

Returneres etter bruk

Den norske stats oljeselskap a.s

Classification

Requested by

Jon Hanstveit, LET Bergen

Subtitle

Co-workers

Bodil Fjæreide, Jarle Grande, Liv Tau, Eivind Osjord

Title

PVT - Analysis Well: 34/10-16

DST no. 1

STATOIL EXPLORATION & PRODUCTION LABORATORY

Jan.-84

Prepared Otto Rogne 2/1-84

LAB 84.202

Approved D.Malthe-Sørenssen

CONTENTS

	Page
INTRODUCTION	1
SAMPLING CONDITIONS	2
BOTTOM HOLE SAMPLE NO 1 Constant mass expansion Fig 1 PV relation of reservoir fluid Composition of reservoir fluid Extended composition of reservoir fluid Differential depletion, volumetric properties Differential depletion, gas compositions Differential depletion, residual oil composition	3 45678
Fig 2 Bo factor Fig 3 Solution GOR Fig 4 Z factor Fig 5 Bg factor Fig 6 Oil density Viscosity of reservoir fluid	9
Separator test	10
BOTTOM HOLE SAMPLE NO 2 Constant mass expansion Fig 8 PV relation of reservoir fluid	11
SEPARATOR SAMPLES Composition of separator gas Bubble point of separator oil Composition of separator oil Recombination of separator samples Composition of recombined reservoir fluid Constant mass expansion of recombined fluid Fig 9 PV relation of recombined fluid	12 13 14 15 16 17

INTRODUCTION

The present report gives the results of a PVT analysis on a bottom hole sample from DST # 1 on well 34/10-16 obtained by FLOPETROL 10.09.1983.

Two bottom hole samples and one set separator samples were initially checked for consistency. The bottom hole samples were heated to ca 80 C, transfered to a PVT cell, and subjected to a constant mass expansion at reservoir temperature. The two samples showed a similar bubble point of 403 and 408 barg respectively (page 3 and 11 respectively). The sample with the highest bubble point was chosen for further study, and was flashed to standard conditions to determine the reservoir composition (page 4). The extended reservoir composition, density and molecular weights given on page 5 were calculated from a TBP distillation of the stock tanck oil. The TBP distillation is reported separately.

During the single flash it was observed that the STO was solid at normal flash temperature of 15 C. The flash was therefore carried out at 28 C and atmospheric pressure. The STO density at 15 C is calculated from the mearsured walue at 28 C (0.853 g/cm3). Similarly, the density at 15 C of the residual oil from the differential liberation is calculated from a walue of 0.8529 g/cm3 measured at 30 C.

The separator samples were analysed separately (page 12 and 14), recombined and subjected to a constant mass expansion (page 17). Both the bubble point and calculated reservoir fluid composition (page 16) are similar to the bottom hole samples.

Differential liberation of the bottom hole sample was carried out through a series of pressure steps with the results given on page 6,7 and 8.

A separate portion of the bottom hole sample was charged to a rolling ball viscosimeter for measuring the oil viscosity (page 9).

Separator tests were simulated with an SRK equation of state model. The results, together with an experimental single flash, are on page 10. Since separator tests were not requested a temperature equal to the test separator was assumed. SAMPLING CONDITIONS

FIELD WELL TEST PERFORATION DATE RESERVOIR FLUID SAMPLE, BHS # 1 BHS # 2 Separator oil Separator gas SEPARATOR TEMP SEPARATOR PRESSURE FLOWING BOTTOM HOLE PRESSURE During BHS During sep samp! STATIC BOTTOM HOLE PRESSURE ** BOTTOM HOLE TEMPERATURE ж× OIL RATE GAS RATE METER FACTOR GAS-OIL RATIO (Separator)

34/10 ALPHA 34/10-16 BST 1 3397 - 3407 mRK8 18-11.89.83 ØIL Bottle 16251/33 Bottle 9214/315 Bottle nr 83021412 Bottle nr A14693 60.0 C 22 Barg 450 Bara 304 Bara 459.4 Bara 128.5 C 1031.7 m3/D 181.5 MSCM/D 0.9938 177.0 Sm3/m3

×>

Data from Flopetrol Well Testing Report 83/2301/35 **) Data supplied by STATOIL, LET/B

- 2 -

*)

