

L.NR.

^{1.} 12484150020

KODE Well 34/10-16 nr35

Returneres etter bruk

statoil

Classification	

Requested b	u				
		LET Berge	en	•	and the state of t
Subtitle					
•					
Co-workers					
Bodil :	Fjæreide,	Jarle G	rande,		
		d Osjord	•		
Title					
Title					
		PVT	- Analysi	is	

STATOIL EXPLORATION & PRODUCTION LABORATORY

DST no. 1

Well: 34/10-16

Jan.-84

LAB 84.202

Prepared		
2/1-84	Vistor	Esm.
1-24	lot to	Park
1 7 0 /	JOLLO	Rogne

3/1-84 D. Malthe-Sørenssen

CONTENTS	
	Page
INTRODUCTION	1
SAMPLING CONDITIONS	2
BOTTOM HOLE SAMPLE NO 1 Constant mass expansion Fig 1 PV relation of reservoir fluid Composition of reservoir fluid Extended composition of reservoir fluid Differential depletion, volumetric properties Differential depletion, gas compositions Differential depletion, residual oil composition Fig 2 Bo factor Fig 3 Solution GOR Fig 4 Z factor Fig 5 Bg factor Fig 6 Oil density	3 4 5 6 7 8
Viscosity of reservoir fluid	9
Fig 7 Viscosity Separator test	10
BOTTOM HOLE SAMPLE NO 2 Constant mass expansion Fig 8 PV relation of reservoir fluid	11
SEPARATOR SAMPLES Composition of separator gas Bubble point of separator oil Composition of separator oil Recombination of separator samples Composition of recombined reservoir fluid Constant mass expansion of recombined fluid Fig 9 PV relation of recombined fluid	12 13 14 15 16

INTRODUCTION

The present report gives the results of a PVT analysis on a bottom hole sample from DST # 1 on well 34/10-16 obtained by FLOPETROL 10.09.1983.

Two bottom hole samples and one set separator samples were initially checked for consistency. The bottom hole samples were heated to ca 80 C, transfered to a PVT cell, and subjected to a constant mass expansion at reservoir temperature. The two samples showed a similar bubble point of 403 and 408 barg respectively (page 3 and 11 respectively). The sample with the highest bubble point was chosen for further study, and was flashed to standard conditions to determine the reservoir composition (page 4). The extended reservoir composition, density and molecular weights given on page 5 were calculated from a TBP distillation of the stock tanck oil. The TBP distillation is reported separately.

During the single flash it was observed that the STO was solid at normal flash temperature of 15 C. The flash was therefore carried out at 28 C and atmospheric pressure. The STO density at 15 C is calculated from the mearsured walue at 28 C (0.853 g/cm3). Similarly, the density at 15 C of the residual oil from the differential liberation is calculated from a walue of 0.8529 g/cm3 measured at 30 C.

The separator samples were analysed separately (page 12 and 14), recombined and subjected to a constant mass expansion (page 17). Both the bubble point and calculated reservoir fluid composition (page 16) are similar to the bottom hole samples.

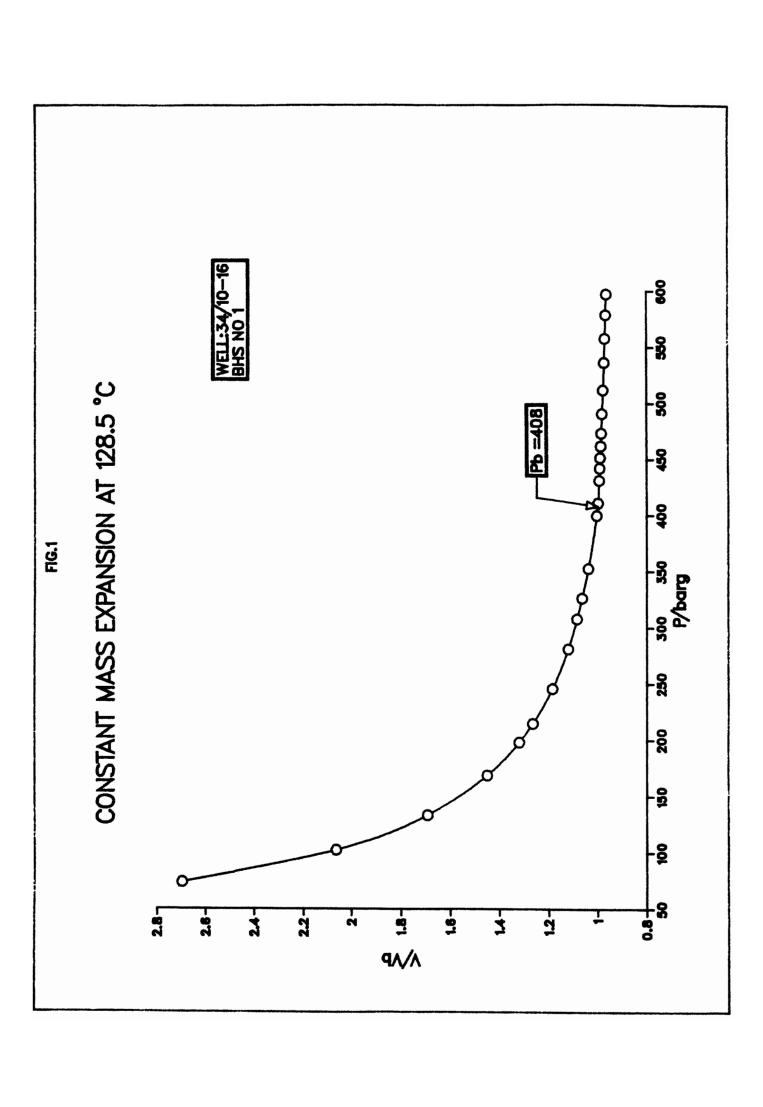
Differential liberation of the bottom hole sample was carried out through a series of pressure steps with the results given on page 6,7 and 8.

