

Licence	PL-195
---------	--------

Drilling permit L-1063

Completion Date 21.07.2003

LIST OF CONTENTS

- SECTION A: GEOLOGY, GEOPHYSICHS AND PETROPHYSICS
- SECTION B: OPERATIONS
- SECTION C: ATTACHMENTS

TABLE OF CONTENTS

TABLE OF	F CONTENTS	2
WELL SUI	MMARY	4
LICENSE (OWNERS	
SUMMAR	Y OF WELL DATA	5
OBJECTIV	VES AND RESULTS	
		C
UBJECTIV	ES	00 ד
RESULTS	N MAP	
SECTION	A. CEOLOCY CEODUVSICS AND DETDODUVSICS	
SECTION	A: GEOLOGI, GEOFHISICS AND FEIROFHISICS	10
1 D.	ATA ACQUISITION	
1.1	Data acquisition overview figure.	10
1.2	Lithostratigraphy.	
1.3	Hydrocarbon shows description table	
1.4	Logging table. MWD / LWD / Wireline	13
1.5	Sidewall coring table	
1.6	Conventional Coring table.	
2 G.	EOLOGICAL AND GEOPHYSICAL EVALUATION	14
2.1	Geological and Geophysical Results	14
2.2	Discussion	
2.3	Biostratigraphy	
2.	3.1 Main results	19
2.	3.2 Biostratigraphic summary of the sand units	
2.4	FIGURES	20
2.	4.1 Formation tops table	20
2.	4.2 Biostratigraphic table	21
3 PI	ETROPHYSICAL EVALUATION	
3.1	Petrophysical Results	
3.2	Discussion	
3.3	CPI input data	23
3.	3.1 Log quality	23
3.	3.2 Corrections	24
3.4	Evaluation Method	
3.5	Fluid System	27
3.	5.1 Formation pressure analysis	27
3.	5.2 Fluid Contacts	27
3.	5.3 Fluid Sampling	27
3.6	Pressure and temperature summary.	
3.	6.1 Pressure	
3.	6.2 Pore pressure gradient	
3.	6.3 Fracture gradient	
3.	6.4 Overburden gradient	
3.	6.5 Temperature gradient	
3.7	Figures and Tables	
3.	7.1 Petrophysical Input Parameters	

3.7.2	Reservoir zonal averages	
3.7.3	Formation Pressure table	
3.7.4	Formation Pressure, Overburden- and Fracture Pressure plot	
3.7.5	Formation Temperature plot	
3.7.6	CPI plots	
3.7.6.	1 CPI Oxfordian	
3.7.6.	2 CPI Callovian	
3.7.6.	3 CPI Brent	40
3.7.7	Formation Pressure Plot	41
4 POST SI	TE SURVEY	
4.1 Intr	oduction	42
4.2 We	ll Data	42
4.3 Sei	smic data	44

WELL SUMMARY

Well 35/8-5 was drilled by Norsk Hydro Production AS, on behalf of PL195, during June 2003 – July 2003.

The primary objective of the exploration well 35/8-5 S was to prove commercial hydrocarbon resources in Oxfordian turbidite sandstones of the Viking Group within the J10 Prospect in blocks 35/8 and 35/9.

The secondary objective was to prove commercial hydrocarbon resources in the Brent Group sandstones within the J10 Prospect, also in blocks 35/8 and 35/9.

The well was drilled in the W-segment of the J10 Prospect.

In case of discovery in either the primary Oxfordian target or the secondary Brent target, the C-segment of the J10 Prospect was to be sidetracked after conventional coring and wireline logging.

All depths in this report have reference to RKB (RKB elevation is 29 m) unless otherwise stated.

License owners

Production License 195 was awarded by Royal Decree of 4 June 1995 with Norsk Hydro ASA as the operator

The licensee's percentage share of PL195 at the time of drilling of well 35/8-5 S is as follows:

Hydro ASA(operator)	40 %
RWE Dea	25 %
Petoro AS	35 %

Summary of Well Data

LOCATION:	Geo: 61°22'40,50" N 03°39'13,22" E UTM: 6 805 219.60 mN 534 935.00 mE ED 50, UTM Zone31, CM 03°E
OPERATOR:	Norsk Hydro ASA
RIG:	Deepsea Delta
CONTRACTOR:	Odfjell Drilling
KB ELEVATION(to MSL):	29m
WATER DEPTH (MSL):	369m
START OF OPERATION:	31.05.2003
WELL SPUDDED:	01.06.2003
REACHED TD:	11.07.2003
OFF LOCATION:	21.07.2003
STATUS:	Plugged and abandoned
FORMATION AT TD:	Rannoch Formation
TD DRILLER(mRKB):	4000m MD
TD LOGGER(mRKB):	4009.5m MD
Drilling depths (MD):	36" 399 m to 458 m 26" 458 m to 555 m 17" 461 m to 1326 m 12 ¼" 1326 m to 3265 m 8 ½" 3265 m to 4000 m
Casing / Liner depths:	30" 395.8 m to 458 m 20" 394.2 m to 550 m 13 3/8" 395.1 m to 1320 m 9 5/8" 395.6 m to 3258.5 m

OBJECTIVES AND RESULTS

Objectives

The main objective of exploration well 35/8-5S was to test the presence and type of hydrocarbons in Oxfordian turbidites in the J10 Prospect.

A secondary objective of the well was to test the hydrocarbon potential of the Brent Group sandstones

The well was targeted in the W-segment of the J10 Prospect, close to the eastern boundary fault, in order to enable a possible sidetrack towards east and into the C-segment. To meet these criteria, the well was designed as a deviation well to follow the dip of the eastern boundary fault plane of the W-segment in a proper distance from the fault.

Sidetracking was only to be performed in case of discovery in either the primary or the secondary target.

Results

The well was spud 01st June 2003 and reached a total depth of 4000 m MD RKB in the Rannoch Fm.11th July 2003. It was discovered after spud that the spud position of the well was placed 105 m east of the planned spud location. This was unfortunately caused by an error in the Operator's routines for quality control. The incident has been reported to NPD and the Operator has updated internal routines for control of this kind of operations. The deviaton was adjusted during drilling and the reservoir was penetrated within the planned target tolerance.

The drilling objectives were not met as no commercial hydrocarbons were proven. Therefore, no sidetrack of the well into the C-segment was performed.

The wireline logging programme was reduced as no commercial discovery was made. The CMR, MSCT, OBMI-DSI and VSP log in the $8\frac{1}{2}$ " section was not included. The well was permanently plugged and abandoned as a dry well on the 21st July 2003.

The well did not prove any commercial hydrocarbons, although good oil shows were obtained. The Oxfordian reservoir was encountered within the defined reservoir interval, but the reservoir quality was much poorer than expected. The Brent Group reservoir was found as prognosed, but was water bearing.

There were taken 6 conventional cores, 4 in the Oxfordian sandstone and 2 in the Brent Group sandstone. Cores of the Oxfordian reservoir showed very poor reservoir quality, according to both grain size and cementation.

Geological summary

Winks pitemplate GWP160501-ALC Document date 2004-01-26

SECTION A: GEOLOGY, GEOPHYSICS AND PETROPHYSICS.

1 DATA ACQUISITION

1.1 Data acquisition overview figure.

Planned: Actual:

1.2 Lithostratigraphy.

This summary is compiled predominantly from ditch cuttings and core descriptions.

Wireline and MWD logs were used to aid lithological interpretation and the placement of formation boundaries.

The well was drilled with returns to seabed from the sea floor at 398 m to 561 m before setting 20" casing at 550 m. For details on sampling descriptions see attached Composite log. The lithology interpretation is based on MWD logs, cuttings and core descriptions.

Nordland Group (398 – 673.5 m MD)

Sandy and silty clay

Hordaland Group (673.5 – 1338 m MD)

Skade Formation (673.5 – 794 m MD) – Sandstone Undifferentiated (794 – 845.5 m MD) – Claystone Grid Formation (845.5 – 1037 m MD) – Sandstone with calcareous cemented stringers, interfingering with claystones. Undifferentiated (1037 – 1091 m MD) – Claystone Frigg Formation (1091-1205 m MD) – Sandstone, interfingering with claystones

Rogaland Group (1338 – 1716.5 m MD)

Balder Formation (1338 – 1385 m MD) – Tuffaceous claystone Sele Formation (1385 – 1400 m MD) – Claystone Lista Formation (1400 – 1659 m MD) – Claystone with rare dolomite stringers Ty Formation (1659 – 1716.5 m MD) – Sandstone with dolomite cemented top, interfingering with claystone.

Shetland Group (1716.5 – 3094.5 m MD)

Jorsalfare Formation (1716.5 – 1877.5 m MD) – Calcareous claystone Kyrre Formation (1877.5 – 2838 m MD) – Claystone with limestone stringers Tryggvason Formation (2838 – 3074 m MD) – Limestone, marl and claystone Blodøks Formation (3074 – 3078.5 m MD) – Claystone Svarte Formation (3078.5 – 3094.5 m MD) – Claystone

Cromer Knoll Group (3094.5 – 3230.5 m MD)

Rødby Formation (3094.5 - 3149.5 m MD) – Claystone with limestone stringers Åsgard Formation (3149.5 - 3230.5 m MD) – Claystone with limestone stringers

Viking Group (3230.5 – 3830 m MD)

Draupne Formation (3230.5 – 3326 m MD) – Claystone Oxfordian turbidite (3326 – 3422 m MD) – Interbedded sandstone, siltstone and Claystone Heather Formation (3326 – 3830 m MD) – Interbedded sandstone, siltstone and Claystone

Brent Group (3830 – 4000 m MD)

Tarbert Formation (3830 – 3882 m MD) – Sandstone with shale and siltstone beds Ness Formation (3882 – 3916 m MD) – Sandstone with shale, silt and coal beds. Etive Formation (3916 – 3964 m MD) - Sandstone with shale, silt and coal beds. Rannoch Formation (3964 – 4000 m MD) – Siltstone with limestone stringers

1.3 Hydrocarbon shows description table.

INTERVAL (mRKB)	SOURCE	LITHOLOGY	SHOWS DESCRIPTION
3327-3338	Cuttings	Sandstone	spty wk yel brn dir Fluor, slo strmg blmg wk bl wh Fluor cut, wh vis res
			20-50% pl yel brn dir Fluor, v slo strmg mod-wk wh-bl wh
3371-3381	Cuttings	Sandstone	bimg-strmg Fluor cut, wk wh-bi wh bimg vis crsh cut, wk wh- bl wh Fluor Res, y pl-po vis Res
0071 0001	Outtings	Ganasione	no pet od. No vis oil stn. fr pch wk viol-bl wh dir fluor. v slo
3381-3382	Core	Siltstone	blmg bl wh-viol fluor cut, no vis res, v fnt fluor res
		0.114	no pet od, No vis oil stn, ex mott yel wh dir fluor, inst blmg
3382-3383	Core	Siltstone	wh-bl wh fluor cut, no vis res, strg yel wh fluor res ring
3383-3386	Core	Siltstone	10% spty-pch, occ mott, yel-brn dir Fluor, slo-v slo strmg- blma bl-wh-pl vi Eluor cut, po vis Res
3303-3300	COIE	Silisione	20-30% spty occ mott vel diir Fluor mod-slo occ v slo
3386-3392	Core	Sandstone	tsrmg-blmg bl wh-pl vi Fluor cut, else a.a.
			wk pet od, 30-50% mott dull brn O stn, 30-50% pch-mott brt
			yel dir Fluor, fst-mod, occ slo-v slo strmg-blmg bl wh-pl vi
3392-3395	Core	Sandstone	Fluor cut, else a.a.
2205 2209	Coro	Sandstone	10% dull yel dir Fluor, no-v slo strmg bl wh-pl vi Fluor cut,
3393-3390	Core	Sanusione	no-v wk bi wn Fluor Res, no vis Res
3398-3402	Core	Sandstone	slo strma-blma bl wh-bl vi Fluor cut, else a.a.
	0010		wk pet od, pch brt wh-yel wh dir fluor, inst blmg, stng wh - bl
3404-3406	Core	Sandstone	wh fluor cut, no vis cut, strg bl wh fluor res.
			wk yel-yel brn dir fluor, v slo stmg pl yel wh-bl wh fluor cut,
3407-3410	Core	Sandstone	Tr slo wk bl wh stmg crsh cut, fnt bl wh fluor res
2442 2442	Cara	Condators	pch pl yel dir fluor, v slo strmg bl wh fluor cut, slo wk pl wh
3412-3413	Core	Sandstone	nuor crsn cut, wk bi wn nuor res ring
3415-3420	Core	Sandstone	fluor cut fnt bl wh fluor res ring
0110 0120	0010	Canactorio	no dir fluor, v slo strma mod bl wh fluor cut, pch mod bl wh
3420-3421	Core	Sandstone	fluor res, no vis res.
			no dir fluor, v slo strmg pr bl wh fluor cut, pch pr bl wh fluor
3421-3425	Core	Sandstone	res ring, no vis res.
			no od, no stn, pch mod bl wh dir fluor, no vis fluor, sl cldy-
3831-3813	Cuttings	Sandstono	strmg, mod bl wn fluor cut, inst stng bl wn crush cut, bl wn
3034-3043	Cuttings	Sanusione	no od no sta och mod bl wh dir fluor no vis fluor sl strma
			mod bl wh fluor cut, brt bl wh crush dir fluor, inst-mod fst
3843-3845	Cuttings	Sandstone	cldy bl wh-wk yel cut & crush cut, bl wh fluor res, no vis res.
			wk pet od, no stn, Tr spk brt yel, also fr spty fnt viol dir fluor,
			v slo strmg/blmg bl wh fluor cut, pch pl bl wh-wh fluor res
3845-3852	Core	Sandstone	occ ring, no vis res.
			no-v vk od, no stn, ir abd yei wn-bi wn dir Fiuor, siw Cldy-
3854-3860	Core	Sandstone	Fluor cut res. no vis res
		Canadiono	fr-gd HC od, no stn, brt yel dir Fluor, slw strmg brt stra vel bl
3860-3870	Core	Sandstone	Fluor cut, no vis cut, spt-ring bl wh Fluor res, no vis res
			fr HC od, wk brn O stn, mod spk yel dir Fluor, slw strmg yel
3874-3878	Core	Sandstone	wh Fluor cut, no vis cut, wk spt bl wh Fluor res, no vis res

1.4 Logging table. MWD / LWD / Wireline.

Run	Log type	Interval	Comments:
1			12 1/" Pilot holo
2	MWD: GR-RES-DIR-PRES	458 - 683 m	
3	MWD: GR-RES-DIR-PRES	683 - 683 m	12 ¼" Pilot hole
4	MWD: GR-RES-DIR-PRES	683 - 683 m	12 ¼" Pilot hole
5	MWD: GR-RES-DIR-PRES	683 - 683 m	12 ¼" Pilot hole
6	MWD: GR-RES-DIR-PRES	683 - 683 m	12 ¼" Pilot hole
7	MWD: GR-RES-DIR-PRES	683 - 683 m	12 ¼" Pilot hole
8	MWD: GR-RES-DIR-PRES	461-555	26" hole opening
9	MWD: GR-RES-DIR-PRES	550 - 1326 m	17"
10	MWD: GR-RES-DIR-PRES-SONIC	1326 - 2962 m	12 ¼"
11	MWD: GR-RES-DIR-PRES-SONIC	2900 - 3265 m	12 ¼"
12	LWD: GR-RES-DIR-SONIC-DEN-NEU	3265 - 3381 m	8 1⁄2"
13	LWD: GR-RES-DIR-SONIC-DEN-NEU	3381 - 3845 m	8 1⁄2"
14	LWD: GR-RES-DIR-SONIC-DEN-NEU	3845 - 4000 m	8 1⁄2"
1A	Wireline: IPLT-MDT	3258 – 4000 m	
1B	Wireline: IPLT-MDT	3258 – 4000 m	
1B	Wireline: IPLT-MDT	3258 – 3986 m	

1.5 Sidewall coring table.

No sidewall core was collected for this well.

1.6 Conventional Coring table.

Core no.	Top [m MD RKB]	Bottom [m MD RKB]	Recovery (%)	Formations
1	3381	3382,5	60,0	Oxfordian
2	3383,5	3401,6	100,0	Oxfordian
3	3401,6	3415,0	96,4	Oxfordian
4	3415,5	3443,3	100,0	OxfHeather
5	3845,1	3856,3	100,0	Brent Sst
6	3856,3	3883,5	100,0	Brent Sst

Depths refer to LWD depth, recorded while drilling and coring.

For core depth shifts to wireline depths see Table 3-3.

2 GEOLOGICAL AND GEOPHYSICAL EVALUATION

2.1 Geological and Geophysical Results

The J10 Prospect is divided by faults into W-, C- and E-segments, where the W-segment was assumed to comprise the largest hydrocarbon accumulation. Well 35/8-5 S was targeted in the W-segment. In case of discovery in either the primary Oxfordian or the secondary Brent targets, the C-segment was to be sidetracked after conventional coring of pay zone and wireline logging. As no discovery was made in the W-segment, the sidetrack was not drilled. The well path is illustrated schematic in Figure 2.1-1.

Figure 2.1-1 Schematic well path 35/8-5

The well was located close to the bordering fault to the east to enable sidetracking into the Csegment. Due to the fault-plane inclination, directional drilling in the Jurassic succession was necessary to keep a proper distance from the fault. Both the top Draupne Formation and top Brent Group were penetrated shallower than prognosed. As a consequence, the actual well-path intersection at top Draupne was located about 45m to the east of the prognosed penetration point and similarly, the top Brent Group was penetrated about 42m further to the east than prognosed (Figure

2.1-2). In spite of this, the well path kept a proper distance from the main fault to the east and penetrated both the Oxfordian and Brent sequences where the seismic character was similar as in prognosis.

Figure 2.1-2 Well 35/8-5 deviation, actual vs. prognosed.

The prognosed and actual time/depth relations in well 35/8-5 S are shown in Table 2.1-1, where actual depth refers to LWD depth. Sea bed, Quaternary and intra-Tertiary picks were based on the site survey interpretation, while other formation tops were prognosed by interpretation of the 3D survey BPN9301M00, inline 1984. Base Cretaceous and key reservoir horizons were depth converted by using regionally well calibrated stacking velocities, while Well 35/8-3 was used for estimation of interval velocities for individual formations.

The differences between prognosed depths and actual depths show a consistent trend. The actual depths are generally shallower than the prognosed. All true vertical depths are, however, well within the expected uncertainty range. If the prognosed depths were compared with wireline depths, the difference would be somewhat smaller, as wireline depths are consistently shallower in the order of 9m.

The trend differences between prognosed and actual depths are explained by inaccuracy in velocity estimation from the stacking velocities. Especially the Tryggvason Formation (Upper Cretaceous) was prognosed with too high interval velocities (as it was less calcareous than prognosed). The top Rødby Formation was inaccurately picked on seismic, but the top Draupne Formation (correctly picked) was penetrated 97m shallower than prognosed as a consequence of the drift in velocity estimation.

FORMATION TOPS	DEF (m TVI	DEPTH (m TVD MSL)		ERROR (m)	
	Prognosi	Actual	Prognosi	Actual	
Sea bed	369	369	+/- 3	0	
Top Grid Fm (Eocene sand)	851	816	+/- 30	- 34	
Top Balder Fm	1343	1308	+/- 52	- 35	
Top Tryggvason Fm	2841	2792	+/- 119	- 49	
Top Rødby Fm	3108	3048	+/- 127	- 60	
Top Draupne Fm (Top Jurassic)	3275	3178	+/- 133	- 97	
Top Oxfordian turbidites <i>Top Oxfordian turbidites updated</i>	3320 3245	3258 3258	+/- 134 +/- 24	- 62 - 13	
Base Oxfordian turbidites Base Oxfordian turbidites updated	3464 3379	3335 3335	+/- 153 +/- 39	- 129 <i>- 44</i>	
Top Brent Group Top Brent Group updated	3739 3662	3665 3665	+/- 169 +/- 56	- 74 + 3	
Table 2.1-1 Formation tops vs. prognosed (based on LWD depths).					

The prognosis was updated after penetration of the top Draupne Formation. The Oxfordian turbidite sequence was according to reservoir model prognosed to represent 80 m net sand, and this unit, although with poor reservoir qualities, was encountered within the seismically defined Oxfordian turbidite unit (Figure 2.1-3). The Oxfordian turbidite unit is a fining upward unit with a sharp base and poorly defined top. The base of the unit represents the clearest seismic signal, deriving from an abrupt reduction in acoustic impedance.

The top Brent Group was penetrated similarly as prognosed. The strongest seismic signal is related to the occurrence of coal beds within the Brent Group (Figure 2.1-4).

Figure 2.1-3. Well tie 35/8-5 for Lower Cretaceous and Upper Jurassic. (Wireline log depth.)

Figure 2.1-4. Well tie 35/8-5 for the Brent Group. (Wireline log depth.)

2.2 Discussion

A drilling hazard was given due to possible water flow from over-pressured sand interval in the Skade Formation (prognosed as an Utsira sandstone). The sand containing interval was considerably thicker than prognosed. There was no overpressure in the prognosed interval, but in two thinner sands above, at 570m and 590m, where water flow occurred. As a result, the 20" casing was set at 550 m instead of at 1100 m as planned for, and this in turn led to a revision of the casing programme in general.

Actual formation tops were as a rule penetrated shallower than in prognosis. The observed trend was recognized as most likely being caused by a local deviation from the regional stacking velocity trend. At the top Draupne Formation level, an updated prognosis corrected for the deviation trend under operation.

The Oxfordian turbidite sequence was encountered within the defined potential reservoir interval. The turbidite sequence had similar thickness as in prognosis. The reservoir quality was, however, poorer than in prognosis, both according to grain size and cementation. By-pass of the course grain fragments is the most likely explanation of the poor reservoir quality. The hydrocarbon fill supports a confirmation of the trap model, an up-dip reservoir truncation.

An about 20 m thick Callovian turbidite sequence was encountered. This was not prognosed. The pre-drilling Callovian depositional model implied a maximum progradation of the Fensfjord deltaic system at the crest of the Ryggsteinen Ridge, immediately to the east of Well 35/8-5. The well results show that the Callovian sand sequence extended further to the east than originally assumed according to the regional geological model.

The Brent Group reservoir quality was found similar as in 35/8-3 and as in prognosis. The Brent Group was found water bearing. It is uncertain if the lack of hydrocarbon discovery is due to failure in up-dip fault seal or due to a migration failure.

2.3 Biostratigraphy

A biostratigraphical evaluation of the interval 720m-3999 mMD RKB in well 35/8-5S, was carried out by Ichron Ltd. Micropaleontological and palynological analyses, carried out on ditch cuttings and core material, form the basis for the biostratigraphic interpretation. A total of 207 ditch cuttings and 22 core samples were analysed for palynology; 176 ditch cuttings and 22 core samples were analysed for palynology. The results are documented in the report: A Biostratigraphical Evaluation of the Oligocene to Middle Jurassic Interval in Exploration Well 35/8-5S, NOCS.

Tables 2.4.1 and 2.4.2 show summarised geochronologic and lithostratigraphic subdivisions of the well. The interpretation is in accordance with Norsk Hydro's standard zonation of the area. All depths are in m MD RKB from LWD logs. Due to large discrepancy in depth between LWD and wireline logs, both depths are presented in tab. 3.1b.

2.3.1 Main results

- The youngest analysed sediments at 720m (Hordaland Group) are of Early Oligocene age.
- The oldest analysed sediments at 3999m are of Early Bajocian age
- The Rogaland Group was penetrated at 1338m
- The Shetland Group was penetrated at 1716,5m
- The Cromer Knoll Group was penetrated at 3094,5m
- The Viking Group was penetrated at 3230,5m
- The Brent group was penetrated at 3830m

Three major breaks were observed in the well; the uppermost occurred within the Hordaland Group, where sediments of Late Eocene are missing, and two within the Cromer Knoll Group. The upper unconformity in the Cromer Knoll Group occurs between the Rødby and Åsgard Formations where sediments of Middle-Early Albian and Late Aptian age are missing; the lower within the Åsgard Formation where the Valanginian interval is absent. A possible break is also registered within the Shetland Group where sediments of Cenomanian age appear to be missing.

2.3.2 Biostratigraphic summary of the sand units

Several sand units were penetrated in the well.

Within the Hordaland Group the Skade Formation (673,5-794m) of Oligocene age, the Grid Formation (845,5m-1037m) of Middle Eocene age, and the Frigg Formation (1091m-1205m) from the Early Eocene were encountered.

Within the Rogaland Group the Ty sand (1659m-1716,5m) was encountered. This sand was assigned to palyno subzone PTC-1 of Early Paleocene age.

The main sandstone unit within the Viking Group is the Oxfordian Sandstone Member (3326m-3422m), assigned to palyno subzones PJ6C2-PJ6B, Late- Early Oxfordian age. Another thin sand unit within the Viking Group occupies the interval 3570m-3597m and is assigned to palyno subzone PJ5C-PJ5B and micro zone MJ8C-MJ8B, of earliest Early Callovian-Late Bathonian age.

Within the Brent Group, the better reservoir sands are observed in the Tarbert and Etive Formations. The sand identified as Tarbert Formation (3830m-3882m) is assigned to palynosub zone PD4E/D of Late Bajocian age. The Etive Formation sand (3916m-3964m) is assigned to palyno subzone J4B-PJ4A of Early Bajocian age.

2.4 FIGURES

Figure li	st	
FIGURE	2.4.1	Formation tops table
FIGURE	2.4.2	Biostratigraphic table

2.4.1 Formation tops table.

GROUP	FORMATION	MEMBER	DEPTH, m MD RKB based on LWD logs	DEPTH, m TVD RKB based on LWD	DEPTH, m MD based on wireline logs
Rogaland			398	398	388
Hordaland	Skade		673,5-794	673,3- 793,8	682,5- 803
	Grid		845,5-1046	845,2	854,5
	Frigg		1091-1205	1090,6 - 1204,5	1100 - 1214
Rogaland	Balder		1338	1337,5	1347
	Sele		1385	1384,4	1394
	Lista		1400	1399,4	1409
	Ту		1659	1658,3	1666,5
Shetland	Jorsalfar		1716,5	1715,9	1725,5
	Kyrre		1877,5	1876,9	1886,5
	Trygvason		2838	2821,5	2847,5
	Blodøks		3074	3056,4	3083
	?Svarte		3078,5	3060,8	3087,5
Cromer	Rødby		3094,5	3076,7	3104
i cium	Åsgård		3149,5	3130,5	3158,5
Viking	Draupne		3230,5	3206,7	3239,5
	Heather		3326	3286,9	3335
		Oxfordian Sandstone	3326-3422	3286,9-3364	3334,5- 3431,5
Brent	Tarbert	Sundstone	3830	3693,5	3840
	Ness		3882	3735,9	3893
	Etive		3916	3763,7	3926
	Rannoch		3964	3802,7	3975,5
TD			4000	3831,8	

2.4.2 Biostratigraphic table

SAMPLE	PERIOD	AGE	Palyno	Mikro
DEPTH m			Zone	Zone
720 (top not seen	EARLY OLIGOCENE	Rupelian	PT7A-2	
		UNCONFORMITY		
920	MIDDLE EOCENE	Lutetian	PT5	
1080	EARLY EOCENE	Ypresian	PT3C-3	
1360	EARLIEST EOCENE	earliest Ypresian	PT3A-2	
1400	LATE PALEOCENE	Thanetian	PT2C	
1520		Selandian	PT2A-4	
1680	EARLY PALEOCENE	Danian	PT1C-2	
1720	LATE CRETACEOUS	Late Maastrichtian	PK9B-5	
1840		Early Maastrichtian	PK9A	
1920		Late Campanian	PK8C-2	
1960		Middle Campanian	PK8B-2	
2060		Early Campanian	PK8B-1	
2100		Late -Middle Santonian	PK8A-3	MK10
2300		Early Santonian	PK8A-2	
2480		Coniacian	PK8A-1- PK7	MK9
2640		?Late Turonian	?PK7A	
2800		Late-Middle Turonian	PK7A	
3080		Early Turonian-?Cenomanian	PK6B-3	
		?UNCONFORMITY		
3120	EARLY CRETACEOUS	Late Albian	PK5-3C	MK6
		UNCONFORMITY		
3160		Middle- Early Aptian	PK4B-1	
3180		Barremian	PK3D	МКЗВ
3200		Hautervian		MK2C
		UNCONFORMITY		
3220		?Ryazanian	?PK1C	
3240	LATE JURASSIC	Late- Middle Volgian	PJ9-PJ8	
3273		Kimmeridgian-Late Oxfordian	PJ7B-PJ6D	
3291		Late Oxfordian	PJ6D-PJ6C2	
3357		Middle Oxfordian	PJ6C1	
3423,8 (core)		Early Oxfordian	PJ6B1	
3477	MIDDLE JURASSIC	Late - Middle Callovian	PJ6A	
3501		Early Callovian	PJ5C	
3573		Late- Middle Bathonian	PJ5B	
3732		Early Bathonian	PJ5A	
3804		Late Bajocian	PJ4D/E	
3845 (core)		Early Bajocian	PJ4C	
4000 TD			PJ4A	

3 PETROPHYSICAL EVALUATION

The petrophysical evaluation covers the Oxfordian, Callovian and Brent Group and the petrophysical interpretation is based on available log, core and formation pressure data collected during drilling of this well.

The difference between wireline and LWD depths is considerable. In the petrophysical interpretation all depths refer to wireline depths and the all the LWD logs have been depth shifted to match the wireline logs.

3.1 Petrophysical Results

The 35/8-5S well encountered oil in the Oxfordian turbidite, while the Callovian turbidite and Brent Group were water bearing. All three reservoirs are dominated by poor reservoir properties.

- The Oxfordian turbidite reservoir is highly laminated and the logs do not give a clear picture of the true reservoir properties due to inadequate vertical resolution. However the core data proved oil in the laminated sands
- From wireline logs the Callovian turbidite is proved to be water bearing
- In the Brent Group both the formation pressure analysis together with logs and cores confirm that the Brent Group was water bearing.

The related net reservoir properties are documented in the Table 3-5

3.2 Discussion

The Oxfordian reservoir is highly laminated and the logs do not give a clear picture of the true reservoir properties due to inadequate vertical resolution, however, the cores confirm oil in the Oxfordian. The UV core photo shows some invasion of oil based mud into the cores and a large contrast in the UV response in the center of the core, which is related to the reservoir oil.

The reservoir properties are generally of poor quality in all reservoir sections, apart from a 0.75meter zone in the Oxfordian where both the wire line logs and the conventional core data shows excellent reservoir properties.

Due to the uncertainty in the cut off criteria, 3 different porosity cut-offs are used and the related net reservoir properties are documented in the Table 3-5

3.3 CPI input data

LOG		Interval [m]
CDR – VISION Resistivity	LWD	458 - 4000
CDR-VISION-ISONIC	LWD	1326-4000
VISION Service (GR/RES/DENS/NEUT)	LWD	3265-4000
AIT-IPLT (LDS-APS-HNGS)	W/L	3265-4000
MDT-CQG	W/L	3265-4000

Table 3-1 LWD and Wireline tools run in well 35/8-5 S

The composite log is generated based on input from two logs:

- VISION-ISONIC-ADN (merged composite MWD/LWD)
- HNGS_APS_LDS(Run 1A, Raw) as provided by Schlumberger.

The dept shifting is described under chapter 1.3.1. The composite log was generated in Recall.

During logging of the HNGS_APS_LDS (Run 1A, Raw), the tool got stuck and the caliper was closed. This affected the density and neutron logs and these curves are replaced with corresponding LWD curves in the interval 3480.0 to 3500.0 m.

Wellbore 35/8-5S									
Compos	ite log		Source log & curve						
Curve name	Curve type	Curve service	Source log from Recall (Tool combination)	Run	Curve Name	v.	Interval (m MD RKB)		
AC	SONIC	AC.SLO.	VISION_ISONIC_ADN	MERGED	DTBC	1	1310.0-3985.3		
BS	BITSIZ	BIT.SIZ	HNGS_APS_LDS	1A	BS	1	3261.1-4009.7		
CALI	CALI	CAL.	HNGS_APS_LDS	1A	CALI	1	3250.0-4005.0		
DEN	DENS	DEN.	HNGS_APS_LDS	1A	RHOM	1	3221.8-3480.0		
			VISION_ISONIC_ADN	MERGED	ROBB	1	3480.0-3500.0		
			HNGS_APS_LDS	1A	RHOM	1	3500.0-4021.9		
DENC	DENCOR	DEN.CRN	HNGS_APS_LDS	1A	DRH	1	3221.8-4121.9		
GR	GAMMA	GR.	HNGS_APS_LDS	1A	HSGR	1	470.1-3998.0		
K	GRSPEC	ELE.K.	HNGS_APS_LDS	1A	HFK	1	3221.8-3998.0		
NEU	NEUT	NEU.	HNGS_APS_LDS	1A	APLC	1	3263.5-3480.0		
			VISION_ISONIC_ADN	MERGED	TNPH	1	3480.0-3500.0		
			HNGS_APS_LDS	1A	APLC	1	3500.0-4002.1		
PEF	PEF	PEF.	HNGS_APS_LDS	1A	HPEF	1	3263.5-4004.9		
RDEP	DEPRES	RES.DEP.	VISION_ISONIC_ADN	MERGED	ATR	1	474.9-3245.9		
					P34H	1	3245.9-3999.2		
RMED	MEDRES	RES.MED.	VISION_ISONIC_ADN	MERGED	PSR	1	474.9-3245.9		
					P16H	1	3245.9-3999.2		
ROP	ROP	ROP.	VISION_ISONIC_ADN	MERGED	ROP5_R	1	474.9-4009.7		
TENS	TENS	TENS.	HNGS_APS_LDS	1A	TENS	1	3221.8-4022.0		
TH	GRSPEC	ELE.TH.	HNGS_APS_LDS	1A	HTHO	1	3221.8-3998.0		
U	GRSPEC	ELE.U.	HNGS_APS_LDS	1A	HURA	1	3221.8-3998.0		
SHIFT2	SHIFT	-	Generated in Recall	-	-	1	3261.4-3993.9		

Table 3-2 Composite log (hybrid), well 35/8-5 S

3.3.1 Log quality

MDT

A large number of pretests were attempted (68). Of these, 44 tests are considered to be dry tests with no significant pressure response after draw-down. One test was lost seal. The remaining 23 tests are of generally poor quality and are more or less all affected by supercharging and low permeability. No gradients can be established from pressure points in any of the three reservoirs.