WELL:34/10-16 BHS # 1

CONSTANT MASS EXPANSION AT 128.5 C

	PRESSURE BARG	REL VOL V/Vb	COMPRESSIBILITY 1/BAR	Y-FACTOR	
3	548.7 524.5 501.0 476.5 451.7 427.2 414.2 408.0 404.1 387.1 368.0 337.7 307.6 276.1 253.8 221.4 202.0 173.6 146.2 115.7 82.8	$\begin{array}{c} 0.9727\\ 0.9772\\ 0.9809\\ 0.9856\\ 0.9904\\ 0.9954\\ 0.9954\\ 0.9987\\ 1.0000\\ 1.0022\\ 1.0112\\ 1.0263\\ 1.0507\\ 1.0840\\ 1.1277\\ 1.1666\\ 1.2417\\ 1.3009\\ 1.4168\\ 1.5760\\ 1.8616\\ 2.4190\end{array}$	1.66E-04 1.76E-04 1.86E-04 1.97E-04 2.07E-04 2.17E-04 2.23E-04 2.25E-04	4.32 4.32 4.13 3.97 3.88 3.74 3.49 3.49 3.39 3.24 3.11 2.93 2.77	

FOR P < Pb	Y = 2.398	+4.81E-03 × P	
FOR P > Pb	V/Vb = 1.12	2976 -4.1095E-04×P	+2.2769E-07×P×P

ΡЬ

- 3 -

34/10-16 BHS # 1

≠ 0.869 g/cm3

COMPOSITION OF RESERVOIR FLUID (Single flash to stock tank conditions)

	STOCK TANK OIL	EVOLVED GAS	RECOM	BINED LIG	סוטג
	MOL%	MOL%	WEIGHT%	MOL WT	MOL%
NITROGEN CARBONDIOXIDE METHANE ETHANE PROPANE	0.00 0.00 0.00 0.06 0.21	0.15 2.22 81.74 7.76 3.67	0.04 0.84 11.25 2.01 1.42	28.0 44.0 16.0 30.1 44.1	0.11 1.62 59.79 5.69 2.74
n-BUTANE i-PENTANE HEXANES HEPTANES OCTANES NONANES DECANE PLUS	0.12 0.43 0.39 0.64 1.69 5.08 8.03 5.90 77.45	0.58 1.31 0.44 0.52 0.51 0.46 0.37 0.06 0.01	0.31 0.73 0.36 0.47 0.82 1.93 2.89 2.23 74.71	56.1 58.1 72.2 72.2 84.7 89.1 101.6 116.3 306.0	0.46 1.07 0.43 0.55 0.82 1.84 2.43 1.63 20.82
	100.00	100.00	100.00		100.00
MOL WEIGHT	259.2	21.34			85.27
Gas Fla	s oil ratio Ash formation vo	lume factor	= 214.2	Sm3/Si	m3 STO
of Der Der Gas	bubble point li sity at bubble sity of STO s gravity (air=1	quid point	= 1.638 = 0.645 = 0.863 = 0.737	m3/Sm3 9/cm3 9/cm3	3 STO at 15C

Density of C10+

- 4 -

				BHS # 1
	EXTENDED	RESERVOIR FLUI	D COMPOS	1) ITION
COMPONENT	WEIGHT%	MOL WEIGHT	MOL%	DENSITY g/cm3 at 15C
NZ CO2 C1 C2 C3 iC4 nC4 iC5 nC5 C6 C7 C8 C7 C8 C7 C8 C7 C10 C11 C12 C13 C14 C15 C14 C15 C14 C15 C14 C17 C18 C17 C18 C17 C18 C17 C18 C17 C12 C11 C2 C2 C2 C2 C3 C3 C2 C2 C3 C3 C3 C4 C2 C2 C3 C3 C5 C5 C5 C6 C7 C2 C2 C2 C2 C3 C3 C3 C5 C5 C6 C7 C2 C2 C2 C2 C2 C3 C3 C5 C5 C5 C6 C7 C2 C2 C2 C2 C2 C3 C3 C5 C5 C6 C7 C2 C2 C2 C2 C2 C3 C3 C5 C5 C6 C7 C2 C2 C2 C2 C2 C2 C3 C3 C5 C5 C6 C7 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	$\begin{array}{c} 0.04 \\ 0.84 \\ 11.25 \\ 2.01 \\ 1.42 \\ 0.31 \\ 0.73 \\ 0.36 \\ 0.47 \\ 0.82 \\ 1.93 \\ 2.89 \\ 2.23 \\ 2.04 \\ 1.58 \\ 1.94 \\ 1.72 \\ 3.03 \\ 3.07 \\ 1.68 \\ 3.41 \\ 3.11 \\ 2.55 \\ 50.58 \\ \hline $	28.0 44.0 16.0 30.1 44.1 58.1 58.1 72.2 72.2 84.7 87.1 101.6 116.3 132.0 147.0 163.0 175.0 190.0 205.0 215.0 215.0 251.0 263.0 425.0	$\begin{array}{c} 0.11\\ 1.62\\ 59.79\\ 5.69\\ 2.74\\ 0.46\\ 1.07\\ 0.43\\ 0.55\\ 0.82\\ 1.84\\ 2.43\\ 1.63\\ 1.33\\ 0.92\\ 1.02\\ 0.85\\ 1.37\\ 1.29\\ 0.67\\ 1.24\\ 1.07\\ 0.83\\ 10.24\\ 1.07\\ 0.83\\ 10.24\\ 1.07\\ 0.83\\ 10.24\\ 1.07\\ 0.10\\ 100.01\\ \end{array}$	0.695 0.751 0.778 0.793 0.798 0.803 0.817 0.836 0.843 0.843 0.843 0.843 0.843 0.845 0.853 0.844 0.855 0.885

