813	9,60	97,97
		8" DRILL COLLAR	8,000	2,813	18,76	116,73
		X-OVER	8,000	2,813	0,91	117,64
		5" HW DRILL PIPE	5,000	3,000	84,60	202,24
		5" DRILL PIPE				202,24
BHA seq:	6	BHA category: Drilling	BHA description:	TLC log	PEX/MDT.	
BHA no:	5					
		String component	OD	ID	Length	Acc length
			in	in	m	m
		PEX			7,35	7,35
		MDT			9,50	16,85

#### Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

55 of 75

		DTC-H			2,13	18,98
		ACTS			1,22	20,20
		AH-107			0,61	20,81
		DWCH			2,44	23,25
		X-OVER			0,92	24,17
		DP 5"	5,000	4,280	1337,21	1361,38
		PUP JOINT	5,000	4,280	3,09	1364,47
		SIDE ENTRY SUB	6,094	1,875	1,67	1366,14
		DP 5"	5,000	4,280	9,68	1375,82
		SAVER SUB	7,625		0,56	1376,38
		FLOAT SUB	8,000	2,813	0,91	1377,29
		X-OVER	8,000	2,813	0,91	1378,20
		DP 5"	5,000	4,280		1378,20
BHA seq:	7	BHA category: Drilling	BHA description:	Plug bac	k assembly.	, -
		3 3 9	• • • •		, , , , , , , , , , , , , , , , , , ,	
BHA no:	6					
		String component	OD	ID	Length	Acc length
		etting compensati	in	in	m	m
		DP 3 1/2"	3.500	2.602	292.09	292.09
		X-OVER	6.500	4.750	0.91	293.00
		DP 5"	5.000	4.280	,	293.00
BHA sea:	8	BHA category: Drilling	BHA description:	P & A as	sembly.	
		3			, <b>,</b>	
BHA no:	7					
		String component	OD	ID	Lenath	Acc length
		gp	in	in	m	m
		EZSV	11.680	1.370	0.92	0.92
		SETTING TOOL	7,000	2,000	1,50	2,42
		DP 5"	5.000	4.280		2.42
BHA seq:	9	BHA category: Drilling	BHA description:	Retrieve	13 3/8" WB.	,
		0, 0				
BHA no:	8					
		String component	OD	ID	Lenath	Acc length
		5 1 1	in	in	m	m
		BULL NOSE			1.42	1.42
		DRILL COLLAR	6,500	2,810	28,20	29,62
		JET SUB	13.000	3.000	0.61	30.23
		MPT TOOL	18.510	3.000	0.92	31.15
		DP 5"	5,000	4,280	-,	31.15
BHA sea:	10	BHA category: Drilling	BHA description:	Cutting a	ssembly for 2	0" x 30" casing.
Brint boq.		Brink outogory. Brining		outing u		io x oo odollig.
BHA no.	9					
210,110.	5	String component		חו	l enath	Acc length
		carring component	in	in	m	m
		BULL NOSE	8 000	2 000	0.38	0.38
		CASING CUTTER	12 000	0.750	1.83	2 21

10,000 2,000 0,96

3,17

TOP SUB

#### Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

MOST TOOL	9,500		8,78	11,95
DRILL COLLAR	8,000	2,800	84,20	96,15
X-OVER	8,000	3,000	0,92	97,07
HWDP 5"	5,000	3,000	84,60	181,67
DP 5"	5,000	4,280		181,67

Doc. No. **04Y94*17440** Date 2004-01-22

**Ö** STATOIL

Rev. no. 57 of 75

# 5.6.9 Bit record well

ŋ	9	6	£	ŝ	6	0	0	
w Are	1,32(	,896	1,07	377,	,796	,980	,980	
n Flo in2	×	×	×	×	×	×	×	
I X OU								
ЧХU	×	×	×	×	×	×	×	
о и	2	œ	4	<del>~</del>	<del>~</del>	2	2	
no x	6 x 1	3 x 1	1 × 1	6 x 1	5 x 1	3 x 1	3 x 1	
ЧХU	x 12	x 14	x 20	x 12	x 12	x 13	x 13	
0 10	9	-	3	2	ŝ	Ω.	2	
rial N		93DK	1279(	25	24	24	24	
Se		, Z	09 0	28	28	28	28	
anufacturer	3aron	es Christensen	es Christensen					
Bit m	Red E	Hugh	Hugh	Lyng	Lyng	Lyng	Lyng	
IADC code		435	115	M323	M323	M323	M323	
Bit Type	HOLEOPENER	MXC3T09DDT	MXT1	LD565ATHG	LD565ATHG	LD565ATHG	LD565ATHG	
BHA No	÷	-	2	в	ю	4	5	
Bit No		1RR	2	с	4	4RR	4RR2	
Bit Size	26"/36"	17 1/2"	17 1/2"	12 1/4"	12 1/4"	12 1/4"	12 1/4"	
Run No	÷	-	5	e	4	5	9	

Wellbore: NO 6608/10-10

Con drag Max 1000 daN							
Con drag Min 1000 daN							
Torque Max Nm	10	10	13		12		
Torque Min Nm	ы	ε	2		4		
Max RPM	125	120	150	60	220		
Min RPM	50	50	50	40	80		
Max WOB ton	7	7	25	5	15		
Min WOB ton	2	2	2	-	Ð		
ROP	2,7	2,7	63,7	21,3	26,8		
Hours Drilled	17,7	17,9	14,6	0,8	52,9		
Drilled length m	47	49	930	17	1418		
Depth out mMD	445	447	1377	1382	2800		
Depth in mMD	398	398	447	1365	1382		
Pump Press bar	120	125	230	180	280	300	310
Pump Rate I/min	4500	4500	4500	3000	3700	4400	3900
Bit Size	26"/36"	17 1/2"	17 1/2"	12 1/4"	12 1/4"	12 1/4"	12 1/4"
Run No	~	-	7	S	4	5	9

Wellbore: NO 6608/10-10

IADC dull grading

Doc. No. **04Y94*17440** Date 2004-01-22

# **Ö** STATOIL

Rev. no. 58 of 75

	RechBhatcon two-stage Heavy Duty HO.	Used bit from another well.	Tot revolutions: 118 KRev.	Drilled plug, float, shoe and 25 m of firm cmt in shoe track. 12 chipped teeth.	Drilled with controlled ROP. Back reamed and circulated 45 hrs.	Wiper trip. Accumulated circulation time : 27,5 hrs.	Wiper trip. Accumulated circulation time: 32 hrs.	
	RD	ΠD	TD	DTF	TD	ΠD	TD	
	Ø	0N N	ΜT	ст	RO	RO	RO	
	ŋ	_	_	_	_	_	_	
	ш	ш	ш	×	×	×	×	
	A	Σ	Σ	z	۲	۷	۲	
	D DOC	1 BT	2 BT	2 CT	7 WT	7 WT	7 WT	
	=	7	2	7	9	9	9	
Bit Size	26"/36"	17 1/2"	17 1/2"	12 1/4"	12 1/4"	12 1/4"	12 1/4"	
Run No	<del></del>	÷	2	e	4	5	9	



Rev. no.

59 of 75

# Appendix A

# **Operational listing**

All data are taken from the DBR system (06:00 - 06:00 hrs).

#### Operations

Wellbore: NO 6608/10-10

					Stat	us	
Time from	Time to	Time used	Depth mMD	Act code	During opr	End of opr	Description of activities
16.07.2003 18:00	21:00	3,0	,0	MNMU	OK	ОК	Rig in transit from well 6608/10-D1BH. Arrived location and adjusted heading to 225 deg.
16.07.2003 21:00	23:00	2,0	,0	MNPU	ОК	OK	Deployed transponders and taut wire. Performed DP trials. Meanwhile worked on IBOP actuator and Hydraracker and performed rig maintenance.
16.07.2003 23:00	00:00	1,0	,0	CAOU	OK	ОК	MU 30" CART. Meanwhile continued DP trials.
17.07.2003 00:00	00:30	0,5	,0	CAOU	OK	ОК	Continued MU CART and racked in derrick.
17.07.2003 00:30	04:00	3,5	,0	DTPU	OK	ОК	MU BHA with 17 1/2" bit and 26"/36" hole opener. Installed Totco ring and continued running in with BHA.
17.07.2003 04:00	06:00	2,0	380,0	DTDU	OK	ОК	Ran in with 36" BHA on 5" DP to 380 m. Adjusted rig position prior to spud. Tagged sea bed at 398 m. Tested Anderdrift at 235 m - ok.
17.07.2003 06:00	08:00	2,0	398,0	DTDU	OK	ОК	Deployed 3 marker buoys in triangle array with ROV. Placed ROV on DP and logged and finalised preliminary well position using beacon on ROV.
17.07.2003 08:00	10:00	2,0	408,0	DDOU	ОК	OK	Spudded well and drilled 17 1/2" x 26" x 36" hole from 398 - 408 m with reduced parameters. Parameters : 1000-2000 LPM / 30 Bar / 50 RPM / 3-8 KNm / 0-2 t WOB.
17.07.2003 10:00	13:30	3,5	418,0	DDOU	OK	E FAIL	Drilled from 408 - 418 m. Pumped 10 m3 Hi -vis every 15 m. Parameters : 4500 LPM / 120 Bar / 100-125 RPM / 3-10 KNm / 3 t WOB.
17.07.2003 13:30	14:00	0,5	418,0	DERD	E FAIL	ОК	Observed sudden pump pressure drop. Troubleshot same, found faulty sensor on standpipe. Changed same.
17.07.2003 14:00	19:00	5,0	428,0	DDRU	OK	ОК	Drilled 17 1/2" x 36" hole from 418 - 428 m. Pumped 10 m3 Hi -vis every 15 m.
17.07.2003 19:00	00:00	5,0	439,0	DDRU	ОК	ОК	Drilled 17 1/2" x 36" hole from 428 - 439 m. Pumped 10 m3 Hi -vis every 15 m. Parameters : 4500 L PM / 120 Bar / 125 RPM / 4-11 KNm / 3-7 t WOB
18.07.2003 00:00	03:30	3,5	447,1	DDRU	ОК	ОК	Drilled 17 1/2" x 36" hole from 439 - 447 m (26" : 445 m, 36" : 444 m). Pumped 10 m3 Hi -vis every 15 m. Confirmed space out with ROV. Parameters : 4500 LPM / 120 Bar / 125 RPM / 4-11 KNm / 3-7 t WOB.
18.07.2003 03:30	04:30	1,0	447,0	DCAU	OK	ОК	Circulated BU with seawater and swept hole with 30 m3 Hi -vis pill. Displaced hole to 1.35 SG mud with 4500 LPM.
18.07.2003 04:30	05:30	1,0	420,0	DTCU	OK	ОК	POOH to 5 m below seabed. Necessary to break off and LD every single onto catwalk due to problems with Hydraracker. Hole OK.
18.07.2003 05:30	06:00	0,5	403,0	DTCU	OK	E FAIL	MU top drive and topped up hole with 1.35 SG mud. Cont. POOH to 390 m.
18.07.2003 06:00	20:00	14,0	395,0	DERD	E FAIL	OK	Waited for spare parts for Hydraracker coming from shore. Received spare moog valve with helicopter from shore at 11:30 hrs. Installed new valve and tested Hydraracker functions.

#### Doc. No. 04Y94*17440 Date 2004-01-22



							Meanwhile inspected top drive and derrick for loose items after drilling tophole.
18.07.2003 20:00	22:30	2,5	,0	DTCU	ОК	ОК	POOH from 395 m. Racked back DC's and HWDP.
18.07.2003 22:30	23:00	0,5	,0	DTPU	ОК	ОК	LD 36" premade HO assembly with Anderdrift.
18.07.2003 23:00	23:30	0,5	,0	CAOU	ОК	ОК	Held tool box talk and reviewed risk assessment.
18.07.2003 23:30	00:00	0,5	,0	CERU	OK	ОК	RU for running 30" conductor; installed shackles and bails and 30" elevators.
19.07.2003 00:00	01:30	1,5	40,0	CERU	OK	ОК	PU 30" shoe jnt and checked float for flow through. PU and RIH 2 intermediate jnts and Housing jnt. Filled conductor with SW.
19.07.2003 01:30	02:30	1,0	40,0	CERU	ОК	OK	LD schakels and bails and installed 5" elevators. PU and MU 30" RT to housing. Lifted up and removed 30" elevators. Landed housing joint in 30" bushings to get sufficient height to MU cmt stinger.
19.07.2003 02:30	03:30	1,0	40,0	CERU	ОК	ОК	Installed C-plate and false rotary. Ran 4 jnts of 5" DP as cmt stinger (spaced out appr. 13 m above shoe). MU cmt stinger to RT. Locked RT with 5 counter clockwise turns and performed PU test. Installed ball valve.
19.07.2003 03:30	05:00	1,5	40,0	CERU	ОК	OK	Lowered housing through RT. Installed bulls eye arrangement on housing joint. Secured wire slings on bull's eye arrangement (in case of future retrieval of bulls eyes).
19.07.2003 05:00	06:00	1,0	398,0	CARU	ОК	ОК	Ran 30" conductor string on 5" DP down to seabed. Closed ball valve on RT with ROV and positioned.
19.07.2003 06:00	06:30	0,5	398,0	CARU	OK	ОК	Fine tuned rig position. Stabbed conductor into 36" hole assisted by ROV.
19.07.2003 06:30	07:00	0,5	444,0	CARU	ОК	OK	RIH with 30" conductor string to 430 m. MU cmt stand and circulated conductor down with 500 LPM to 445 m. Checked bulls eyes and stick-up with ROV (max. 1 deg, 3 m). PU 1 m.
19.07.2003 07:00	08:00	1,0	444,0	CCCU	ОК	ОК	Circulated 30 m3 SW with 4000 LPM. Verified integrity of ball valves with ROV. Connected and pressure tested cmt line to 150 Bar. Closed IBOP and left 20 Bar above. Held toolbox talk prior to cementing.
19.07.2003 08:00	09:30	1,5	444,0	CSSU	OK	ОК	Mixed and pumped 42 m3 1.55 SG XLITE cmt slurry. Displaced cmt with 7.4 m3 SW from cmt unit. Released cmt hose and checked for back flow.
19.07.2003 09:30	10:00	0,5	405,0	CTTU	ОК	OK	Set conductor on bottom at 445 m (26" depth). Released RT with 5 right hand turns, PU and LD cmt stand. Checked bull's eyes with ROV (0.5-1.5 deg).
19.07.2003 10:00	11:00	1,0	390,0	CTTU	OK	ОК	MU top drive and flushed housing/DP with 4500 LPM while POOH with cmt stinger.
19.07.2003 11:00	13:30	2,5	,0	CTTU	ОК	OK	POOH with 5" DP landing string and RT. LD RT and cmt stinger. LD cmt stand. Cleared drillfloor.
19.07.2003 13:30	15:00	1,5	,0	CSOU	OK	ОК	PU and MU Halliburton remote operated cmt head to stand. Nippled up hydraulic control lines and racked back cmt stand.
19.07.2003 15:00	19:00	4,0	220,0	DTPU	OK	ОК	Held tool box talk. PU 17 1/2" pendulum BHA. Plugged in and verified MWD sensors.
19.07.2003 19:00	19:30	0,5	380,0	DTDU	OK	ОК	RIH with 17 1/2" BHA on 5" DP from 220-380 m.
19.07.2003 19:30	20:30	1,0	430,0	DTDU	OK	ОК	Moved rig over location and stabbed into 30" housing. RIH to 430 m.
19.07.2003 20:30	21:00	0,5	430,0	DTDU	OK	OK	Held tool box talk. Reviewed shallow gas and stuck pipe procedures.
19.07.2003 21:00	23:00	2,0	447,0	CDDU	ОК	ОК	MU top drive and tested MWD tool. Washed down and tagged TOC at 442 m. Drilled hard cmt from 442-443 m. Drilled soft cement and float from 443-447 m. Reamed shoe track and rat hole several times. Parameters: 4500 LPM / 185 Bar / 50 RPM / 2-5 KNm / 3 t WOB. MWD GR sensor failed while drilling shoe track.
19.07.2003 23:00	00:00	1,0	455,0	DDRU	ОК	OK	Drilled 17 1/2" hole with reduced parameters until last 17 1/2" stab below 30" conductor shoe.

#### Doc. No. 04Y94*17440 Date 2004-01-22



							Reamed shoe track and rat hole, checked for free passage without rotation.
20.07.2003 00:00	01:30	1,5	480,0	DDRU	ОК	OK	Drilled 17 1/2" hole with reduced parameters until upper 17 1/2" stab below 30" shoe. Parameters: 4500 LPM / 190 Bar / 50 RPM / 2-7 KNm / 3-5 t WOB. Pumped 7-10 m3 Hivis every 15 m, reduced flow rate to 3000 LPM when Hivis pills passed MWD tool.
20.07.2003 01:30	06:00	4,5	689,0	DDRU	ОК	ОК	Drilled 17 1/2" hole from 480-689 m. Parameters: 4500 LPM / 190-200 Bar / 100-145 RPM / 2-9 KNm / 3-8 t WOB. Pumped 7-10 m3 Hivis every 15 m, reduced flow rate to 3000 LPM when Hivis pills passed MWD tool.
20.07.2003 06:00	23:00	17,0	1377,0	DDRU	ОК	ОК	Drilled 17 1/2" hole from 689 - 1377 m. Pumped 7-10 m3 hi-vis pills every 15 m, reduced flow rate to 3000 LPM while pills passed MWD tool. Parameters: 4500 LPM / 195 - 235 Bar / 120-150 RPM / 4-13 KNm / 5-25 t WOB.
20.07.2003 23:00	00:00	1,0	1377,0	DCAU	ОК	ОК	Circulated hole clean (1.5 BU) with 4500 LPM / 230 Bar. Reciprocated string with 150 RPM.
21.07.2003 00:00	01:00	1,0	1377,0	DCAU	ОК	ОК	Pumped 40 m3 hi-vis pill and circulated out same with 4500 LPM. Flow checked for 15 min with ROV.
21.07.2003 01:00	02:00	1,0	1377,0	DCAU	ОК	ОК	Displaced hole to 1.30 SG mud with 4500 m.
21.07.2003 02:00	05:00	3,0	220,0	DTCU	OK	ОК	POOH with 17 1/2" BHA to 390 m. Hole slick, max overpull 10 ton. Flushed WH and moved rig 50 m off location. Cont. POOH to 220 m.
21.07.2003 05:00	06:00	1,0	, 0	DTCU	ОК	ОК	POOH and rack back 17 1/2" BHA.
21.07.2003 06:00	07:00	1,0	, 0	DTPU	ОК	ОК	POOH and racked back 17 1/2" BHA.
21.07.2003 07:00	08:00	1,0	, 0	DTCU	ОК	ОК	Inspected top drive and derrick for I oose items. Cleared drill floor.
21.07.2003 08:00	08:30	0,5	, 0	CAOU	ОК	ОК	Held toolbox talk prior to csg running.
21.07.2003 08:30	09:30	1,0	,0	CERU	ОК	ОК	Installed rotators and BX 3 elevators. Pulled master bushings and installed PS30 slips.
21.07.2003 09:30	10:30	1,0	45,0	CARU	ОК	ОК	PU and RIH shoe track. Thread locked first 4 connections. Checked shoe and float collar for flow through.
21.07.2003 10:30	13:30	3,0	390,0	CARU	ОК	ОК	RIH with 13 3/8" csg to 10 m above seabed. Filled every jnt with SW until sufficient weight, thereafter every 5th.
21.07.2003 13:30	14:00	0,5	400,0	CARU	ОК	ОК	Moved rig over well position and fine-tuned rig position. Stabbed 13 3/8" csg shoe into 30" housing assisted by ROV.
21.07.2003 14:00	19:00	5,0	960,0	CARU	OK	ОК	RIH with 13 3/8" csg from 400 - 960 m. Filled string with SW every 5th joint. Running speed : 9.2 jnts /hr.
21.07.2003 19:00	21:00	2,0	960,0	CARU	OK	E FAIL	Changed to 5" DP Frame 4 elevators. PU 18 3/4" WH housing joint and attempted to MU same, neg. Damaged threads in box on joint in rotary table.
21.07.2003 21:00	23:30	2,5	960,0	CAOD	E FAIL	ОК	LD 18 3/4" WH housing on catwalk. PU and LD jnt with damaged box. PU string; no excessive overpull. MU joint w/ special no-cross collar to string. PU WH housing and dressed threads on pin. MU WH housing to string.
21.07.2003 23:30	00:00	0,5	975,0	CARU	ОК	OK	Removed PS30 slips and lowered WH/RT.
22.07.2003 00:00	00:30	0,5	975,0	CARU	ОК	ОК	Removed 2" bull plug on RT and topped up with SW. Installed ball valve in closed position. Installed master bushings.
22.07.2003 00:30	02:00	1,5	1335,0	CARU	ОК	ОК	RIH with 13 3/8" csg on 5" DP landing string.
22.07.2003 02:00	02:30	0,5	1365,0	CARU	ОК	ОК	MU cmt stand and circulated down last stand with 500 LPM. Landed 18 3/4" WH and I ocked same in 30" housing by setting down all string weight plus 5 t. Performed 25 t overpull test. Checked bull's eyes with ROV, no changes (max. 1.5 deg).

#### Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

22.07.2003 02:30	03:30	1,0	1365,0	CCCU	ОК	ОК	Established circulation in steps up to 2300 LPM and circulated 1.5 BU with SW.
22.07.2003 03:30	06:00	2,5	1365,0	CSSU	ОК	ОК	Mixed and pumped 116 m3 1.56 SG lead slurry from cmt unit with 1000 LPM.
22.07.2003 06:00	07:00	1,0	1365,0	CSSU	ОК	ОК	Mixed and pumped 20m3 1.92 SG tail slurry from cmt unit.
22.07.2003 07:00	07:15	0,3	1365,0	CSSU	ОК	ОК	Released dart for wiper plug. Displaced cmt with SW from cmt unit and sheared wiper plug with 149 Bar after 3700 I (equal to theoretical).
22.07.2003 07:15	08:00	0,8	1365,0	CSSU	ОК	OK	Switched over to rig pumps and continued displacement of cmt with 3000 LPM. Reduced rate to 1000 LPM after 60 m3 pumped. Bumped plug after 71.9 m3 / 3036 stks (theoretical 72.8 m3/3079 stks w/ 97 % eff.) with 150 Bar / 5 min. Bled off and checked for back flow.
22.07.2003 08:00	08:30	0,5	1365,0	CSSU	OK	OK	Disconnected cmt hose. Opened ball valve on RT with ROV. Released RT from 18 3/4" WH with 4 1/2" right hand turns, PU and racked back cmt stand.
22.07.2003 08:30	09:30	1,0	,0	CTTU	ОК	ОК	POOH with 18 3/4" RT and 5" DP. Moved rig 50 m off location.
22.07.2003 09:30	11:30	2,0	,0	CTTU	ОК	ОК	LD 18 3/4" RT and cmt stinger jnt. PU and LD cmt stand.
22.07.2003 11:30	12:00	0,5	,0	BBRU	ОК	ОК	Cleared drill floor and held tool box talk.
22.07.2003 12:00	14:30	2,5	,0	BBRU	ОК	OK	RU for running BOP and riser. RU riser guide head on Hydraracker. LD 350 t bails and bail links and installed 750 t bails and elevator. Installed Gimble and Spider and hydraulic torque tools.
22.07.2003 14:30	17:00	2,5	,0	BBRU	ОК	ОК	MU 10' and 20' pup jnts and MU to 65' jnt. Installed riser yoke on port crane.
22.07.2003 17:00	19:00	2,0	30,0	BBRU	ОК	ОК	Skidded BOP under rotary, lowered down riser and MU to BOP.
22.07.2003 19:00	19:30	0,5	45,0	BBRU	ОК	ОК	Lowered BOP and installed mux clamps. Lowered BOP through splash zone.
22.07.2003 19:30	20:00	0,5	45,0	BBRU	ОК	ОК	Filled lines and pressure tested K/C/conduit lines to 20/345 Bar for 5/10 min.
22.07.2003 20:00	00:00	4,0	325,0	BBRU	ОК	ОК	Ran BOP and riser.
23.07.2003 00:00	01:00	1,0	360,0	BBRU	ОК	ОК	Ran BOP and riser to 346 m. Ran a total of 16 jnts; running speed : 3.2 jnts/hr.
23.07.2003 01:00	02:00	1,0	360,0	BBRU	ОК	ОК	Filled lines and pressure tested K/C/conduit lines to 20/345 Bar for 5/10 min.
23.07.2003 02:00	03:00	1,0	380,0	BBRU	ОК	ОК	PU and MU slip joint. Lowered BOP and MU mux clamps.
23.07.2003 03:00	03:30	0,5	380,0	BBRU	ОК	ОК	PU and MU landing joint and lowered BOP.
23.07.2003 03:30	05:00	1,5	380,0	BBRU	ОК	ОК	Installed goosenecks and safety slings for K/C/conduit lines.
23.07.2003 05:00	05:30	0,5	380,0	BBRU	ОК	ОК	Filled lines and pressure tested K/C/Conduit lines to 20/345 Bar for 5/10 min.
23.07.2003 05:30	06:00	0,5	380,0	BBRU	ОК	ОК	MU mux cables and riser tension wires.
23.07.2003 06:00	07:00	1,0	380,0	BBRU	ОК	ОК	MU mux saddles and riser tensioners.
23.07.2003 07:00	08:00	1,0	380,0	BBRU	ОК	ОК	Positioned rig over WH and inspected WH and BOP with ROV.
23.07.2003 08:00	08:30	0,5	394,0	BBRU	ОК	ОК	Landed BOP. Performed overpull test of 25 t. Checked BOP bull's eyes with ROV (0.25-0.5 deg). No changes on WH bull's eyes.
23.07.2003 08:30	10:00	1,5	394,0	BBRU	OK	ОК	Unlocked inner barrel on slip joint. LD landing joint. PU and MU diverter element. Confirmed lock in with 5 t overpull. Pressure tested 13 3/8" csg against BSR to 275 Bar / 10 min.

#### Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

23.07.2003 10:00	13:00	3,0	394,0	BBRU	OK	ОК	RD riser handling gear; spider, gimble, gripper head, torque tools and 750 t bails. Installed master bushings and DP elevators.
23.07.2003 13:00	14:30	1,5	394,0	BBDU	OK	ОК	RU cmt hose and pressure tested IBOP/mud hose to 20/275 Bar for 5/10 min.
23.07.2003 14:30	16:00	1,5	394,0	BBRU	OK	ОК	MU 500 t bails and bail links.
23.07.2003 16:00	18:00	2,0	20,0	DTPU	ОК	ОК	MU 12 1/4" bit and MWD collars. Plugged into MWD and initiated memory/verified sensors. Installed mouse hole and broke off 17 1/2" stab from stand of DC.
23.07.2003 18:00	19:30	1,5	220,0	DTDU	OK	ОК	MU and RIH with 12 1/4" packed BHA.
23.07.2003 19:30	21:00	1,5	1188,0	DTDU	OK	ОК	Installed auto slips and RIH with 12 1/4" BHA on 5" DP.
23.07.2003 21:00	21:30	0,5	1188,0	DTDU	OK	OK	Filled pipe and flow tested MWD. Meanwhile performed service on top drive.
23.07.2003 21:30	22:00	0,5	1326,0	DTDU	OK	OK	RIH, tagged traces of cmt at 1326 m.
23.07.2003 22:00	23:00	1,0	1320,0	BBDU	OK	OK	Function tested BOP on both pods from rig floor and tool pusher's panel. Meanwhile performed toolbox talk prior to displacing and drilling new hole.
23.07.2003 23:00	23:30	0,5	1320,0	BBDU	OK	OK	Flushed and tested diverter system with 1300 LPM / 30 Bar.
23.07.2003 23:30	00:00	0,5	1320,0	DTDU	OK	OK	Took SCR's. Performed kick drill and tool pusher, driller and ass. driller practised on choke.
24.07.2003 00:00	01:00	1,0	1338,0	CDDU	OK	OK	Drilled lumps of soft cement from 1326 m to top of plug at 1338 m.
24.07.2003 01:00	01:30	0,5	1338,0	CDDU	OK	ОК	Drilled plug and float. Parameters : 3000 LPM / 150 Bar / 40-60 RPM / 1-5 t WOB.
24.07.2003 01:30	03:00	1,5	1365,0	CDDU	ОК	OK	Drilled firm cmt in shoe track from 1338 - 1365 m. Reamed and swept with Hi-vis pills. Parameters : 3500 LPM / 185 Bar / 60 RPM / 5-10 KNm / 5 t WOB.
24.07.2003 03:00	03:30	0,5	1382,0	CDDU	OK	ОК	Drilled firm cmt in rat hole and 5 new formation to 1382 m.
24.07.2003 03:30	05:30	2,0	1382,0	ECFU	ОК	ОК	Pumped Hi -vis pill and circulated BU with 4000 LPM. Reamed rat hole and pulled into csg shoe. Meanwhile PU MWD stand from setback and placed same in 60' rat hole. Broke and LD MWD stand using Hydraracker and iron roughneck
24.07.2003 05:30	06:00	0,5	1362,0	EXFU	OK	ОК	Performed FIT to 1.55 SG by pumping down DP and C-line from cmt unit.
24.07.2003 06:00	06:30	0,5	1360,0	EXFU	OK	STUCK	Bled off to Halliburton unit after FIT, all volume pumped in return. Opened UPR and racked back drilling double.
24.07.2003 06:30	09:00	2,5	1360,0	DDJD	STUCK	E FAIL	Started to POOH for re-programming MWD tcol. 20 t overpull at first connection. Checked rams and diverter - OK. Attempted to PU. Neg, no rotation or circulation. Jarred string downwards and established 95 RPM / 5-18 KNm. Worked string downwards, not able to pump. Observed torque drop down to 5 Knm when bit entered open hole. Established circulation in steps up to 3500 LPM. Tagged bottom and pulled into csg shoe.
24.07.2003 09:00	10:00	1,0	1360,0	DTMD	E FAIL	ОК	Circulated BU with 4000 LPM / 230 Bar. Nothing observed in returns.
24.07.2003 10:00	12:30	2,5	220,0	DTMD	E FAIL	ОК	POOH with 12 1/4" BHA to 220 m.
24.07.2003 12:30	16:00	3,5	220,0	DTMD	E FAIL	ОК	POOH with 12 1/4" BHA. LD PDC bit (chipped cutters) and re- programmed MWD. MU new bit and RIH with 12 1/4" BHA.
24.07.2003 16:00	18:30	2,5	1360,0	DTMD	E FAIL	ОК	RIH with 12 1/4" BHA to 1360 m. Performed trip drill.
24.07.2003 18:30	19:00	0,5	1382,0	DCAU	ОК	ОК	MU top drive and washed to bottom, 4 m fill. Worked shoe track and rat hole several times with/without pumping and rotation. No excessive drag or torque.

#### Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

24.07.2003 19:00	19:30	0,5	1382,0	DCAU	ОК	ОК	Pumped 13 m3 drill water followed by 11 m3 1.40 SG hi-vis pill as spacer.
24.07.2003 19:30	21:00	1,5	1385,0	DCAU	OK	ОК	Displaced hole to 1.40 SG Glydrill WBM while washing fill and drilling 3 m of formation. Pulled into shoe. Reduced flow rate to 1000 LPM with mud at surface and verified integrity of active system.
24.07.2003 21:00	22:00	1,0	1385,0	DCAU	ОК	ОК	Worked and reamed rat hole with 3000 LPM / 50 RPM due to high torque peaks and fill at bottom. Made several passes without rotation, hole OK.
24.07.2003 22:00	00:00	2,0	1457,0	DDRU	ОК	ОК	Drilled 12 1/4" hole from 1385 - 1457 m. Parameters : 3800 LPM / 270 Bar / 160 RPM / 4-6 KNm / 2-4 t WOB / 1.42 SG ECD.
25.07.2003 00:00	06:00	6,0	1647,0	DDRU	OK	ОК	Drilled 12 1/4" hole from 1457 - 1647 m. Performed kick drill. Parameters : 3800 LPM / 275 Bar / 160-180 RPM / 4-10 KNm / 2-5 t WOB / 1.42 SG ECD.
25.07.2003 06:00	11:00	5,0	1768,0	DDRU	OK	E FAIL	Drilled 12 1/4" hole from 1647 - 1768 m. Parameters : 3800 LPM / 282 Bar / 160 RPM / 2-6 KNm / 3-6 t WOB / 1.42-1.43 SG ECD.
25.07.2003 11:00	11:30	0,5	1768,0	DEMD	E FAIL	ОК	Stopped drilling due high increasing trend of ECD readings from MWD. Recycled pumps several times and checked pulsation dampers and line up.
25.07.2003 11:30	18:00	6,5	1886,0	DDRU	ОК	ОК	Drilled 12 1/4" hole from 1768 - 1886 m. Parameters : 3800 LPM / 284 Bar / 165 RPM / 5-8 KNm / 3-6 t WOB. MWD ECD readings out of range. Increased MW to 1.42 SG before 1800 m.
25.07.2003 18:00	22:00	4,0	1971,0	DDRU	ОК	OK	Drilled 12 1/4" hole with controlled ROP of 30 m/hr from 1886 - 1971 m.
25.07.2003 22:00	00:00	2,0	2050,0	DDRU	ОК	ОК	Drilled 12 1/4" hole from 1971 - 2050 m. Parameters : 3800 LPM / 300 Bar / 165 RPM / 5-8 KNm / 5-8 t WOB.
26.07.2003 00:00	06:00	6,0	2185,0	DDRU	ОК	ОК	Drilled 12 1/4" hole from 2050 - 2185 m. Parameters : 3700 LPM / 310 Bar / 80-165 RPM / 5- KNm / 5-10 t WOB. Meanwhile PU from deck and MU 9 stds of 5" DP in mouse hole.
26.07.2003 06:00	00:00	18,0	2380,0	DDRU	ОК	ОК	Drilled 12 1/4" hole from 2185 - 2380 m. Parameters : 3700 LPM / 315 bar / 80-180 RPM / 5-12 KNm / 5-18 t WOB.
27.07.2003 00:00	06:00	6,0	2458,0	DDRU	ОК	ОК	Drilled 12 1/4" hole from 2380 - 2458 m. Parameters : 3700 LPM / 315 bar / 80-180 RPM / 5-12 KNm / 5-18 t WOB.
27.07.2003 06:00	11:30	5,5	2487,0	DDRU	ОК	ОК	Drilled 12 1/4" hole from 2458 - 2487 m. Parameters: 3700 LPM / 310 Bar / 90-110 RPM / 6-12 KNm / 4-16 t WOB.
27.07.2003 11:30	13:00	1,5	2487,0	ECSU	ОК	OK	Circulated BU for geological samples.
27.07.2003 13:00	21:00	8,0	2657,0	DDRU	ОК	E FAIL	Drilled 12 1/4" hole from 2487 - 2657 m. Parameters: 3700 LPM / 312 Bar / 90-116 RPM / 6-12 KNm / 4-10 t WOB.
27.07.2003 21:00	21:30	0,5	2657,0	DERD	E FAIL	ОК	Observed sudden pressure drop. Troubleshot, found faulty pressure sensor on standpipe manifold. Changed out and replaced same.
27.07.2003 21:30	23:30	2,0	2691,0	DDRU	ОК	E FAIL	Drilled 12 1/4" hole from 2657 - 2691 m.
27.07.2003 23:30	00:00	0,5	2691,0	EESD	E FAIL	ОК	Shutdown of Geoservices' software.
28.07.2003 00:00	00:30	0,5	2691,0	EESD	E FAIL	ОК	Troubleshot and re-booted mud logging software.
28.07.2003 00:30	05:30	5,0	2800,0	DDRU	ОК	ОК	Drilled 12 1/4" hole from 2691 m to TD at 2800 m. Parameters: 3700 LPM / 320 Bar / 90-220 RPM / 6-12 KNm / 6-15 t WOB.
28.07.2003 05:30	06:00	0,5	2800,0	DCAU	ОК	ОК	Circulated hole clean and reciprocated string with 3700 LPM / 320 Bar / 100 RPM / 3-5 KNm.
28.07.2003 06:00	07:00	1,0	2800,0	DCAU	ОК	ОК	Circulated hole clean with 3700 LPM / 315 Bar / 100 RPM.
28.07.2003 07:00	07:30	0,5	2743,0	DTDU	ОК	STUCK	Flow checked and POOH to 2743 m.
28.07.2003 07:30	09:30	2,0	2743,0	DDJD	STUCK	ОК	Got 20 t overpull at 2743 m, string stuck. Jarred down, string free. MU top drive and attempted to rotate string, neg. Attempted to free string by iarring down 3 times. neg. Established full circulation. 3600 LPM / 305 Bar.

#### Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

							Made several attempts to jar up, neg. Reduced flow rate and came free by jarring string up with 50 ton overpull.
28.07.2003 09:30	10:00	0,5	2728,0 DCI	ЗK	ОК	ОК	Reamed from 2743 - 2728 m. 3600 LPM / 305 BAR / 100 RPM.
28.07.2003 10:00	11:30	1,5	2800,0 DC	AU	ОК	ОК	RIH back to TD, hole OK. Circulated hole clean with 3700 LPM / 310 Bar / 100 RPM.
28.07.2003 11:30	13:00	1,5	2705,0 DCI	ЗК	ОК	ОК	Started to POOH, got 10 t over pullat 2719 m. MU top drive and started to back ream, string stalled out several times between 2719 - 2705 m. Worked tight interval with 3700 LPM / 314 Bar / 80-160 RPM. No indications of hole packing off.
28.07.2003 13:00	14:30	1,5	2670,0 DC	ЗK	OK	ОК	Back reamed and logged with MWD from 2705 - 2670 m.
28.07.2003 14:30	15:30	1,0	2670,0 DC	AU	OK	ОК	Circulated BU with 3700 LPM / 310 Bar / 90 RPM.
28.07.2003 15:30	20:00	4,5	2000,0 DC	ЗK	ОК	ОК	Back reamed from 2670 - 2000 m, string stalled out 6-7
							times at start of back reaming. Worked several tight spots otherwise hole OK. 3700 LPM / 290 Bar / 90 RPM.
28.07.2003 20:00	21:30	1,5	1670,0 DTI	JU	ОК	ОК	Pumped out of hole without rotation from 2000 - 1670 m. Reamed tight spots with 3700 LPM / 100 RPM.
28.07.2003 21:30	22:30	1,0	1670,0 DCI	ЗК	ОК	ОК	Worked and reamed tight interval from 1670-1700 m. Observed sudden and large increase of cuttings/cavings over the shakers (appr. 30 % rounded cmt cavings/lumps in returns). Circulated until clean at shakers, pump pressure decreased by 15-20 Bar.
28.07.2003 22:30	00:00	1,5	1553,0 DCI	ЗК	ОК	ОК	Attempted to continue pump out of hole with no rotation, neg. Back reamed out of hole from 1670 - 1553 m. Worked pipe up/down and wiped every stand once prior to connection, OK. Parameters : 3700 LPM / 250 Bar / 100 RPM / 4-20 KNm.
29.07.2003 00:00	02:30	2,5	1340,0 DCI	ЗK	ОК	ОК	Back reamed out of hole from 1553 - 1400 m (upper stab below rat hole). Pumped and pulled BHA carefully past rat hole without any rotation and into 13 3/8" csg.
29.07.2003 02:30	04:30	2,0	1340,0 DC	AU	ОК	ОК	Circulated until clean at shakers. Increased flow rate in steps to 4400 LPM / 320 Bar. Large amount of formation cavings at BU, mostly large and rounded cmt cavings/lumps (2-5 cm) after BU.
29.07.2003 04:30	06:00	1,5	1830,0 EC\	٧K	ОК	ОК	RIH. Took weight at 1391 m, MU top drive and reamed same. Continued RIH to 1830 m, hole OK.
29.07.2003 06:00	09:00	3,0	2757,0 EC\	٧K	ОК	ОК	RIH from 1880 - 2760 m. Washed and reamed tight spots at 1884 m, 2554 m, 2730 m. String stood up at 2757 m.
29.07.2003 09:00	10:00	1,0	2800,0 EC\	٧K	ОК	ОК	MU top drive and washed from 2757 -2800 m. 2 m fill.
29.07.2003 10:00	12:30	2,5	2800,0 ECI	U	ОК	ОК	Circulated hole clean with 3700 LPM / 310 Bar / 90 RPM.
29.07.2003 12:30	14:00	1,5	2660,0 EC\	٧K	ОК	ОК	POOH from 2800 - 2660 m. Got 20 t overpull at tight spot 2660 m. Worked pipe, neg.
29.07.2003 14:00	19:30	5,5	1400,0 EC\	٧K	ОК	ОК	Pumped out of hole from 2660 - 1400 m with 3700 LPM, hole OK.
29.07.2003 19:30	21:00	1,5	1340,0 EC\	ΝK	ОК	OK	Wiped shoe track several times until clean and pumped into 13 3/8" csg shoe. Circulated hole clean with 4200 LPM (large amount of cavings over the shakers)
29.07.2003 21:00	22:00	1,0	1340,0 BBI	JU	ОК	ОК	Function tested BOP. Boosted riser with 2000 LPM.
29.07.2003 22:00	23:30	1,5	220,0 DTI	DU	OK	ОК	POOH from 1340 - 220 m.
29.07.2003 23:30	00:00	0,5	220,0 DTI	JU	ОК	ОК	POOH with 12 1/4" BHA.
30.07.2003 00:00	02:30	2,5	,0 DTI	JU	ОК	ОК	POOH with 12 1/4" BHA. Plugged into MWD and verified sensors. LD MWD collars and bit.
#### Doc. No. 04Y94*17440 Date 2004-01-22



							Cleared drill floor.
30.07.2003 02:30	03:15	0,8	,0	ELWU	OK	ОК	Held toolbox talk and RU for WL. Installed sheaves and slip joint compensating wire.
30.07.2003 03:15	04:15	1,0	38,0	ELWU	ОК	ОК	MU tool string no #1 : FMI/DSI/PEX/HNGS. Installed radioactive sources.
30.07.2003 04:15	06:00	1,8	1700,0	ELWU	OK	ОК	RIH with tool string #1. String hung up at 1700 m, unable to pass @06:00.
30.07.2003 06:00	10:15	4,3	,0	ELWU	OK	ОК	Made several attempts to pass restriction at 1700 m, neg. POOH and logged upwards (GR up to WH).
30.07.2003 10:15	11:00	0,8	,0	ELWU	ОК	ОК	LD tool string and RD WL equipment.
30.07.2003 11:00	13:30	2,5	202,0	ELWK	OK	ОК	MU and RIH with 12 1/4" clean up BHA.
30.07.2003 13:30	15:30	2,0	1350,0	ELWK	ОК	OK	RIH with 12 1/4" BHA on 5" DP to 1350 m. Boosted riser and decreased KCI content in active system. Running speed down to csg shoe : 870 m/hr.
30.07.2003 15:30	20:00	4,5	2023,0	ELWK	ОК	ОК	RIH, string took weight at 1695 m. Not able to pass with 10-12 t WOB. MU top drive and wiped clean with 3600 LPM. Conti nued RIH to 2023 m, washed tight spots at 1709 m and 1917 m. Washed and reamed tight spots at 1946 m, 1994 m, 2023 m with 3700 LPM / 20-50 RPM.
30.07.2003 20:00	00:00	4,0	2440,0	ELWK	ОК	ОК	Washed down from 2023 - 2440 m with 3700-4000 LPM. Reamed tight spots at 2035 m, 2135 m, 2165 m, 2170 m, 2205 m, 2226 m, 2243 m, 2287 m, 2350 m, 2400 m. Necessary to rotate with 20-50 RPM to pass tight spots.
31.07.2003 00:00	02:00	2,0	2767,0	ELWK	ОК	OK	Washed down from 2440 -2767 m with 4000 LPM. Washed and reamed tight spot at 2489 m. Less resistance while washing down from 2440 m.
31.07.2003 02:00	03:30	1,5	2800,0	ELWK	ОК	OK	Reamed and back reamed tight interval from 2767 - 2800 m with 3700 LPM / 50-100 RPM. Top drive stalled out twice. Worked interval clean and passed without rotation.
31.07.2003 03:30	06:00	2,5	2800,0	ELWK	ОК	ОК	Circulated hole clean with 4100 LPM / 315 Bar while reciprocating string without rotation. Whilst working pipe hole became tight at 2785 m again, reamed clean. Large amount of cavings over the shakers (> 5 x BU).
31.07.2003 06:00	06:30	0,5	2780,0	ELWK	OK	ОК	Continued to circulate hole clean at 4100 LPM, 312 Bar while reciprocating string from 2787 m to 2760 m without rotation.
31.07.2003 06:30	12:00	5,5	1335,0	ELWK	OK	ОК	Pulled out from 2760 m to 2689 m without pumping, took 15 MT overpull. Pumped out of hole from 2689 m to 1335 m with 3800 LPM / 273-204 Bar.
31.07.2003 12:00	13:00	1,0	1335,0	ELWK	OK	ОК	Circulated hole clean from 1335 m at 4300 LPM / 220 Bar.
31.07.2003 13:00	14:30	1,5	1596,0	ELWK	OK	ОК	RIH from 1335 to 1453 m, took 15 MT weight. MU top drive and washed down from 1543 m to 1596 m with 3700 LPM / 210 Bar.
31.07.2003 14:30	16:00	1,5	2004,0	ELWK	OK	ОК	RIH from 1596 m to 1917 m, took 15 mt weight. MU top drive and washed down from 1917 m to 2004 m with 3500 LPM / 220 Bar.
31.07.2003 16:00	18:30	2,5	2767,0	ELWK	OK	ОК	RIH from 2004 m to 2767 m. Washed tight spot at 2177 m.
31.07.2003 18:30	19:00	0,5	2800,0	ELWK	OK	ОК	Washed and reamed from 2767 m to 2800 m. Found 2 m fill on bottom.
31.07.2003 19:00	21:30	2,5	2800,0	ELWK	ОК	ОК	Circulated hole clean while increasing MW from 1.42 to 1.46 SG at 3900 LPM / 310 Bar. Reciprocated string without rotation. Large amounts of cavings over the shakers during the first 1.5 x BU, later sm all amounts of cavings.
31.07.2003 21:30	22:00	0,5	2680,0	ELWK	ОК	OK	Flow checked well. POOH from 2800 m to 2680 m. Reamed tight spots (15 MT overpull) at 2720 m and 2680 m with 3800 LPM / 310 Bar / 50 RPM / 0-20 kNm.
31.07.2003 22:00	00:00	2,0	2410,0	ELWK	OK	ОК	Pumped out of hole from 2680 m to 2410 m, reamed tight spot at 2638 m, 3900-4000 LPM / 310-320 Bar.
01.08.2003 00:00	04:00	4,0	1392,0	ELWK	ОК	ОК	Continued to pump out of hole from 2410 m to 1392 m, 4050 LPM / 300 Bar.

#### Doc. No. 04Y94*17440 Date 2004-01-22



01.08.2003 04:00	04:30	0,5	1360,0	ELWK	ОК	OK	Washed and reamed rat hole area from 1392 m to 1360 m, 4150 LPM / 260 Bar.
01.08.2003 04:30	05:30	1,0	1345,0	ELWK	ОК	OK	Pulled out to 1345 m and circulated hole clean with 4400 LPM / 285 Bar / 10 RPM / 2 kNm.
01.08.2003 05:30	06:00	0,5	1336,0	ELWK	OK	OK	Displaced K & C lines to 1.46 sg mud, flow checked well. Pumped slug and POOH to 1336 m.
01.08.2003 06:00	09:00	3,0	,0	ELWK	OK	OK	POOH from 1336 m (920 m/hr). Flow checked well before pulling through BOP. Cleaned and cleared rig floor.
01.08.2003 09:00	11:00	2,0	,0	ELHK	OK	OK	Performed pre-job meeting and RU for WL. Installed sheaves and slip joint compensating wire. MU tool string no 1: FMI/DSI/PEX/HNGS. Tested tool string and loaded RA -sources.
01.08.2003 11:00	14:30	3,5	,0	ELHK	OK	ОК	RIH tool string no 1. String hung up at 1397 m, unable to pass same. POOH and LD tool string no 1. RD WL equipment, clean and cleared rig floor.
01.08.2003 14:30	18:00	3,5	1479,0	ELWK	ОК	OK	MU and RIH 12 1/4" BHA on 5" DP. String stood up at 1464 m, washed area down to 1479 m.
01.08.2003 18:00	00:00	6,0	2635,0	ELWK	ОК	ОК	Continued to RIH from 1479 m, washed and reamed tight spots to 2635 m. Reamed at 1481 m and 1881 m with 3800 LPM / 260 Bar / 50 RPM / 0-8 kNm. Washed at 1997 m, 2005 m, 2034 m / 2048 m / 2090 m / 2463 m with 3800 LPM / 260-290 Bar. Reamed at 2474 m, 2498 m, 2504 m with 3800 LPM / 295 Bar / 30 RPM / 0-12 kNm.
02.08.2003 00:00	00:30	0,5	2688,0	ELWK	ОК	OK	Continued to RIH from 2635 m to 2688 m, took 10 MT weight.
02.08.2003 00:30	01:30	1,0	2688,0	ELWK	OK	ОК	MU top drive to DP and attempted to break circulation, hole packed off with 100 Bar below. Was not able to establish circulation, able to rotate and reciprocate pipe. Racked back stand, rotated and worked string slowly. Managed to establish full circulation in steps.
02.08.2003 01:30	02:00	0,5	2691,0	ELWK	OK	ОК	Circulated hole clean while reciprocating from 2663 to 2691 m, 3800 LPM / 310 Bar / 30 RPM / 0-3kNm.
02.08.2003 02:00	03:00	1,0	2800,0	ELWK	OK	ОК	Continued washing down from 2690 m to 2800 m.
02.08.2003 03:00	05:30	2,5	2800,0	ELWK	OK	OK	Circulated hole clean while reciprocating from 2780 m to 2800 m, 3800- 3900 LPM / 310-320 Bar / 10-45 RPM / 2-15 kNm.
02.08.2003 05:30	06:00	0,5	2750,0	ELWK	OK	OK	POOH from 2800 m to 2750 m.
02.08.2003 06:00	11:00	5,0	1350,0	ELWK	OK	OK	Continued pumping out of hole from 2750 m to 1350 m. Worked tight spots at 2688 m, 2630 m, 2430 m.
02.08.2003 11:00	12:30	1,5	1350,0	ELWK	OK	OK	Circulated hole clean at 1350 m with 4600 LPM / 303 Bar.
02.08.2003 12:30	15:00	2,5	,0	ELWK	OK	ОК	Flow checked well and POOH. Flow checked again with bit at BOP. Cleared and cleaned rig floor of excess equipment.
02.08.2003 15:00	15:30	0,5	,0	ELHK	OK	OK	Performed pre-job meeting prior to wire line operation.
02.08.2003 15:30	16:30	1,0	,0	ELHK	OK	OK	RU wire line equipment, MU tool string and loaded RA-sources.
02.08.2003 16:30	18:00	1,5	1491,0	ELHK	OK	ОК	RIH with tool string no 1 (second re-run), string stood up at 1491 m.
02.08.2003 18:00	19:30	1,5	,0	ELHK	OK	ОК	POOH WL-tool string no 1. Removed RA-sources, RD wire line equipment and tool string.
02.08.2003 19:30	21:30	2,0	,0	ELHK	ОК	OK	RU to run PEX / MDT as TLC. Changed out master bushings. MU tool string, reterminated new cable head and function tested connection to tool string. MU X-overs to 5" DP and racked same in derrick.
02.08.2003 21:30	22:00	0,5	,0	ELHK	OK	OK	Performed pre-job meeting prior to TLC run
02.08.2003 22:00	22:30	0,5	,0	ELHK	ОК	ОК	Loaded RA-source in tool string.
02.08.2003	00:00	1,5	488,0	ELHK	ОК	ОК	RIH with TLC tool string no 1 to 488 m. Broke circulation at 314 m. 2500

#### Doc. No. 04Y94*17440 Date 2004-01-22



22:30							LPM / 21 Bar.
03.08.2003 00:00	02:30	2,5	1361,0	ELHK	ОК	OK	Continued RIH TLC tool string from 488 m to 1361 m. Broke circulation every 10 stands, 2500 LPM / 32-55 Bar.
03.08.2003 02:30	03:00	0,5	1364,0	ELHK	ОК	OK	MU pup joint. Performed pre-job meeting and risk assessment prior to RU sheaves in derrick and start TLC in open hole.
03.08.2003 03:00	05:00	2,0	1364,0	ELHK	ОК	OK	Removed auto slips and rigged up sheaves in derrick.
03.08.2003 05:00	05:30	0,5	1364,0	ELHK	ОК	ОК	MU side entry sub and cable to string. MU single joint and connected top drive to string.
03.08.2003 05:30	06:00	0,5	1364,0	ELHK	ОК	ОК	Ran in with cable to 700 m. Started to pump locomotive down with 1000 LPM / 18 Bar.
03.08.2003 06:00	06:30	0,5	1378,0	ELHK	OK	ОК	Continued to pump down locomotive to tool string docking head, 1000 LPM / 30 Bar. Pumped 3,0 m3 drill water from cement unit and spotted same in docking head. Latched to tool string.
03.08.2003 06:30	07:30	1,0	1378,0	ELHK	ОК	ОК	Function tested tool string and installed cable clamp.
03.08.2003 07:30	09:00	1,5	1500,0	ELHK	ОК	ОК	RIH TLC tool string from 1378 m to 1498 m. String stood up at 1500 m.
03.08.2003 09:00	10:00	1,0	1378,0	ELHK	ОК	ОК	Displaced string to 1.46 sg WBM and POOH to 1378 m.
03.08.2003 10:00	12:00	2,0	1366,0	ELHK	ОК	ОК	Sheared out wet connector and pulled cable and locomotive to surface. Broke out side entry sub and RD cable and wire line equipment.
03.08.2003 12:00	15:30	3,5	,0	ELHK	ОК	ОК	POOH tool string and LD same.
03.08.2003 15:30	16:00	0,5	,0	ELHK	ОК	ОК	Cleared rig floor of excess equipment.
03.08.2003 16:00	17:00	1,0	292,0	PTTU	ОК	ОК	MU and RIH 3 1/2" DP cement stinger to 292 m.
03.08.2003 17:00	00:00	7,0	2740,0	PTTU	ОК	ОК	Changed to 5" handling equipment and continued to RIH on 5" DP from 292 m to 2740 m. Broke circulation at shoe, 4000 LPM / 215 Bar. String took weight at 1498 m, worked tight area with 1400 LPM / 45 Bar / 50 RPM / 0-3 kNm. Washed tight spots at 1780 m, 1891 m, 2015 m, 2277 m. Washed down from 2726 m to 2740 m, 1500 LPM / 60 Bar / 20 RPM, 0-3 kNm.
04.08.2003 00:00	00:30	0,5	2800,0	PTTU	ОК	ОК	Continued to wash down from 2740 m to 2800 m, 1500 LPM / 60 Bar / 20 RPM / 0-3 kNm.
04.08.2003 00:30	02:30	2,0	2800,0	PTTU	OK	ОК	Circulated hole clean, 4000 LPM / 310 Bar / 5 RPM / 0 kNm. Meanwhile MU cement stand and replaced dies in Hydraracker head. Performed pre- job meeting prior to set cement plug no 1.
04.08.2003 02:30	03:00	0,5	2800,0	PTTU	ОК	ОК	MU cement stand to DP, connected top drive to string. RU cement hose and leak tested line to 200 Bar / 5 min.
04.08.2003 03:00	04:30	1,5	2800,0	PSSU	ОК	ОК	Set OH cement plug no 1 from 2800 m to 2575 m. Pumped 6.9 m3 1.66 tuned spacer, 20.5 m3 1.90 sg slurry. Displaced cement by pumping 900 l spacer and 1.46 sg WBM using rig pumps at 2500 LPM / 220 Bar.
04.08.2003 04:30	05:00	0,5	2565,0	PTTU	ОК	ОК	Pulled out wet from 2800 m to 2565 m.
04.08.2003 05:00	06:00	1,0	2565,0	PCCU	ОК	ОК	Dropped sponge ball and circulated BU at 2500-4000 LPM / 135-290 Bar / 150 RPM / 0-4 kNm.
04.08.2003 06:00	07:00	1,0	2565,0	PCCU	ОК	ОК	Continued circulating BU at 4000 LPM / 290 Bar. Diverted cement contaminated WBM.
04.08.2003 07:00	08:30	1,5	2565,0	PSSU	ОК	ОК	MU cement pup and connected top drive to string. MU cement hose, leak tested line to 200 Bar / 5 min. Set OH cement plug no 2 from 2565 m to 2442 m. Pumped 6.9 m3 1.66 sg tuned spacer with rig pumps. Mixed and pumped 9,0 m3 1.90 sg slurry. Displaced cement by pumping 900 I spacer and 1.46 sg WBM using rig pumps. Cement job was cut short due to loss of mix water.
04.08.2003 08:30	09:30	1,0	2427,0	PTTU	ОК	ОК	POOH from 2565 m to 2427 m.
04.08.2003	10:00	0,5	2427,0	PCCU	ОК	O FAIL	Dropped sponge ball and cleaned DP.

Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

09:30						
04.08.2003 10:00	16:00	6,0	2427,0 PAOI	O FAIL	ОК	Circulated well while mixing mix water for reminder of slurry plug no 2, i.e. new plug no 3. Meanwhile carried out maintenance on top drive and Hydraracker. Checked and adjusted disc brake on Hydraracker. Built extra spacer volume. Performed pre-job meeting prior to set reminder of cement plug.
04.08.2003 16:00	16:30	0,5	2427,0 PAOI	O FAIL	ОК	MU cement pup and connected top drive to string. MU cement hose, leak tested line to 200 Bar / 5 min.
04.08.2003 16:30	17:00	0,5	2427,0 PAOI	O FAIL	O FAIL	Pumped 6.9 m3 1.66 sg tuned spacer with rig pumps. Discovered that 6 m3 tuned spacer had been transferred into mix water pit by mistake. Aborted cement job.
04.08.2003 17:00	00:00	7,0	2427,0 PAOI	O FAIL	ОК	Reinstalled software in cement control unit. Emptied contaminated mix water from cement mix-tub into 1 m3 barrels and cleaned unit. Checked cement unit and CMS.
05.08.2003 00:00	03:00	3,0	2427,0 PAOI	O FAIL	ОК	Continued preparing and checking cement unit before operation.
05.08.2003 03:00	04:30	1,5	2427,0 PAOI	O FAIL	ОК	Performed pre-job meeting. Set OH plug no 3 from 2442 m to 2350 m. Pumped 9.0 m3 1.90 sg slurry. Displaced cement by pumping 900 l spacer and 1.46 sg WBM using rig pumps at 2500 LPM / 160-238 Bar.
05.08.2003 04:30	05:30	1,0	2260,0 PTTL	J OK	OK	POOH from 2427 m 2260 m while rotating 100 RPM / 3-4 kNm.
05.08.2003 05:30	06:00	0,5	2260,0 PAOI	O FAIL	ОК	Dropped sponge ball and displaced string volume x 1.5 times at 250 LPM / 120 Bar. Flow checked well.
05.08.2003 06:00	07:30	1,5	1565,0 PTTU	J OK	OK	POOH wet from 2260 m to 1565 m.
05.08.2003 07:30	08:00	0,5	1565,0 PCCL	J OK	OK	Set 10.7 m3 high viscosity 1.70 SG pill from 1565 m to 1465 m.
05.08.2003 08:00	10:30	2,5	1465,0 PTTU	J OK	ОК	POOH from 1565 m to 1465 m, MU top drive and circulated 2 xBU at 3500 LPM / 175 Bar / 5 RPM / 0 kNm.
05.08.2003 10:30	12:00	1,5	1460,0 PAO\	W OK	ОК	Waited on cementer to fulfil resting hours. Meanwhile performed pre-job meeting. POOH from 1465 m to 1460 m. Mu cement pup and leak tested line to 200 Bar / 5 min. Circulated well at 2300 LPM / 95 Bar.
05.08.2003 12:00	12:30	0,5	1460,0 PSSU	J OK	OK	Pumped 8.9 m3 1.66 SG tuned spacer at 1500 LPM / 62 Bar.
05.08.2003 12:30	14:00	1,5	1460,0 PSSI	J OK	ОК	Set plug 4 in OH/13 3/8" csg from 1460 m to 1260 m. Mixed and pumped 30.0 m3 1.92 SG slurry at 650 LPM / 20 Bar. Displaced cement by pumping 900 spacer and 1.46 SG WBM using rig pumps at 2500 LPM / 170 Bar.
05.08.2003 14:00	15:30	1,5	1100,0 PTTL	J OK	ОК	POOH dry from 1460 m to 1100 m, rotated 100 RPM. Dropped sponge ball. Spotted excess contaminated cement mix water. Displaced string volume.
05.08.2003 15:30	19:00	3,5	,0 PTTU	J OK	OK	POOH 5" DP and 3 1/2" cement stinger. Washed well head and BOP area on way out.
05.08.2003 19:00	20:30	1,5	,0 PTTL	J OK	ОК	LD string stab and jar from derrick.
05.08.2003 20:30	22:00	1,5	350,0 PTTL	J OK	OK	MU 13 3/8" EZSV with setting tool and RIH on 5" DP to 350 m.
05.08.2003 22:00	23:30	1,5	350,0 PSCV	V OK	ОК	WOC. Performed derrick inspection for dropped objects with drill crew and tool pusher. Performed de-briefing after inspection. Total 7 findings, none classified as potential dropped objections. 5 findings closed.
05.08.2003 23:30	00:00	0,5	350,0 PSTL	J OK	ОК	Tested cement lines to 90 Bar / 5 min.
06.08.2003 00:00	00:30	0,5	350,0 PSTL	J OK	ОК	Closed BSR. Pressure tested cement plug no 4 against BSR to 88 Bar / 10 min. Opened BSR.
06.08.2003 00:30	02:00	1,5	655,0 PSM	J OK	ОК	RIH from 350 m to 655 m with 13 3/8" EZSV on 5" DP. Set EZSV by rotating 36 RH turns, sheared off plug with 25 MT overpull. Verified setting depth by setting down 5 MT on plug.
06.08.2003 02:00	03:30	1,5	650,0 PSM	J OK	ОК	Closed MPR and pressure tested 13 3/8" EZSV to 88 Bar / 10 min. Performed pre-job meeting prior to displacing well.

#### Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

06.08.2003 03:30	05:00	1,5	650,0	PCCU	ОК	OK	Displaced K&C and booster line to sea water. Displaced well from 1.46 SG WBM to sea water, 3000 LPM / 45 Bar. Performed pre-job meeting prior to setting cement plug no 5.
06.08.2003 05:00	06:00	1,0	650,0	PSSU	ОК	ОК	MU cement hose and leak tested line to 200 Bar / 10 min. Commenced setting cement plug no 5.
06.08.2003 06:00	06:30	0,5	650,0	PSSU	ОК	OK	Set cement plug no 5 from 650 m to 450 m. Mixed and pumped 16,0 m3 1.90 SG slurry at 860 LPM / 15 Bar. Displaced cement by pumping sea water at 2500 LPM / 35 Bar. RD cement hose and cement pup.
06.08.2003 06:30	07:00	0,5	420,0	PTTU	ОК	ОК	POOH dry from 650 m from 420 m.
06.08.2003 07:00	07:30	0,5	420,0	PCCU	ОК	ОК	Dropped sponge ball, MU top drive to string and circulated string volume.
06.08.2003 07:30	08:30	1,0	,0	PTTU	ОК	ОК	POOH. LD EZSV setting tool.
06.08.2003 08:30	10:30	2,0	379,0	BHRU	ОК	ОК	Performed pre-job meeting. MU WB retrieval / BOP washing BHA and RIH to 379 m.
06.08.2003 10:30	11:00	0,5	394,0	BHRU	ОК	ОК	MU top drive to string. Washed BOP area. Ran in and engaged WB, set down 10 MT. Pulled WB free, 35 MT overpull.
06.08.2003 11:00	12:00	1,0	,0	BHRU	ОК	ОК	POOH with WB on 5" DP.
06.08.2003 12:00	12:30	0,5	,0	BHRU	ОК	ОК	Disengaged WB from MPT.
06.08.2003 12:30	14:30	2,0	,0	PTPU	ОК	OK	LD MPT (multi purpose tool) jetting sub and racked 6 1/2" DC in derrick. Cleared rig floor of excess equipment. LD cement pup and RD mud bucket.
06.08.2003 14:30	19:00	4,5	,0	BBRU	ОК	OK	Perform pre-job meeting and RU to pull BOP. RU riser guide head on Hydraracker, installed 750 MT bails and elevator. Installed gimble and spider and hydraulic torque tools. Nippled down and laid out diverter.
06.08.2003 19:00	20:00	1,0	,0	BBRU	ОК	ОК	MU landing joint, closed and locked slip joint.
06.08.2003 20:00	20:30	0,5	,0	BBRU	ОК	ОК	Unlatched BOP, pulled clear of WH. Moved rig 40 m off location, starboard side.
06.08.2003 20:30	00:00	3,5	,0	BBRU	ОК	ОК	Removed tensioners, goosenecks and MUX saddles. Pulled and laid out landing joint. Pulled and laid out slip joint.
07.08.2003 00:00	00:30	0,5	,0	BBRU	ОК	ОК	Pulled riser and BOP to 322 m.
07.08.2003 00:30	01:00	0,5	,0	BBRU	ОК	ОК	Installed riser yoke on port crane.
07.08.2003 01:00	05:00	4,0	,0	BBRU	ОК	ОК	Pulled riser and BOP to surface.
07.08.2003 05:00	06:00	1,0	,0	BBRU	ОК	ОК	Disconnected riser from BOP, skidded BOP to port side of moon pool.
07.08.2003 06:00	10:30	4,5	,0	BBRU	ОК	ОК	Performed pre-job meeting. LD landing joint, 20' and 10' riser pup. RD riser handling equipment and riser yoke from port crane.
07.08.2003 10:30	11:00	0,5	,0	PTPU	ОК	ОК	Performed pre-job meeting. MU MOST & PDM cutter assembly. Spaced out and function tested tool.
07.08.2003 11:00	13:30	2,5	388,0	PTTU	ОК	ОК	RIH cutter assembly to 388 m. Moved rig above well centre.
07.08.2003 13:30	16:00	2,5	403,0	PACU	ОК	OK	RIH and stabbed into well from 388 m to 403 m. Set down 5 MT and cut 20" x 30 " casing, 3100 LPM / 120 Bar. PDM stalled out. Made several attempts to restart, no success.
07.08.2003 16:00	17:00	1,0	403,0	PACU	ОК	ОК	Engaged and locked MOST to WH, pulled up to 230 MT overpull. No able to pull 20" x 30" casings free. Disengaged MO ST, pulled assembly above WH and function tested/inspected tool.
07.08.2003 17:00	19:30	2,5	403,0	PACU	ОК	ОК	Ran back in to 403 m, set down 5-10 MT and continued to cut 20" x 30" casing with 3000 LPM / 145/195 Bar. Observed cement in returns to sea at MOST, pressure decreased from 175 to 145 Bar. No pressure drop over the PDM.
07.08.2003	20:00	0,5	403,0	PACU	ОК	ОК	Engaged MOST and locked MOST to WH. Pulled 20 x 30 casing free. 80

#### Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

19:30						MT overpull.
07.08.2003 20:00	21:30	1,5	,0 PACU	ОК	ОК	POOH. Removed bull's-eyes from WH in moon pool. Disengaged MOST from WH. LD MOST assembly. MU CART to WH. LD WH and 20" x 30 casing. ROV retrieved transponders. Transferred rig to Norne operations, commenced rig move to well 6608/B- 4BH. ++++++ END OF OPERATION++++++

Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

72 of 75

### App B Directional data, survey listing



#### Statoil,6608/10-10 6608/10 Exploration,6608/10 EXPLORATION ZONE 32,Norway

#### Wellbore: 6608/10-10 Wellpath: 6608/10-10 Definitive (TD@2800) Date Printed: 1-Aug-2003



Errors start at Mudline/Ground Level (398.00) Ellipses reported at a confidence limit of 95.00%. Ellipse error terms are CORRELATED across ties between tools of the SAME CLASS

Wellbore		
Name	Created	Last Revised
6608/10-10	31-Jul-2003	31-Jul-2003

Well		
Name	Government ID	Last Revised
6608/10-10		31-Jul-2003

Slot						
Name	Grid Northing	Grid Easting	Latitude	Longitude	North	East
6608/10-10	7328331.9064	462427.3000	N66 4 17.9700	E8 10 11.4800	5195.88N	3761.73E

Installation				
Name	Easting	Northing	Coord System Name	North Alignment
6608/10 Exploration	458667.000	7323138.000	ED50-UTM-32N on EUROPEAN DATUM 1950	Grid
			datum	

Field				
Name	Easting	Northing	Coord System Name	North Alignment
EXPLORATION ZONE 32	381477.000	7229793.000	ED50-UTM-32N on EUROPEAN DATUM 1950	Grid
			datum	

Created By		

#### Comments

All data is in Metres unless otherwise stated

Coordinates are from Installation MD's are from Rig and TVD's are from Rig (Stena Don (RT) 24.0m above Mean Sea Level)

Vertical Section is from 5195.88N 3761.73E on azimuth 63.56 degrees

Bottom hole distance is 24.13 Metres on azimuth 63.56 degrees from Wellhead

Calculation method uses Minimum Curvature method

Confidence Limit of 95.00%

Prepared by Baker Hughes Incorporated



#### Statoil,6608/10-10 6608/10 Exploration,6608/10 EXPLORATION ZONE 32,Norway

Wellbore: 6608/10-10 Wellpath: 6608/10-10 Definitive (TD@2800) Date Printed: 1-Aug-2003



INTEQ

Wellpath (Ellipse Semi-Axis			mi-Axis)	Report							
MD	Inc	Dir	TVD	North	East	Dogleg	Vertical	Ellipse	Ellipse	Ellipse	Ellipse
[m]	[deg]	[deg]	[m]	[m]	[m]	[deg/30m]	Section[m]	Major	Minor	Vertical	Minor
								Semi-Axis	Semi-Axis	Semi-Axis	Azi.
								[m]	[m]	[m]	[dea]
398.00	0.00	0.00	398.00	5195.88N	3761.73E	0.00	0.00	0.00	0.00	0.69	N/A
473.00	1.00	2.81	473.00	<u>5196.53N</u>	3761.76E	0.40	0.32	0.21	0.21	0.69	<u>N/A</u>
589.00	0.82	28.80	588.98	<u>5198.27N</u>	3762.21E	0.12	1.50	0.38	0.38	0.72	<u>N/A</u>
735.30	0.58	87.24	735.27	5199.22N	3763.45E	0.15	3.03	0.54	0.54	0.79	N/A
850.30	0.31	100.48	850.27	<u>5199.19N</u>	3764.34E	0.07	3.82	0.63	0.62	0.87	N/A
1024.50	0.81	51.97	1024.46	<u>5199.87N</u>	3765.77E	0.11	5.40	0.79	0.78	1.02	52.99
1111.50	0.61	27.37	1111.45	5200.66N	3766.47E	0.12	6.38	0.83	0.82	1.11	49.90
1198.50	0.33	38.83	1198.45	5201.26N	3766.84E	0.10	6.98	0.87	0.85	1.21	48.41
1285.50	0.47	342.96	1285.45	5201.80N	3766.89E	0.14	7.26	0.90	0.88	1.31	44.78
1364.90	0.71	357.97	1364.85	5202.60N	3766.78E	0.11	7.52	0.93	0.91	1.56	39.83
1459.00	0.34	33.04	1458.94	5203.42N	3766.91E	0.15	8.00	0.97	0.94	1.67	37.65
1574.80	0.30	27.31	1574.74	5203.98N	3767.24E	0.01	8.54	1.02	0.99	1.82	37.05
1661.60	0.19	8.89	1661.54	5204.32N	3767.36E	0.05	8.81	1.05	1.02	1.94	36.29
1748.60	0.16	46.67	1748.54	5204.55N	3767.47E	0.04	9.01	1.08	1.05	2.06	36.27
1837.30	0.16	17.00	1837.24	5204.75N	3767.60E	0.03	9.21	1.11	1.08	2.20	35.98
1924.40	0.13	44.57	1924.34	5204.94N	3767.70E	0.03	9.39	1.13	1.10	2.34	35.98
2011.60	0.35	20.30	2011.54	5205.26N	3767.87E	0.08	9.68	1.16	1.13	2.48	35.42
2097.50	0.34	30.72	2097.44	5205.72N	3768.09E	0.02	10.08	1.19	1.15	2.63	35.06
2184.40	0.37	67.92	2184.33	5206.05N	3768.48E	0.08	10.58	1.21	1.18	2.79	36.12
2271.70	0.77	102.81	2271.63	5206.02N	3769.31E	0.18	11.31	1.24	1.20	2.96	39.96
2359.10	0.98	96.00	2359.02	5205.82N	3770.63E	0.08	12.40	1.27	1.22	3.13	45.23
2446.70	1.28	92.04	2446.60	5205.70N	3772.35E	0.11	13.89	1.30	1.25	3.31	50.71
2534.50	1.42	87.00	2534.38	5205.73N	<u>3774.42</u> E	0.06	15.75	1.34	1.27	3.50	55.35
2620.70	1.81	77.38	2620.54	5206.08N	3776.81E	0.16	18.05	1.38	1.29	3.69	58.64
2737.10	1.93	108.73	2736.89	5205.85N	3780.46E	0.26	21.22	1.44	1.33	3.96	64.98
2788.00	3.53	63.09	2787.73	5206.28N	3782.67E	1.52	23.39	1.47	1.34	4.14	66.00
2800.00	3.53	63.09	2799.71	5206.62N	3783.33E	0.00	24.13	1.48	1.34	4.17	65.86

All data is in Metres unless otherwise stated

Coordinates are from Installation MD's are from Rig and TVD's are from Rig (Stena Don (RT) 24.0m above Mean Sea Level)

Vertical Section is from 5195.88N 3761.73E on azimuth 63.56 degrees

Bottom hole distance is 24.13 Metres on azimuth 63.56 degrees from Wellhead

Calculation method uses Minimum Curvature method

Confidence Limit of 95.00%

Prepared by Baker Hughes Incorporated



#### Statoil,6608/10-10 6608/10 Exploration,6608/10 EXPLORATION ZONE 32,Norway



INTEQ

Hole Sections												
Diameter		Start	Start	Start	Start	End	End	End	Start	Wellbore		
[in]		MD[m]	TVD[m]	North[m]	East[m]	MD[m]	TVD[m]	North[m]	East[m]			
e.	36.000	398.00	398.00	5195.88N	3761.73E	447.00	447.00	5196.15N	3761.74E	6608/10-10		
	17 1/2	447.00	447.00	5196.15N	3761.74E	1377.00	1376.94	5202.75N	3766.78E	6608/10-10		
	12 1/4	1377.00	1376.94	5202.75N	3766.78E	2800.00	2799.71	5206.62N	3783.33E	6608/10-10		
			-									

Casings											
Name	Тор	Тор	Тор	Тор	Shoe	Shoe	Shoe	Shoe	Wellbore		
	MD[m]	TVD[m]	North[m]	East[m]	MD[m]	TVD[m]	North[m]	East[m]			
30.000in	398.00	398.00	5195.88N	3761.73E	445.00	445.00	5196.13N	3761.74E	6608/10-10		
Conductor											
13 3/8in Casing	398.00	398.00	5195.88N	3761.73E	1365.00	1364.95	5202.60N	3766.78E	6608/10-10		

Survey Tool Program											
Reference	Survey Name	MD[m]	TVD[m]	Survey Tool	Error Model						
679530	6608/10-10 BHI.MWD 17 1/2" (473-1364)	1364.90	1364.85	Magnetic (MWD, EMS)	MWD, standard, mag-corr						
679550	6608/10-10 BHI.MWD 12 1/4" (1459-2788)	2788.00	2787.73	Magnetic (MWD, EMS)	MWD, standard, mag-corr						
679554	6608/10-10 Extrapolation (TD@2800)	2800.00	2799.71	Magnetic (MWD, EMS)	MWD, standard, mag-corr						

All data is in Metres unless otherwise stated

Coordinates are from Installation MD's are from Rig and TVD's are from Rig (Stena Don (RT) 24.0m above Mean Sea Level)

Vertical Section is from 5195.88N 3761.73E on azimuth 63.56 degrees

Bottom hole distance is 24.13 Metres on azimuth 63.56 degrees from Wellhead

Calculation method uses Minimum Curvature method

Confidence Limit of 95.00%

Prepared by Baker Hughes Incorporated





Rev. no.