LWD and Wireline logs

Both the LWD- and w/l-logs are of good quality. The density logs from LWD and w/l are in good agreement. During logging of the HNGS_APS_LDS (Run 1A, Raw), the tool got stuck and the caliper was closed. This affected the density and neutron logs and these curves are replaced with corresponding LWD curves in the interval 3480.0 to 3500.0 m. The w/l neutron log was run without a bowspring for decentralization, and hence some uncertainty is associated with this measurement.

A considerable depth discrepancy between driller's depth and logger's depth was observed. No obvious reason was identified after a thorough investigation was carried out. The depth difference is in the range 6,5 - 10,5 meters (maximum at TD). W/l depth control was monitored carefully at the well site, and standard procedures were followed. The depth correction is described in the curve SHIFT2 included in the COMPOSITE log. Above the 9 5/8" casing shoe, the MWD-logs are block shifted +9.0 meters. This was observed during the first w/l run, and was later confirmed with the subsequent MDT log.

The ISONIC DT suffered from weak coherence during logging and was later reprocessed by Schlumberger DCS resulting in a great improvement. The log is of good quality from TD to 1700 m. Shallower than this depth, the coherence is weak and the log quality is worse, however the resulting DT over most of the 1300-1700 m. interval is useable.

3.3.2 Corrections

LWD logs are all bore hole compensated, and VISION is also environmentally corrected. ADN porosity is corrected for tool size, bit size, mud salinity and mud HI. CDR GR is corrected for mud weight, bit size and tool size. ISONIC DT is reprocessed by Schlumbeger DCS.

The w/l neutron log is caliper corrected.

3.4 Evaluation Method

Petrophysical methodology

The petrophysical interpretation of the 8 ¹/₂" section is based on the porosity logs from w/l and the resistivity log from LWD. The petrophysical interpretation is integrated with the core analysis for verification of log interpretation.

OBM was used for the 8 ¹/₂" interval, and no micro-resistivity device was run. Therefore, no hydrocarbon correction is applied to the porosity interpretation.

Bottom hole temperature

The two logging runs provide measurements of bottom hole temperature through the use of maximum recording thermometers.

Circulation stopped at 5:00 AM 9th July 2003 after 2 hours duration. First logging run reached bottom at 3:30 AM 10th July and recorded 126 deg C. Second logging run (MDT) reached bottom at 6:40 PM 10th July and recorded 127°C. From charts, static bottom hole temperature was estimated to be 128,5°C.

Shale Volume

As stated before, logs are of good quality. The GR gives a good response to the shale volume, and sand bodies are readily identified from the GR. No additional information was identified from other associated curves like the Potassium and Thorium curves.

GR has been used for estimation of shale volume for all three reservoirs encountered. Parameters like GRclean and GRshale are identified from visual inspection of logs as well as histograms.

Due to the finely laminated nature of the Oxfordian, parameters have been adjusted to give a better representation of core observations with identified layers of Net Reservoir within the laminated sequence. See figure below.

A shale volume cutoff of 0.40 has been applied.

A 'manual' count of Net Reservoir from inspection of core is recommended as none of the logs available can identify this.

Porosity

For all of the three reservoirs, the density log is used for porosity interpretation. Selections of input parameters are based on visual inspection of logs and from core analysis (grain density). The density log is of high quality over the reservoir intervals and in good agreement with the LWD density.

Effective porosity, corrected for shale volume, is estimated and compared to core analysis (Helium porosity). Good agreement between logs and core analysis has been achieved apart from in the

laminated interval of the Oxfordian. Here, the logs do not pick up the details, and the log interpreted porosity show a mere average.

For the Callovian the input parameters used for Brent are used, due to lack of core data

In the Brent Group, the log and core porosities show good agreement over the cored interval, which is limited to the upper part of the Brent Group. Calcite cemented layers and coal strings are discriminated and porosity is set to 0.

Based on experience, an overburden correction of 0,95 has been applied to the core porosities for comparison with the w/l-interpreted porosity.

Water saturation

The deep resistivity curve P34H from the LWD service VISION has been used for Rt input to the model. As the reservoirs encountered are shale / sand sequences, the Indonesia equation has been used for determination of water saturation in order to correct for clay volume.

Dean&Stark analyses have been carried out for certain core plugs and are valid for the Oxfordian and the data confirm the log interpretation. However, the absolute values are somewhat different. This is most likely caused by the poor vertical resolution of the resistivity logs. The observed resistivity values are too low, giving too high water saturations. For volumetrics of the Oxfordian it might be advisable to use the results from the D&S analyses instead of the log interpreted saturation.

The log interpretation confirms the water bearing Callovian and Brent.

No fluid samples are collected from this well, so no measurement of Rw can be carried out. Rw is determined from the Rwa-method over Callovian and Brent. The result is approx. Rw=0.09 @ 128,5 °C for both reservoirs in question. This is also in agreement with the interpretation of the nearby 35/8-3 well and gives an indication of a regional aquifer.

Net Reservoir

For the Oxfordian, a porosity cutoff is hard to pick as the plugs are drilled on a regular spacing through the laminated sequence. The plugs will include a varying amount of shale, and this affects the permeability measurements considerably. There is poor correlation between permeability and porosity from core analysis and no obvious porosity cutoff can be identified. However, a porosity cutoff of 10% has been chosen to be the most representative value for a corresponding permeability cutoff at 1 mD.

No cores are cut in the Callovian, and the same cutoff has been applied as for the Oxfordian; PHIE=10%.

Two cores were cut in the upper part of the Brent Group. This part of the Brent consists of poor reservoir quality compared to the deeper part of the Brent. The cores are therefore not representative for the lower Brent containing the best reservoir quality. The available core data does not give a good correlation between porosity and permeability, and the selection of a representative cutoff value is not obvious. However, a porosity cutoff of 12% has been chosen to be the most representative for the Brent group.

Cores

A total of six cores were cut, four in the Oxfordian, and two in the Brent Group and conventional core analysis, including He-porosity, air permeability and grain density and the analysis were carried out by Reslab, and additionally Dean&Stark were performed on a selection of plugs. The cores are depth matched to the reference log, the first w/l run.

Core no.	Zone	Drillers depth rec.	Depth shifts	W/l depth rec.
Core #1	Oxfordian	3381.0-3382.5	+8.4 m	3388.4-3390.9
Core #2	Oxfordian	3383.5-3401.6	+8.0 m	3391.5-3409.6
Core #3	Oxfordian	3401.6-3415.0	+8.1 m	3409.7-3423.1
Core #4	Oxfordian	3415.5-3443.3	+8.1 m	3423.6-3451.3
Core #5	Brent	3845.1-3856.3	+10.3 m	3855.4-3866.6
Core #6	Brent	3856.3-3883.5	+10.4 m	3866.7-3893.9

Table 3-3 Core depth Shifts, well 35/8-5 S

3.5 Fluid System

3.5.1 Formation pressure analysis

The CQG gauges were both operational during the entire job and the evaluation is based on the CQG gauges. The strain gauge (SG) data are not discussed, as they are not considered to add any additional information.

For the Callovian and Brent, water gradients of 0.099 bar/m have been established by using the water density derived from log interpretation. The pre-tests are not of sufficient quality to give any conclusive gradients directly. The gradient estimated from log interpretation is drawn through the best pre-test available in each of the two reservoirs (tests # 64 and #50 respectively), in this situation considered to be the best possible option. No conclusive results can be made regarding formation pressure in the Oxfordian. None of the pre-tests in the Oxfordian are of sufficient quality to quantify the formation pressure or pressure gradient. The formation pressures show that the Callovian and the Brent Group have different absolute pressures regimes. Brent formation pressures are approximately 38 bar higher than what is measured in the Callovian.

3.5.2 Fluid Contacts

In this well, no fluid contacts are encountered. The Oxfordian is oil-filled while the Callovian and Brent are entirely water bearing. The gradients and absolute pressures are not of sufficient quality to make any proper estimations of possible contacts levels w.r.t. the oil column identified in the Oxfordian.

3.5.3 Fluid Sampling

No fluid sampling was carried out with MDT in this well.

3.6 Pressure and temperature summary.

3.6.1 Pressure

The pore pressure-, fracture -, and overburden gradients are presented graphically in figure B-4. All depths are in meters true vertical depth TVD, relative to rotary table. Air gap 23 m and water depth 372 m RKB. The pore pressure-, fracture -, and overburden gradient are given in Equivalent Mud Density, g/cm³ or sg. Data to interpret the pore pressure includes MDT pressure points, MWD logs, gas data and drilling parametres.

3.6.2 Pore pressure gradient

Shallow gas was not observed but it was observed water flow in the Nordland Group sand above the Utsira Fm.

Drilled 12 1/4" pilot hole from 461m to 683m due to waterflow experience in the area. Drilled through two thin sand stringers at 570m and 590m. Flow checked well due to indication on drill break at 681m. Observed well flowing. Displaced well to 1.30 sg mud and killed well. At this time it was assumed that the Utsira sand itself was flowing but the preseeding operations confirms flow from the shallower sands as experienced in other wells in this area. Lubricated and pulled out of hole with 12¹/₄" BHA. Rigged up cement stand and ran in hole to 683m. Displaced hole to 1.22sg NaCl mud and flow checked, negative. Displaced hole back to 1.30sg mud. Pumped 15m3 of 1.30sg spacer and 7.6m3 of 1.90sg gastight cement. Displaced cement with 1.30sg slurry and pulled out of hole. Ran in hole with 12 ¹/₄" BHA and tagged soft cement at 594m. Drilled 4m soft cement to 598m. Observed well flowing when flow checking prior to connection. Circulated with seawater and washed down to 677m. The well continued flowing. Drilled hard cement from 677m to 680m. Displaced well to 1.30sg mud, well stable, pulled out of hole. Made up cement stand and ran in hole to 680m. Displaced well to 1.15sg mud, well was stable. Displaced to 1.30sg mud. Pumped 15m3 of 1.30sg spacer, 12m3 of 1.90sg gastight cement and displaced with 1100 l of 1.30sg spacer and 2800 l seawater. Pulled out of hole. Observed well. Made up 12 ¹/₄" BHA and ran in hole to 555m. Washed down to 600m in soft cement and circulated bottoms up with seawater. Flow checked well, well was flowing. Continued washing down to hard cement at 675m. Spotted 4.1m3 of 1.50sg kill pill from 675m to 590m and flow checked well. Well still flowing, from the shallow sands. Displaced well to 1.30sg mud and flow checked for 30 minutes. Well static. Lubricated and pulled out of hole. Ran in hole with 5" open end drill pipe to 675m. Pumped 12m3 1.30sg spacer, 15.2m3 of 1.50sg cement slurry and displaced cement with 70011.30sg spacer and 28001 seawater. Pulled out of hole and observed well. Waited on cement to set up. Made up and ran in hole with 12 ¹/₄" BHA to 555m to check for cement. No cement observed, pulled back to 454m and continued waiting for cement to set up. Washed down from 454m and tagged soft cement at 658m. Pumped 4m3 1.3sg pill and circulated bottoms up with seawater. Well stable. Displaced well to 1.30sg mud. Pulled out of hole. Made up parabow with setting tool on 3 ¹/₂" drillpipe to 207m. Continued to run in hole with 5" drillpipe to 656m. Pulled back to 630m and pumped 10m3 of 1.30sg mud. Dropped ball, installed cement stand and pumped ball down to launch parabow. Pulled back to 627m. Pumped 10m3 of 1.30sg spacer, 11.8m3 of 1.95sg cement slurry and displaced cement with 7001 of 1.30sg spacer and 3000 l seawater. Pulled out of hole, flushed cement stinger with seawater and ran back into hole waiting for cement to set up. Pulled out of sea with cement stinger. Waited on cement, and ran in hole with 12 ¹/₄" BHA. Tagged firm cement at 570.5m. Circulated bottoms up with seawater and flow checked well for 30min. Well stable. Displaced well to 1.30sg mud and pulled out of hole. Changed to 5" handling equipment and ran in hole with 5" drillpipe to 568m. Spotted 5m3 of 1.30sg LCM pill. Pumped 12m3 of 1.30sg spacer, 7.6m3 of 1.95sg cement slurry and displaced cement with

500 l of 1.30sg spacer and 2800 l seawater. Pulled out of hole, flushed cement stinger with seawater and ran back into hole waiting for cement to set up. Made up 12 ¼" BHA and waited for cement to set up. Ran in hole with 12 ¼" BHA and tagged firm cement at 513m. Drilled to 558m, and circulated bottoms up with seawater. Flow checked well for 30min, well stable. Pulled out of hole, the water flow was killed. The Pore pressure of the shallow sands are uknown but based upon the fact that the well was stable with 1,30sg mud the pore pressure had to be below 1,13sg and most likely in the range of 1,035 to 1,05sg. The mechanism behind this water pressure is still uknown, but glacial overcompaction has been suggested.

The pore pressure was else interpreted to stay at 1,03sg from top Utsira into top Trygvason. A pressure build-up as prognosed was observed before running the 9 5/8" casing. When drilling / coring the Oxfordian reservoir sand trip gases and increased background gas was observed. No tight hole or pressure cavings were observed. One attempt to perform a POG was done, but no conclusive POG trend was established. Based on the gas development it was decided to raise the mudweight in case the well was close to balance.

The pore pressure could not be determined in the Oxfordian by MDT due to cementation, but the sonic log did support a steady pore pressure increase from 1,20sg in the Oxfordian to 1,40sg at the base of the Heather Fm, but the pore pressure in Oxfordian remains uncertain. The MDT pressure point taken in the Brent Group gave a reservoir pressure of 1,40sg.

3.6.3 Fracture gradient

The fracture gradient is based on the assumed rock mechanical properties to each stratigraphic layer (Daines (1982)), Eckels & van Breckelen and adjusted to leak off tests taken in reference wells. There was no mudlosses to the formation in this well. The 20" casing shoe was tested with a FIT to 1,25sg. The 13 3/8" casing was drilled out and a LOT was performed. The formation did not leak off but gave a minifrac at a pressure equal to 2,06sg. This was much higher than prognosed (1.5 sg), indicating that the cement had been tested (pressure 120bar = 1740 psi 29 hours after cementing , cement plot 1950 psi after 27 timer). Drilled therefore additional 2 m and performed a FIT with 59 bar (just below the stabilizing pressure from the LOT) to verify formation strength. This was OK and gave a value of 1.58sg. Minimum strength for further drilling was 1.50sg The 9 5/8" casing shoe was tested with a FIT to 1,80sg.

3.6.4 Overburden gradient

Overburden gradient is based on the prognosis.

3.6.5 Temperature gradient

The temperature gradient (fig B-5) is based on the Horner plot giving 132° C at 3700m. An average formation temperature gradient of $3,93^{\circ}$ C / 100m TVD gives a static bottom hole temperature of $138,6^{\circ}$ C, assuming 4° C at seafloor.

3.7 Figures and Tables

LIST OF TABLES AND FIGURES

- TABLE3.7.1Petrophysical input parameters
- TABLE3.7.2Reservoir zonal averages
- TABLE3.7.3Formation Pressure table
- FIGURE 3.7.4 Formation Pressure plot, overburden and fracture gradient
- FIGURE 3.7.5 Formation Temperature plot
- FIGURE 3.7.6 CPI, Geological Data sheet
- FIGURE 3.7.7 Formation Pressure plot

3.7.1 Petrophysical Input Parameters

Parameter	Symbo	Unit	Sources	Oxfordian	Callovian	Brent		
	1							
Formation Top		m MD RKB	Report	3334,5	3579,0	3840,0		
Formation Bottom		m MD RKB	Report	3431,5	3632,0	3984,0		
Formation temperature	Т	Deg C	Logs / equation		128,5			
Depth of form. temp.		mTVDMSL			3800			
Apparent hydrocarbon	RHO _{hc,a}	g/cm ³	Estimated		1,00			
density (invaded zone)								
Formation water	RHO _{wate}	g/cm ³	Calculated		0,97			
density	r							
Formation water resist.	\mathbf{R}^{w}	ohm.m	Calculated	0.09				
at form. temp.						-		
Shale density	RHO _{sh}	g/cm ³	LOG	2,60	2,65	2,65		
Shale resistivity	R _{sh}	ohm.m	LOG	4.0	6.0	15.0		
Sand: GRmin	GR _{min}	API	LOG	45	30	35		
Sand: GRmax	GR _{max}	API	LOG	130	120	135		
Matrix density	RHO _{ma}	g/cm ³	CORE	2.68	2.68	2.68		
Archie factor	а		Estimated	1,0				
Cementation exponent	m		Estimated	2,2				
Saturation exponent	n		Estimated	2,0				
Indonesia parameter	I _{silt}		Estimated	0				
Indonesia parameter	C _{vsh}		Estimated		1			

Table 3-4 Input parameters to the log interpretation

3.7.2 Reservoir zonal averages

Reservoir	Тор	Bottom	Gross	Net	Net/	Phie	Vsh	Phie	Swe
Zone	mRKB	mRKB	Thickness	Thickness	gross	Cut-	Cut-	frac	frac
						off	off		
Oxfordian	3334.5	3431.5	97.0		0.016	0.14	0.40	0.192	0.21
					0.035	0.12	0.40	0.156	0.25
					0.075	0.10	0.40	0.130	0.30
Callovian	3579.0	3632.0	53.0		0.170	0.14	0.40	0.166	0.87
Sands					0.210	0.12	0.40	0.159	0.88
					0.267	0.10	0.40	0.148	0.89
Brent	3840.0	3984.0	144.0		0.201	0.14	0.40	0.165	0.91
Group					0.266	0.12	0.40	0.157	0.90
					0.341	0.10	0.40	0.146	0.91

Table 3-5 Net reservoir averages well 35/8-5 S (Remarks all depths refer to wire-line depths in mRKB)

File	Test	GGDD		EMD	Mud	Mud	DD	Comme	Packer	Gauge
- ^{No.} -	No.	SSDP	MD		Before	After	Mob.	nt	Probe	Name
		m	m	BAK	BAK	BAK	ma/cp			
131	1	3339,1	3427,2		549,22	548,95		Dry Test	Conv. Pr.	BQP1
142	10	3291,4	3367,5		539,6	539,56		Dry Test	Conv. Pr.	BQP1
156	15	3791,4	3986,0		623,59	623,46		Dry Test	Conv. Pr.	BQP1
157	16	3782,1	3974,5		621,14	620,99		Dry Test	Conv. Pr.	BQP1
160	18	3761,5	3949,0		616,11	616		Dry Test	Conv. Pr.	BQP1
176	32	3703,1	3877,5		605,58	605,58		Dry Test	Conv. Pr.	BQP1
190	45	3747,7	3932,0	517,89	612,8	612,87	1,9	DD pretest	Conv. Pr.	BQP1
191	46	3745,2	3929,0	517,24	612,38	612,45	1,5	DD pretest	Conv. Pr.	BQP1
192	47	3743,6	3927,0	517,10	612,14	612,17	3,7	DD pretest	Conv. Pr.	BQP1
193	48	3705,2	3880,0		605,49	605,58		Dry Test	Conv. Pr.	BQP1
194	49	3704,3	3879,0		605,4	605,48		Dry Test	Conv. Pr.	BQP1
195	50	3703,1	3877,5		605,24	605,24		Dry Test	Conv. Pr.	BQP1
196	51	3702,3	3876,5		605,11	605,14		Dry Test	Conv. Pr.	BQP1
199	52	3748,9	3933,5	517,72	614,62	614,24	0,9	DD pretest	Conv. Pr.	BQP1
200	53	3747,3	3931,5	517,69	613,81	613,55	2,9	DD pretest	Conv. Pr.	BQP1
205	56	3502,9	3629,5		572,21	572,24		Dry Test	Conv. Pr.	BQP1
208	59	3495,7	3620,5		571,06	571,06		Dry Test	Conv. Pr.	BQP1
133	2	3339,1	3427,2		548,93	548,57		Dry Test	L-A Packer	BQP2
134	3	3338,9	3426,9		548,43	548,24		Dry Test	L-A Packer	BQP2
136	4	3334,6	3421,5		547,13	546,95		Dry Test	L-A Packer	BQP2
137	5	3325,4	3410,0		544,99	544,87		Superch.	L-A Packer	BQP2
138	6	3319,2	3402,2	466,04	543,71	543,89		Superch.	L-A Packer	BQP2
139	7	3306,3	3386,0		541,76	541,87		Dry Test	L-A Packer	BQP2
140	8	3298,3	3376,0		540,47	540,58		Dry Test	L-A Packer	BQP2
141	9	3291,4	3367,5		539,47	539,53		Lost Seal	L-A Packer	BQP2
143	11	3285,4	3360,0		538,51	538,54		Dry Test	L-A Packer	BQP2
144	12	3273,7	3345,5		536,61	536,7		Dry Test	L-A Packer	BQP2
146	13	3266,4	3336,5		535,55	535,56		Dry Test	L-A Packer	BQP2
147	14	3257,0	3325,0		533,99	534,05		Dry Test	L-A Packer	BQP2
158	17	3780,2	3972,1		620,60	620,39		Dry Test	L-A Packer	BQP2
161	19	3759,4	3946,5	519,29	615,66			DD pretest	L-A Packer	BQP2
162	20	3757,9	3944,6	518,88	615,25	615,26	0,6	DD pretest	L-A Packer	BQP2
165	21	3747,7	3932,0	517,44	613,12	613,07	4,1	DD pretest	L-A Packer	BQP2
166	22	3745,2	3929,0	517,22	612,66	612,73	434,7	DD pretest	L-A Packer	BQP2
167	23	3743,6	3927,0	517,10	612,42	612,46	1,5	DD pretest	L-A Packer	BQP2
168	24	3730,1	3910,5		610,33	610,29		Dry Test	L-A Packer	BQP2
169	25	3726,0	3905,5		609,48	609,54		Dry Test	L-A Packer	BQP2
170	26	3725,2	3904,5		609,39	609,42		Dry Test	L-A Packer	BQP2
171	27	3721,7	3900,2		608,57	608,67		Dry Test	L-A Packer	BQP2
172	28	3705,1	3879,9		605,75	605,9		Dry Test	L-A Packer	BQP2
173	29	3704,7	3879,4		605,86	605,89		Dry Test	L-A Packer	BQP2
174	30	3703,1	3877,5		605,54	605,56		Dry Test	L-A Packer	BQP2
175	31	3701,5	3875,5		605,32	605,35		Dry Test	L-A Packer	BQP2
177	33	3699,5	3873,1		605,01	605,03		Dry Test	L-A Packer	BQP2
178	34	3687,5	3858,5		602,80	602,91		Dry Test	L-A Packer	BQP2
179	35	3684,2	3854,5		602,32	602,38		Dry Test	L-A Packer	BQP2
180	36	3680,9	3850,5		601,78	602,80		Dry Test	L-A Packer	BQP2

File	Test	GGDD	10		Mud	Mud	DD	Comme	Packer	Gauge
No.	No.	SSDP	MD	FMP	Before BAD	After	Mob.	nt	Probe	Name
181	37	3672.8	3840 5	DAK	601.03	600.91	mu/cp	Dry Test	I_A Packer	BOP2
183	38	3777 7	3969 0	521 33	620 58	620.22		Superch	L-A Packer	BOP2
184	39	3776.1	3967 0	520,98	619.76	619 35	0.2	DD pretest	L-A Packer	BOP2
185	40	3772.4	3962.5	520,50	618 47	618 25	0.6	DD pretest	L-A Packer	BOP2
186	41	3767.9	3957 0	519.87	617 31	617.06	0.2	DD pretest	L-A Packer	BOP2
187	42	3765.5	3954.0	519,80	616.35	616.11	0,2	DD pretest	L-A Packer	BOP2
188	43	3759.8	3947.0	518.91	615.01	615.12	0.3	DD pretest	L-A Packer	BOP2
189	44	3747.7	3932.0	517.49	612.83	612.98	6.9	DD pretest	L-A Packer	BOP2
202	54	3502.9	3629.5	017,12	572.11	572.30	0,2	Dry Test	L-A Packer	BOP2
204	55	3501.3	3627.5		571.86	571.91		Dry Test	L-A Packer	BOP2
206	57	3495.7	3620.5		570.94	571.04		Dry Test	L-A Packer	BOP2
207	58	3494.1	3618.5		570.75	570.78		Dry Test	L-A Packer	BOP2
209	60	3482.3	3604.0		568.74	568.91		Dry Test	L-A Packer	BOP2
210	61	3479.1	3600.0		568.28	568.36		Drv Test	L-A Packer	BOP2
211	62	3475.0	3595.0		567.74	567.78		Superch.	L-A Packer	BOP2
212	63	3469.9	3588.7		567.40	566.93		Dry Test	L-A Packer	BOP2
213	64	3468.1	3586.5	452.74	566.69	566.73	0.6	DD pretest	L-A Packer	BOP2
214	65	3466,5	3584,5	456,19	566,43	566,47	0,1	DD pretest	L-A Packer	BOP2
215	66	3462,9	3580.0	,	565,77	565,81	,	Dry Test	L-A Packer	BOP2
218	67	3495.9	3620.8	457.44	573.03	572.50	0.5	DD pretest	L-A Packer	BOP2
219	68	3493.8	3618,2	457,27	572,28	571,90	0,4	DD pretest	L-A Packer	BOP2
131	1	3339.1	3427.2	,	549.37	549.14	,	Drv Test	Conv. Pr.	BSG1
142	10	3291,4	3367.5		539,64	539,64		Dry Test	Conv. Pr.	BSG1
156	15	3791.4	3986.0		623,59	623,39		Dry Test	Conv. Pr.	BSG1
157	16	3782,1	3974,5		621,12	620,95		Dry Test	Conv. Pr.	BSG1
160	18	3761,5	3949,0		616,11	615,97		Dry Test	Conv. Pr.	BSG1
176	32	3703,1	3877,5		605,43	605,50		Dry Test	Conv. Pr.	BSG1
190	45	3747,7	3932,0	517,81	612,76	612,74	1,9	DD pretest	Conv. Pr.	BSG1
191	46	3745,2	3929,0	517,13	612,26	612,32	1,5	DD pretest	Conv. Pr.	BSG1
192	47	3743,6	3927,0	517,01	612,02	612,03	3,7	DD pretest	Conv. Pr.	BSG1
193	48	3705,2	3880,0		605,36	605,48		Dry Test	Conv. Pr.	BSG1
194	49	3704,3	3879,0		605,28	605,37		Dry Test	Conv. Pr.	BSG1
195	50	3703,1	3877,5		605,11	605,14		Dry Test	Conv. Pr.	BSG1
196	51	3702,3	3876,5		605,00	605,04		Dry Test	Conv. Pr.	BSG1
199	52	3748,9	3933,5	517,65	614,50	614,10	0,9	DD pretest	Conv. Pr.	BSG1
200	53	3747,3	3931,5	517,62	613,70	613,41	2,9	DD pretest	Conv. Pr.	BSG1
205	56	3502,9	3629,5		572,14	572,20		Dry Test	Conv. Pr.	BSG1
208	59	3495,7	3620,5		570,97	571,02		Dry Test	Conv. Pr.	BSG1
133	2	3339,1	3427,2		547,14	546,74		Dry Test	L-A Packer	BSG2
134	3	3339,0	3427,0		547,64	547,42		Dry Test	L-A Packer	BSG2
136	4	3334,6	3421,5		546,34	546,15		Dry Test	L-A Packer	BSG2
137	5	3325,4	3410,0		543,23	543,06		Dry Test	L-A Packer	BSG2
138	6	3319,2	3402,2	464,55	541,92	542,07	0,2	Superch.	L-A Packer	BSG2
139	7	3306,3	3386,0		539,96	540,08		Dry Test	L-A Packer	BSG2
140	8	3298,3	3376,0		538,93	539,01		Dry Test	L-A Packer	BSG2
141	9	3291,4	3367,5		537,92	537,98		Lost Seal	L-A Packer	BSG2
143	11	3285,4	3360,0		536,96	537,00		Dry Test	L-A Packer	BSG2
144	12	3273,7	3345,5		535,09	535,17		Dry Test	L-A Packer	BSG2
146	13	3266,4	3336,5		534,01	534,04		Dry Test	L-A Packer	BSG2
147	14	3257,0	3325,0		532,50	532,54		Dry Test	L-A Packer	BSG2
158	17	3780,2	3972,1		618,98	618,70		Dry Test	L-A Packer	BSG2

File	Test	CCDD	м	EMD	Mud	Mud	DD	Comme	Packer	Gauge
- <mark>No.</mark> -	No.	SSDP	MD		Before	After	Mob.	nt	Probe	Name
	10	m	m	BAR	BAK	BAK	ma/cp			
161	19	3759,4	3946,5	517,93	613,99			DD pretest	L-A Packer	BSG2
162	20	3757,9	3944,6	517,56	613,56	613,57	0,6	DD pretest	L-A Packer	BSG2
165	21	3747,7	3932,0	516,14	611,42	611,36	4,1	DD pretest	L-A Packer	BSG2
166	22	3745,2	3929,0	515,93	610,97	611,02	0,6	DD pretest	L-A Packer	BSG2
167	23	3743,6	3927,0	515,79	610,74	610,76	1,5	DD pretest	L-A Packer	BSG2
168	24	3730,1	3910,5		608,62	608,58		Dry Test	Conv. Pr.	BSG2
169	25	3726,0	3905,5		607,79	607,83		Dry Test	L-A Packer	BSG2
170	26	3725,2	3904,5		607,70	607,73		Dry Test	L-A Packer	BSG2
171	27	3721,7	3900,2		606,90	606,97		Dry Test	L-A Packer	BSG2
172	28	3705,1	3879,9		604,08	604,23		Dry Test	L-A Packer	BSG2
173	29	3704,7	3879,4		604,20	604,22		Dry Test	L-A Packer	BSG2
174	30	3703,1	3877,5		603,88	603,89		Dry Test	L-A Packer	BSG2
175	31	3701,5	3875,5		603,64	603,68		Dry Test	L-A Packer	BSG2
177	33	3699,5	3873,1		603,35	603,38		Dry Test	L-A Packer	BSG2
178	34	3687,5	3858,5		601,16	601,26		Dry Test	L-A Packer	BSG2
179	35	3684,2	3854,5		600,62	600,72		Dry Test	L-A Packer	BSG2
180	36	3680,9	3850,5		600,14	601,15		Dry Test	L-A Packer	BSG2
181	37	3672,8	3840,5		599,38	599,24		Dry Test	L-A Packer	BSG2
183	38	3777,7	3969,0	519,71	618,61	618,17		Superch.	L-A Packer	BSG2
184	39	3776,1	3967,0	519,36	617,75	617,31	0,2	DD pretest	L-A Packer	BSG2
185	40	3772,4	3962,5	518,73	616,66	616,43	0,6	DD pretest	L-A Packer	BSG2
186	41	3767,9	3957,0	518,42	615,51	615,24	0,2	DD pretest	L-A Packer	BSG2
187	42	3765,5	3954,0	518,33	614,55	614,29	0,1	DD pretest	L-A Packer	BSG2
188	43	3759,8	3947,0	517,47	613,21	613,31	0,3	DD pretest	L-A Packer	BSG2
189	44	3747,7	3932,0	516,12	611,04	611,18	7	DD pretest	L-A Packer	BSG2
202	54	3502,9	3629,5		570,07	570,25		Dry Test	L-A Packer	BSG2
204	55	3501,3	3627,5		569,83	569,88		Dry Test	L-A Packer	BSG2
206	57	3495,7	3620,5		568,93	569,03		Dry Test	L-A Packer	BSG2
207	58	3494,1	3618,5		568,75	568,77		Dry Test	L-A Packer	BSG2
209	60	3482,3	3604,0		567,79	567,93		Dry Test	L-A Packer	BSG2
210	61	3479,1	3600,0		566,30	566,32		Dry Test	L-A Packer	BSG2
211	62	3475,0	3595,0		565,74	565,82		Superch.	L-A Packer	BSG2
212	63	3469,9	3588,7		565,48	564,94		Dry Test	L-A Packer	BSG2
213	64	3468,1	3586,5	451,30	564,69	564,74	0,6	DD pretest	L-A Packer	BSG2
214	65	3466,5	3584,5	454,70	564,43	564,46	0,1	DD pretest	L-A Packer	BSG2
215	66	3462,9	3580,0		563,79	563,78		Dry Test	L-A Packer	BSG2
218	67	3495,9	3620,8	456,11	571,19	570,71	0,5	DD pretest	L-A Packer	BSG2
219	68	3493,8	3618,2	455,94	570,44	570,07	0,4	DD pretest	L-A Packer	BSG2

3.7.5 Formation Temperature plot

3.7.6 CPI plots

3.7.6.1 CPI Oxfordian

3.7.6.2 CPI Callovian

3.7.6.3 CPI Brent

3.7.7 Formation Pressure Plot

4 POST SITE SURVEY

4.1 Introduction

This memo contains the Post Site Survey Report for Well 35/8-5 S. The results are based on:

- 2D high-resolution reflection seismic (NH0357)
- 3D reflection seismic (BPN9301M00 Full and Near Offset)
- 3D reflection seismic (NH8902R97 Full Offset)
- Site Survey at Location 35/8-5 S (NH-00151471)
- LWD logs (resistivity and gamma)
- Drilling results from 13 exploration wells (35/8-1, 35/8-2, 35/8-3, 35/8-4, 35/9-1, 35/9-2, 35/9-3, 35/9-3 T2, 35/9-4 SX, 35/11-1, 35/11-6, 36/7-1 & 36/7-2).