A separate portion of the bottom hole sample was charged to a rolling ball viscosimeter for measuring the oil viscosity (page 9).

Separator tests were simulated with an SRK equation of state model. The results, together with an experimental single flash, are on page 10. Since separator tests were not requested a temperature equal to the test separator was assumed.

*)

SAMPLING CONDITIONS


```
34/10 ALPHA
FIELD
                                           34/10-16
WELL
                                           DST 1
TEST
                                           3397 - 3407 mRKB
PERFORATION
                                           10-11.09.83
DATE
RESERVOIR FLUID
                                           OIL
SAMPLE, BHS # 1
                                           Bottle 16251/33
         BHS # 2
                                           Bottle 9214/315
         Separator oil
                                           Bottle nr 83021412
         Separator gas
                                           Bottle nr A14693
SEPARATOR TEMP
                                           60.0 C
SEPARATOR PRESSURE
                                           22 Barg
FLOWING BOTTOM HOLE PRESSURE
         During BHS
                                           450
                                                  Bara
                                            304
                                                  Bara
         During sep samp!
STATIC BOTTOM HOLE PRESSURE **
                                           459.4 Bara
BOTTOM HOLE TEMPERATURE
                                            128.5 C
                              **
OIL RATE
                                            1031.7 m3/D
GAS RATE
                                            181.5 MSCM/D
METER FACTOR
                                           0.9938
GAS-OIL RATIO ( Separator)
                                            177.0 Sm3/m3
 *)
   Data from Flopetrol Well Testing Report 83/2301/35
**)
   Data supplied by STATOIL, LET/B
```

WELL:34/10-16 BHS # 1

CONSTANT MASS EXPANSION AT 128.5 C

PRESSURE	REL VOL	COMPRESSIBILITY	Y-FACTOR
BARG	V/Vb	1/BAR	
548.7 524.5 501.0 476.5 451.7 429.2 414.2 Pb = 408.0 404.1 389.1 368.0 339.7 307.6 276.1 253.8 221.4 202.0 173.6 146.2 115.7 82.8	0.9727 0.9772 0.9856 0.9856 0.9904 0.9954 0.9987 1.0000 1.0022 1.0112 1.0263 1.0507 1.0840 1.1277 1.1666 1.2417 1.3009 1.4168 1.5760 1.8616 2.4190	1.66E-04 1.76E-04 1.86E-04 1.97E-04 2.07E-04 2.17E-04 2.23E-04 2.25E-04	4.32 4.32 4.13 3.97 3.88 3.74 3.65 3.49 3.39 3.24 3.11 2.93 2.77

FOR P < Pb $Y = 2.398 + 4.81E - 03 \times P$ FOR P > Pb $V/Vb = 1.12976 - 4.1095E - 04 \times P + 2.2769E - 07 \times P \times P$

34/10-16 BHS # 1

COMPOSITION OF RESERVOIR FLUID (Single flash to stock tank conditions)

	STOCK TANK OIL MOL%	EVOLVED GAS MOL%	RECOMB WEIGHT%	SINED LIQ MOL WT	MOL%
NITROGEN CARBONDIOXIDE METHANE ETHANE PROPANE i-BUTANE i-PENTANE n-PENTANE HEXANES HEPTANES OCTANES NONANES DECANE PLUS	0.00 0.00 0.06 0.21 0.12 0.43 0.39 0.64 1.69 5.08 8.03 5.90 77.45	0.15 2.22 81.74 7.76 3.67 0.58 1.31 0.44 0.52 0.51 0.66 0.37 0.06	0.04 0.84 11.25 2.01 1.42 0.31 0.73 0.36 0.47 0.82 1.93 2.89 2.23 74.71 100.00	28.0 44.0 16.0 30.1 44.1 58.1 72.2 72.2 84.7 89.1 101.6 116.3 306.0	0.11 1.62 59.79 5.69 2.74 0.46 1.07 0.43 0.55 0.82 1.84 2.43 1.63 20.82
MOL WEIGHT	259.2	21.34			85.27
Fla of Der Der Gas	s oil ration wash formation wash formation washing bubble point lasty at bubble sity of STO gravity (air=	iquid point)	= 214.2 = 1.638 = 0.645 = 0.863 = 0.737 = 0.869	Sm3/Sm3/Sm3 m3/Sm3 g/cm3 g/cm3	STO

- 5 -

34/10-16 BHS # 1

1)

EXTENDED RESERVOIR FLUID COMPOSITION

COMPONENT	WEIGHT%	MOL WEIGHT	MOL%	DENSITY 9/cm3 at 15C
N2 C02 C1 C2 C3 i C4 nC5 C6 C7 C8 C9 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20+	0.04 0.84 11.25 2.01 1.42 0.31 0.36 0.47 0.89 2.04 1.94 1.72 3.07 1.68 1.94 1.72 3.07 1.68 3.11 2.58 	28.0 44.0 16.0 30.1 44.1 58.1 72.2 72.2 84.7 89.1 101.6 116.3 132.0 147.0 143.0 175.0 190.0 205.0 215.0 2251.0 2425.0	0.11 1.62 59.79 5.69 2.74 0.46 1.07 0.82 1.84 2.43 1.63 0.92 1.02 0.85 1.37 1.29 0.67 1.27 0.83 10.24	0.695 0.751 0.778 0.793 0.796 0.803 0.817 0.836 0.843 0.849 0.853 0.844 0.855
			100.01	

