

Final Well Report PL 128, WELL 6608/11-4

UPN LET OPR Harstad, November 2004

04D94*224014

Title:					
	1	Final Well Report Well 6608/11-4 Linerle, PL128			
Document no.:	Contract no.i	/project no.:	Filing no.:		
04D94*224014					
L	<u> </u>				
Classification:		Distribution			
Restricted		Accordin	ng to distribution list		
Distribution date:	Rev. date:	Rev. no.:	Tc	opy no.:	
	2004-10-14	0			
L					
Author(s)/Source(s):					
Øystein Hovden, OPR Bi	EV SVG				
Sveinung Tysse, OPR B	EV HAR				
Nils Petter Norheim, OPI	R BOR BRT				
Subjects:					
General well data	anfarmanaa				
Dispensation and non-control Health, safety, environm		SESO)			
Geology and formation of		SL&Q)			
Drilling report	iata report				
Remarks:					
Tromano.					
Valid from:		Updated:			
Responsible publisher:		Authority to a	Authority to approve deviations:		
Decempended	Nama		Data/Signatura:		
Recommended	Name:		Date/Signature:	1. My 4/	
Well project manager	John Martin	Østby	John Math	in Joby 711.04	
Verified:	Name:		Date/Signature:		
OPR BEV, Manager well eval.	Rolf Nylend		Rolf W	ylend 4/11-04	
Verified:	Name:		Date/Signature:	_	
OPR BOR, Manager expl. drlg.	Harald Mort	ensen	Hamle 1	Mortensey 4/11-04	
Approved:	Name:		Date/Signature:	enh = 10/1-04	
UPN HNO LET, Manager	Roger I. Joh	nansen	Han tolla	uh = 1/1-04	

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no.

Table of contents

1	Summary	5
1.1	Well data record	5
1.2	Well objectives	7
1.3	Results of the well	7
1.4	Drilling summary	7
1.4.1	Casing	7
1.4.2	Drilling fluids	7
1.5	Data acquisition summary	8
2	Dispensation and non-conformances	10
3	Health, safety, environment and quality (HSE&Q)	11
3.1	General comments	11
3.1.1	Observation cards (OBS) and Synergi	11
3.1.2	Comments to OBS/Synergi reports	11
3.2	Non-conformance	12
3.3	Experience summary	13
3.4	Time distribution	14
4	Geology and formation data report	15
4.1	Geological setting and results	15
4.2	Shallow gas results	15
4.3	Stratigraphy	15
4.4	Lithological description	18
4.5	Hydrocarbon indications	24
4.6	Geophysical results	26
4.7	Data acquisition	26
4.7.1	Cuttings and mud samples	26
4.7.2	Conventional coring	26
4.7.3	MWD/LWD	28
4.7.4	Wireline logging	28
4.7.5	Data quality	29
4.8	Formation pressure	32
4.8.1	Reservoir pressure summary	32
4.9	Reservoir fluid sampling	36
4.10	Leak off test	41
4.11	Formation temperature	42
5	Drilling operations report	43
5.1	Rig move and positioning	43
5.2	32" section	43
5.2.1	Summary	43
5.3	36" section	44
5.3.1	Summary	44
5.3.2	Experiences / Recommendations	44

RestrictedDoc. no. 04D94*224014 Date 2004-10-14

Rev. no.

5.4	12 ¼" section	45
5.4.1	Summary	45
5.4.2	Experiences / Recommendations	45
5.5	8 ½" section	47
5.5.1	Summary	47
5.5.2	Experiences / Recommendations	47
5.6	Permanent plug and abondment	49
5.6.1	Experiences / recommendations	49
5.7	Figures and tables	50
5.7.1	Well schematic well 6608/11-4	51
5.7.2	P&A wellbore schematic	53
5.7.3	Time/depth curve	55
5.7.4	Timeplanner	57
5.7.5	Wellhead system	60
5.7.6	Drilling fluids	62
5.7.7	Cementing data	64
5.7.8	Bottom hole assemblies	66
5.7.9	Bit record	72
6	Appendices	74
App A	Extract of daily activities (DBR summary of activities)	75
App B	Directional data, survey listing	77
B.1	Well plot	77
B.2	Well survey listing	79
App C	List of contractors	83
App D	NPD Shallow gas report	84
7	Enclosure	86
7.1	Wellsite sample descriptions	86
7.2	Conventional core descriptions	
7.3	Composite log (Statoil)	
7.4	Formation evaluation log (Geoservices)	86

Restricted
Doc. no.
04D94*224014
Date

2004-10-14

STATOIL

Rev. no. 5 of 86

0

1 Summary

Well 6608/11-4 was a vertical exploration well drilled from 378m to 2317m RKB. The well was designed with a 36", 12 ¼" and 8 ½" section. A 32" conductor was planned hammered down. This attempt failed and a conventional 30" conductor was set. The 9 5/8" casing was set above a prognosed pressure build-up zone. The well was drilled, logged, plugged and abandoned in 24.1days.

1.1 Well data record

Well name : 6608/11-4
Type of well : Exploration
Prospect : Linerle
Country : Norway
Area : Haltenbanken

License : PL 128

Licencees : Statoil ASA (Operator) 40.45 %

Petoro AS 24.55 % Norsk Hydro ASA 13.50 % Eni Norge AS 11.50 % AS Norske Shell 10.00 %

Drilling unit : West Navigator
Type : Drillship (DP)
Water depth : 342 m MSL

Air gap : 36 m

On license : 29.04.2004 Spud : 01.05.2004 Rig released : 23.05.2004

Formation at TD : Triassic Red Beds

Geographic co-ordinates : 66° 11' 56.25" N

08° 25' 47.97" E

Datum/Spheroid : Int. 1924/ ED-1950

UTM : UTM Zone 32, CM 09° E

7 342 390 m N 474 330 m E

5m in direction 078.1° grid (077.6° true) from intended well position

Seismic location : Seismic survey ST0103, Inline 1070, Cross-line 2281.

All depths in this report refer to RKB unless otherwise stated.

Location map

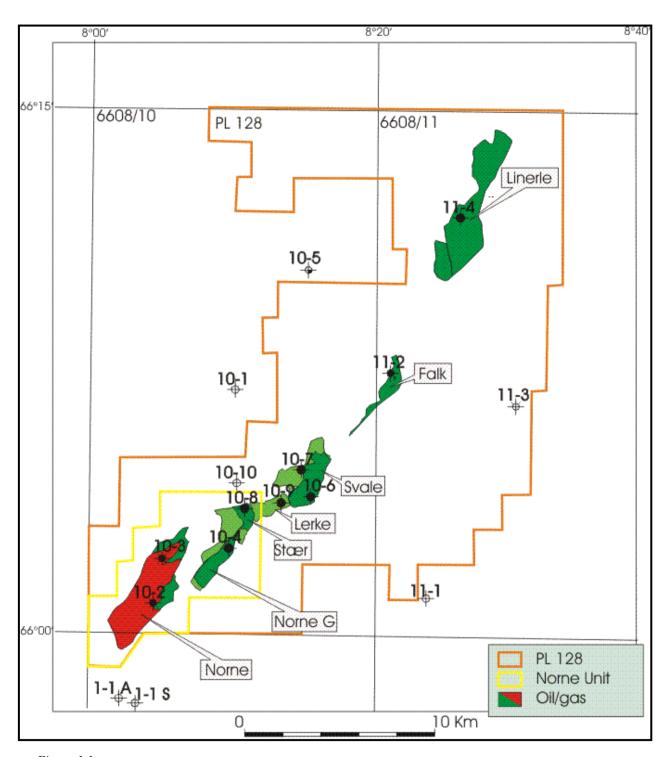


Figure 1.1

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

7 of 86

Rev. no.

1.2 Well objectives

The primary objective of well was to prove hydrocarbons in the Lower Jurassic sandstones of the Tilje and Åre Formations.

1.3 Results of the well

The well was spudded in a water depth of 342 m MSL and drilled to a total depth of 2317m. No shallow gas was observed, as prognosed.

The top of the reservoir, the Tilje Formation, was encountered at 1656m. An oil column of 18m (1656-1674m) was present in the Tilje and Åre 2 Formation, proved by pressure points and three oil samples from 1656m, 1663m and 1672.5m. Three water samples were taken at 1677.5m, 1680.5m and 1708m. Sandstones with good reservoir properties were also encountered in the Åre 1 Formation and in the Triassic Grey Beds

Two mini DSTs were performed using the MDT dual packer setup.

Two cores were cut in the interval 1662 – 1714 m in the Tilje and Åre 2 Formation.

The well was terminated in the Triassic Red Beds at 2317m.

1.4 Drilling summary

1.4.1 Casing

Casing	Shoe depth [m MD]	LOT / FIT [Equivalent mud weight]
30"	426	NA
18 3/4" WH x 9 5/8" casing	1349	Extended LOT: 1.55 g/cm ³

Table 1.1 Casing

1.4.2 Drilling fluids

Section	Section TD [m MD RT]	Max. mud weight [g/cm³]	Mud type
36"	425 (17 ½" @ 428)	1.03	Seawater / high visc. sweeps
12 1/4"	1357	1.03	Seawater / high visc. sweeps
8 1/2"	2317	1.30	Glydril (water based KCl/Pac/glycol)

Table 1.2 Drilling fluids

Restricted

Doc. no. **04D94*224014** Date

2004-10-14

STATOIL

Rev. no.

8 of 86

0

1.5 Data acquisition summary

See Figure 1.2.

PL 128					Data acquisition summary			_	♦ STATOU	
RKB - MSL: 36 m		Well 6608/11-4 Linerle				O STATOIL				
Wat	Water Depth: 342 m MSL North East Segment			Made by: ØH/SvTy	Date: 04.10.2004					
	Stratigrap	hy								
System	Group	Formati m TVD F		Lithology	Casing	DEPTH m TVD RKB	Coring	Sampling	MWD	Wireline Logging
y Quaternary	Nordland	Seabed B. Quaterna Naust	378.0 ary 682.0	*	30" 426m	100 • 200 • 300 • 400 • 500 • 700 • 800 •		Returns to seabed	GR-res-dir-press (MPR-lite)	-VSP and sonic inside casing upto 500 mTVDRKB
Tertiary	Hordaland Rogaland	Tare Springar	1389.5 1433.5 1526.5	* "	9 5/8" 1349m	1100 • 1200 • 1300 • 1400 • 1500 •		One bulk- (ca. 5 ltr.) and one washed and dried sample every 10m from 13 3/8" csg shoe down to 1600m One 1 ltr. mud-sample every 100m	GR-res-dir-press (Ontrack RNT)	Run1A: PEX-HRLA-DSI-ECS Run1A: CMR+ - FMI
Jurassic Sar	Båt	Nise Tilje Åre 2 Åre 1	1649.5 1656.0 1667.5			1700 • 1800 •	Core 1: 1662-1688m Core 2: 1688-1714m	Oil samples: 1656.0m, 1663.0m and 1672.5m Water samples: 1677.5m 1680.5m and 1708.0m One bulk- (ca. 5 ltr.),	,	Run1A: MDT (press.points/ water sample) Run 1B: MDT (dual packer, oil sampling &
						2000 - 2100 -		one wet- (bag) and one washed and dried sample every 6m from 1600m to TD. (not able to sample every 3m)		mini-DST) Run 1A: VSP-MISP-EMS-GPIT Run 1C:
Triassic		Grey Beds Red Beds		C C		2200		Two 1 ltr. mud-sample every 20m in the reservoir		MDT (dual packer, oil sampling & Mini-DST)
	TD: 2317m TVD RKB									

Restricted
Doc. no.
04D94*224014
Date

2004-10-14

Rev. no.

10 of 86

0

2 Dispensation and non-conformances

One exemption from the Statoil regulations (WR0436) were written and approved for the Linerle operations :

Cutting of WH 4 m below seabed (Synergi no. 263454).

Due to the design of the WH extension joint and the length of the 20" extension down to the 9 5/8" X/O, the WH had to be cut 4 m below seabed. The requirements (WR436)states that the WH shall be cut 5 m below seabed.

No consequences were identified.

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

11 of 86

3 Health, safety, environment and quality (HSE&Q)

3.1 General comments

Statoil is satisfied with the HSE performance of the drilling contractor and the service companies during the Linerle well. High focus on reporting unsafe conditions, near misses and accidents was maintained throughout the operation. The good HSE results should also be considered in light of the preconduct test.

3.1.1 Observation cards (OBS) and Synergi

A total number of 440 observation cards were filed on the rig during the operation, average to approximately 19 a day. Of these reports Statoil and service companies generated 96.

35 entries were made into Statoils Synegi system.

3.1.2 Comments to OBS/Synergi reports

Among the reported accidents/incidents/conditions there were:

- No LTI
- No red incidents (High Risk Potential)
- No medical treatment or first aid cases
- One yellow incident (Medium Risk Potential)
- No acute discharge
- Three falling objects

The incident rated as yellow (Medium Risk Potential) occurred in connection with the preconduct operation when a bolt from the hydraulic conductor driving hammer came loose and fell two meters onto the HPU roof. The medium risk rating was related to the possibility of the bolt coming loose in a different operational situation.

The other two falling objects were considered as minor incidents.

RestrictedDoc. no.
04D94*224014

Date **2004-10-14**

STATOIL

Rev. no.

12 of 86

3.2 Non-conformance

Title	Synergi no.	Date	Comments
Conductor inclination increased to 1.7 degrees	263746	02.05.2004	
Boulders and drilling problems	116653	02.05.2004	
Hammer did not fully enter into conductor when preparing for preconduct	263734	02.05.2004	
Downtime due to problems with pipe handling system	263938	04.05.2004	
Software problems in pipe handling system.	263941	04.05.2004	
Problems with DDM link hanger assembly	264199	05.05.2004	
Instrument problems with pipehandling system	264200	05.05.2004	
Problems with bulk cement supply when starting cement 9 5/8" casing.	264569	07.05.2004	
Flowline valve failed to open.	264682	09.05.2004	
Missing inner barrel spacer sub	264776	09.05.2004	
Schlumberger WL: Problems with MDT-tool	85681	14.05.2004	
Schlumberger WL: Not able to communicate with lower part of tool string.	86111	15.05.2004	
Schlumberger WL: Tool problems MDT/oil sampling/mini DST	91307	16.05.2004	
Schlumberger WL: Not able to start pump for mini-DST	91315	16.05.2004	
Stuck MDT-tool	91558	16.05.2004	
Unable to remove WL-entry plug on top-drive	91808	17.05.2004	
On the logging tool, strain and quartz gauges not working.	96981	20.05.2004	
Problems pulling Wear Bushing	107178	23.05.2004	

Table 3.1 Summary of registered Non Conformances

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no. 13 of 86

3.3 Experience summary

Section	Experience	Immediate solution	Solution recommended for future
	(subject and description)		
36"			
Preconduct	The Preconduct concept was tested on the tophole to potentially prequalify the equipment and method for the Barents Sea campaign. The Preconduct concept as a tophole system were the conductor is hammered down with a hydraulic hammer section, mainly to reduce discharge to sea.	be aborted to several problems, and the tophole was drilled and a conventional conductor was run and cemented.	Reference is made to the not yet published "Preconduct" experience report.
ВНА	A Red Baron Heavy-Duty 26" x 36" HO with inserts was used for the top hole, as boulders were expected.	The section was drilled with very low WOB and therefore very low ROP to avoid any angle build-up. The body and the roller shanks on the HO was severely worn out.	Evaluate if it is necessary with inserts for these formations, as milled tooth cutters drills more effective and has been strong enough for these formations on earlier wells.
12 1/4"			
Drilling practise	12 ¼" hole was drilled directly out of the 30" conductor.		No problems encountered. This has been done in several "slimhole design" wells without any problems, and is recommended for future wells.
Mill-tooth bit	The 929 m long section was drilled with an average ROP of 81 m/hr.	This ROP is approx. 28 % faster then best offset well (which was drilled with the same bit design).	Consider using Security EBXSC1S (1-1-7W) on future wells.
Wiper trip	A wiper trip was performed to TD after pumping out of hole due to overpull of 10-15 t.	No further resistance was observed on the wiper trip.	Based on experiences from the latest offset wells were no wiper trip has been performed, a wiper trip is not necessary in these formation with vertical hole.
8 1/2"			
PDC bit	Drilled 8 ½" hole with an average ROP of 38 m/hr. No indications of bit balling observed.		
ECD readings	"Unexpected" high ECD readings observed while drilling 8 ½" section (up to 1.57 SG with 1.30 SG mud).	Used 5" DP in open hole, 5 1/2" DP in 9 5/8" casing.	Be aware that the large OD of the 5 ½" DP might resulted in very high ECD readings.
P & A			
WH housing length	Due to the short length of the 20" WH extension joint down to the 9 5/8" X/O, the WH was cut 4 m below seabed (WR 436 requires 5 m).	An exemption to WR436 was written and approved.	The 20" interval on the extension joint must be extended, if possible, to full fill all requirements.

2004-10-14

Rev. no.

14 of 86

3.4 Time distribution

Total time	24,1 days
Total down time	87,5 hrs
Waiting on weather (WOW)	0,0 hrs

Ops. Factor: =	$Total_time-Down_time-WOW *100$	84,9%
оры т истот	Total _ time – WOW	07,770

Table 3.3

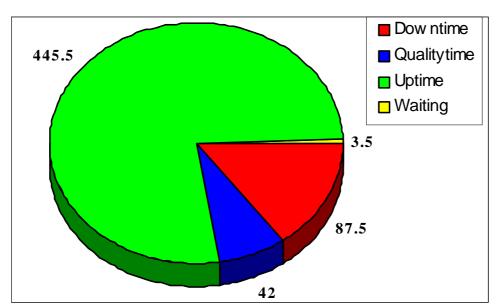


Fig. 3.1 Time distribution

Company	Description	D-time (hrs)	Quality cost (NOK)
Statoil	Boulders, stuck MDT, WB	28.5	2.696.100
IHC Hammer	Pre-conduct	27.0	2.554.200
Smedvig	Pipehandling, maintenance, top drive	15.5	1.466.300
Schlumberger	Communication, MDT-tool, mini DST	11.0	1.040.600
Security DBS	Waiting on barrel spacer sub	5.0	473.000
Halliburton	Bulk cement supply 9 5/8" casing	0.5	47.300
Total		87.5	8.277.500

Fig. 3.4 D-time distribution by company in hrs

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

15 of 86

4 Geology and formation data report

4.1 Geological setting and results

The well was drilled on the north-east segment of the Linerle prospect NNE of the Norne field, and was the first to be drilled in the prospect.

Block 6608/11 is situated in the southern part of the Nordland II area. The NE-SW trending Revfallet Fault Complex separates the block in two structural provinces, the Dønna Terrace and the bounding Nordland Ridge to the east. To the west the Ytreholmen Fault Zone bound the Dønna Terrace towards the Træna Basin.

The structural framework of the Dønna Terrace was mainly established during the Upper Jurassic/Lower Cretaceous extensional tectonics in the region. Later structuring is mainly related to the Cretaceous and Tertiary basinal subsidence.

The Linerle prospect is located on the Dønna Terrace c. 8 km NNE of the Falk discovery. It is located in a SW dipping fault block that is down-faulted between two deeply truncated horst blocks along NE-SW trending bounding faults. Melke, Tilje and Åre formations constitute the reservoir interval, but the well penetrated only the Tilje and Åre Formations

The well penetrated rocks of Quaternary to Triassic age. TD of the well is in the Triassic Red Beds at 2317m.

4.2 Shallow gas results

The well was drilled with seawater and returns to seafloor down to 1357 m. No shallow gas was observed. MWD logs were used in the evaluation and a ROV was used to observe at the wellhead.

4.3 Stratigraphy

The stratigraphy is based on the biostratigraphy, wireline/MWD logs and correlation to nearby wells. The stratigraphy of the well is shown in table table 4.1, table 4.2 and figure 4.2. Details on the biostratigraphy are found in a separate biostratigrapy report.

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no.

16 of 86

Table of chronostratigraphy

	Stratigraphic succession	Interval m MD
	Upper Miocene (top not seen)	1450 - 1470m
	Middle Miocene	1480 - 1483m
	Lower Miocene	1490 - 1493m
Tertiary	hiatus	
	Middle Eocene	1500 - 1510m
	Lower Eocene	1520 - 1580m
	Upper Paleocene	1590 - 1592m
	hiatus	1592m
	Upper Campanian?	1602 - 1603m
Cretaceous	Upper Campanian	1605 – 1623m
Cretaceous	Middle Campanian	1632 - 1647m
	Lower Campanian	1650 - 1653m
	hiatus	1653 - 1656m
	Pliensbachian	1656 - 1664m
Immondia	Sinemurian	1665 - 1788m
Jurassic	Sinemurian- Hettangian	1792 - 1830m
	Hettangian	1842 - 2076m
Triassic	Rhaetian	2082 - 2256m
Triassic	Upper Norian	2268 - 2317m

Table 4.1

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no.

17 of 86

Table of lithostratigraphy

Formation tops		Prognosis				rvation	
	m MD RKB	m TVD RKB	m MSL	m MD RKB	m TVD RKB	m MSL	Diff. from prog
NORDLAND GP	378	378	342	378.0	378.0	342.0	0
Quaternary section	378	378	342	378.0	378.0	342.0	0
Naust Fm	683	683	647	682.0	682.0	657.0	-1
Kai Fm	1331	1331	1295	1389.5	1389.5	1353.5	-6
HORDALAND GP	1445	1445	1409	1433.5	1433.5	1497.5	-11.5
Brygge Fm	1445	1445	1409	1433.5	1433.5	1497.5	-11.5
ROGALAND GP	1566	1566	1530	1526.5	1526.5	1490.5	-39.5
Tare Fm	1566	1566	1530	1526.5	1526.5	1490.5	-39.5
SHETLAND GP	1616	1616	1580	1592.5	1592.5	1556.5	-23.5
Springer Fm	1616	1616	1580	1592.5	1592.5	1556.5	-23.5
Nise Fm				1649.5	1649.5	1616.5	
BÅT GP	1662	1662	1626	1656.0	1656.0	1620.0	-6
Tilje Fm	1662	1662	1626	1656.0	1656.0	1620.0	-6
Åre 2 Fm	1681	1681	1645	1667.5	1667.5	1631.5	-13.5
Åre 1 Fm	1847	1847	1811	1835.5	1835.3	1799.3	-11.7
Triassic Grey Beds	2156	2156	2120	2153.0	2153.0	2117.0	-3
Triassic Red Beds				2214.5	2214.5	2178.5	
TD (discovery case)	2356	2356	2320	2317	2316.7	2280.7	-39.3

Table 4.2

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no. 18 of 86

0

4.4 Lithological description

No description of the lithology from seafloor to 1357m due to returns of cuttings to the seafloor. The formation tops in this interval is based on log signatures correlated with the nearest wells.

Quaternary

Quaternary sediments are expected from seafloor to 682m. The base is uncertain. The sediments are clay dominated. Boulder is expected to be present in the interval 383 – 420m

Tertiary

Naust Formation 682.0 – 1389.5 mMD, (657.0 – 1353.5 mTVD MSL)

System: Tertiary

Series: Upper Pliocene?

The top of this formation is picked based on correlation to 6608/11-2, but it is uncertain. Only the lowermost part has been sampled and described. It consists of a massive claystone.

The claystones were medium grey to occasionally olive grey, soft to firm, slightly calcareous, slightly to moderately silty, slightly to very sandy (very fine to trace medium to granule), moderately micromicaceous, trace micropyrite, rare glauconite, with traces of black mafic minerals. A trace graded to argillacoeus, very fine grained sandstone. There also a good trace of very coarse to granule sized, angular, crystalline rock fragments, which probably were broken from floating pebbles in the claystone.

Kai Formation 1389.5 – 1433.5 mMD, (1353.5 – 1497.5 mTVD MSL)

System: Tertiary

Series: Upper Miocene - Upper Pliocene?

The top of the Kai Formation is picked on a increase in GR and decrease in sonic velocity. It is composed of claystone as in the Naust Formation above. The pick op this top is uncertain.