4.2 Well Data

1	Distance from rig floor to sea level:	29 m
2	Water depth (MSL):	369.5 m
3a	Setting depth for conductor (m RKB):	458 m
3b	Leak Off / Formation Integrity Test (g/cc):	N/A
4 a	Setting depth (m RKB TVD) for casing on which BOP mounted:	549.9 m
4b	Formation Integrity Test (g/cc):	1.25 sg (at 561 m RKB TVD)

5 Depth (m RKB TVD & Two Way Time) to formation/section/layer tops:

Seabed:	398.5 m *	(503 ms)
Base Unit 1:	404 m *	(509 ms)
Base Unit 2:	420 m *	(522 ms)
Base Unit 3:	452 m *	(556 ms)
Base Unit 4:	493 m	(599 ms)
Base Unit 5:	527.5 m	(646 ms)
Base Pleistocene	:571.5 m	(689 ms)
Base Pliocene:	663 m	(789 ms)
Base Miocene:	673 m	(799 ms)
Base Oligocene:	845 m	(964 ms)
Top Balder Fm:	1337.5 m	(1391 ms)
Top Sele Fm:	1384 m	(1443 ms)
Top Lista Fm:	1399 m	(1457 ms)
Top Ty Fm:	1658 m	(1720 ms)
Base Tertiary:	1716 m	(1782 ms)

* Formation depths are based on the Site Survey Report as no LWD logs were acquired in the 30" section (i.e. above 458 m RKB). Two-way-times are based on the Site Survey Report.

Note:

The well is drilled with returns to seabed above 680 m RKB TVD. Still, cutting description from spot samples was performed between 560 m and 680 m RKB. Mud logging commenced at 680 m RKB. The interpretation above 560 m is based on reflection seismic character, LWD logs (below 458 m RKB) and previous work.

6 Depth interval (m RKB TVD & Two Way Time) and age of sand bodies shallower than 1000 m under the seabed. Note which layers if any containing gas:

Pleistocene Interval:

567.5 m - 571.5 m

Pliocene Interval:

586.5 – 588.5 m

Oligocene Interval:

673 m – 794 m

Eocene Interval:

845 m - 1037 m 1091 m - 1204.5 m

7 By what means is the presence of gas proven:

No data exists on background gas levels from seabed down to approximately 560 m (20" casing shoe). However, no gas-related incidents were reported when drilling this interval.

Below 560 m RKB TVD gas analyses were accomplished using the gas log from the LWD assemblages. Below 680 m RKB TVD gas analyses were performed using flame ionisation detectors (FID) with gas measured as percentage methane (C1) equivalent in air, and chromatographic analyses expressed in parts per million.

8 Composition and origin of gas:

Methane (C1)

9 Describe all measurements taken in gas bearing layers:

N/A

4.3 Seismic data

10 Given depth and extent of any gas blanking ("gass-skygging"), seismic anomalies etc.:

No anomalies have been found within the Quaternary sequence, either within the survey area or along the tie-line towards the 35/8-3 well location. Two levels of anomalies have been identified in the upper Tertiary sequence, 1) Miocene Utsira Formation and 2) Oligocene interval.

The 35/8-5 S Well Location was interpreted as being free of shallow gas hazards. The closest visible anomaly occurs approximately 320 metres to the north at a depth of 721 m \pm 5 m MSL. All of the high amplitude areas observed have been assigned a low gas risk as they exhibit high amplitude alone, with no other gaseous characteristics. It should be noted that these anomalies may represent a coarsening of sediments only.

11 Note any indication of gas originating from deeper levels. Give description in cases where gas comes from deeper layers:

N/A

12 How does the interpretation of the site survey correspond to the well data with respect to:

12a Shallow Gas:

No shallow gas was anticipated and no shallow gas was observed in the well.

12b Shallow Water Flow:

Previous drilling in the Gjøa and Fram areas has occasionally encountered shallow water flow (e.g., 35/9-4SX, 35/11-1 and 35/11-11). Caution was therefore advised for the following intervals:

- Miocene deposits: 689-700 m RKB
- Top Eocene: 880 m RKB
- Lista Fm: 1429-1674 m RKB

A 12 ¹/₄" pilot hole was drilled down to 683 m RKB. The well was then flow-checked due to indications of drilling break, and the well was flowing. The well was killed using 1.30 Sg mud. However, several attempts to re-enter the hole failed due to continuous flow. Finally the 20" casing was entered and ran down to 550 m RKB, followed by installation of BOP and riser. A formation integrity test to 1.25 Sg was performed at 516 m RKB, and several subsequent flow checks proved the well to be stable.

12c Sand Bodies:

Thin intra-Pleistocene/Pliocene sands were anticipated, but their exact position was not confirmed.

The Oligocene sand was not predicted. Instead, thin Utsira sands covering an extensive Oligocene silt- and claystone was predicted.

A thick Eocene sand package was predicted. Two sand units were observed on the LWD logs, but the total thickness is less than anticipated.

12d Boulders:

Boulder beds were predicted in the shallow section at 420 m and 537 m RKB, and scattered boulders were predicted within the glacially deposited stratigraphic intervals (units II to VI), from 420 m to 581 m RKB. However, no boulders were encountered.

Horizon	Prognosis, P (m)	Observation, O (m)	O-P (m)
Base Pleistocene	581 ± 3	571.5	- 9.5 m (deeper)
Base Pliocene	689 ± 5	663	- 26 m (shallower)
Base Miocene	700 ± 5	673	- 27 m (shallower)
Base Oligocene	880 ± 30	845	- 35 m (shallower)
Top Balder Fm	1372 ± 52	1337.5	- 34.5 m (shallower)
Top Lista Fm	1429 ± 60	1399	- 30 m (shallower)
Base Tertiary	1804 ± 71	1716	- 88 m (shallower)

12d Unconformities (depths in metres RKB (TVD)):

The differences between the anticipated and observed depths to different formation tops were not within the uncertainty limits, except for Top Balder and Top Lista Formations. The large differences suggest that the depth conversion was based on generally too high velocities and not erroneous seismic picks.

12e Correlation to Nearby Wells:

Wells 35/9-4 SX, 35/11-1 and 35/11-11 experienced shallow water flow. Well 35/11-1 experienced an uncontrolled shallow water flow within Miocene sands of the Utsira Formation (equivalent to the shallow-water level in well 35/8-5 S), while well 35/9-4SX encountered shallow water flow within the Lista Formation and at the level of the Top Eocene, where sandstones are immediately overlain by an effective claystone seal.

Final well report 35/8-5 S

Section B - 1

SECTION B

DRILLING OPERATION SUMMARY

WELL 35/8-5 S

Prepared by: Onla F. Bey Onla F. Day Toular VR.O. Sandal

LIST OF CONTENTS

1	Operation summary	
	1.1 Mobilization	B-4
	1.2 36"Section	B-4
	1.2.1 Drilling 36" hole & Installing 30" casing	
	1.3 12 ¹ / ₄ " Pilot hole & 26" Section	B-4
	1.3.1 Drilling 26" hole & Installing 20" casing	
	1.4 17 " Section	B-5
	1.4.1 Drilling 17 "hole & Installing 13 3/8" casing	
	1.5 12 ¹ / ₄ " Section	B-5
	1.5.1 Drill 12 ¹ / ₄ " hole & Installing 9 5/8" casing	
	1.6 8 1/2" Section	B-5
	1.6.1 Drilling 8 ¹ / ₂ " hole	
	1.7 P&A	B-6
2	Experience	
	2.1 Well design	B-7
	2.2 Operation	B-7
TA	ABLES	
Ge	neral information on well	B-8
Da	ily reporting	B-10
Ho	le deviation	B-28
Ma	ain consumption of casing/tubing	B-32
Bi	t record	B-33
Bo	ttom hole assemblies	B-34
Da	ily mud properties: Rheology parameters	B-37
Da	ily mud properties: Other	B-40
То	tal consumption of mud additives drilling and completion	B-43
Ce	ment slurry report	B-45
Ce	ment consumption	B-49
То	tal consumption of cement additives	B-51
Do	wntime report	B-52
Ti	ne distribution	B-59
Fii	al cost reports drilling and completion	B-61

FIGURES B-1: Anchor pattern..... B-62 B-2: Actual drilling curve..... B-63 B-3: Time distribution **B-64** B-9: Well schematic..... B-65

1 OPERATION SUMMARY

1.1 <u>Mobilizing:</u>

Rig on contract 31.05.03 at 07:00 Anchored 150 m off programmed surface location. No consequences related to the drilling operation

Planned AFE days	: 2.8
Actual days	: 2,5

Operation efficiency : 99 %

1.2 <u>36" section:</u>

Drilled 36 hole from 399-458 M m and cemented 30" conductor Hole drilled to obtain vertical angle less than 0.5 deg Bolders reduced ROP to 2 m/hr (409-421 m) bolder not anticipated from site survey.

30" conductor cement in place. The Titus top-up job system was used as secondary cement system to qualify cement to surface.

Planned AFE days: 1.9Actual days: 2.4Operation efficiency: 93 %Lost time: 4.5 hrs

1.3 12 ¹/₄" Pilot hole & 26" section:

Attempted to drill 12 1/2" pilot hole from 458-1100 m Stopped at 683 m due to waterflow from interval 681 m and 575 m Stopped the water flow with 1,22 SG mudweight Pumped 5 cement plugs from 683m to 550 m Opener up the pilot hole to 26" from 458 – 555 m Ran 20" casing and cemented same

Planned AFE days	: 8.2
Actual days	: 9.2
Operation efficiency	: 54 %
Lost time	:104 hrs

1.4 <u>17 " section:</u>

Drilled 17" hole from 550m to 1321 m The 17" hole was drilled due to the 20" casing had a hanger possibility for 16" liner To prevent losses the mud weight had to be cut back from 1.25 to 1.10 SG The Hole cleaning during drilling had a strong contribution to success. 13 3/8" casing run and cement with no losses during the cement job.

Planned AFE days:6.5Actual days5.4

Operation efficiency: 92 % Lost time: 15 hrs

1.5 <u>12 ¹/4</u>''section:

Drilled 12 ¹/₄" hole from 1321 m –3265 m MD (3237 m TVD) Formation Integrity Test taken at 1325 m MD gave an EMW of 1.58 SG Bit change was required at 2962 m i Trygvason formation. In addition the Sonic log washed out and had to be changed. Ran 9 5/8" casing to 3258 m MD, and cemented same.

Planned AFE	E days:	10.5
Actual days	:	9.5.

Operation efficiency: 99 % Lost time: 2,5 hrs

1.6 <u>8 1/2"section</u>

Lost time:

Drilled 8 ¹/₂" hole from 3265 m to 4000 m MD(3832 M TVD) Increased mudweight from 1,35 SG to 1,50 SG due to gas increase (38%) Cut four cores in Oxfordian from 3381 m to 3443 m Increased mudweight from 1,50- to 1,65 SG prior to drill into Brent Cut two cores in Brent from 3845 m to 3831 m.

42 hrs

Logging total 3 runs: $-\underline{Run\#1}$ MDTP-IPLT misrun $-\underline{Run\#2}$ IPLT. $-\underline{Run\#3}$ MDT pressuresPlanned AFE *days:21.0 (Revised)Actual days :14.7Operation efficiency :88%

1.7 <u>Permanent Abandonment</u>

Set balanced cement plug from 4000 to 3158 m. Set 9 5/8" Bridge plug at 3047 m and pressure tested to 2150 bar.

Set cement plug from 3047 to 2847 m. Cut 9 5/8" casing at 697 and and pulled casing and seal assy. Set 13 3/8" bridge plug at 650 m, and pressure tested to 175 bar Cut 13 3/8" casing at 540 m and and pulled casing and seal assy. Set cement plug from 540 to 340 m Pulled BOP and cut wellhead 5 m below seabed,

Rig off contract 21.07.02 at 23:00 hrs.

Planned AFE days	: 5.8
Actual days	: 7.9
Operation efficiency	: 91 %
Lost time	: 17 hrs

2 Experience

2.1 Well design:

The well design is based on "shallow water design" with shallow 20" and 16" casing/liner as a contingency. No changes required

2.2 Operation:

2.2.1 36" section:

Boulders not anticipated from site survey.

The length of the section was reduced with 12 m. The amount of casing joints should be evaluated if boulders are expected.

2.2.2 12 ¹/₄" Pilot hole & 26" section:

Attempted to drill 12 1/2" pilot hole from 458-1100 m Stopped at 683 m due to waterflow from depth 681 m and 575 m All sand sections in potential waterbearing zones should be flow checked to reduce the flow area and to limit the section to be cemented back

2.2.3 17 " section:

Drilled 17" hole from 550m to 1321 m

To prevent losses the mud weight had to be cut back from 1.25 to 1.10 SG The hole cleaning during drilling had a strong contribution to success. Extreme high dilution factor of the drilling fluid was required.

2.2.4 12 ¹/₄"section:

None, The operation went as planned.

2.2.5 8 ¹/₂ "section:

Drilled 8 ¹/₂" hole from 3265 m to 4000 m MD(3832 M TVD) Increased mudweight from 1,35 SG to 1,50 SG due to gas increase (38%) Increased mudweight from 1,50- to 1,65 SG prior to drill into Brent The pore pressure estimated was lower than actual, resulting in well control situations and in time consuming increasing in mudweight .

Other Supplier :

GENERAL INFORMATION

Well : 35/8-5 \$	6	PO : 1			
Field : UNDEFI	NED	Country : N	JORWAY		
Licence : 195		Installation : Г	DEEPSEA DELTA		
UTM zone · 31		Central Median · 3	E Horiz Da	tum: ED50	
Location coordinates	s:	Surface		Target	
UTM Nor	th [m]:	6805219.6			
UTM Eas	t [m]:	534935			
Geographical Nor	th :	61 22'40.50"			
Geographical Eas	t:	03 39'13.22"			
Water Depth: 36 Formation at TD: RAN	9.0 m INOCH at 3964 m MD	R	eference Point H	eight: 29.0 m	
Operators: NORSK H	DRO PRODUKSJON	A/S		Share:	40.00 %
Partners: PETORO				Share:	35.00 %
					25.00.0/
					23.00 /6
Total depth (RKB) :	4000.0 m ME) 3831.9 n	n TVD		
TIME SUMMARY	Start Time	• 2003-05	-31 07:00:00		
	Spudding da	te : 2003-06	-01		
	Abandonme	nt date :	-		
				_	
Main operation			Hours	Days	<u>%</u>
MOBILIZATION			60.5	2.5	4.9
			603.5	25.1	48.7
FORMATION EVALUATI			6.0	0.3	0.5
FORMATION EVALUATI			36.5	1.5	2.9
FORMATION EVALUATI			170.0	7.1	13.7
	IENI		162.0	6.8	13.1
			136.0	5.7	11.0
DOWNTIME FORM. EVA	AL. LOGGING		28.5	1.2	2.3
DOWNTIME FORM. EVA	ADANDONING		9.0	0.4	0.7
	ABANDONVENT		28.0	1.2	2.3
Sum:			1240.0	51.7	
	Hole and casing re	cord			
Hole Track D	Depth [m MD]	Casing/Tu	bing Track	Depth [m MD]	
36"	458.0	30"		458.0	
26"	555.0	20"		550.0	
17"	1326.0	13 3/8"		1320.5	
12 1/4"	3265.0	9 5/8"		3258.5	
8 1/2"	4000.0				
Well status:					
CONTRACTORS:					
Bit Supplier :	SMITH	HINTERNATIONAL A/S			
Casing Equipment Su	upplier : MITSU				
Cement Contractor :	BJ SE		`		
Centralizer Supplier	· VVEAI				
Completion Eq. Cont	ractor: HALL	DURIUN UILFIELD SE		INC.	
Directional Drilling C	NN R HUIGHES INITEO				
Liner Hanger Fauinm	ent Sunnlie · RAKE				
Mud Contractor :		RGE			

KVÆRNER OILFIELD PRODUCTS

GENERAL INFORMATION

CONTRACTORS:

Other Supplier: Other Supplier: Rig Contractor: SCHLUMBERGER WIRELINE & TESTING WEIR HOUSTON ODFJELL DRILLING BERGEN A/S

Well: 35/8-5	S	PO: 1		
Daily report n	o: 1	Date:	2003-05-31	
Midnight dept	h: mMD	Estimated PP:	sg	Mud weight: 0.00 sg
Stop time	Description			
07:00	No activity on well 35/	/8-5 S. Activities logge	d on well 35/11-/	A-24 AH.
18:30	Rig in transit to well 3	5/8-5 S.		
23:59	Anchor handling.			
	Northern Admiral low	ered anchor no. 9 at 1	8:30 hrs.	
	Torm Heron lowered	anchor no. 10 at 20:30) hrs.	
	Vidar Viking lowered	ered anchor no. 8 at 0	1:24 Nrs. bre	
	Far Scout lowered an	chor no3 at 23:30 hrs.		
Daily report n	o: 2	Date:	2003-06-01	
Midnight dept	: h: 412 m MD	Estimated PP:	sg	Mud weight: 1.25 sg
Stop time	Description			
09:00	Continued anchor har	ndling. All anchors test	tensioned up to	200 bars.
	Vidar Viking lowered	anchor no. 5 at 00:49	hrs.	
	Far Scout lowered an	chor no. 2 at 02:35 hr	S.	
	Vidar Viking lowered	anchor no. 6 at 07:25	hrs.	
	Far Scout lowered an	chor no. 1 at04:40 hrs	5.	
	I orm Heron lowered	anchor no. 12 at 06:56 ared anchor no. 7 at 0	0 NIS. 7:08 bre	
12:30	Ballasted rig.		7.00 113.	
13:30	Made up and ran in se	a with 36" bottom hole	assembly to 242	2 m.
14:00	Ran in sea with botton	n hole assembly on 5"	drill pipe from 242	2 m to 389 m.
18:00	Unloaded mud from b	oat and prepared mud	prior to spudding	l.
18:30	Ran i sea with bottom	hole assembly and tag	ged seabed at 3	98 m RKB MSL.
20:00	Troubleshot on tool jo	int breaker.		
20:30	Tagged bottom with 2	T and verified seabed	depth at 398 m.	Washed and drilled down to 403 m.
21:00	Took two surveys to o	confirm verticality of dr	ill string.	
23:59	Drilled 36" hole from 4	03 m to 412 m.		
Daily report n	o: 3	Date:	2003-06-02	
Midnight dept	h: 458 m MD	Estimated PP:	sg	Mud weight: 1.25 sg
Stop time	Description			
13:00	Continued drilling 36"	hole from 412 m to 453	3 m	
14:30	Reamed interval from	453 m to 435 m in ord	er to reduce inclin	nation below 1,0 deg.
18:00	Continued drilling 36" I	nole from 453 m to 458	m.	
23:00	Reamed interval from	458 m to 422 m severa	al times in order t	to reduce inclination. Final survey on TD: 0,79 deg.
23:59	Pumped 30 m3 high v	iscous pill around and	performed wipert	rip to 412 m and back to TD.
Daily report n	o: 4	Date:	2003-06-03	
Midnight dept	: h: 458 m MD	Estimated PP:	1.03 sg	Mud weight: 1.25 sg
Stop time	Description			
00:30	Displaced hole to 1.30	Sq mud.		
01:00	Pulled out of hole from	n 458 m to 412 m. RO	v positioned two	marker bouys diagonally across spud location.
02:30	Pulled out and racked	36" bottom hole assen	nbly in derrick.	
03:30	Made up running tool	for 30" housing and ra	cked in derrick.	
05:00	Rigged up for running	30" conductor.		
07:00	Ran shoe, 3 joints 30" conductor and housing.			
09:00	Installed running tool t	o housing and landed 3	30" housing in PC	GB in moonpool. Released running tool and racked back.
09:30	Ran cement stinger in made up.	side 30" conductor and	d made up stinge	r to 30" running tool. Landed running tool in housing and

10:30 Installed Titus hose and filled casing with seawater.

Daily report no :	4	Date:	2003-06-03
Midnight depth :	458 m MD	Estimated PP	: 1.03 sg

Jo sy Mud w

Mud weight: 1.25 sg

Stop time	Description			
12:00	Ran in sea with 30" conductor to 395 m.			
12:30	Positioned rig and stung in with 30" conductor.			
13:00	Ran in hole with 30" conductor on landing string to bottom of 36" hole at 458 m.	Ran in hole with 30" conductor on landing string to bottom of 36" hole at 458 m.		
13:30	Picked conductor off bottom, closed valve on running tool with ROV and circulated 10 m3 seawater prior to cement job. ROV observed valve, and checked for leakage.	•		
14:30	Pressure tested surface lines to 100 bar. Mixed and pumped 18 m3 of 1,56 Sg lead slurry and 20 m3 of 1,95 Sg tail slurry. Displaced cement with cement pumps.			
15:00	Checked for backflow and sat down weight of conductor. ROV opened valve on running tool and checked stick-up (2 m) and bullseye (0,5 deg FWD).			
17:30	Opened kelly cock on cement stand and dropped Titus dart. Pressured up down landing string to 86 bar, and sheared out for pumping through Titus hose. Pumped through with 800 lpm and two times annulus volume from Titus ring to seabed. Pumped a few strokes every 15 minutes to keep lines open while waiting for cement to set up.			
18:00	Mixed and pumped 5 m3 of 1,95 Sg slurry through Titus sustem for top-up job.			
19:00	Released running tool and pulled out with landing string.			
20:00	Laid down 30" running tool and pulled out with inner string.			
23:00	Rigged down casing equipment and laid down 36" bottom hole assembly and cement stand.			
23:59	Picked up new cement head from deck.			
Daily report no	o : 5 Date : 2003-06-04			
Midnight dept	th: 683 m MD Estimated PP: 1.06 sg Mud weight: 1.25 sg			
Stop time	Description			
00:30	Prepared and racked cement stand back in derrick.			
03:00	Picked up 5" HWDP from deck and racked in derrick.			
06:00	Made up 12 1/4" pilot hole assembly and racked back in derrick.			
07:30	Made up 26" clean out assembly.			
08:00	Ran in sea with bottom hole assembly on 5" HWDP and stung into well at 396 ml.			
10:00	Ran in hole and tagged top of cement at 453 m. Drilled out cement, shoe and new formation to 461 m. Pumped 25 m3 high viscous pill around to clean hole.			
10:30	Pulled out with 26" assembly to 86 m.			
11:00	Racked back bottom hole assembly in derrick.			
12:00	Made up and ran in sea with 12 1/4" pilot hole assembly to 253 m.			
12:30	Stung into well at 396 m and continued running in hole to 461 m.			
21:00	Drilled 12 1/4" hole from 461 m to 683 m.			
21:30	Flowchecked well due to indications of drilling break. Observed well flowing.			
22:00	Displaced well to 1,30 Sg mud and killed well.			
23:59	Flowchecked well.			
Daily report no	o : 6 Date : 2003-06-05			
Midnight dept	th: 683 m MD Estimated PP: 1.04 sg Mud weight: 1.25 sg			

Stop time	Description
02:00	Lubricated out of hole from 660 m and pulled out of well to 253 m.
03:00	Pulled out with bottom hole assembly and racked in derrick.
04:00	Made up cement stand and racked in derrick.
05:00	Ran in sea with 5" open ended drill pipe to 390 m. Stung into well and continued running in hole to 682 m.
06:00	Displaced hole to 1,22 Sg NaCl mud. Flowchecked well - negative.
	Meanwhile pressure tested surface lines to 100 bar for 5 minutes and held pre-job meeting prior to cement job.
06:30	Displaced hole back to 1,30 Sg mud.
07:30	Pumped 15 m3 of 1,30 Sg spacer and mixed and pumped 7,6 m3 of 1,90 sg cement. Displaced cement with 1600 I 1,30
	Sg spacer and 3000 I seawater.
09:00	Pulled out of cement plug and out of well. Flushed drill pipe with seawater and stung back into well.
13:30	Waited on cement to cure, while observing with ROV.
14:00	Pulled out of with 5" drill pipe and racked in derrick.
15:30	Made up 26" hole opener assembly and racked in derrick.

Daily report no :	6	Date:	2003-06-05
Midnight depth :	683 m MD	Estimated PP:	1.04 sg

Stop time	Description
16:30	Laid down 26" clean out assembly.
19:00	Picked up 5" drill pipe from deck and racked in derrick.
19:30	Laid down cement stand.
20:30	Ran in sea with 12 1/4" bottom hole assembly to 253 m.
21:30	Ran in sea with bottom hole assembly on 5" drill pipe and stung into well at 396 m. Continued running in hole and tagged possible top of cement at 594 m.
22:00	Broke circulation and drilled soft cement from 594 m to 598 m.
22:30	Observed well flowing when flowchecking prior to connection. Circulated bottoms up with seawater from 598 m.
23:00	Flowchecked well at 598 m for 30 minutes with seawater. Well continued flowing. No reduction in flow observed.
23:30	Washed down from 598 m to 677 m. Drilled hard cement from 677 m to 680 m.
23:59	Circulated bottoms up and displaced hole to 1,30 sg mud.

Mud weight: 1.25 sg

Daily report no :	7	Date:	2003-06-06	
Midnight depth :	683 m MD	Estimated PP:	1.04 sg	Mud weight: 1.25 sg

Stop time	Description
00:30	Flowchecked well for 30 minutes. Well stabile.
02:30	Pulled out with 12 1/4" bottom hole assembly and racked in derrick.
03:00	Made up cement stand and racked in derrick.
04:30	Ran in hole with 5" open end drill pipe to 679 m.
05:30	Displaced well to 1,15 Sg mud and flowchecked well. Well stabile. Displaced hole back to 1,30 Sg mud.
07:00	Pumped 15 m3 of 1,30 Sg spacer. Mixed and pumped 12 m3 of 1,90 Sg cement slurry and displaced with 1100 I of 1,30 Sg spacer and 2800 I seawater.
08:00	Pulled out of cement plug and out of well.
08:30	Flushed drill pipe with sea water and pulled out of sea with cement stinger.
16:30	Picked up 5" drill pipe and racked in derrick.
21:00	Waited for cement. Meanwhile greased and serviced top drive. Changed out wash pipe and pressure tested same.
22:30	Made up and ran in sea with 12 1/4" bottom hole assembly. Stung into well at 396 m and continued running in to 555 m.
23:59	Washed down from 555 m to 600 m and circulated bottoms up from 600 m.

Daily report no :	8	Date:	2003-06-07	
Midnight depth :	683 m MD	Estimated PP:	1.04 sg	Mud weight: 1.30 sg

Stop time	Description
00:30	Flowchecked well at 600 m. Well flowing.
02:00	Continued washing down from 600 m to 675 m. Tagged top of cement at 675 m.
03:00	Spotted 4,1 m3 of 1,50 Sg kill pill from 675 m to 590 m and flowchecked well. Well still flowing.
04:00	Displaced well to 1,30 Sg mud and flowchecked well for 30 minutes. Well static.
04:30	Lubricated out of hole from 675 m to 396 m.
05:30	Pulled out of sea with bottom hole assembly and racked in derrick.
06:30	Ran in sea with 5" open end drill pipe to 396 m. Stung into well and continued running in to 674 m.
07:00	Held pre-job meeting prior to cement job. Pressure tested surface lines to 100 bar for 5 minutes.
08:00	Pumped 12 m3 of 1,30 Sg spacer. Mixed and pumped 15,2 m3 of 1,50 Sg cement slurry and displaced cement with 700 I 1,30 Sg spacer and 2800 I seawater.
09:00	Pulled out of cement plug and out of well at 396 m. Flushed drill pipe with seawater.
16:00	Stung back into well and observed well while cement setting up.
16:30	Pulled out of sea with cement stinger.
18:30	Waited for cement to set up.
20:30	Picked up 3 1/2" drill pipe from deck.
23:59	Waited for cement to set up.

Daily report no :	9	Date:	2003-06-08		
Midnight depth :	683 m MD	Estimated PP:	1.04 sg	Mud weight:	1.30 sg

Stop time	Description
05:30	Waited for cement to set up.
07:00	Made up and ran in sea with 12 1/4" bottom hole assembly and stung into well at 396 m.
08:00	Ran slowly in hole to 555 m to check for cement. No cement observed.
19:00	Pulled back to 454 m and continued waiting for cement to set up.
21:00	Washed down from 454 m with 1500 lpm, and tagged soft cement at 658 m.
21:30	Pumped 4 m3 1,30 Sg pill and circulated bottoms up with seawater.
22:00	Flowchecked well at 655 m. Well stabile.
22:30	Displaced hole to 1,30 Sg mud.
23:59	Pulled out with 12 1/4" bottom hole assembly and racked in derrick.

Daily report no :	10	Date:	2003-06-09		
Midnight depth :	683 m MD	Estimated PP:	1.04 sg	Mud weight:	1.30 sg

Stop time	Description
00:30	Made up Parabow with setting tool and ran in sea with 3 1/2" drill pipe to 207 m.
01:00	Changed to 5" handling equipment and ran in sea on 5" drill pipe to 380 m.
01:30	Stung into well at 396 m and continued running in hole on 5" drill pipe to 656 m.
02:00	Spotted 8,5 m3 1,30 Sg LCM pill on bottom.
03:00	Pulled back to 630 m and pumped 10 m3 of 1,30 Sg mud. Dropped ball, installed cement stand and circulated ball down to launch parabow. Pulled back to 627 m.
03:30	Held pre-job meeting prior to cement job. Pumped 7 m3 of 1,30 Sg spacer with rig pumps.
05:00	Pumped 3 m3 of 1,30 Sg spacer with cement pumps. Mixed and pumped 11,8 m3 of 1,95 Sg cement slurry. Displaced cement with 700 I of 1,30 Sg spacer and 3000 I seawater.
06:00	Pulled out of cement plug and out of well. Flushed cement stinger with seawater.
12:30	Stung back into well and waited for cement to set up. Observed with ROV.
13:00	Pulled out of sea with cement stinger.
17:00	Waited on cement.
19:30	Ran in sea with 12 1/4" bottom hole assembly. Stung into well at 396 m and continued running in hole to 490 m. Washed down with 500 lpm and tagged firm cement at 570,5 m.
20:30	Circulated bottoms up with seawater and flowchecked well for 30 minutes. Well stabile.
23:00	Displaced well to 1,30 Sg mud and pulled out and racked back 12 1/4" bottom hole assembly.
23:59	Made up divertor sub to 3 1/2" drill pipe and ran in sea to 120 m.

Daily report no :	11	Date:	2003-06-10	
Midnight depth :	683 m MD	Estimated PP:	1.04 sg	Mud weight: 1.30 sg

Stop time	Description
01:00	Changed to 5" handling equipment and ran in sea to 396 m. Stung into well and continued running in hole to 568 m.
01:30	Spotted 5 m3 of 1,30 Sg LCM pill on bottom. Pumped 12 m3 of 1,30 Sg spacer with rig pumps.
03:00	Mixed and pumped 7,6 m3 of 1,95 Sg cement slurry. Displaced cement with 500 I of 1,30 Sg spacer and 2800 I seawater.
04:00	Pulled out of cement plug and out of well. Flushed drill pipe with seawater and stung back into well.
09:30	Waited on cement to set up. ROV observed wellhead.
10:30	Pulled out of sea with cement stinger.
12:00	Made up and ran in sea with 12 1/4" bottom hole assembly. Stung into well at 396 m.
16:00	Waited on cement to set up.
17:30	Washed down and tagged firm cement at 513 m. Drilled down to 558 m.
18:30	Circulated to clean hole from 558 m. Displaced well to seawater.
19:30	Flowchecked well at 558 m. Well stabile.
21:00	Pulled out with 12 1/4" bottom hole assembly.
22:30	Laid down 12" stabilizer, MWD tools and motor.
23:59	Ran in sea with 26" hole opener assembly. Stung into well at 396 m and continued running in hole to 461 m.

Well: 35/8-5	S	PC): 1		
Daily report n	o: 1	2	Date:	2003-06-11	
Midnight dep	th : 68	3 m MD	Estimated PP:	1.04 sg	Mud weight: 1.30 sg
Stop time	Descript	ion			
05:00	Drilled an	d opened 12 1/4"	pilot hole to 26" fr	om 461 m to 555 m	l.
06:30	Circulated	d to clean hole from	n 555 m. Reamed	l interval from 508	m to 555 m.
08:00	Displaced	d well to seawate	and flowchecked	d well at 555 m for	30 minutes. Well stabile.
08:30	Displaced	d well to 1,30 Sg r	nud.		
10:00	Pulled ou 508 m.	t of hole from 555	m and out of wel	I. Washed and rear	ned interval from 508 m to 479 m due to 10 T overpull at
11:00	Washed	wellhead and PG	B with seawater.		
12:00	Pulled ou	it of sea waith 26"	hole opener asse	embly and racked i	n derrick.
14:30	Rigged u	p for running 20" (casing. Held pre.j	ob meeting with inv	volved personnel.
17:00	Picked up	o shoe, float and a	dapter joint, and	continued running	20" casing to 146 m.
18:30	Changed	to 5" handling eq	uipment. Picked ι	ip 18 3/4" wellhead	with running tool and made up to casing string.
20:30	Ran 20" d	casing on landing	string from 146 m	to 390 m.	
21:00	Stung inte	o well with casing	string and displa	ced casing to 1,30	Sg mud.
22:30	Continue casing we	d running 20" cas eight. Performed {	ing on landing str 50 T overpull test	ing from 420 m to - ok.	550 m. Landed wellhead in 30" housing and sat down
23:00	Pressure	tested surface lin	es to 150 bar for	5 minutes and held	pre-job meeting prior to cement job.
23:59	Pumped Dropped	3 m3 of seawater dart and displace	ahead, and mixed d cement with 300	d and pumped 20 r 00 I from cement u	n3 of 1,56 Sg lead slurry and 20 m3 of 1,95 Sg tail slurry. nit.