 Data to C9 based on single flash, remaining on TBP distillation - 6 -

WELL:34/10-16 BHS # 1

DIFFERENTIAL DEPLETION AT 128.5 C

PRESSURE	OIL FORM	SOLUTION	GAS FORM	RES OIL	COMPR	GAS
	VOL FACT	GOR	VOL FACT	DENSITY	FACTOR	VISCOSI
BARG	Bod	Rsd	Bg	g/cm3	Z	cP
408.0	1. 6 55	214.5		0.644		
386.8	1.604	194.7	3.85E-03	0.653	1.062	0.0318
353.7	1.552	174:1	4.15E-03	0.662	1.045	0.0284
296.6	1.452	139.0	4.74E-03	0.686	1.003	0.0247
248.3	1.400	113.0	5.41E-03	0.696	0.958	0.0220
197.7	1.343	89.6	6.64E-03	0.711	0.938	0.019 7
125.7	1.264	57.0	1.04E-02	0.734	0.936	0.0169
71.2	1.210	34.2	1.85E-02	0.750	0. 9 51	0.0152
31.5	1.168	17.6	4.25E-02	0.763	0.981	0.0140
0	1.096			0.788		
□ *	1.000			0.864		

* AT 15 C

Bod: Volume of oil at P and T per volume of residual oil at 15 C and atm P

Rsd: Standard m3 gas per m3 residual oil

at 15 C and atm P

Bg: m3 gas at T and P per standard m3 gas

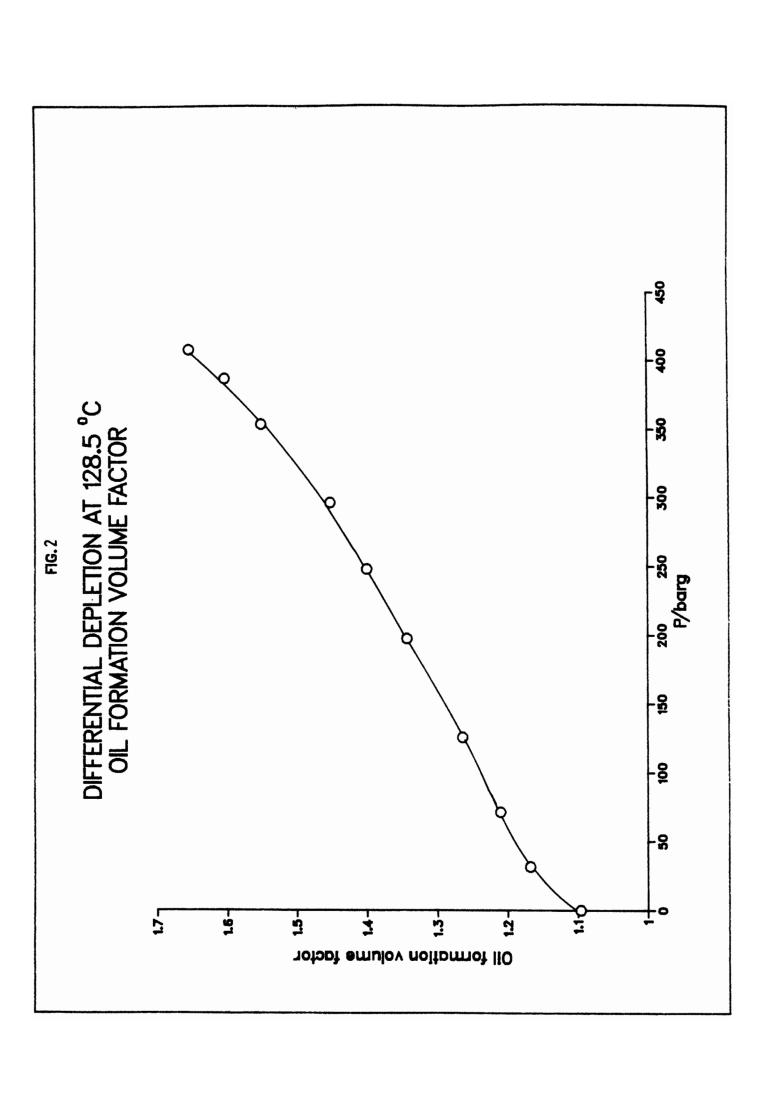
WELL:34/10-16

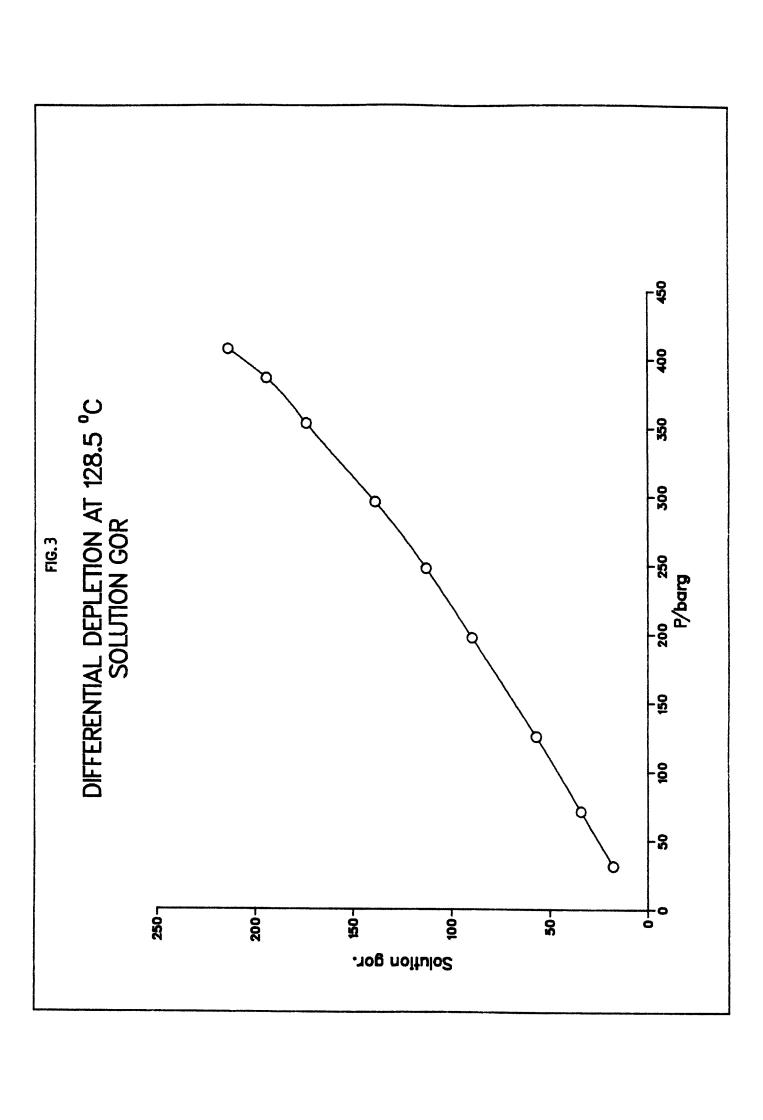
BHS # 1

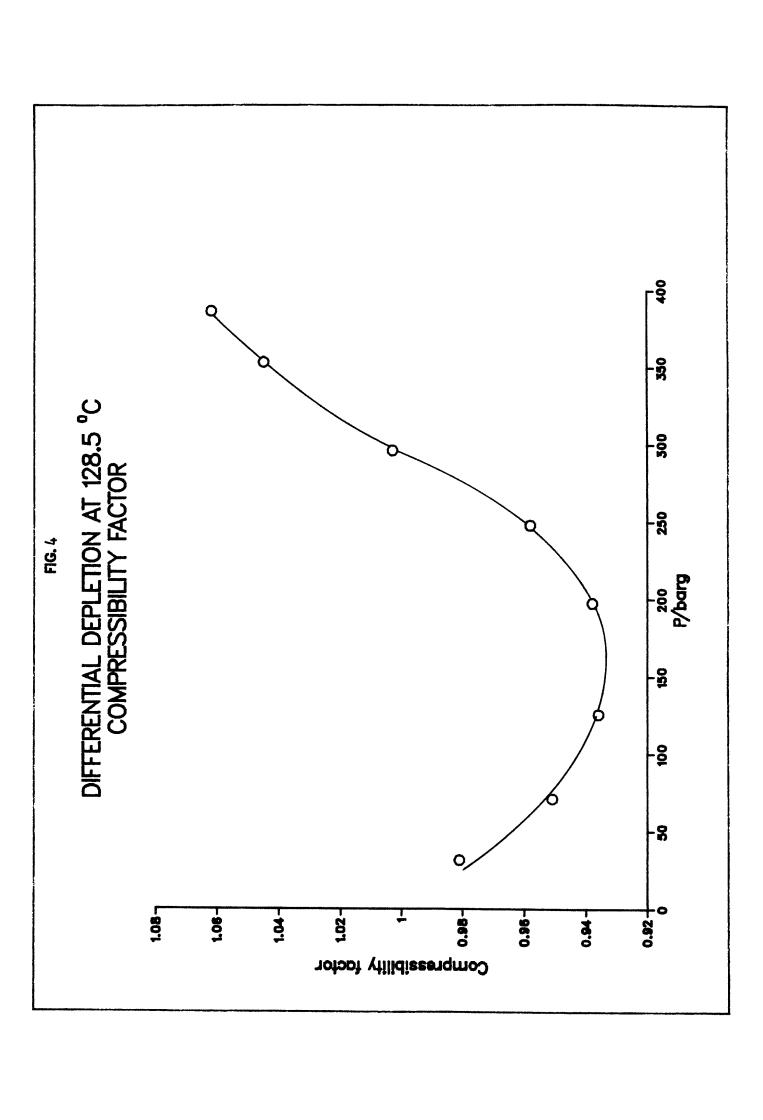
DIFFERENTIAL DEPLETION AT 128.5 C (Molecular composition of differentially liberated gas, mol%)

