

RESERVOIR FLUID STUDY FOR STATOIL WELL: 34/10-15 DST 2

north sea, Norway

CORE LABORATORIES Petroleum Reservair Engineering CCB, ÅGOTNES

Statoil Well: 34/10-16 DST 2 RFLN 830008A

Core Laboratories Norsk Reservoir Fluid Analysis

Thow -12

Duncan Thow RFL Operations Supervisor

CORE LABORATORIES Petroleum Reservoir Engineering CCB, ÅGOTNES

RESERVOIR FLUID STUDY FOR STATOIL WELL: 34/10-16 DST 2 NORTH SEA, NORWAY

CORE LABORATORIES

Petroleum Reservoir Engineering

CCB, ÅGOTNES

5th April 1984

Statoil Damsgårdsgaten 131 P.O.Box 1212 5001 Bergen

Attention: Jon Hanstveit

Subject: Reservoir Fluid Study Well: 34/10-16 DST No. 2 North Sea, Norway Our File No.: RFLN 830008A

Gentlemen:

A sample of separator liquid and two samples of separator vapour were collected from the subject well. These samples were forwarded to our Ågotnes laboratory for use in a reservoir fluid study, the results of which are presented in the following report. This report replaces the report previously issued (our file number RFLN 830008).

On arrival in the laboratory the ambient temperature bubble point of the separator liquid was found to be 48.2 Barg at 15.5°C. The opening pressures of the gas sample cylinders were found to be in good agreement with separator pressure at separator temperature, although both cylinders were found to contain small amounts of excess condensate. The hydrocarbon composition to decanes plus of the separator gas was determined by gas chromatography, and of the separator liquid by low and high temperature fractional distillation. After correction for the factors shown on page one, the producing gasliquid ratio was calculated to be 3531 standard cubic metres separator gas per cubic metre of primary separator liquid at 60.3 Barg and 51°C. The hydrocarbon composition of the well stream material was calculated by utilising the producing gas liquid ratio, in conjunction with the measured hydrocarbon compositions of the separator products. These data are tabulated on page two of this report.

Samples of the gas and liquid were physically recombined in the above gas/liquid ratio. The resultant reservoir fluid was subjected to constant composition expansion at the reported reservoir temperature of 117°C. During this expansion, a retrograde dew point of 417.5 bar A was observed. The results of the pressure-volume measurements are presented on page four along with the devation factor measurements at the dew point pressure and above. Statoil Well: 34/10-16 Page Two

A large portion of the recombined fluid was then subjected to a constant volume depletion at the reservoir temperature of 117°C. After determining the original saturated sample volume, a series of expansions and constant pressure displacements were made, with each displacement terminating at the original sample volume. Each displacement well stream was charged to low temperature fractional distillation equipment for compositional analysis, deviation factor measurement and determination of produced volume. The composition of the heptanes plus fraction from each displacement well stream was determined by gas - liquid chromatography. A summary of the data resultant from the constant volume depletion may be found on page five.

Calculations were then performed to predict the cumulative surface recoveries that may be expected during the pressure depletion of the reservoir. These calculations were performed by utilising the smooth compositional data in conjunction with published equilibrium ratios. The results of these surface recovery calculations may be found on pages six and seven.

Visual measurements of the retrograde condensation were performed at several points during the constant composition expansion, and at each point during the constant volume depletion. The maximum observed volume of retrograde condensation was approximatly 4.3% of the hydrocarbon pore space. A tabulation of these retrograde volume measurements may be found on page eight and are graphically represented on page fifteen.

The smooth well stream compositions were then used in conjunction with the correlation of Carr, Kobayashi and Burrows to calculate the viscosity of the well streams during the depletion at 117°C. The results of these calculations may be found on page nine and are graphically represented on page sixteen.

The hydrocarbon composition of the equilibrium liquid remaining in the cell at the termination of the depletion was determined by gas - liquid chromatography and may be found on page ten.

It has been a pleasure to be of service to Statoil. Should any questions arise concerning data presented in this report, or if we may be of service in any other matter, please do not hesitate to contact us.