Brygge Formation 1433.5 – 1526.5 mMD, (1497.5 – 1490.5 mTVD MSL)

System: Tertiary

Series: Lower Eocene – Upper Miocene

The top of the Brygge is picked at a decrease in GR values, together with a increase in sonic velocity. It is composed of claystone and subordinate interbedded/intergraded siltstone.

In the upper half, the claystone is medium grey to occasionally olive grey, soft to firm, slightly calcareous, slightly to very silty, slightly to very sandy, moderately micromicaceous, trace of micropyrite, and with traces of glauconite. In the lower half the claystone is pale yellowish green, light bluish green, soft to firm, blocky, flaky, and non calcareous.

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no. 19 of 86

0

The siltstone is brownish grey, soft, subblocky, non calcareous, argillaceous, locally sandy, with abundant glauconite and grades in part to silty claystone and silty/argillaceous sandstone. A hiatus is interpreted between 1493m and 1500m, based on the biostratigraphy.

Tare Formation 1526.5 – 1592.5 mMD, (1490.5 – 1556.5mTVD MSL)

System: Tertiary

Series: Upper Palaeocene - Lower Eocene

This top is picked on a marked decrease in GR values. It is predominantly claystone with occasional marl and stringers of limestone.

The claystone is light bluish green, light brown, olive grey, soft to firm, none to occasionally slightly calcareous, and occasionally slightly silty. The claystone is expected to be tuffaceous in parts

The limestone is greenish white, light grey, blocky, firm to hard, occasionally very argillaceous, occasionally very silty and occasionally very sandy.

Cretaceous

Springer Formation 1592.5 – 1649.5 mMD, (1556.5 – 1613.5 mTVD MSL)

System: Upper Cretaceous - Tertiary

Series: Lower Campanian - Upper Palaeocene?

The top of the Springer Formation is picked on increase in GR, a small but noticeable decrease in sonic velocity, together with an increase in resistivity. It comprises claystone with traces of limestone.

The claystone is light grey, greenish grey, becoming greenish grey to olive grey towards base, crumbly to firm, blocky, non calcareous, with traces of pyrite and glauconite towards the base.

The limestone is greenish white, light grey, blocky, firm to hard, occasionally very argillaceous, occasionally very silty and occasionally very sandy.

Nise Formation 1649.5 – 1656.0 mMD, (1613.5 – 1620.0 mTVD MSL)

System: Upper Cretaceous - Tertiary

Series: Lower Campanian - Upper Palaeocene?

The top of the Nise Formation is picked on a decrease in sonic velocity. The formation consists of claystone and described in general as the claystone of the Springar Formation

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

20 of 86

Jurassic

Tilje Formation 1656.0 – 1667.5 mMD, (1620.0 – 1631.5 mTVD MSL)

System: Upper Jurassic

Series: Sinemurian-Pliensbachian

The top of the Tilje Formation is picked at the top of fine grained sandstone which constitutes the main part. Stringers of claystone, siltstone, limestones/calcareous cemented sandstone occurs. A cola layer is present. The lower part of the Tilje Formation was cored.

The sandstone is oil bearing and described as medium dark brown, speckled off white to pale brown, soft to friable, very fine, locally slightly silty, well sorted, angular to subrounded, non to slightly dolomitic, no visible cement, good trace black lithic/mafic grains, trace mica, rare micropyrite, very good visible porosity. Fair to good oil shows occurs.

Åre Formation 1667.5 – 2153.0 mMD, (1631.5 – 2117.0 mTVD MSL)

System: Upper Jurassic Series: Rhaetian - Sinemurian

The Åre Formation is devided in Åre 2 and Åre 1 Formations with tops at 1667.5 and 1835.5m repectively. The upper part of the Åre Formation was cored down to 1714m. It consists of interbedded sandstones, siltstones and claystones. Intervals with coal layers and carbonaceous claystones occur occasionally through the entire formation. Limestone stringers are described.

The sandstones were medium light to light grey, pale yellowish brown, pale olive grey, soft, very fine to fine, becoming mainly medium, moderately to well sorted, subangular to mainly subrounded, slightly argillaceous in part, micaceous, occasional carbonaceous inclusions, locally very micaceous and carbonaceous laminations, good visible porosity. Fluorescence was described down to 1671m.

The siltstones were in part medium to medium dark brown, in part medium to medium dark greyish brown, in part medium light to dark grey, crumbly, non calcareous, locally moderately to very sandy, mainly non to trace sandy, in part slightly argillaceous, mainly moderately to very argillaceous, slightly to mainly moderately to very micromicaceous, commonly slightly microcarbonaceous, with traces of micropyrite.

The claystones were medium light to dark grey to locally brownish grey, crumbly to occasionally firm, non calcareous, slightly to commonly moderately to very silty, moderately to very micro micaceous, slightly to very carbonaceous, occasionally grading in part to argillaceous siltstone.

The coal was black, firm to hard and brittle, shiny in part, earthy and argillaceous in parts. Occasionally it graded to carbonacous claystone, which was medium dark brown to brownish black, soft to firm, non calcareous, moderately to very carbonaceous, and non to slightly micromicaceous. Pyrite was present.

The limestone stringers were white to off white, poorly to moderately indurated, microcrystalline in part, micritic in part, very dolomitic, and argillaceous.

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no. 21 of 86

Below the cored interval the cuttings were of poor quality, and the description was difficult.

Triassic

Grey Beds 2153.0 – 2214.5 mMD, (2117.0 – 2178.5 mTVD MSL)

System: Triassic Series: Rhaetian

The top of the Grey Beds are picked below the massive sandstones in the Åre Formation. The Grey Beds comprises interbedded claystone and sandstone. Abundant limestone stringers

The sandstones and claystones are indistiguishable from the loose sands and soft amorphous claystones as described for the Åre Formation above.

The limestones were white to light grey, with occasional black specks, soft to firm, micritic in part, microcrystalline in part, locally sandy, and locally argillaceous.

Red Beds 2214.5 – 2317.0 mMD, (2178.5 – 2280.7 mTVD MSL)

System: Triassic

Series: Upper Norian - Rhaetian

The upper part consists of interbedded claystone and sandstone, while the bottom half is mainly claystone. Traces of limestone were present throughout.

The sandstones were found as loose quartz, clear to translucent, trace off-white opaque, very fine to mainly fine to medium to occasionally trace coarse, poorly to moderately sorted, subangular to rounded, with a trace of loose mica

The claystones were multi-coloured, medium light to medium brown to reddish brown to trace purplish brown, pale to medium grey, occasionally purplish grey and greenish grey, rare yellowish brown, soft to dominantly firm, moderately to very calcareous, trace to slighty micromicaceous, and non to slightly silty, but became almost exclusively brown to reddish brown towards the base.

The limestones were white to light grey, with occasional black specks, soft to firm, micritic in part, microcrystalline in part, locally sandy, and locally argillaceous.

Rev. no.

22 of 86

Structure map, top Åre Fm

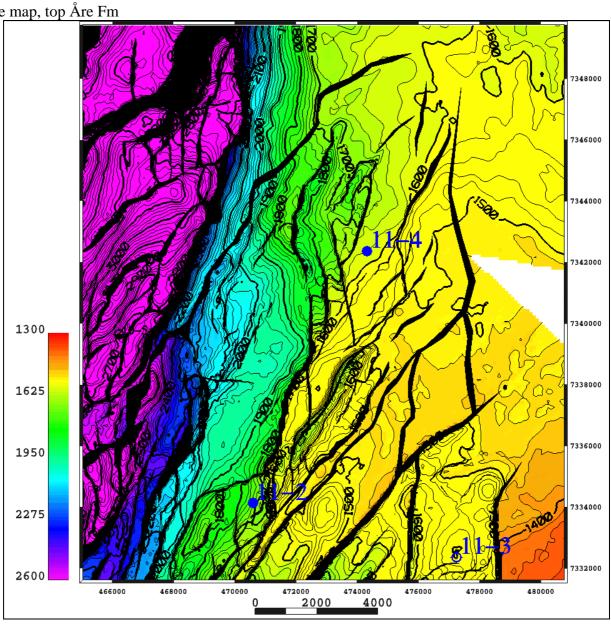


Fig 4.1

PL 128

RKB - MSL: 36 m

Lithology prognosis vs. observation Well 6608/11-4, Linerle

Wate	er Dep	th: 342	m MSL	*****	North	East Se		Made by: ØH Date: 1			Date: 19.10.2004
			Stratigraphy	,				Stratigraphy			Comments
System	Series	Group	Formations mTVD RKE	I Wantoro	Lithology	Casing	DEPTH m TVD RKB	Formations mTVD RKB	Lithology	Casing	
					4		100 - 200 - 300 -		*		Resistivity (ohmm)
Quaternary	Pleist./Holo.	Nordland	Seabed S	0.456	* * *	30" 423	500 -	Seabed 378. B. Quaternary		30" 426	- Marine Marine
Tertiary		Hordaland	Naust (13) Kai 13 Brygge 14	331 1.320 445 1.396 66 1.500		9 5/8"	900 • 1000 • 1100 • 1200 •	Naust 682. Kai 1389. Brygge 1433. Tare 1526.	* " " " " " " " " " " " " " " " " " " "	9 5/8" 1349	Market Market Commerce of the
Cret.	لممما	Shetland	Springar 10	1.542	프	~~~	1600	Springar 1592. Nise 1649.		88m 14m	کر م
Jurassic	Lower	Båt	Åre 2 16	1.589 1.603 1.603 1.730 1.730			1700 • 1800 • 1900 • 2000 • 2100 •	Tille 1656. Åre 2 1667. Åre 1 1835. Grey Beds 2153.	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Core 1: 1662-1688m Core 2: 1688-1714m	WAS AND THE SHAME AND SHAM
				TD _{DISCOV.} 235			2300	Red Beds 2214. TD 231	7m TVD R	KB	NA North
				or 200m into TD _{DRY} 1897 or max 50m i	7 m TVD I	RKB	2500 -				Fig. 4.2

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

24 of 86

4.5 Hydrocarbon indications

The first returns to surface was when drilling out of 9 5/8" casing shoe at 1349m.

Low gas readings were seen until the top of the reservoir was reached at 1656m. The peak from circulating BU prior to coring was 2.75% (virtually all C1) with a background of 0.15%. (table 4.3). The presents of mainly C1 is in accordance with the experience from the area.

Oil shows were described from the cuttings in the following interval:

1656 – 1662m: even moderately bright to bright yellow to yellowish gold fluorescence on siltstone and sandstone fragments and loose grains, poor to fair bluish white streaming cut fluorescence, poor to fair yellowish white residue fluorescence, non to trace yellowish brown ring residue.

Oil shows were described from sandstones and sandy siltstones in the upper part of core no 1, 1662-1671m, as having a slight hydrocarbon odour, even dull to moderately bright brownish yellow direct fluorescence, poor to fair bluish white streaming cut, fair bluish white solvent cut, good bright white to slightly yellowish white residue fluorescence, and a fair yellowish brown ring residue.

The pressure points and oil sampling confirmed oil in the same interval (corrected to wireline depth).

Minor gas peaks of up to 1.4% over a background gas of 0.1-0.2% were seen below the oil zone. These peaks were related to coal stringers in the Åre Formation. The gas peaks are listed in table 4.3 and illustrated in figure 4.3. The hydrocarbon filled interval is also seen on the resistivity curve, figure 4.2

Depth m RKB	Ggas %	C ₁	C ₂ ppm	C ₃ ppm	iC ₄ ppm	nC ₄ ppm	iC ₅ ppm	nC ₅ ppm	Type	BG %
1360		25484		ppin	ppin	ppiii	ppin		Trip gas	0.35
1454		7570							Formation gas	0.2
1480	0.93	8480							Formation gas	0.15
1662	2.75	12920		9		6		1	Formation gas	0.15
1665	0.84	7904		3	1	2	1	1	Formation gas	0.23
1671	0.66	6131		1		1	1	1	Formation gas	0.2
1765	0.78	6924							Formation gas	0.5
1836	0.65	5284	27	2	1				Formation gas	0.1
1936	0.99	8677							Formation gas	0.3
1958	1.35	11835							Formation gas	0.6
2037	1.37	11703	59	5				1	Formation gas	0.1
2086	0.69	5744	32	3		1	1		Formation gas	0.2

Table 4.3 Gas peaks (FID)

PL 128

RKB - MSL: 36 m

Water Depth: 342 m MSL

Gas readings Well 6608/11-4, Linerle North East Segment

STATOIL

Made by: ØH

Date: 15.09.2004

	-		III WISL		I				1		Dutc. 10.00.2004
	, ,		Stratigraphy				DEDTU	Stratigraphy			Comments
System	Series	Group	Formations mTVD RKB	Seismic Markers TWT (s)	Lithology	Casing	m TVD RKB	Formations mTVD RKB	Lithology	Casing	Total gas % 0 5
							100 - 200 - 300 -		*		
Quaternary	Pleist./Holo.	Nordland	Seabed 378 B. Quaternary		8 -	30" 423	500 -	Seabed 378.0 B. Quaternary	* " * * * * * * * * * * * * * * * * * *	30" 426	
} Tertiary		Hordaland	Tare 1566	1.320 1.396		9 5/8"	700 • 800 • 900 • 1000 • 1100 • 1200 • 1400 • 1500 •	Naust 682.0 Kai 1389.5 Brygge 1433.5 Tare 1526.5 Springar 1592.5	*	9 5/8"	
Cret.	Upper	Shetland Båt	Springar 1616 Tilje 1662 Åre 2 1681 Åre 1 TD	1.603 1.730			1700 • 1800 • 1900 • 2000 •	Nise 1649_5 Trilje 1656.0 Åre 2 1667.5 Åre 1 1835.5		Core 1: 1662-1688m Core 2: 1688-1714m	
Trias			Grey Beds 2156	TD _{DISCOV.} 235 or 200m into TD _{DRY} 1897 or max 50m i	the Grey in TVD I	Beds RKB	2200 • 2300 • 2400 • 2500 •			КВ	Mark Market Control of the Control o

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

26 of 86

0

4.6 Geophysical results

The observed formation tops in the well were encountered within the depth uncertainties of the prognosis. The only exemption was the Kai Formation. The difference was caused by an inconsistency of the pick of this formation in the nearby wells, causing a wrong estimate of the interval velocities. The top of the Kai Formation is also difficult to identify in the well with the limited data available (only MWD gr/res logs and no biostratigraphy). The prognosed versus observed formation tops are shown in figure 4.2

4.7 Data acquisition

4.7.1 Cuttings and mud samples

Cuttings were sampled every 10m from 1360 m to 1600 m and mainly every 6m from 1600 m to 2317 m (TD). In this lower part of the well, a sampling interval of 3m was planned. Due to poor quality of the cuttings and high rate of penetration, this was altered to 6m (ref fig. 1.2)

Mud samples were collected every 100 m from 1360 m to TD. In the oil bearing interval several mud samples were taken, both while drilling and when draining the core barrels.

The drilling mud in the well was new. However, when the geochemical analysis was performed, traces of unidentified oil was found in the mud samples. New mud was used in the well.

4.7.2 Conventional coring

Halliburton-Security DBS provided the coring equipment. Fiber glass inner barrels with pressure vents were used.

Res Lab provided the core plug drilling equipment, but due to the very unconsolidated sandstones, no plugs were drilled. Gypsum was used for stabilisation of the core in the inner barrels.

Core	Cored	Rec.	Rec.	Barrel	Barrel	Comment
no	interval, m	m	%	length m	util. %	
1	1662 –1688	18.95	72.9	27m	70.4	Fiber glas innerbarrel, stabilised
						w/gypsum, core jammed
2	1688 -1714	25.28	97.2	27m	93.6	Fiber glas innerbarrel, stabilised
						w/gypsum, core jammed

Table 4.4

The depth shift of the cores has been done by using the core gamma logs, core lithology (limestone and coal layers) and to some degree por/perm measurements. The table 4.5 shows that the depth shift is not constant.

Rev. no. 27 of 86

Core no	Core depth	Depth shifted	Difference
	(m)	to wireline (m)	(m)
	1664.7	1664.8	0.2
Core no. 1	1669.8	1670.6	0.8
	1674.3	1674.9	0.6
	1688.1	1688.4	0.3
	1691.5	1691.4	0.0
	1693.0	1692.7	-0.3
	1696.7	1696.1	-0.6
	1698.3	1698.3	0.0
	1699.7	1699.9	0.2
Core no. 2	1702.3	1702.5	0.2
	1704.3	1704.1	-0.2
	1706.0	1706.4	0.5
	1710.1	1710.7	0.6
	1711.9	1712.2	0.3
	1712.0	1712.3	0.3
	1712.3	1713.1	0.8
	1713.3	1714.1	0.8

Table 4.5

When examine the cores in the laboratory by CT scanning, the cored material appeared to be highly fractured (figure 4.3). This has not been observed in cores from the area. The Linerle reservoir is the shallowest in the Norne area and rather unconsolidated.

A scanned section at ca 1663.1m from core 1 and is an example of fractures observed in the cores.

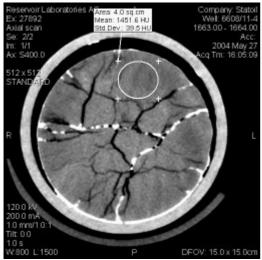


Figure 4.3

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no. 28 of 86

0

4.7.3 *MWD/LWD*

Run	Depth interval	Collar	Tool	Comment
no.	m RKB	diam.		
1	428 - 1357	81/4"	MPR-lite	GR/RES/DIR (PRESS requested while drilling-not
				planned)
2	1357 - 1662	6¾"	Ontrack RNT	GR/RES/DIR/PRESS
3	1714 - 2317	6¾"	Ontrack RNT	GR/RES/DIR/PRESS

Table 4.6

4.7.4 Wireline logging

Schlumberger performed the wireline logging operation in the $8\frac{1}{2}$ " open hole section see Table 4.7. The logs are graphically represented in Figure 4.4 and 4.5.

Wireline logging in 8.5" section.

	eline logging program		
No	Tool combination	Run	Interval m MD RKB
1	PEX-HRLA-ECS-DSI	1A	2318.5 – 1346 m (1346 – 500 m, DSI inside casing)
2	CMR+ - FMI	1A	1725 – 1628 m (CMR, full porosity uplog) 1640 – 2310 m (CMR, BVI mode) 2310 – 1346 m (FMI log)
3	MDT, Pressure points and water sampling	1A	1564.4 – 2247 m (pressure pretest) 1708.5 m (water sampling)
4	MDT, Oil sampling + miniDST	1B	1656.9 – 1657.9 m (Packer depth for Oil sampling + miniDST #1) 1664.7 – 1665.7 m (Packer depth for Oil sampling + miniDST #2)
5	VSP-MSIP-EMS-GPIT	1A	1100 – 1910 m (MSIP downlog) 1850 – 1600 m (MSIP and EMS uplog) 2300 – 1715 m (VSP)
6	MDT, water & oil sampling + miniDST	1C	1772.4 m (Packer depth for water sampling + shut in well for 0.5 hours.) 1677.5 m (Packer depth for water sampling + shut in well for 0.5 hours.) 1680.5 m (Packer depth for water sampling + shut in well for 0.5 hours.) 1663 m (Packer depth for oil sampling + miniDST #3)

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

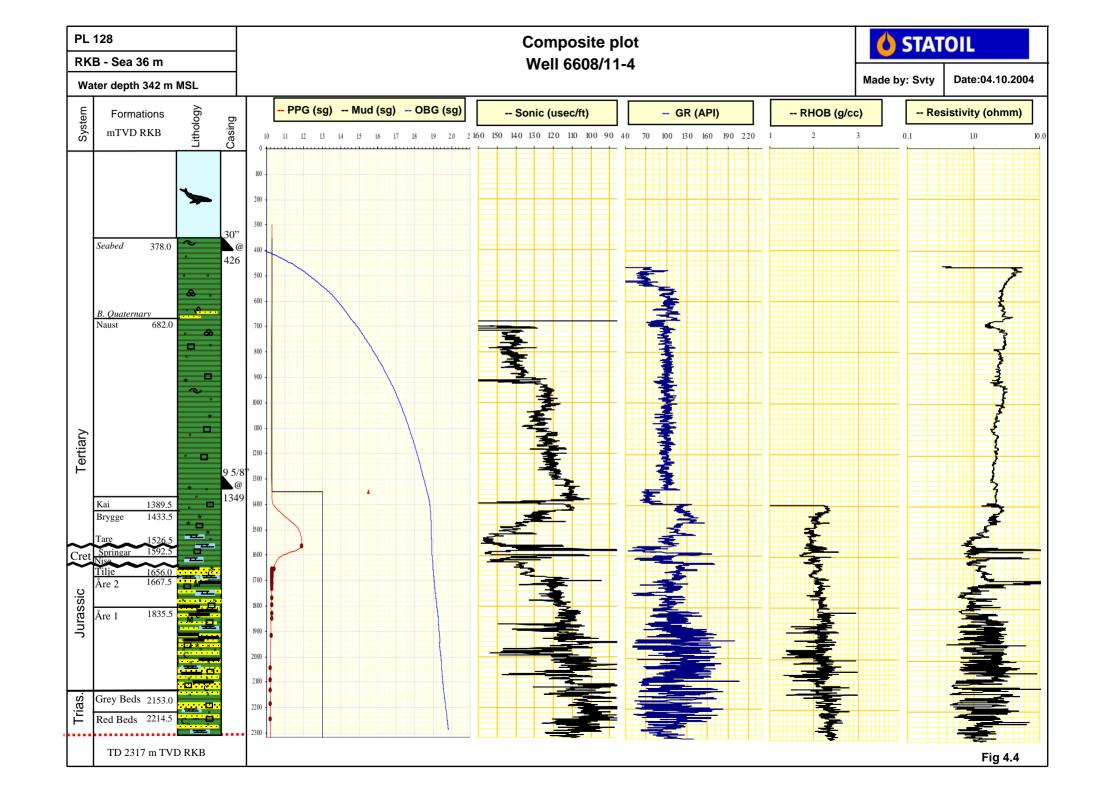
Rev. no. 29 of 86

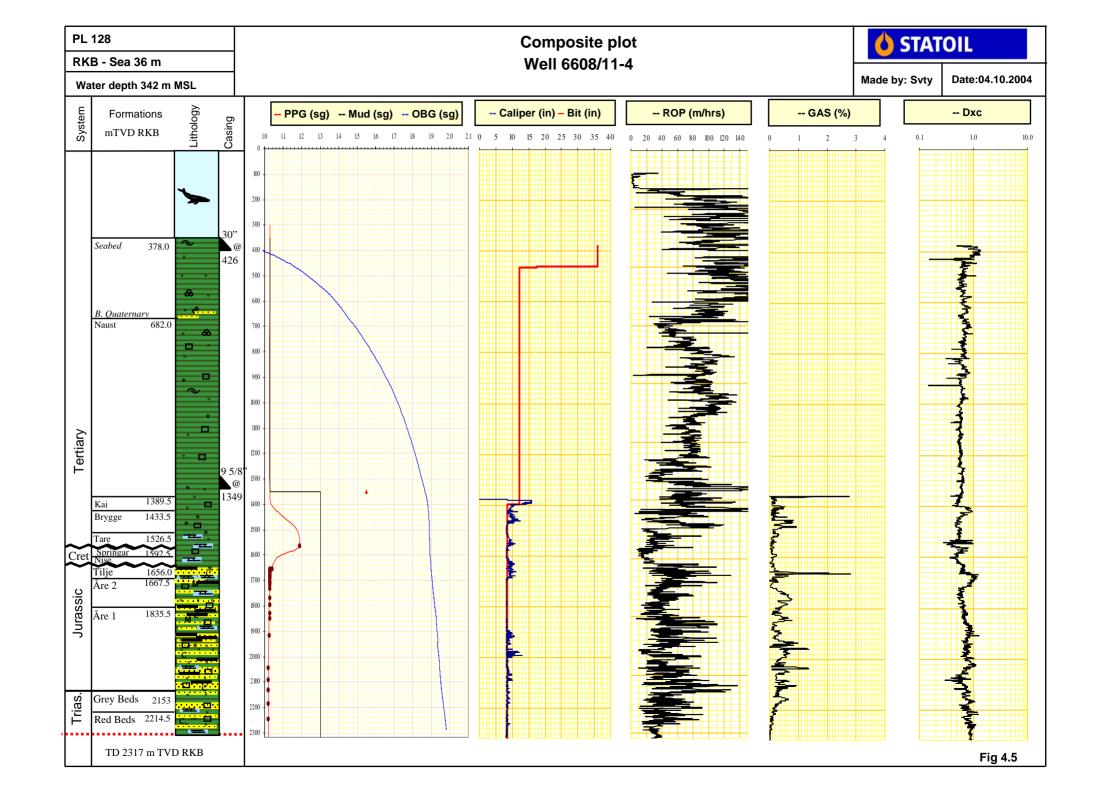
0

A zero offset VSP was performed. 55 levels were shot from 2272 m to 500 mTVD RKB with a CSI tool. Shot several times at each level due to bad weather condition. The VSP data acquisition was therefore abandoned at 1717 m TVD RKB with only check shots levels and formation tops taken above this depth.