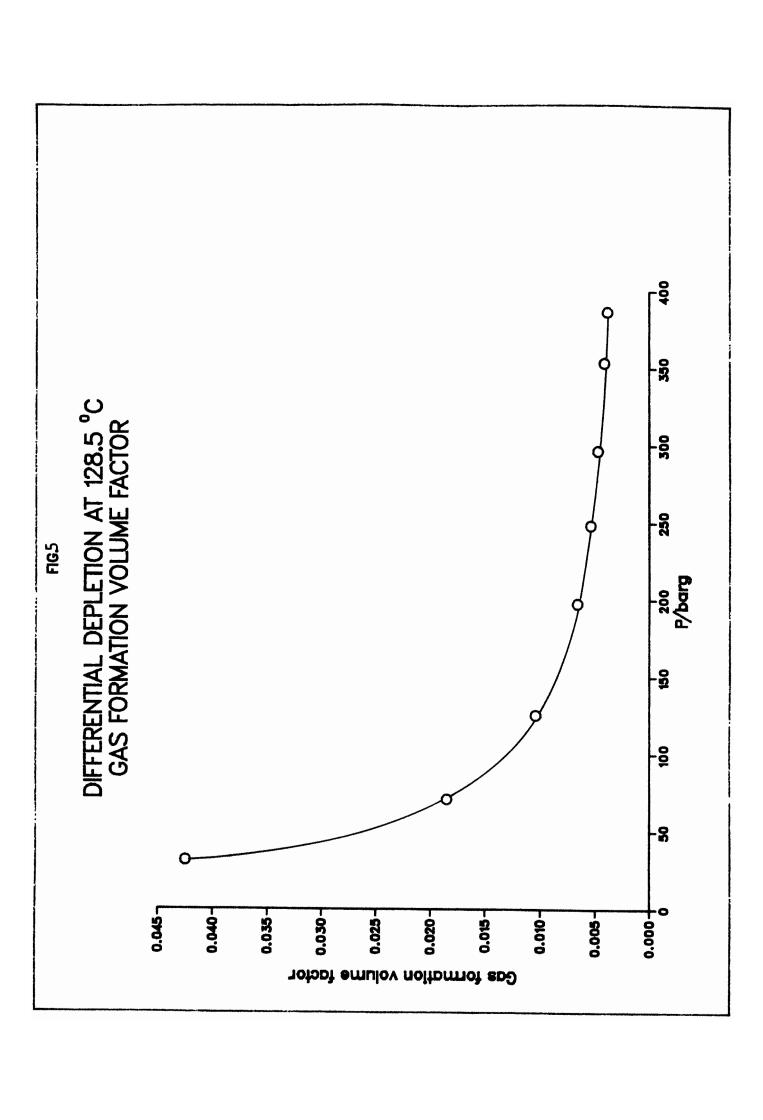
PRESSURE/BARG	384.8	353.7	296.6	248.3	1 9 7.7	125.7	71.2	31 .5	0.0
NITROGEN	0.25	0.20	0.25	0.22	0.16	0.16	0.08	0. 0 6	0.00
CARBONDIOXIDE	1.91	1.95	1.97	2.03	2.09	2.26	2.52	2 .90	2.93
METHANE	85.06	85.73	86.19	86.79	86.77	85.60	82.79	75. 62	50.23
ETHANE	5.59	5.49	5.74	5.91	6.07	6.83	8.35	11.57	18.01
PROPANE	2.18	2.21	2.19	2.22	2.24	2.51	3.19	5.00	12.16
i-BUTANE	0.31	0.33	0.32	0.31	0.31	0.33	0.42	0.68	2.08
n-BUTANE	0.68	0.68	0.66	0.65	0.63	0.68	0.85	1.41	4.65
i-PENTANE	0.23	0.23	0.22	0.21	0.20	0.20	0.25	0.40	1.54
n-PENTANE	0.28	0.28	0.26	0.25	0.23	0.24	0.28	0.47	1.74
HEXANES	0.35	0.34	0.31	0.28	0.26	0.26	0.29	0.46	1.73
HEPTANES	0.58	0.57	0.50	0.47	0.43	0.39	0.42	0.65	2.05
OCTANES	0.62	0.56	0.49	37. ۵	0.34	0.31	0.33	0.49	1.64
NONANES	0.41	0.27	0.22	0.13	0.13	0.12	0.12	0.15	0.69
DECANES+	1.55	0.96	0.68	0.16	0.14	0.12	0.12	0.14	0.56
	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