Daily report no :	13	Date:	2003-06-12	
Midnight depth :	683 m MD	Estimated PP:	1.04 sg	Mud weight: 1.30 sg

Stop time	Description
00:30	Continued displacing cement with rig pumps. Pumped plug and pressured up to 35 bar. Lined back to cement unit and pressure tested casing to 69 bar for 10 minutes. Checked for backflow - negative.
02:00	Released running tool and pulled out of sea with landing string. Laid down running tool.
02:30	Reloaded cement stand.
04:00	Laid down 26" hole opener assembly from derrick.
04:30	Broke out kelly cock and side entry sub from cement stand.
05:00	Cleaned and tidy rig floor.
05:30	Rigged up for running BOP and riser.
07:00	Made up and ran 2 marine riser joints.
08:30	Held pre-job meeting. Skidded BOP below rotary and made up to riser joint. Ran in sea with guidewires.
20:30	Ran BOP and marine riser to 365 m. Established guidewires.
21:00	Made up slip joint and landing joint.
23:30	Installed kill and choke lines. Installed support ring and saddles.
23:59	Landed BOP and performed 30 tons overpull test.

Daily report no :	14	Date:	2003-06-13	
Midnight depth :	629 m MD	Estimated PP:	1.04 sg	Mud weight: 1.10 sg

Stop time	Description
01:00	Laid down landing joint and picked up diverter.
02:30	Rigged down riser handling equipment.
03:30	Pressure tested surface equipment to 35 / 345 bar, 5 / 10 min.
04:00	Programmed MWD on deck.
05:30	Made up MWD and stabalizer. Racked back in derrick.
06:30	Made up 17" bottom hole assembly to 31 m. Made up 17" bit. Set scrab line.
08:30	Ran in hole with 16" bottom hole assembly from 31 m to 510 m. Installed diverter element.
09:00	Function tested BOP on blue pod from drillers panel. Function tested BOP on yellow pod from tool pushers office.
10:30	Washed down from 510 m to top of cement at 535 m.
11:00	Performed choke drill.
12:00	Drilled float and shoetrack from 535 m to 547 m.
15:00	Circulated while mixing mud.

Well: 35/8-5 S

Daily report no :	14	Date:	2003-06-13		
Midnight depth :	629 m MD	Estimated PP:	1.04 sg	Mud weight:	1.10 sg

PO: 1

Stop time Description

16:00	Displaced well to 1,11 sg glydril mud.
17:00	Drilled shoetrack and shoe from 447 m to 550 m. Drilled hard cement from 550 m to 553 m. Drilled soft cement in rathole from 553 m to 558 m. Drilled 3m new formatioin from 558 m to 561 m.
18:00	Spotted 6 m3 LCM-pill on bottom. Lubricated out of hole from 561 m to 512 m. Performed formation integrity test to 1,25
	sg.
21:00	Ran in hole from 512 m to 561 m. Drilled 17" hole from 561 m to 600 m.
21:30	Flowchecked well for 30 min. Well static.
22:30	Drilled 17" hole from 600 m to 617 m.
23:00	Circulated hole clean while changing screens on shakers.
23:59	Drilled 17" hole from 617 m to 629 m.

Daily report no :	15	Date:	2003-06-14	
Midnight depth :	944 m MD	Estimated PP:	1.03 sg	Mud weight: 1.11 sg

Description
Drilled 17" hole from 629 m to 697 m.
Pulled out of hole from 697 m to 666 m. Flowchecked well while cleaning shakers.
Ran in hole from 666 m to 697 m. Observed possible loss while circulating at 3500 lpm. Pumped with reduced circulation rate while evaluating situation.
Drilled 17" hole from 697 m to 802 m.
Circulated hole clean.
Flowchecked well for 30 min after drilling through Utsira formation. Well Static.
Drilled 17" hole from 802 m to 846 m.
Observed drilling break at 846 m. Drilled from 846 m to 851 m. Flowchecked well for 30 min at 851 m. Well Static.
Drilled 17" hole from 851 m to 944 m.
-

Daily report no :	16	Date:	2003-06-15	
Midnight depth :	1311 m MD	Estimated PP:	1.03 sg	Mud weight: 1.11 sg

Stop time	Description
00:30	Drilled 17" hole from 944 m to 959 m.
01:00	Circulated with reduced flow while cleaning shakers.
03:00	Drilled 17" hole from 959 m to 1003 m.
04:00	Circulated hole clean.
11:30	Drilled 17" hole from 1003 m to 1152 m.
12:00	Circulated with reduced flow while cleaning shakers. Pulled back to 1125 m.
13:30	Circulated hole clean.
15:00	Ran back to 1152 m. Drilled 17" hole from 1152 m to 1180 m.
16:00	Circulated with reduced flow while cleaning shakers.
19:30	Drilled 17" hole from 1180 m to 1241 m.
20:00	Circulated with reduced flow while cleaning shakers.
20:30	Welded broken bracket for sliding rail on shaker.
23:59	Drilled 17" hole from 1241 m to 1311 m.
Daily report ne	D : 17 Date : 2003-06-16

Midnight depth :	1326 m MD	Estimated PP:	1.03 sg
------------------	-----------	---------------	---------

Mud weight: 1.13 sg

J	
Stop time	Description
00:30	Drilled 17" hole from 1311 m to 1320 m with reduced circulation rate due to overflow on shakers.
01:30	Circulated hole clean.
02:00	Drilled 17" hole from 1320 m to TD at 1326 m.
04:00	Circulated hole clean. Racked back one stand after 1 hrs.
04:30	Flow checked well for 30 min. Well stable.
06:30	Pulled out of hole from 1300 m to 540 m.

Well: 35/8-5 S PO: 1

Daily report no :	17	Date:	2003-06-16	
Midnight depth :	1326 m MD	Estimated PP:	1.03 sg	Mud weight: 1.13 sg

Stop time Description

07:30	Ran in hole from 540 m to 1289 m.
08:00	Filled pipe. Broke circulation and washed down from 1289 m to 1326 m.
11:00	Circulated hole clean. Racked back one stand after 1,5 hrs.
13:00	Ran back to 1326 m. Circulated while increasing KCI content and mud weight. Racked back one stand after 1/2 hrs.
13:30	Flow checked well for 30 min. Well stable.
16:00	Pulled out of hole from 1300 m to 540 m. Flow checked well for 15 min. Well stable.
16:30	Pulled out of hole from 540 m to 253 m.
18:30	Racked back 17" BHA.
20:30	Ran in hole with jetsub, 5" DP stand and multi purpose tool to 380 m.
21:00	Washed through BOP and well head area. Pulled bore protector with 8 tons overpull.
23:00	Pulled out of hole and laid down bore protector, multi purpose tool and jet sub.
23:30	Strapped landing string for casing running.
23:59	Rigged up for running 13 3/8" casing.

Daily report no :	18	Date:	2003-06-17	
Midnight depth :	1326 m MD	Estimated PP:	1.03 sg	Mud weight: 1.13 sg

Stop time Description 02:00 Rigged up for running 13 3/8" casing. Held pre-job meeting. 03:00 Made up shoe and intermediate joint. 04:00 Attempted to make up float joint without success. Casing tong did not fit float collar. Dressed up manual rig tongs. Made up float joint with casing tong against flush mounted spider. 11:30 Ran 13 3/8" casing from 37 m to 550 m. 15:00 Ran 13 3/8" casing from 550 m to 921 m. Changed to drill pipe elevator. Made up 13 3/8" casing hanger. 16:00 18:00 Ran 13 3/8" casing on 5" HWDP landing string from 928 m to 1307 m. 18:30 Broke circulation. Ran in and landed 13 3/8" casing hanger with shoe at 1320,5 m. 19:00 Circulated prior to cementing. 20:00 Lost suction on mud pump # 2. Stopped circulation and flowchecked well. Well stable. Found pop off released on mud pump #1. Changed pop off. Lined up to mud pump #1 and 2. Pressure tested mud pumps to 200 bar / 5 min. 21:00 Circulated and conditioned mud. 22:00 Pumped 12 m3 1,15 sg spacer using rig pumps. Dropped ball for lower plug. Mixed and pumped 25,2 m3 of 1,90 sg cement slurry. 23:00 Dropped dart and displaced cement with 3 m3 fresh water from cement unit. Lined over to rig pumps and continued displacing cement with 1,13 sg mud. Bumped plug. 23:30 Pressure tested casing from cement unit to 210 bar for 10 min. Bled back pressure and checked for backflow. 23:59 Sat seal assembly by turning 6 right hand turns. Performed final setting by pressuring up against upper pipe ram to 360 bar.

Daily report no :	19	Date:	2003-06-18	
Midnight depth :	1329 m MD	Estimated PP:	1.03 sg	Mud weight: 1.13 sg

Stop time	Description
00:30	Pressure tested seal assembly to 360 bar for 10 min.
02:30	Pressure tested BOP on blue pod from drillfloor to 35 / 345 bar for 5 / 10 minutes. Pressure tested upper annular preventer on blue pod from drillfloor to 35 / 245 bar for 5 / 10 minutes.
03:00	Function tested BOP on yellow pod from tool pusher office. Function tested upper pipe ram on accoustic.
03:30	Released casing hanger running tool with 30 tons overpull. Landed casing hanger running tool in casing hanger and sat down 10 tons. Pressure tested seal assembly to 360 bar for 5 min.
05:00	Racked back cement stand and pulled out of hole with casing hanger running tool. Laid down casing hanger running tool.
06:00	Changed bails. Rigged down casing running equipment.
07:30	Made up wear bushing to wear bushing running tool.
08:00	Ran in hole with wear bushing on wear bushing running tool. Washed well head area. Installed wear bushing.
08:30	Pressure tested middle pipe ram to 35 / 210 bar for 5 / 10 minutes.

Well: 35/8-5 S

Daily report r	no :	19	Date:	2003-06-18	
Midnight dep	oth :	1329 m MD	Estimated PP:	1.03 sg	Mud weight: 1.13 sg
Stop time	Des	scription			
10:00	Pul	led out of hole and	laid down wear bushi	ng running tool.	
11:30	Lai	d down 17" BHA.			
12:00	Rel	oaded cement head	ł.		
13:30	Pre min	ssure tested kelly h	ose to 35 / 345 bar, 5	/ 10 min. Pressu	re tested manual and auto kelly kock to 35 / 210 bar, 5 / 10
15:00	Ma	de up 12 1/4" BHA t	o 31 m.		
15:30	Sur	face tested Power	Drive and MWD.		
16:30	Ma	de up and ran in wit	h 12 1/4" BHA from 3	1 m to 229 m.	
18:00	Rar	n in hole with 12 1/4	" BHA on 5" drill pipe	from 229 m to 12	264 m.
18:30	Wa	shed down from 12	64 m to top of cemen	t at 1292 m.	
19:30	Per	formed choke drill	with both crews.		
20:00	Dril	led cement from 129	92 m to 1293 m.		
20:30	Circ	culated with reduce	ed rate due to overflo	w on shakers.	
22:30	Dril	led float from 1293 i	m to 1294 m.		
23:00	Dril	led shoetrack from ⁻	1294 m to 1320 m.		
23:30	Dril	led 13 3/8" shoe at	1320 m. Washed soft	cement in rat ho	le from 1320 m to 1326 m.
23:59	Dril	led 3 m new format	ion from 1326 m to 13	29 m. Circulated	and conditioned mud.
Daily report r		20	Dato	2002-06-10	
Midnight dep	oth :	20 1437 m MD	Estimated PP:	1.03 sa	Mud weight: 1.25 sg
Stop time	Des	scription			
01:30	Circ	culated and conditio	ned mud.		
03:00	Pul	led into casing and	performed leak off te	st to 2.05 sq.	
04:30	Slin	ped and cut 115 ft	drilling line	et to <u>_</u> ,ee eg.	
05:00	Dril	led 2 m new formati	ion from 1329 m to 13	31 m Pulled into	casing
05:30	Cor	firmed formation in	ntegrety after leak off	test by performin	a formation integrety test to 1.58 sq
18.00	Wa	ited on weather for	hackloading mud to h	oat prior to displ	caing to oil based mud
19:00	Pur	nned 10 m3 oil bas	ed hi-visc nill Displace	ed well to 1 25 sc	n oil based mud
20:30	Circ	rulated with reduce	d rate due to overflor	w on shakers	
20.30	Drill	lod 12 1/4" hole from	a 1221 m to 1427 m	w on shakers.	
23.39	DIII		ii 1331 iii to 1437 iii.		
Daily report r	no :	21	Date:	2003-06-20	
Midnight dep	oth :	2127 m MD	Estimated PP:	1.03 sg	Mud weight: 1.20 sg
Stop time	Des	scription			
10:30	Dril	led 12 1/4" hole from	n 1437 m to 1748 m.		
11:30	Flo ^v	wchecked well for 1 gged nozzle. Circul	0 min. at 1748 m. We ated and rotated string	ell stable. Observ g until normal pre	red 30 bar pressure increase indicating additional one essure achieved.
23:59	Dril	led 12 1/4" hole from	n 1748 m to 2127 m.	5	
Daily report r	no :	22	Date:	2003-06-21	
Midnight dep	oth :	2772 m MD	Estimated PP:	1.03 sg	Mud weight: 1.20 sg
Stop time	Des	scription			
23:59	Drilled 12 1/4" hole from 2127 m to 2772 m.				
Daily report r	no ·	23	Date:	2003-06-22	
		20		2003-00-22	•• • • • • • • •
Midnight dep	nt depth: 2918 m MD Estimated PP: 1.03 sg Mud weight: 1.20 sg				
Stop time	Des	scription			

23:59 Drilled 12 1/4" hole from 2772 m to 2918 m.

Well: 35/8-5	S	P	D: 1		
Daily report no): 24	4	Date:	2003-06-23	
Midnight deptl	h: 2962	2 m MD	Estimated PP:	1.03 sg	Mud weight: 1.25 sg
Stop time	Descripti	ion			
14:00	Drilled 12	1/4" hole from 29	18 m to 2962 m.		
15:00	Flowchec	ked well and pull	ed out of hole fron	n 2962 m to 2810 r	n.
16:30	Stopped of	operation and inv	estigated dropped	d object from derric	k to setback area. Checked derrick and held safety
	meeting v	vith involved pers	sonel.		
19:30	Pulled out of hole from 2810 m to 1292 m. Flowchecked well. Well stable.				
20:00	Pulled out of hole from 1292 m to 631 m.				
21:00	Flowchec	ked well prior to p	bulling BHA throug	h BOP. Well stable	e. Pulled out of hole from 631 m to 89 m.
22:00	Removed	diverter element	Racked back BH/	A from 89 m to 31 r	n.
22:30	Dumped r	memory from son	ic log. Observed w	vashout in sonic to	bl. Dumped memory from CDR.
23:59	Laid dowr	n 12 1/4" BHA.			
Daily report no	b : 2	5	Date:	2003-06-24	
Midnight dept	h: 320	5 m MD	Estimated PP:	1.10 sa	Mud weight: 1.25 sg
	020				
Stop time	Descripti	ion			
01:30	Made up i	new 12 1/4" BHA	to 32 m.	_	
02:00	Function t	ested Power Driv	e and MWD / LWI	D.	
02:30	Made up	12 1/4" BHA from	32 m to 89 m.	200	
04:30	Ran in no	le with 12 1/4" Br	HA from 89 m to 13	320 m.	
07:00	Ran In no	le with 12 1/4 Br	A Irom 1320 m to	2930 m. 2020 m to 2062 r	~
08.30	Drillod 12	$\frac{1}{4}$ bolo from 20	9 13 10 10 10 10 10 10 10 10	11 2930 111 10 2962 1	11.
08.30	Changed	saver sub and d	rilling nun due to v	wash out	
18.00	Drilled 12	1/4" hole from 20	1111119 pup due to v 163 m to 3106 m	vasii out.	
18:30	Downlink	ad Power Drive	00 m to 5100 m.		
21:30	Drilled 12	1/4" hole from 31	06 m to 3181 m.		
22:00	Downlinke	ed Power Drive.			
23:59	Drilled 12	1/4" hole from 31	81 m to 3205 m.		
			_		
Daily report no): 20	6	Date:	2003-06-25	
Midnight dept	h: 326	5 m MD	Estimated PP:	1.10 sg	Mud weight: 1.27 sg
Stop time	Descripti	ion			
04:30	Drilled 12	1/4" hole from 32	05 m to TD at 326	5 m.	
08:00	Circulated	d hole clean. Per	formed check surv	/ey.	
08:30	Flowchec	ked well for 30 m	nin. Well stable.		
11:30	Pulled out	t of hole with 12 1	/4" BHA from 324	5 m to 1300 m.	
13:00	Flowchec	ked well for 15 m	in. Well stable. Pu	Illed out of hole wit	h 12 1/4" BHA from 1300 m to 160 m.
14:00	Removed	diverter element	. Pulled out of hole	e with 12 1/4" BHA	from 160 m to 89 m.
15:30	Laid dowr	n 12 1/4" BHA.			
16:00	Changed	to 10 000 psi cer	nent hose on cem	ent stand. Racked	cement stand back in derrick.
18:30	Made up I	Multi Purpose To	ol and ran in hole.	Picked up 10 singl	es 5" HWDP while running in. Pulled 13 3/8" wear bushing.
20:00	Pulled out	t of hole with 13	3/8" wear bushing	. Laid down wear l	busning and Multi Purpose Tool.
22:00	Rigged up	b for running 9 $5/3$	casing. Held pre	e-job meeting.	
∠3:00 22:50	Iviade up 9		10 49 m.		
23.39	ran 9 5/8	casing from 49	III IU 145 III.		
Daily report no	b: 2 ⁻	7	Date:	2003-06-26	
Midnight dept	h: 326	5 m MD	Estimated PP:	1.10 sg	Mud weight: 1.27 sg

	g	
Stop time	Description	
08:00	Ran 9 5/8" casing from 145 m to 1320 m.	
19:00	Continued running 9 5/8" casing to 2859 m.	

B-19

Well: 35/8-5	S		PO: 1			
Daily report n	o :	27	Date:	2003-06-26		
Midnight dept	h :	3265 m MD	Estimated PP:	1.10 sg	Mud weight: 1.27 sg	
Stop time	Description					
20:00	0:00 Made up 9 5/8" casing hanger and changed to 5" handling equipment.					
21:30 Ran 9 5/8" casing on 5" HWDP landing string to 3247m.						
22:00	Mao and	de up the cementhe another 10 MT.	ead stand, broke circu	llation and landed	the 9 5/8" casing. Slacked off the complete casingweight	
23:59	Circ	culated the casing a	innulus volume.			
Daily report n	o :	28	Date:	2003-06-27		
Midnight dept	h :	3265 m MD	Estimated PP:	1.10 sg	Mud weight: 1.35 sg	
Stop time	Des	scription				
00:30	Cor	ntinued circulating th	he casing annulus vol	ume.		
01:00	Pun	nped 3 m3 baseoil,	followed by 10 m3 1.	45sg spacer, wit	n rigpumps.	
02:00	Mix	ed and pumped 22	m3 1.56sg lead slurry	, followed by 8 m	13 1.90sg tailslurry.	
04:30	Dro to 4	pped the dart and o 30bar. Bled off the	displaced the cements pressure and verifie	slurry. Bumped th d no backflow.	e plug and pressuretested the plugs, floatcollar and casing	
05:30	Set	the sealassembly a	and pressuretested to	465bar/10min, 3	5bar/5min, against upper pipe ram.	
06:00	Rel sea	eased the running t lassembly installation	tool, flushed the casin on by retesting to 150	ghanger/seal ass bar. Broke and ra	sembly, relanded the running tool and verified the acked the cement head stand.	
07:30	Pull	ed out with the land	dingstring. Laid out the	e casinghanger r	unning tool. Cleared and cleaned the rigfloor.	
08:00	Mad	de up the wearbush	ning runningtool and a	attached the wea	rbushing.	
08:30	Disi	mantled the rotators	s on the BX-elevator.			
09:00	Rar	n in on 5" HWDP an	nd set the wearbushing	g.		
12:00	Pre fron	ssuretested the BO n the yellow pod.	P on the blue pod to 3	35/465bar for 5/1	0min, upper annular to 35/241bar.Function tested the BOP	
13:00	Pull	ed the running tool	free from the wearbu	shing with 15MT	overpull, pulled out and laid out the running tool.	
15:00	Pre	ssuretested the IBC	OP's on the topdrive to	o 35/465 bar, and	the mudhose to 35/345bar.	
23:59	Per	formed planned ma	aintenance prior to sta	rting 8 1/2" section	on.	
Daily report n	o :	29	Date:	2003-06-28		
Midnight dept	h :	3315 m MD	Estimated PP:	1.10 sg	Mud weight: 1.35 sg	
Stop time	Des	cription				

Stop time	Description
01:30	Continued the planned rig maintenance prior to start up of 8 1/2" section.
03:30	Made up the 8 1/2" BHA consisting of: 8 1/2" bit-PD Xceed-Vision 675-Powerpulse MWD-8 1/8" ILS Stab-Isonic-ADN.
04:00	Functiontested the PD Xceed and the MWD/LWD tools.
04:30	Troubleshot unknown signalresponse from Xceed tool.
05:00	Installed the radioactive sources in the ADN tool. Made up 6 1/2" NMDC.
06:00	Picked up from deck and made up 5 ea 6 1/2" DC's and 6 1/2" jar.
06:30	Ran in 5 ea stands 5" HWDP.
08:00	Picked up from deck and made up 21 ea jts 5" DP.
12:00	Ran in to 3202m, filling string every 500m.
12:30	Tagged wiperplugs at 3218m. Performed chokedrill with crew.
14:00	Drilled through wiperplugs and floatcollar.
14:30	Washed down to 3223m, before drilling cement to 3228m.
15:00	Stopped drilling while checking the topdrive, due to abnormal noise.
16:00	Drilled cement inside the shoetrack to 3256m. Drilled through the shoe at 3257m and washed the stand down to 3259m. Circulated 15min and wiped string across shoearea once, prior to making connection.
16:30	Washed down to the bottom of 12 1/4" hole. The hole packed off with bit at 3264m, and the string stalled. Worked to free the string. The string came free by downwards jarring action. Circulated 10min to clean the rathole.
17:00	Drilled 3m new formation, prior to lining up for FIT test.
17:30	Performed FIT to 1.80sg equivalent MW.
22:30	Drilled 8 1/2" hole to 3304m. Flowchecked drilling break at 3274m, negative.
23:00	Circulated while reprogramming Xceed tool to change setting to neutral.
23:59	Drilled 8 1/2" hole to 3315m. Flowchecked drilling break at 3315m, negative.

Daily report no :	30	Date:	2003-06-29
Midnight depth :	3381 m MD	Estimated PP:	1.10 sg

Mud weight: 1.35 sg

Stop time	Description	
06:30	Drilled 8 1/2" hole from 3315m to 3381m, flowchecking drilling breaks at 3328m and 3333m, negative.	
08:30	Circulated bottoms up for samples.	
09:30	Flowchecked the well.	
10:00	Pulled out to 9 5/8" casingshoe.	
14:30	Pulled out until ADN in rotary.	
15:00	Recovered the radioactive sources from the LWD tool.	
16:00	Racked back the MWD/LWD tools and the XCeed motor.	
18:30	Picked up from deck and made up 180' corebarrel.	
19:30	Made up the rest of the BHA and ran in to 255m.	
23:00	Continued running in on 5" DP to 3333m.	
23:59	Washed down the last 2 stands, tagging bottom at 3381m.	

Midnight depth :	3384 m MD	Estimated PP: 1.20 sg	Mud weight: 1.35 sg

Stop time	Description
01:00	Continued circulating bottoms up prior to starting coring. Maximum recorded gas level was 37.8%.
01:30	Dropped the ball and circulated until ball landed in seat. Recorded SCR's.
02:00	Cut core from 3381m to 3382.5m.
03:30	Attempted to continue cutting the core, without success.
05:00	Broke the core with 15MT overpull. Attempted to restart the coring action, without success.
05:30	Flowchecked the well and pumped the slug.
06:00	Pulled out of the open hole and inside the 9 5/8" casing shoe.
11:30	Pulled out until top 180' corebarrel in rotary.
12:30	Broke safety joint and recovered the 1.5m core.
15:30	Racked back the corebarrel upper section. Checked the bit and redressed the 180' corebarrel. Ran in to 116m.
20:00	Pulled out the BHA, rearranged the corebarrel assembly from 180' to 60' and ran in with the BHA to 78m.
22:30	Ran in the hole to 980m. Laid out 8" jar and 2 x 8" DC's from derrick.
23:59	Cut and slipped the drilline.

Daily report no :	32	Date:	2003-07-01	
Midnight depth :	3402 m MD	Estimated PP:	1.42 sg	Mud weight: 1.50 sg

Stop time	Description
03:30	Continued running in with 60' coreassembly to 3351m.
04:00	Washed down the last stand to TD.
05:00	Circulated bottoms up.
06:30	Continued circulating bottoms up. Raised the mudweight to 1.40sg.
07:00	Tagged bottom at 3383.5m, before dropping the ball and circulating until the ball landed in the ballseat. Recorded SCR's.
09:00	Cut core #2 from 3383.5m to 3401.5m.
12:00	Stopped coring and broke core with 37MT overpull. Continued circulating for bottoms up from cored interval.
14:30	Circulated while raising the mudweight to 1.50sg.
15:00	Flowchecked the well and verified the triptank being stable.
17:00	Circulated bottoms up. Flowchecked the well, ok.
18:00	Pumped the slug, before pulling out to 3286m. Verified the well stable.
20:00	Pulled out to 1425m.
21:00	Changed leaking hose on intermediate racking arm.
23:59	Pulled out to 46m.

Daily report no :	33	Date:	2003-07-02	
Midnight depth :	3416 m MD	Estimated PP:	1.42 sg	Mud

Stop time	Description
00:30	Pulled out the last stand until top of the 60' corebarrel sitting in rotary.
01:30	Recovered the core. Laid out the 2 ea innerbarrels.
03:00	Made up the 90' corebarrel. Pulled out the corebarrel and verified the corehead ok for rerun. Ran back in with the corebarrel.
08:00	Ran in with the 90' corebarrel to 3361m.
08:30	Washed down and tagged bottom at 3401.5m.
10:00	Circulated bottoms up to check for gas levels in return. Max gas readings from bottoms up: 0.7%.
10:30	Dropped the ball and circulated until the ball landed in the ball seat. Recorded SCR's.
12:30	Cut core #3 from 3401.5m to 3415.5m, where parameters indicated core was jammed inside the core catcher. Attempted to get the coring restarted, but without success. Pulled upwards and broke the core with 10MT overpull.
13:30	Flowchecked the well, pumped the slug, and pulled out to 9 5/8" casing shoe.
14:00	Pulled out to 2641m.
14:30	Stopped the operation while replacing a malfunctioning BX-elevator.
19:00	Continued pulling out with core #3, until top of 90' corebarrel sitting in the rotary.
20:00	Recovered core #3, 13.4m recovered out of 14 m cored (96% recovery).
21:00	Redressed the core barrel, making up and installing 3 ea innerbarrel sections. Inspected the corehead and the float, and reran the 90' corebarrel and the bottom hole assembly to 217m.
23:59	Ran in with the 90' corebarrel to 2530m.

weight: 1.50 sg

Daily report no :	34	Date:	2003-07-03		
Midnight depth :	3443 m MD	Estimated PP:	1.42 sg	Mud weight:	1.50 sg

Stop time Description

Stop time	Description
01:30	Continued running in with the 90' corebarrel to 3250m.
02:00	Ran in with the 90' corebarrel through the 8 1/2" open hole to 3390m.
02:30	Washed down the last stand and tagged bottom at 3415.5m. Continued circulating 3000stk, until bottoms up from last cored interval had been recovered.
03:00	Spaced out and dropped the ball. Circulated until ball landed in seat. Recorded SCR's.
05:00	Cut core #4 from 3415.5m to 3443m. Pulled up and broke the core with 15MT overpull, when the 90' corebarrel was estimated filled.
05:30	Continued circulating until gas level was recorded from start of the cored interval.
06:00	Racked back drilling stand, replaced a pupjoint used for space-out with a single DP, and flowchecked well, prior to pumping the slug.
07:00	Pulled out of the open hole to 3245m. Flowchecked the well.
12:00	Pulled out with the 90' corebarrel.
13:30	Laid out 3 ea core innerbarrels. Recovered 27.8m core (100%+ recovery).
14:00	Evaluated the samples from core #4.
14:30	Pulled out the 90' outerbarrel, broke the bit and racked the stand in the derrick.
16:00	Ran in with the Xceed/MWD/LWD assembly. Verified the logging tools and functiontested ok.
17:00	Prepared to install the radioactive sources in neutron/density tool. Observed lock for source in transport container being stuck. Worked to release the source lock.
17:30	Installed the radioactive sources in the LWD tool.
21:00	Ran in with the 8 1/2" drilling assembly to 2494m, filling the string every 300m, due to the Xceed specifications.
21:30	Tightened the washpipe connection, due to indications of very minor leak.
22:30	Ran in to 3380m, filling the string every 300m.
23:59	Broke circulation and increased to 1500lpm, before starting to ream the cored interval, primarily for MWD logging purposes.