73 of 75

### App C Contractors list

SERVICE	COMPANY
Casing/Casing hanger	Weatherford
Cementing	Halliburton
Coring	Security DBS
Directional Drilling	Baker Hughes INTEQ
Diving	Oceaneering AS
Drilling Contractor	Stena Don AS
Electric Logging	Schlumberger Offshore Service NV
Helicopter	Norsk helikopter
Helicopter Booking	Lufttransport (Statoil)
Mud	M-I Norge AS
Mud Logging	Geoservices
MWD	Baker Hughes INTEQ
Rig Positioning	Thales Geosolutions
Site Survey	Fugro-Geoteam AS
Wellhead System	Dril-Quip

Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

74 of 75

### App D Wellsite sample description

# **()** STATOIL

			WELL	SITE SAMPLE DES	CRIPTION	Page 1 of 19
Country:	Norway		Area:	North Sea	Field	d: .GRÅSPETT
Well no:	6608/10-1	0	Company:	Statoil ASA, Petoro AS, N	orsk Agip A/S, Norsk Hydro	ASA, AS Norske Shell
RKB:	24	meters	Geologist:	O.Giskeødegaard, J.Gilpin		
Hole size:	12 1/4"		Cut solvent:	Iso Propyl Alcohol	Date	24.07.2003
<b>D</b> 1	<b>x</b> · . <b>x</b> ·			Lithological Descript	ion	Remarks
Depth (m DKD)	Lithology	Rock n	ame, mod.lith,	, colour, grain size, sorting, i	roundness, matrix, cementation	1, Shows, cavings, mud
(III KKD)	(%)	n	ardness, sed.s	tructures, accessories, lossing	s, porosity, contamination	additives, etc.
1390	100	Cement				
1400	100	Clst: olv microm	v gry – med dk ic, tr f calcite,	c gry, sft – sli frm, amor, sli sli calc – non calc	hygroturgid IP, sli slty, tr	No Shows
1410	100 Tr	Clst: A/ Sd: clr,	$^{\prime}A$ vf – m, ang –	sb rnd		a.a
1420	95 5	Clst: A/ Sd: A/A	A + tr micropy	yrite, sli calc		
1430	95 HTr-5	Clst: A/ Sd: A/A	A + sli dk grn + rare crse, c	sh gry IP, tr microfoss, occ p lr, mlky, r yell	pyritised microfoss	a.a
1440	95 5	Clst: me tr micro Sd: lse (	ed dk gry – olv opyr IP, tr nod Qtz, clr, mlky,	v gry, sft – occ frm, amor-sb micropyr, sli – non calc r yell, r red, vf – m, r crse, g	blky, sli slty, tr micromic, gen vf – f, poor srt, ang – sb rn	ıd a.a
1450	100 Tr	Clst: A/ Sd: A/A	A + r tr carb fl	lecks		a.a
1460	100	Clst: me r tr glau	ed dk gry – olv ic, non – v sli c	v gry, sft, amor – sb blky, oc calc	c sli slty, tr micromic, tr pyr,	
	Htr	Sd: A/A	<b>X</b>			a.a
1470	100	Clst: me	ed dk gry – olv blky, tr micror	v gry, dk grnsh gry – dk grn nic, tr pyr, v abnt glauc, non	(spkld w/glauc) IP, sft, amor – v sli calc	
	Tr	Sd: A/A	<b>L</b>			a.a
1480	100	Clst: olv amor – s glauc, n	v gry – med dk sb blky, occ bl ion – v sli calc	c gry, occ dk grn – dk grnsh lky, sli slty – slty IP, microm IP	gry and spkld (w/glauc), sft, iic, tr pyr IP, r tr calcite, abnt	
	Tr	Sd: clr,	mlky, occ yell	I, vf - f, occ med, mod - pr s	srt, ang – sb rnd	a.a
1490	100 Tr	Clst: pro Sd: A/A	edom olv gry,	sft – occ sli frm, amor – blk	y IP, sl slty, tr galuc, non calc	a.a
1500	95 5	Clst: as Sd: prec	1490m, tr glau d vf –f, wl srtd	uc IP I, else A/A		a.a
1510	100 Tr	Clst: Pr Sd: prec	edom olv gry d vf-f , A/A	A/A, slty – vf aren IP, micro	mic, occ tr glauc, non calc No	Shows a.a
1520	100 Tr	Clst: olv microm Sd: vf –	v gry – occ lsi ic, tr glauc, no f	brnsh gry, r grnsh gry, sft– n calc	sli frm Ip, sb blky – blky IP, sl	lty, a.a
1530	100 Htr	Clst: olv Sd: vf –	v gry – brnsh g · f	gry, occ med dk gry, else A/A	A	a.a

# **Ö** STATOIL

		WE	ELLSITE S	SAMPLE DESCRIPTION		Page 2 of 19
Country:	Norway		Area:	North Sea	Field:	.GRÅSPETT
Well no:	6608/10-1	0	Company:	Statoil ASA, Petoro AS, Norsk Agip A/S	S, Norsk Hydro AS	SA, AS Norske Shell
RKB:	24	meters	Geologist:	O.Giskeødegaard, J.Gilpin		
Hole size:	12 1/4"	1	Cut solvent:	Iso Propyl Alcohol	Date:	25.07.2003
	T '41 1	<b>D</b> 1	1.11.1	Lithological Description		Remarks
(m RKB)	(%)	Rock na h	ame, mod.lith, ardness, sed.st	, colour, grain size, sorting, roundness, ma tructures, accessories, fossils, porosity, cor	trix, cementation, ntamination	Shows, cavings, mud additives, etc.
1540	100 Tr	Clst: A/ Sd: A/A	A, Htr Glauc			No Shows
1550	100	Clst: bri non calc	nsh gry – olv g c	gry, sft – occ sli frm, sb blky – blky, slty, n	nicromic, Htr glau	с,
	Tr	Sd: vf –	f, A/A			a.a
1560	100	Clst: olv sltv. mie	v gry – brnsh g cromic, Htr gla	gry / dk brnsh gry, rare grn, sft – occ sl frm auc. non – v sli calc	ı, sb blky – blky,	a.a
	Tr	Lse qtz,	, clr, mlky, vf -	– f, wl srtd, ang – sb rnd		
1570	100	Clst: A/	/A			
	Tr	Sd: A/A	Δ			a.a
1580	100 Tr	Clst: A/ Sd: A/A	/A A			a.a
1590	100 Tr	Clst: A/ Sd: A/A	/A A			a.a
1600	100 Tr	Clst: A/ Sd: A/A	A + v r tr light	tish gry		a.a
1610	100 Tr	Clst: A/ Sd: A/A	/A, + abnt glau	IC		a.a
1620	100 Tr	Clst: A/ Sd: A/A	/A			a.a
1630	100 Tr	Clst: A/ Ls: gry	/A wh–wh, frm,	sbblky, Tr Glauc, arg , microxln		a.a
1640	100 Tr	Clst: A/ Ls: A/A	/A			a.a
1650	100 Tr	Clst: A/ Ls: also	/A o Tr pl yel brn,	else A/A		a.a
1660	100 Tr	Clst: A/ Ls: A/A	/A			a.a
1670	70 30 Tr	Clst: olv Tf Clst: loc wxy Ls: A/A	v gry – brnsh g lt gn – bl gry, v, r Glauc	gry A/A loc v lt gry, frm – Tr mod hd, sbblky – plt	y, non calc,	a.a
1680	80	Tf Clst:	lt gn – bl gry,	loc v lt gry, frm – Tr mod hd, sbblky – plt	ty, non calc,	Tr cavings
	20	loc wxy	, r Glauc, loc	suc, r wh Spk		-
	20 Tr	Ls: A/A	v gry – ornsn g	siy A/A		

		WI	ELLSITE S	SAMPLE DI	ESCRIPTION		Page 3 of 19
Country:	Norway		Area:	North Sea		Field:	.GRÅSPETT
Well no:	6608/10-1	0	Company:	Statoil ASA, P	etoro AS, Norsk Agip A/S, I	Norsk Hydro AS	SA, AS Norske Shell
RKB:	24	meters	Geologist:	O.Giskeødegaa	ard, J.Gilpin		
Hole size:	12 1/4"	1	Cut solvent:	Iso Propyl Alc	ohol	Date:	25.07.2003
Donth	Lithology	Dealtre	ama mad lith	Lithologi	cal Description		Remarks
(m RKB)	(%)	KOCK n	ame, mod.iith,	colour, grain siz	ories fossils porosity conta	x, cementation,	additives etc
()	(12)		laraness, sea.se	ructures, uccess			uddid (05, 010)
1690	100	Tf Clst.	lt on _ hl orv	loc v lt grv frm	- Tr mod hd_shblky_ plty	non calc	Tr cavings
1070	100	loc wxy	, r Glauc, loc s	suc, r wh Spc	ff mod na, soonty pity,	non cure,	No shows
	Tr	Clst: ol	v gry – brnsh g	ry / dk brnsh gr	y, rare grn, sft – occ sl frm, s	sb blky – blky,	
	Tr	Ls: gry	wh – wh, frm,	sbblky, Tr Glau	aic c, arg, microxln		
1700	100	Tf Cl-4	- 1 T				
1700	T00 Tr	Ls: A/A	also 1r microj	pyr eise A/A			a.a
1710	100	Tf Clst:	: A/A				a.a
1720	100	Tf Clst:	: A/A				a.a
1730	100	Tf Clst:	: A/A				a.a
1740	100	Tf Clst:	: A/A				a.a
1750	100	Tf Clst:	A/A also Tr G	lauc, loc sli calc	;		a.a
1760	100	Tf Clst:	: A/A				a.a
1770	70 30	Tf Clst: Clst: me	: A/A od brn – pl yel	brn, frm, blky–	sbblky, non calc, loc sli calc	2	a.a
1780	80 20 Tr	Tf Clst: Clst: mo Ls: gry	: A/A od brn – pl yel wh – wh, frm,	brn A/A sbblky, Tr Glau	c, arg , microxln		a.a
1790	90	Tf Clst:	: lt gn – bl gry,	loc v lt gry, frm	– Tr mod hd, sbblky – plty,	non calc,	a.a
	10	loc wxy	, r Glauc, loc s	suc, r wh Spc			
	Tr	Ls: A/A	A of the set of the set	UIII A/A			
1800	100	Tf Clst	· also Tr Pvr no	nd else A/A			a a
	Tr	Ls:A/A		,			
1810	80	Clst: ol	v gry – m dk gi	ry, frm – sft, blk	y – sbblky, non calc, sli slty	, r Glauc,	a.a
	20	Clst: mo	od brn – pl yel	brn A/A			
1820	100	Clst: A/	/A				a.a
1830	100	Clst: A/	/A				a.a
1840	100	Clst: als	so Tr Pyr nod,	else A/A			a.a
1850	100 Tr	Clst: A/ Tf Clst:	/A t gry – bl gry	, sft, blky, non c	alc, suc, blk and wh Spc		a.a

# **()** STATOIL

	WELLSITE SAMPLE DESCRIPTIONPage 4 of 19										
Country:	Norway		Area:	North Sea	Field:	.GRÅSPETT					
Well no:	6608/10-1	0	Company:	Statoil ASA, Petoro AS, Norsk	c Agip A/S, Norsk Hydro AS	SA, AS Norske Shell					
RKB:	24	meters	Geologist:	O.Giskeødegaard, J.Gilpin							
Hole size:	12 1/4"		Cut solvent:	Iso Propyl Alcohol	Date:	25.07.2003					
				Lithological Description		Remarks					
Depth	Lithology	Rock n	ame, mod.lith	colour, grain size, sorting, roun	dness, matrix, cementation,	Shows, cavings, mud					
(m RKB)	(%)	h	ardnes s, sed.s	ructures, accessories, fossils, po	rosity, contamination	additives, etc.					
1860	100	Clst: olv micropy	v gry – m dk g vr I.P.	y, frm – sft, blky – sbblky, non	calc, sli slty, r Glauc,	No shows					
	Tr	Tf Clst:	lt gry – bl gry	, sft, blky, non calc, suc, blk and	l wh Spc						
1870	100	Clst· A/	/A			a a					
1070	Tr	Tf Clst:	A/A			uiu					
1880	70	Clst: olv sli slty I	v gry – olv blk IP, tr micro py	, frm – sft, occ mod hd, blky – a P. IP, non calc	ng, sb blky IP, occ loc wxy,	a.a					
	30	Clst: me non calc	ed blsh gry, lt c, Tuffaceous	gmsh gry – grnsh gry, frm – moo	d hd IP, loc wxy, loc sli suc,						
1887	15	Clst: oly	v grv – olv blk	A/A		a a					
1007	85	Clst: pa	grnsh grv – n	blsh gry, else A/A, tuffaceous I	(P?	Start 3m samples					
	Tr	Ls: wh -	– crm, v pa gr	$v_{\rm r}$ , mod hd – hd, ang brit, crypto	– mxln	Start Chi Sampios					
1890	15	Clst: olv	v gry–olv blk	A/A		a.a					
	85	Clst: pa	grnsh gry , gr	nsh gry – m blsh gry A/A, tuffac	ceous IP?						
1002	40	Class al									
1893	40	Clst: or	v gry, occ olv	blob $arry A/A$ , tr nod pyr		a.a					
	00	Cist: pa	i grnsn gry – n	DISH gry A/A							
1896	15	Clst: olv	v gry A/A			a.a					
	85	Clst: m	blsh gry, grns	n gry, A/A							
	Tr	Ls: A/A									
1000	-0	~									
1899	50 50	Clst: oly	v gry, ovv olv blsb gry, dk g	blk, occ m dk gry – dk gry, else	A/A	a.a					
	50	Cist. III	usii giy, uk g	lish gry, occ griish gry A/A							
1902	60	Clst: oly	v gry, occ olv	olk & m dk gry, gen frm, occ mo	od hd, ang – blky, occ loc	a.a					
	40	Clst : dl	k grnsh gry – 1	n blsh gry, occ dk grn, frm – mo	d hd IP, occ sft, loc wxy,						
	Tr	Ls : pa g	gry, off wh, bl	ky, ang, frm – occ mod hd, cryp	to – mxln						
1005	40										
1905	40 60	Clst: dl	v gry etc A/A	shaw oo are $\Lambda/\Lambda$		a.a					
	00 Tr	$L_{s} \cdot \Delta / \Delta$	. griish gry – b	sii gry, occ grii, A/A							
	11	L3. 11/11									
1908	50	Clst: olv	v gry etc A/A			a.a					
	50	Clst: A/	A + lt grnsh g	ry IP + grn, tr glauc							
	RTr	Ls: A/A	L Contraction of the second seco								
1011	70		,								
1911	/0	Clst: olv	v gry etc A/A	hlah awy atc. A / A		a.a					
	50 В.Т.		. grusn gry – n	DISH gry etc A/A							
	N11	Lo. A/A	L								
1914	75	Clst: olv	v gry, occ olv	olk IP, A/A		a.a					
	25	Clst: dk	grnsh gry, dk	grn, m blsh gry, else A/A							