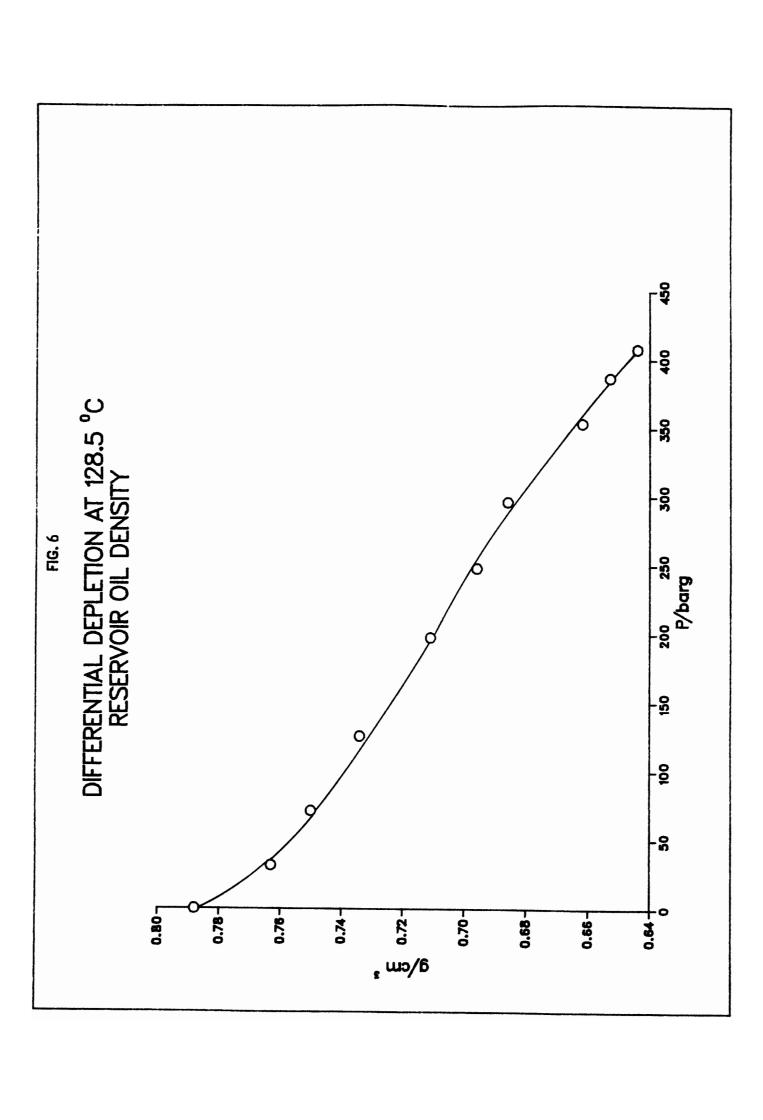
MOLE WEIGHT 22.72 21.72 21.03 19.92 19.91 20.05 20.77 22.90 37.34 GRAVITY (Air=1) 0.784 0.750 0.726 0.688 0.687 0.692 0.717 0.791 1.289

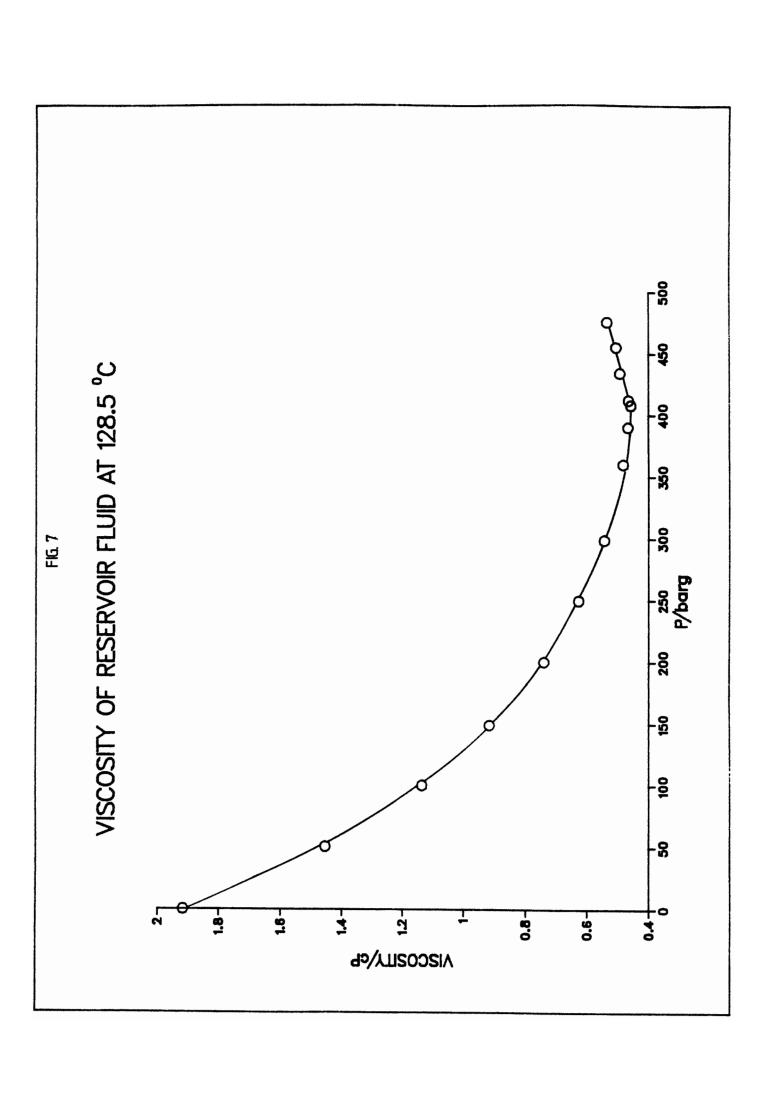

- 8 -	
-------	--


WELL:34/10-16


BHS # 1


DIFFERENTIAL DEPLETION AT 128.5 C (Molecular composition of residual oil)


COMPONENT	MOL%	
NITROGEN	0.00	
CARBONDIOXIDE	0.00	
METHANE	0.00	
ETHANE	0.04	
PROPANE	0.23	
i -BUTANE	0.13	
n-BUTANE	0.47	
i -PENTANE	0.38	
n-PENTANE	0.62	
HEXANES	1.44	
HEPTANES	4.37	
OCTANES	6.97	
NONANES	5.15	
DECANES+	80.20	
	100.00	
DENSITY AT 15 C	0.864	g/cm3
MOLE WEIGHT	263.2	