Daily report no :	35	Date:	2003-07-04	
Midnight depth :	3713 m MD	Estimated PP:	1.50 sg	Mud weight: 1.62 sg

Stop time	Description
01:30	Reamed to TD at 3443m, to obtain realtime MWD logs across the cored interval.
06:30	Drilled 8 1/2" hole from 3443m to 3494m.
07:00	Reprogrammed the Xceed tool.

well: 35/8-5	35/8-5 S PO: 1				
Daily report no	35	Date:	2003-07-04		
Midnight dept	night depth: 3713 m MD Estimated PP: 1.50 sg Mud weight: 1.62 sg		Mud weight: 1.62 sg		
Stop time	Description				
07:30	Drilled 8 1/2" hole to 3499	m.			
08:00	Reprogrammed the Xcee	d tool.			
23:59	Drilled 8 1/2" hole to 3713	3m. Raised the muc	dweight in 4 steps from	n 1.50sg to 1.65sg.	
Della sea estas	00	Defe	0000 07 05		
Daily report no : 30 Date:		Date:	2003-07-05	Muduciante 165 ca	
Midnight depti	1: 3045 IIIWD	Estimated PP:	1.50 Sg	Mud weight: 1.05 sg	
Stop time	Description				
13:30	Continued drilling 8 1/2" h	ole to 3845m.			
16:00	Circulated bottoms up for	samples.			
17:30	Flowchecked the well an	d pulled out to the §	9 5/8" casingshoe.		
19:00	Function tested the BOP	on both pods. Mea	inwhile flowchecking t	he well, negative.	
22:30	Pulled out to 3/m.				
23:00	Removed the radioactive	sources from the to	ool and laid out the ne	eutron/density sub.	
23:30	Dumped the memories in	the MVVD/LVVD too	I. Checked the bit, bet	ore racking the stand in the derrick.	
23:59	I Idled the rigtloor, before	making up the core	enead and running the	e 90' outerbarrel through the rotary.	
Daily report no	: 37	Date:	2003-07-06		
Midnight dept	n: 3856 m MD	Estimated PP:	1.52 sg	Mud weight: 1.65 sg	
Stop time	Description				
01:00	Made up the 90' innerbar	rel and redressed t	the corebarrel for runr	ing.	
03:00	Ran in with the 90' coring	assembly to 1666r	n.	5	
06:30	Performed planned maint	enance stop.			
08:00	Ran in with the 90' corea	ssembly to the 9 5/	8" casing shoe.		
08:30	Continued running in to 38	816m.	-		
09:00	Washed down last stand, tagging bottom at 3845m				
11.00	Washeu uuwii last stahu,	tagging bottom at 3	3845m.		
11.00	Circulated bottoms up, m	tagging bottom at a aximum gas record	3845m. ed: 0.6%.		
11:30	Circulated bottoms up, m Dropped the ball and circ	tagging bottom at a aximum gas recorder ulated until the ball	3845m. ed: 0.6%. was landed in the bal	seat. Recorded SCR's.	
11:30 18:00	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull.	tagging bottom at a aximum gas recorde ulated until the ball to 3856m. Maximur	3845m. ed: 0.6%. was landed in the bal m recorded gas from3	l seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12	
11:30 18:00 18:30	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, prio	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug	l seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g.	
11:30 18:00 18:30 20:30	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" c.	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, pri- asing shoe. Flowch	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well.	l seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g.	
11:30 18:00 18:30 20:30 23:59	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" c Continued pulling out with	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, prie asing shoe. Flowch n the 90' corebarrel	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well. to 300m.	l seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g.	
11:30 18:00 18:30 20:30 23:59 Daily report no	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" c Continued pulling out with 3: 38	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, prie asing shoe. Flowch in the 90' corebarrel Date:	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well. to 300m. 2003-07-07	l seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g.	
11:30 11:30 18:00 18:30 20:30 23:59 Daily report no Midnight depti	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" c Continued pulling out with : 38 n: 3883 m MD	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, prie asing shoe. Flowch in the 90' corebarrel Date: Estimated PP:	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well. to 300m. 2003-07-07 1.52 sg	I seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g. Mud weight: 1.66 sg	
11:30 11:30 18:00 18:30 20:30 23:59 Daily report no Midnight depti	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" c Continued pulling out with c: 38 n: 3883 m MD	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, prio asing shoe. Flowch h the 90' corebarrel Date: Estimated PP:	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well. to 300m. 2003-07-07 1.52 sg	I seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g. Mud weight: 1.66 sg	
11:30 11:30 18:00 18:30 20:30 23:59 Daily report no Midnight depti Stop time	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" ci Continued pulling out with 0: 38 n: 3883 m MD Description	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, priva asing shoe. Flowch in the 90' corebarrel Date: Estimated PP:	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well. to 300m. 2003-07-07 1.52 sg	I seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g. Mud weight: 1.66 sg	
11:30 11:30 18:00 18:30 20:30 23:59 Daily report no Midnight depti Stop time 01:30 02:30	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" ci Continued pulling out with c: 38 h: 3883 m MD Description Pulled out last 300m with	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, priva asing shoe. Flowch in the 90' corebarrel Date: Estimated PP:	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well. to 300m. 2003-07-07 1.52 sg	I seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g. Mud weight: 1.66 sg	
11:30 11:30 18:00 18:30 20:30 23:59 Daily report no Midnight depth Stop time 01:30 02:30 03:30	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" c Continued pulling out with c: 38 n: 3883 m MD Description Pulled out last 300m with Laid out the innerbarrel, Made up new 7 bladed of	tagging bottom at 3 aximum gas recorded ulated until the ball to 3856m. Maximur d verified static, prive asing shoe. Flowch in the 90' corebarrel Date: Estimated PP: reduced pulling sp recovered 11.25m of orehead ran in the	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well. to 300m. 2003-07-07 1.52 sg	I seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g. Mud weight: 1.66 sg prebarrel sitting in rotary. rery). Pulled out outerbarrel and broke corehead.	
11:30 11:30 18:00 18:30 20:30 23:59 Daily report no Midnight deptil Stop time 01:30 02:30 03:30 04:00	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" c Continued pulling out with c: 38 n: 3883 m MD Description Pulled out last 300m with Laid out the innerbarrel, Made up new 7 bladed of Ran in with the 90' corch	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, prie asing shoe. Flowch the 90' corebarrel Date: Estimated PP: recovered pulling sp recovered 11.25m of orehead, ran in the arrel	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well. to 300m. 2003-07-07 1.52 sg meed, until top of 90' co of core (100+% recover 90' outerbarrel and co	I seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g. Mud weight: 1.66 sg prebarrel sitting in rotary. rery). Pulled out outerbarrel and broke corehead. Iressed with new innerbarrels. Verified space-out ok.	
11:30 11:30 18:00 18:30 20:30 23:59 Daily report no Midnight deptil Stop time 01:30 02:30 03:30 04:00 04:30	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" c Continued pulling out with c: 38 n: 3883 m MD Description Pulled out last 300m with Laid out the innerbarrel, f Made up new 7 bladed c Ran in with the 90' coreb Relief valve for frame on	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, prie asing shoe. Flowch in the 90' corebarrel Date: Estimated PP: recovered 11.25m of orehead, ran in the arrel.	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well. to 300m. 2003-07-07 1.52 sg eeed, until top of 90' co of core (100+% recov e 90' outerbarrel and co	I seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g. Mud weight: 1.66 sg prebarrel sitting in rotary. very). Pulled out outerbarrel and broke corehead. Iressed with new innerbarrels. Verified space-out ok.	
11:30 11:30 18:30 20:30 23:59 Daily report no Midnight depti Stop time 01:30 02:30 03:30 04:00 04:30 08:00	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" ci Continued pulling out with 0: 38 n: 3883 m MD Description Pulled out last 300m with Laid out the innerbarrel, Made up new 7 bladed ci Ran in with the 90' coreb Relief valve for frame on Ran in with 90' corebarre	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, priva asing shoe. Flowch in the 90' corebarrel Date: Estimated PP: recovered 11.25m of orehead, ran in the arrel. automatic slips mall to 3245m	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well. to 300m. 2003-07-07 1.52 sg meed, until top of 90' co of core (100+% recov e 90' outerbarrel and co lfunctioned. Checked	I seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g. Mud weight: 1.66 sg prebarrel sitting in rotary. rery). Pulled out outerbarrel and broke corehead. Iressed with new innerbarrels. Verified space-out ok. same prior to changing to back-up slips.	
11:30 11:30 18:00 18:30 20:30 23:59 Daily report no Midnight deptil Stop time 01:30 02:30 03:30 04:00 04:30 08:00 09:30	Circulated bottoms up, m Dropped the ball and circ Cut core #5 from 3845m MT overpull. Flowchecked the well an Pulled out to the 9 5/8" ci Continued pulling out with 9: 38 n: 3883 m MD Description Pulled out last 300m with Laid out the innerbarrel, 1 Made up new 7 bladed ci Ran in with the 90' coreb Relief valve for frame on Ran in with 90' corebarre Cut and slipped 70 m of ci	tagging bottom at 3 aximum gas recorde ulated until the ball to 3856m. Maximur d verified static, priva asing shoe. Flowch in the 90' corebarrel Date: Estimated PP: recovered 11.25m of orehead, ran in the arrel. automatic slips mall I to 3245m. brilline.	3845m. ed: 0.6%. was landed in the bal m recorded gas from3 or to pumping the slug ecked the well. to 300m. 2003-07-07 1.52 sg meed, until top of 90' co of core (100+% recov e 90' outerbarrel and co lfunctioned. Checked	I seat. Recorded SCR's. 847m: 0.9%. No progress last hour. Broke core with 12 g. Mud weight: 1.66 sg prebarrel sitting in rotary. rery). Pulled out outerbarrel and broke corehead. Iressed with new innerbarrels. Verified space-out ok. same prior to changing to back-up slips.	

11:30 Washed down from 3828m to bottom at 3856m. Circulated 15 min on bottom.

12:00 Dropped the ball and circulated until the ball landed in the ballseat. Recorded SCR's.

16:00 Cut core #6 from 3856m to 3883m. Broke core with 25MT overpull when the corebarrel had presumably been filled up. Coring parameters: 1000lpm/118bar, 70rpm, 4-10MT, 5-14kftlbs. ROP varied between: 2m/hr and 30m/hr.

18:30 Flowchecked the well prior to pumping the slug and pulling out to the 9 5/8" casing shoe.

21:30 Verified the well stable prior to continuing pulling out to 660m.

Well: 35/8-5	5 S		PO: 1		
Daily report r	10 :	38	Date:	2003-07-07	
Midnight dep	oth :	3883 m MD	Estimated PP:	1.52 sg	Mud weight: 1.66 sg
Stop time	Des	cription			
23:59	Flov pulli	vchecked the well p ng speed from 300r	prior to pulling the both n.	tomhole assemb	y through the BOP. Continued pulling out, with reduced
Daily report r	10 :	39	Date:	2003-07-08	
Midnight dep	oth :	3972 m MD	Estimated PP:	1.52 sg	Mud weight: 1.65 sg
Stop time	Des	cription			
01:30	Rec	overed the core an	d laid out the innerba	arrels.	
02:00	Pulle	ed out the 90' core	parrel, broke the core	head, and racke	d the outerbarrel in the derrick.
03:30	Cha	nged the bit on the	Xceed tool and ran ir	n to 36m. Functio	ntested the Xceed and the MWD/LWD tools.
04:00	Insta	alled the radioactive	e sources in the neuti	ron/density tool.	
04:30	Ran	in with rest of the b	pottomhole assembly	to 238m.	
05:00	Insta	alled the rotators or	n the BX elevator.		
06:00	Pick	ed up 15 ea joints c	of 5" DP and ran in to	381m. Filled the	string. Ran in to 408m.
07:30	Pulle float	ed out to remove 2r sub, before running	nd float/floatsub that h g back in to 408m.	nad unintendedly	been run on top of the non magnetic pony DC. Laid out the
12:30	Con	tinued running in to	3245m. Removed th	e rotators on the	BX elevators.
13:00	Ran	in through the oper	n hole section to 3845	ōm.	
13:30	Rea	med across the co	red interval to 3883m	, for logging pur	Doses.
14:30	Circ	ulated off bottom w	hile setting Xceed too	ol up for holding	mode.
17:00	Drille	ed 8 1/2" hole to 38	91m with the Xceed t	tool set for holdin	g mode.
17:30	Circ	ulated off bottom w	hile setting Xceed too	ol to 30% build.	
23:59	Drille	ed oriented as per o	original well plan to 39)72m.	
Daily report r	10 ·	40	Date:	2003-07-09	
			B uto.	2000 01 00	

Daily report no :	40	Date:	2003-07-09	
Midnight depth :	4000 m MD	Estimated PP:	1.52 sg	Mud weight: 1.65 sg

Stop time	Description
03:00	Continued drilling the 8 1/2" hole to TD at 4000m.
05:00	Circulated to clean the hole prior to logging operation.
07:00	Flowchecked the well, prior to pumping the slug and pulling out to 3200m. Flowchecked the well, ok.
10:30	Pulled out to 36m. Laid out the non magnetic pony DC.
11:00	Removed the radioactive sources from the neutron/density tool.
12:00	Laid out the various sections of the LWD/MWD tool. Laid out the Xceed tool after breaking the bit.
13:30	Tidied the rigfloor and rigged up for wireline logging.
15:00	Picked up the logging tools from the deck and made up the toolstring. Installed the radioactive sources. The toolstring consisted of (from top): GR - Neutron (Porosity) - Density - MDT.
22:30	Ran in with the logging string at 1510hrs, tagged TD at 4000m and started logging upwards. Logged the complete openhole section. Started pulling out with toolstring from 9 5/8" casing shoe at 2045hrs. The toolstring was back at surface at 2230hrs.
23:30	Inspected the logging tool string, before laying out the various tools.
23:59	Made up the back-up logging tool string.

Daily report no :	41	Date:	2003-07-10	
Midnight depth :	4000 m MD	Estimated PP:	1.52 sg	Mud weight: 1.65 sg

Stop time	Description
00:30	Continued making up the new logging string. Installed the radioactive sources.
09:00	Ran in with the logging tool string at 0030hrs. Started logging the main log, from 4000m TD at 0330hrs. Out with tool string at 0905 hrs.
11:30	Made up tool string no.3; MDT-GR, and tested tool.
23:59	Ran in hole with tool string no. 3 and logged for pressure points. Tool at 3957 m at midnight.

Daily report no :	42	Date:	2003-07-11		
Midnight depth :	4000 m MD	Estimated PP:	1.52 sg	Mud weight:	1.65 sg

Stop time Description

03:00	Continued taking pressure points.
04:00	Repaired broken chain on wireline unit.
10:00	Continued taking pressure points.
12:30	Tool stuck while attempting for pressure point at 3597 m. Attempted to work string free without success. Activated electrical weak point, and detatched wire from tool.
13:30	Pulled out of hole with wire.
14:00	Rigged down wireline equipment from rig floor.
15:30	Made up fishing assembly and ran in hole to 152 m.
19:30	Ran in hole with fishing assembly on 5" drill pipe from 152 m to 3545 m.
21:00	Circulated bottoms up from 3570 m.
21:30	Washed down with 300 lpm from 3570 m to 3602 m, and attempted to engage fish. No indications of engagement observed.
22:00	Continued running in hole on 5" drill pipe from 3602 m to 3976 m.
22:30	Broke circulation at 3976 m and washed down with 300 lpm. Took weight at 3987,6 m and sat down 4 T on top of fish. Picked up to neutral weight and rotated string 5 turns to left. Sat down 9 T.
23:59	Pulled out of hole with fishing assembly on 5" drill pipe from 3987 m to 2998 m.

Daily report no :	43	Date:	2003-07-12	
Midnight depth :	4000 m MD	Estimated PP:	1.52 sg	Mud weight: 1.65 sg

Stop time Description 03:00 Continued pulling out of hole with fishing assembly on 5" drill pipe form 2998 m to 152 m. 04:00 Racked back fishing assembly in derrick. Laid down jar. 05:00 Disconnected fish and laid down recovered MDT tool. 06.00 Laid down core barrels from derrick. 07:00 Laid down cement stand from derrick. Cleaned and cleared rig floor. 07:30 Made up new cement stand and racked in derrick. 09:30 Picked up BOP wash tool and ran in hole on 2 stands 6 1/2" drill collars. Made up BOP test tool and ran in hole on 5" drill pipe to 394 m. Washed wellhead and BOP with 2500 lpm (100 bar). 11:00 Not able to pass wearbushing with wash tool. Pulled out and removed wash tool. Ran back in and landed BOP test tool in wellhead. 15:00 Flushed lines and pressure tested BOP on yellow pod from drill floor to 35/465 bar for 5/10 minutes (upper annular to 241 bar). Function tested BOP on blue pod from toolpusher office and from acoustic panel. 16:30 Pressure tested surface eqiupment to 35/465 bar for 5/10 minutes. 18:00 Pulled out of hole and laid down BOP test tool. 19:00 Installed divertor element and changed to 3 1/2" handling equipment. Ran in hole with 3 1/2" drill pipe to 294 m. Picked up 9 joints from deck. 23:59 Changed to 5" handling equipment and ran in hole on 5" drill pipe from 294 m to 4000 m. Tagged bottom with 3 T.

Daily report no :	44	Date:	2003-07-13	
Midnight depth :	4000 m MD	Estimated PP:	1.52 sg	Mud weight: 1.65 sg

Stop time Description 01:30 Circulated hole clean prior to cement job with 2000 lpm (304 bar). Held pre-job meeting with involved personnel. 03:00 Troubleshoot on failure in HPU unit. 04:00 Sat a balanced cement plug from 4000 m to 3720 m. Displaced cement with 1,65 sg mud using mud pumps. 04:30 05:30 Pulled out of cement plug to 3720 m. 07:00 Circulated bottoms up from 3720 m with 2070 lpm (300 bar) 07:30 Installed cement stand and pumped 9 m3 of 1,70 sg spacer with mud pumps. Pressure tested surface lines to 200 bar for 5 minutes. 08:00 Sat a ballanced cement plug from 3720 m to 3440 m. 08:30 Displaced the cement with 1,65 sg mud using rig pumps. 09:30 Pulled out of cement plug to 3440 m.

Daily report no :	44	Date:	2003-07-13		
Midnight depth :	4000 m MD	Estimated PP:	1.52 sg	Mud weight:	1.65 sg

Stop time	Descri	otion					
11:00	Circuated bottoms up from 3440 m with 2100 lpm (300 bar).						
11:30	Droppe	d wiper in string	and circulated dowr	to clean pipe.			
12:00	Pumpe	d 9 m3 of 1,70 \$	Sg spacer with rig pu	mps and pressure	e tested surface lines to 200 bar for 5 minutes.		
12:30	Sat a b	allanced cement	plug from 3440 m to	3150 m.			
13:30	Pulled of	out of cement plu	ıg to 3080 m.				
15:00	Circula	ed bottoms up f	rom 3080 m with 219	0 lpm (294 bar).			
15:30	Droppe	d wiper in string	and circulated dowr	to clean pipe.			
16:00	Flowch	ecked well and	pumped slug.				
18:30	Pulled of	out of hole on 5"	drill pipe from 3080 m	n to 294 m.			
19:00	Change	ed to 3 1/2" hand	lling equipment and p	oulled out of hole	with 3 1/2" stinger.		
20:30	Made u	p 9 5/8" casing	scraper assembly an	d ran in hole to 15	52 m.		
23:30	Ran in	nole on 5" drill pi	pe to 3008 m.				
23:59	Washe	d down to 3040	m and scraped interv	al from 3040 m to	o 3060 m. Circulated with 2500 lpm (304 bar).		
Daily report no	D:	45	Date:	2003-07-14			
Midnight dept	h: 40	000 m MD	Estimated PP:	sg	Mud weight: 1.65 sg		
Stop time	Descri	otion					

01:00	Continued scraping setting area for bridge plug and circulated bottoms up with 2500 lpm (304 bar).
03:30	Pulled out of hole with 9 5/8" casing scraper assembly on 5" drill pipe from 3060 m to 152 m.
04:00	Pulled out with scarper assembly. Laid down jar and casing scraper.
05:00	Made up 9 5/8" bridge plug and ran in hole on 3 1/2" drill pipe to 294 m.
10:30	Changed to 5" handling equipment and ran in hole on 5" drill pipe from 294 m to 3047 m.
11:30	Dropped ball and circulated down with 320 lpm (33 bar). Pressured up to 223 bar when ball landed in ball seat to set bridge plug. Pulled free from plug.
12:00	Pressure tested bridge plug to 120 bar for 15 minutes.
12:30	Racked back one stand and installed cement stand. Held pre-job meeting prior to cement job.
13:00	Pumped 10 m3 of 1,70 sg spacer with rig pumps and pressure tested surface lines to 200 bar for 5 minutes.
13:30	Sat a ballanced cement plug from 3047 m to 2847 m.
14:00	Displaced cement with 1,65 sg mud using rig pumps.
15:30	Pulled out of cement plug to 2470 m.
16:00	Circulated one string volume with 1500 lpm (137 bar) to flush pipe. Pumped slug.
17:30	Slipped and cut drilling line.
19:30	Continued pulling out of hole on 5" drill pipe from 2470 m to 294 m.
20:30	Changed to 3 1/2" handling equipment and pulled out of hole on 3 1/2" drill pipe from 294 m. Laid down equalizer sub and running tool .
21:30	Ran in hole with 5" open ended drill pipe to 730 m.
22:30	Displaced well to 1,27 sg OBM from 730 m.
23:59	Flowchecked well, pumped slug and pulled out of hole on 5" drill pipe from 730 m.

Daily report no :	46	Date:	2003-07-15	
Midnight depth :	4000 m MD	Estimated PP:	sg	Mud weight: 1.27 sg

Stop time	Description
02:00	Made up wearbushing retrieval tool and ran in hole and retrieved wearbushing. Pulled out of hole and laid down running tool and wearbushing.
03:00	Made up 9 5/8" casing cutter and ran in hole on 5" drill pipe to 304 m.
06:00	Made up marine swivel and annular swivel and continued running in hole on 5" drill pipe to 697 m (cutter depth). Filled pipe and landed marine swivel in wellhead.
06:30	Closed upper annular around annular swivel and cut 9 5/8" casing at 697 m.
08:00	Flowchecked well, opened annular and pulled out of hole on 5" drill pipe to 304 m.
09:00	Racked back marine- and annular swivel and continued pulling out of hole on 5" drill pipe. Racked back 9 5/8" casing cutter assembly.
10:00	Made up 9 5/8" spear assembly.

Daily report n	o : 46	Date:	2003-07-15		
Midnight dept	h : 4000 m MD	Estimated PP:	sg	Mud weight: 1.27 sg	
Stop time	Description				
11:00	Ran in hole with spear assembly on 5" HWDP to 396 m. Landed of stop ring in wellhead.				
12:00	Closed upper annular and pulled 9 5/8" casing free. Pumped one annulus volume up choke line. Opened annular and circulated bottoms up with 2400 lpm (95 bar).				
13:30	Attempted to pull 9 5/8 no go. Landed off 9 5/	3" casing hanger throu /8" casing hanger in w	gh BOP, but hur ellhead and rele	g up on lower annular. Several attempts to pull through, but ased spear.	
14:30	Pulled out of hole with	spear assembly and	racked in derrick		

- 17:00 Performed drift run through BOP with multi purpose tool. Flushed BOP area and pulled out with tool.
- 19:30 Rearranged 9 5/8" spear assembly and ran in hole to 396 m. Engaged spear to 9 5/8" casing.
- 20:00 Pulled casing free and through BOP.
- 21:00 Slugged pipe and pulled out of hole with 9 5/8" casing on 5" HWDP. Released spear and racked back spear assembly in derrick.
- 22:30Rigged up casing handling equipment.23:59Pulled 9 5/8" casing and laid down.

23.39 Fulled 9 5/6 casilig and laid down.

Daily report no :	47	Date:	2003-07-16	
Midnight depth :	4000 m MD	Estimated PP:	sg	Mud weight: 1.27 sg

Stop time	Description
00:30	Rigged down casing handling equipment.
01:30	Made up 13 3/8" casing scraper assembly and ran in hole to 660 m.
03:00	Scraped interval from 640 m to 660 m while circulating bottms up. Pulled out with scraper assembly and racked in derrick.
04:30	Made up 13 3/8" bridge plug and equalizer sub, and ran in hole on 3 1/2" drill pipe to 291 m.
06:00	Changed to 5" handling equipment and ran in hole on 5" drill pipe from 291 m to 650 m.
06:30	Sat 13 3/8" bridge plug at 650 m. Confirmed plug set with 10 T down weight.
07:00	Pulled out of hole with running tool on 5" drill pipe to 291 m.
08:00	Changed to 3 1/2" handling equipment and pulled out of hole with 3 1/2" drill pipe. Laid down running tool.
08:30	Ran in hole with 5" open ended drill pipe to 300 m.
09:30	Performed mandatory training with manual pipe handling equipment.
10:00	Continued running in hole on 5" drill pipe to 650 m.
11:30	Displaced well to 1,15 sg water based mud from 650 m.
12:00	Pulled out of hole with 5" drill pipe.
14:30	Rearranged spear assembly in derrick.
15:30	Made up multipurpose tool and ran in hole on 5" drill pipe to 396 m.
16:00	Landed multipurpose tool in wellhead and sat down 15 T to engage seal assembly. Picked up and circulated annulus volume over choke.
17:00	Pulled out with running tool. Seal assembly not engaged.
18:00	Ran in hole with multipurpose tool on 5" drill pipe to 396 m.
19:00	Sat down 18 T on top of seal assembly. Rotated with 10 RPM to right and engaged to seal asembly.
20:00	Pulled out of hole with seal assembly and running tool on 5" drill pipe. Laid down seal assembly and running tool.
21:00	Made up 13 3/8" casing cutter assembly and ran in hole to 145 m.
21:30	Installed marine swivel and annular swivel and continued running in hole to 540 m (cutter depth).
22:00	Landed off marine swivel in wellhead and took torque readings. Closed upper annular around annular swivel.
22:30	Checked tallies due to discrepancy between actual and theoretical depth for landing off marine swivel in wellhead.
23:30	Filled pipe and cut 13 3/8" casing at 540 m.
23:59	Opened annular and flowchecked well - ok.

Daily report no :	48	Date:	2003-07-17	
Midnight depth :	4000 m MD	Estimated PP:	sg	Mud weight: 1.16 sg

Stop time	Description
01:30	Pulled out of hole with 13 3/8" casing cutter assembly and racked in derrick.
02:30	Made up 13 3/8" spear assembly and ran in hole on 5" HWDP to 396 m.
04:30	Engaged spear to 13 3/8" casing and pulled casing free. Pulled out of hole with 13 3/8" casing on 5" HWDP from 540 m to 145 m.

Well: 35/8-	5 S PO: 1				
Daily report	no: 48 Date: 2003-07-17				
Midnight de	oth: 4000 m MD Estimated PP: sg Mud weight: 1.16 sg				
Stop time	Description				
06:30	Rigged up for pulling casing. Released spear from casing and racked back.				
08:30	Laid down casing hanger and pulled out with retrieved 13 3/8" casing.				
10:00	Rigged down casing equipment.				
10:30	Made up divertor tool and ran in hole on 3 1/2" drill pipe to 295 m.				
11:00	Changed to 5" handling equipment and ran in hole on 5" drill pipe from 295 m to 640 m.				
11:30	Installed cement stand and tagged 13 3/8" bridge plug at 650 m.				
12:00	Broke circulation in steps to 2500 lpm (43 bar). Held pre-job meeting prior to cement job.				
12:30	Pressure tested surface lines to 200 bar for 5 minutes. Pumped 10 m3 of 1,32 Sg spacer with rig pumps.				
13:00	Sat a ballanced cement plug from 650 m to 440 m.				
13:30	Displaced cement with 1,15 sg mud using rig pumps.				
14:30	Pulled out of cement plug to 415 m.				
15:00	Circulated bottoms up from 415 m. Dropped drill pipe wiper and circulated down.				
15:30	Continued pulling out of hole on 5" drill pipe from 415 m to 295 m.				
16:00	Changed to 3 1/2" drill pipe and pulled out of hole with 3 stands 3 1/2" drill pipe and racked in derrick.				
16:30	Flowchecked well on trip tank. Indications on well flowing. Closed shear ram and monitored well.				
17:00	Continued pulling out with 3 1/2" drill pipe while laying down pipe.				
19:30	Laid down spear and casing cutter assemblies from derrick.				
21:00	Made up 20" x 30" casing cutter assembly and racked in derrick.				
23:59	Waited on cement to set up.				

Daily report no :	49	Date:	2003-07-18	
Midnight depth :	4000 m MD	Estimated PP:	sg	Mud weight: 1.16 sg

Stop time Description

Stop time	Description
01:00	Made up 8 1/2" bit and ran in hole on 5" HWDP to 370 m. Opened shear ram and monitored well on trip tank - well stabile.
02:00	Continued waiting for cement to set up.
02:30	Ran in hole and tagged top of cement at 530 m with 10 T.
03:30	Pumped slug and pulled out of hole with 8 1/2" bit on 5" HWDP and 5" drill pipe.
04:00	Changed to 3 1/2" handling equipment. Made up divertor tool and ran in hole on 3 1/2" drill pipe to 90 m.
04:30	Changed to 5" handling equipment and ran in hole on 5" drill pipe from 90 m to 528 m.
05:00	Broke circulation in steps to 2500 lpm. Pressure tested surface lines to 100 bar for 5 minutes and pumped 10 m3 seawater with rig pumps.
06:00	Sat a ballanced cement plug from 528 m to 430 m.
06:30	Pulled out of cement plug to 415 m.
07:30	Circulated bottoms up from 415 m with 3500 lpm (37 bar). Dropped drill pipe wiper and circulated down.
08:30	Pulled out of hole with cement stinger.
17:00	Waited on cement to set up.
18:00	Ran in hole with 8 1/2" bit and tagged top of cement at 436 m with 10 tons.
18:30	Broke circulation in steps and displaced kill and choke lines to seawater. Emptied trip tank.
19:30	Displaced well to seawater with 3000 lpm (55 bar).
20:00	Pulled out of hole and laid down bit.
23:59	Made up and ran in hole with wash tool and brushes. Washed and brushed riser. Washed BOP and circulated two times bottom up from above BOP.

Daily report no :	50	Date:	2003-07-19	
Midnight depth :	4000 m MD	Estimated PP:	sg	Mud weight: 1.16 sg

Stop time	Description
00:30	Pulled out of hole and laid down wash tool and brush.
03:30	Rigged up for pulling BOP and marine riser.
04:30	Pulled divertor and laid down. Picked up handling joint.
05:00	Collapsed slip joint and pulled BOP clear off guide posts.
07:30	Disconnected guide wires and removed kill and choke lines. Moved rig off location.
08:00	Held pre-job meeting with new crew prior to pulling BOP and riser.
Well: 35/8-5 S PO: 1

Daily report no :	50	Date:	2003-07-19	
Midnight depth :	4000 m MD	Estimated PP:	sg	Mud weight: 1.16 sg

Stop time Description

Stop time	Description
08:30	Inspected and laid down slip joint.
14:30	Pulled BOP and marine riser. Landed BOP on fork.
15:30	Secured BOP on fork and removed guide wires from BOP.
16:00	Skidded BOP to parking position and laid out two remaining riser joints.
18:30	Rigged down BOP equipment.
20:00	Made up 20" x 30" casing cutting and retrieving assembly and installed guide rope.
21:00	Ran in sea with assembly and landed of catcher in wellhead. Connected catcher to wellhead and performed 20 T overpull test.
23:59	Sat down 10 T down weight and cut 20" and 30" casing at 403 m.

sg

Daily report no :	51	Date:	2003-07-20	
Midnight depth :	4000 m MD	Estimated PP:	sg	Mud weight: 1.16

Stop time	Description										
00:30	Catcher released from wellhead.	n wellhead when mo	tor stalled out durin	g cutting of 20" casing. Attempted to reconnect to							
02:00	Not able to reconnec	t catcher to wellhead	due to tool packed	off with metal spoon. Pulled out of sea and cleaned tool.							
04:00	Ran back in and connected catcher to wellhead. Performed 20 T overpull test.										
10:00	Continued cutting 20" x 30" casing at 403 m.										
10:30	Pulled PGB with 20" and 30" casing free with 20 T overpull										
12:00	Pulled PGB and casing to surface and landed on skid in moonpool.										
14:00	Secured PGB on skic down casing cutter a	Secured PGB on skid and released casing from PGB. Then released catcher from wellhead and pulled out and laid down casing cutter assembly.									
16:00	Made up 18 3/4" wellhead running tool and ran in and connected to wellhead. Pulled out with casing and laid down casing with running tool installed.										
23:00	Deballasted rig/Anche Northern Challenger Far Scout started on Lady Astrid started o Olympic Hercules sta Olympic Hercules sta	or handling. started on anchor no. anchor no. 6 at 11:00 n anchor no. 7 at 11: rted on anchor no. 12 rted on anchor no. 1	1 at 11:15hrs. Pen) hrs. Pennant deliv 16 hrs. Pennant del 2 at 11:15 hrs. Penr 1 at 19:26 hrs. Penr	nant delivered to rig at 21:00hrs ered to rig at 17:34 hrs. ivered to rig at 02:47 hrs. nant delivered to rig at 18:40 hrs. nant delivered to rig at 06:32 hrs.							
23:59	Anchor handling.										
Daily report n	io: 52	Date:	2003-07-21								
Midnight dep	th: 4000 m MD	Estimated PP	sg	Mud weight: 1.16 sg							
Stop time	Description										
12:00	Anchor handling. Lady Astrid started o	n anchor no. 8 at 03:	54hrs. Pennant bac	k to rig at 08:50hrs							

Anchor handling.
Lady Astrid started on anchor no. 8 at 03:54hrs. Pennant back to rig at 08:50hrs
Far Scout started on anchor no. 5 at 02:58hrs. Pennant back to rig at 10:00hrs
Northern Challenger started on anchor no. 2 at 05:25 hrs. Pennant back to rig at 10:20 hrs
Anchor handling.
Far Scout started on anchor no. 4 at 10:35hrs. Anchor on deck at 18:09hrs. Prepared for tow.
Northern Challenger started on anchor no. 3 at 04:35 hrs. Anchor on deck at 21:20 hrs. Prepared for tow.
Olympic Hercules started on anchor no. 10 at 10:50hrs. Anchor on bolster at 22:13hrs.
Lady Astrid started on anchor no. 9 at 10:13hrs. Anchor on bolster at 23:15hrs
No activity on well 35/8-5 S. Activities logged on well 30/8-A-13 H.

HOLE DEVIATION

B-28

Well:	35/8-5 S		PO: 1	Reference point:	RKB ; 29.0 m AB	OVE MSL	
Waterdepth:	369.0	m		Vertical to:	397.9 m	Total Depth:	4000.0 m MD
Utm zone:	31			Central Median:	3' E	Horizontal datum: E	ED50
Template Cent	re Coordin	ates, UTM	:	North :	m,	East:	m
Wellhead Coor	dinates,	UTM:		North :	6805219.60 m ,	East:	534935.00 m
Official Surveys	s: Y			Track :			

Coordinates are measured from the wellhead centre.

Depth MD	Incli- nation	Direc- tion	Tool Type	#	Depth TVD	Coord North	linates East	Vert. Sect	Dogleg	Build	Turn
[m]	[Deg]	[Deg]			[m]	[m]	[m]	[m]	[D/30m]	[D/30m]	[D/30m]
399.82	0.25	215.81	SSHO		399.82	0.00	0.00	0.00	0.00	0.00	0.00
409.01	0.06	0.00	MWD		409.01	-0.01	-0.01	0.02	0.98	-0.62	470.70
442.34	0.79	0.00	MWD		442.34	0.24	-0.01	0.24	0.66	0.66	0.00
466.54	1.49	6.60	MWD		466.53	0.72	0.02	0.72	0.88	0.87	8.18
495.96	1.81	5.32	MWD		495.94	1.56	0.11	1.56	0.33	0.33	-1.31
525.39	2.61	5.47	MWD		525.35	2.69	0.22	2.70	0.82	0.82	0.15
541.63	2.67	3.61	MWD		541.57	3.43	0.28	3.44	0.19	0.11	-3.44
573.77	2.33	0.38	MWD		573.68	4.83	0.33	4.84	0.34	-0.32	-3.01
602.42	2.25	359.70	MWD		602.31	5.98	0.33	5.99	0.09	-0.08	-0.71
632.04	2.31	358.37	MWD		631.91	7.16	0.31	7.16	0.08	0.06	-1.35
661.08	2.26	358.93	MWD		660.92	8.31	0.28	8.32	0.06	-0.05	0.58
690.26	2.16	348.57	MWD		690.08	9.43	0.16	9.43	0.42	-0.10	-10.65
718.73	2.21	344.78	MWD		718.53	10.48	-0.09	10.48	0.16	0.05	-3.99
746.53	2.11	343.83	MWD		746.31	11.49	-0.37	11.50	0.11	-0.11	-1.03
775.90	2.11	345.46	MWD		775.66	12.54	-0.66	12.55	0.06	0.00	1.66
804.57	2.23	345.79	MWD		804.31	13.59	-0.93	13.62	0.13	0.13	0.35
833.20	2.27	344.27	MWD		832.92	14.67	-1.22	14.72	0.07	0.04	-1.59
862.03	2.15	347.62	MWD		861.73	15.75	-1.49	15.82	0.18	-0.12	3.49
890.49	1.98	353.74	MWD		890.17	16.76	-1.66	16.84	0.29	-0.18	6.45
918.07	1.95	358.16	MWD		917.73	17.70	-1.72	17.79	0.17	-0.03	4.81
946.89	1.88	5.97	MWD		946.54	18.66	-1.69	18.74	0.28	-0.07	8.13
977.43	1.79	9.10	MWD		977.06	19.63	-1.56	19.69	0.13	-0.09	3.07
1006.59	1.68	12.90	MWD		1006.21	20.50	-1.39	20.55	0.16	-0.11	3.91
1035.64	1.59	13.79	MWD		1035.24	21.31	-1.20	21.34	0.10	-0.09	0.92
1064.70	1.66	16.68	MWD		1064.29	22.10	-0.99	22.12	0.11	0.07	2.98
1091.50	1.79	20.07	MWD		1091.08	22.87	-0.73	22.88	0.18	0.15	3.79
1121.35	1.86	20.93	MWD		1120.92	23.76	-0.40	23.76	0.08	0.07	0.86
1149.71	1.72	22.87	MWD		1149.26	24.58	-0.07	24.58	0.16	-0.15	2.05
1179.72	1.74	24.42	MWD		1179.26	25.41	0.29	25.41	0.05	0.02	1.55
1208.02	1.88	26.95	MWD		1207.54	26.21	0.68	26.22	0.17	0.15	2.68
1237.09	1.75	29.58	MWD		1236.60	27.02	1.12	27.05	0.16	-0.13	2.71
1265.15	1.74	25.85	MWD		1264.65	27.78	1.52	27.82	0.12	-0.01	-3.99
1294.07	1.85	27.42	MWD		1293.55	28.59	1.92	28.65	0.12	0.11	1.63
1334.49	2.37	32.99	MWD		1333.94	29.87	2.68	29.99	0.41	0.39	4.13
1350.00	2.37	32.99	MWD		1349.44	30.41	3.03	30.56	0.00	0.00	0.00
1362.91	2.39	34.34	MWD		1362.34	30.85	3.32	31.03	0.14	0.05	3.14

HOLE DEVIATION

Well:	35/8-5 S		PO: 1	Reference point:	RKB ; 29.0 m A	BOVE MSL	
Waterdepth:	369.0	m		Vertical to:	397.9 m	Total Depth:	4000.0 m MD
Utm zone:	31			Central Median:	3' E	Horizontal datum: E	ED50
Template Cent	re Coordir	ates, UTN	1:	North :	m,	East:	m
Wellhead Coor	dinates,	UTM:		North :	6805219.60 m ,	East:	534935.00 m
Official Survey	s: Y			Track			

Coordinates are measured from the wellhead centre.