1)

Data to C9 based on single flash, remaining on TBP distillation

- 5 -

34/10-16 8HS # 1

WELL:34/10-16 BHS # 1

DIFFERENTIAL DEPLETION AT 128.5 C

PRESSURE	OIL FORM	SOLUTION	GAS FORM	RES OIL	COMPR	GAS
	VOL FACT	GOR	VOL FACT	DENSITY	FACTOR	VISCOSIT
BARG	Bod	Rsd	Bg	g/cm3	Z	c۴
408.0	1.455	214.5		0.644		
386.8	1.604	194.7	3.85E-03	0.453	1.062	0.0318
353.7	1.552	174.1	4.15E-03	0.662	1.045	0.0284
296.6	1.452	139.0	4.74E-03	0.686	1.003	0.0247
248.3	1.400	113.0	5.41E-03	0.696	0.958	0.0220
197.7	1.343	87.6	6.64E-03	0.711	0.938	0.0197
125.7	1.264	57.0	1.04E-02	0.734	0.936	0.0169
71.2	1.210	34.2	1.85E-02	0.750	0.951	0.0152
31.5	1.168	17.6	4.25E-02	0.763	0.981	0.0140
0	1.096			0.78 8		
0 *	1.000			0.864		

* AT 15 C

- Bod : Volume of oil at P and T per volume of residual oil at 15 C and atm P
- Rsd : Standard m3 gas per m3 residual oil at 15 C and atm P
- Bg : m3 gas at T and P per standard m3 gas

WELL:34/10-16

BHS # 1

DIFFERENTIAL DEPLETION AT 128.5 C

(Molecular composition of differentially liberated gas, mol%)

PRESSURE/BARG	386.8	353.7	296.6	248.3	1 9 7.7	125.7	71.2	31 .5	0.0
NITROGEN	0.25	0.20	0.25	0.22	0.16	0.16	0.08	0. 06	0.00
CARBONDIOXIDE	1.91	1.95	1.97	2.03	2.09	2.26	2.52	2 .90	2.93
METHANE	85.04	85.73	86.19	86.79	86,77	85.60	82.79	75.62	50.23
ETHANE	5.59	5.69	5.74	5.91	6.07	6.83	8.35	11.57	1 8.01
PROPANE	2.18	2.21	2.19	2.22	2.24	2.51	3.19	5.00	12.16
i-BUTANE	0.31	0.33	0.32	0.31	0.31	0.33	0.42	0.68	2.08
n-BUTANE	0.68	0.68	0.66	0.65	0.63	0.68	0.85	1.41	4.65
i-PENTANE	0.23	0.23	0.22	0.21	0.20	0.20	0.25	0.40	1.54
n-PENTANE	0.28	0.28	0.26	0.25	0.23	0.24	0.28	0.47	1.74
HEXANES	0.35	0.34	0.31	0.28	0.26	0.26	0.29	0.46	1.73
HEPTANES	0.58	0.57	0.50	0.47	0.43	0.39	0.42	0.65	2.05
OCTANES	0.62	0.56	0.49	0.37	0.34	0.31	0.33	0.49	1.64
NONANES	0.41	0.27	0.22	0.13	0.13	0.12	0.12	0.15	0.69
DECANES+	1.55	0.96	0.68	0.16	0.14	0.12	0.12	0.14	0.54
	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

 MOLE WEIGHT
 22.72
 21.72
 21.03
 19.92
 19.91
 20.05
 20.77
 22.90
 37.34

 GRAVITY (Air=1)
 0.784
 0.750
 0.726
 0.686
 0.687
 0.692
 0.717
 0.791
 1.289

- 8 -

WELL:34/10-16 BHS # 1

DIFFERENTIAL DEPLETION AT 128.5 C (Molecular composition of residual oil)