> Very truely yours, Core Laboratories Norsk

Duncan Thow - How RFL Operations Supervisor

DT/JDT 7cc/Addressee

CORE LABORATORIES

Petroleum Reservoir Engineering

CCB, ÅGOTNES

	Page1. of16
	RFLN 830008A
	File
Company STATOIL	Date Sampled 17th SEPTEMBER 1983
Well 34/10-16 DST No. 2	County NORTH SEA
Field	State NORWAY
	State
FORMATION CHA	RACTERISTICS
Formation Name	BRENT
Date First Well Completed	19
Original Reservoir Pressure	Bar G@
Original Produced Gas-Liquid Ratio	
Production Rate	m ³ /Day
Separator Pressure and Temperature	Bar G
Liquid Density at 15°C	Kg/m°
Datum	m. Subsea
WELL CHARA	CTERISTICS
Elevation	60 mRKB
Total Depth	
Producing Interval	
Tubing Size and Depth	5In. to318.0,95 m.
Open Flow Potential	
Last Reservoir Pressure	448.7. Bar A@m.
Date	
Reservoir Temperature	<u>117</u> •C@m.
Status of Well	
Pressure Gauge	
SAMPLING CO	ONDITIONS
Flowing Tubing Pressure	231_8Bar G
Flowing Bottom Hole Pressure	Bar G
Primary Separator Pressure	60.3Bar G
Primary Separator Temperature	<u>51</u> • C.
Secondary Separator Pressure	Bar G
Secondary Separator Temperature	
Field Stock Tank Liquid	Kg/m @15°c.
Primary Separator Gas Production Rate	129.7m×10° /Day
Pressure Base	A A
Temperature Base	
Gas Gravity (Laboratory)	
Gas Gravity Factor (F)1.1.2328	
SeparatorLiquid Production Rate @ 60.3 Bar G	and 51° C 367 32
Primary Separator Gas/.SeparatorLiquid Ratio	.3.5.3.1
or	$283m^3/sm^3x10^6$
SAMPLED BY	FLOPETROL

REMARKS:

CORE LABORATORIES

Petroleum Reservoir Engineering

CCB, ÅGOTNES

Page 2 of 16 File RFIN 830008A Well 34/10-16

Hydrocarbon Analyses of Separator Products and Calculated Well Stream.

Component	Separator Liquid	Separator G	as	Well Strea	m
	Mol 8	Mol %	m ³ /106m ³	Mol %	m ^{3/106} m
Hydrogen Sulfide	NIL	NIL		NIL	
Carbon Dioxide	0.75	1.84		1.79	
Nitrogen	Trace	0.33		0.32	
Methane	20.19	87.34		84.44	
Ethane	5.36	6.32	224.08	6.28	222.66
Propane	5.19	2.46	90.21	2.58	94.61
iso-Butane	1.37	0.35	15.24	0.39	16.99
n-Butane	3.37	0.66	27.70	0.78	32.73
iso-Pentane	1.96	0.20	9.75	0.28	13.65
n-Pentane	2.64	0.19	9.17	0.30	14.48
Hexanes	3.47	0.14	7.25	0.28	14.87
Heptanes	8.17	0.12	6.74	0.47	24.63
Octanes	11.03	0.03	1.82	0.50	28.02
Nonanes	7.62	0.01	0,67	0.34	20.92
Decanes Plus	28.88	0.01	0.73	1.25	139.79
	100.00	100.00	393.36	100.00	623.35
Properties of Hep	tanes Plus				

Density, Gm/Cc (15°	C)0.8082	0.73	0.805
Molecular Weight	159	95	155

Calculated separator gas gravity (air=1.000) = 0.658Calculated gross heating value for separator gas = 41.74 MJ per cubic metre of dry gas at 1.01325 Bar A and $15^{\circ}C$.

Primary separator gas collected at 60.3 Bar G and 51°C. Primary separator liquid collected at 60.3 Bar G and 51°C.

Primary separator gas/separator liquid ratio = $3531 \text{ m}^3/\text{m}^3$ at 51° C. Primary separator gas/well stream ratio = $0.957 \text{ m}^3/\text{m}^3$.

CORE LABORATORIES Petroleum Reservoir Engineering CCB, ÅGOTNES

Measured Properties of Liquid Fractions

From Hydrocarbon Analysis of Separator Liquid.