4.7.5 Data quality

The quality of the cuttings was poor from approximately 1650 m to TD of the well.


The claysone/siltstone partly dissolved.


The MWD logging was performed as planned with logs of good quality.

The quality of the data from the wireline logging operation was generally good.

There were taken several samples, both water and oil. Analysis results conclude that there are very little contamination, see chapter 4.9.

There were some problems when logging the VSP due to noise related to bad weather. Due to wind and big waves both the thrusters and some propellers were running which effected the logging operation. Several extra shots had to be taken at each level due to bad weather conditions and therefore the data quality of the VSP log is only satisfactorily.

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

32 of 86

4.8 Formation pressure

The pore pressure profile shows a normal trend down to approximately 1400 mTVD RKB were rapid increase starts. The highest pore pressure is reached in the Brygge and Tare Formations, with a maximum gradient of 1.19 g/cm³ at 1564 mTVD RKB, measured with the MDT tool. Below this point the pore pressure gradient decreases. In top Åre Formation the pore pressure is measured to be 1.04 g/cm³, which is the max case in the HC filled reservoir. In the water filled reservoir the pore pressure is normal, 1.03 g/cm³. Several pressure tests have been made with the MDT tool. See Figure 4.8 for more details.

The pore pressure has also been calculated using the sonic, resistivity and the D-exponent in this well using different methods. All of them follow the same trend as the measured pore pressure. The formation pressure in the Brygge and Tare Formations is well known in this area since several wells have been drilled here, and the formation pressure is therefore expected to be the same as the prognosis pressure. The evaluated pore pressure from the resistivity log and the drilling exponent is slightly higher than the predicted pressure from the sonic log. The sonic log gives the lowest pore pressure gradient and the best prediction compared to the measured pressure in the Brygge, Tare and reservoir Formations.

The overburden gradient is calculated using the density log from wireline run 1A from 1350 down to TD. Above the 9 5/8" casing shoe, density data from the wells 6608/11-3 and 6506/12-1 is used, see Figure 4.6.

4.8.1 Reservoir pressure summary

In the first MDT run a total of 41 pretest were taken, 26 good, 10 poor, 4 tight and 1 supercharged. Five miniDST were performed, one in the second MDT run and four in the last MDT run. Three of them were in the oil zone, 1656 mTVD RKB, 1663 mTVD RKB and 1672.5 mTVD RKB, and two of them in water zone 1677.5 mTVD RKB and 1680.5 mTVD RKB respectively. The shut in time for two of the miniDST in the oil zone were four hours and the ones in the water and deepest one in the oil zone only half an hour.

A standard quartz gauge was used in the first miniDST, but the rest of the miniDST were performed with a strain gauge due to failure in the quartz gauge.

The pressure measurements from the pre test were used to define a gradient in the water and oil zone in the Åre2 Formation using linear regression. The oil gradient was calculated to be 0.872 g/cm^3 and the water gradient to be 1.006 g/cm^3 . The oil gradient do not match with the measured density from lab, the oil density is measured to be 0.915 g/cm^3 , but the water gradient is almost the same as measured in the lab, 1.010 g/cm^3 (1.03 measured in the lab). The reason for this deviation in the oil density will be looked into.

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no. 33 of 86

0

MDT pressure summary, Run 1A, pretests and water sampling

MDT	MDT pressure summary, Run 1A, pretests and water sampling										
Test		Depth m				Formation				Comments	
no	tions	TVDRT	MSL		pressure	pressure	(mD/cp)	(°C)	g/cm ³		
				Before	After	(Bar)					
				(Bar)	(Bar)						
1	Åre 2	1656.0	1620.0	216.64	216.61	168.63	1.1	#N/A	1.04	Poor permeability	
2	Åre 2	1657.0	1621.0	216.73	216.69	167.72	527	#N/A	1.03	Very good	
3	Åre 2	1658.0	1622.0	216.81	216.80	167.80	157	47.5	1.03	Good	
4	Åre 2	1660.0	1624.0	217.08	217.09	176.38	3.6	#N/A	1.08	Supercharge	
5	Åre 2	1661.5	1625.5	217.28	217.22	168.04	278	47.8	1.03	Good	
6	Åre 2	1663.0	1627.0	217.42	217.84	168.18	137	48.2	1.03	Good	
7	Åre 2	1666.0	1630.0	217.84	217.85	168.45	50.1	48.4	1.03	Good	
8	Åre 2	1669.0	1633.0	218.18	218.66	168.82	11.2	48.5	1.03	Fair	
9	Åre 2	1670.4	1634.4	218.36	218.33	168.85	6	48.8	1.03	Good – not 100% stable	
	0									Poor – repeated tests 3	
10	Åre 2	1671.0	1635.0	218.47	218.45	169.08	0.6	48.9	1.03	times	
11	Åre 2	1672.4	1636.4	218.61	218.58	169.02	9.4	49.4	1.03	Good	
12	Åre 2	1673.5	1637.5	218.77	218.77	#N/A	0.8	#N/A	#N/A	Tight	
13	Åre 2	1677.0	1641.0	219.23	219.68	169.31	26.1	49.8	1.03	Good	
14	Åre 2	1682.0	1646.0	219.91	219.88	169.74	86.5	50.1	1.03	Good	
15	Åre 2	1688.5	1652.5	220.78	220.71	170.37	303	50.4	1.03	Very good	
16	Åre 2	1698.6	1662.6	222.05	222.05	171.35	207.6	50.8	1.03	Very good	
17	Åre 2	1708.5	1672.5	223.35	223.28	172.33	1633	51.3	1.03	Very good	
18	Åre 2	1718.0	1682.0	224.53	224.52	173.29	920	51.4	1.03	Very good	
19	Åre 2	1734.0	1698.0	226.66	226.58	175.00	33.2	52.6	1.03	Good	
20	Åre 2	1770.0	1734.0	231.26	231.18	178.44	305	53.2	1.03	Very good	
21	Åre 2	1796.0	1760.0	234.61	234.52	181.05	1060	53.8	1.03	Very good	
22	Åre 1	1812.5	1776.5	236.76	236.74	167.27	0.1	#N/A	0.94	Tight	
23	Åre 1	1819.5	1783.5	237.65	237.66	134.23	0.3	#N/A	0.75	Tight	
24	Åre 1	1830.0	1794.0	239.04	238.94	184.45	637	#N/A	1.03	Very good	
25	Åre 1	1851.5	1815.5	241.86	241.72	186.54	1170	#N/A	1.03	Very good	
26	Åre 1	1918.0	1882.0	251.26	250.34	193.12	1840	52.1	1.03	Very good	
27	Åre 1	1997.0	1961.0	260.60	260.51	200.82	1589	#N/A	1.03	Very good	
28	Åre 1	2045.0	2009.0	266.72	266.70	205.50	1084	#N/A	1.02	Very good	
29	Åre 1	2091.0	2055.0	272.67	272.60	210.07	2621	63.6	1.02	Very good	
30	Åre 1	2132.5	2096.5	278.00	277.94	214.06	965	64.7	1.02	Very good	
31	Åre 1	2185.4	2149.4	284.76	284.68	219.44	29.5	65.5	1.02	Good	
32	Åre 1	2247.0	2211.0	297.77	292.66	225.77	34.8	#N/A	1.02	Good	

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no. 34 of 86

Sampling											
33	Åre 2	1680.5	1644.5	219.57	#N/A	169.49	13.5	#N/A	1.03		
34	Åre 2	1680.0	1644.0	219.50	219.47	156.81	2.4	#N/A	0.95	Aborted to poor permeability	
35	Åre 2	1681.0	1645.0	219.63	#N/A	169.62	41.2	#N/A	1.03	Aborted	
36	Åre 2	1682.5	1646.5	219.85	219.81	169.70	46.6	#N/A	1.03	Aborted	
37	Åre 2	1688.5	1652.5	220.60	#N/A	170.31	#N/A	#N/A	1.03	Aborted to poor permeability	
38	Åre 2	1688.4	1652.4	220.65	#N/A	170.32	#N/A	53.8	1.03	Aborted to poor permeability	

Pret	est after s	sampling	Ţ							
39	Åre 2	1708.5	1672.5	223.24	#N/A	172.24	602.4	52.6	1.03	Sample pretest
40	Åre 2	1708.5	1672.5	223.24	222.97	172.31	602.4	52.6	1.03	Sample pretest
41	Åre 2	1672.4	1636.4	220.60	#N/A	168.991	13.3	50.2	1.03	Sample pretest, lost seal
42	Åre 2	1672.7	1636.7	218.41	#N/A	169.021	7.6	50.2	1.03	Sample pretest, pump motor stalling
43	Åre 2	1672.6	1636.6	218.38	218.39	169.765	8.2	50.7	1.03	Sample pretest, tool plugged.
44	Naust	1339	1303.0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	Pretest inside csg to check if the tool after flushing the tool string.
45	Tang	1564.4	1528.4	209.55	#N/A	#N/A	#N/A	#N/A	#N/A	Aborted, slow form. pressure buildup.
46	Tang	1564.4	1528.4	206.69	204.71	#N/A	0.5	45.7	1.19	Poor, unstable test
47	Tang	1566.5	1530.5	205.02	205.05	#N/A	#N/A	#N/A	1.15	Tight, volumetric limited method

Table 4.8

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no. 35 of 86

MDT pressure summary, Run 1B, oil sampling and miniDST with dual packer.

	of pressure summary, Run 1B, on sampling and minibor with dual packer.										
Test	Forma-	Depth m	Depth m	Hydro	Hydro	Formation	Mobility	Temp	Gradient	Comments	
no	tions	TVDRT	MSL	pressure	pressure	pressure	(mD/cp)	(°C)	g/cm ³		
				Before	After	(Bar)					
				(Bar)	(Bar)						
				, ,	` '						
										Pretest to check if there	
48	Åre 2	1656.1	1620.1	216.55	216.428	#N/A	1.1	48.4	#N/A	is mobility at the probe	
										Pretest to check if there	
49	Åre 2	1656.0	1620.0	216.39	216.428	#N/A	527	48.5	#N/A	is mobility at the probe	
50	Åre 2	1656.2	1620.2	216.48	#N/A	#N/A	157	#N/A	0.00		
51	Åre 2	1656.3	1620.3	#N/A	#N/A	#N/A	3.6	#N/A	0.00		
										Pretest with packer	
52	Åre 2	1657.6	1621.6	#N/A	#N/A	167.60	278	#N/A	1.03	module, miniDST#1	
										Pretest at probe,	
53	Åre 2	1655.6	1619.6	216.43	#N/A	168.16	137	#N/A	1.04	miniDST#1	
	_									Pretest at probe,	
54	Åre 2	1664.7	1628.7	217.32	#N/A	168.33	50.1	#N/A	1.03	miniDST#2	
										Pretest with packer	
										module, miniDST#2.	
										Aborted, pressure	
55	Åre 2	1666.7	1630.7	210.61	#N/A	#N/A	11.2	#N/A	#N/A	building up too high	
	_									Pretest with packer	
56	Åre 2	1666.7	1630.7	210.61	#N/A	168.33	6	#N/A	1.03	module, miniDST#2.	

Table 4.9

MDT pressure summary. Run 1C, oil + water sampling and miniDST with dual packer.

Test	Forma-	Depth m	Depth m	Hydro	Hydro	Formation	Mobility	Temp	Gradient	Comments
no	tions	TVDRT	MSL	-	pressure	-	(mD/cp)	(°C)	g/cm ³	
				Before	After	(Bar)				
				(Bar)	(Bar)					
										Probe pre-test before
57	Åre 2	1670.4	1634.4	217.77	#N/A	168.75	#N/A	42.1	1.03	sampling at 1672.4m
	_									Packer pre-test before
58	Åre 2	1672.4	1636.4	218.13	#N/A	169.41	#N/A	41.1	1.03	sampling at 1672.4m
	0									Probe pre-test before
59	Åre 2	1675.5	1639.5	218.67	#N/A	174.82	#N/A	#N/A	1.06	sampling at 1677.5 m
	0									Probe pre-test before
60	Åre 2	1678.5	1642.5	218.84	#N/A	169.35	#N/A	47.9	1.03	sampling at 1680.5m
	0									Pre-test with packer not
61	Åre 2	1680.5	1644.5	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	done
										Probe pre-test before
62	Åre 2	1661.0	1625	218.76	#N/A	167.91	#N/A	48.7	1.03	sampling at 1661m
	_									Packer pre-test before
63	Åre 2	1663.0	1627	220.72	#N/A	168.7	#N/A	48.7	1.03	sampling at 1663m
										Pre-test in top of
64	Åre 2	1652.0	1616	215.16	215.09	#N/A	#N/A	#N/A	#N/A	reservoir - tight
65	Åre 2	1566.5	1530.5	203.99	#N/A	175.97	9.3	40.8	1.15	Recycle 3 hrs.

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

36 of 86

4.9 Reservoir fluid sampling

Oil samples were collected in Åre2 formation using a dual packer. Even though some technical problems occurred during sampling with the MDT tool, the samples were of good quality.

Samples collected from Run 1A 6608/11-4

Sample depth (m MD)	No		Chamber (volume)	Drawdown (bar)	Formation Pressure (bar)	-			Transferred to
1708.5	1A	MRSC#200	1 gal	4	172.2	269	602	121	Jerry Can
1708.5	1A	MPSR1-073	450 cc	4	172.2	279	602	110	50188 (Xample)
1708.5	1A	MPSR2-970	450 cc	4	172.2	286	602	124	TS-23407 (Proserv)
1708.5	1A	MPSR3-694	450 cc	4	172.2	291	602	124	TS-47507 (Proserv)

Table 4.11

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

37 of 86

Samples collected from Run 1B 6608/11-4

Sample depth (m MD)	No		Chamber (volume)	Drawdown (bar)	Formation Pressure (bar)	Pump Volume	Mobility (mD/CP)	Opening pressure (bar)	Transferred to
1657.6	1B	MRSC#68	18 gal	9.2	167.75	229	300 ¹	29	Jerry Can
1657.6	1B	MPSC#115	2 ¾ G	9.0	167.75	238	300 1	34	50188 (Xample)
1657.6	1B	MPSC#113	2 ¾ G	9.3	167.75	258	300 1		TS-23407 (Proserv) TS-28513 (Proserv) TS-36002 (Proserv) Plastic bottle 50473 (Xample)
1657.6	1B	MPSC#189	1 G	9.0	167.75	270	300 1	35	TS-47507 (Proserv)
1657.6	1B	MPSR#644	450 cc	9.2	167.75	290	300 ¹		Not filled
1657.6	1B	MPSR#147	450 cc	9.2	167.75	293	300 1		Not filled

¹ Mobility is from pretest run

Table 4.12

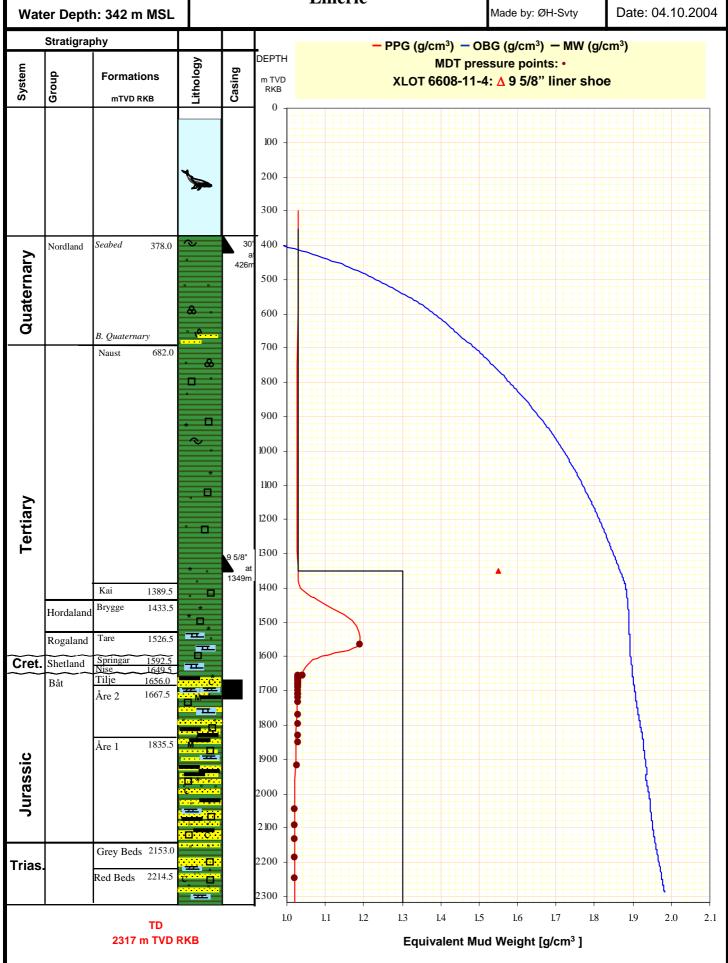
Samples collected from Run 1C 6608/11-4

Sample depth	Run No		Chamber (volume)	Drawdown (bar)	Formation Pressure	Pump Volume	Mobility (mD/CP)	Opening pressure	Transferred to
(m MD)					(bar)			(bar)	
1672.4	1C	MRSC#154	1 gal	4.7	169.0	68			TS-52102 (Proserv)
1677.5	1C	MPSR#610	450 cc	4	169.4	103			TS-12418 (Proserv)
1677.5	1C	MPSR#696	450 cc	4	169.4	103			TS-4055 (Proserv)
1680.5	1C	MPSC#172	1 G	2.6	168.7	107			Plastic & Glass bottles
1663	1C	MRSC#68	18 G	4.5	168.2	103			Jerry Can
1663	1C	MRSC#170	1 G	4.8	168.2	201			TS-52101 (Proserv)
1663	1C	MPSR#970	450 cc	4.8	168.2	212			TS-36003 (Proserv)
1663	1C	MPSR#694	450 cc	4.8	168.2	220			TS-54103 (Proserv)
1663	1C	MPSR#073	450 cc	4.8	168.2	224			TS-29201 (Proserv)
1663	1C	MPSR#1006	450 cc	4.8	168.2	229		·	TS-36303 (Proserv)

Table 4.13

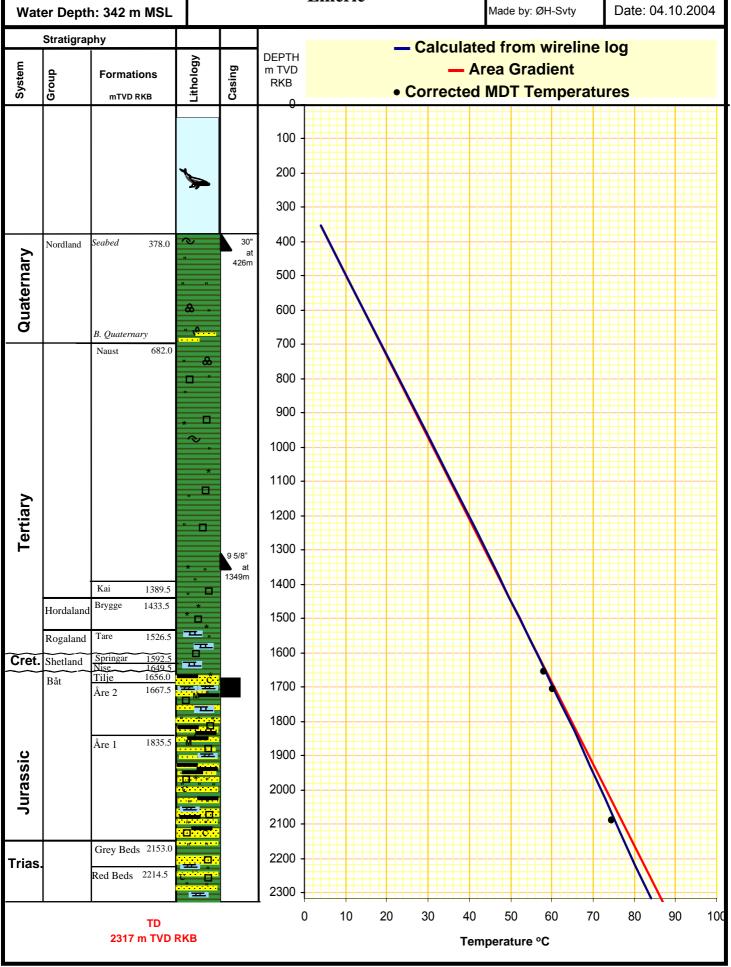
The oil samples contained very little formation water and mud, except for the 18 Gallon chambers.

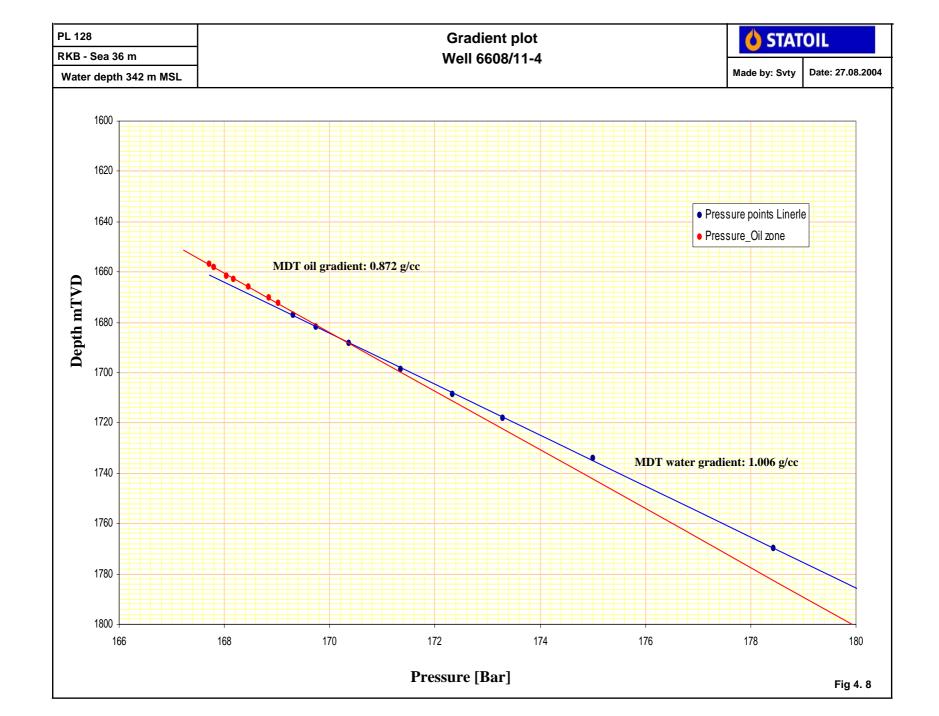
The water samples were very little contaminated regarding use of water-based mud, except for formation water from the 18 Gallon oil samples.