COMPONENT	MOL%	
NITROGEN	0.00	
CARBONDIOXIDE	0.00	
METHANE	0.00	
ETHANE	0.04	
PROPANE	0.23	
i-BUTANE	0.13	
n-BUTANE	0.47	
i-PENTANE	0.38	
n-PENTANE	0.62	
HEXANES	1.44	
HEPTANES	4.37	
OCTANES	6.97	
NONANES	5.15	
DECANES+	80.20	
	100.00	
DENSITY AT 15 C	0.864	g/cm3
MOLE WEIGHT	263.2	

- 9 -

WELL:34/10-16

BHS # 1

VISCOSITY OF RESERVOIR FLUID AT 128.5 C

	PRESSURE	VISCOSITY
	(Barg)	(Centipoise)
	475.6	0.535
	455.1	0.506
	434.1	0.494
	412.1	0.466
РЬ :	= 408.0	0.458
	390.2	0.467
	360.0	0.483
	298.7	0.544
	249.7	0.627
	200.2	0.740
	149.0	0.916
	100.3	1.136
	50.6	1.454
	0	1.917

WELL:34/10-16

DST 1

SEPARATOR TEST OF RESERVOIR FLUID

Calculated values from EOS simulation

SEPARATOR Pressure Temp		GAS-OIL RATIO		GAS GRAV	FORM	DENSITY		
		Temp	(Sm	(Sm3/m3)		1)	FACTOR	STO 1 5C
	Barg	С	Separator	Stock tank	Separator S	tock Tank	Bof	g/cm3
¥	٥	28	214		0.737		1.638	0.863
	۵	28	211		0.727		1.635	0.877
	65	60	166	36	0.645	0.853	1.575	0.873
	40	60	1 79	22	0.665	0.883	1.582	0.873
	22	60	190	11	0.667	0.890	1.584	0.873

* Experimental, density of STO at 28 C is 0.853 g/cm3 GOR : Std m3 gas per m3 STO at 15 C Bof : m3 bubble point oil at indicated P and T per m3 STO at 15 C

WELL:34/10-16 BHS # 2

CONSTANT MASS EXPANSION AT 128.5 C

	PI	RESSURE BARG	REL VOL V/Vb	COMPRESSIBILITY 1/BAR	Y-FACTOR
РЬ	Н	565.8 542.4 449.4 449.1 410.0 449.1 410.0	0.9476 0.9715 0.9757 0.9854 0.9854 0.9896 0.9928 0.9928 0.9984 1.0000 1.0043 1.0184 1.0430 1.0924 1.370 1.2859 1.4184 1.5850 1.8976 2.5549 3.8435	1.68E-04 1.78E-04 1.97E-04 2.09E-04 2.17E-04 2.23E-04 2.27E-04 2.32E-04 2.35E-04	4.34 4.10 3.94 3.85 3.76 3.49 3.49 3.49 3.17 3.03 2.89 2.69 2.56

FOR	Ρ	<	ΡЬ	Y = 2.330 +4.84E-03 × P	
FOR	Ρ	>	ΡЬ	V/Vb = 1.13106 -4.1528E-04×P	+2.2351E-07×P×P

- 11 -

- 12 -

WELL:34/10-16 DST 1 Bottle A14693

COMPOSITION OF SEPARATOR GAS

MOL %

COMPONENT

NITROGEN CARBONDIOXIDE METHANE ETHANE PROPANE i-BUTANE i-BUTANE i-PENTANE N-PENTANE HEXANES HEPTANES OCTANES NONANES DECANES PLUS	0.249 2.236 85.838 7.059 2.743 0.354 0.495 0.172 0.200 0.157 0.180 0.098 0.010 0.008
MOL WT	19.45
GRAVITY	0.671

	DST # 1 (bottle 8302141)
BUBBLE POINT OF	SEPARATOR OIL AT 60.0 C
PRESSURE Barg	RELATIVE VOLUME V/Vb
197.8 163.6 132.2 101.1 74.4 55.7 39.4 30.7 23.9 $Pb = 22.0$ 19.8 16.9 15.7 13.8 11.1 7.7	0.9850 0.9877 0.9903 0.9929 0.9951 0.9984 0.9984 0.9998 1.0000 1.0259 1.0735 1.1280 1.2164 1.3663 1.7299

- 13 -

2)

34/10-16 DST 1

g/cm3 at 15C

= 0.869 g/cm3

COMPOSITION OF SEPARATOR LIQUID (Single flash to stock tank conditions)