Depth	Incli-	Direc-	Tool	#	Depth	Coord	inates	Vert.	Dogleg	Build	Turn
MD [m]	nation [Deg]	tion [Deg]	Туре		TVD [m]	North [m]	East [m]	Sect [m]	[D/30m]	[D/30m]	[D/30m]
1379.71	2.39	34.34	MWD		1379.13	31.43	3.72	31.65	0.00	0.00	0.00
1391.67	2.23	30.56	MWD		1391.08	31.84	3.98	32.09	0.55	-0.40	-9.48
1408.59	2.23	30.56	MWD		1407.98	32.40	4.31	32.69	0.00	0.00	0.00
1420.26	0.32	326.14	MWD		1419.65	32.63	4.41	32.92	5.43	-4.91	-165.60
1448.85	0.24	258.31	MWD		1448.24	32.68	4.31	32.96	0.34	-0.08	-71.18
1477.77	0.13	301.98	MWD		1477.16	32.69	4.22	32.96	0.18	-0.11	45.30
1506.18	0.18	278.44	MWD		1505.57	32.71	4.15	32.97	0.08	0.05	-24.86
1534.83	0.20	266.46	MWD		1534.22	32.71	4.05	32.96	0.05	0.02	-12.54
1563.97	0.09	288.90	MWD		1563.36	32.72	3.98	32.96	0.13	-0.11	23.10
1593.01	0.12	319.60	MWD		1592.40	32.75	3.94	32.98	0.06	0.03	31.71
1621.62	0.15	27.29	MWD		1621.01	32.80	3.94	33.04	0.16	0.03	70.98
1650.76	0.15	27.87	MWD		1650.15	32.87	3.97	33.11	0.00	0.00	0.60
1680.61	0.09	24.04	MWD		1680.00	32.93	4.00	33.17	0.06	-0.06	-3.85
1709.10	0.13	319.79	MWD		1708.49	32.97	3.99	33.21	0.13	0.04	-67.66
1737.40	0.18	285.19	MWD		1736.79	33.01	3.93	33.24	0.11	0.05	-36.68
1766.30	0.24	96.09	MWD		1765.69	33.02	3.94	33.25	0.43	0.06	177.40
1794.90	0.24	353.19	MWD		1794.29	33.07	3.99	33.31	0.39	0.00	-107.94
1823.75	0.14	159.12	MWD		1823.14	33.10	4.00	33.34	0.39	-0.10	172.54
1852.48	0.24	112.78	MWD		1851.87	33.04	4.07	33.29	0.18	0.10	-48.39
1880.90	0.12	188.84	MWD		1880.29	32.99	4.12	33.24	0.25	-0.13	80.29
1906.67	0.11	297.32	MWD		1906.06	32.97	4.09	33.22	0.22	-0.01	126.29
1938.80	0.12	326.33	MWD		1938.19	33.01	4.05	33.26	0.05	0.01	27.09
1967.90	0.21	155.31	MWD		1967.29	32.99	4.05	33.24	0.34	0.09	-176.31
1996.70	0.12	214.20	MWD		1996.09	32.92	4.06	33.17	0.19	-0.09	61.34
2025.50	0.18	286.98	MWD		2024.89	32.91	4.00	33.15	0.19	0.06	75.81
2054.84	0.17	204.59	MWD		2054.23	32.88	3.93	33.11	0.24	-0.01	-84.24
2083.11	0.13	140.69	MWD		2082.50	32.82	3.94	33.05	0.17	-0.04	-67.81
2111.53	0.10	133.12	MWD		2110.92	32.77	3.98	33.02	0.03	-0.03	-7.99
2140.32	0.22	25.96	MWD		2139.71	32.81	4.02	33.05	0.28	0.13	-111.66
2169.18	0.19	242.57	MWD		2168.57	32.84	4.00	33.08	0.40	-0.03	-149.05
2198.04	0.15	214.79	MWD		2197.43	32.78	3.94	33.02	0.09	-0.04	-28.88
2227.33	0.11	100.12	MWD		2226.72	32.75	3.94	32.98	0.23	-0.04	-117.45
2255.48	0.13	323.83	MWD		2254.87	32.77	3.95	33.00	0.24	0.02	-145.25
2284.47	0.38	103.41	MWD		2283.86	32.77	4.02	33.02	0.50	0.26	144.44
2313.14	1.92	111.84	MWD		2312.52	32.57	4.56	32.89	1.62	1.61	8.82
2343.83	4.13	106.04	MWD		2343.17	32.07	6.10	32.65	2.18	2.16	-5.67

B-29 2004-01-29

HOLE DEVIATION

B-30

Well:	35/8-5 S		PO: 1	Reference point:	RKB ; 29.0 m ABOV	E MSL	
Waterdepth:	369.0	m		Vertical to:	397.9 m	Total Depth:	4000.0 m MD
Utm zone:	31			Central Median:	3' E Ho	rizontal datum: E	ED50
Template Cent	re Coordir	ates, UTM	:	North :	m,	East:	m
Wellhead Coor	dinates,	UTM:		North :	6805219.60 m,	East:	534935.00 m
Official Surveys	s: Y			Track :			

Coordinates are measured from the wellhead centre.

Depth MD	Incli- nation	Direc- tion	Tool Type	#	Depth TVD	Coord North	linates East	Vert. Sect	Dogleg	Build	Turn
[m]	[Deg]	[Deg]			[m]	[m]	[m]	[m]	[D/30m]	[D/30m]	[D/30m]
2371.46	5.32	105.84	MWD		2370.70	31.45	8.29	32.52	1.29	1.29	-0.22
2400.18	7.24	105.81	MWD		2399.25	30.59	11.31	32.62	2.01	2.01	-0.03
2428.86	8.98	106.95	MWD		2427.64	29.45	15.19	33.14	1.83	1.82	1.19
2457.50	11.21	106.92	MWD		2455.83	27.99	19.99	34.39	2.34	2.34	-0.03
2486.38	13.27	110.58	MWD		2484.06	26.00	25.78	36.62	2.29	2.14	3.80
2515.26	14.52	110.63	MWD		2512.09	23.56	32.28	39.96	1.30	1.30	0.05
2542.74	16.54	109.00	MWD		2538.57	21.07	39.20	44.50	2.26	2.21	-1.78
2571.64	18.17	109.24	MWD		2566.15	18.25	47.34	50.74	1.69	1.69	0.25
2600.18	19.71	106.79	MWD		2593.14	15.39	56.15	58.22	1.82	1.62	-2.58
2630.64	21.34	104.35	MWD		2621.67	12.54	66.44	67.61	1.81	1.61	-2.40
2658.11	20.11	103.17	MWD		2647.36	10.22	75.88	76.57	1.42	-1.34	-1.29
2687.20	17.95	102.08	MWD		2674.86	8.14	85.14	85.52	2.26	-2.23	-1.12
2716.13	16.35	101.39	MWD		2702.50	6.41	93.49	93.71	1.67	-1.66	-0.72
2745.24	14.47	96.99	MWD		2730.57	5.15	101.11	101.25	2.28	-1.94	-4.53
2773.79	12.34	92.90	MWD		2758.34	4.57	107.70	107.80	2.45	-2.24	-4.30
2802.26	10.89	87.62	MWD		2786.23	4.52	113.43	113.52	1.89	-1.53	-5.56
2831.34	9.19	83.34	MWD		2814.86	4.91	118.48	118.58	1.91	-1.75	-4.42
2859.20	7.93	78.89	MWD		2842.41	5.54	122.58	122.70	1.53	-1.36	-4.79
2887.47	5.80	73.58	MWD		2870.48	6.31	125.86	126.02	2.36	-2.26	-5.63
2916.07	3.92	54.30	MWD		2898.97	7.29	128.04	128.25	2.59	-1.97	-20.22
2945.13	3.64	33.82	MWD		2927.97	8.64	129.36	129.65	1.42	-0.29	-21.14
2973.89	3.77	19.67	MWD		2956.67	10.29	130.19	130.59	0.96	0.14	-14.76
3002.95	3.60	331.95	MWD		2985.68	11.99	130.08	130.63	3.08	-0.18	-49.26
3031.84	5.02	308.06	MWD		3014.49	13.57	128.66	129.37	2.35	1.47	-24.81
3061.29	6.56	289.15	MWD		3043.79	14.92	126.05	126.93	2.48	1.57	-19.26
3088.87	9.25	282.36	MWD		3071.11	15.91	122.40	123.43	3.09	2.93	-7.39
3119.28	11.39	276.85	MWD		3101.02	16.79	117.03	118.23	2.32	2.11	-5.44
3146.83	13.97	268.97	MWD		3127.90	17.06	111.00	112.30	3.38	2.81	-8.58
3175.95	16.77	262.69	MWD		3155.98	16.46	103.32	104.62	3.35	2.88	-6.47
3205.05	21.56	263.42	MWD		3183.46	15.31	93.84	95.08	4.94	4.94	0.75
3233.61	26.63	265.01	MWD		3209.52	14.15	82.24	83.45	5.37	5.33	1.67
3250.24	29.58	265.61	MWD		3224.19	13.52	74.43	75.65	5.35	5.32	1.08
3267.35	32.97	267.44	MWD		3238.81	12.98	65.57	66.84	6.17	5.94	3.21
3296.49	35.58	268.30	MWD		3262.89	12.38	49.17	50.71	2.73	2.69	0.89
3324.70	35.57	268.29	MWD		3285.83	11.89	32.77	34.86	0.01	-0.01	-0.01
3353.92	36.33	265.55	MWD		3309.49	10.96	15.64	19.10	1.83	0.78	-2.81

HOLE DEVIATION

Well:	35/8-5 S		PO: 1	Reference point:	RKB ;	29.0 m ABOVE	MSL	
Waterdepth:	369.0	m		Vertical to:	397.9 m	1	Total Depth:	4000.0 m MD
Utm zone:	31			Central Median:	3' E	Horiz	zontal datum: ED	050
Template Centre Coordinates, UTM:			North :		m,	East:	m	
Wellhead Coord	inates,	UTM:		North :	68052 ⁻	19.60 m ,	East:	534935.00 m

Track :

Official Surveys: Y

Coordinates are measured from the wellhead centre.

Depth	Incli-	Direc-	Tool	#	Depth	Coord	linates	Vert.	Dogleg	Build	Turn
MD [m]	nation [Deg]	tion [Deg]	Туре		TVD [m]	North [m]	East [m]	Sect [m]	[D/30m]	[D/30m]	[D/30m]
3382.34	36.87	263.75	MWD		3332.30	9.38	-1.23	9.46	1.27	0.57	-1.90
3410.36	37.07	264.55	MWD		3354.69	7.67	-17.99	19.56	0.56	0.21	0.86
3439.43	36.64	263.73	MWD		3377.95	5.89	-35.34	35.82	0.67	-0.44	-0.85
3468.59	36.06	264.22	MWD		3401.44	4.07	-52.52	52.68	0.67	-0.60	0.50
3498.13	33.89	265.82	MWD		3425.64	2.60	-69.39	69.44	2.39	-2.20	1.62
3526.47	36.43	267.78	MWD		3448.81	1.69	-85.68	85.70	2.94	2.69	2.07
3554.90	36.50	266.89	MWD		3471.67	0.91	-102.56	102.56	0.56	0.07	-0.94
3583.46	35.86	267.14	MWD		3494.73	0.03	-119.40	119.40	0.69	-0.67	0.26
3612.62	36.22	267.00	MWD		3518.31	-0.85	-136.53	136.53	0.38	0.37	-0.14
3641.65	36.27	266.38	MWD		3541.72	-1.84	-153.67	153.68	0.38	0.05	-0.64
3670.76	36.12	264.64	MWD		3565.21	-3.18	-170.80	170.83	1.07	-0.15	-1.79
3702.17	36.16	265.07	MWD		3590.58	-4.84	-189.25	189.31	0.25	0.04	0.41
3727.00	36.56	265.61	MWD		3610.57	-6.04	-203.92	204.01	0.62	0.48	0.65
3756.72	36.49	266.67	MWD		3634.46	-7.23	-221.57	221.69	0.64	-0.07	1.07
3785.85	36.41	267.09	MWD		3657.89	-8.17	-238.85	238.99	0.27	-0.08	0.43
3813.40	36.47	266.44	MWD		3680.05	-9.10	-255.19	255.35	0.43	0.07	-0.71
3842.07	35.48	264.58	MWD		3703.25	-10.41	-271.98	272.18	1.54	-1.04	-1.95
3869.34	35.14	264.50	MWD		3725.51	-11.91	-287.67	287.91	0.38	-0.37	-0.09
3898.85	34.63	265.00	MWD		3749.71	-13.46	-304.47	304.77	0.59	-0.52	0.51
3929.19	35.71	266.79	MWD		3774.52	-14.70	-321.90	322.24	1.48	1.07	1.77
3959.03	35.96	265.18	MWD		3798.71	-15.93	-339.33	339.70	0.98	0.25	-1.62
3981.18	35.99	264.33	MWD		3816.63	-17.12	-352.29	352.70	0.68	0.04	-1.15

2004-01-29

MAIN CONSUMPTION OF CASING/TUBING

B-32	
2004-01-29	

Well:	35/8-5 S	PO: 1					
Size	Casing string	Grade	Weig [kg/m]	ght [lb/ft]	Threads type	Length [m]	No. of joints
30"	CONDUCTOR	X-52	460.86	309.70	SL-60	62.2	5
20"	SURFACE	X-56	197.92	133.00	E60MT	155.8	12
13 3/8"	INTERMEDIATE	L-80	107.14	72.00	NS-CC	925.4	77
9 5/8"	INTERMEDIATE	P-110	79.61	53.50	NS-CC	2862.9	238

Well: 35/8-5 S **PO:** 1

	Bit		Manu-				Nozzles	Flow		Depth	Bit	Rot.		Rotation	Total	Weight	Flow	Pump	Cutting	Gauge		
No	RR Type	Size (in)	fact- urer	Trade name	Serial no.	IADC code	diameter (/32in)	area (in2)	BHA no.	out (m MD)	meter (m)	hours (hrs)	ROP (m/hr)	min/max) (rpm)	bit revol.	min/max (kN)	min/max (I/min)	min/max (bar)	Structure I - O -DC- L - B	1/16 (in)	Other Remarks	Pull Cause
1	MITO	17.50	SMIT	MGSSH+2	LW9922	115	15,18,18,18	0.918	1	458	59	17.89	3.3	21/77	57632	0/59	470/4549	5.6/141.5	1 - 1 - WT - A - 0	I	NO	TD
	HO	36.00					12,12,12,12,12,1	1.325	1	458	59		0.0	21/77		0/59	470/4549	5.6/141.5				
2	MITO	26.00	SMIT	MSDSSHC	LW6136	115		0.000	2	461	3		0.0									TD
3	MITO	12.25	SMIT	FGXI	MM3702	117	16,18,20,20	1.058	3	683	222	5.30	41.9	72/234	63654	10/88	3148/4538	109/172.1	1 - 1 - NO - A - E	I	NO	TD
4	MITO	17.00	SMIT	MSDGHC	MJ6670	135S	16,22,24,24	1.451	4	1326	771	31.47	24.5	174/220	393510	0/137	2258/4253	49.5/138	2 - 2 - WT - A - E	I	NO	TD
5	PDC	12.25	SMIT	MRS74PX	JS9847	M223	13,13,13,14,14,1	0.840	5	2918	1592	57.25	27.8	85/149	456396	10/216	1615/3205	119/235.2				SIH
6	BIT	12.25	SMIT	MRS74SPX	JS9846A		13,13,13,14,14,1	0.840	6	3265	303	14.69	20.6	70/182	146759	0/167	520/3228	39.1/308.8	1 - 1 - WT - A -	I	NO	TD
7	PDC	8.50	SMIT	MRS68EPX	JS7054	M423	11,11,11,11,11,11,1	0.557	12	3381	116	9.99	11.6	130/146	96405	10/98	1430/1996	1.4/235.2	1 - 1 - NO - A -	I	NO	СР
8	CORE	8.50	SDBS	FC284LI	7020365	M433		0.000	13	3384	3	1.10	2.3	97/97	4607	78/78	964/964	87.5/87.5				i l
8	CORE	8.50	SDBS	FC284LI	7020365	M433		0.000	14	3402	18	2.00	9.0	38/84	9483	10/69	514/1022	46.9/83.8				
8	CORE	8.50	SDBS	FC284LI	7020365	M433		0.000	15	3416	14	1.70	8.2	71/95	8415	20/98	981/1295	90.8/109.3				i l
9	CORE	8.50	SDBS	FC284LI	7020365	M433		0.000	16	3443	28	1.70	16.2	95/95	8415	49/49	987/987	91.3/91.3	1 - 1 - NO - A - X	I	NO	NC
7	PDC	8.50	SMIT	MRS68EPX	JS7054	M423	11,11,11,11,11,11,1	0.557	17	3845	402	25.08	16.0	63/185	172738	59/157	1823/1908	276.6/297.8	1 - 1 - NO - A - X	1	NO	CP
8	4 CORE	8.50	SDBS	FC284LI	7020365	M433		0.000	18	3856	11	6.49	1.7	76/85	33479	39/108	979/988	107/108.8				i
9	CORE	8.50	SDBS	FC274LI	7020363	M432		0.000	19	3883	27	4.40	6.1	73/94	19877	29/88	980/992	111.2/114.2				
10	PDC	8.50	SMIT	MRS68EPX	JS5576A	M423	11,11,11,11,11,11,1	0.557	20	4000	117	9.19	12.7	62/140	61398	29/147	1259/1894	186.9/307.2	1 - 2 - WT - I - X	I	NO	TD

BITRECORD

BOTTOM HOLE ASSEMBLIES

Well:	35/8-5 S	PO:	1						
BHA no	o. 1:	No. / Element	/ OD(in) / Le	ngth(m)	[Depth In: 399 m MD	Out: 458 m MD		
1	MGSSH+2		17.5	0.45	7	DRILL COLLAR STE	EL	8.0	35.79
2	HOLE OPENER		36.0	4.32	8	JAR		8.25	9.65
3	NON MAG. COLL	AR	9.5	4.30	9	DRILL COLLAR STE	EEL	8.0	18.07
4	MEASUREMENT W	HILE DRILLING	8.25	8.90	10	X-OVER		8.0	1.06
5	DRILL COLLAR ST	EEL	9.5	27.78	11	HWDP		5.5	131.01
6	X-OVER		9.5	1.09					

Reason pulled: TOTAL DEPTH/CASING DEPTH

Total Length: 242.42 m

85.72 m

BHA n	o. 2:	No. / Element / OD(in) / L	ength(m)	[Depth In: 458 m MD	Out: 461 m MD		
1	MSDSSHC	26.0	0.65	6	DRILL COLLAR ST	EL	8.0	35.79
2	BIT SUB	9.44	0.96	7	JAR		7.625	9.65
3	DRILL COLLAR STEE	L 9.5	9.12	8	DRILL COLLAR ST	EL	8.0	18.07
4	DRILL COLLAR STEE	L 9.5	9.33	9	X-OVER		7.625	1.06
5	X-OVER	9.25	1.09					

Total Length:

Reason pulled: TOTAL DEPTH/CASING DEPTH

BHA n	o. 3:	No. / Element / OD(in) / Length	(m)	D	Depth In: 461 m MD Out: 683 m MD		
1	FGXI	12	25	0.33	8	DRILL COLLAR STEEL	8.12	18.81
2	DOWNHOLE MOTOR	1	0.8	8.30	9	DRILL COLLAR STEEL	8.0	35.70
3	FLOAT SUB	:	3.0	0.92	10	JAR	8.25	9.65
4	STEEL STAB	12	12	2.56	11	DRILL COLLAR STEEL	8.0	18.07
5	LOGGING WHILE DRI	LLING TOOL 8	12	6.59	12	X-OVER	8.0	1.06
6	MEASUREMENT WHIL	E DRILLING 8	12	8.90	13	HWDP	5.0	139.62
7	STEEL STAB	1:	2.0	2.45				

Reason pulled: TOTAL DEPTH/CASING DEPTH

Total Length: 252.96 m

BHA n	o. 4:	No. / Element / OD(ii	n) / Length	(m)	De	epth In: 555 m MD	Out: 1326 m MD		
1	MSDGHC		17.0	0.42	8	X-OVER		9.0	0.87
2	DOWNHOLE MOTOR	11	1.25	8.43	9	NON MAG. COLLAF	R	8.12	18.81
3	FLOAT SUB		9.0	1.53	10	DRILL COLLAR STEE	ΞL	8.0	35.70
4	STEEL STAB	16	6.75	2.24	11	JAR		7.62	9.65
5	COMPENSATED DUA	L RESISTIVITY 9	9.62	7.07	12	DRILL COLLAR STEE	ΞL	8.0	18.07
6	MEASUREMENT WHIL	LE DRILLING	8.12	8.41	13	X-OVER		7.87	1.06
7	STEEL STAB	16	6.75	1.95	14	HWDP		5.0	139.62

Reason pulled: TOTAL DEPTH/CASING DEPTH

BHA n	o. 5: No. /	/ Element / OD(in) / Ler	ngth(m)	0	Depth In: 1326 m MD	Out: 2918 m MD		
1	MRS74PX	12.25	0.24	8	NON MAG. STAB		12.0	2.08
2	POWER DRIVE	12.25	4.46	9	DRILL COLLAR STE	EL	8.0	27.04
3	NON MAG. STAB	12.12	1.78	10	JAR		7.62	9.65
4	FLEX SUB	6.37	2.89	11	DRILL COLLAR STE	EL	8.0	18.07
5	MEASUREMENT WHILE DR	RILLING 8.37	8.42	12	X-OVER		7.87	1.06
6	COMPENSATED DUAL RES	SISTIVITY 8.37	6.26	13	HWDP		5.0	139.62
7	LOGGING WHILE DRILLING	G TOOL 8.25	7.49					

Total Length:

Total Length: 229.06 m

253.83 m

5.0

139.62

	BOTTOM HOLE ASSEMBLIES												
Well:	35/8-5 S	PO: 1											
BHA no	o. 6:	No. / Element / C	DD(in) / Le	ngth(m)	C	epth In: 2962 m MD Out: 3265 m MD							
1	MRS74SPX		12.25	0.23	8	LOGGING WHILE DRILLING TOOL	12.0	2.08					
2	POWER DRIVE		12.25	4.46	9	DRILL COLLAR STEEL	8.0	27.04					
3	NON MAG. STAB		12.12	1.71	10	JAR	7.62	9.66					
4	FLEX SUB		8.25	2.92	11	DRILL COLLAR STEEL	8.0	18.07					
5	MEASUREMENT W	/HILE DRILLING	8.37	8.42	12	X-OVER	7.87	1.06					
6	COMPENSATED D	UAL RESISTIVITY	9.0	6.27	13	HWDP	5.0	139.62					
7	LOGGING WHILE [DRILLING TOOL	9.0	7.41									
Reasor	n pulled: TOTAL DEF	TH/CASING DEPTH		То	tal Length	n: 228.95 m							
BHA no	o. 12:	No. / Element / C	DD(in) / Le	ngth(m)	C	Pepth In: 3265 m MD Out: 3381 m MD							
1	MRS68EPX		8.5	0.33	7	LOGGING WHILE DRILLING TOOL	6.87	6.21					
2	POWER DRIVE		6.75	7.62	8	NON MAG. COLLAR	6.81	5.01					
3	LOGGING WHILE [ORILLING TOOL	6.75	5.72	9	DRILL COLLAR STEEL	6.5	46.45					
4	MEASUREMENT W	HILE DRILLING	6.75	8.36	10	JAR	6.75	9.65					
5	STEEL STAB		6.75	0.94	11	HWDP	5.0	139.62					
6	LOGGING WHILE I	DRILLING TOOL	6.87	8.26									
Reasor	n pulled: CORE POIN	ΙT		To	tal Length	n: 238.17 m							
BHA no	o. 13:	No. / Element / C	DD(in) / Le	ngth(m)	C	Depth In: 3381 m MD Out: 3384 m MD							
1	FC284LI		8.5	0.36	5	STEEL STAB	8.25	1.93					
2	CORE BARREL		6.75	57.47	6	DRILL COLLAR STEEL	6.5	37.07					
3	FLOAT SUB		6.5	0.47	7	JAR	6.75	9.65					
4	DRILL COLLAR ST	EEL	6.5	9.38	8	HWDP	5.0	139.62					
				То	tal Length	n: 255.95 m							
BHA no	o. 14:	No. / Element / C	DD(in) / Le	ngth(m)	C	Depth In: 3384 m MD Out: 3402 m MD							
1	FC284LI		8.5	0.36	4	DRILL COLLAR STEEL	6.5	46.45					
2	CORE BARREL		6.75	20.97	5	JAR	6.75	9.65					

		-	Total Length	n: 217.52 m			
BHA no. 15:	No. / Element / OD(in) / Length(m)		C	Depth In: 3402 m ME	Out: 3416 m MD		
1 FC284LI	8.5	0.36	4	DRILL COLLAR S	TEEL	6.5	46.45
2 CORE BARREL	6.75	30.05	5	JAR		6.75	9.65
3 FLOAT SUB	6.5	0.47	6	HWDP		5.0	139.62

0.47

6.5

Total Length: 226.60 m

6 HWDP

BHA n	o. 16:	No. / Element / OD(in) / Le	ength(m)	C	Depth In: 3416 m MD	Out: 3443 m MD		
1	FC284LI	8.5	0.36	5	JAR		6.75	9.65
2	CORE BARREL	6.75	30.05	6	HWDP		5.0	139.62
3	FLOAT SUB	6.5	0.47	7	DRILL PIPE		5.0	28.77
4	DRILL COLLAR STEE	L 6.5	46.45					

Reason pulled: NEW CORE/FULL BARREL Total Length: 255.37 m BHA no. 17: No. / Element / OD(in) / Length(m) Depth In: 3443 m MD Out: 3845 m MD 1 MRS68EPX 8.5 0.33 7 LOGGING WHILE DRILLING TOOL 6.87 6.21 2 MEASUREMENT WHILE DRILLING 6.75 7.62 8 NON MAG. COLLAR 6.81 5.01 **3 LOGGING WHILE DRILLING TOOL** 6.75 5.72 9 DRILL COLLAR STEEL 6.5 46.45 4 MEASUREMENT WHILE DRILLING 6.75 8.36 10 JAR 6.75 9.65 5 STEEL STAB 6.75 0.94 11 HWDP 5.0 139.62 6 LOGGING WHILE DRILLING TOOL 6.87 8.26

3 FLOAT SUB

BOTTOM HOLE ASSEMBLIES

Well:	35/8-5 S	PO:	1						
BHA n	o. 18:	No. / Element	: / OD(in) / Le	ength(m)	[Depth In: 3845 m MD	Out: 3856 m MD		
1	FC284LI		8.5	0.36	4	DRILL COLLAR STE	EL	6.5	46.45
2	CORE BARREL		6.75	30.05	5	JAR		6.75	9.65
3	FLOAT SUB		6.5	0.47	6	HWDP		5.0	139.62
				т	otal Lengtl	n: 226.60 m			
BHA n	o. 19:	No. / Element	: / OD(in) / Le	ength(m)	Ľ	Depth In: 3856 m MD	Out: 3883 m MD		
1	FC274LI		8.5	0.36	4	DRILL COLLAR STE	EL	6.5	46.45
2	CORE BARREL		6.75	30.05	5	JAR		6.75	9.65
3	FLOAT SUB		6.5	0.47	6	HWDP		5.0	139.62
				Т	otal Length	n: 226.60 m			
BHA n	o. 20:	No. / Element	: / OD(in) / Le	ength(m)	0	Depth In: 3883 m MD	Out: 4000 m MD		
1	MRS68EPX		8.5	0.33	7	LOGGING WHILE D	RILLING TOOL	6.87	6.21
2	MEASUREMENT W	HILE DRILLING	6.75	7.62	8	NON MAG. COLLA	R	6.81	5.01
3	LOGGING WHILE D	RILLING TOOL	6.75	5.72	9	DRILL COLLAR STE	EL	6.5	46.45
4	MEASUREMENT W	HILE DRILLING	6.75	8.36	10	JAR		6.75	9.65
5	STEEL STAB		6.75	0.94	11	HWDP		5.0	139.62
6	LOGGING WHILE D	RILLING TOOL	6.87	8.26	12	DRILL PIPE		5.0	28.77

Reason pulled: TOTAL DEPTH/CASING DEPTH

Total Length: 266.94 m

DAILY MUD PROPERTIES: RHEOLOGY PARAMETERS

Well: 35/8-5 S			PO: 1																	
Hole section :	36"				WATER	BASED	SYSTEM													
Date		De	pth	Mud Type	Funnel	Dens	Mudtmp				Fann R	eadings				Rheo	PV	ΥP	Gel0	Gel10
		Ir MD	nj TVD		[sec]	[sg]	[DegC]	600	300	200	100	60	30	6	3	[DegC]	[mPas]	[Pa]	[Pa]	[Pa]
2003-06-01		412	412	SPUD MUD	0.0	1.25		0	0	0	0	0	0	0	0				,	
Hole section :	26"				WATER	BASED	SYSTEM													
Date		De [r	epth m]	Mud Type	Funnel Visc	Dens	Mudtmp Out				Fann R	eadings				Rheo Test	PV	ΥP	Gel0	Gel10
		MD	TVD		[sec]	[sg]	[DegC]	600	300	200	100	60	30	6	3	[DegC]	[mPas]	[Pa]	[Pa]	[Pa]
2003-06-04		412	412	SPUD MUD	0.0	1.25		0	0	0	0	0	0	0	0					
2003-06-05		458	458	NACL/POLYMER MU	0.0	1.25		0	0	0	0	0	0	0	0					
2003-06-06		682	682	NACL/POLYMER MU	0.0	1.25		0	0	0	0	0	0	0	0					
2003-06-07		682	682	NACL/POLYMER MU	0.0	1.30		0	0	0	0	0	0	0	0					
2003-06-08		682	682	NACL/POLYMER MU	0.0	1.30		0	0	0	0	0	0	0	0					
2003-06-09		682	682	NACL/POLYMER MU	0.0	1.30		0	0	0	0	0	0	0	0					
2003-06-10		682	682	NACL/POLYMER MU	. 0.0	1.30		0	0	0	0	0	0	0	0					
2003-06-11		682	682	NACL/POLYMER MU	. 0.0	1.30		0	0	0	0	0	0	0	0					
2003-06-12		537	537	SPUD MUD	0.0	1.30		0	0	0	0	0	0	0	0					
2003-06-13		629	629	KCL/POLYMER	80.0	1.10	18.0	44	33	28	21	0	0	8	7	50.0	11.0	11.0	8.0	10.0
Hole section :	17"				WATER	BASED	SYSTEM													
Date		De [r	epth m]	Mud Type	Funnel Visc	Dens	Mudtmp Out				Fann R	eadings				Rheo Test	PV	ΥP	Gel0	Gel10
		MD	TVD		[sec]	[sg]	[DegC]	600	300	200	100	60	30	6	3	[DegC]	[mPas]	[Pa]	[Pa]	[Pa]
2003-06-14		946	946	KCL/POLYMER	106.0	1.11	15.0	57	43	35	26	0	0	10	8	50.0	14.0	14.5	8.0	10.0
2003-06-15		1285	1284	KCL/POLYMER	104.0	1.11	18.0	66	49	41	31	0	0	11	9	50.0	17.0	16.0	11.0	12.0
2003-06-16		1326	1325	KCL/POLYMER	0.0	1.13	16.5	59	42	36	26	0	0	10	8	50.0	17.0	12.5	5.0	7.0
2003-06-17		1326	1325	KCL/POLYMER	105.0	1.13	17.0	61	45	37	28	0	0	10	9	50.0	16.0	14.5	5.0	8.0
2003-06-18		1329	1328	KCL/POLYMER	104.0	1.13	18.0	61	46	37	29	0	0	10	9	50.0	15.0	15.5	5.0	9.0
Hole section :	12 1/	4"			WATER	BASED	SYSTEM													
Date		De	pth	Mud Type	Funnel	Dens	Mudtmp				Fann R	eadings				Rheo	PV	ΥP	Gel0	Gel10
		[r MD	m] חעד		Visc [sec]	[sg]	Out [DegC]	600	300	200	100	60	30	6	3	Test [DegC]	[mPas]	[Pa]	[Pa]	[Pa]
2003-06-19		1331	1330			1.25	23.0	72	46	35	25	0	0	12	11	50.0	26.0	10.0	8.0	10.0

Well: 35/8-5 S PO: 1

Hole section : 12 1/4"