The water samples from 1708.5 m had very little contamination (0.23%). The water samples from 1677.5 and 1680.5 mTVD RKB contained 16 and 24% contamination respectively from the mud measured from the Tritium level in the mud. Analysis on the formation water from the 18 Gallon samples where highly contaminated as expected, above 50%.

RKB - MSL: 36 m

Final pore pressure Well 660811-4 Linerle




PL 128

RKB - MSL: 36 m

Temperature gradient Well 660811-4 Linerle

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

41 of 86

4.10 Leak off test

One extended leak off test (XLOT) was performed below with one cycle below the 9 5/8" casing shoe. Between the first and the second cycle a LCM pill was added. No effect of the pill was seen or measured on the initiating- or the reopening-pressure. See Table 4.2

The XLOT was a good test with a mud weight of 1.03 g/cm³. The XLOT value is measured to be 1.55 g/cm³ at 1349 mTVD RKB. The two cycles in the extended leak off test is plotted in Figure 4.9, the XLOT value is plotted in table 4.14.

Pressure in different periods of the XLOT.

	Fir	st cycle	Secon	nd cycle
	Bar	g/cm3	Bar	g/cm3
FIP (Fracture Initiating Pressure)	212	1.60		
FPP (Fracture Propagation Pressure)	206	1.56	201	1.52
FCP (Fracture Closure Pressure)	193	1.46	171-181*	1.29-1.37*
FRP (Fracture Reopening Pressure)	205	1.55		

^{*} The closure pressure in the second cycle is more difficult to measure it is interpolated to be between 171 and 181 bar (1.29-1.37 g/cm 3 EMW).

Table 4.14

The XLOT value

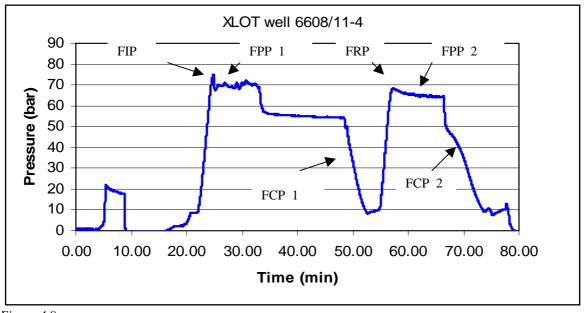


Figure 4.9

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no. 42 of 86

4.11 Formation temperature

The evaluated temperature is calculated by using an in-house (Hermansrud, 1999) equation that takes into consideration the time since circulation and the measured temperature from the logging tool.

$$VRT = T_f + 75 \cdot EXP \left(\frac{-t}{8}\right)^{0.5} \quad t < 50 \text{ hours}$$

VRT: Virgin Rock Temperature

T_f: Measured Formation Temperature

t: Time since circulation

Temperature measurements are available from all wireline run in the 8.5" section, that follows a gradient of 4.2°C/100 m down to top reservoir.

From top reservoir and down to TD, the temperature decreases with a lower gradient, approximately 3.8° C/100 m.

See Figure 4.7 for the temperature profile.

Measured and evaluated temperatures

Tool combination	Depth of measurement m TVD RT	Recorded max temperature ⁰ C	Time since last circulation hrs	Evaluated temperature $^{0}\mathrm{C}$
PEX-HRLA-ECS-DSI	2317	62	11.9	84.1
FMI-CMR	2317	70	24.6	83.0
VSP	2317	72	125	-

Table 4.15

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

43 of 86

Rev. no.

0

5 Drilling operations report

5.1 Rig move and positioning

The drill ship West Navigator sailed to the Linerle location after completing the Alve exploration well (6507/3-4) for Statoil. The ship sailed the 17 Nm with an average reduced speed of 1.4 kph. The ship sailed with the reduced speed because the BOP and riser was pulled in the Main rig while in transit.

5.2 32" section

5.2.1 *Summary*

As a part of pre-qualifying potential drilling methods and equipment prior to the Barents sea campaign, where zero discharge is a focal point, the Linerle well was identified as a candidate to test the Preconduct concept for the top hole.

This is a system where the conductor (32") is hammered down to a required depth with a hydraulic hammer, i.e. no discharge of cuttings to seabed.

As this was only the second time this equipment was run from a floater worldwide, a full package of conventional equipment was mobilized and sent to the rig at the same time.

After the Preconduct equipment were lifted onboard (incl. a 23 ton and 23 m long conductor and a hydraulic hammer section of 16 ton) and rigged up, the 32" conductor joint with the hydraulic hammer section inside was run down to seabed.

All weight was then set down, and the conductor self-penetrated approx. 3 m before it stopped. The conductor was then hammered down 2 more meters, when it was necessary to abort the operation due to too high inclination. Several attempts were made to pull the conductor free with max. 20 ton over pull, and at the same time the ship was moved in several directions.

A reduction in the inclination was then obtained, and the hammering operation was resumed. After the conductor was hammered 1 m deeper, no further progress was obtained after 5 hrs of hammering at the same depth. It was then decided to abort the hammer operation and pull the conductor and hammer section to surface.

At this stage it was not possible to pull the conductor free or releasing the hammer assembly from the conductor.

After washing and drilling around the conductor with a 17 ½" bit ran on drill pipe from the Auxillary rig, the conductor finally came free with 35 ton over pull. It was pulled to surface and the Preconduct operation was aborted and all the surface equipment was rigged down.

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no. 44 of 86

36" section

5.3.1 Summary

5.3

When the Preconduct operation was aborted in the Main rig, a standard 36" BHA (17 ½" bit, 26" x 36" Red Baron Heavy-Duty HO, Anderdrift and 9 ½" DC) was run from the Auxillary rig. One attempt was made to spud the well in the same hole as the conductor was hammered, but also with the drilling BHA no progress were achieved at the depth where the conductor stopped.

The well was then respudded 10 m to the East.

Very hard drilling with low progress (1-2 m/hr) was experienced down to approx. 420 m, where a drilling break was experienced. The last 6 m were soft and easy drillable. The hole was displaced to 1.35 SG bentonite mud prior to running conductor.

4 joints of 30" conductor was run from the Auxiliary rig and landed off at the 26" hole shoulder. 2 hrs were used to stab in the 30" conductor into the hole due to poor visibility at sea bed with the ROV.

The conductor was then cemented on bottom using 1.56 SG X-lite cement slurry, and the running tool was released from the conductor without waiting on cement.

5.3.2 Experiences / Recommendations

36" BHA

A Red Baron Heavy-Duty 26" x 36" HO with inserts was used in combination with a 17 ½" mill-tooth bit. As a precaution to avoid angle build-up, the top hole was drilled with very low progress and only 0-2 t WOB. Minor wear was present at the cutter structure on the bit and the HO, but the body of the HO and the shanks for the rollers were severely worn and ringed out.

Recommendation : Evaluate if insert cutters is necessary in future wells in the area. Mill tooth structure should be strong enough with this low WOB and drills boulders more effective then inserts.

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

45 of 86

Rev. no.

0

5.4 12 ½" section

5.4.1 *Summary*

A 12 ¼" pendulum BHA with a mill-tooth bit was made up and run down to sea bed from the Auxiliary rig, while the conductor was run and cemented from the Main rig.

The 12 ¼" section was drilled directly out of the 30" shoe track and down to 1357 m with an average ROP of 81 m/hr (28 % higher ROP then best offset well).

The hole was displaced to 1.30 SG mud prior to POOH. Tight spots of 10-15 ton were experienced from approx. 1250 m, and the BHA was pumped out of hole into the 30" conductor. A wiper trip was then performed to TD, but the hole was in excellent condition and the BHA was pulled out of hole without any resistance.

The 9 5/8" casing was made up in doubles and racked back during the wireline operations of the Alve well

The 18 3/4" WH housing was crossed over to 9 5/8" casing 9 m below the WH.

No tight spots were observed while running in hole with the 9 5/8" casing down to 1349 m. The casing was cemented to surface, and full returns were verified with the ROV at seabed.

5.4.2 Experiences / Recommendations

12 1/4" hole drilled out of 30" conductor

The 12 ¼" hole was drilled directly out of the 30" conductor, without drilling out shoe track and rat hole with a larger OD bit first.

No problems were experienced while running in/out with 12 1/4" BHA or while running the 9 5/8" casing.

The shoe track was drilled out in 1 m steps and reamed properly prior to drilling ahead.

12 1/4" Mill-tooth bit and ROP

The 929 m long section was drilled with a Security EBXSC1S (1-1-7W) mill-tooth bit with an average of 81 m/hr. This is approx. 28% faster then the best offset well. The bit was graded 2-2-NO-A-E-I-NO-TD.

Wiper trip

Due to some tight spots of 10-15 ton, the BHA was pumped out of hole and into the 30" shoe. It was then decided to RIH again and perform a wiper trip to TD. No more resistance was observed neither when running in hole or POOH after the wiper trip. 7.5 hrs were used on the wiper trip.

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no. 46 of 86

0

Recommendation: Based on experiences from the previous offset wells, it has been a best practice to not perform a wiper trip, as some drag (10-15 ton) is "normal" when pulling out of hole. No hole problems while running casing has been experienced in the area.

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no. 47 of 86

0

5.5 8 ½" section

5.5.1 *Summary*

The shoe track and 3 m of new formation was drilled out and cleaned using seawater and hivis pills. A LCM pill was then placed in open hole prior to performing an XLOT equivalent to 1.55 SG.

The well was then displaced to 1.30 SG Glydrill WBM prior drilling down to top reservoir at 1660 m. Two cores were cut from 1662 - 1714 m.

Due to the HC discovery, the well was drilled to the extended TD at 2317 m (200 m into Grey beds). Attempted to pull and pump out of hole, but increased drag made it necessary to back ream out of hole and into the 9 5/8" csg shoe. Run in hole again, and worked a few tight spots and pulled out of hole without any further problems.

The reservoir was then logged with a total of 6 wireline runs.

The MDT (mini-DST) was stuck once and was fished by using the cut and thread method.

5.5.2 Experiences / Recommendations

8 ½" bit and ROP

The section down to core point (300 m) and after the coring down to TD (642 m) was drilled with a Security FS2565E PDC bit with a total average ROP of 38 m/hr. This is the highest ROP that is achieved in the area, and the bit has also performed very well in two offset wells. No indications of bit ballling were observed.

"Unexpected" high ECD values experienced

While drilling the section with 2500 LPM, the MWD ECD values gradually increased from 1.44 SG to 1.54 SG towards TD, at times peaking up to 1.57 SG.

800 m of 5" DP was used in open hole, the rest of the string consisted of 5 ½" DP.

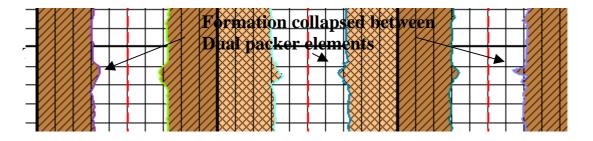
Theoretical values: Mudcalc (Statoil's in-house hydraulic program) calculated 1.41-1.43 SG, mud supplier's (MI) more advanced program calculated an ECD of 1.46-1.48 SG.

Wiper trip after stuck MDT WL tool

After the MDT tool was fished, a WL run including a 6-armed caliper was run.

The caliper clearly showed a reduced diameter to 6.25" over the interval between the packer elements on the MDT at the depth were a mini-DST was performed and the tool went stuck.

Restricted


Doc. no. **04D94*224014** Date

2004-10-14

Rev. no. 48 of 86

0

Due to an OD of 7" on the Dual packer, a wiper trip was performed down to 1750 m prior to the last MDT WL run.

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

49 of 86

0

5.6 Permanent plug and abondment

The entire open hole was plugged back with 3 gas-tight balanced cmt plugs and a 4th cmt plug was placed in the transition zone from 8 ½" hole and 100 m into the 9 5/8" casing.

The cement plug was pressure tested to 70 bar above XLOT at 9 5/8" csg shoe (110 Bar).

A 9 5/8" EZSV w/ hydraulic RT was run in combination with a BOP test plug in the same string. No indications of releasing the WB were observed, but the EZSV was set at 620 m.

The EZSV was pressure tested to 110 bar (a clear difference in test volume compared to the cmt plug stated the plug was holding) and the well was displaced to seawater.

The WB was not attached to the BOP plug test tool, and a separate run was made to retrieve the WB.

The BOP was then unlatched and pulled to surface from the main rig.

Meanwhile a 200 m surface cmt plug was placed on top of the 9 5/8" EZSV and the 20" x 30" WH was cut 4 m below the sea bed using the Aux rig.

5.6.1 Experiences / recommendations

20" Housing int length

To fulfill all requirements regarding cutting of the surface casing min. 5 m below sea bed, the design of the $18 \frac{3}{4}$ " x 9 5/8" Housing joint must be optimized. To avoid conflict between the MOST cutting tool and the 9 5/8" X/O (tool OD = 12"), the surface casing was cut 4 m below seabed. An exemption against WR0436 was written and approved (ref. Synergi no. 263454).

Recommendation: The 20" interval on the Housing joint must be long enough to take care of the requirement of cutting 5 m below seabed.

Restricted

Doc. no. **04D94*224014**

Date **2004-10-14**

O STATOIL

Rev. no.

50 of 86

5.7 Figures and tables

Restricted

Doc. no. **04D94*224014** Date

2004-10-14

STATOIL

Rev. no.

51 of 86

5.7.1 Well schematic well 6608/11-4

Fig. 4.1 Well Schematic

WELL SCHEMATIC

6608/11-4 PL128, Linerle Field:

Well:

West Navigator

HOLE CASING			1								
SB 378		SHOE	CSG.	ос	TO	LOT / FIT		CASING		DLE	НС
36" 425 30" Type: 309.7 lb/ft, X-52, ST2 Drift: 27,813" N/A 12 1/4" 1357 20" Type: 209 lb/ft, X-65 1x bow type / 4 first joints 1x	RKB	MD	TVD			[SG]	CENTRALIZERS	TYPE / RAD. MARKERS	SIZE		
12 1/4" 1357				378	378					378	SB
12 1/4" 1357 20" Type: 209 lb/ft, X-65		426	426			N/A			30"		36"
(GR-RES + Pressure		1349	1349				1 x Bow type / 4 first joints	Interval: 378 - 388 m (extension it): Type: 209 lb/ft, X-65 Interval: 388 - 1349 m:	X		12 1/4"
								-			8 1/2"

RestrictedDoc. no.
04D94*224014

Date **2004-10-14**

O STATOIL

Rev. no. 53 of 86

0

5.7.2 P&A wellbore schematic

Fig. 4.2 P&A Schematic

6608/11-4 Well:

Permanent Plug and Abondment Well Schematic

Rig:

Comments:

PL128, Linerle - North east segment West Navigator

RKB-MSL: 36,0 m

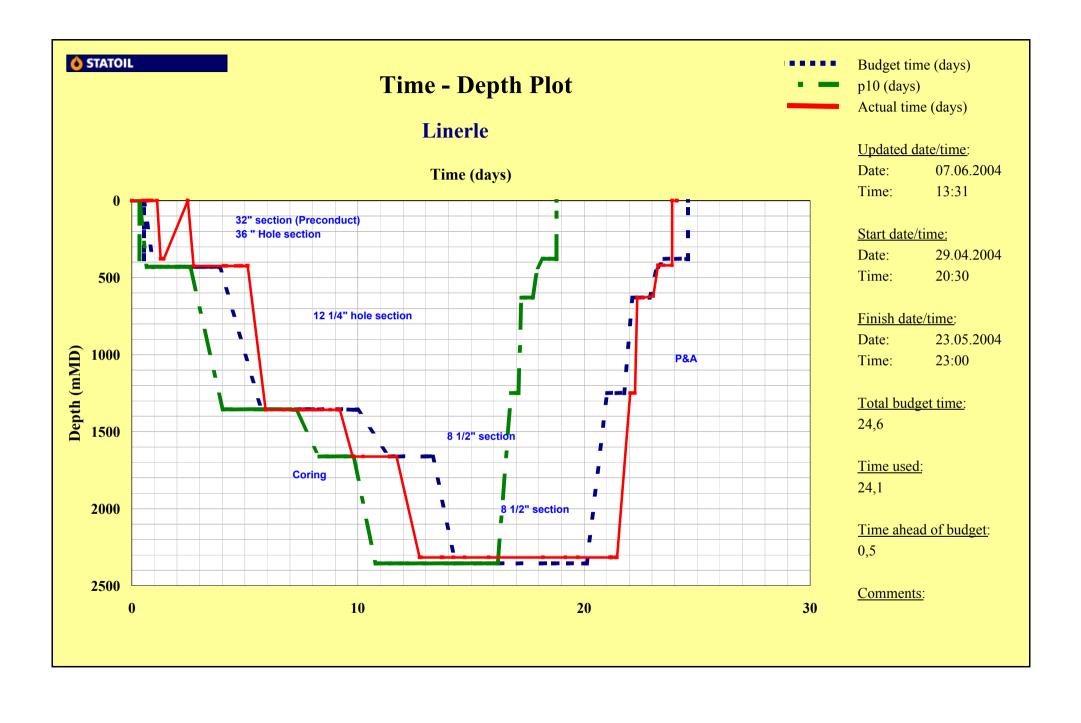
All depths refer to RKB

	g.	110011	lavigator									IND-MOL. 30,0 III
НС	DLE		CASING	LOT / FIT	TO	ос	CSG.	SHOE			PLUGGING SEQUENCE DESCRIPTION	Press. Testing
SIZE	TVD MD	SIZE	TYPE / RAD. MARKERS	[SG]	TVD	MD	TVD	MD	RKB	MD		
SB	378				378	378						
36"	425 425	30"	Type: 309.7 lb/ft, X-52, ST2 Drift: 27,813" 4 jnts. Incl. 30" WHH and shoe jnt.	N/A			426	426	Sea water	382 420	20" x 30" cut Top Surface cmt plug (#5)	Not pressure tested
12 1/4"	1357 1357	20" x 9 5/8"	18 3/4" WH hanger Interval: 378 - 388 m (extension it): Type: 209 lb/ft, X-65 Interval: 388 - 1349 m : Type: 53.5 lb/ft, P-110, Vam Top						1.30 SG WBM	620	9 5/8" EZSV Bridge plug Top of cmt plug (#4) - open hole / 9 5/8" csg	70 Bar above LOT 70 Bar above LOT
				XLOT 1.55			1349	1349	cmt plug #4		*** Non-gas tight slurry ***	
										 1525	Top of cmt plug (#3)	
									cmt plug #3		*** Gas-tight slurry ***	
8 1/2"	2317								cmt plug #2	 1790	Top of cmt plug (#2) *** Gas-tight slurry ***	
0 1/2	2317									 2055	Top of cmt plug (#1)	
									cmt plug #1		*** Gas-tight slurry ***	
							2317	2317		 2315	Bottom of cmt plug (#1)	

Restricted

Doc. no. **04D94*224014** Date

2004-10-14


STATOIL

Rev. no.

55 of 86

5.7.3 Time/depth curve

Fig. 4.3 Time/Depth curve

Restricted

Doc. no. **04D94*224014**

Date **2004-10-14**

O STATOIL

Rev. no.

57 of 86

5.7.4

Table 4.1 Timeplanner

Timeplanner

Project planner

LINERLE PROJECT (6608/11-4)

T.O128A.AP.21220_MAIN

= ÷		Start time	End time	Budget time hrs	Acc Budget days	Tech limit hrs	tech	Planned time hrs	Actual time hrs		% comp	Description
111		29.04.04 20:30	30.04.04 12:30	13,0	0,5	4,0	0,2	26,0	16,0	0,7		MOVE [NO 6608/11-4]
1	Thu	29.04.04 20:30	30.04.04 08:30	8,0	0,3	4,0	0,2	6,0	12,0	0,5	100	Transit from Alve to Linerle (17 Nm, 8 Knoph)
1 2	Fri	30.04.04 08:30	30.04.04 12:30	5,0	0,5	0,0	0,2	20,0	4,0	0,7	100	Positioned rig. RD K/C lines from moonpool.
● 4 F		30.04.04 12:30	02.05.04 08:00	0,0	0,0	4,0	0,2	30,0	43,5	1,8		32" [NO 6608/11-4]
3	Fri	30.04.04 12:30	30.04.04 14:00	0,0	0,5	4,0	0,3	4,0	1,5	0,7	100	M: RU and install IHC equipment on drillfloor and deck
1 4	Fri	30.04.04 14:00	30.04.04 14:30	0,0	0,5	0,0	0,3	3,0	0,5	0,8	100	M : Lift in 32" conductor from riser chute and place same in RT.
1 5	Fri	30.04.04 14:30	30.04.04 18:00	0,0	0,5	0,0	0,3	2,0	3,5	0,9	100	M : Lift in hammer from pipe chute.
1 6	Fri	30.04.04 18:00	30.04.04 23:30	0,0	0,5	0,0	0,3	5,0	5,5	1,1	100	M : Lower hammer and install same in conductor.
7	Fri	30.04.04 23:30	01.05.04 03:00	0,0	0,5	0,0	0,3	3,0	3,5	1,3	100	M : Run conductor through RT and install umbilical.
1 8	Sat	01.05.04 03:00	01.05.04 06:00	0,0	0,5	0,0	0,3	6,0	3,0	1,4	100	M : Run conductor/hammer on 5 1/2" DP to seabed.
9	Sat	01.05.04 06:00	01.05.04 06:30	0,0	0,5	0,0	0,3	2,0	0,5	1,4	100	M : Stab conductor into seabed and self pentrate same +/- 7 m.
10	Sat	01.05.04 06:30	02.05.04 08:00	0,0	0,5	0,0	0,3	5,0	25,5	2,5	100	M : Hammer conductor- No go after 5 m. POOH with hammer and conductor.
\$ 1 1 1		02.05.04 08:00	04.05.04 23:30	80,0	3,3	54,0	2,3	49,0	63,5	2,6		36" [NO 6608/11-4]
11	Sun	02.05.04 08:00	02.05.04 14:00	10,0	1,0	8,0	0,7	7,0	6,0	2,7	100	A: RIH with 36" BHA to seabed.
12	Sun	02.05.04 14:00	03.05.04 22:00	25,0	2,0	4,0	0,8	15,0	32,0	4,1	100	A: Drill 36" hole to 423 m (respudded 10 m off location due to boulders).
13	Mon	03.05.04 21:59	03.05.04 22:00	3,0	2,1	2,0	0,9	2,0	0,0	4,1	100	A: POOH to seabed.
14	Mon	03.05.04 22:00	04.05.04 01:00	8,0	2,5	8,0	1,3	5,0	3,0	4,2	100	A : Circulate hole clean and displace to weighted 1.35 SG mud.
15	Tue	04.05.04 01:00	04.05.04 11:00	6,0	2,7	2,0	1,3	1,0	10,0	4,6	100	M : RIH with 30" conductor on 5 1/2" DP to seabed (prep. to run BOP in Main)
16	Tue	04.05.04 11:00	04.05.04 14:30	5,0	2,9	5,0	1,5	3,0	3,5	4,8	100	M : Stab in with 30" conductor and RIH to TD.
17	Tue	04.05.04 14:30	04.05.04 16:30	4,0	3,1	1,0	1,6	2,0	2,0	4,8	100	M : Pump and displace X-lite cement.
18	Tue	04.05.04 16:30	04.05.04 17:30	3,0	3,2	10,0	2,0	2,0	1,0	4,9	100	M : Release RT and landing string. POOH.
19	Tue	04.05.04 17:30	04.05.04 22:30	8,0	3,5	8,0	2,3	6,0	5,0	5,1	100	A : MU and RIH with 12 1/4" BHA.
20	Tue	04.05.04 22:30	04.05.04 23:30	8,0	3,9	6,0	2,6	6,0	1,0	5,1	100	A : Drill out and ream 30" conductor shoe.
₽ 11 [1]		04.05.04 23:30	09.05.04 01:30	146,0	6,1	113,0	4,7	89,0	98,0	4,1		12 1/4" [NO 6608/11-4]
21	Tue	04.05.04 23:30	05.05.04 18:30	45,0	5,8	35,0	4,0	35,0	19,0	5,9	100	A : Drill 12 1/4" hole to appr. 1350 m.
1 22	Wed	05.05.04 18:30	06.05.04 14:00	5,0	6,0	4,0	4,2	4,0	19,5	6,7	100	A : Circulate bottoms up and POOH.
23	Thu	06.05.04 13:59	06.05.04 14:00	6,0	6,2	5,0	4,4	5,0	0,0	6,7	100	A : POOH with landing string.
1 24	Thu	06.05.04 14:00	07.05.04 07:30	32,0	7,5	26,0	5,5	13,0	17,5	7,5	100	A : RU and run 18 3/4" WH x 9 5/8" csg to 1350 m.
1 25	Fri	07.05.04 07:30	07.05.04 10:30	5,0	7,8	3,0	5,6	2,0	3,0	7,6	100	A : Pump and displace cmt.
1 26	Fri	07.05.04 10:30	07.05.04 11:00	2,0	7,8	2,0	5,7	1,0	0,5	7,6	100	A : Release RT and wash WH.
27	Fri	07.05.04 11:00	07.05.04 20:30	10,0	8,3	7,0	6,0	1,0	9,5	8,0	100	M : Cont. run BOP and riser and land same (start MU 8 1/2" BHA in Aux rig).
28	Fri	07.05.04 20:30	07.05.04 23:30	20,0	9,1	15,0	6,6	10,0	3,0	8,1	100	M : RD BOP handling equipment and prepare for RIH with 8 1/2" BHA.
1 29	Fri	07.05.04 23:30	08.05.04 05:30	0,0	9,1	0,0	6,6	6,0	6,0	8,4	100	M/A: Planned rig maintenance
30	Sat	08.05.04 05:30	08.05.04 15:00	12,0	9,6	10,0	7,0	8,0	9,5	8,8	100	M : RIH with 8 1/2" BHA -function test BOP and pressure test csg/BOP.
31	Sat	08.05.04 15:00	08.05.04 22:30	6,0	9,8	4,0	7,2	2,0	7,5	9,1	100	M : Drill shoetrack and 3 m new formation with SW.
	Sat	08.05.04 22:30	09.05.04 01:30	3,0	10,0	2,0	7,3	2,0	3,0	9,2	100	M : Place Hi-vis pill and perform XLOT.
● 11 F		09.05.04 01:30	21.05.04 01:30	224,0	9,3	174,5	7,3	256,0	288,0	12,0		8 1/2" [NO 6608/11-4]
33	Sun	09.05.04 01:30	09.05.04 15:00	35,0	11,4	45,0	9,2	30,0	13,5	9,8	100	M : Drill 8 1/2" hole to top reservoar. Check for HC.
34	Sun	09.05.04 15:00	10.05.04 02:00	10,0	11,8	0,0	9,2	8,0	11,0	10,2	100	M : Circulate hole clean and POOH for coring.
35	Mon	10.05.04 02:00	11.05.04 06:00	28,0	13,0	0,0	9,2	42,0	28,0	11,4	100	M: RIH. Cut 2 cores (52 m). POOH.
36	Tue	11.05.04 06:00	11.05.04 13:30	7,5	13,3	8,0	9,5	8,0	7,5	11,7	100	M: RIH w/ 8 1/2" BHA