- 14 -

	STOCK TANK OIL	EVOLVED	GAS	RECOM	BINED LI	QUID
	MOL%	MOL%		WEIGHT%	MOL WT	MOL%
NITROGEN CARBONDIOXIDE METHANE ETHANE PROPANE i-BUTANE n-BUTANE i-PENTANE n-PENTANE	0.00 0.00 0.13 0.47 0.32 1.15 0.75 1.19	0.24 2.10 59.55 16.58 11.70 1.91 3.98 1.04 1.08		0.00 0.43 0.34 0.46 0.15 0.41 0.26 0.39	28.0 44.0 16.0 30.1 44.1 58.1 58.1 72.2 72.2	0.04 0.31 8.67 2.53 2.27 0.56 1.56 0.80 1.17
HEXANES HEPTANES OCTANES NONANES DECANE PLUS	2.27 5.80 8.18 5.57 73.97 100.00	0.75 0.75 0.30 0.02 0.00 		0.80 2.07 3.29 2.52 88.62 	84.7 89.2 101.9 115.6 306.0	2.05 5.07 7.03 4.76 63.16
MOL WEIGHT	250.8	27.26				218.19
Gas Fla	s oil ratio ash formation vo	olume facto	ır	= 13.5	5m3/5	3m3 STO
Der Der Gas	nsity at bubble nsity of STO a gravity (air='	point		= 0.797 = 0.849 = 0.941	m3/5m g/cm3 g/cm3	3 at 150
Der		. /			-/	,

Density of C10+

```
RECOMBINATION OF SEPARATOR SAMPLES

FIELD VALUES

GOR = 177.0 Sm3/m3 separator liquid

Gas gravity = 0.670 (air = 1)

Z factor = 0.9615

LAB VALUES

Gas gravity = 0.671 (air = 1)

Z factor = 0.9598

CORRECTED GOR

GOR = GOR(field) x 

Grav(field) x Z(field)

GOR = 177. Sm3/m3 separator liquid
```

RECOMBINATION

The surfase samples were physically recombined in the ratio of 177.1 standard cm3 of separator gas per cm3 of bubble point separator liquid.

- 15 -

- 16 -

WELL:34/10-16 DST 1

COMPOSITION OF RECOMBINED RESERVOIR FLUID

	Separator Separator		Recombined	
	9 2 5	liquid	fluid	
	(m 🗆 i 🎋)	(m 🗆 %)	(ma %)	
NITROGEN	0.249	0.04	0.18	
CARBONDIOXIDE	2.236	0.31	1.60	
METHANE	85.838	8.67	60.54	
ETHANE	7.059	2.53	5.57	
PROPANE	2.743	2.27	2.59	
I-BUTANE	0.354	0.56	0.42	
n-BUTANE	0.675	1.56	0.98	
I-PENTANE	0.172	0.80	0.38	
n-PENTANE	0.200	1,17	0.52	
HEXANES	0.157	2.05	0.78	
HEPTANES	0.180	5.07	1.78	
OCTANES	0.078	7.03	2.37	
NONANES	0.010	4.76	1.57	
DECANES PLUS	0.008	63.16	20.72	

WELL:34/10-16 RECOMBINED SAMPLE

CONSTANT MASS EXPANSION AT 128.5 C

F	PRESSURE BARG	REL VOL V/Vb	COMPRESSIBILITY 1/BAR	Y-FACTOR
РЬ =	557.8 533.7 506.0 480.4 441.5 441.5 415.0 407.4 407.4 3765.5 3526.1 376.5 3226.1 140.8 140.8 140.8 140.8 140.8 222.2 1966.8 325.5 301.3 246.8 140.8 140.8 140.8 140.8 140.8 140.8 140.8 140.5 53.5 5	0.9701 0.9738 0.9738 0.9835 0.9872 0.9913 0.9944 0.9970 0.9982 1.0000 1.0045 1.0045 1.0045 1.0153 1.0212 1.0341 1.0583 1.02583 1.0860 1.1196 1.1196 1.12329 1.3240 1.4436 1.4436 1.8487 2.1296 2.6662 3.2989	1.62E-04 1.72E-04 1.83E-04 2.00E-04 2.07E-04 2.13E-04 2.17E-04 2.20E-04 2.22E-04	4.33 4.16 4.09 4.03 3.97 3.89 3.81 3.70 3.56 3.44 3.30 3.16 3.16 3.04 2.90 2.77 2.68 2.82

FOR P < Pb</th>Y = 2.414 +4.55E-03 \times PFOR P > PbV/Vb = 1.12172 -3.8631E-04 \times P +2.0501E-07 \times P \times P