Fraction	Molecular Weight	Density Kg/m³ at 15°C
Heptanes	90	725.1
Octanes	101	760.9
Nonanes	113	775.3
Decanes	127	789.5
Undecanes	221	834.2

CORE LABORATORIES

Petroleum Reservoir Engineering CCB, ÅGOTNES Page ...4 of ...16 File ...RFLN 830008A Well ...34/10-16

Pressure-Volume Relations at

Pressure Bar A	Relative Volume (l)	Deviation Factor Z
483.6 449.2 <u>448.7</u> Reservoir Pressur 442.3	0.9287 0.9626 ce 0.9629 0.9701	1.207 1.161 1.160 + 1.153
435.4 428.5 421.6 417.5 Dow Point Prossur	0.9780 0.9862 0.9948	1.144 1.135 1.127 1.121 ++
417.5 Dew Point Flessur 414.7 407.8 400.9	1.0036 1.0127 1.0225	1.121 ''
394.0 387.1 373.3 359.5	1.0327 1.0434 1.0664 1.0918	
345.8 332.0 304.4	1.1195 1.1500 1.2227	
276.8 249.2 221.6 194.1	1.3137 1.4289 1.5796 1.7845	
166.5 138.9 111.3	2.0696 2.4832 3.1180	
70.0	5.0741	

++ Gas Formation Volume Factor = $271 \text{ Sm}_3^3/\text{m}_3^3$ + Gas Formation Volume Factor = $282 \text{ Sm}^3/\text{m}^3$

(1) Relative Volume: V/Vsat is volume at indicated pressure per volume at saturation pressure.

Disse analysene, eller tokningene baseres på observasjoner og materiell skaffet til vele av klienter, som denne rapporten ekslusivt og fortrolig er laget for. Det utførte arbeidet representerer de beste tolkning. Core Laboratories Norsk er i stand til å gi, (med forbebold om feil og utelatelser). Likevel frasier Core Laboratories Norsk og Deres personell en oli anvier, ande for de sette tolkninge

			Petrole	um Reservoir El CCB, ÅGOT	ngineering VES		Page	د ۲	of16	•
				,			File	e RFLN	830008A	•
			Depletio	n Study	at 117 °	نا	Wel	l34/1	0-16	•
Hydrocarbon Analyses of Prod	luced Wel	l Stream	- Mol P	ercent						
					Reservoi	r Pressu	re - Bar	A		
Component	417.5	380.2	325.1	269.9	207.9	145.8	90.6	49.3	24.7+	
Carbon Dioxide	1.79	1.79	1,79	1.80	1.80	1.80	1.81	1.82	1.83	
Nitrogen	0.32	0.33	0.34	0.35	0.36	0.36	0,36	0.36	0.35	
Methane	84.44	84.78	85,32	85.78	86.04	86,12	85.84	85.31	84.62	
Ethane	6.28	6.27	6.25	6.23	6.24	6.27	6.36	6.43	6.51	
Propane	2.58	2.57	2.53	2.47	2.43	2.44	2.54	2.72	2.87	
iso-Butane	0.39	0.39	0.38	0.37	0.37	0.37	0.39	0.42	0.45	
n-Butane	ر . 78	0.78	0.75	0.74	0.73	0.75	0.79	0.83	0.89	
iso-Pentane	0.28	0.28	0.27	0.26	0.25	0.25	0.27	0.30	0.35	
n-Pentane	0.30	0.30	0.28	0.28	0.27	0.27	0.29	0.32	0.37	
Hexanes	0.28	0.27	0.26	0.24	0.23	0.23	0.24	0.29	0.44	
Heptanes	0.47	0.46	0.43	0.41	0.40	0.39	0.41	0.46	0.50	
Octanes	0.50	0.47	0.42	0.38	0.35	0.35	0.36	0.41	0.47	
Nonanes	0.34	0.32	0.28	0.22	0.22	0.19	0.18	0.18	0.19	
Decanes Plus	1.25	<u> </u>	0.70	0.47	0.31	0.21	0.16	0.15	0.16	
	100.00	100.00	T00.00	T00.00	T00.00	T00.00	T00.00	T00.00	T00.00	
Properties of heptanes plus Molecular weight Density	155 0.805	133 0.785	123 0.775	116 0.768	109 0.760	105 0.754	105 0.754	106 0.756	112 0.763	
- - - - - - - -										
<u>Deviation Factor - Z</u> Equilibrium gas	1.121	1.074	1.013	0.963	0.930	0.936	0.957	0.976		
Two-phase	1.121	1,075	1.019	0,978	0,944	0.934	0.950	0.942		
Well Stream produced- Cumulative % of initial	0.000	4,978	14,299	25,900	40,837	58,077	74.361	85.948	. 86	
+ Mid-Point of Producing Int	cerval									