Project planner

LINERLE PROJECT (6608/11-4)

T.O128A.AP.21220_MAIN

2	5.1		Start time	End time		Budget	limit	tech		time	actual	% comp	Description
= 1			09.05.04 01:30	21.05.04 01:30	hrs 224,0			-	hrs 256,0	hrs 288,0	days 12.0		8 1/2" 「NO 6608/11-4]
<u>~</u>	37	Tue	11.05.04 13:30	12.05.04 01:30	24,5	9,3	174,5 1,0	7,3 9,5	30,0	288,u 24,5	12,0	100	M : Drill 8 1/2" hole to extended TD at approx. 2320 m.
5	38		12.05.04 14:00	12.05.04 15:30	1.5	14,4	3,0	9,7	3,0	1,5	12,8		M : Circulate hole clean.
1	39			13.05.04 13:30	19,0	15,2	12,0	10,2	22,0	22,0	13,7		M : Back ream. Wiper trip. Circulate and POOH for WL logs. RB 8 1/2" BHA.
9	40	Thu		13.05.04 14:30	1,0	15,2	0,5	10,2	1,0	1,0	13,8		M : RU for WL logging.
9	41	Thu	13.05.04 14:30	14.05.04 02:00	13,5	15,8	10,5	10,6	11,0	11,5	14,2	100	M : WL log run #1 : PEX-HRLA-ECS-DSI
9	42	Fri	14.05.04 02:00	14.05.04 14:00	10,5	16,2	7,5	10,9	8,0	12,0	14,7	100	M : WL log run #2 : CMR+ - FMI
1	43	Fri	14.05.04 14:00	15.05.04 15:30	20,0	17,1	18,0	11,7	18,0	25,5	15,8	100	M : WL log run #3 : MDT (press. points + water samples)
1	44	Sat	15.05.04 15:30	18.05.04 01:00	25,0	18,1	22,5	12,6	24,0	57,5	18,2	100	M: WL log run #4: MDT (mini DST, oil samples). Stuck, cut & thread.
9	45	Tue	18.05.04 01:00	19.05.04 01:00	12,5	18,6	9,5	13,0	12,0	24,0	19,2	100	M : WL log run #5 : VSP-MSIP-EMS-GPIT
9	46	Wed	19.05.04 01:00	19.05.04 14:00	0,0	18,6	0,0	13,0	14,0	13,0	19,7	100	M : RIH and perform wiper trip to approx. 1750 m. POOH.
9	47	Wed	19.05.04 14:00	21.05.04 00:00	0,0	18,6	24,0	14,0	24,0	34,0	21,1	100	M : WL log run #6 : MDT (mini DST + oil samples)
9	48	Fri	21.05.04 00:00	21.05.04 01:30	1,0	18,7	0,5	14,0	1,0	1,5	21,2	100	M : RD WL equipment.
9	49	Fri	21.05.04 00:00	21.05.04 00:00	15,0	19,3	12,5	14,6	0,0	0,0	21,2	100	M: WL log run #7: MSCT
\$ [1]	լե		21.05.04 01:30	23.05.04 23:00	127,5	5,3	106,0	4,4	69,0	69,5	2,9		PERM P&A [NO 6608/11-4]
	50	Fri	21.05.04 01:30	21.05.04 06:00	16,0	20,0	15,0	15,2	6,0	4,5	21,4	100	M : RIH with 3 1/2" cement stinger on 5 1/2" DP.
9	51	Fri	21.05.04 06:00	21.05.04 07:30	4,0	20,1	3,0	15,3	2,0	1,5	21,5	100	M : Circulate hole clean.
9	52	Fri	21.05.04 07:30	21.05.04 21:30	21,5	21,0	14,0	15,9	15,0	14,0	22,0	100	M : Place a 3-stage cmt plug in OH and 1 plug 100 m into 9 5/8" csg.
1	53	Fri	21.05.04 21:30	22.05.04 01:00	10,0	21,4	13,0	16,4	4,0	3,5	22,2		M : POOH with cmt stinger.
1	54	Sat	22.05.04 01:00	22.05.04 02:30	8,0	21,8	8,0	16,8	3,0	1,5	22,3		M : WOC - test cmt plug. Meanwhile RIH with WB RT and 9 5/8" EZSV.
1	55		22.05.04 02:30	22.05.04 05:00	9,0	22,1	8,0	17,1	5,0	2,5	22,4		M : Retrieve WB and set 9 5/8" EZSV at 630 m.
9	56		22.05.04 05:00	22.05.04 11:30	6,0	22,4	6,0	17,4	4,0	6,5	22,6		M :Pressure test packer. Displace well to SW and POOH. RIH w/ WB RT and retrieve WB.
9	57	Sat	22.05.04 11:30	22.05.04 22:00	12,0	22,9	8,0	17,7	10,0	10,5	23,1		M : Prepare and unlatch BOP. Start pull BOP and riser in Main rig.
9	58	Sat	22.05.04 22:00	23.05.04 03:00	8,0	23,2	8,0	18,0	5,0	5,0	23,3		A : RIH with 5 1/2" DP and set surface cmt plug. POOH.
	59		23.05.04 03:00	23.05.04 09:00	8,0	23,6	6,0	18,3	6,0	6,0	23,5		A : MU WH cut BHA and RIH.
	60		23.05.04 09:00	23.05.04 18:00	12,0	24,1	10,0	18,7	5,0	9,0	23,9		A : Cut WH and POOH with same / pull BOP.
	61	Sun	23.05.04 17:59	23.05.04 18:00	11,0	24,5	5,0	18,9	4,0	0,0	23,9		M : Cont. pull BOP and riser. RD surface equipment.
1	62	Sun	23.05.04 18:00	23.05.04 23:00	2,0	24,6	2,0	19,0	0,0	5,0	24,1	100	M : Retrieve transponders. R/D K/C lines.
L			ļ	ļ	24,6	days	19,0	days	21,6	24,1	days		

RestrictedDoc. no.
04D94*224014

Date **2004-10-14**

STATOIL

Rev. no.

60 of 86

0

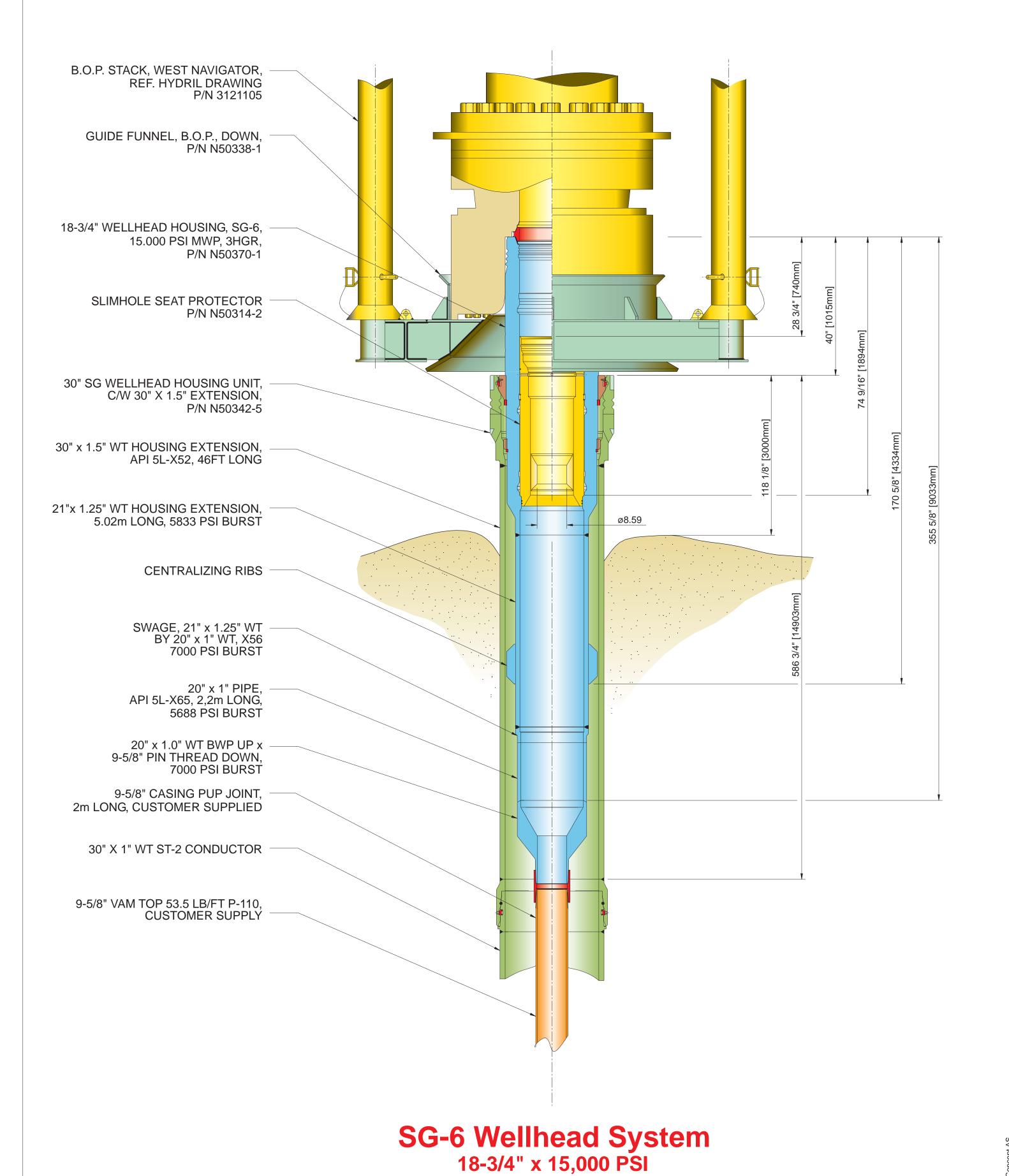

5.7.5 Wellhead system

Fig. 4.4 Wellhead System Schematic

West Navigator

Well 6608/11-4 'Linerle'

ABB Offshore Systems AS

Division Subsea

Drawing Number: N600891-3

RestrictedDoc. no.
04D94*224014

Date **2004-10-14**

STATOIL

Rev. no.

62 of 86

5.7.6 Drilling fluids

Table 4.2 Summary of Drilling fluids program

Well: 6608/11-4 FINAL DRILLING FLUIDS PROGRAMME

Field: PL128, Linerle - North east segment

Rig: West Navigator

НС	DLE	CAS	SING	MUD TYPE	MW	LGS	10 sec.	10 min.	Funnel Visc.	Fann 3 rpm	O / W ratio	PV	API FL	HTHP FL	MBT	pН	Kcl	Glyc.	Ca ++	Sulphate	Usage Volume
SIZE	TVD MD	SIZE	TVD MD		[SG]	[KG/m³]	[Pa]	[Pa]				[mPa]	[ml]	[ml]	[KG/m³]		[KG/m³]	[%]	[mg/l]	[mg/l]	[m³]
36"	425 425	30"	426 426	SW/ Bentonite/ Polymer	1,03 - 1,35				>150							8 - 9					232
				Because of slo	ow drilling, mo	ore sweeps	than estin	nated wher	e used.									I			
2 1/4"	1357 1357	9 5/8"	1349 1349	SW/ Bentonite/ Polymer	1,03 - 1,30				>150							8 - 9					1061
				Pumped 5 - 10 Worked tight s Ran back to be	pots by pump	oing 1.3sg r	mud at the	same time	to aid on							I.					
3 1/2"	2317 2317	0		KCI/ Pac/ Glycol	1,30	26 - 107	3 - 4	4 - 6	na	5 - 6	na	14 - 17	1,8 - 2,2	na	10 - 46	8,6 - 9,3	133 - 148	3,5 - 4	400 - 680	169 - 211	175
				After the XLOT After the displa However, the s The mud propo	acement, it was sulphate leve erties were m	as observe I dropped a naintained b	d that the las we conting	level increa nued drillir the active s	ased above ng, and was system with	the progra s recorded n 2-4 m³ ar	ammed spe well within hour of pr	ecification the specif	(200 mg/lit ications pr	re). This w ior to start	as probably logging.				nole.		

Restricted

Doc. no. **04D94*224014**

Date **2004-10-14**

STATOIL

Rev. no.

64 of 86

0

5.7.7 Cementing data

Table 4.3 Summary of cementing data

FINAL CEMENT PROGRAMME

Field: PL128, Linerle
Rig: West Navigator

6608/11-4

Well:

н	DLE	CASING S	НОЕ	тос	VOLUME/ EXCESS	ss								SPACER	DISPLACEMENT		
SIZE	TVD MD	SIZE	TVD MD	TVD MD	EXOLOG	Components	Lead [ltr/100kg]	Tail [ltr/100kg]	Density [SG]	Yield [ltr/100kg]	Stat. / Circ. Temp [°C]	Thickening time [hrs to 30 Bc]	API Free Water [%]	API Fluid loss [cc/30min]	24 hrs C.S.		Fluids and Rates
36"	426 426	30"	426 426	Sea bed Sea bed	40.3 m3 300 %	X-lite cement CaCl ₂ liquid NF-6 Seawater		4,50 0,10 53,84	1,52	107,40 Code DWLSP	6-8 API	03:19	n/a	n/a	800	30 m3 Sea water	Sea water 1000 lpm
12 1/4"	1349 1349	9 5/8"	1349 1349	Sea bed Sea bed	Lead: 44 m3 Tail: 15 m3	Norcem "G" + 0,1 % EZ-FLO Econolite HR-4L NF-6 Sea water Fresh water	3,20 2,00 0,10 93,56	- 1,00 0,10 - 42,92	L: 1,56 T: 1,92	L: 129.95 Code STL40 T: 75,11 Code MPT14	38/30 API	L : 5:18 T: 4:58	L: 0.3 T: 1.1	n/a	L:+/- 500 T: 1400	60 m3 Sea water	Sea water 3000 lpm
8 1/2"	2317	OH Plug #1 #2 & #3		1516	#1 = 11 m3 #2 = 11.6 m3	Norcem "G" + 0,1 % EZ-FLO Gascon Halad-613L CFR-5LE+ HR-5L NF-6 Fresh water		3,50 9,00 2,50 0,50 0,10 31,10	1,90	77,76 Code GTT90	87/70 API	04:28	0	54	2400	3 x 5 m3 1.60 SG Tuned Spacer	WBM 2500 lpm
		Plug #4	1516	1250	13 m3	Norcem "G" + 0,1 % EZ-FLO Halad-613L HR-4L NF-6 Fresh water		0,50 0,80 0,10 42,65	1,92	75,11 Code MPT05	50/40 API	03:14	0,58	n/a	2860	8 m3 1.60 SG Tuned Spacer	WBM 2500 lpm
		Plug #5	620	420	7.4 m3	Norcem "G" + 0,1 % EZ-FLO NF-6 Sea water		0,10 46,74	1,90	77,90 Code STTNT	15/13 API	> 4 hrs	n/a	n/a	+/-1000	Sea water	Sea water

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

66 of 86

5.7.8 Bottom hole assemblies

BHA report

Wellbore: NO 6608/11-4

BHA seq: 1 BHA category: Drilling BHA description: 17 1/2" x 26/36" HO assembly

BHA no: 1

String component	OD in	ID in	Length m	Acc length m
BIT	17,500		0,40	0,40
FLOAT SUB	10,937		0,77	1,17
HOLE OPENER	36,000		4,40	5,57
ANDERDRIFT	9,500	3,000	2,53	8,10
XO SUB	9,500	3,000	0,59	8,69
TOTCO RING				8,69
DRILL COLLAR	9,500	3,000	46,03	54,72
XO SUB	9,500	3,000	0,94	55,66
DRILL COLLAR	8,000	3,000	55,42	111,08
XO SUB	8,000	3,000	0,95	112,03
HWDP 5 1/2"	5,500		84,12	196,15
DRILL PIPE	5,500			196,15

DP 5 1/2"

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no.

67 of 86

232,19

BHA seq:	2	BHA category:	Drilling	BHA description:	12 1/4" Pendulum assembly				
BHA no:	2								
		String component			OD in	ID in	Length m	Acc length m	
		BIT			12,250		0,31	0,31	
		BIT SUB W/FLOAT			8,250	2,813	0,91	1,22	
		X-O PIN X PIN			8,250	2,813	0,90	2,12	
		MPR SUB			8,250	2,813	5,03	7,15	
		MWD DCP			8,250	2,813	11,19	18,34	
		SAVER SUB			8,250	2,813	0,68	19,02	
		PONY COLLAR			8,000	2,813	2,95	21,97	
		TOTCO RING						21,97	
		STRING STAB			12,250	2,813	1,91	23,88	
		DRIL COL			8,000	2,813	8,83	32,71	
		STRING STAB			12,250	2,813	1,68	34,39	
		DRIL COL			8,000	2,813	73,30	107,69	
		JAR			8,000	2,750	9,65	117,34	
		DRIL COL			8,000	2,813	27,26	144,60	
		X-OVER,			8,000	3,000	0,88	145,48	
		HWDP 5 1/2"			5,500	3,000	86,71	232,19	

5,500

DP 5 1/2"

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no.

68 of 86

1075,97

0

BHA seq:	3	BHA category:	Drilling	BHA description:				
BHA no:	3							
		String component			OD in	ID in	Length m	Acc length m
		BIT			8,500		0,33	0,33
		STAB NB CPF			8,500	2,750	1,21	1,54
		MWD, ONTRAK W/GR	&RES		6,750	2,750	5,02	6,56
		STAB MODULAR			8,500	2,750	1,26	7,82
		ВСРМ			6,750	2,750	3,21	11,03
		X-OVER STOP SUB			6,750	2,750	0,50	11,53
		FLOAT SUB			6,500	2,750	0,48	12,01
		STAB. W/TOTCO			8,500	2,750	2,08	14,09
		DRIL COL			6,500	2,813	75,29	89,38
		JAR			6,500	2,813	8,52	97,90
		DRIL COL			6,500	2,813	28,28	126,18
		HWDP 5"			5,000	3,000	83,06	209,24
		DP 5"			5,000	4,276	865,62	1074,86
		X-OVER			5,500	4,400	1,11	1075,97

5,500

4,778

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no.