	WELLSITE SAMPLE DESCRIPTION       Page 5 of 19										
Country:	Norway		Area:	North Sea		Field:	.GRÅSPETT				
Well no:	6608/10-1	0	Company:	Statoil ASA	A, Petoro AS, Norsk Agip	A/S, Norsk Hydro AS	A, AS Norske Shell				
RKB:	24	meters	Geologist:	O.Giskeøde	egaard, J.Gilpin						
Hole size:	12 1/4"	1	Cut solvent:	Iso Propyl	Alcohol	Date:	25.07.2003				
	T 1.1 1	<b>D</b> 1		Litho	logical Description		Remarks				
Depth (m DKD)	Lithology	Rock n	ame, mod.lith,	colour, gran	n size, sorting, roundness,	, matrix, cementation,	Shows, cavings, mud				
(III KKD)	(%)	n	ardness, sed.st	ructures, acc	essories, tossils, porosity	, contamination	additives, etc.				
1917	60	Clst: oly non calc	v gry, occ olv ł c	olk, occ dk g	ry, frm – mod hd IP, loc o	occ wxy, micromic IP,	No shows				
	40	Clst: dk	grnsh gry, dk	grn, m blsh g	gry, frm – mod hd IP, loc	wxy, tr glauc, non calc	;				
1920	70 30	Clst: olv Clst: dk non calc	v gry etc A/A - grnsh gry – m c	⊦ Tr lt brn – : blsh gry, oc	mod brn, frm – sft , occ n c dk grn, frm – mod hd, c	nod hd occ sft, loc wxy,	a.a				
1923	75 25	Clst: olv Clst: dk	v gry – olv blk	, occ md dk ;	gry, ovv lt–mod brn, A/A se dk grn A/A	A	a.a				
1926	100	Clst: olv IP, occ I	v gry – m dk gi loc wxy, tr mic	ry, occ dk gr cromic IP, tr	nsh gry, v occ lt – mod bi nod pyr, non calc	rn, ang, sb tab, sb flky					
	Tr	Clst: dk	grnsh gry – m	blsh gry A/.	A						
1929	100	Clst: m Tr diser	dk gry – dk gr n pyr	y, olv gry, oo	cc dk grnsh gry, occ lt – n	nod brn, A/A, tr Glauc	a.a				
	Tr	Clst: dk	grnsh gry – m	blsh gry A/.	A						
1932	100	Clst: A/	'A				a.a				
1935	100	Clst: m tr micro	dk gry – dk gr mic, tr microp	y IP, occ olv yr, tr glauc, 1	gry, occ lt – mod brn, frr non calc	n – mod hd, ang, sb bl	sy, a.a				
1938	100	Clst : A	/A + loc wxy				a.a				
1941	100	Clst: pre	edom m dk gry	A/A, tr nod	pyr		a.a				
1944	100	Clst: A/	Ά				a.a				
1947	100	Clst: A/	'A, sft – mod h	d, ang – sb b	olky, tr dissem pyr, tr nod	pyr	a.a				
1950	100	Clst: m	dk gry, occ dk	gry, r olv gr	ry, else A/A		a.a				
1953	100	Clst: A/	A				a.a				
1956	100	Clst: A/	A		1 1		a.a				
1939	100	tr micro	omic, tr dissem	pyr, tr nod p	byr, tr pyr microfoss, non	calc	a.a				
1962	100	Clst: A/	A + v r dk grns	sh gry			a.a				
1965	100	Clst: A/	A + Tr nod py	r			a.a				
1968	100	Clst: m	dk gry – dk gr	y, olv gry – o	dk olv gry IP, occ dk grns	sh gry, else A/A	a.a				
1970	100	Clst: A/	'A				a.a				
1980	100 Tr	Clst: dk Dol: lt –	gry – m dk gr - mod brn, hd,	y, dk olv gry ang, mxln	r, occ dk grnsh gry, sft – r	nod hd IP, non calc	a.a				

WELLSITE SAMPLE DESCRIPTIONPage 6									
Country:	Norway		Area:	North Sea		Field:	.GRÅSPETT		
Well no:	6608/10-1	0	Company:	Statoil ASA, Pe	toro AS, Norsk Agip A/S, N	orsk Hydro AS	A, AS Norske Shell		
RKB:	24	meters	Geologist:	O.Giskeødegaar	d, J.Gilpin				
Hole size:	12 1/4"	1	Cut solvent:	Iso Propyl Alcol	hol	Date:	25-26.07.2003		
Denth	Lithology	Pook n	ama mod lith	Lithologica	al Description	competition	Remarks		
(m RKB)	(%)	h	ardness sed st	ructures accesso	ries fossils porosity contan	, cementation,	additives etc		
(m ruub)	(/0)		araness, sea.st		1103, 1033113, porosity, contain	iniation	additives, etc.		
1980	100	Clst: dk	gry – m dk gr	y, dk olv gry, occ	dk grnsh gry, sft – mod hd l	IP, ang – blky,			
		tr micro	omic, tr dissem	pyr IP, Tr nod py	r, non calc				
	Tr	Dol: lt –	- mod brn, hd,	ang, mxln			No shows		
1000	100	Clat: A	/A   nod num				0.0		
1990	Tr	Dol: A/	A + nou pyur				a.a		
		20111							
2000	100	Clst: A/	'A				a.a		
2010	100		/ A						
2010	100 DTr	Clst: A/	A + tr nod pyr				a.a		
	KII	D01: A/	A						
2020	100	Clst: m	dk gry – dk gr	y, v occ dk grnsh	gry, sft – frm, occ mod hd, s	sb blky, ang, sli	i a.a		
		microm	ic, tr nod pyr, o	occ tr glauc, non c	calc				
	100		<i>.</i> .						
2030	100	Clst: A/	'A				a.a		
2040	100	Clst: A/	/A				a a		
2010	100						u.u		
2050	100	Clst: m	dk grey – sli o	lv gry, else A/A,	no glauc, tr nod pyr		a.a		
20.00	100								
2060	100	Clst: A/	A loc sli slty, i	nicromic IP			a.a		
2070	100	Clst: oly	v grv – m dk gi	v. else A/A. tr gl	auc. tr nod pyr		a.a		
	RTr	Dol: A/	A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	r r r r r				
2080	100 UT-	Clst: olv	v gry – m dk gi	ry, occ dk gry, A/	A		a.a		
	HIT	Dol: A/	A						
2090	100	Clst: m	dk gry – olv gi	y, occ dk gry, A/	A, tr glauc, tr nod pyr, non c	alc	a.a		
	Tr	Dol: A/	A						
2100	100	Clst: A/	'A				a.a		
2110	100	Clst: me	ed dk ørv occ (	olv grv frm – v fi	m occ mod hd blky ang o	ee sh flky IP	a a		
2110	100	occ sli s	slty IP, tr micro	omic, tr nod pyr, t	r dissem pyr, occ tr glauc, no	on calc	uiu		
	Tr	Dol: A/	A	, IJ ,	1, , , , , , , , , , , , , , , , , , ,				
2120	100 Tr	Clst: A/	A	ferra an an arta ID			a.a		
	RTr	Ls: wh -	A + crift, fid - 1	nicxln					
		25. 01	011 111, 1111, 1						
2130	100	Clst: A/	'A				a.a		
	Tr	Dol: A/	A						
2140	100	Clat. A	( Λ				0.0		
2140	Tr	Dol: na	л brn. crm. frm -	- hd. sucrosic IP	micxln		a.a		
		- 5 Pu	,,						
2150	100	Clst: A/	'A				a.a		
	Tr	Dol: A/	A						

# **Ö** STATOIL

		WI	ELLSITE S	SAMPLE	DESCRIPTION		Page 7 of 19
Country:	Norway		Area:	North Sea		Field	: .GRÅSPETT
Well no:	6608/10-1	0	Company:	Statoil AS	A, Petoro AS, Norsk Ag	gip A/S, Norsk Hydro A	SA, AS Norske Shell
RKB:	24	meters	Geologist:	O.Giskeød	egaard, J.Gilpin		
Hole size:	12 1/4"	r	Cut solvent:	Iso Propyl	Alcohol	Date	: 26.07.2003
D (1	T '41 1	<b>D</b> 1	1.11.1	Litho	logical Description		Remarks
(m PKP)	Lithology	Rock n	ame, mod.lith,	colour, grai	n size, sorting, roundnes	ss, matrix, cementation	, Shows, cavings, mud
(III KKD)	(70)	11	aruness, seu.st	fuctures, act	sessories, rossiis, porosi	ty, containination	auditives, etc.
2160	100	Clst: oly	v gry – m dk gi	ry, frm – mo	d hd, blky, loc ang, non	calc, sli slty, Tr	
		microm	ic, Tr Pyr, occ	Tr Glauc			
	Tr	Dol: pa	brn, crm, frm -	– hd, sucrosi	ic IP, micxln		No Shows
0150	100						
2170	100 Tr	Clst: A/	A A				a.a
	11	D01. A/.	A				
2180	100	Clst: pro	ed olv gry, frm	– sft, occ st	ky, else A/A		a.a
	Tr	Dol: A/	A	,	5 /		
2190	100	Clst: A/	A The second sec	<i>.</i> .			a.a
	Tr	Dol: oc	c arg Grad Ls,	else A/A			
2200	100	Clat: A	<i>Α</i>				9.9
2200	Tr	Dol: A/	A				a.a
		201112					
2210	100	Clst: A/	'A				a.a
	Tr	Dol: A/	А				
	100	~	· •				
2220	100 Te	Clst: A/	A A				a.a
	11	D01: A/.	A				
2230	100	Clst: A/	'A				a.a
	Tr	Dol/Ls:	A/A				
2240	100	Clst: A/	A				a.a
	Tr	Dol/Ls:	A/A				
2250	100	Clet. Tr	dk on orvelse	Δ/Δ			9.9
2250	Tr	Dol/Ls:	A/A				a.a
2260	100	Clst: A/	'A				a.a
	Tr	Ls: gry	wh-wh, loc p	ol yel brn, fri	n – mod hd, blky, loc ar	rg, I.P. Grad Dol	
2270	100						
2270	100 Tr	Clst: A/	A loc bcm sli $\Lambda$	calc – calc			a.a
	11	LS/D01.	A/A				
2280	100	Clst: A/	'A				a.a
	Tr	Ls/Dol:	A/A				
2290	100	Clst: A/	A .				a.a
	Tr	Ls/Dol:	A/A				
2300	100	Clst. A	/Δ				3 3
2300	Tr	Ls/Dol	A/A				a.a
		20, 201.					
2303	100	Clst: A/	'A				a.a
	Tr	Ls/Dol:	A/A				

# **Ö** STATOIL

	WELLSITE SAMPLE DESCRIPTION       Page 8 of 19									
Country:	Norway	Area:	North Sea	Field:	.GRÅSPETT					
Well no:	6608/10-1	0 Company:	Statoil ASA, Petoro AS, Norsk Agip A/S, Norsk Hy	dro AS	A, AS Norske Shell					
RKB:	24	meters Geologist:	O.Giskeødegaard, J.Gilpin	-						
Hole size:	12 1/4"	Cut solvent:	Iso Propyl Alcohol	Date:	26.07.2003					
			Lithological Description		Remarks					
Depth	Lithology	Rock name, mod.lith,	colour, grain size, sorting, roundness, matrix, cemen	tation,	Shows, cavings, mud					
(m RKB)	(%)	hardness, sed.st	ructures, accessories, fossils, porosity, contamination		additives, etc.					
2307	90	Clst: olv gry – m dk gr slty, Tr micromic, r m	ry, frm – sft, loc Tr stky, blky – sbblky, sli – v calc I.l icropyr	P., r	No shows					
	10	Ls: gry wh – wh, loc la Grad Dol	t gry, Tr pl yel brn, frm – mod hd, sli arg, loc microxl	n, loc	a.a					
2310	80	Clst: A/A			<b>a</b> a					
2310	20	Ls: A/A			a.a					
	-0									
2313	80	Clst: A/A			a.a					
	20	Ls: A/A								
2316	90	Clst: m dk gry – olv g sb splint IP, v sky IP, l v calc – non calc	ry, v sft & hygroturgid – mod hd, occ hd, sb blky – ar loca sli slty, tr mica & micromica, nod pyr, some free	ng, calcite	a.a					
	10	Ls : A/A								
	Tr	Sd: lse Qtz, clr occ ml	ky, vf − f, r med, ang − sb ang							
2210	07									
2319	95 5	Clst: $A/A + occ dk grr$	ish gry		a.a					
	5 Tr	Ls: $A/A + Horous careSd: A/A$	lle							
	11	5 <b>u</b> . <i>m</i> /m								
2322	80	Clst: A/A, v sky IP, st tr micromic, non – v c	) blky – amor, ang – sb flky & splint IP, abnt small py alc IP	r nod	a.a					
	20	Ls : A/A								
	Tr	Sd: A/A								
2225	65	Clat: A/A non coo of								
2323	05 35	CISC A/A IIOII - OCC Ca	aucha vel brn IP. occ. m. gry. blky, ang. frm. mod bd. arg	otrko	2.2					
	55	chlky IP. micr – occ m	icxln	511 K5,	a.a					
	Tr	Sd : A/A								
2328	90	Clst: oly gry – m dk g	ry occ dk ary sft_hd sh hlky_hlky splnt & flky I	D	Tr Splint Clst cavings					
2320	70	sli sltv IP. tr micromic	e, abnt small pv nods, non – sli calc, occ v calc, tr calc	ite	4-5cm x 0.5-1cm					
	10	Ls: pa gry, gry wh, pa chlky IP arg micr – n	yel brn IP, occ m gry, blky, ang, frm – mod hd, crmb nicxln IP, Dol IP	),	dk gry, r dk grn gry					
	Htr	Sd: lse Qtz, clr, mlky	trnsp – trnsl, vf –f, gen vf, wl srtd, ang – sb rnd		No Shows					
2331	80	Clst: A/A + Htr Pa yel	bm & sft, v calc, grad to arg LS		a.a					
	20	Ls: pa yel brn + $A/A$ ,	sft – occ v hd, arg, grad to calc clst IP, Dol IP							
	Tr	Dol: yel brn, v hd, mic	exln, arg IP							
2324	80	Clet: $\Lambda/\Lambda$			Change Shaker server					
2554	20	$L_{S} \cdot A/A$			from $150 - 180$					
	Tr	Dol: A/A			1011 150 - 160					
	Tr	Sd: A/A								

		WF	ELLSITE S	SAMPLE DESCRIPTION		Page 9 of 19
Country:	Norway		Area:	North Sea	Field:	.GRÅSPETT
Well no:	6608/10-1	0	Company:	Statoil ASA, Petoro AS, Norsk Agip A/S, No	rsk Hydro AS	A, AS Norske Shell
RKB:	24	meters	Geologist:	O.Giskeødegaard, J.Gilpin		
Hole size:	12 1/4"	1	Cut solvent:	Iso Propyl Alcohol	Date:	26.07.2003
Donth	Lithology	D1		Lithological Description		Remarks
(m RKR)	(%)	ROCK n	ame, mod.lith,	, colour, grain size, sorting, roundness, matrix, o	rementation,	Snows, cavings, mud
(III KKD)	(70)	11	aruness, seu.si	nuctures, accessories, rossns, porosity, containi	llation	additives, etc.
2337	85	Clst: olv v calc II	v gry , m dk gı P, occ grad to a	ry, pa yel brn, sft – frm, slty, micromic, nod pyr arg Ls	r, non –	No shows
	15	Ls: A/A	pa yel brn + A	A/A, sft – occ v hd, arg, grad to calc clst IP, Dol	IP	
	Htr	Dol: yel	1  brn,  v hd, min	exin, arg IP	_	(howite?)
	Hur	Su: ise (	Qtz, cir, iiiky	trisp – trisi, vi –i, gen vi, wi srtd, ang – so ang	5	(barne?)
2340	90	Clst: olv v calc II	v gry , m dk gı P	ry, pa yel brn, sft – frm, slty, micromic, nod pyr	r, non –	CLST washing away
	10	Ls: A/A	, Dol IP			
	(15)	Sd: A/A	(barite?)			
2343	100 Htr (40)	Clst: A/ Ls: A/A	$A^{2}$ (barite cont	am?)		Using 200 micr Sieve CLST washing away
	(+0)	50.11/1	1. (barne com			No OK indication
2346	90	Clst: A/	A			No shows
	10	Ls: A/A				
	(50)	Sd: A/A	?? (barite cont	tam)		
2349	90	Clst: A/	'A			a.a
	10 (50)	LS: A/A Sd: A/A	A A, barite fines?	,		No GR indication
2352	60	Clst: olv mod hd,	v gry – m dk g , sb blky – flky , rn dft frm s	ry, occ dk gry & dk grnsh gry, occ lt gry, sft – f y, occ splnt, slty IP, micromic & nod pyr, gen n	frm, occ on calc. Also	No shows
	10 (30)	Ls: pa g Sd: A/A	ry, pa yel brn,	, sft – frm, crmb, v arg, dol IP, grad to calc clst l	IP	% sand not representative
						barite??
2355	50 10	Clst: A/	A			Clst washing away
	(40)	Sd: A/A				
	(10)	54.11/1	-			
2358						
2361	85	Clst: A/	'A			
	15	Ls: A/A				Noshowa
	(30)	50: A/A	L			INO SHOWS
2364	80	Clst: olv hd, occ	v gry, m dk gr hd IP, slty IP,	y, dk grnsh gry IP, blky, sb blky, splnt & flky II micromic, tr pyr, non – sli calc	P, sft – mod	a.a
	20	Ls: pa y	el brn – pa yel	l grysh brn, off wh, blky, flky, crmb – occ hd, v	arg, dol IP,	
	Tr	micr – r Sd: A/A	nicxln IP			
2267	70	Clate A	΄ Λ			0.0
230/	70 30	Ls: v pa micxln,	A le grey, wh, p micritic	a yel brn, sft – mod hd, ang, flky, sb blky, v arg	g IP, dol IP	a.a
2370	75	Clst: v d	lk – olv blk +	A/A, sft – mod hd		try 63 micron sieve again

# **Ö** STATOIL

	WELLSITE SAMPLE DESCRIPTION Page 10 of 19										
Country:	Norway		Area:	North Sea	Field:	.GRÅSPETT					
Well no:	6608/10-1	0	Company:	Statoil ASA, Petoro AS, Norsk Agip A/S, Norsk Hy	dro AS.	A, AS Norske Shell					
RKB:	24	meters	Geologist:	O.Giskeødegaard, J.Gilpin							
Hole size:	12 1/4"	1	Cut solvent:	Iso Propyl Alcohol	Date:	26-27.07.2003					
	T 1.1 1			Lithological Description		Remarks					
Depth (m DKD)	Lithology	Rock na	ame, mod.lith,	colour, grain size, sorting, roundness, matrix, cemen	tation,	Shows, cavings, mud					
(III KKD)	(%)	n	ardness, sed.st	ructures, accessories, fossils, porosity, contamination		additives, etc.					
2373	100 Htr	Clst: pre micromi Ls: pa g	edom olv blk – ic IP, tr pyr IP, ry, wh, chlky -	v dk gry, v frm – mod hd, ang – sb blky, sli slty IP, , tr carb, non calc – micxln, arg IP		No shows					
	(10)	Sd: vf –	f (barite?)								
2376	90 10	Clst: A/	A			a.a					
	(20)	Sd: (bar	ite??)								
2379	100	Clst: A/	A, tr carb			a.a					
	Htr	Ls: A/A	+ pal yel brn								
2382	85	Clst: olv sb blky to arg L	v gry, olv blk, – blky, ang, r s S	m dk gry, dk grnsh gry IP, occ lt brn, sft – frm, occ m splnt, micromic IP, tr pyr, non calc. Also lt brn, sft, ca	od hd, lc, grad	a.a					
	15 (20)	Ls: yel t Sd: (bar	brn, brnsh gry, ite??)	, pa gry, arg, crmb, micr							
2385	90 10 (20)	Clst: olv Ls: A/A Sd: (bar	y gry, m dk gry	v, occ olv blk, dk grnsh gry, nod pyr, else A/A, no lt b	rn	a.a					
2388	100	Clet: A/	Δ			2.2					
2388	Htr	Ls: A/A				a.a					
	(50)	Su: (bar									
2391	100 Htr (20)	Clst: A/A Ls: A/A	A, silty, sli vf	aren IP?		a.a					
	(20)	(30.)									
2394	100 Tr	Clst: $A/A$	A, predom olv	gry		a.a					
	(20)	(Sd?) Ba	arite?								
2397	100 T	Clst: A/	A			a.a					
	1r (20)	LS: A/A (Sd?) ba	arite?								
2400	100	Clst: pre	edom olv gry,	occ m dk gry, dk gry, dk grn gry, sft, occ frm – mod h	ıd, sb bl	ky, a.a					
	Tr (30)	Ls: A/A (Sd) Bat	rite?	nicionite, i pju, non cale							
2462	100	(12) <b>2</b> (1	•								
2403	100	Clst: A/	A	val here areas del ID							
	Htr Tr	Sd: clr, 1	yel orn – pale mlky, yel brn,	vf $-$ f, wl srtd, sub ang		a.a using f sieve again					
2406	90 10	Clst: A/ Dol Ls:	A A/A			a.a					