Diss analysene, eller tokningene busers på observajoner og materiell skaffet til vek av klienter, som denne reporten ekslusivt og fortrolig et laget for. Det utførte arbeidet representerer de beste tolkninger Core Laboratories Norsk er i stand til å gi, (med forbehold om fell og utelatelser). Likevel frasier Core Laboratories Norsk og Deres personell seg al ansvar og gir derfor ingen overslag på grunnlag av disse data, som f.eks produktivitet, aktuelle operasjoner, og lønnsomhet fra en hver olje, gass eller mineral brønn eller sand, som en slik rapport er basert på

50

0

CORE LABORATORIES Petroleum Reservoir Engineering

		CORE Petroleun	LABORAT	ORIES gineering		д	age6	of	16
		CC	B, ÅGOTN	ES		H	ileR	LN 83000	8A
						M	ell34	/10-16	0 0 0 0 0
Ŭ	alculated C	umulative	Recove	ry Durin	g Deplet	ion			
Cumultative Recovery per Sm x10 of Original Fluid	Initial in place	417.5+	380.2	Reser 325.1	voir Pre 269.9	ssure - 207.9	Bar A 145.8	90.6	49.3
Well Stream - Sm ³ xl0 ³	1000	0	49.78	142.99	259.00	408.37	580.77	743.61	859.48
Normal Temperature Separation ++ Stock Tank Liquid - m Primary Separator Gas -3Sm ³ x10 ³ Stock Tank Gas - Sm x10 ³	205.99 946.39 14.14	000	7.89 47.99 0.62	18.95 138.54 1.53	29.16 251.99 2.41	39.63 398.61 3.36	49.82 568.26 4.30	59.26 728.53 5.20	64.97 843.25 5.35
Total "Plant Products" in ₃ Primary Separator Gas - m ³ +++ Ethane Propane Butanes (total) Pentanes plus	211.73 85.37 41.03 43.87	0000	10.70 4.35 2.10 2.27	30.83 12.48 6.03 6.60	55.97 22.51 10.99 12.09	88.46 35.31 17.41 19.18	126.24 50.17 24.98 27.36	162.44 64.81 32.54 35.49	188.75 76.21 38.49 43.66
Total "Plant Produgts" in Stock Tank Gas - m ³ Ethane Propane Butanes (total) Pentanes plus	7.55 6.09 2.75	0000	0.33 0.27 0.18 0.12	0.81 0.66 0.44 0.31	1.28 1.03 0.70	1.78 1.42 0.97 0.69	2.28 1.82 0.89	2.76 2.21 1.53 1.09	2.85 2.27 1.57
Total "Plant Prgducts" in Well Stream - m Ethane Propane Butanes (total) Pentanes plus	222.66 94.61 49.72 251.07	0000	11.07 4.69 2.47 10.09	31.72 13.34 6.95 25.29	57.35 23.85 12.42 40.75	90.39 37.16 19.41 57.92	128.72 52.58 27.61 75.93	165.44 67.75 35.77 93.05	191.86 79.31 41.93 106.55
 Saturation Pressure Separation Basis: Primary Stage Assumes 100% Plant efficiency. 	60.3 Bar G	at 51°C,	Stock 1	Tank 0 Ba	ar G at	15°C. (F	inal poi: : 20.7 B	nt prima ar G at	ry stage 51°C).