69 of 86

1	•	,	

String component String comp	BHA seq:	4	BHA category:	Drilling	BHA description:	Co	oring Asseml	bly	
String component OD in ID in Length mm Acc length mm CORE HEAD 8,500 0,36 0,36 STABILIZER 8,468 4,000 1,22 1,58 CORE BARREL 6,750 4,000 3,35 4,93 STABILIZER 8,468 4,000 1,22 6,15 CORE BARREL 6,750 4,000 3,35 9,50 STABILIZER 8,468 4,000 1,22 10,72 CORE BARREL 6,750 4,000 1,22 10,72 CORE BARREL 6,750 4,000 1,22 19,86 CORE BARREL 6,750 4,000 1,22 19,86 CORE BARREL 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 2,813 18,83									
CORE HEAD 8,500 0,36 0,36 STABILIZER 8,468 4,000 1,22 1,58 CORE BARREL 6,750 4,000 3,35 4,93 STABILIZER 8,468 4,000 1,22 6,15 CORE BARREL 6,750 4,000 3,35 9,50 STABILIZER 8,468 4,000 1,22 10,72 CORE BARREL 6,750 4,000 7,92 18,64 STABILIZER 8,468 4,000 1,22 10,72 CORE BARREL 6,750 4,000 7,92 18,64 STABILIZER 8,468 4,000 1,22 19,86 CORE BARREL 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 19,86 CORE BARREL 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 2,813 18,83 50,17 STABILIZER 8,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01	BHA no:	4							
STABILIZER 8,468 4,000 1,22 1,58 CORE BARREL 6,750 4,000 3,35 4,93 STABILIZER 8,468 4,000 1,22 6,15 CORE BARREL 6,750 4,000 3,35 9,50 STABILIZER 8,468 4,000 1,22 10,72 CORE BARREL 6,750 4,000 7,92 18,64 STABILIZER 8,468 4,000 1,22 19,86 CORE BARREL 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 4,000 0,86 29,86 SAFETY SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 8,52			String component					-	•
CORE BARREL 6,750 4,000 3,35 4,93 STABILIZER 8,468 4,000 1,22 6,15 CORE BARREL 6,750 4,000 3,35 9,50 STABILIZER 8,468 4,000 1,22 10,72 CORE BARREL 6,750 4,000 7,92 18,64 STABILIZER 8,468 4,000 1,22 19,86 CORE BARREL 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 4,000 0,86 29,86 SAFETY SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 8,52 <td></td> <td></td> <td>CORE HEAD</td> <td></td> <td></td> <td>8,500</td> <td></td> <td>0,36</td> <td>0,36</td>			CORE HEAD			8,500		0,36	0,36
STABILIZER 8,468 4,000 1,22 6,15 CORE BARREL 6,750 4,000 3,35 9,50 STABILIZER 8,468 4,000 1,22 10,72 CORE BARREL 6,750 4,000 7,92 18,64 STABILIZER 8,468 4,000 1,22 19,86 CORE BARREL 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 0,59 30,45 FLOAT SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22<			STABILIZER			8,468	4,000	1,22	1,58
CORE BARREL 6,750 4,000 3,35 9,50 STABILIZER 8,468 4,000 1,22 10,72 CORE BARREL 6,750 4,000 7,92 18,64 STABILIZER 8,468 4,000 1,22 19,86 CORE BARREL 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 4,000 0,86 29,86 SAFETY JUNT 6,750 0,59 30,45 FLOAT SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 17,9 51,96 DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28			CORE BARREL			6,750	4,000	3,35	4,93
STABILIZER 8,468 4,000 1,22 10,72 CORE BARREL 6,750 4,000 7,92 18,64 STABILIZER 8,468 4,000 1,22 19,86 CORE BARREL 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 0,59 30,45 FLOAT SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01 </td <td></td> <td></td> <td>STABILIZER</td> <td></td> <td></td> <td>8,468</td> <td>4,000</td> <td>1,22</td> <td>6,15</td>			STABILIZER			8,468	4,000	1,22	6,15
CORE BARREL 6,750 4,000 7,92 18,64 STABILIZER 8,468 4,000 1,22 19,86 CORE BARREL 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 0,59 30,45 FLOAT SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 1,11 1095,01 X-OVER 7,000 3,000 1,11 1095,01			CORE BARREL			6,750	4,000	3,35	9,50
STABILIZER 8,468 4,000 1,22 19,86 CORE BARREL 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 0,59 30,45 FLOAT SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			STABILIZER			8,468	4,000	1,22	10,72
CORE BARREL 6,750 4,000 7,92 27,78 STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 0,59 30,45 FLOAT SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			CORE BARREL			6,750	4,000	7,92	18,64
STABILIZER 8,468 4,000 1,22 29,00 CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 0,59 30,45 FLOAT SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			STABILIZER			8,468	4,000	1,22	19,86
CORE BARREL EXT 6,750 4,000 0,86 29,86 SAFETY JOINT 6,750 0,59 30,45 FLOAT SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			CORE BARREL			6,750	4,000	7,92	27,78
SAFETY JOINT 6,750 0,59 30,45 FLOAT SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			STABILIZER			8,468	4,000	1,22	29,00
FLOAT SUB 7,000 3,000 0,89 31,34 DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			CORE BARREL EXT			6,750	4,000	0,86	29,86
DRILL COLLAR 6,500 2,813 18,83 50,17 STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			SAFETY JOINT			6,750		0,59	30,45
STABILIZER 8,500 2,813 1,79 51,96 DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			FLOAT SUB			7,000	3,000	0,89	31,34
DRILL COLLAR 6,500 2,813 56,46 108,42 JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			DRILL COLLAR			6,500	2,813	18,83	50,17
JAR 6,500 2,813 8,52 116,94 DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			STABILIZER			8,500	2,813	1,79	51,96
DRILL COLLAR 6,500 2,813 28,28 145,22 HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			DRILL COLLAR			6,500	2,813	56,46	108,42
HWDP 5" 5,000 3,000 83,06 228,28 DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			JAR			6,500	2,813	8,52	116,94
DRILL PIPE 5,000 3,000 865,62 1093,90 X-OVER 7,000 3,000 1,11 1095,01			DRILL COLLAR			6,500	2,813	28,28	145,22
X-OVER 7,000 3,000 1,11 1095,01			HWDP 5"			5,000	3,000	83,06	228,28
			DRILL PIPE			5,000	3,000	865,62	1093,90
DRILL PIPE 5,500 1095,01			X-OVER			7,000	3,000	1,11	1095,01
			DRILL PIPE			5,500			1095,01

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no.

70 of 86

(

BHA seq:	5	BHA category:	Drilling	BHA description:	8			
BHA no:	3							
		String component			OD in	ID in	Length m	Acc length m
		BIT			8,500		0,33	0,33
		STAB NB CPF			8,500	2,750	1,21	1,54
		MWD, ONTRAK W/GR	&RES		6,750	2,750	5,02	6,56
		STAB MODULAR			8,500	2,750	1,26	7,82
		ВСРМ			6,750	2,750	3,21	11,03
		X-OVER STOP SUB			6,750	2,750	0,50	11,53
		FLOAT SUB			6,500	2,750	0,48	12,01
		STAB. W/TOTCO			8,500	2,750	2,08	14,09
		DRIL COL			6,500	2,813	75,29	89,38
		JAR			6,500	2,813	8,52	97,90
		DRIL COL			6,500	2,813	28,28	126,18
		HWDP 5"			5,000	3,000	83,06	209,24
		DP 5"			5,000	4,276	865,62	1074,86
		X-OVER			5,500	4,400	1,11	1075,97
		DP 5 1/2"			5,500	4,778		1075,97

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no. 71 of 86

BHA seq:	6	BHA category:	Drilling	g BHA description: BHA for wiper trip between logs.					
BHA no:	5								
		String component			OD	ID	Length	Acc length	
					in	in	m	m	
		CASING CUTTER					13,34	13,34	
		DRIL COL			8,000	2,813	55,16	68,50	
		X-OVER			5,500	4,400	0,88	69,38	
		DP 5 1/2"			5,500	4,778		69,38	
Printed date:	:	24.05.2004			DBR we	ell report			Page 1 of 1

Restricted

Doc. no. 04D94*224014

Date **2004-10-14**

O STATOIL

Rev. no.

72 of 86

5.7.9 Bit record

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

Rev. no.

73 of 86

Bit record

Wellbore: NO 6608/11-4

Nozzles (n/32")

Run no	Bit size	Bit no	BHA no	Bit type	IADC code	Bit manufacturer	Serial no	no x n	no x n	no x n		Flow area in2
1	17 1/2"	1RR	1	MXT1	115	Hughes Christensen	601267	3 x 18	х	х	х	,746
1	26"/36"	НО	1	HO HEAVY DUTY	422	Smith Red Baron	E62756	6 x 12	6 x 11	х	х	1,220
2	12 1/4"	2	2	EBXSC1S	117W	Security DBS	10624161	1 x 16	1 x 16	2 x 18	х	,890
3	8 1/2"	3	3	FS2565E	S424	Security DBS	10527916	5 x 13	Х	Х	х	,649
4	8 1/2"	4RR	4	CT103	M623	DIAMANT BOART S	7950351	х	Х	Х	х	
5	8 1/2"	4RR2	4	CT103	M623	DIAMANT BOART S	7950351	х	Х	Х	х	
6	8 1/2"	3RR2	3	FS2565E	S424	Security DBS	10527916	5 x 13	Х	Х	х	,649
7	8 1/2"	3RR3	6	FS2565E	S424	Security DBS	10527916	5 x 13	х	х	х	,649

Wellbore: NO 6608/11-4

Run no	Bit size	Pump rate I/min	Pump press bar	Depth in mMD	Depth out mMD	Form drld m	Total drld m	Drld Circ hrs hrs	ROP m/hr	Min WOB ton	Max WOB ton	Min RPM	Max RPM	Torque Min Nm	Torque Max Nm
1	17 1/2"	5000	116	378	428	50,0	50,0	21,5 29,6	2,3	0	4	110	140	4000	9000
1	26"/36"	5000	116	378	425	47,0	48,0	21,5 29,6	2,2	0	4	110	140	4000	9000
2	12 1/4"	4500	252	428	1357	929,0	931,0	11,5 20,7	80,8	1	18	60	150	2000	11000
3	8 1/2"	2500	226	1357	1662	305,0	342,0	7,4 22,2	41,2	1	6	60	180	2000	13000
4	8 1/2"	952	89	1662	1688	26,0	26,0	1,6 2,7	16,3	4	12	87	101	5000	7000
5	8 1/2"	950	81	1688	1714	26,0	26,0	1,5 2,6	17,3	6	10	81	99	4000	10000
6	8 1/2"	2450	215	1714	2317	603,0		16,8 35,1	35,9	1	12	96	200	6000	28000
7	8 1/2"														

Wellbore: NO 6608/11-4

IADC dull grading

						_	•			
Run										
no	size	I	0	DC	L	В	G	OC	RP	Remarks
1	17 ½"	2	3	WT	Α	Е	1	WT	TD	HO assembly drilled depth is 17 1/2" hole. 192kREVS.
1	26"/36"	1	1	NO	G	F	0	NO	TD	Drilled depth is to 36" cutter depth. Total 192 Krevs.
2	12 ¼"	2	2	NO	Α	Е	I	NO	TD	Drilled cement from 425 m to 428 m. New Formation from 428 m to 1357 m. Krevs: 89
3	8 1/2"	1	1	NO	Α	Х	I	NO	СР	Drilled shoe track from 1320 m to 1349 m. Drilled rat hole from 1349 m to 1357 m. Krevs: 82
4	8 1/2"	1	1	NO	Α	Х	I	NO	PR	Krevs: 10 Core barrel jammed at 1688 m. Recovery: 72,9 %.
5	8 1/2"	2	1	ВТ	N	Х	I	NO	PR	krevs: 9 Core barrel jammed at 1714 m.
6	8 1/2"	6	2	ВТ	S	Χ	1	NO	TD	Bit in Hole. Krevs 181
7	8 1/2"	6	2	BT	S	Χ	IN	NO	LOG	Bit grading as previous grading.

Restricted

Doc. no. **04D94*224014**

Date **2004-10-14**

STATOIL

Rev. no.

74 of 86

0

6 Appendices

16.05.2004

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

75 of 86

App A Extract of daily activities (DBR summary of activities)

30.04.2004	Rig in transitt from Alve to the Linerle location.
01.05.2004	Sailed and positioned rig at new location "Linerle". Made up 32" x 30" Conductor w/ IHC hydraulic hammer and ran same down to seabed at 375,3 meter (RKB - Seabed, mid tide). Prepared to drive Conductor down using Hammer.
02.05.2004	Tagged seabottom at 375,3 m. Lowered conductor to 378 m. Hammered conductor to 380 m. Suspended hammering due to high inclination. Corrected inclination by repositioning ship. Hammered conductor to 381 m. Suspended hammering due to refusal. Released conductor from shackles with ROV. Attempted to retrieve hammer. Made several attempts without success. Reconnected conductor shackles with ROV. Attempted to pull conductor free. RIH and washed with open ended drillpipe around conductor to 380 m from auxiliary rig. Attempted to pull conductor free. POOH with open ended drillpipe. MU 17 1/2" bit and RIH. Washed/drilled on sides of conductor from seabed to 382 m. Maintained 35 ton overpull on conductor.
03.05.2004	Pulled stuck 30" x 32" Conductor free from seabed and out to surface. Cut slots in Conductor shoe and cleaned same. Pulled stuck Hammer out of Coductor and laid same down on skate and secured. Attempted to drill new 36" hole in same hole as Conductor were hammered -Neg. Respudded well 10 m East of original location and drilled / holeopened to 36" from seabed to 399 meter.
04.05.2004	Drilled 17 1/2" X 26" X 36" hole from 399 m to 425 m. Circulated hole clean and filled same w/ 1,35 sg WBM. POOH w/ BHA. P/U 30" casing w/ wellhead. Installed bulleyes and prepared to run 30" casing in water.
05.05.2004	Ran 30" conductor and cemented same w/ 30" casing at 426 meter. Drilled 30" casing shoe and cleaned rat hole. Drilled new formation w/ 12 1/4" bit from 428 m to 830 meter. Made up cement stand for cementing 9 5/8" casing. Prepared and R/U to run BOP.
06.05.2004	Drilled 12 1/4" hole from 830 m to 1357 m. Attempted to POOH, observed increasing overpull, max 15 ton. Pumped out of hole to 760 m. Observed max 15 ton overpull between 1320m and 1240 m, and between 1180 m and 900 m. Circulated BU at 760 m. POOH to 422 m. Circulated cunductor clean. RIH to 1357 m. RU to run BOP and ran BOP to 305 m in main rig.
07.05.2004	Displaced hole with 90 m3 1,30 SG mud. POOH from 1357 m. RU and ran 9 5/8" casing to 1330 m. PU cement stand and prepared to land casing in wellhead. Prepared to land BOP with Main rig.
08.05.2004	Landed 9 5/8" casing in wellhead. Casing shoe at 1348,7 m. Cemented casing. Released running tool. Positioned rig over well and landed BOP. Installed diverter. Rigged down BOP handling equipment. Performed planned maintenance on Main rig. POOH with running tool on Aux rig. LD excess casing stands, cement head, and prepared 8 1/2" BHA on Aux rig.
09.05.2004	RIH with 8 1/2" assembly to 209 m. Tested wellhead connector to 180 bar. RIH from 209 m to 845 m. Function tested BOP. RIH from 845 m to 1095 m. Tested MWD and held well control exercise. RIH from 1095 m to 1320 m. Tagged plugs on float collar at 1320 m. Drilled shoe track from 1320 m to 1349 m. Cleaned rathole and drilled 3 m new formation from 1349 m to 1360 m. Performed XLOT to 1,55 SG EMW. Displaced well to 1,30 SG KCl mud. Drilled 8 1/2" hole from 1360 m to 1415 m.
10.05.2004	Drilled 8 1/2" hole from 1415 m to 1662 m. Circulated hole clean . POOH from 1662 m to 1332 m. Flow checked well. Waited for coring equipment. RIH to 1662 m and circulated hole clean while waiting for coring equipment from shore. POOH from 1662 m. RIH with 8 1/2" coring assembly to 1125 m.
11.05.2004	Ran in with coring assembly to TD at 1662m. Cut core #1 from 1662m, until jamming off at 1688m. POOH with core #1 (72,9% rec.). Ran in with core assembly #2, cut core #2 from 1688m to 1714m, where core again jammed off. POOH with core #2. Prepare to RIH with 8 1/2" drilling assembly.
12.05.2004	RIH w/ 8 1/2" BHA. Logged across the cored interval w/MWD, from 1651m to 1714m. Drilled 8 1/2" hole from 1714m to 2141m.
13.05.2004	Drilled 8 1/2" hole from 2141 to TD of well at 2317 m. Circulated the hole clean and backreamed out of the hole to the 9 5/8" casing shoe at 1349m. Circulated bottoms up and until shakers were clean. Tripped in to TD and circulated bottoms up.
14.05.2004	Finished circulating the hole clean. POOH for logging. R/u for logging. Ran log #1: PEX-HRLA-DSI-ECS. Ran in with log #2: CMR+ - FMI.
15.05.2004	Completed log run no 2: CMR+ - FMI. Ran log no 3: MDT - GR - ACTS.

Completed log run no 3: MDT - GR - ACTS. RU tool string for run no 4. Trouble shot and rectified communication problem.

Ran logging run no 4: MDT, oil sampling + mini DST.

Printed date: 16.06.2004

RestrictedDoc. no.
04D94*224014
Date
2004-10-14

DBR well report

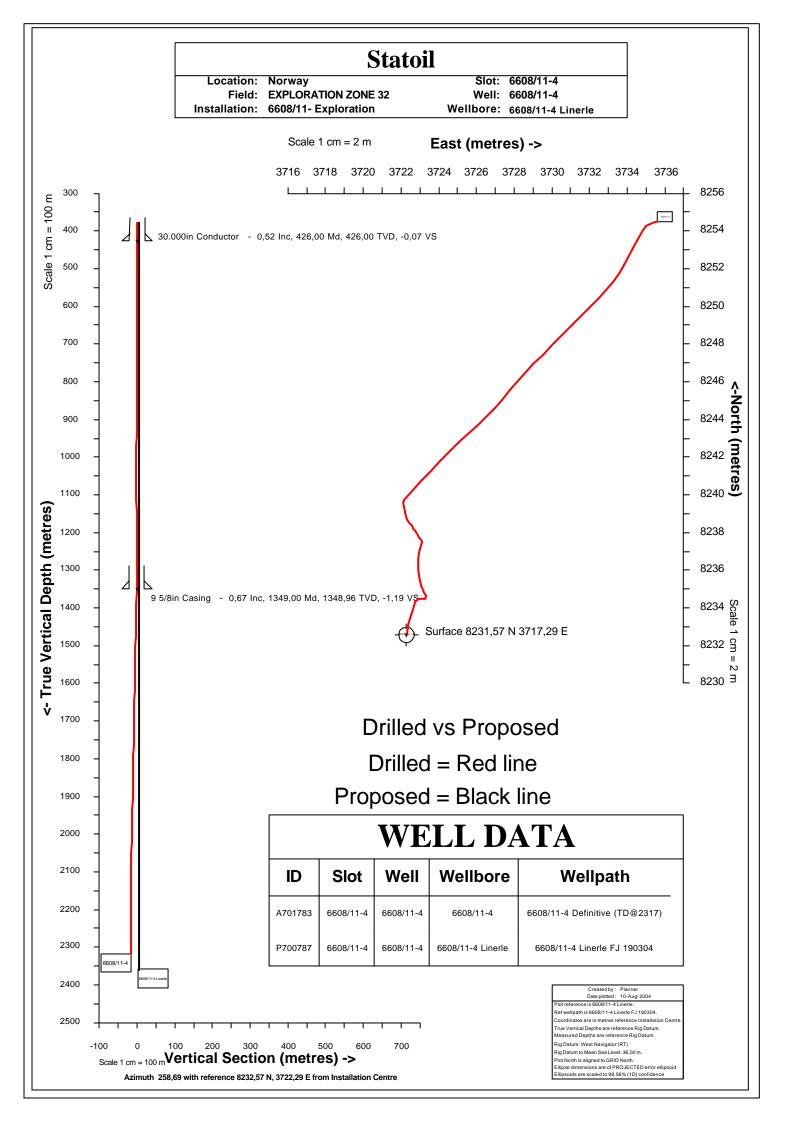
Rev. no. 76 of 86

17.05.2004	Logging run no 4: MDT, oil sampling + mini DST. Performed mini DST no 1. MDT tool stuck on DST no 2. Prepared for cut and thread. RIH with overshot on 5" DP to 300 m.
18.05.2004	Ran wireline overshot on DP over wireline cable for stuck MDT-tool (cut and thread) to 1646 m. Circulated btms up. Engaged fish. Released electrical weak point. Retrieved wireline cable. POOH with fish (MDT-tool) . LD same. RU and ran logging run no 5: VSP - MSIP - EMS - GPIT to 750 m.
19.05.2004	Performed logging run no 5: VSP to 2300 m. RIH w. 8 1/2" BHA for wiper trip to 1470 m.
20.05.2004	Performed wiper trip to 1750 m. Ran logging run no 6: MDT, sampling + mini DST.
21.05.2004	Completed logging run no 6: MDT, sampling + mini DST. RIH with cmt stinger to TD.
22.05.2004	Circulated hole clean. Plugged back open hole and 100 m into csg with 4 cmt plugs. POOH. RIH with EZSV and WB-RT. Tested cmt plug to 105 bar. Pulled WB free. Set 9 5/8" EZSV at 620 m. Tested same to 105 bar. Commenced displacing well to seawater.
23.05.2004	POOH LD EZSV RT. Pulled WB. RU for pulling BOP. Unlatched BOP. Pulled riser jewellery. Meanwhile set surface cmt plug and RIH with csg cutting assy and MOST tool to 20 m.
24.05.2004	RIH w/ cutting assembly to 4 m below seabed, cut 20" X 30" casing and retrieved wellhead and casing stump. Continued to pull riser and BOP. Pulled last transponder. Continued offloading bulk and equipment. BOP, riser and hoses secured. Off Linerle location/contract 23.05.2004 @ 23:00 hrs.

Restricted

Doc. no. **04D94*224014** Date

2004-10-14


Rev. no.

77 of 86

0

App B Directional data, survey listing

B.1 Well plot

Restricted

Doc. no. **04D94*224014**

Date **2004-10-14**

O STATOIL

Rev. no.

79 of 86

B.2 Well survey listing

Statoil,6608/11-4 6608/11- Exploration,6608/11 EXPLORATION ZONE 32,Norway

Wellbore: 6608/11-4
Wellpath: 6608/11-4 Definitive
(TD@2317)

Date Printed: 10-Aug-2004

Wellbore												
Name			Create					Last Revised				
6608/11-4			5-May	/-200 _/	4		13-Jul-2004					
Well												
Name			Govern	nmen	t ID		Last Revise					
6608/11-4							15-Jun-200	4				
Ola t												
Slot Name	Grid Nort	hing	Grid Easting		Latitude		Longitude	North	East			
6608/11-4	7342390		474330,0000		N66 11 56.2	470	E8 25 47.9736	8232,57N	3722,29E			
0008/11-4	17342390	.0000	1474330,0000	!	1100 11 30,2	+19	<u> </u>	10232,371N	3/22,29E			
Installation												
Name		Easting		Nort	thing	Coord	System Name	I	North Alignment			
6608/11- Exploratio	n		470609,156		7334160,635		-UTM-32N on EUROPEAN	DATUM 1950	G			
•								datum				
Field												
Name		Easting	1	Nort	thing	Coord :	System Name	1	North Alignment			
EXPLORATION ZON	NE 32		381477,000		7229793,000	ED50	-UTM-32N on EUROPEAN	I DATUM 1950 datum	G			
								•				
Created By												
0												
Commente												
Comments												
Comments												
Comments												

Statoil,6608/11-4 6608/11- Exploration,6608/11 EXPLORATION ZONE 32,Norway

Wellbore: 6608/11-4
Wellpath: 6608/11-4 Definitive
(TD@2317)

Date Printed: 10-Aug-2004

D[m]	Inc[deg]	/	Azi[deg]	TVD[m]	North[m]	East[m]	Dogleg [deg/30m]	Vertical Section[m
378,	od d	0,00	0,00	378,00	8232,57N	3722,29E		
452,	60 (),81	8,69	452,60	8233,09N	3722,37E	0,33	
481,		08,0	18,86	481,89				
567,),35	22,36	567,79				
653,),29	108,95	652,99		3723,07E		
703,),24	47,29	703,89		3723,27E		
768,),45	331,28	768,19		3723,24E		
854.		0.74	349,26	854,88				
912.		0.51	358,90	912.68		3722,90E		
941,),77	358,48	941,38				
970.		0.85	19,29	970.17		3722.96E		
999.		0.51	18.56	998.97				
1028		0,34	349,98	1028,17		3723,10E		
1057		0.61	312.60	1057.67				
1085		0.35	348,30	1085,67		3722,84E 3722,75E		
1114		0,40	313,20	1114,57				
<u>1143</u> 1171).35).37	344,62 323,23	1143.77 1171.67		3722,65E		
1201		0,37	323,23 313,92	1201,37		3722,57E 3722,45E		
1201		0,33	322,53	1229.87				
1229		0.47	<u>322,53</u> 5.13	1258,57		3722,32E		
1287),45	344,00	1287,77	8239,04N			
1316		0,56	345,64	1316,77				
1346		0.61	347,36	1346,26		3722.17E		
1358		1,16	37,58	1358,06				
1389		1,43	44,69	1389,75				
1415		1.46	44.99	1415,35				
1445		1,42	41,26	1444,94				
1473		1,45	43,66	1473,83				
1503		1,39	44,91	1502,92				
1531	80 1	1,44	48,08	1531,71	8242,81N	3725,11E	0,10	
1560	40 1	1.38	48,06	1560,30	8243,28N	3725,63E	0,06	
1589	30 1	1,23	46,27	1589,19	8243,73N	3726,11E	0,16	
1618	5(1	1,24	45,11	1618,39	8244,171	3726,56E	0,03	12,1
1646		1.35	42,86	1646.68				
1674		1,09	37,53	1673,87		3727,38E		
1732		1,26	42,51	1732,56		3728,16E		
1762		1,33	41,86	1762,05				
1789		1.34	43,80	1789.05				
1818		1,44	44,38	1818,14	8247,45N	3729,52E		
1847		1,45	44,25	1846,93				
1877		1,55	44,55					
1906		1,53	46,94					
1933		1,62	46,31	1933,40				
2022		1,39	37,76					
2049		1,25	30,64					
2078		1.04	27,86					
2139		1.06	29,43					
2164		0,94	27,18					
2194		0.64	33,72					
2223		0,45	<u>51,85</u>					
2280),39	75,39					
2308 2317),32),32	71,76 71,76					

Statoil,6608/11-4 6608/11- Exploration,6608/11 EXPLORATION ZONE 32,Norway

Wellbore: 6608/11-4
Wellpath: 6608/11-4 Definitive
(TD@2317)

Date Printed: 10-Aug-2004

Hole Section	Hole Sections									
Diameter	Start	Start	Start	Start	End	End	End	Start	Wellbore	
[in]	MD[m]	TVD[m]	North[m]	East[m]	MD[m]	TVD[m]	North[m]	East[m]		
36,000	378,00	378,00	8232,57N	3722,29E	428,00	428,00	8232,811	3722,33E	6608/11-4	
12 1/4	428,00	428,00	8232,81N	3722,33E	1357,00	1356,96	8239,721	3722,15E	6608/11-4	
8 1/2	1357,00	1356,96	8239,72N	3722,15E	2317,00	2316,73	8254,51N	3735,59E	6608/11-4	

Casings	Casings								
Name	Тор	Тор	Тор	Тор	Shoe	Shoe	Shoe	Shoe	Wellbore
	MD[m]	TVD[m]	North[m]	East[m]	MD[m]	TVD[m]	North[m]	East[m]	
30.000in	378,00	378,00	8232,57N	3722,29E	426,00	426,00	8232,79N	3722,33E	6608/11-4
Conductor									
9 5/8in Casing	378,00	378,00	8232,57N	3722,29E	1349.00	1348.96	8239,61N	3722,10E	6608/11-4

Survey To	Survey Tool Program									
Reference	Survey Name	MD[m]	TVD[m]	Survey Tool	Error Model					
702214	6608/11-4 BHI.MWD 12 1/4" (452-1346)	1346,30	1346,26	Magnetic (MWD, EMS)	MWD, standard, mag-corr					
702246	6608/11-4 BHI.MWD 8 1/2" (1358-2308)	2308,60	2308,33	Magnetic (MWD, EMS)	MWD, standard, mag-corr					
702589	6608/11-4 Extrapolation (TD@2317)	2317,00	2316,73	Magnetic (MWD, EMS)	MWD, standard, mag-corr					

Restricted
Doc. no.