Country:NorwayArea:NorthSeaField:Well no:6608/10-10Company:Statoil ASA, Petoro AS, Norsk Agip A/S, Norsk Hydro ASBKB:24metersGeologist:O Giske@degaard_LGilnin	.GRÅSPETT SA, AS Norske Shell
Well no:         6608/10-10         Company:         Statoil ASA, Petoro AS, Norsk Agip A/S, Norsk Hydro AS           RKB:         24         meters         Geologict:         O Giskeødegaard L Gilpin	SA, AS Norske Shell
RKB: 24 meters Geologist: O Giskeødegaard I Gilpin	
inter deviogist. O.Oiskepuegaaru, J.Oiipiii	
Hole size:   12 1/4"   Cut solvent:   Iso Propyl Alcohol   Date:	27.07.2003
Lithological Description	Remarks
(m RKB) (%) hardness sed structures accessories fossils porosity contamination	Snows, cavings, mud
(in KKb) (70) hardness, sed.structures, accessories, rossits, porosity, containination	additives, etc.
240980Clst: olv gry, occ m dk gry, occ dk grnsh gry IP, v sft, amor, stky, slty IP, vf aren IP, micromic, r tr carb clst, non calc	
<ul> <li>Dol Ls: yel brn – pale yel brn, crmb, arg, micr, dol IP, grad to calc/dol clst IP</li> <li>Sd: clr, mlky, yel brn, vf – f, r med, wl srtd, sub ang – sb rnd</li> </ul>	No shows
2412 90 Clst: A/A + v occ olv blk – blk, carb & slty, tr nod pyr Htr Dol Ls: A/A	a.a
10 Sd: A/A	
2415 75 Clst: A/A, v slty & vf aren, pyr, v sft, amor	
10 Dol Ls: A/A	
15 Sd: A/A	a.a
2418 85 Clst: A/A	
5 Dol Ls: $A/A$	0.0
10 Su. A/A	a.a
2421 75 Clst: A/A	
5 Dol Ls: A/A	
20 Sd: A/A	a.a
2424 80 Clst: A/A, v slty & aren, grad to arg SST IP	
2427 TR Ls: A/A	
20 Sd: A/A	a.a
2430 80 Clst: A/A, v sft – r frm, amor, sb blky IP, non calc	a.a
Tr Ls: A/A	
20 Sd: A/A	
2433 80 Clst: predom olv gry, occ m dk gry – dk gry, occ dk grnsh gry & mod hd, v sft, stky, amor – sb blky, slty – vf aren, micromic, tr pyr, non calc	a.a
Tr Ls: pale gry, gry wh, crmb, arg, micr – micxln	
20 Sd: lse Qtz, clr, occ mlky, & yel brn, vf –f, wl srtd, sb ang – sb rnd, occ r lt gry – wh wk calc cmtd sst.	
$2426$ 80 Clat: $\Lambda/\Lambda$	
2450 80 CISI. A/A 20 Sd: A/A	a.a
Tr Ls: A/A	
$2420$ 60 Clate $\Lambda/\Lambda$	Very had somple O
$\frac{40}{50} \qquad \frac{1}{50} \frac{1}{50$	a.a
2442 40 Clst: v sltv. loc vf sdv else A/A	
60 Sd: pred f A/A	a.a
2445 50 Clst: A/A	
50 Sd: A/A	a.a
2448 70 Clst: A/A	
30 Sd: pred vf A/A	a.a

		WI	ELLSITE S	AMPLE DESCI	RIPTION		Page 12 of 19
Country:	Norway		Area:	North Sea		Field:	.GRÅSPETT
Well no:	6608/10-1	0	Company:	Statoil ASA, Petoro	AS, Norsk Agip A/S, Norsk H	ydro AS	A, AS Norske Shell
RKB:	24	meters	Geologist:	O.Giskeødegaard, J.	Gilpin	-	
Hole size:	12 1/4"	Т	Cut solvent:	Iso Propyl Alcohol		Date:	27.07.2003
<b>D</b> 1	<b>.</b>			Lithological De	escription		Remarks
Depth	Lithology	Rock n	ame, mod.lith,	colour, grain size, so	rting, roundness, matrix, cemer	ntation,	Shows, cavings, mud
(m KKB)	(%)	h	ardness, sed.st	ructures, accessories,	tossils, porosity, contamination	n	additives, etc.
2451	80	Clst: pre	edom olv grv.	occ m dk gry – dk gry	occ dk grnsh gry & mod hd.		
	00	v sft, stl	xy, amor – sb t	olky, slty, loc vf sdy, r	nicromic, tr pyr, non calc		
	20	Sd: lse (	Qtz, clr, occ m	lky, & yel brn, vf –f, v	wl srtd, sb ang – sb rnd		No Shows
		occ r lt g	gry – wh wk ca	alc cmtd sst			
2454	90	Clst: A/	A				
	10	Sd: A/A	L				a.a
2457	80	Clet. 4/	A				
2731	10	Sd· A/A	11				ลล
	10	Ls: pale	gry, gry wh, c	rmb, arg, micr – micx	ln		u.u
		1					
2460	100	Clst: A/	A				
	Tr	Sd: vf –	f, A/A				a.a
	Tr	Ls: A/A					
2463	100	Clst· A/	A				
2105	100	C15t. 74					
2466	80	Clst: A/	A				
	20	Ls: A/A					a.a
	Tr	Sd: A/A					
2469	70	Clst: oly	v orv – m dk o	ry loc on ory sft loc	frm – mod hd stky I P sli –		
2.07	70	non calc	c, Tr micromic	, slty, loc vf sdy, Tr P	yr		
	30	Ls: : pal	le gry, gry wh,	crmb, arg, micr - mic	exln		
	Tr	Sd: A/A					a.a
0.170	00						
2472	80	Clst: A/	A				
	20 Tr						0.0
	11	5u. A/A	L				a.a
2478	90	Clst: A/	A				
	10	Ls: A/A					
	Tr	Sd: A/A	L				
2/81	80	Clat. ad	Tr Dur Tr and	h else $\Lambda/\Lambda$			
2401	20	Ls· A/A	11 F y1, 11 Cal	$\mathbf{U}, \mathbf{U} \mathbf{S} \mathbf{U} \mathbf{A} / \mathbf{A}$			
	Tr	Sd: A/A	. vf-f				a.a
			,				
2484	90	Clst: A/	A				
	10	Sd: vf –	f, incr Mic				a.a
	Tr	Ls: A/A					
2487	90	Clst· A/	A				ลล
2-107	10	Sd: lse (	Otz, clr. occ m	lky, & yel brn. vf –f. v	wl srtd, sbang – sbrnd. lse.		Slt and cly mtrx washed
	-	Mic, ge	n no cmt, loc c	ly cmtd, arg	, , , , , ,		out
	Tr	Ls: A/A	-				

	WELLSITE SAMPLE DESCRIPTION Page 13 of 19									
Country:	Norway		Area:	North Sea	Field:	.GRÅSPETT				
Well no:	6608/10-1	0	Company:	Statoil ASA, Petoro AS, Norsk Agi	ip A/S, Norsk Hydro AS	SA, AS Norske Shell				
RKB:	24	meters	Geologist:	O.Giskeødegaard, J.Gilpin						
Hole size:	12 1/4"		Cut solvent:	Iso Propyl Alcohol	Date:	27.07.2003				
				Lithological Description		Remarks				
Depth	Lithology	Rock n	ame, mod.lith,	, colour, grain size, sorting, roundnes	s, matrix, cementation,	Shows, cavings, mud				
(m RKB)	(%)	h	ardness, sed.st	tructures, accessories, fossils, porosit	y, contamination	additives, etc.				
2490	80	Clst: ob	v arv – m dk a	rry loc an ary sft loc frm – mod hd	etky IP eli_					
2490	00	non cal	c, Tr micromic	c, slty, loc vf sdy, Tr Pyr	3tky 1.1 ., 311					
	20	Sd: lse	Qtz, clr, occ m	ılky, & yel brn, vf –f, wl srtd, sbang -	– sbrnd, lse	No Shows				
		Mic, ge	n no cmt, loc c	cly cmtd, arg , Pyr, Tr carb						
			<i>.</i>							
2493	80	Clst: A/	'A							
	20 Tr	Sd: A/A	i anv anv wh	armh ara miar miavln		a.a				
	11	Ls. pare	gry, gry wii, c	ernio, arg, inter – intexin						
2496	80	Clst: A/	/A							
	20	Sd: A/A	7			a.a				
2499	80	Clst: A/	'A							
	20	Sd: A/A	1			a.a				
2502	70	Sd. gen	$vf$ else $\Delta/\Delta$			9.9				
2502	30	Clst: A/	/A			a.a				
2505	80	Sd: also	loc Tr calc cm	nt		a.a				
	20	Clst: A/	'A							
2508	70	Sd. of	f produf							
2308	30	$\operatorname{Clst} \Delta /$	/A			a.a				
	50	C15t. 11/	1							
2511	70	Sd: A/A	7			a.a				
	30	Clst: A/	'A							
	Tr	Ls: A/A	L							
2514	70									
2514	70 30	S0. $A/A$	λ / Δ			a.a				
	50	CISt. A/	A							
2517	80	Sd: A/A	1			a.a				
	20	Clst: A/	/A							
2520	90 10	Sd: vf –	f, Tr m, else A	A/A		a.a				
	10	CIST: A/	A							
2523	80	Sd: hem	ıvf−m genf			2.2				
2020	20	Clst: A/	A A			u.u				
2526	80	Sd: vf –	crs, gen f – m	n, Pyr cotg on Qtz		a.a				
	20	Clst: A/	'A							
2520	60	C.1	f m A/A							
2329	00 40	Su: gen	1 – 111 A/A /A			a.a				
	UT	C15t. P1/	11							
2532	40	Sd/Sst:	lt gry, clr Qtz,	, bimodale; vf – f and crs – v crs, sbar	ng – sbrndd, pr srtd,					
		gen lse,	loc sil cmt and	d mod hd, Tr cly mtrx, Pyr, Pyr cotg	Qtz, Tr carb	a.a				
	60	Clst. A/	'A							

# **Ö** STATOIL

	WELLSITE SAMPLE DESCRIPTION Page 14 of 19									
Country:	Norway		Area:	North Sea		Field:	.GRÅSPETT			
Well no:	6608/10-1	0	Company:	Statoil ASA, Peto	ro AS, Norsk Agip A/S, Norsk	Hydro AS	SA, AS Norske Shell			
RKB:	24	meters	Geologist:	O.Giskeødegaard	, J.Gilpin					
Hole size:	12 1/4"	r	Cut solvent:	Iso Propyl Alcoho		Date:	27.07.2003			
Domth	Lithelear	D 1	1.1%1		Description	<u> </u>	Remarks			
(m PKB)	Lithology	ROCK n	ame, mod.lith,	colour, grain size,	sorting, roundness, matrix, cem	entation,	Shows, cavings, mud			
(III KKD)	(70)	11	aruness, seu.si	incluies, accessorie	es, iossiis, porosity, containinati	UII	auditives, etc.			
2535	40 60	Sd/Sst: gen lse, Clst: olv non cale	lt gry, clr Qtz, loc sil cmt and v gry – m dk g c, Tr micromic	bimodal; vf – f and d mod hd, Tr cly m ry, loc gn gry, sft, l c, slty, loc vf sdy, T	l crs – v crs, sbang – sbrndd, pr trx, Pyr, Pyr cotg Qtz, Tr carb oc frm – mod hd, stky I.P., sli – 'r Pyr	srtd,	No Shows			
2520	-0	<b>G1</b> • /•								
2538	50 50	Sd: A/A	L				a.a			
	30	CISt: A/	A							
2541	40	Sd: A/A					a.a			
	40	Clst: A/	A							
	20	Sltst: br	gry – brn, frm	, blky – sbblky, no	n calc, v Mic, carb, loc vf sdy					
	•	<b>a</b> 1 . ( )								
2544	20	Sd: A/A	L				a.a			
	20 40	CISE: A/	A / <b>A</b>							
	40	Sitst. A	A							
2547	30	Sd: A/A	L				a.a			
	30	Clst: A/	A							
	40	Sltst: A	/A							
2550	40	Sd: lse o tr pyr. tr	qtz, vf – crs, pr • mica	r srtd, ang – sb rnd,	mod – gd sph, loc sli sil cmt, ar	g IP,	a.a			
	30	Clst: dk	gry, dk grnsh , micromic Ip.	gry, olv gry, brn gi non calc	ry, sft – mod hd, sb blky – splint	:, ang,				
	30	Sltst: A	A A							
2553	50 30	Sd: A/A Clst: m	x + wh - v pale- dk gry, dk gr	e brn – v pa gry sst, rnsh gry, brnsh gry	wk – no cmt, arg mtrx IP , mod hd, occ sft, ang, sb blky, s	splnt,	a.a			
	20	Sltst A	A = A = A							
	20	51151.74	11							
2556	65	Sd: A/A	, vf –f, occ m	– crse, mod – wl sr	td, + sst A/A, r tr glauc		a.a			
	20	Clst: A/	A							
	15	Sltst: A	/A							
2559	80	Sd: lse o vf – f, o	qtz & v pale bi cc m & crs, m	rn – v pale brnsh gr od – wl srtd, sb ang	y sst, clr, mlky, occ yel brn grai g – sb rnd, mod – gd sph, wk – n	ns, lo sil cmt.	a.a			
	15	friab, tr Clst: m	pyr, tr mica dk gry, olv gr	y, dk grnsh gry, mo	d hd, ang, splnt, flky, fiss – sb f	ïss,				
	5	occ sli s Sltst: br IP, non o	lty, micromic rnsh gry, dk br calc	IP, tr pyr, non calc nsh gry, blky – sb b	lky, micromic, tr micropyr, gra	d arg sst				
2562	85	Sd/Sst:	A/A				a.a			
	15	Clst: A/	A							
	Tr	Sltst: A	/A							
2565	80 20	Sd/Sst: Clst: A/	A/A, v slty &	pa brn – pa gry arg	sst, grad to Sltst IP		a.a			

WELLSITE SAMPLE DESCRIPTION Page 15 of 19											
Country:	Norway		Area:	North Sea		Fiel	ld: .GRÅSPETT				
Well no:	6608/10-1	0	Company:	Statoil ASA,	Petoro AS, Norsk Ag	gip A/S, Norsk Hydro	ASA, AS Norske Shell				
RKB:	24	meters	Geologist:	O.Giskeødega	ard, J.Gilpin						
Hole size:	12 1/4"	1	Cut solvent:	Iso Propyl Al	cohol	Dat	e: 27.07.2003				
Donth	Lithology	D1		Litholog	ical Description		Remarks				
(m RKR)	(%)	KOCK II	ame, mod.hth,	colour, grain s	sories fossils poros	ity contamination	additives etc				
(III KKD)	(70)	11	aruness, seu.st	iuctures, acces	somes, iossiis, porosi	ity, containination	additives, etc.				
2568	80	lse qtz,	vf – f, r m & c	rs, wl srtd, ang	– sb rnd, mica, tr py	vr, v pa brn – v pale gry	y No Shows				
	20	Clst: m	st: m dk gry, olv gry, dk grnsh gry, mod hd, ang, splnt, flky, fiss – sb fiss,								
	Htr	Sltst: br non calc	rnsh gry, dk bri C	nsh gry, blky –	sb blky, micromic, t	r micropyr, grad arg s	st				
2571	85	Sd/Sst:	A/A				a.a				
	15	Clst: dk	grnsh gry, dk	gry, mod hd –	hd, flky, splnt, sb fis	ss – fiss, micromic,					
	Htr	non calc Sltst: A	c /A								
2574	85	Sd/Sst:	pred lse qtz A	A, vf –f, occ m	1 & crs, gen f, wl srto	d, ang – sb ang, Sst A/	/A, a.a				
	15	pa brnsh Clst: A/	h gry, friab, arg 'A	g IP, slty							
2577	90	Sd/Sst.	A/A				2.2				
2377	10	Clst: A/	A + tr v dk bri	n – blk & v carl	o grad coal?		uiu				
					0						
2580	75 25	Sd/Sst:	A/A, vf –f, tr j	byr, tr mica			a.a				
	25	Clst: A/	A, no carb, tr	glauc							
2583	90	Sd/Sst:	pa brnsh gry, o	off wh – v pale	gry, vf – f, slty, friab	, arg, also lse qtz,	a.a				
		vf-f, A	A/A								
	10	Clst: A/	'A								
2586	90	Sd/Sst.	A/A grad to sl	tst			2.2				
2300	10	Clst: A/	A				u.u				
2580	00	Sd/Sate	y no hrnch gry	le v po gen lt	ary ID of occifiance	slty also lee atz yf	f				
2389	90	wl srtd.	sb ang – sb rn	d. tr mica. tr py	/r	sity, also ise qiz, vi –	1, a.a				
	10	Clst: m	dk gry, dk grn	sh gry, v dk gry	y IP, mod hd, occ hd.	, ang, sb flky, splnt IP,	,				
		sb fiss, s	slty IP, tr micr	omic & microp	yr, carb IP, non calc						
	Tr	Sltst: br	rnsh gry, dk gr	ysh brn, v arg,	micromic, grad arg S	Sst					
2592	90	Sd/Sst.	A/A				a a				
2372	10	Clst: A/	A, carb IP				u.u				
	Tr	Sltst: A	/A								
2505	85	Sd/Set.	$\Lambda/\Lambda$ vf for	ad altat ID			9.9				
2393	5	Clst: A/	$A/A, v_1 = 1, g_1$				a.a				
	10	Sltst: A	/A								
		_									
2598	85 5	Sd/Sst:	A/A								
	5 10	Clst: A/	A, r carb				a.a				
	10	SIISI. A	/ <b>/ 1</b>								
2601	90	Sd/Sst:	A/A								
	Htr	Clst: A/	'A				a.a				
	10	Sltst: A	/A								