WELL:34/10-16 BHS # 1

VISCOSITY OF RESERVOIR FLUID AT 128.5 C

(Barg) (Centipoise) 475.6 0.535
475.6 0.535
455.1 0.506
434.1
412.1
Pb = 408.0 0.458
390.2 0.467
360.0 0.483
298.7
249.7 0.627
200.2 0.740
149.0 0.916
100.3 1.136
50.6 1.454
0 1.917

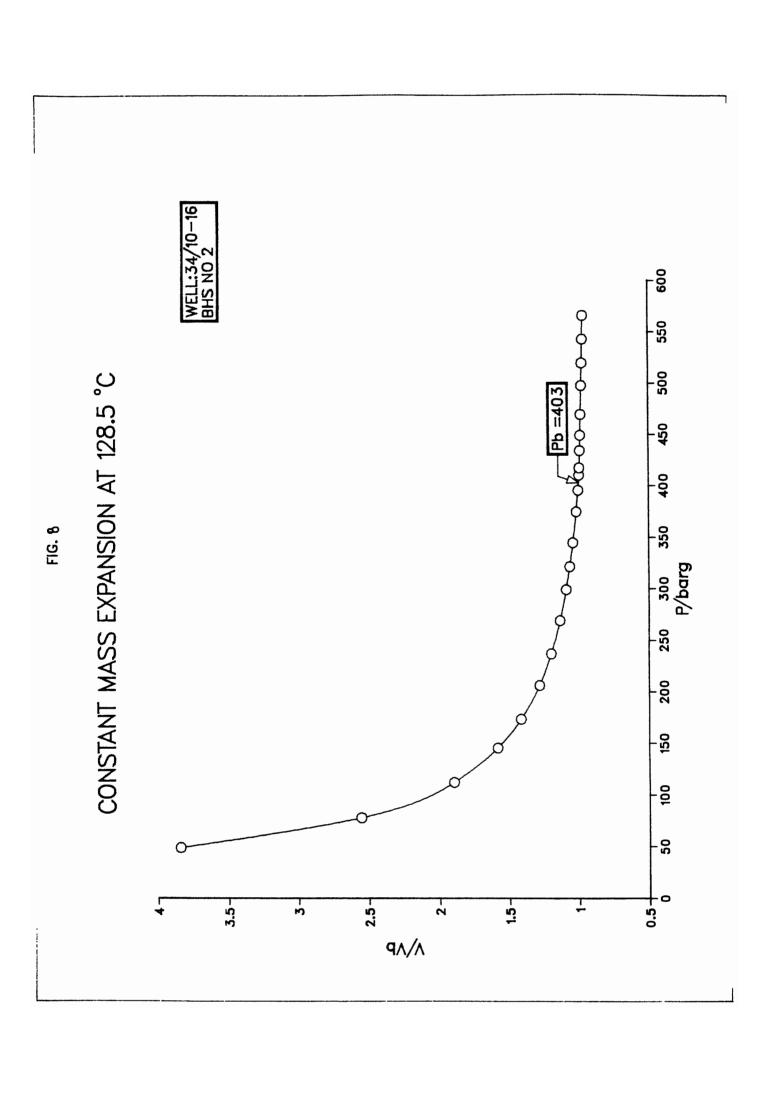
WELL:34/10-16

DST 1

SEPARATOR TEST OF RESERVOIR FLUID Calculated values from EOS simulation

OR	GAS-C	OIL RATIO	GAS GRAV	YTIV	FORM	DENSITY
Temp	(9	Sm3/m3)	(Air =	1)	FACTOR	STO 15C
С	Separator	Stock tank	Separator S	Stock Tank	Baf	g/cm3
28	214		0.737		1.638	0.863
28	211		0.727		1.635	0.879
60	166	36	0.645	0.853	1.595	0.873
60	179	22	0.665	0.883	1.582	0.873
60	190	11	0.669	0.890	1.584	0.873
	28 28 60 60	Temp (9 C Separator 28 214 28 211 60 166 60 179	Temp (Sm3/m3) C Separator Stock tank 28 214 28 211 60 166 36 60 179 22	Temp (Sm3/m3) (Air = C Separator Stock tank Separat	Temp (Sm3/m3) (Air = 1) C Separator Stock tank Separator Stock Tank 28 214 0.737 28 211 0.727 60 166 36 0.645 0.853 60 179 22 0.665 0.883	Temp (Sm3/m3) (Air = 1) FACTOR C Separator Stock tank Separator Stock Tank Bof 28 214 0.737 1.638 28 211 0.727 1.635 60 166 36 0.645 0.853 1.595 60 179 22 0.665 0.883 1.582

* Experimental, density of STO at 28 C is 0.853 g/cm3


GOR : Std m3 gas per m3 STO at 15 C

Bof : m3 bubble point oil at indicated P and T per m3 STO at 15 C

WELL:34/10-16 BHS # 2

CONSTANT MASS EXPANSION AT 128.5 C

PRESSURE BARG	REL VOL V/Vb	COMPRESSIBILITY 1/BAR	Y-FACTOR
565.8 542.7 519.4 497.4 469.3 449.0 434.1 417.4 410.2 Pb = 395.6 374.6 321.4 299.0 236.8 206.1 173.3 145.4 112.0 77.4 48.6	0.9676 0.9715 0.9757 0.9854 0.9896 0.9928 0.9984 1.0000 1.0043 1.0184 1.0430 1.0459 1.0459 1.1370 1.2012 1.2859 1.4184 1.5850 1.5850 1.8976 2.5549 3.8435	1.68E-04 1.78E-04 1.88E-04 1.97E-04 2.09E-04 2.17E-04 2.23E-04 2.29E-04 2.32E-04	4.34 4.10 3.94 3.85 3.76 3.64 3.49 3.34 3.17 3.03 2.89 2.69 2.56
FOR P <		.330 +4.84E-03 × P = 1.13106 -4.1528E-	04×P +2.2351E-07× P ×P