04D94*224014Date **2004-10-14**

O STATOIL

Rev. no.

83 of 86

App C List of contractors

SERVICE	COMPANY
Casing	Weatherford
Cementing	Halliburton
Coring	Halliburton
Directional Drilling	Halliburton Sperry Sun
Diving	Oceaneering AS
Drilling Contractor	Smedvig offshore AS
Electric Logging	Schlumberger
Helicopter	Norsk helikopter
Helicopter Booking	Lufttransport (Statoil)
Mud	M-I Norge AS
Mud Logging	Geoservices
MWD	Baker Hughes INTEQ
Wellhead System	ABB Vetco

Restricted
Doc. no.
04D94*224014
Date
2004-10-14

Rev. no.

84 of 86

0

App D NPD Shallow gas report

1. Avstand fra boredekk til havnivå: 36 m

2. *Vanndyp*: 342 m

3a. Settedyp for lederør: 426 mRKB

3b. Evt. formasjonstyrketest (g/cc): ---

4a. Settedyp for foringsrør hvorpå BOP settes: 1349 mRKB

4b. Formasjonstyrketest (g/cc): 1.55 g/cc

5. *Dyp* (*mRKB* og *TVG*) til formasjon-/ledd-/lagtopper:

Topp Naust Fm (base Quaternary): 682mRKB, 770 msTVG

Topp Kai Fm: 1389.5 mRKB, 1380 msTVG

Topp Brygge Fm (topp Hordaland Gp): 1433.5 mRKB, 1450msTVG

 $6.\ Dybde intervall\ (mRKB\ og\ TVG)\ og\ alder\ for\ sandlag\ grunnere\ enn\ 1000\ m\ under\ havbunnen:$

Ingen sandlag påvist (ingen retur av borekakst i dette intervallet)

7. Oppgi hvilke lag som evt. inneholder gass.

Ingen gass påvist

- 8. Sammensetning og opprinnelse til gassen: Ingen gass påvist
- 9. Beskriv alle målinger i gassførende lag: Ingen gass påvist
- 10. Angi dyp (mRKB og TVG) til inkonformiteter i borehullsposisjonen: Mulig inkonformiteter i den kvartære lagpakken, men dette er ikke påvist.
- 11. Angi utbredelsen av sandlagene (kommunikasjon, kontinuitet, trunkering, etc.): Ingen sandlag identifisert.
- 12. Angi utbredelsen av eventuell gass- skygging ("gas blanking"): Ingen gass-skygging
- 13. Angi eventuell seismiske indikasjoner på at gassen stammer fra dypere nivå: Ingen gass påvist Beskrivelse dersom gassen stammer fra dypere nivå: Ingen gass
- 14. Hvordan samsvarer tolkingen av borestedsundersøkelsen med borehullsdata mht. :
- grunn gass: Ingen grunn gass prognosert. Ingen grunn gass observert.
- *sandlag:* Prognosert sandlag i intervallene 577-592 mRKB og 649-678 mRKB. Sandlag er ikke påvist i første intervall, men mulig sandig seksvens kan være tilstede i intervallet 643-667m
- inkonformiteter: Ikke mulig å påvise.

Restricted
Doc. no.
04D94*224014
Date

2004-10-14

Rev. no.

85 of 86

0

- korrelasjon til nærliggende borehull: Mulig korrelasjon mot flere nærliggende borehull.

Restricted

Doc. no. **04D94*224014**

Date **2004-10-14**

Rev. no.

86 of 86

_		
7	L'mal	losure
/	ranci	iosui e

- 7.1 Wellsite sample descriptions
- **7.2** Conventional core descriptions
- 7.3 Composite log (Statoil)
- **7.4** Formation evaluation log (Geoservices)

	-		
L 4	/ 41	(0)	

	WELLSITE SAMPLE DESCRIPTION Page 1 of 11										
Country:	Norway		Area:	North Sea	Field:	Linerle					
Well no:	6608/11-4	Company: Statoil ASA, Petoro AS, Norsk Hydro ASA, ENI Norge A/S, AS Norske Shell									
RKB:	36	meters	neters Geologist: P. Sergeant. Ø. Hovden. S. Renshaw								
Hole size:	8 ½"		Cut solvent:	Iso Propyl Alcohol	Date:	12.05.2004					
		Lithological Description Remarks									
Depth	Lithology	Rock na	Rock name, mod.lith, colour, grain size, sorting, roundness, matrix, cementation, Shows, cavings, mud								
(m RKB)	(%)	h	ardness, sed.st	ructures, accessories, fossils, porosity, contamination	l	additives, etc.					

Samples returned to seabed down to 1357m

			T
1360	100	CMT	
1370	90 10	CMT Clst	Med gry, sft – frm, slily calc, slily – mod slty, slily – v sdy, mod micromic, Tr micropyr, Tr blk mafic grs, R glauc, Tr floating grs (?) of v crs – gran sized, ang frags, crys qtz & gabbro?, mafic grs, R phyllite frag
1380	10 90	CMT Clst	a.a., occ olv gry, grds to Tr arg v f Sst
1390	100	Clst	a.a
1400	100	Clst	a.a
1410	100	Clst	a.a
1420	100	Clst	a.a
1430	100	Clst	a.a
1440	100	Clst	a.a, also gd tr glauc grns
1450	100	Clst	a.a, occ slty w/glauc grns
1460	50 50	Clst Slts	a.a Brn gry, sft, subblky, grdg clst, non calc, v abund glauc grns
1470	30 70	Clst Sltst	a.a a.a but also grdg vf arg sd
1480	30 70	Clst Sltst	a.a a.a
1490	60 40	Sltst Clst	a.a Pl yel grn, lt bl grn, sft-frm, blky, flky, non calc
1500	90 10	Clst Sltst	a.a a.a
1510	90 10	Clst Sltst	a.a a.a
1520	90 10	Clst Sltst	a.a a.a
1530	90 10 Slt tr Slt tr	Clst Clst Sd Pyr	Pl yel grn, a.a Lt brn gry, frm, blky, occ glauc, v calc, occ slty Qtz gren, v crs, ang-subrnd Mass microxln, also incl in clst

			WELLS	SITE SAMPLE DESCRIPTION		Page 2 of 11
Country:	Norway		Area:	North Sea	Field:	Linerle
Well no:	6608/11-4	•	Company:	Statoil ASA, Petoro AS, Norsk Hydro ASA,	ENI Norge A/	S, AS Norske Shell
RKB:	36	meters	Geologist:	P. Sergeant. Ø. Hovden. S. Renshaw		
Hole size:	8 ½"	_	Cut solvent:	Iso Propyl Alcohol	Date:	12.05.2004
				Lithological Description		Remarks
Depth (m RKB)	Lithology (%)			colour, grain size, sorting, roundness, matrix, tructures, accessories, fossils, porosity, contam		Shows, cavings, mud additives, etc.
1540	70 30	Clst Clst		sft-frm, sft-frm, blky, non calc gry, firm, blky, non-occ sl calc, occ slty		
1550	80 20 Gd tr	Clst Clst Lst	Lt brn, olv g Lt bl grn Grnsh wh, l	gry, a.a t gry, blky, hd – frm, occ v arg, occ v slty, occ	v sndy	
1560	100 Gd tr Tr	Clst Clst Lst	Lt brn, olv g Lt bl grn, a. a.a			
1570	100 Gd tr Tr	Clst Clst Lst	Lt brn, olv a Lt bl grn, a. a.a			
1580	50 50	Clst Clst	Lt brn, olv g Lt bl grn, a.			
1590	80 20	Clst Clst	Lt bl grn, a. Lt brn, olv ş			
1602	80 20	Clst Clst	Lt gry, grns Lt bl grn, a.	h gry, frm-fri, blky, non calc a		
1605	90 10	Clst Clst	Lt gry, grns Lt bl grn, a.			
1608	90 10	Clst Clst	Lt gry, grns Lt bl grn, a.			
1611	90 10	Clst Clst	Lt gry, grns Lt bl grn, a.			
1614	90 10 Gd tr	Clst Clst Lst	Lt gry, grns Lt bl grn, a. a.a			
1617	90 10 Gd tr	Clst Clst Lst	Lt gry, grns Lt bl grn, a. a.a			
1623	90 10 Gd tr	Clst Clst Lst	Lt gry, grns Lt bl grn, a. a.a	h gry, olv gry a.a a		
1632	100	Clst	Grnsh gry,	olv gry w/tr pyr and glauc grns, else a.a		
1635	100	Clst	a.a			
1638	100	Clst	a.a			
1641	100	Clst	a.a			

LAS STATO	
	יוו

			WELLS	ITE SAMPLE DESCRIPTION		Page 3 of 11
Country:	Norway		Area: 1	North Sea I	Field:	Linerle
Well no:	6608/11-4			Statoil ASA, Petoro AS, Norsk Hydro ASA, ENI Nor		
RKB:	36	meters	_ · ·	P. Sergeant. Ø. Hovden. S. Renshaw		
Hole size:	8 1/2"		•		Date:	12.05.2004
				Lithological Description		Remarks
Depth (m RKB)	Lithology (%)			olour, grain size, sorting, roundness, matrix, cementa actures, accessories, fossils, porosity, contamination	ition,	Shows, cavings, mud additives, etc.
1644	100	Clst	Olv gry, grnsl and glauc grn	h gry, firm, blky, non-occ sl calc, occ slty w/tr pyr		
1647	100	Clst	a.a			
1650	70 30	Clst Clst		h gry, a.a, also occ med dk gry, occ v glauc f-frm, sft-frm, blky, non calc		
1653	100	Clst	Olv gry, grns	h gry, sft-frim homog, blky, occ grdg siltst/vf, sft, ar	g sst	
1656	100	Clst	a.a			Br yel fluor, v sl stmng -cldy bl wh cut fluor in sltst frag
1659	70	Clst		t increase in vf, sft, arg sst)		
	30	Clst		grdg arg coal		
	Tr	Slts/sst	Lt gry, vf, sf	t, arg sst		Shows: a.a , but more abundant in sample
1662	90	Clst	Olv gry, grnsl	h gry amor/sft, a.a		Poor sample
	10 Gd tr	Clst Sst	sbrndd, Gd Ti brn – grysh b	cc clr – trnsl, dom off wh – lt brn opq, v f – f, wl srt, r lse Mic & Pyr, Tr lse Glauc, I.P. small Sst frags, pa rn, v f – fn, slty I.P., wl srt, ang – sbrndd, fri – mod h slily dol, slily mic, tr micropyr, Tr carb incls, pr – gc	− lt .d,	Fr O.S., pa – lt brn stn, mod bri – bri yel – yel gold fluor, fr strm cut, fr blu wh wh solv fluor, fr yel wh resid fluor, occ Tr yel brn ring resid
	Tr	Sltst		gry, sft – frm, Tr – slily calc, slily dol I.P., mod – v a – occ mod micromic, Tr – slily carb, no vis por	rg,	Pr O.S., mod bri – bri yel gold fluor, pr strm cut, pr blu wh solv fluor, pr – fr yel wh resid fluor, no ring resid
			Core no. 1 an	d 2: 1662-1714m		
1716	50 50 Gd tr	Clst Clst Coal	Dk grnsh gry,	nd-frm, non calc , gen blky, sft-frm-hd, non calc sl arg, occ sl calc		Poor sample quality
1719	35 25 25	Clst Clst Coal	Dk grnsh gry, Pl grn, a.a a.a	, a.a		a.a
	15	Sst		ns, clr-trnsl, only lse grns		No shows
1725	a.a					Poor sample quality(clays washed away, sand overrepresented?)
1731	60 20 20	Sst Clst Clst	a.a Dk grnsh gry Pl grn, a.a	, a.a		a.a

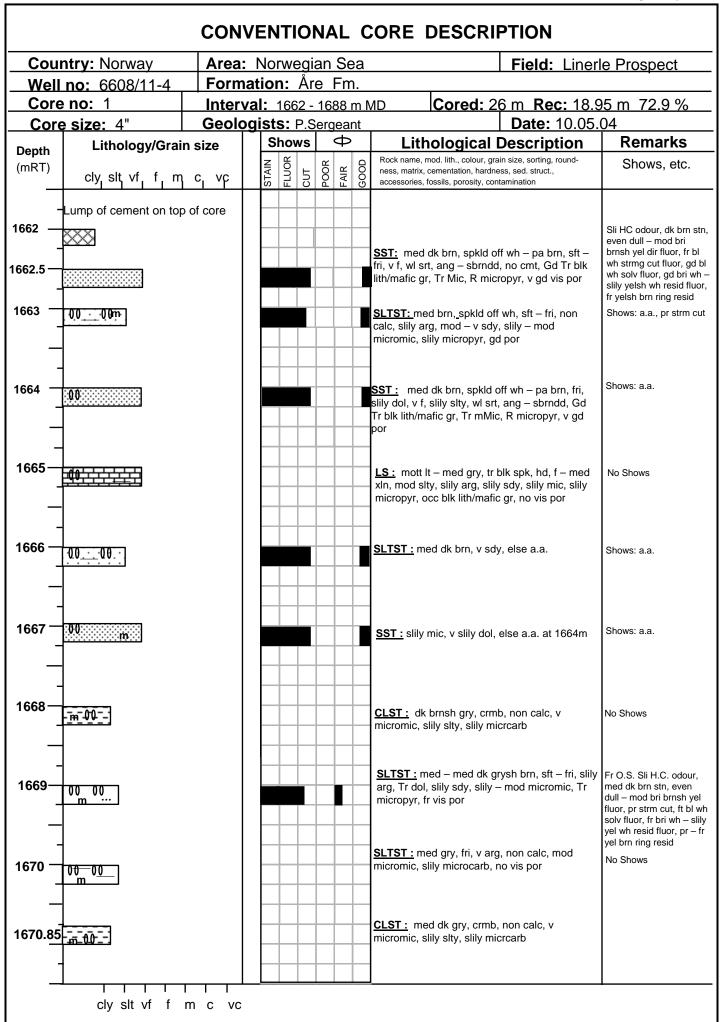
			WELLS	SITE SAMPLE DESCRIPTION	BUAL	Page 4 of 11
Country:	Norway			North Sea	Field:	Linerle
Well no:	6608/11-4			Statoil ASA, Petoro AS, Norsk Hydro ASA, E		
RKB:	36	meters		P. Sergeant. Ø. Hovden. S. Renshaw	111 Tionge Tu	b, 115 I torske briefi
Hole size:	8 ½"	11101015		Iso Propyl Alcohol	Date:	12.05.2004
				Lithological Description		Remarks
Depth (m RKB)	Lithology (%)			colour, grain size, sorting, roundness, matrix, c ructures, accessories, fossils, porosity, contamir		Shows, cavings, mud additives, etc.
1734	a.a					Poor sample quality(clay washed away, sand overrepresented?)
1740	80	Sst	Fn-crs atz gr	ns, clr-trnsl, only lse grns		a.a., no shows
1710	10	Clst		hd-frm, non calc		u.u., no sno ws
	10	Clst		y, gen blky, sft-frm-hd, non calc		
	Tr	Clst	Pl grn			
1746	a.a					a.a
1752	a.a					
1732	tr	pyr	Mas, microx	ln		a.a
1758	70	Sst	Gen vfn-med	d, les qtz grns, rnd-sbrnd		a.a
	10	Clst	Lt grn, a.a			
	10	Clst		mor, slty, sndy		
	10	Pyr	Mass, mcrox	iln, occ blky		
1764	90 10	Sst Clst		les qtz grns, rnd-sbrnd, mica n, a.a and lt gry a.a		a.a
	Gd tr	Pyr	a.a			
1770	70	Clst	Lt gry, yelisl	h lt gry, occ wh (kaol?), sft-amor, sndy, occ dk	spks	a.a
	30	Sst	a.a			
	Gd tr	Pyr	a.a			
1776	70	Clst	a.a			a.a
	10	Sst	a.a			
1782	60	Clst	a.a			a.a
1702	40	Sst	a.a			a.a
	.0	230				
1788	100	Sst	a.a			a.a
	Gd tr	Clst	a.a			
1504		a .				
1794	60	Sst	a.a			a.a
	40 Gd tr	Clst	a.a	hd-frm, non calc		
	Gu ti	Clst	ri gili, biky,	nd-mii, non care		
1800	80	Sst	a.a			a.a
	20	Clst	Lt gry, a.a			
	Tr	Clst	Pl grn, a.a			
			_			
1806	70	Sst	a.a			a.a
	30	Clst	Lt gry, a.a			
	Tr	Clst	Pl grn, a.a			
1812	60	C ct	0.0			0.0
1012	60 30	Sst Clst	a.a Lt gry, a.a			a.a.
	10	Coal		occ brtl, blky, occ arg, occ grdg v carb clst		
	10	Cour	, mm mu,	ort ora, one, occ arg, occ grag v care cist		

			WELLSITE SAMPLE DESCRIPTION		Page 5 of 11
Country:	Norway		Area: North Sea		Linerle
Well no:	6608/11-4		Company: Statoil ASA, Petoro AS, Norsk Hydro ASA,	ENI Norge A/	S, AS Norske Shell
RKB:	36	meters	Geologist: P. Sergeant. Ø. Hovden. S. Renshaw		
Hole size:	8 1/2"	=	Cut solvent: Iso Propyl Alcohol	Date:	12.05.2004
			Lithological Description		Remarks
Depth	Lithology		me, mod.lith, colour, grain size, sorting, roundness, matrix,		Shows, cavings, mud
(m RKB)	(%)	n	ardness, sed.structures, accessories, fossils, porosity, contam	ination	additives, etc.
1818	70	Clst	Lt gry – lt olv gry, occ wh, v sft & amorph, stky, sdy(?), n grds arg Sst (?)	on calc,	Snd appears to stick onto clay on shakers
	10 10	Sst Coal	Lse qtz, clr – trnsl, vf – crs, ang - sbrndd Dk brn – blk, frm – hd, brit I.P., occ arg, occ grd carb Clst		
	10	Clst	Lt – pa gn, hd blky, occ dk gn spk, non calc, splnty	L	
	Gd Tr	Mic	Lt – pa gii, iid biky, occ dk gii spk, noii caic, spinty		
	Ou II	WIIC			
1824	70	Sst	a.a.		Poor samp., no shows
	20	Clst	a.a.		
	10	Coal	a.a.		
	Tr	Mic			
	Tr	Pyr			
1830	100	Sst	Lse qtz, clr – trnsl, Tr off wh opq, R rd stn, f – med – tr cr srt, ang – rndd, dom subang – sbrndd, Gd Tr lse Mic, Tr ls		No shows
	Tr	Clst	a.a.		
	Tr	Coal	a.a.		
1842	70	Clst	Med dk brn – brnsh blk, sft – frm, Tr v frm, non calc, mod Occ Coal	l – v carb, grds	5
	10	Coal	Blk, frm – brit, Tr woody, ethy I.P., shny I.P., arg I.P., grd	ls carb Clst	
	20	Sst	a.a.Tr wh – off wh kao (?) mtx		
	Tr	Clst	Sft, a.a.		
1848	80	Sst	A.a., fn – med – Tr crs		Tr lt – med gry & lt gry Gn clst cvgs. No shows
	20	Clst	Carb a.a.		
	Tr	Clst	Sft, a.a.		
1854	70	Sst	a.a.		Tr cvgs a.a No shows
1054	10	Coal	a.a.		11 CV gs a.a 140 shows
	20	Clst	Lt brnsh gry, v sft & amorph, Tr wh kao (?), non calc, slty micromic, Tr – slily microcarb	I.P., sdy I.P.,	Sd com mixes w/ clst Over shakers
1860	80	Clst	a.a., sft		Continuous trace Cvgs a.a.
	20	Sst	a.a.		
	Tr	Coal	a.a., gds carb clst		
1866	40	Coal	Blk, frm – brit, Tr woody, ethy I.P., shny I.P., arg I.P., grd	ls carb Clst	
	50	Clst	Sft, a.a.		
	10	Sst	a.a.		
1072	<i>c</i> 0	Clat	CG and also locate with the transfer		
1872	60	Clst	Sft, a.a., also loc tr w/ abd glauc gr		
	20 20	Coal Sst	a.a., gds carb clst		
	20	ນອເ	a.a.		
1878	70	Sst	Lse qtz, clr – trnsl, Tr off wh opq, v f – crs, pr srt, ang – rr Sbang – sbrndd, Gr Tr lse Mic, R lse Pyr	ndd, dom	
	20	Clst	Sft, a.a.		
	10	Coal	a.a., gds carb clst.		