# **()** STATOIL

	WELLSITE SAMPLE DESCRIPTION Page 16 of 19									
Country:	Norway		Area:	North	sea			Field:	.GRÅSPETT	
Well no:	6608/10-1	0	Company:	Stato	il ASA, Peto	oro AS, Norsk	Agip A/S, Norsk H	lydro AS	A, AS Norske Shell	
RKB:	24	meters	Geologist:	O.Gis	skeødegaard	, J.Gilpin				
Hole size:	12 1/4"		Cut solvent:	Iso Pi	opyl Alcoh	ol		Date:	27.07.2003	
Donth	Lithelegy	D 1	1 1 4	1	Lithologica	Description	1		Remarks	
(m RKR)	(%)	ROCK II	ame, mod.lith,	colour	, grain size,	sorting, round	iness, matrix, ceme	ntation,	Snows, cavings, mud	
(III KKD)	(70)	1	laruness, seu.si	lucture	<i>s</i> , <i>accessor</i>	es, iossiis, poi	osity, containnatio	11	additives, etc.	
2604	90 Htr	Sd/Sst: sb rnd,	predom lse qtz + sst A/A, pa b	, clr, m orn, v p	nlky, yel brn a gry w abn	IP, vf –m, mo t arg material,	od srtd – pr srtd, an wh sst IP	g —	No Shows	
	10	Sltst: br	rnsh gry, dk gry	ysh brr	ı, v arg, mic	romic, grad ar	rg Sst			
2610	90	Sd/Sst:	A/A. mica						No Shows	
	Htr	Clst: A/	/A						6m samples due to	
	10	Coal: bl	lk – v dk brn, h	d, brit,	blky, ang, l	loc wxy txt, gr	ad v carb clst IP		30-45m/hr ROP	
	Tr	Sltst: A	/A							
2616	75 10	Sd/Sst: Clst: m tr micro	A/A + brnsh g dk gry, dk grn omic, tr microp	ry, v sl sh gry, yr IP, r	ty grad to sl mod hd – h ion calc	ltst, also wh v d IP, ang, sb f	slty lky, splnt IP, sli slt <u>y</u>	γ,	a.a	
	Htr	Coal : A	A/A							
	Htr	Ls: Wh,	, ang, micxln		1 6 .					
	15	Sitst: br	rnsh gry, sft, ar	g, grac	i vi sst					
2622	90	Sd/Sst: lse qtz A	predom brnsh A/A, + rck flr	gry, v j	pa brnsh gry	v, off wh, slty,	vf –f, arg sst, sft, a	lso	a.a	
	10	Slst: A/	A							
	Htr	Clst: A/	/A							
	Htr	Ls: A/A	L							
2628	75	Sd/Sst: j ang – st	predom lse qtz b ang, occ sb ri	, clr, o nd, v pa	cc mlky & y a brn, v pa g	vel brn, vf – m ry arg mtrx m	, occ crs, pr srtd, at, some rck flr		a.a	
	15	Slst: dk grad to	brnsh gry, brn arg sst IP	sh gry	, sft – frm, a	rg, vf sandy, n	nicromic, carb IP, 1	non calc,		
	10	Clst: dk microm	gry, dk grnsh ic & tr micropy	gry, m yr IP, n	od hd, flky, on calc	ang, sb splnt,	v carb IP grad to co	oal,		
2634	65	Sd/Sst:	A/A + abnt w	h–vp	a brn, v pa g	gry cly mtrx &	rck flr, predom vf	–f	a.a	
	35	Sltst: A	/A, grad to v a	rg vf s	st					
	Tr	Clst: A/	/A							
	Tr	Ls: wh,	v pale gry, mo	d hd, n	nıcxln					
2640	70	Sd/Sst:	A/A						a.a	
	15	Sltst: A	/A							
	15	Clst: dk flky, mi	grnsh gry, grr cromic & v car	ish gry rb IP	, m dk gry –	dk gry, occ o	lv blk, mod hd, ang	, splnt,		
2646	80	Sd/Sst:	A/A						a.a	
	5	Clst: A/	/A							
	10	Sltst: A	/A							
2652	75	Cd/Cat	$\Lambda / \Lambda $ wf f						6.0	
2032	10	Clst A/	A/A, $VI - IA. + tr v carb$	prad to	coal				a.a	
	15	Sltst: A	/A							

	WELLSITE SAMPLE DESCRIPTION Page 17 of 19									
Country:	Norway		Area:	North Se	a		Field:	.GRÅSPETT		
Well no:	6608/10-1	0	Company:	Statoil AS	SA, Petoro AS, Nor	sk Agip A/S, Norsk Hy	/dro AS	SA, AS Norske Shell		
RKB:	24	meters	Geologist:	O.Giskeø	degaard, J.Gilpin					
Hole size:	12 1/4"	1	Cut solvent:	Iso Propy	l Alcohol		Date:	27-28.07.2003		
Depth	Lithology	Dool: n	ama mad lith	Lith	ological Description	1 ndnaga matrix aaman	tation	Remarks		
(m RKB)	(%)	h	ardness sed st	ructures a	cessories fossils r	noness, matrix, center	1a11011,	additives etc		
(	(/0)		uruness, sea.s	indentifes, av	eeessories, rossiis, p	orosity, containination		udditi ves, etc.		
2658	70	Sd/Sst:	: predom lse q	tz, clr, occ	mlky & yel brn, vf	– m, occ crs, pr srtd,		No Shows		
		ang – sł	o ang, occ sb r	nd, abnt v p	oa brn, v pa gry arg	mtrx mat, some rck flr				
	30	Coal: bl	lk, v dk brnsh	blk, v dk gr	y, hd, brit, blky, an	g, sb splnt, erthy IP, sl	wxy IP	,		
	I I tea	occ grad	d to v carb cls	l						
	ни Tr	Sltst dk	A chrnsh orv hr	nsh orv-sft	- frm arg vf sandy	w micromic carb IP r	on calc			
	11	grad to	arg sst IP	lish gry, sit	inn, arg, vi sand		ion cuic	,		
2664	75	Sd/Sst:	A/A. mica					a.a		
	15	Coal: A	/A							
	10	Clst: v c	ik brn−olv bl	k, v dk gry,	occ dk grnsh gry, h	nd, v carb, v slty IP, mi	cromic	,		
	TT4.	grad to	coal IP							
	Htr	Sitst: A	/A							
2670	70	Sd/Sst:	predom lse qt	z, predom c	lr, vf – m, pr srtd, a	ng – sb rnd, abnt mica,	some	a.a		
		clay mt	x mat & rck fl	, tr calcite	· · · ·					
	10	Clst: A/	'A							
	Tr	Coal: A	/A	с с		. 1				
	20	Sitst: of	v gry, brnsh g	ry, frm – st	t, sdy, carb IP, micr	omica, non calc				
2691	70	Sd: prec sub ang mat/rck	lom lse qtz, cl , abnt mica, in flr, tr calcite	r, occ mlky cluding chl	& yel brn, vf – crse orite, abnt pa brn, b	e, occ v crs, pr srtd, ang ornsh gry & crm slty &	g – arg	a.a		
	20	Sltst: ol	v gry – brnsh	gry, sft – fr	m, vf aren, sli carb,	micromic, tr pyr		21m sample due to		
	10	Clst: dk	grnsh gry, oc	c dk gry, br	nsh gry – dk brn, m	od hd, non calc		computer down.		
	Tr	Coal: bl	ik, ang, biky, t	orit, sub fiss	5					
2694	65	Sd: A/A	L					No shows		
	15	Clst: A/	A							
	20	Sltst: A	/A							
2700	80	Sd: lse o	qtz, gen clr – n	nlky IP, r o	nk, r yel brn, occ sn	nky, trnsl – trnsp, vf –	m,	a.a		
	15	occ crs,	ang – sb ang,	occ sb rnd,	also cly/slty mtrx/r	ck flr material, tr kao?				
	15	clst: dk	grnsn gry, dk	gry, occ gr	y orn, moa na – na b non calc	, ang – so biky, so spin	t,			
	5	Sltst: A	/A		o, non cale					
2706	85	Sd: A/A	, sli more rou	nded?, abn	t wh/crm cly (kao?)	& slty material/rck flr		a.a		
	10	Clst: A/	'A							
	5	Sitst: A	/A							
2712	100	Sd: lse o	qtz, clr, mlky,	vf – crs, oc	c v crs, gen f – m, p	or srtd, ang – sbrnd, abr	ıt mica,	a.a		
	Tr	tr carb, $Clst \cdot \Delta /$	u pyr 'A							
	Tr	Coal: A	/A							
2718	100	Sd: A/A	L					a.a		
	Tr	Clst: A/	'A							

		WI	ELLSITE S	SAMPLE DESCRIPTION		Page 18 of 19
Country:	Norway		Area:	North Sea	Field:	.GRÅSPETT
Well no:	6608/10-1	0	Company:	Statoil ASA, Petoro AS, Norsk Agip A/S, Norsk I	Hydro AS	SA, AS Norske Shell
RKB:	24	meters	Geologist:	O.Giskeødegaard, J.Gilpin		
Hole size:	12 1/4"		Cut solvent:	Iso Propyl Alcohol	Date:	28.07.2003
	T 1.1 1	<b>D</b> 1		Lithological Description	<u> </u>	Remarks
Depth (m RKB)	Lithology (%)	Rock na h	ame, mod.lith, ardness, sed.st	colour, grain size, sorting, roundness, matrix, ceme ructures, accessories, fossils, porosity, contamination	entation, on	Shows, cavings, mud additives, etc.
2724	75	Sd: Lse pebble s abnt mic	Qtz , clr, occ 1 size, ang – sub ca	nlky, r smky, r pnk, vf – v crs, gen m – v crs, occ s rnd, pr srtd, + brnsh gry slty & arg mtrx mat/Rck fl	mall, r,	No Shows
	15 10	Slst: dk Clst: dk	brnsh gry, olv grnsh gry, dk	r gry, sdy, carb Ip, grad to sst, sft – frm, non calc – m dk gry, occ brnsh gry, occ wxy txt, flky, ang, n	on calc	
2730	100 Tr	Sd: A/A Clst: A/	x, vf − v crs, pr ∕A	srtd		a.a
2736	75	Sd: lse o gen ang brnsh gr	tz, predom ch g – sb ang, occ ry arg mat. Als	r, mlky, vf – m, occ crs – crs, predom f – m, pr srtd, sb rnd, abnt mica, also wh vf – slty, friab sst and so dk brnsh gry arg sst w/ carb inclusions		a.a
	13 5 5	Clst: dk Sltst: br	grnsh gry, dk nsh gry – dk b	gry, ang, splnt, flky, occ carb, non calc rnsh gry, sdy, carb, micromic, grad to vf sst		
2742	75	Sd: A/A	incl pa brn/cr	m slty & arg material / rck flr?, tr pyr		a.a
	5	Clst: A/	'A			
	5	Coal				
	15	Sltst: A/	/A			
2748	65	Sd/Sst: ang – st IP, abnt	lse qtz & Sst, c o ang, abnt mic mica lamin, sl	clr, yel brn , mlky, trnsl – trnsp grains, vf – crs, pr s ca. Sst: pa brnsh gry, grysh brn, crm – wh, vf, friab, lty, grad sltst IP, no cmt, abnt slty/arg mtrx mat	rtd, carb	a.a
	15	Sltst: A	/A			
	10	Coal: A	/A			
	10	Clst: A/	A + brnsh gry			
2754	30 40	Sd/Sst: Clst: olv sb fiss -	A/A v gry, grysh br - fiss IP, carb l	n, dk grnsh gry IP, brnsh blk IP, ang, blky, sb splnt amin, slty IP, grad sltst IP, micromic & micropyr IF	, , non cal	a.a c
	15	Coal: bl	lk, dk brnsh bli	x, blky, ang, fiss, brit, earthy – wxy txt IP, grad to v	carb	
	15	Sltst: gr	rysh brn – brns	h gry, frm, sdy IP, mica, carb IP		
2760	30	Sd: A/A	L			a.a
	15	Clst: A/	'A			
	45	Sltst: dk grad to :	t brnsh blk, olv slty clst & arg	y gry, brnsh gry, sdy, carb lamin, micromicaceous, t sst	r pyr,	
	10	Coal: A	/A			
2766	45 25 30 10	Sd: lse o Clst: A/ Sltst: A/ Coal: A	qtz, vf – m, occ /A /A /A	c crs, gen f – m, mod – pr srtd, else A/A		a.a

		WE	ELLSITE S	SAMPLE 1	DESCRIPTION			Page 19 of 19
Country:	Norway		Area:	North Sea		]	Field:	.GRÅSPETT
Well no:	6608/10-1	0	Company:	Statoil ASA	, Petoro AS, Norsk Agip	A/S, Norsk Hyd	dro AS	A, AS Norske Shell
RKB:	24	meters	Geologist:	O.Giskeøde	gaard, J.Gilpin			
Hole size:	12 1/4"		Cut solvent:	Iso Propyl A	Alcohol	]	Date:	28.07.2003
				Litholo	ogical Description			Remarks
Depth	Lithology	Rock n	ame, mod.lith,	colour, grain	size, sorting, roundness,	, matrix, cementa	ation,	Shows, cavings, mud
(m RKB)	(%)	h	ardness, sed.st	ructures, acce	essories, fossils, porosity,	, contamination		additives, etc.
2772	30	Sd: lse o occ sb r	qtz, clr, mlky, nd, some brnsl	r smky, vf – n 1 gry arg mate	n, occ crs, gen f – m, pr s erial, occ wh vf sst, friab,	srtd, ang – sb an , no cmt	g,	No Shows
	40	Sltst: ol	v gry–dk brns	sh gry, frm – :	sft, v arg, carb lamin IP,	micromic & mic	ca, sdy	
	10	Coal: bl	k, dk brnsh bll	k, flky, blky, a	ang, micromic IP, fiss – s	sb fiss		
	20	Clst: olv tr micro	v gry – olv blk mic, non calc	, dk grsnh gry	r, brnsh gry IP, olv blk IP	P, sb fiss IP, carb	o IP,	
2778	40	Sd:A/A	A					a.a
	30	Sltst : A	A					
	10	Coal: A	/A					
	20	Clst: A/	'A					
2784	40	Sd: A/A	L					a.a
	30	Sltst: A	/A					
	30	Clst: A/	'A					
	Tr	Coal: G	rad Coaly Clst	t A/A				
2790	30 30 30	Sd: A/A Sltst: A/ Clst: A/	/A /A /A					a.a
2796	20 40 30	Sd: A/A Sltst: A/ Clst: A/	/A /A /A					a.a
2800	10 30 20 40	Coal: A Sd: A/A Sltst: A Clst: A/	/A /A /A					a.a
	10	Coal: A	/A					

T.D @ 2800 m

Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

75 of 75

### App E NPD standard sheet for reporting shallow gas

#### **1.1** NPD standard form for reporting shallow gas

#### WELL DATA: 6608/10-10

1.	Distance from drillfloor to sealevel:	24 m
2.	Water depth (MSL):	374 m
3a.	Setting depth for conductor (m RKB):	445 m
<b>3</b> b.	Leak Off/Formation Integrity Test (g/cc).	N/A
<b>4a.</b>	Setting depth for casing on which BOP is installed:	1365 m
<b>4b.</b>	Leak Off/Formation Integrity Test (g/cc):	1.55 g/cc

5. Depth (m TVD RKB) and two-way time to formation/section/layer tops:

Seabed	398.0 m / 0.506 sec.
Base Quaternary/ Top Naust Formation:	688.0 m / 0.794 sec
Top Kai Formation:	1401.0 m / 1.383 sec.
Top Brygge Formation:	1557.0 m / 1.521 sec.

# 6. Depth interval (m RKB & TWT) and age of sandlayers shallower than 1000 m below seabed. State which layers if any contain gas:

The well was classified as class 0 - no shallow gas expected. The section was drilled with seawater down to 1377 mMD. No shallow gas was observed.

The 17 1/2" section (458.5 - 1377 m) was logged with MWD gamma ray and resistivity. This section is from the MWD log interpreted to predominantly consist of clays, in parts sandy clays. Water wet sand/silt layers were observed at:

604.0 - 613.0 m 673.0 - 688.0 m 702.5 - 734.0 m 958.0 - 965.0 m

#### 7. How was presence of gas proven:

No shallow gas observed.

#### 8. Composition and origin of gas:

N/A.

#### 9. Describe all measurements performed in gas bearing layers:

Used realtime/memory MWD including gamma ray and resistivity sensors.

- 10.Indicate the depths (m RKB & TWT) of unconformities in the well bore:<br/>Base Quaternary is interpreted to be at:688.0 mTVD RKB/ 0.794 sec.Base Tertiary is interpreted to be at:1921.0 mTVD RKB/ 1.836 sec.
- 11. Indicate depth and extension of sand layers (communication, continuity, truncation etc.): Water wet sand layers and sandy intervals are present between 604 734 m TVD RKB. The sand layers between 600 700 m TVD RKB have good continuity and can be correlated to the 6608/10-8 and 6608/10-9 wells, which are 1.4 km and 2.6 km away.
- 12. Indicate depth and extension of any gas blanking, seismic anomalies etc: - No gas blanking or seismic anomalies observed.
- 13. State possible seismic indications that the gas originates from deeper levels. Description if gas originates from deeper levels: N/A
- 14. How does the interpretation of the site survey correspond with well data with respect to:
  - shallow gas: No shallow gas was predicted . No shallow gas was observed.
     sandlayers: The interpretation of sandlayers corresponds well with the observed sandlayers.
  - -unconformities: Base Quaternary was predicted at 692 m. Base Quaternary is interpreted to be at 688 m. Base Cretaceous was predicted at 1906 m. Base Cretaceous is interpreted to be at1921 m. The interpretation of the site survey corresponds very well with the well data.
  - correlation with adjacent wells: Naust Formation, Kai Formation and Brygge Formation has a good correlation with the reference wells.



Rev. no.

76 of 75

### App F Listing of other reports

NO.	REPORTS	COMPANY
1	Site Survey Location Report at Planned Well Location 6608/10-H Gråspett	Fugro-Geoteam AS
2	Samtykkesøknad Stena Don 6608/10-10, Gråspett	Statoil
3	Well Programme, PL128, Well 6608/10-10	Statoil
4	End of Well Report 6608/10-10	Baker Hughes INTEQ
5	Definitive Survey, samt CD-rom nr. 395	Baker Hughes INTEQ
6	Navigation and Positioning Report " Stena Don " at 6608/10-10	Thales Geosolutions
7	Final Drilling Report Well 6608/10-10 Gråspett	Statoil
8	Biostratigraphy of the interval 1390 – 2652 m, well 6608/10-10	Geostrat Ltd.
9	Biostratigraphy of well 6608/10-10 (1390 – 2800 m)	BioStrat Ltd.
10	Mudlogging, Final Well Report. Well 6608/10-10	Geoservices
## Final Well Report PL 128 Well 6608/10-10

Doc. No. 04Y94*17440 Date 2004-01-22



Rev. no.

77 of 75

## 6 Enclosures

**Composite log** 

Formation evaluation log

Pressure evaluation log