OIL BASED SYSTEM

Date	De	epth	Mud Type	Funnel	Dens	Mudtmp				Fann R	eadings				Rheo	PV	ΥP	Gel0	Gel10
	L MD	mj TVD		visc [sec]	[sg]	[DegC]	600	300	200	100	60	30	6	3	[DegC]	[mPas]	[Pa]	[Pa]	[Pa]
2003-06-20	2014	2013	VERSAVERT	81.0	1.20	31.0	68	45	36	27	0	0	14	13	50.0	23.0	11.0	8.0	10.0
2003-06-21	2773	2758	VERSAVERT	69.0	1.20	35.0	70	47	39	29	0	0	14	13	50.0	23.0	12.0	8.0	10.0
2003-06-22	2903	2886	VERSAVERT	65.0	1.20	47.0	75	51	42	32	0	0	15	13	50.0	24.0	13.5	8.5	10.5
2003-06-23	2962	2945	VERSAVERT	64.0	1.25	53.0	75	51	42	31	0	0	15	14	50.0	24.0	13.5	9.0	10.5
2003-06-24	3154	3135	VERSAVERT	63.0	1.25	46.0	78	52	42	31	0	0	15	13	50.0	26.0	13.0	9.0	10.5
2003-06-25	3265	3237	VERSAVERT	61.0	1.27	50.0	80	54	44	33	0	0	15	14	50.0	26.0	14.0	9.0	11.0
2003-06-26	3265	3237	VERSAVERT	61.0	1.27		80	54	44	33	0	0	15	14	50.0	26.0	14.0	9.0	11.0
2003-06-27	3265	3237	VERSAVERT		1.35		82	55	44	32	0	0	14	13	50.0	27.0	14.0	8.0	10.0
2003-06-28	3315	3278	VERSAVERT	73.0	1.35		85	56	45	33	0	0	15	14	50.0	29.0	13.5	8.0	10.0
Hole section :	8 1/2"			OIL B	ASED S	STEM													

Date	De	epth	Mud Type	Funnel	Dens	Mudtmp				Fann Re	eadings				Rheo	PV	YP	Gel0	Gel10
	L MD	TVD		[sec]	[sg]	[DegC]	600	300	200	100	60	30	6	3	[DegC]	[mPas]	[Pa]	[Pa]	[Pa]
2003-06-29	3381	3331	VERSAVERT		1.35		86	58	46	34	0	0	15	14	50.0	28.0	15.0	8.5	10.0
2003-06-30	3382	3332	VERSAVERT	86.0	1.35		86	57	45	33	0	0	15	13	50.0	29.0	14.0	8.0	10.0
2003-07-01	3402	3348	VERSAVERT	81.0	1.50	40.0	104	68	54	39	0	0	17	16	50.0	36.0	16.0	9.5	11.0
2003-07-02	3402	3348	VERSAVERT	90.0	1.50	33.0	103	67	54	39	0	0	17	16	50.0	36.0	15.5	9.0	11.0
2003-07-03	3443	3381	VERSAVERT	89.0	1.50		107	69	56	41	0	0	19	16	50.0	38.0	15.5	10.0	11.0
2003-07-04	3684	3576	VERSAVERT	82.0	1.62	42.0	123	79	63	45	0	0	20	18	50.0	44.0	17.5	9.0	12.0
2003-07-05	3845	3706	VERSAVERT	82.0	1.65		131	83	67	47	0	0	20	18	50.0	48.0	17.5	10.0	13.0
2003-07-06	3856	3715	VERSAVERT	82.0	1.65	35.0	133	84	66	46	0	0	19	17	50.0	49.0	17.5	9.0	13.0
2003-07-07	3883	3737	VERSAVERT	94.0	1.66	30.0	133	82	65	44	0	0	18	16	50.0	51.0	15.5	10.0	12.0
2003-07-08	3939	3782	VERSAVERT	87.0	1.65	44.0	123	77	60	42	0	0	17	15	50.0	46.0	15.5	8.5	10.0
2003-07-09	4000	3832	VERSAVERT		1.65	32.0	125	78	62	43	0	0	18	16	50.0	47.0	15.5	8.5	10.0
2003-07-10	4000	3832	VERSAVERT	78.0	1.65	30.0	126	79	62	43	0	0	18	16	50.0	47.0	16.0	8.5	10.0
2003-07-11	4000	3832	VERSAVERT	76.0	1.65	30.0	126	79	62	43	0	0	18	16	50.0	47.0	16.0	8.5	10.0
2003-07-12	4000	3832	VERSAVERT	76.0	1.65	30.0	126	79	62	43	0	0	18	16	50.0	47.0	16.0	8.5	10.0
Hole section :	P&A			OIL B	ASED SY	STEM													
Date	De	epth	Mud Type	Funnel	Dens	Mudtmp				Fann Re	eadings				Rheo	PV	ΥP	Gel0	Gel10

De	epth ml	Mud Type	Funnel	Dens I	Mudtmp				Fann Re	eadings				Rheo Test	PV	ΥP	Gel0	Gel10	
MD	TVD		[sec]	[sg]	[DegC]	600	300	200	100	60	30	6	3	[DegC]	[mPas]	[Pa]	[Pa]	[Pa]	
4000	3832	VERSAVERT	76.0	1.65	30.0	126	79	62	43	0	0	18	16	50.0	47.0	16.0	8.5	10.0	
4000	3832	VERSAVERT	76.0	1.65	30.0	126	79	62	43	0	0	18	16	50.0	47.0	16.0	8.5	10.0	
4000	3832	VERSAVERT		1.27		70	43	34	24	0	0	9	8	50.0	27.0	8.0	4.5	6.5	
	4000 4000 4000	Depth [m] MD TVD 4000 3832 4000 3832 4000 3832	Depth [m] Mud Type MD TVD 4000 3832 VERSAVERT 4000 3832 VERSAVERT 4000 3832 VERSAVERT 4000 3832 VERSAVERT	Depth [m] Mud Type Funnel Visc MD TVD [sec] 4000 3832 VERSAVERT 76.0 4000 3832 VERSAVERT 76.0 4000 3832 VERSAVERT 76.0 4000 3832 VERSAVERT 76.0	Depth Mud Type Funnel Dens [m] Visc [sec] [sg] 4000 3832 VERSAVERT 76.0 1.65 4000 3832 VERSAVERT 76.0 1.65 4000 3832 VERSAVERT 76.0 1.65 4000 3832 VERSAVERT 76.0 1.65	Depth [m] Mud Type Funnel Visc Dens Mudtmp Out MD TVD [sec] [seg] [DegC] 4000 3832 VERSAVERT 76.0 1.65 30.0 4000 3832 VERSAVERT 76.0 1.65 30.0 4000 3832 VERSAVERT 76.0 1.65 30.0 4000 3832 VERSAVERT 76.0 1.27	Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Mudtmp MD TVD [sec] [m] 0ut 600 4000 3832 VERSAVERT 76.0 1.65 30.0 126 4000 3832 VERSAVERT 76.0 1.65 30.0 126 4000 3832 VERSAVERT 76.0 1.65 30.0 126 4000 3832 VERSAVERT 76.0 1.65 30.0 126	Depth Mud Type Funnel Visc Dens Mudtmp Out Out	Depth Mud Type Funnel Visc Dens Mudtmp Out Out <thout< t<="" td=""><td>Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Funnel Out Fann Ro MD TVD [sec] [sg] [Dens Mudtmp 600 300 200 100 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 4000 3832 VERSAVERT 1.27 70 43 34 24</td><td>Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Mudtmp Out Fann Readings MD TVD [sec] [sg] [Dens Mudtmp Out 600 300 200 100 60 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0</td><td>Depth Mud Type Funnel Visc Dens Mudtmp Fann Readings Fann Readings MD TVD [sec] [sg] [DegC] 600 300 200 100 60 30 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 <td>Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Fann Readings Fann Readings MD TVD [sec] [sec] [sec] [out] 600 300 200 100 60 30 6 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9</td><td>Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Fann Readings Fann Readings MD TVD [sec] [sg] [Dens Out 600 300 200 100 60 30 6 30 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 4000 3832 VERSAVERT 76.0 1.27 70 43 34 24 0 0 9 8</td><td>Depth [m] Mud Type Funnel Visc [sec] Dens Mudtmp Out Gen Fann Readings Fann Readings Rheo Test MD TVD Isec] Isec] Iseg] Dens Mudtmp Out 600 300 200 100 60 30 6 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 <th7< th=""> 7 <th7< th=""> 7</th7<></th7<></td><td>Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Go 300 200 100 60 30 6 3 Rheo PV Test MD TVD Isec] Iseg] IpegC] 600 300 200 100 60 30 6 3 IpegC] ImPasi 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9 8 50.0</td><td>Depth [m] Mud Type Funnel Visc Dens Mudtmp (sc) Mudtmp Out Fann Readings Fann Readings Rheo Test PV YP MD TVD [sec] [sg] [DegC] 60 300 200 100 60 30 6 3 [DegC] [mPas] [Pa] 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9 <t< td=""><td>Depth [m] Mud Type Funnel Visc Visc Out Dens Mudtmp Out Fann Readings Fann Readings Rheo Type Test Test Test Rheo Type Test Test PV YP Gelo Test Test MD TVD Isec] Iseg] IpegC 600 300 200 100 60 30 6 3 IpegC ImPas [Pa] [Pa] 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9 8 50.0</td><td>Depth [m] Mud Type Funnel Visc (Sec) Dens Mudtmp (Visc Out (Sec)) Fann Readings Fann Readings Fann Readings Rheo Type (Sec) PV PV Gel0 Gel0</td></t<></td></td></thout<>	Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Funnel Out Fann Ro MD TVD [sec] [sg] [Dens Mudtmp 600 300 200 100 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 4000 3832 VERSAVERT 1.27 70 43 34 24	Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Mudtmp Out Fann Readings MD TVD [sec] [sg] [Dens Mudtmp Out 600 300 200 100 60 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0	Depth Mud Type Funnel Visc Dens Mudtmp Fann Readings Fann Readings MD TVD [sec] [sg] [DegC] 600 300 200 100 60 30 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 <td>Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Fann Readings Fann Readings MD TVD [sec] [sec] [sec] [out] 600 300 200 100 60 30 6 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9</td> <td>Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Fann Readings Fann Readings MD TVD [sec] [sg] [Dens Out 600 300 200 100 60 30 6 30 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 4000 3832 VERSAVERT 76.0 1.27 70 43 34 24 0 0 9 8</td> <td>Depth [m] Mud Type Funnel Visc [sec] Dens Mudtmp Out Gen Fann Readings Fann Readings Rheo Test MD TVD Isec] Isec] Iseg] Dens Mudtmp Out 600 300 200 100 60 30 6 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 <th7< th=""> 7 <th7< th=""> 7</th7<></th7<></td> <td>Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Go 300 200 100 60 30 6 3 Rheo PV Test MD TVD Isec] Iseg] IpegC] 600 300 200 100 60 30 6 3 IpegC] ImPasi 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9 8 50.0</td> <td>Depth [m] Mud Type Funnel Visc Dens Mudtmp (sc) Mudtmp Out Fann Readings Fann Readings Rheo Test PV YP MD TVD [sec] [sg] [DegC] 60 300 200 100 60 30 6 3 [DegC] [mPas] [Pa] 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9 <t< td=""><td>Depth [m] Mud Type Funnel Visc Visc Out Dens Mudtmp Out Fann Readings Fann Readings Rheo Type Test Test Test Rheo Type Test Test PV YP Gelo Test Test MD TVD Isec] Iseg] IpegC 600 300 200 100 60 30 6 3 IpegC ImPas [Pa] [Pa] 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9 8 50.0</td><td>Depth [m] Mud Type Funnel Visc (Sec) Dens Mudtmp (Visc Out (Sec)) Fann Readings Fann Readings Fann Readings Rheo Type (Sec) PV PV Gel0 Gel0</td></t<></td>	Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Fann Readings Fann Readings MD TVD [sec] [sec] [sec] [out] 600 300 200 100 60 30 6 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9	Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Fann Readings Fann Readings MD TVD [sec] [sg] [Dens Out 600 300 200 100 60 30 6 30 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 4000 3832 VERSAVERT 76.0 1.27 70 43 34 24 0 0 9 8	Depth [m] Mud Type Funnel Visc [sec] Dens Mudtmp Out Gen Fann Readings Fann Readings Rheo Test MD TVD Isec] Isec] Iseg] Dens Mudtmp Out 600 300 200 100 60 30 6 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 <th7< th=""> 7 <th7< th=""> 7</th7<></th7<>	Depth [m] Mud Type Funnel Visc Dens Mudtmp Out Go 300 200 100 60 30 6 3 Rheo PV Test MD TVD Isec] Iseg] IpegC] 600 300 200 100 60 30 6 3 IpegC] ImPasi 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9 8 50.0	Depth [m] Mud Type Funnel Visc Dens Mudtmp (sc) Mudtmp Out Fann Readings Fann Readings Rheo Test PV YP MD TVD [sec] [sg] [DegC] 60 300 200 100 60 30 6 3 [DegC] [mPas] [Pa] 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9 <t< td=""><td>Depth [m] Mud Type Funnel Visc Visc Out Dens Mudtmp Out Fann Readings Fann Readings Rheo Type Test Test Test Rheo Type Test Test PV YP Gelo Test Test MD TVD Isec] Iseg] IpegC 600 300 200 100 60 30 6 3 IpegC ImPas [Pa] [Pa] 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9 8 50.0</td><td>Depth [m] Mud Type Funnel Visc (Sec) Dens Mudtmp (Visc Out (Sec)) Fann Readings Fann Readings Fann Readings Rheo Type (Sec) PV PV Gel0 Gel0</td></t<>	Depth [m] Mud Type Funnel Visc Visc Out Dens Mudtmp Out Fann Readings Fann Readings Rheo Type Test Test Test Rheo Type Test Test PV YP Gelo Test Test MD TVD Isec] Iseg] IpegC 600 300 200 100 60 30 6 3 IpegC ImPas [Pa] [Pa] 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 76.0 1.65 30.0 126 79 62 43 0 0 18 16 50.0 47.0 16.0 8.5 4000 3832 VERSAVERT 1.27 70 43 34 24 0 0 9 8 50.0	Depth [m] Mud Type Funnel Visc (Sec) Dens Mudtmp (Visc Out (Sec)) Fann Readings Fann Readings Fann Readings Rheo Type (Sec) PV PV Gel0 Gel0

DAILY MUD PROPERTIES: RHEOLOGY PARAMETERS

2004-01-29

Well: 35/8-5 S		PO: 1																	
Hole section :	P&A			OIL B	ASED SY	STEM													
Date	De	epth	Mud Type	Funnel	Dens	Mudtmp				Fann R	eadings				Rheo	PV	YP	Gel0	Gel10
	L MD	mj TVD		visc [sec]	[sg]	[DegC]	600	300	200	100	60	30	6	3	[DegC]	[mPas]	[Pa]	[Pa]	[Pa]
2003-07-16	4000	3832	VERSAVERT		1.27		70	43	34	24	0	0	9	8	50.0	27.0	8.0	4.5	6.5
Hole section :	P&A			WATER	BASED	SYSTEM													
Date	De [epth m]	Mud Type	Funnel Visc	Dens	Mudtmp Out				Fann R	eadings				Rheo Test	PV	ΥP	Gel0	Gel10
	MD	TVD		[sec]	[sg]	[DegC]	600	300	200	100	60	30	6	3	[DegC]	[mPas]	[Pa]	[Pa]	[Pa]
2003-07-17	4000	3832	SPUD MUD	80.0	1.16		0	0	0	0	0	0	0	0					
2003-07-18	4000	3832	SPUD MUD	80.0	1.16		0	0	0	0	0	0	0	0					
2003-07-19		0	SPUD MUD				0	0	0	0	0	0	0	0					

DAILY MUD PROPERTIES : OTHER PARAMETERS

Well: 35/8-5 S	5		PO: 1																					
Hole section :	36"				WAT	ER BA	SED SYSTEM																	
Date	D MD	epth [m] TVD	Mud Type	Dens [sg]	Fil ⁱ API [ml]	trate HPHT [ml]	Filtcake API HPHT [mm] [mm]	HPHT Press/Ten [bar/Deg(pH 1p 2]	A Pm [ml]	lcalinit Pf [ml]	y Mf [ml]	Inhib Chem [Kg/m3]	K+] [mg/l]	CL- [mg/l]	Ca++ [mg/l]	Mg++ [mg/l]	Tot hard [mg/l]	Pe Solic [%]	rcent I Oil [%]	tage Sand [%]	CEC [Kg/m3]	ASG [sg]	LGS [Kg/m3]
2003-06-01 Hole section :	412 26"	412	2 SPUD MUD	1.25	WAT	ER BA	SED SYSTEM	/																
Date	D MD	epth [m] TVD	Mud Type	Dens [sg]	Fil ⁱ API [ml]	trate HPHT [ml]	Filtcake API HPHT [mm] [mm]	HPHT Press/Ten [bar/Deg(pH 1p 2]	A Pm [ml]	lcalinit Pf [ml]	y Mf [ml]	Inhib Chem [Kg/m3]	K+] [mg/l]	CL- [mg/l]	Ca++ [mg/l]	Mg++ [mg/l]	Tot hard [mg/l]	Pe Solic [%]	rcent I Oil [%]	tage Sand [%]	CEC [Kg/m3]	ASG [sg]	LGS [Kg/m3]
2003-06-04	412	412	SPUD MUD	1.25				/																
2003-06-05	458	458	NACL/POLYMER	1.25				/																
2003-06-06	682	682	NACL/POLYMER	1.25				/																
2003-06-07	682	682	NACL/POLYMER	1.30				/																
2003-06-08	682	682	NACL/POLYMER	1.30				/																
2003-06-09	682	682	NACL/POLYMER	1.30				/																
2003-06-10	682	682	NACL/POLYMER	1.30				/																
2003-06-11	682	682	NACL/POLYMER	1.30				/																
2003-06-12	537	537	SPUD MUD	1.30				/																
2003-06-13	629	629	KCL/POLYMER	1.10	3.0		1	/	9.5	0.5	0.1	1.0)	43000	20000	0	0	0	6.0	1.0	0.2	14	3.0	76
Hole section :	17"				WAT	ER BA	SED SYSTEM																	
Date	D	epth [m]	Mud Type	Dens [sg]	Fil ⁱ API	trate HPHT	Filtcake API HPHT	HPHT Press/Ten	pH 1p	A Pm	Icalinit Pf	y Mf	Inhib Chem	K+	CL-	Ca++	Mg++	Tot hard	Pe Solic	ercent d Oil	tage Sand	CEC	ASG	LGS
	MD	TVD			[ml]	[ml]	[mm] [mm]	[bar/Deg0)	[ml]	[ml]	[ml]	[Kg/m3]] [mg/l]	[mg/l]	[mg/l]	[mg/l]	[mg/l]	[%]	[%]	[%]	[Kg/m3]	[sg][Kg/m3]
2003-06-14	946	946	KCL/POLYMER	1.11	4.0		1	/	8.5	0.2	0.0	0.4	ł	21000	24000	0		0	5.0	1.0	1.0	14	3.2	56
2003-06-15	1285	1284	KCL/POLYMER	1.11	3.8		1	/	8.0	0.0	0.0	0.4	ł	25000	32000	0		0	5.0	1.0	1.4	14	3.6	29
2003-06-16	1326	1325	KCL/POLYMER	1.13	3.2		1	/	8.0	0.0	0.0	0.4	ļ	32000	37000	0		0	6.0	1.0	1.8	14	3.6	33
2003-06-17	1326	1325	KCL/POLYMER	1.13	3.2		1	/	8.0	0.0	0.0	0.4	ļ	32000	37000	0		0	6.0	1.0	1.8	14	3.6	33
2003-06-18	1329	1328	KCL/POLYMER	1.13	3.2		1	/	9.0	0.0	0.0	0.4	ļ	32000	32000	0		0	6.0	1.0	1.5	14	3.6	36
Hole section :	12 1/4"				WAT	ER BA	SED SYSTEM																	
Date	D MD	epth [m] TVD	Mud Type	Dens [sg]	Fil ⁱ API [ml]	trate HPHT [ml]	Filtcake API HPHT [mm] [mm]	HPHT Press/Ten [bar/Deg(pH 1p 2]	A Pm [ml]	lcalinit Pf [ml]	y Mf [ml]	Inhib Chem [Kg/m3]	K+] [mg/l]	CL- [mg/l]	Ca++ [mg/l]	Mg++ [mg/l]	Tot hard [mg/l]	Pe Solic [%]	rcent I Oil [%]	tage Sand [%]	CEC [Kg/m3]	ASG [sg]	LGS [Kg/m3]
2003-06-19	1331	1330)	1.25		4.8	1	/ 121							21000				14.0	63.0	0.2		3.6	137

B-40

2004-01-29

DAILY MUD PROPERTIES : OTHER PARAMETERS

2004-01-29

Well: 35/8-5 S PO: 1

Hole section : 12 1/4"

OIL BASED SYSTEM

Date	D	epth	Mud Type	Density	Filtrate	Filtcake	HPHT	Electrical	Alcalinity	CaCl2	Oil/Water	P	ercenta	ige	ASG	LGS
	MD	[m] TVD		[sg]	HPHT [ml]	HPHT [mm]	Press/Temp [bar/DegC]	stability [V]	Pm [ml]	[mg/l]	Ratio	Solid [%]	Oil [%]	Sand [%]	[sg]	[Kg/m3]
2003-06-20	2014	2013	VERSAVERT	1.20	3.2	1	/ 121	629		154	76/24	11.5	67.0	0.3	3.8	77
2003-06-21	2773	2758	VERSAVERT	1.20	3.8	1	/ 121	787		164	76/24	12.5	66.5	0.3	3.5	130
2003-06-22	2903	2886	VERSAVERT	1.20	3.6	1	/ 121	888		157	75/25	13.0	65.0	0.2	3.4	160
2003-06-23	2962	2945	VERSAVERT	1.25	3.6	1	/ 121	850		157	75/25	13.0	65.0	0.3	3.8	79
2003-06-24	3154	3135	VERSAVERT	1.25	4.0		/ 121	858		171	74/26	15.0	64.0	0.2	3.5	153
2003-06-25	3265	3237	VERSAVERT	1.27	4.0	1	/ 121	882		172	76/24	15.0	65.0	0.2	3.6	133
2003-06-26	3265	3237	VERSAVERT	1.27	4.0	1	/ 121	882		172	76/24	15.0	65.0	0.2	3.6	133
2003-06-27	3265	3237	VERSAVERT	1.35	3.2	1	/ 121	874		179	76/24	18.0	62.0	0.3	3.5	184
2003-06-28	3315	3278	VERSAVERT	1.35	3.0	1	/ 121	868		171	75/25	17.0	62.0	0.3	3.7	132
Hole section :	8 1/2"			0	IL BASED	SYSTEM										

Date	D	epth	Mud Type	Density	Filtrate	Filtcake	HPHT	Electrical	Alcalinity	CaCl2	Oil/Water	P	ercenta	ige	ASG	LGS
	MD	[m] TVD		[sg]	HPHT [ml]	HPHT [mm]	Press/Temp [bar/DegC]	stability [V]	Pm [ml]	[mg/l]	Ratio	Solid [%]	Oil [%]	Sand [%]	[sg]	[Kg/m3]
2003-06-29	3381	3331	VERSAVERT	1.35	3.0	1	/ 121	859		171	75/25	17.5	61.5	0.2	3.6	160
2003-06-30	3382	3332	VERSAVERT	1.35	3.2	1	/ 121	867		171	75/25	17.5	61.5	0.3	3.6	160
2003-07-01	3402	3348	VERSAVERT	1.50	3.0	1	/ 121	787		172	75/25	21.0	59.0	0.3	3.9	105
2003-07-02	3402	3348	VERSAVERT	1.50	3.8	1	35 / 121	840		157	73/27	21.0	58.0	0.3	3.9	108
2003-07-03	3443	3381	VERSAVERT	1.50	4.0	1	35 / 121	830		164	74/26	20.0	59.0	0.3	4.0	53
2003-07-04	3684	3576	VERSAVERT	1.62	4.0	1	35 / 121	930		173	75/25	24.0	57.0	0.4	3.5	266
2003-07-05	3845	3706	VERSAVERT	1.65	3.7	1	/ 121	1010		172	73/27	25.0	55.0	0.3	4.0	80
2003-07-06	3856	3715	VERSAVERT	1.65	3.8	1	35 / 121	920		181	75/25	25.0	56.0	0.5	4.0	77
2003-07-07	3883	3737	VERSAVERT	1.66	3.8	1	35 / 121	870		178	75/25	25.5	56.0	0.3	4.0	87
2003-07-08	3939	3782	VERSAVERT	1.65	4.0	1	35 / 121	908		181	75/25	25.0	56.0	0.3	4.0	77
2003-07-09	4000	3832	VERSAVERT	1.65	4.0	1	35 / 121	910		178	76/25	25.5	56.0	0.4	3.9	103
2003-07-10	4000	3832	VERSAVERT	1.65	4.0	1	35 / 121	923		190	76/24	26.0	56.0	0.4	3.9	128
2003-07-11	4000	3832	VERSAVERT	1.65	4.0	1	35 / 121	923		190	76/24	26.0	56.0	0.3	3.9	128
2003-07-12	4000	3832	VERSAVERT	1.65	4.0	1	/ 121	923		190	75/25	26.0	56.0	0.3	3.9	128
Hole section :	P&A			0	IL BASED	SYSTEM	l									
Date	D	epth [m]	Mud Type	Density	Filtrate HPHT	Filtcake HPHT	HPHT Press/Temp	Electrical stability	Alcalinity	CaCl2	Oil/Water Ratio	P	ercenta	ige Sand	ASG	LGS
	MD	TVD		[sg]	[ml]	[mm]	[bar/DegC]	[V]	[ml]	[mg/l]		[%]	[%]	[%]	[sg]	[Kg/m3]
2003-07-13	4000	3832	VERSAVERT	1.65	4.0	1	35 / 121	923		190	76/24	26.0	56.0	0.3	3.9	128
2003-07-14	4000	3832	VERSAVERT	1.65	4.0	1	35 / 121	923		190	76/24	26.0	56.0	0.3	3.9	128

DAILY MUD PROPERTIES : OTHER PARAMETERS

Well: 35/8-5	S		PO: 1																	
Hole section :	P&A				0	IL BASEI	O SYSTEM													
Date	D	epth [m] TVD	Mud Type	De [nsity sg]	Filtrate HPHT [ml]	Filtcake HPHT [mm]	HPHT Press/Temp [bar/DegC]	Electrica stability [V]	I Al	calinity Pm [ml]	CaC	2 O	il/Water Ratio	S	Pe olid [%]	ercenta Oil [%]	age Sand [%]	ASG [sg]	LGS [Kg/m3]
2003-07-15	4000	3832	VERSAVERT	1.	.27			/						/			[,]	1.1		
2003-07-16	4000	3832	VERSAVERT	1.	.27			/					2	/					1.3	4749
Hole section :	P&A				WA	TER BAS	ED SYSTE	М												
Date		epth [m] דעד	Mud Type	Dens [sg]	Fi API [ml]	iltrate HPHT	Filtcake API HPH	HPHT pH F Press/Temp 1 [bar/DegC]	Alcalin Pm Pf	ity Mf	Inhib Chem [Kg/m3]	K+ [ma/l] [CL- ma/l1	Ca++	Mg++ [ma/l]	Tot hard [mg/l]	Pe Solid	ercentage I Oil Sand	CEC	ASG LGS
2003-07-17	4000	3832	SPUD MUD	1.16	[]	[]	[] [/	[] [] []	[]	1		1	[1	4.0	4.0	[]	[0][]
2003-07-18	4000	3832	SPUD MUD	1.16				/									4.0	4.0		
2003-07-19		0	SPUD MUD					/												

B-42

2004-01-29

TOTAL CONSUMPTION OF MUD ADDITIVES

Well: 35/8	B-5 S PO: 1		
Section	Product/ Additive	Unit	Total Amount Used
36"	BARITE	kg	30000.00
	CMC EHV	kg	900.00
Section	Product/ Additive	Unit	Total Amount Used
26"	BARITE	kg	182000.00
	CELPOL ESL	kg	2250.00
	CMC EHV	kg	3625.00
	DUOTEC NS	kg	750.00
	MICA COARSE	kg	325.00
	MICA FINE	kg	775.00
	MICA MEDIUM	kg	775.00
	NUTPLUG F	kg	100.00
	NUTPLUG M	kg	775.00
	POTASSIUM CARBONATE	kg	25.00
	SODA ASH	kg	100.00
Section	Product/ Additive	Unit	Total Amount Used
17"	BARITE	kg	30000.00
	CELPOL ESL	kg	11150.00
	CMC EHV	kg	650.00
	DUOTEC NS	kg	4500.00
	GLYDRIL MC	I	6900.00
	KCL BRINE	I	179000.00
	MICA FINE	kg	625.00
	MICA MEDIUM	kg	700.00
	NUTPLUG F	kg	875.00
	NUTPLUG M	kg	575.00
	SODA ASH	kg	75.00
Section	Product/ Additive	Unit	Total Amount Used
12 1/4"	BARITE	kg	116000.00
	BENTONE 128	kg	4825.00
	CALCIUM CHLORIDE	kg	12000.00
	EDC 95/11	I	170000.00
	LIME	kg	5600.00
	VERSAVERT F	1	1000.00
	VERSAVERT PE	1	5000.00
	VERSAVERT SE	I	2500.00
Section	Product/ Additive	Unit	Total Amount Used
8 1/2"	BARITE	kg	281000.00
	EDC 95/11	I	17000.00
	KCL BRINE	I	11000.00
	LIME	kg	4800.00
	VERSAVERT F	I.	1000.00
	VERSAVERT PE	I	4000.00
	VERSAVERT SE	I	2500.00

TOTAL CONSUMPTION OF MUD ADDITIVES

Well:	35/8-5 S	PO: 1		
Sectio	n	Product/ Additive	Unit	Total Amount Used
P&A	<u> </u>	BARITE	kg	77000.00
		BENTONE 128	kg	100.00
		CMC EHV	kg	1475.00
		DUOTEC NS	kg	125.00
		EDC 95/11	I	13000.00
		SAFE SURF E	I	800.00

CEMENT SLURRY REPORT

Well: 35/8	3-5 S	PO: 1	Pumped	ત્ર છે Density					Additives	Additives	
Date	CsgSize	Jobtype	Slurry Type	Volume [m3]	Density [sg]	BHCT [DegC]	Yield [l/100 kg]	Additive	Unit	[/100 kg Cement]	[/m3 Slurry]
2003-06-03	30"	CASING CEMENTING	LEAD	17.00	1.56	8.00	129.56	A-3L	I	3.50	
								FP16LG	I	0.10	
			SALTWATER	6.50	1.03	8.00					
			TAIL SLURRY	21.00	1.95	8.00	74.71	A-7L	I	3.50	
								FP16LG	I	0.10	
			DISPLACEMENT			8.00					
2003-06-05	30"	PLUG IN OPEN HOLE	SPACER	15.00	1.30	15.00		GW-22	kg		75.00
			SPACER	1.30	1.30	15.00					
			SALTWATER	3.00	1.03	15.00					
			TAIL SLURRY	6.70	1.90	15.00	82.36	BA-58L	I	1000.00	
								CD-31L	I	390.00	
								FL45LN	I	870.00	
								FP16LG	I	150.00	
			DISPLACEMENT			15.00					
2003-06-06	30"	PLUG IN OPEN HOLE	SPACER	15.00	1.30	15.00		GW-22	kg		50.00
								SODAA	kg		25.00
			TAIL SLURRY	12.00	1.90	15.00	82.36	BA-58L	I	1700.00	
								CD-31L	I	175.00	
								FL45LN	I	1080.00	
								FP16LG	I	60.00	
			DISPLACEMENT			15.00					
2003-06-07	30"	PLUG IN OPEN HOLE	TAIL SLURRY	15.20	1.50	15.00	174.65	A-3L	I	175.00	
								BA-58L	I	3550.00	
								CD-31L	I	120.00	
								FL45LN	I	880.00	
								FP16LG	I	150.00	
			DISPLACEMENT			15.00					
2003-06-09	30"	PLUG IN OPEN HOLE	TAIL SLURRY	11.40	1.95	15.00	76.91	BA-58L	I	1250.00	
								CD-31L	I	250.00	
								FL45LN	I	820.00	
								FP16LG	I	40.00	
			DISPLACEMENT			15.00					
2003-06-10	30"	PLUG IN OPEN HOLE	TAIL SLURRY	7.60	1.95	15.00	76.91	BA-58L	I	900.00	

2004-01-29

CEMENT SLURRY REPORT

Well: 35/8	9-5 S	PO: 1		Pumped		BHCT Yield			Unit	Additives [/100 kg Cement]	Additives
Date	CsgSize	Jobtype	Slurry Type	Volume [m3]	Density [sg]	BHCT [DegC]	Yield [l/100 kg]	Additive			[/m3 Slurry]
2003-06-10	30"	PLUG IN OPEN HOLE	TAIL SLURRY	7.60	1.95	15.00	76.91	CD-31L	I	130.00	
								FL45LN	I	650.00	
								FP16LG	I	20.00	
			DISPLACEMENT			15.00					
2003-06-11	20"	CASING CEMENTING	LEAD	20.00	1.56	15.00	152.25	A-7L	I	290.00	
								BA-58L	I	6900.00	
								CD-31L	I	200.00	
								D-19LG	I	2500.00	
								FP16LG	I	160.00	
			SALTWATER	3.00	1.03	15.00					
			SALTWATER	3.00	1.03	15.00					
			TAIL SLURRY	20.00	1.95	15.00	76.91	BA-58L	I	2300.00	
								CD31LN	I	300.00	
								D-19LG	I	1500.00	
								FP16LG	I	140.00	
			DISPLACEMENT			15.00					
2003-06-17	13 3/8"	CASING CEMENTING	SPACER	10.00	1.15	36.00		FP16LG	I		10.00
								GW-22	kg		3.00
								MCS-J	I		52.00
								SODAA	kg		8.00
			TAIL SLURRY	26.50	1.90	36.00	76.68	FP16LG	I	0.10	
								R-12L	I	0.50	
			DISPLACEMENT	3.00	1.00	36.00					
			DISPLACEMENT			36.00					
			DISPLACEMENT	68.50	1.13	36.00					
2003-06-27	9 5/8"	CASING CEMENTING	BASEOIL	3.00	0.82	95.00					
			LEAD	22.00	1.56	95.00	126.91	FP16LG	I	0.20	
								R-12L	Ι	1.70	
			SPACER	10.00	1.45	95.00		FP16LG	I		10.00
								GW-22	kg		1.80
								MCS-J	1		104.00
								SODAA	kg		8.00
			TAIL SLURRY	8.00	1.90	95.00	81.83	BA-58L	I	11.00	