			WELLSITE SAMI	PLE DESCRIPTION		Page 6 of 11
Country:	Norway		Area: North Sea		Field:	Linerle
Well no:	6608/11-4	-	Company: Statoil ASA, I	Petoro AS, Norsk Hydro ASA, ENI N	orge A	S, AS Norske Shell
RKB:	36	meters	Geologist: P. Sergeant. Ø	Ø. Hovden. S. Renshaw		
Hole size:	8 1/2"		Cut solvent: Iso Propyl Ald	cohol	Date:	12.05.2004
			Litholog	rical Description		Remarks
Depth	Lithology	Rock n	me, mod.lith, colour, grain s	ize, sorting, roundness, matrix, cemen	tation,	Shows, cavings, mu
(m RKB)	(%)	ŀ	ardness, sed.structures, access	sories, fossils, porosity, contamination	1	additives, etc.
1884	60	Clst	Sft, a.a.			Cont. Tr cvgs a.a.
	40	Sst	a.a.			No shows
	Tr	Coal	a.a.			
1890	30	Clst	Sft, a.a.			
1070	70	Sst		off wh opq, $v f - f - occ med - Tr crs$,	pr –	No shows
	70	Dat	mod srt, ang – dom subang		P	1 to shows
	Tr	Coal	a.a.			
1896	60	Sst	a.a., v f – med – occ crs, pr			No shows
	40	Clst	•	sh gry, v sft & amorph, non calc,		
				Tr microcarb, (sd gr on sample prob	due to	
	т.	C - 1	mixing of cly & sd over sh	akers)		
	Tr	Coal				
1908	30	Clst	a.a.			
1700	70	Sst	a.a.			No shows
	Tr	Dol		d, micrxln, v arg, grds dol mrl (only fo	ound	
			as small frags)			
	Tr	Ls	Wh - off wh, pr - mod ind	, micr I.P., microxln I.P., v dol, arg		
	Tr	Coal	a.a.			
1014	50	CI.				
1914	50 50	Clst Sst	a.a.			No shows
	Gd Tr	Ls	a.a. a.a.			NO SHOWS
	Tr	Coal	a.a. a.a.			
	**	Cour	u.u.			
1920	50	Clst	a.a.			
	50	Sst	a.a.			No shows
	R	Ls	a.a.			
	Tr	Coal	a.a.			
	Tr	Dol	Small frags a.a.			
1926	90	Sst	a.a.			No shows
1720	10	Clst	a.a. a.a.			140 SHOWS
	Tr	Coal	a.a.			
1938	60	Sst	a.a.			No shows
	20	Clst	a.a.			
	20	Coal	Grd carb Clst a.a.			
	R	Ls	a.a.			
1944	60	Sst	a.a., $v f - crs - Tr v crs$			No shows
1744	20	Clst	a.a., v1 c15 11 v c15			140 Shows
	20	Coal	Grd carb Clst a.a.			
1950	50	Sst	a.a.			No shows
	20	Coal	Grd carb Clst a.a.		_	
	30	Clst		m pa – lt – occ med dk brnsh gry, v sft		
				dom mod slty, Tr – slily microcarb, T	r –	
			siny inicroffic, (embed sd	gr prob due to mixing on shakers)		

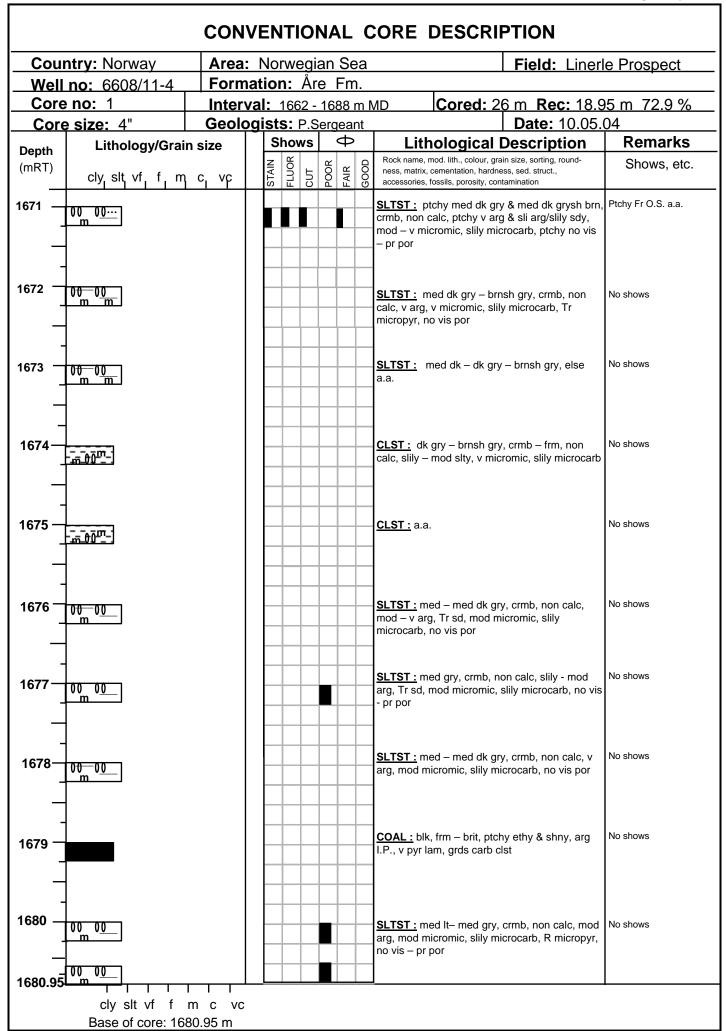
			WELL	SITE SAMPLE	DESCRIPTION		Page 7 of 11
Country:	Norway		Area:	North Sea		Field:	Linerle
Well no:	6608/11-4		Company:	Statoil ASA, Petoro	AS, Norsk Hydro AS	A, ENI Norge A/	S, AS Norske Shell
RKB:	36	meters	Geologist:	P. Sergeant. Ø. Hov	den. S. Renshaw		
Hole size:	8 1/2"	_	Cut solvent:	Iso Propyl Alcohol		Date:	12.05.2004
				Lithological D	*		Remarks
Depth	Lithology				orting, roundness, matri		Shows, cavings, mud
(m RKB)	(%)	ha	ardness, sed.si	tructures, accessories,	, fossils, porosity, conta	amination	additives, etc.
1956	60	Clst	a.a.	_			
	30	Coal	Grd carb Cl	lst a.a.			
	10	Sst	a.a.				
1962	60	Clst	a.a.				
1902	30			– brnsh blk frm – v	frm, non calc, mod – v	carb Tr – slilv	
	30	Curo Cisi			d – hd & brit, shny I.P.	•	
			Tr Pyr	9 , . ,	,	, , ,	
	10	Sst	a.a.				
1974	80	Clst	a.a.				
	10	Carb Clst	t a.a.				
	10	Sst	a.a.				
2004	60	Class	-	issing due to lunch			
2004	60 10	Clst Carb Clst	a.a.				
	30	Sst		- occ trnsl_occ off w	h – pa gry opq, r rd str	v f – crs – Tr v	No shows
	30	DSC	-	sbang – rndd, R lse M		1, 11 015 11 1	110 bilows
			, _F , -	,	, -		
2010	60	Clst	a.a.				
	40	Sst	a.a.				No shows
	Tr	Carb Cls	t a.a.				
2016	70	Clst	0.0				
2010	30	Sst	a.a. a.a.				No shows
	Tr	Carb Clst					110 SHOWS
	Tr	Dol		rysh brn – olv brn, me	od – wl ind, micr I.P., i	microxln I.P.,	
			calc, v arg	•			
2022	90	Clst	a.a.				
	10 Tr	Sst Carb Clst	a.a.				
	Tr	Dol	a.a. a.a.				
	11	Doi	a.a.				
2028	50	Clst	a.a.				
	20	Carb Clst					
	30	Sst	a.a.				
	Tr	Dol	a.a.				
2024	50	CI.					
2034	50	Clst	a.a.				
	30 20	Carb Clst Sst	a.a. a.a.				
	20	581	a.a.				
2040	70	Clst	a.a.				
	20		t a.a., incr gr	ds to Coal			
	10	Sst	a.a.				
2046	70	Clst	a.a.				
	10	Carb Clst					
	20	Sst	a.a.				

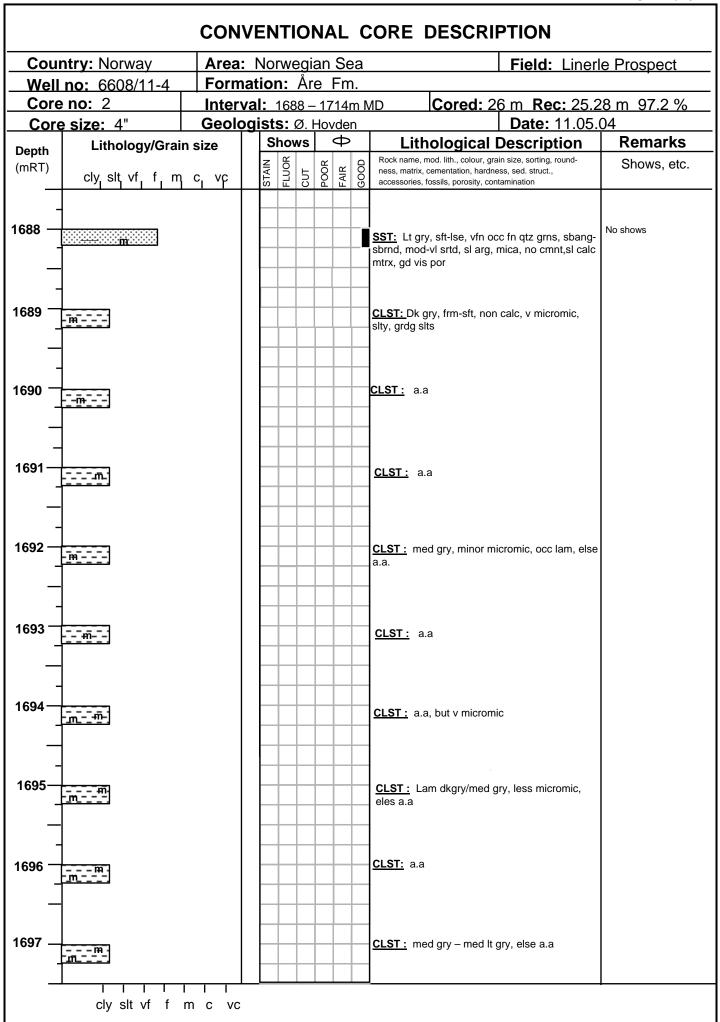
			WEII	SITE SAMPLE DESCRIPTION	y SIIAIR	Page 8 of 11
Country:	Norway		Area:	North Sea	Field:	Linerle
Well no:	6608/11-4		Company:	Statoil ASA, Petoro AS, Norsk Hydro ASA,		
RKB:	36		Geologist:	P. Sergeant. Ø. Hovden. S. Renshaw		5, 116 1 (616116 201611
Hole size:	8 1/2"		Cut solvent:	Iso Propyl Alcohol	Date:	12.05.2004
				Lithological Description		Remarks
Depth (m RKB)	Lithology (%)			colour, grain size, sorting, roundness, matrix, ructures, accessories, fossils, porosity, contam		Shows, cavings, mud additives, etc.
2052	00	CI.				
2052	80 20	Clst Sst	a.a.	nsl, Tr off wh opq, v f – dom f – med – Tr crs,	nr mod ert	
	20	DSC		d, Tr lse Pyr	pr - mod srt,	
	Tr	Carb Clst		-,		
2058	50	Clst	a.a.	T		
	50 Tr	Sst		Γr v crs as at 2004m		
	Tr	Carb Clst	a.a.			
2064	60	Sst	a.a.			
	40	Clst	a.a.			
	Gd Tr	Carb Clst	a.a., Tr bcm	ı dk gry		
2070	70	Cl _{~4}				
2070	70 30	Clst Sst	a.a. a.a.			
	Tr	Carb Clst				
2076	60	Clst	a.a.			
	40	Sst	a.a.			
	Tr	Carb Clst				
	R	Dol	a.a.			
2082	60	Sst	a.a.			
	40	Clst	a.a.			
	Gd Tr	Carb Clst				
	Gd Tr	Dol		a brn, pr – wl ind, micr I.P., micro – v f xln I.P.	, mod calc,	
			slily mic I.F	•		
2088	70	Sst	a.a.			
	10	Carb Clst	a.a.			
	20	Sst	a.a.			
2094	60	Sst	a.a.			
2074	30	Clst	a.a.			
	10	Dol		brn, dom sft – occ mod ind, dom micr, occ m	icro – v f xln,	
			Slily calc, T	r mic, arg		
	Gd Tr	Carb Clst	a.a.			
2100	70	Sst	a.a. (no-sl tı	r nvr)		
2100	30	Clst	a.a.	()		
	Tr	Dol	a.a.			
	Tr	Carb Clst	a.a.			
2106	40	Sst	0.0			
2100	50	Clst	a.a. a.a.			
	Tr	Dol	a.a.			
	10	Carb Clst				
2112	60	Cat				
2112	60 40	Sst Clst	a.a.			
	Tr	Dol	a.a. a.a.			
	Tr	Carb Clst				


			WELL	SITE SAMPLE DESCRIPTION	Page 9 of 11
Country:	Norway		Area:	North Sea Field:	Linerle
Well no:	6608/11-4		Company:	Statoil ASA, Petoro AS, Norsk Hydro ASA, ENI Norge A	S, AS Norske Shell
RKB:	36	meters	Geologist:	P. Sergeant. Ø. Hovden. S. Renshaw	
Hole size:	8 ½"	_	Cut solvent:	Iso Propyl Alcohol Date:	12.05.2004
				Lithological Description	Remarks
Depth	Lithology			colour, grain size, sorting, roundness, matrix, cementation,	Shows, cavings, mud
(m RKB)	(%)	ha	ardness, sed.st	tructures, accessories, fossils, porosity, contamination	additives, etc.
2118	60	Sst	a.a.		Poor sample quality. Clst dissolves
	40	Clst	a.a.		0150 015501105
	Tr	Dol	a.a.		
	Tr	Carb Cls	t a.a.		
2124	60	Sst	a.a.		a.a
	40	Clst	a.a.		
	Tr	Dol	a.a.		
	Tr	Carb Cls	t a.a.		
2130	70	Sst	a.a		a.a
	30	Clst	a.a		
	Tr	Carb Cls	t a.a		
2136	70	Sst	a.a		a.a
	30	Clst	a.a		
	Tr	Carb Cls	t a.a		
2148	100	Sst	a.a		a.a
	Tr	Clst	a.a		
	Tr	Carb clst	a.a		
2154	100	Sst	a.a		a.a
	Tr	Clst	a.a		
	Tr	Carb clst	t a.a		
2160	100	Sst	a.a		a.a
	Tr	Clst	a.a		
	Tr	Carb clst	a.a		
2172	100	Sst	a.a		a.a
	Tr	Clst	a.a		
	Tr	Carb clst	a.a		
2184	100	Sst	a.a		a.a
	Tr	Clst	a.a		
	Gd tr	Lst	Wh, lt gry,	sft-frm, occ w blk stks/spks, -sft, occ sndy, occ arg, microxla	1
2190	100	Sst	a.a		a.a
	Tr	Clst	a.a		
	Gd tr	Lst	a.a		
2196	100	Sst	a.a		a.a
	Tr	Clst	a.a		
	Gd tr	Lst	a.a		
2196	100	Sst	a.a, but als	o tr mica	a.a
	Tr	Clst	a.a		
	Gd tr	Lst	a.a		

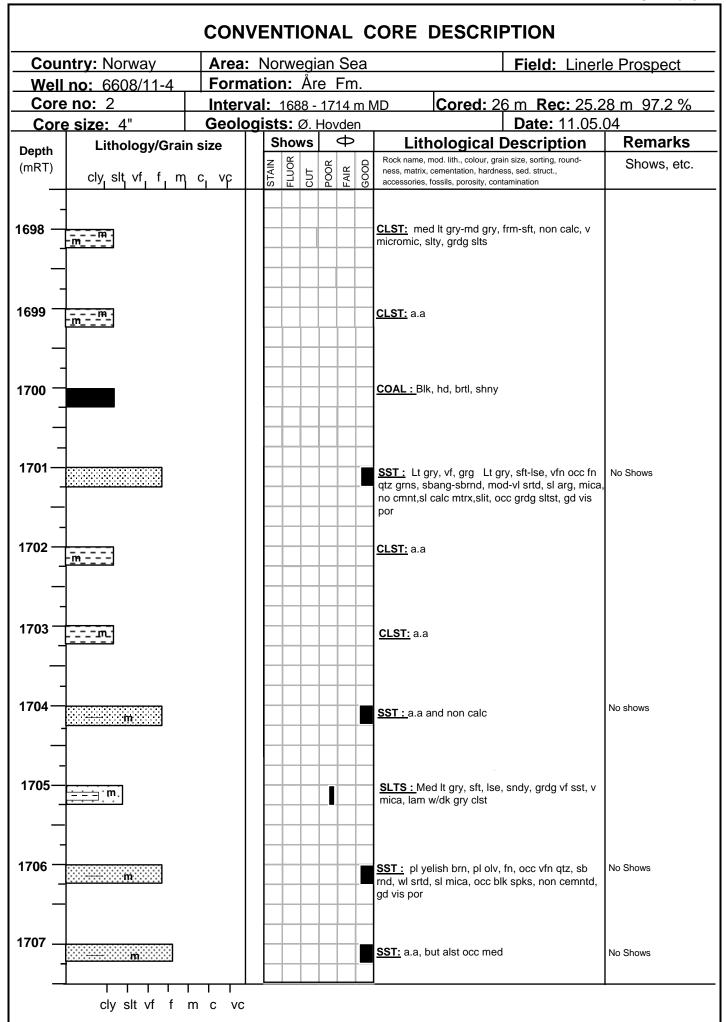
			WEII	SITE SAMPLE DESCRIPTION	ON	Page 10 of 11		
Country:	Norway		Area:	North Sea		Linerle		
Well no:	6608/11-4		Company:	Statoil ASA, Petoro AS, Norsk Hydro				
RKB:	36	meters	Geologist:	P. Sergeant. Ø. Hovden. S. Renshaw	<u> </u>	b, TIS I TOTSKE SHEII		
Hole size:	8 1/2"	11101015	Cut solvent:	Iso Propyl Alcohol	Date:	12.05.2004		
			1	Lithological Description		Remarks		
Depth	Lithology	Rock n	ame, mod.lith,	, colour, grain size, sorting, roundness,	matrix, cementation,	Shows, cavings, mud		
(m RKB)	(%)			ructures, accessories, fossils, porosity, contamination		additives, etc.		
2202	60	Sst	Clr – trnsl, '	Tr off wh opq, $v f - dom f - med - occ$	e tr crs, pr - mod srt,	a.a		
				ld, no cmt, tr lse mica				
	30	Clst	Tr – occ off wh (kao?), dom pa – lt – occ med dk brnsh gry, v sft &					
			amorph, dis					
	10	T		mic, (embed sd gr prob due to mixing or				
	10	Lst	wn, it gry,	sft-frm, occ w blk stks/spks, -sft, occ sr	nay, occ arg, microxin	1		
2208	60	Sst	a.a			a.a		
2200	30	Clst	a.a			uiu		
	10	Lst	a.a					
2214	60	Sst	a.a			a.a		
	30	Clst	a.a					
	Tr	Lst	a.a					
2220	50	Sst	a.a			a.a		
2220	30	Clst	a.a a.a			a.a		
	20	Lst	a.a					
	Sl tr	Clst		blky, slty occ sl sndy,		Only few cuttings		
			, ,			,		
2226	40	Clst	Mod rd brn-	-mod orng pnk, blky, sft-frm, gen non t	to v calc, occ slty			
	40	Clst	Multiclrd, a	ı.a				
	10	Sst	a.a					
	10	Lst	a.a					
2232	80	Sst	a.a					
2232	10	Clst	Rd brn, a.a					
	10	Clst	Multiclrd, a					
	Gd tr	Lst	a.a					
	4.0	~						
2244	40	Sst	a.a					
	20 30	Clst	Rd brn, a.a					
	10	Clst Lst	Multiclrd, a a.a	ı.a				
	10	Lst	a.a					
2250	70	Sst	a.a					
	10	Clst	Rd brn, a.a					
	10	Clst	Multiclrd, a					
	10	Lst	a.a					
2256	50	C						
2256	50 20	Sst Clst	a.a Multiclrd, a	1.9				
	20	Lst	a.a	1.a				
	10	Clst	Rd brn, a.a					
			,					
2262	40	Sst	a.a					
	30	Clst	Multiclrd, a	ı.a				
	30	Lst	a.a					
	Tr	Clst	Rd brn, a.a					

		Page 11 of 11				
Country:	Norway		Area:	North Sea F	₹ield:	Linerle
Well no:	6608/11-4		Company:	Statoil ASA, Petoro AS, Norsk Hydro ASA, ENI Nor	ge A/	S, AS Norske Shell
RKB:	36	meters	Geologist:	P. Sergeant. Ø. Hovden. S. Renshaw		
Hole size:	8 1/2"	-	Cut solvent:		Date:	12.05.2004
				Lithological Description		Remarks
Depth	Lithology			colour, grain size, sorting, roundness, matrix, cementa	tion,	Shows, cavings, mud
(m RKB)	(%)	h	ardness, sed.st		additives, etc.	
2268	40	Sst	a.a			
	30	Clst	Multiclrd, a	ı.a		
	30 To	Lst	a.a			
	Tr	Clst	Rd brn, a.a			
2274	30	Clst	Multiclrd, a	La		
	30	Clst	Rd brn, a.a			
	30	Sst	a.a			
	10	Lst	a.a			
	Tr	Pyr				
2280	40	Clst	Multiclrd, a	ı.a		
	30	Clst	Rd brn, a.a			
	20 10	Sst Lst	a.a			
	10	LSt	a.a			
2286	90	Clst	occ purp gr	ned lt – med brn – rdsh brn – Tr purp brn, pa – med gry y & grnsh gry, R yelsh brn, sft – dom frm, mod – v calo omic, non – slily slty		Tr lt gry gn clst cvgs
	10	Sst	a.a.	only sty		
	Tr	Ls	a.a.			
2292	100	Clst		om brn – rdsh brn		a.a.
	Gd Tr	Sst	a.a.			
	Tr	Ls	a.a.			
2298	100	Clst	a.a.			a.a.
2270	Tr	Sst	a.a.			u.u.
	Tr	Ls	a.a.			
2304	100	Clst	a.a.			a.a.
	Tr	Sst	a.a.			
	Tr	Ls	a.a.			
2310	100	Clst	a.a.			a.a.
2310	Tr	Sst	a.a. a.a.			a.a.
	Tr	Ls	a.a.			
2317	100	Clst	a.a.			a.a.
	Tr	Sst	a.a.			
	Tr	Ls	a.a.			

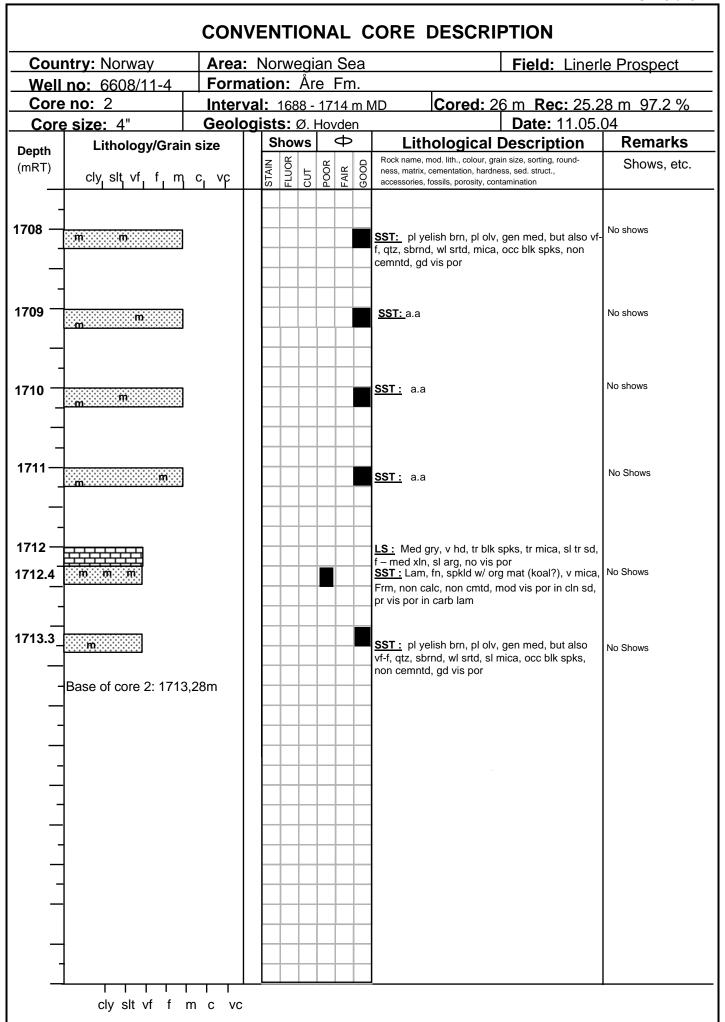

TD 2317m reached 14:00hrs 12.05.04



PAGE 2 of 2



PAGE 1 of 3



PAGE 2 of 3

PAGE 3 of 3