WELL:34/10-16 DST 1 Bottle A14693

COMPOSITION OF SEPARATOR GAS

COMPONENT	MOL %
NITROGEN CARBONDIOXIDE METHANE ETHANE ETHANE PROPANE i-BUTANE n-BUTANE i-PENTANE HEXANES HEPTANES OCTANES NONANES DECANES PLUS	0.249 2.236 85.838 7.059 2.743 0.354 0.695 0.172 0.200 0.157 0.180 0.096 0.010
MOL WT GRAVITY	19.45 0.671

WELL:34/10-16 DST # 1 (bottle 83021412)

BUBBLE POINT OF SEPARATOR OIL AT 60.0 C

197.8	PRESSURE Barg	RELATIVE VOLUME V/Vb
39.4 30.7 23.9 Pb = 22.0 1.0000 19.8 16.9 15.7 15.7 13.8 1.1280 13.8 1.3663 7.7 1.7299	163.6 132.2 101.1 74.4 55.7 39.4 30.7 23.9 Pb = 22.0 19.8 16.9 15.7 13.8 11.1	0.9877 0.9903 0.9929 0.9951 0.9968 0.9984 0.9992 0.9998 1.0000 1.0259 1.0735 1.1280 1.2164 1.3663

34/10-16 DST 1

COMPOSITION OF SEPARATOR LIQUID (Single flash to stock tank conditions)

	STOCK TANK OIL MOL%	EVOLVED GAS MOL%	RECOMB WEIGHT%	INED LIQUID MOL WT MOL%
NITROGEN CARBONDIOXID METHANE ETHANE PROPANE i-BUTANE i-PENTANE n-PENTANE HEXANES HEPTANES OCTANES NONANES DECANE PLUS	0.00 0.13 0.67 0.32 1.15 0.75 1.19 2.27 5.80 8.18 5.57	0.24 2.10 59.55 16.58 11.70 1.91 3.98 1.04 1.08 0.75 0.75 0.30 0.02	0.00 0.06 0.63 0.34 0.46 0.15 0.41 0.26 0.39 0.80 2.07 3.29 2.52 88.62 	44.0 0.31 16.0 8.69 30.1 2.53 44.1 2.27 58.1 0.56 58.1 1.56 72.2 0.80 72.2 1.17 84.7 2.05 89.2 5.07 101.9 7.03 115.6 4.76
MOL WEIGHT	25 0.8	27.26		218.19
Fi of De	s oil ratio ash formation vo bubble point li nsity at bubble	quid point		m3/Sm3 STO g/cm3
	nsity of STO s gravity (air=1			g/cm3 at 15C
De	nsity of C10+		= 0.8 6 9	g/cm3

RECOMBINATION OF SEPARATOR SAMPLES

FIELD VALUES

LAB VALUES

CORRECTED GOR

GOR = 177. Sm3/m3 separator liquid

RECOMBINATION

The surface samples were physically recombined in the ratio of 177.1 standard cm3 of separator gas per cm3 of bubble point separator liquid.

WELL:34/10-16 DST 1

COMPOSITION OF RECOMBINED RESERVOIR FLUID

	Separator	Separator	Recombined
	gas	liquid	fluid
	(mol%)	(mol%)	(mol%)
NITROGEN CARBONDIOXIDE METHANE ETHANE PROPANE i-BUTANE n-BUTANE i-PENTANE	0.249	0.04	0.18
	2.236	0.31	1.60
	85.838	8.69	60.54
	7.059	2.53	5.57
	2.743	2.27	2.59
	0.354	0.56	0.42
	0.695	1.56	0.98
n-PENTANE HEXANES HEPTANES OCTANES NONANES DECANES PLUS	0.200	1.17	0.52
	0.157	2.05	0.78
	0.180	5.07	1.78
	0.098	7.03	2.37
	0.010	4.76	1.57
	0.008	63.16	20.72

WELL:34/10-16 RECOMBINED SAMPLE

CONSTANT MASS EXPANSION AT 128.5 C

	PRESSURE BARG	REL VOL V/Vb	COMPRESSIBILITY 1/BAR	Y-FACTOR
РЬ =	557.8 533.7 580.4 460.5 441.8 415.4 407.4 407.8 407.8 407.8 395.8 3077.8 222.3 140.8 115.8 1	0.9701 0.9738 0.9738 0.9835 0.9872 0.9913 0.9970 0.9982 1.0000 1.0045 1.0089 1.0153 1.0212 1.0341 1.0583 1.0583 1.0583 1.0583 1.0455 1.2329 1.3240 1.4436 1.4436 1.8487 2.1296 2.6662 3.2989	1.62E-04 1.72E-04 1.83E-04 1.93E-04 2.00E-04 2.17E-04 2.17E-04 2.20E-04 2.20E-04	4.33 4.16 4.09 4.03 3.89 3.81 3.70 3.56 3.44 3.30 3.16 3.16 2.90 2.77 2.68 2.82
	FOR P > P		.414 +4.55E-03 x P = 1.12172 -3.8631F-0	74vP +2 0501F-07vPvP

V/Vb = 1.12172 -3.8631E-04xP +2.0501E-07xPxP