CEMENT SLURRY REPORT

Well: 35/8	Well: 35/8-5 S PO: 1			Pumped						Additives	Additives
Date	CsgSize	Jobtype	Slurry Type	Volume [m3]	Density [sg]	BHCT [DegC]	Yield [l/100 kg]	Additive	Unit	[/100 kg Cement]	[/m3 Slurry]
2003-06-27	9 5/8"	CASING CEMENTING	TAIL SLURRY	8.00	1.90	95.00	81.83	CD31LN	I	0.80	
								FL45LN	I	6.75	
								FP16LG	I	0.20	
								R-12L	I	1.25	
			DISPLACEMENT	3.00	1.00	95.00					
			DISPLACEMENT	105.00	1.27	95.00					
2003-07-13	9 5/8"	PLUG IN OPEN HOLE	SPACER	9.00	1.70	120.00		FP16LG	I		107.00
								GW-22	kg		19.00
								MCS-J	I		1109.00
								SODAA	kg		30.00
			SPACER	1.10	1.70	120.00					
			TAIL SLURRY	12.30	1.90	120.00	108.19	BA-58L	I	1800.00	
								CD31LN	I	215.00	
								D-8	kg	1600.00	
								FL-63L	I	315.00	
								FP16LG	I	60.00	
								R-15L	I	160.00	
			DISPLACEMENT	30.60	1.65	120.00					
2003-07-13	9 5/8"	PLUG IN OPEN HOLE	SPACER	9.00	1.70	120.00		FP16LG	I		107.00
								GW-22	kg		19.00
								MCS-J	I		1109.00
								SODAA	kg		30.00
			SPACER	1.10	1.70	120.00					
			TAIL SLURRY	12.30	1.90	120.00	108.19	BA-58L	I	1800.00	
								CD31LN	I	200.00	
								D-8	kg	1600.00	
								FL-63L	I	320.00	
								FP16LG	Ι	65.00	
								R-15L	Ι	160.00	
			DISPLACEMENT	28.00	1.65	120.00					
2003-07-13	9 5/8"	PLUG IN OPEN HOLE	SPACER	9.00	1.70	110.00		FP16LG	Ι		106.00
								GW-22	kg		20.00
								MCS-J	I		1110.00

2004-01-29

CEMENT SLURRY REPORT

Well: 35/8-5 S PO: 1				Pumped	d Density					Additives	Additives
Date	CsgSize	Jobtype	Slurry Type	Volume [m3]	Density [sg]	BHCT [DegC]	Yield [l/100 kg]	Additive	Unit	[/100 kg Cement]	[/m3 Slurry]
2003-07-13	9 5/8"	PLUG IN OPEN HOLE	SPACER	9.00	1.70	110.00		SODAA	kg		30.00
			SPACER	1.10	1.70	110.00					
			TAIL SLURRY	12.30	1.90	110.00	108.02	BA-58L	I	1720.00	
								CD31LN	I	200.00	
								D-8	kg	15000.00	
								FL-63L	I	305.00	
								FP16LG	I	25.00	
								R-15L	I	100.00	
			DISPLACEMENT	25.40	1.65	110.00					
2003-07-14	9 5/8"	PLUG IN CASED HOLE	SPACER	10.00	1.70	88.00		FP16LG	I		140.00
								GW-22	kg		37.00
								MCS-J	I		1456.00
								SODAA	kg		135.00
			SPACER	1.40	1.70	88.00					
			TAIL SLURRY	7.40	1.90	88.00	78.16	BA-58L	I	570.00	
								CD31LN	I	28.00	
								FP16LG	I	35.00	
								R-12L	I	153.00	
			DISPLACEMENT	22.40	1.65	88.00					
2003-07-18	20"	PLUG IN CASED HOLE	SPACER	0.50	1.03	12.00					
			SPACER	10.00	1.03	12.00					
			TAIL SLURRY	17.50	1.92	12.00	76.87	A-7L	I	700.00	
								FP16LG	I	40.00	
			WATER BASED MUD SPACER (WEIGHTED)	3.00	1.65	12.00					
			DISPLACEMENT			12.00					

CEMENT CONSUMPTION PER JOB

Well: 35/8-5 S		PO: 1	PO: 1					
Date	CsgSize	e Job Type	Cement/ Additive	Description	Unit	Actual Amount Used		
2003-06-03	30"	CASING CEMENTING	G	API CLASS G	MT	42		
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	Ι	90		
			A-7L	ACCELERATOR: LIQUID CACL2	Ι	1000		
			A-3L	EXTENDER: LIQUID LODENSE	Ι	450		
2003-06-05	30"	PLUG IN OPEN HOLE	G	API CLASS G	MT	100		
			FL45LN	FLUID-LOSS ADDITIVE: BETWEEN 38 AND 177 DEGC	1	870		
			CD-31L	DISPERSANT: CD-31L LIQUID	Ι	390		
			GW-22	GW-22 VISCOSIFIER	kg	75		
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	Ι	150		
			BA-58L	BA-58L ANTI-GAS	Ι	1000		
2003-06-06	30"	PLUG IN OPEN HOLE	G	API CLASS G	MT	15000		
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	I	60		
			GW-22	GW-22 VISCOSIFIER	kg	50		
			BA-58L	BA-58L ANTI-GAS	I	1700		
			CD-31L	DISPERSANT: CD-31L LIQUID	I	175		
			FL45LN	FLUID-LOSS ADDITIVE: BETWEEN 38 AND 177 DEGC	1	1080		
			SODAA	SODA ASH	kg	25		
2003-06-07	30"	PLUG IN OPEN HOLE	G	API CLASS G	MT	10		
			BA-58L	BA-58L ANTI-GAS	Ι	3550		
			A-3L	EXTENDER: LIQUID LODENSE	Ι	175		
			CD-31L	DISPERSANT: CD-31L LIQUID	Ι	120		
			FL45LN	FLUID-LOSS ADDITIVE: BETWEEN 38 AND 177 DEGC	1	880		
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	Ι	150		
2003-06-09	30"	PLUG IN OPEN HOLE	G	API CLASS G	MT	13		
			CD-31L	DISPERSANT: CD-31L LIQUID	Ι	250		
			FL45LN	FLUID-LOSS ADDITIVE: BETWEEN 38 AND 177 DEGC	1	820		
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	Ι	40		
			BA-58L	BA-58L ANTI-GAS	Ι	1250		
2003-06-10	30"	PLUG IN OPEN HOLE	G	API CLASS G	MT	13		
			CD-31L	DISPERSANT: CD-31L LIQUID	Ι	130		
			BA-58L	BA-58L ANTI-GAS	Ι	900		
			FL45LN	FLUID-LOSS ADDITIVE: BETWEEN 38 AND 177 DEGC	1	650		
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	Ι	20		
2003-06-11	20"	CASING CEMENTING	G	API CLASS G	MT	42		
			BA-58L	BA-58L ANTI-GAS	Ι	9200		
			FL45LN	FLUID-LOSS ADDITIVE: BETWEEN 38 AND 177 DEGC	I	4000		
			A-7L	ACCELERATOR: LIQUID CACL2	Ι	290		
			CD31LN	DISPERSANT: CD-31LN LIQUID	Ι	500		
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	Ι	300		
2003-06-17	13 3/8"	CASING CEMENTING	G	API CLASS G	MT	39		

Well: 35/8	8-5 S	PO: 1				
Date	CsgSize	e Job Type	Cement/ Additive	Description	Unit	Actual Amount Used
2003-06-17	13 3/8"	CASING CEMENTING	R-12L	RETARDER: LIQUID LIGNOSULFONATE UP TO 93 DEG	I	220
			GW-22	GW-22 VISCOSIFIER	kg	38
			MCS-J	MCS-J	I	650
			SODAA	SODA ASH	kg	75
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	I	776
2003-06-27	9 5/8"	CASING CEMENTING	G	API CLASS G	MT	28
			SODAA	SODA ASH	kg	90
			MCS-J	MCS-J	I	2050
			GW-22	GW-22 VISCOSIFIER	kg	30
			BA-58L	BA-58L ANTI-GAS	I	1200
			CD31LN	DISPERSANT: CD-31LN LIQUID	Т	85
			R-12L	RETARDER: LIQUID LIGNOSULFONATE UP TO 93 DEG	Т	440
			FL45LN	FLUID-LOSS ADDITIVE: BETWEEN 38 AND 177 DEGC	I	700
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	I	310
2003-07-13	9 5/8"	PLUG IN OPEN HOLE	G	API CLASS G	MT	16
			MCS-J	MCS-J	I	1109
			BA-58L	BA-58L ANTI-GAS	I	1800
			CD31LN	DISPERSANT: CD-31LN LIQUID	I	215
			R-15L	RETARDER: HIGH TEMP. BETWEEN 93 AND 149 DEGC	I	160
			GW-22	GW-22 VISCOSIFIER	kg	19
			FL-63L	FL-63L	T	315
			SODAA	SODA ASH	kg	30
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	I	167
2003-07-13	9 5/8"	PLUG IN OPEN HOLE	G	API CLASS G	MT	12
			BA-58L	BA-58L ANTI-GAS	I	1800
			CD31LN	DISPERSANT: CD-31LN LIQUID	I	200
			R-15L	RETARDER: HIGH TEMP. BETWEEN 93 AND 149 DEGC	I	160
			GW-22	GW-22 VISCOSIFIER	kg	19
			FL-63L	FL-63L	Т	320
			MCS-J	MCS-J	Т	1109
			SODAA	SODA ASH	kg	30
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	Т	172
2003-07-13	9 5/8"	PLUG IN OPEN HOLE	G	API CLASS G	MT	15
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	I	131
			SODAA	SODA ASH	kg	30
			FL-63L	FL-63L	I	305
			BA-58L	BA-58L ANTI-GAS	I	1720
			CD31LN	DISPERSANT: CD-31LN LIQUID	I	200
			R-15L	RETARDER: HIGH TEMP. BETWEEN 93 AND 149 DEGC	I	100
			GW-22	GW-22 VISCOSIFIER	kg	20

Well: 35/8-5 S		PO: 1	l			
Date	te CsgSize Job Type		gSize Job Type Cement/ Description Additive		Unit	Actual Amount Used
2003-07-13	9 5/8"	PLUG IN OPEN HOLE	MCS-J	MCS-J	I	1110
2003-07-14	9 5/8"	PLUG IN CASED HOLE	G	API CLASS G	MT	11
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	I	175
			BA-58L	BA-58L ANTI-GAS	I	570
			CD31LN	DISPERSANT: CD-31LN LIQUID	I	28
			R-12L	RETARDER: LIQUID LIGNOSULFONATE UP TO 93	3 DEG 1	153
			GW-22	GW-22 VISCOSIFIER	kg	37
			SODAA	SODA ASH	kg	135
			MCS-J	MCS-J	I	1456
2003-07-18	20"	PLUG IN CASED HOLE	G	API CLASS G	MT	23
			FP16LG	SPECIAL ADDITIVE: DEFOAMER FP-16LG	I	40
			A-7L	ACCELERATOR: LIQUID CACL2	I	700

TOTAL CONSUMPTION OF CEMENT ADDITIVES

Well: 35	/8-5 S PO: 1		
Section	Cement/Additive	Unit	Total Amount Used
36"	EXTENDER: LIQUID LODENSE ACCELERATOR: LIQUID CACL2 SPECIAL ADDITIVE: DEFOAMER FP-16LG API CLASS G	I I MT	450.00 1000.00 90.00 42.00
Section	Cement/Additive	Unit	Total Amount Used
26"	ACCELERATOR: LIQUID CACL2 BA-58L ANTI-GAS DISPERSANT: CD-31LN LIQUID FLUID-LOSS ADDITIVE: BETWEEN 38 AND 177 DEGC SPECIAL ADDITIVE: DEFOAMER FP-16LG API CLASS G		290.00 9200.00 500.00 4000.00 300.00 42.00
Section	Cement/Additive	Unit	Total Amount Used
17"	SPECIAL ADDITIVE: DEFOAMER FP-16LG API CLASS G GW-22 VISCOSIFIER MCS-J RETARDER: LIQUID LIGNOSULFONATE UP TO 93 DEGC SODA ASH	I MT kg I I kg	776.00 39.00 38.00 650.00 220.00 75.00
Section	Cement/Additive	Unit	Total Amount Used
12 1/4"	EXTENDER: LIQUID LODENSE BA-58L ANTI-GAS DISPERSANT: CD-31L LIQUID DISPERSANT: CD-31LN LIQUID FLUID-LOSS ADDITIVE: BETWEEN 38 AND 177 DEGC SPECIAL ADDITIVE: DEFOAMER FP-16LG API CLASS G GW-22 VISCOSIFIER MCS-J RETARDER: LIQUID LIGNOSULFONATE UP TO 93 DEGC SODA ASH	 MT kg kg	175.00 9600.00 1065.00 85.00 5000.00 730.00 15164.00 155.00 2050.00 440.00 115.00
Section	Cement/Additive	Unit	Total Amount Used
P&A	ACCELERATOR: LIQUID CACL2 BA-58L ANTI-GAS DISPERSANT: CD-31LN LIQUID FL-63L SPECIAL ADDITIVE: DEFOAMER FP-16LG API CLASS G GW-22 VISCOSIFIER MCS-J RETARDER: LIQUID LIGNOSULFONATE UP TO 93 DEGC RETARDER: HIGH TEMP. BETWEEN 93 AND 149 DEGC	 MT kg 	700.00 5890.00 643.00 940.00 685.00 77.00 95.00 4784.00 153.00 420.00
	SODA ASH	ka	22

Installation:	DSD	١	Nell: 35/8-5	S	PO: 1						
Startdate	#	Sum hrs	Downtime Type	Responsible Contractor	Manufacturer	Short description	Equipment Type	Activity	Service Type	NSFI NSFI Type Code	Serial Number
2003-06-01	1	1.5	Equipment failure	ODFJELL DRILLING BERGEN A/S	MARITIME HYDRAULICS A/S	Tool joint breaker did not release grip on drill pipe after make up. Not able to rotate pipe.	DRILL FLOOR EQUIPMENT/SYS	DRILLING	DRILLING CONTRACTO	317.00 Other Drill Floor Eq./Syst.	
2003-06-05	2	4.5	Waiting for cement to cure	NORSK HYDRO A/S				DRILLING			
2003-06-05	3	106.0	Other	NORSK HYDRO A/S		Cement plug set over zone with shallow water flow. Did not find cement when running in for dressing off cement.		DRILLING			
2003-06-15	4	0.5	Equipment failure	ODFJELL DRILLING BERGEN A/S	THULE UNITED LTD.	Welded broken bracket for sliding rail on shaker #2.	MUD AND BULK SYSTEMS	DRILLING	DRILLING CONTRACTO	326.00 Mud Solids Control	
2003-06-17	5	1.0	Other	ODFJELL WELL SERVICES		Attempted to make up float joint without success. 13 3/8" casing tong did not fit float collar. Dressed up manual rig tongs. Made up float joint with casing tong against flush mounted spider.		CASING			
2003-06-17	6	1.0	Equipment failure	ODFJELL DRILLING BERGEN A/S	NATIONAL OILWELL	Lost suction on mud pump # 2. Stopped circulation and flowchecked well. Well stable. Found pop off released on mud pump #1. Changed pop off. Lined up to mud pump # 1 and 2. Pressure tested mud pumps to 200 bar / 5 min.	MUD AND BULK SYSTEMS	CEMENTING	DRILLING CONTRACTO	325.00 Mud Supply(incl. HP mudpumps)	
2003-06-19	7	12.5	Waiting on weather					DRILLING			

Installation: DSD		١	Well: 35/8-5 S		PO: 1							
Startdate	#	Sum hrs	Downtime Type	Responsible Contractor	Manufacturer	Short description	Equipment Type	Activity	Service Type	NSFI Code	NSFI Type	Serial Number
2003-06-23	8	1.5	Other	ODFJELL DRILLING BERGEN A/S		Stopped operation and investigated dropped object from derrick to setback area. Checked derrick and held safety meeting with involved personel.		DRILLING				
2003-06-24	9	1.0	Equipment failure	ODFJELL DRILLING BERGEN A/S	ODFJELL WELL SERVICES	Changed saver sub and drilling pup due to wash out.	DRILLSTRING/DO EQUIPMENT	DRILLING		357.07	Other Drilling/Downh Equipment	
2003-06-28	10	0.5	Equipment failure	ANADRILL	ANADRILL	Unknown signal response received from PD Xceed during functiontesting of same. Continued circulating and cycled the pumps while checking validity of signal with BHI Xceed expertise.	DRILLSTRING/DO EQUIPMENT	DRILLING	DRILLSTRING MOTOR	357.01	Drillstring Motor	
2003-06-28	11	0.5	Equipment failure	ODFJELL DRILLING BERGEN A/S	MARITIME HYDRAULICS A/S	Unusual noise was heard from the topdrive. The operation was stopped to check the noise and inspect the topdrive for potential problems. No findings were made. The operation was restarted and eventually the noise disappeared.	HOISTING EQUIPMENT	DRILLING	DRILLING CONTRACTO	313.02	Top Drive	

Installation:	DSD	١	Nell: 35/8-5	S	PO: 1							
Startdate	#	Sum hrs	Downtime Type	Responsible Contractor	Manufacturer	Short description	Equipment Type	Activity	Service Type	NSFI Code	NSFI Type	Serial Number
2003-06-28	12	0.5	Other	NORSK HYDRO A/S		The hole packed off an the string stalled and got stuck, while washing down the rathole below the 9 5/8" casing shoe. The string was freed after 2 jar blows downwards, in combination with righthand torque being applied to the string. This method was applied after first having attempted to free string by upwards jarring, without success.	9	DRILLING				
2003-06-28	13	0.5	Equipment failure	ANADRILL	ANADRILL	The drilling was temporarily aborted while reprogramming Xceed tool to change setting to neutral mode. It had first been attempted to send the commands while drilling, but due to lack of tool-response on these, another attempt was made, while lifting off bottom and circulating. It was in this process observed that too small pumprate variations had been utilised on the first attempt for the pressurevariations to become sufficiently high for the tool to interpret signalpulses as definite commands.	DRILLSTRING/DC EQUIPMENT	DRILLING	DRILLSTRING MOTOR	357.08	Rotating Steerable System	

Installation	:DSD	١	Nell: 35/8-5	S	PO: 1						
Startdate	#	Sum hrs	Downtime Type	Responsible Contractor	Manufacturer	Short description	Equipment Type	Activity	Service Type	NSFI NSFI Type Code	Serial Number
2003-06-30	14	4.5	Other	NORSK HYDRO A/S		Due to the poor coring progress on the previous run, and based on the findings whe the core had been recovered, it was decided to rebuild the coring assembly from 180' to 60'.		CORING			
2003-07-01	15	1.0	Equipment failure	ODFJELL DRILLING BERGEN A/S	MARITIME HYDRAULICS A/S	A hydraulic hose on the intermediate racking arm bursted. Replaced the hose.	PIPE HANDLING EQUIPMENT/SYS	CORING	DRILLING CONTRACTO	341.00 Vertical Pipe Handling	
2003-07-02	16	0.5	Equipment failure	ODFJELL DRILLING BERGEN A/S	VARCO BJ OIL TOOLS	The BX elevator in use did not work properly due to malfunctioning lock. If was therefore replaced and set up for service.	PIPE HANDLING EQUIPMENT/SYS	CORING	DRILLING CONTRACTO	345.00 Elevator	
2003-07-03	17	1.0	Equipment failure	ANADRILL	ANADRILL	When bringing transport container for radioactive sources onto drillfloor, for installation of sources in ADN tool, the locking device on the container was observed stuck. spent 1hr before problems was solved and the source container could be opened.	DRILLSTRING/DO EQUIPMENT	DRILLING	OTHER	357.02 MWD/LWD	
2003-07-03	18	0.5	Equipment failure	ODFJELL DRILLING BERGEN A/S	MARITIME HYDRAULICS A/S	The washpipe had been changed prior to drilling out of the 9 5/8" casing. Due to indications of "sweating" bullets around connection it was required to retighten same	HOISTING EQUIPMENT	DRILLING	DRILLING CONTRACTO	313.02 Top Drive	

Installation:	DSD	١	Nell: 35/8-5	S	PO: 1						
Startdate	#	Sum hrs	Downtime Type	Responsible Contractor	Manufacturer	Short description	Equipment Type	Activity	Service Type	NSFI NSFI Type Code	Serial Number
2003-07-04	19	0.5	Equipment failure	ANADRILL	ANADRILL	Due to drop in hole inclination while in holding mode it was required to reset the tool to manual building mode before drilling any further.	DRILLSTRING/DO EQUIPMENT	DRILLING	DRILLSTRING MOTOR	357.08 Rotating Steerable System	
2003-07-04	20	0.5	Equipment failure	ANADRILL	ANADRILL	The manual 30% build setting did not have the intended effect. It was therefore required to reprogram the tool to 60% build setting prior to drilling ahead.	DRILLSTRING/DO EQUIPMENT	DRILLING	DRILLSTRING MOTOR	357.08 Rotating Steerable System	
2003-07-07	21	0.5	Equipment failure	ODFJELL DRILLING BERGEN A/S	VARCO BJ OIL TOOLS	The relief valve on the frame for theautomatic drillpipe slips malfunctioned while tripping in. Attempted first to refunction, but ended up changing to back-up slips while repairing primary one	E PIPE HANDLING EQUIPMENT/SYS	CORING	DRILLING CONTRACTO	344.00 Slips and Spider	
2003-07-08	22	1.5	Equipment failure	ODFJELL DRILLING BERGEN A/S		The floatsub w/float used on the coring run, was unintendedly run as 2nd float on the drilling assembly. This was discovered when bit had been run through the BOP resulting in a NPT roundtrip from this depth.		DRILLING			

Installation	:DSD	١	Nell: 35/8-5	S	PO: 1							
Startdate	#	Sum hrs	Downtime Type	Responsible Contractor	Manufacturer	Short description	Equipment Type	Activity	Service Type	NSFI Code	NSFI Type	Serial Number
2003-07-08	23	1.0	Equipment failure	ANADRILL	ANADRILL	The programming of the Xceed tool was done while circulating. The original intention was that the programming would be possible while drilling ahead. The tool was programmed for hold mode, which was the same setting the tool had been in on former run. The programming had to be repeated as the first set of instructions were not interpreted correctly by the tool.	DRILLSTRING/DO EQUIPMENT	DRILLING	DRILLSTRING MOTOR	357.08	Rotating Steerable System	
2003-07-08	24	0.5	Equipment failure	ANADRILL	ANADRILL	The drilling had to be stopped to set the Xceed tool to 30% build. The intention with the tool was that it would be possible to drill ahead, while changing the tool setting, but due to the dropping hole angle tendency, this was not possible.	DRILLSTRING/DO EQUIPMENT	DRILLING	DRILLSTRING MOTOR	357.08	Rotating Steerable System	
2003-07-09	25	10.0	Equipment failure	SCHLUMBERG WIRELINE & TESTING	SCHLUMBERG WIRELINE & TESTING	Density tool on the tool string failed.	SERVICE EQUIPMENT/SYS	LOGGING	ELECTRIC LOGGING	374.01	Electric Logging Eq. in General	
2003-07-11	27	1.0	Equipment failure	SCHLUMBERG WIRELINE & TESTING	SCHLUMBERG WIRELINE & TESTING	Chain for wireline winch broke.	SERVICE EQUIPMENT/SYS	LOGGING	ELECTRIC LOGGING	374.14	Electric/braide wire/coiled tbg. cable	
2003-07-11	26	17.5	Other	NORSK HYDRO A/S		Got stuck with MDT-GR logging string while attempting for pressure points. Activated weak point and pulled out with wire. Fished tool on drill pipe.		LOGGING				

Installatio	n:DSD	۱	Nell: 35/8-5	S	PO: 1							
Startdate	#	Sum hrs	Downtime Type	Responsible Contractor	Manufacturer	Short description	Equipment Type	Activity	Service Type	NSFI Code	NSFI Type	Serial Number
2003-07-12	28	1.5	Other	ODFJELL DRILLING BERGEN A/S		Attempted to run BOP wash tool through wearbushing, but OD of wash tool to large.		BOP INSTALLATION AND TESTING	,			
2003-07-13	29	1.5	Equipment failure	ODFJELL DRILLING BERGEN A/S	MANNESMANN RORHEN-WER A.G.	Failure in PLS switch for HPU unit.	MISCELLANEOUS EQUIPMENT/SYS	PLUG AND ABANDONMEN	DRILLING CONTRACTO	385.00	Hydraulic/Pne Power Pack	
2003-07-15	30	7.5	Other	NORSK HYDRO A/S		Not able to pull 9 5/8" casing hanger through BOP. Casing hanger hung up on lower annular.		PLUG AND ABANDONMEN				
2003-07-16	31	2.5	Other	NORSK HYDRO A/S		Not able to recover seal assembly on first attempt.		PLUG AND ABANDONMEN				
2003-07-16	32	0.5	Other	ODFJELL DRILLING BERGEN A/S		Wrong space-out caliculations.		PLUG AND ABANDONMEN				
2003-07-17	33	4.0	Waiting for cement to cure	NORSK HYDRO A/S				PLUG AND ABANDONME	1			
2003-07-18	34	8.5	Waiting for cement to cure	NORSK HYDRO A/S				PLUG AND ABANDONME	1			
2003-07-20	35	3.5	Other	SMITH RED BARON		Catcher in 20" x 30" casing cutting and retrieving assembly released from wellhead due to motor stalled out during cutting. Not able to reconnect due to tool packed off with metal spoon.		PLUG AND ABANDONMEN	,			
	Sum:	201.5										
Total	= I Sum:	201.5	=									

TIME DISTRIBUTION

Well: 35/8-5 S PO: 1 All sections PO: 1	Rig: DEEPSEA DE	Depth:	4000.0 m MD		
Operations	Hours	%	Hours	%	Acc. total
MOBILIZATION					
MOVING	11.5	0.93			
MOORING; RUNNING ANCHORS	18.0	1.45			
MOORING; PULLING ANCHORS	31.0	2.50			
Sum			60.5	4.88	60.5
DRILLING					
BHA HANDLING/TESTING	37.0	2.98			
EQUIPMENT TEST	3.0	0.24			
MWD HANDLING/TESTING/SURVEYING	0.5	0.04			
TRIPPING IN CASED HOLE	21.5	1.73			
TRIPPING IN OPEN HOLE	42.0	3.39			
DRILLING	240.5	19.40			
OTHER	10.0	0.81			
UNDERREAMING	5.0	0.40			
WELLHEAD EQUIPMENT INSTALLATION	6.0	0.48			
REAMING	6.5	0.52			
CIRC. AND COND. MUD/HOLE	39.0	3.15			
WIPER TRIP	10.0	0.81			
CASING HANDLING/TESTING	22.0	1.77			
RUNNING CASING IN CASED HOLE	18.5	1.49			
RUNNING CASING IN OPEN HOLE	31.5	2.54			
DRILLING OUT OF CASING	3.0	0.24			
PRIMARY CEMENTING	23.5	1.90			
TRIPPING FOR CEMENT JOB	3.0	0.24			
DRILLING OUT CEMENT PLUG	9.5	0.77			
FORMATION STRENGTH TESTING	4.0	0.32			
BOP HANDLING	6.0	0.48			
BOP RUNNING/RETRIEVING	19.0	1.53			
BOP TESTING	15.0	1.21			
WELLHEAD EQUIPMENT HANDLING	9.5	0.77			
SET CEMENT PLUG	2.5	0.20			
RIG MAINTENANCE	14.0	1.13			
SLIP AND CUT DRILLING LINE	1.5	0.12			
Sum			603.5	48.67	664.0
FORMATION EVALUATION MWD					
MWD HANDLING/TESTING/SURVEYING	1.5	0.12			
LOGGING WITH MWD	4.5	0.36			
Sum			6.0	0.48	670.0
FORMATION EVALUATION LOGGING					
LOGGING	8.5	0.69			
LOGGING EQUIPMENT HANDLING/TESTING	5.5	0.44			
FORMATION TESTER	22.5	1.81			
Sum			36.5	2.94	706.5
FORMATION EVALUATION CORING					
CIRCULATING FOR SAMPLE	4.5	0.36			
MWD HANDLING/TESTING/SURVEYING	6.5	0.52			
TRIPPING IN CASED HOLE	76.0	6.13			
CORING EQUIPMENT/CORE HANDLING	21.0	1.69			
TRIPPING IN OPEN HOLE	13.5	1.09			
OTHER	3.0	0.24			

Norsk	Hydro
-------	-------

TIME DISTRIBUTION

Well: 35/8-5 S PO:	1 Rig: DEEPSEA DEL	ТА		Depth:	4000.0 m MD
All sections					
Operations	Hours	%	Hours	%	Acc. total
FORMATION EVALUATION CORING					
CORING	20.0	1.61			
CIRC. AND COND. MUD/HOLE	22.5	1.81			
SLIP AND CUT DRILLING LINE	3.0	0.24			
Sum			170.0	13.71	876.5
PLUG AND ABANDONMENT					
BHA HANDLING/TESTING	10.0	0.81			
TRIPPING IN CASED HOLE	22.5	1.81			
OTHER	5.5	0.44			
WELLHEAD EQUIPMENT INSTALLATION	2.0	0.16			
CIRC. AND COND. MUD/HOLE	8.0	0.65			
CASING HANDLING/TESTING	3.5	0.28			
TRIPPING FOR CEMENT JOB	22.0	1.77			
BOP HANDLING	5.5	0.44			
BOP RUNNING/RETRIEVING	12.5	1.01			
SET CEMENT PLUG	18.5	1.49			
SET MECHANICAL PLUG	8.5	0.69			
TRIPPING OF CASING CUTTING EQUIPMENT	7.5	0.60			
CUT CASING/WELLHEAD	15.0	1.21			
CASING RETRIEVING	19.5	1.57			
SLIP AND CUT DRILLING LINE	1.5	0.12			
Sum			162.0	13.06	1038.5
DOWNTIME DRILLING					
	8.5	0.69			
WAITING	17.0	1.37			
CEMENTING	106.0	8.55			
STICKING/GOING STUCK WITH FOUIPMENT	0.5	0.04			
OTHER	4.0	0.32			
Sum			136.0	10.97	1174.5
			100.0		
	11.0	0.00			
	11.0	0.89			
	2.5	0.20			
FISHING	15.0	1.21	~ -	0.00	4000.0
Sum			28.5	2.30	1203.0
DOWNTIME FORM. EVAL. CORING					
EQUIPMENT FAILURE AND REPAIR	3.0	0.24			
OTHER	6.0	0.48			
Sum			9.0	0.73	1212.0
DOWNTIME PLUG AND ABANDONMENT					
EQUIPMENT FAILURE AND REPAIR	1.5	0.12			
WAITING	12.5	1.01			
OTHER	14.0	1.13			
Sum			28.0	2.26	1240.0
Perperted time (100.0 % of well total 1240.0	hours) :				1240.0

Date: 12.01.2004/10:21:24	
---------------------------	--

Norsk Hydro a.s

PL 195 -Drilling 35/8-5 J10 AFE Report - Period 2003 / 12

	Current period	Year to date	AFE Accum. co
Employee relat. costs	34.375	7.443.991	7.443.9
Employee relat, costs	34.375	7.443.991	7.443.9
Rig costs		43.086.399	43.086.3
Rig costs		43.086.399	43.086.3
Rig support costs		3.035.310	3.035.
Rig support costs		3.035.310	3.035.
Fuel/luboil Bits Casing/casing equipment Wellhead Cement/cement addit. Mud/mud chemicals	-911.525 -10.303 -81.213 -747.378	5.559.908 554.245 4.230.859 1.854.971 1.771.092 576.912	5.559. 554. 4.230. 1.854. 1.771. 576.
Consumable costs	-1.750.419	14.547.986	14.547.
Other transport Standby vessel Helicopter transport Supplyboat		$1.214 \\ 3.457.251 \\ 2.460.701 \\ 9.909.472$	1. 3.457. 2.460. 9.909.
Transportation costs		15.828.638	15,828.
Coring Drilling Cutting of casing Completion costs MwD-services Casing operations Mwd logging Cementing/press.test El.logging Prod.testing Rov/diving Misc.rental & op.costs	1.167.168	572.725 1.291.015 509.299 147.126 7.170.411 616.534 1.781.134 2.155.379 3.606.577 294.165 1.288.179 7.536.220	572 1.291 509 147 7.170 616 1.781 2.155 3.606 294 1.288 7.536
Service contracts	1.167.168	26.968.764	26.968.
Site survey Rig positioning	43.441	249.595 247.050	249. 247.
Survey costs	43.441	496.645	496.
Warehouse costs		4.785.391	4.785
Warehouse costs	ALL DESCRIPTION OF ALL OF	4,785,391	4,785.

-505.435 116.193.124 116.193.124

2004-02-19

NORSK HYDRO ASA FINAL WELL REPORT WELL 35/8-5 S

SECTION C

ATTACHMENTS

Completion Log Core Log Site Survey Panel