Disse analysese, eller tokanngene basers på obserasjoner og maternell skaftet til vere av kirnter, som denne rapporten eksiusvi og fortrolig er laget for. Det utførte arbeidet representerer de beste tokannger Core Laboratories Norsk er i stand til å gi, (med forbehold om feil og utelatelser). Likevel fraster (ore Laboratories Norsk og Deres personell seg alt ansvar og gir derfor ingen overslag på grunnlag av disse data, som f.eks produktivitet, aktuelle operasjoner, og lønnsomhet fra en hver olje, gass eller mineral benn eller sand, som en slik rapport er basert på

		CORE LAB Petroleum Ress CCB, Å	30RATORIES ervoir Engineering GOTNES		Pag Fil Wel	e 7 e RFLN 1 34/10	of16. 830008A -16	: : :
Calculat	ed Instar	Itaneous	Recovery	During Del	plation			
			Reservoir	Pressure	- Bar A			
	417.5+	380.2	325.1	269.9	207.9	145.8	90.6	49.3
Normal Temperature Separation ++ Stock Tank Liquid Density,Kg/m ³ at 15°C Separator Gas/Well Stream Patio cm ³ /cm ³	785.8	765.0	754.8	747.6	739.8	733.7	732.5	737.9
Separator Gas/Stock Tank Liguid Ratio,	0.°04	U • ¥ 6 4 U	GT/6.0	6776.0	0.9816	0.9841	0.9842	1066°0
Sm ³ /m ³	4653	6079	8193	90111	14010	16649	16966	20096
m ³ /m ³ x 10 ⁶ from Smooth Well Stream Compo	ositions							
Ethane plus Propane plus Butanes plus Pentanes plus	623.05 623.05 400.69 306.08 256.36	568.94 346.64 252.39 202.67	525.49 303.89 211.11 163.09	491.93 271.05 180.47	472.03 250.79 161.68	463.82 241.52 152.04	473.94 248.44 155.30	497.33 269.37 169.62
+ Saturation Pressure		•			00.111	L04.40	9T • CNT	00.011
++ Separation Basis: Primary Stage 60.3 B except the 49.3 Bar A Well Stream wher	Bar G at re the pr	51°C, Stc imary sta	ock Tank C ige is 20.	Bar Gat 7 at 51°C	15°C,			

Disse analysene, eller tokningene baserts på observasjoner og materiell skaffet til veie av klienter, som denne rapporten ekslusivt og fortrolig er laget for. Det utførte arbeidet representerer de beste tokhunger Core Laboratories Norsk er i stand til § g. (med forbehold om feil og utelatelser). Likevel frasier Core Laboratories Norsk og Deres personell seg all ansvar og gir derfor ingen overslag på grunnlag av dats, som f.eks produktivitet, aktuelle operasjoner, og lørnsoner fra en var sog in derfor ingen overslag på grunnlag av dats, som f.eks produktivitet, aktuelle operasjoner, og lørnsomhet fra en hver olje, gats eller mineral brønn eller sand, som en slik rapport er basert på.

CORE LABORATORIES Petroleum Reservoir Engineering

CCB, ÅGOTNES

Page	⁸ o	of ¹⁶
File	RFLN 8	30008A
Well	34/10-	16

RETROGRADE CONDENSATION DURING GAS DEPLETION AT 117°C.

Pressure	Retrogr	ade Liquid Volum	e,
Bar A	Percent of	Hydrocarbon Pore	Space
417.5 Dew Point Pre	ssure	0.0	
414.7		TRACE	
407.8		0.1	
400.9		0.2	
394.0		0.3	
387.1		0.4	
380.2 lst Depletion	Level	0.4	
325.2		1.2	
269.9		2.0	
207.9		3.1	
145.8		3.9	
90.6		4.3	
49.3		4.2	
0		3.6	

Disse analysene, eller tokningene baseres på observasjoner og materiell skaffet til vele av klienter, som denne rapporten ekslusivt og fortrolig er laget for. Det utførte arbeidet representerer de beste tolkninge: Core Laboratories Norsk er i stand til å gi, (med forbehold om feil og utelatelser). Likevel frasier Core Laboratories Norsk og Deres personell seg alt ansvar og gir derfor ingen overslag på grunnfag av disse data som f.eks produktivitet, aktuelle operasjoner, og lønnsomhet fra en hver olje, gass eller mineral hrønn eller sand, som en slik rapport er hasert på.

CORE LABORATORIES Petroleum Reservoir Engineering CCB, ÅGOTNES

Page	
File	RFLN 830008A
Well	34/10-16

Calculated Gas Viscosity at 117°C

Pressure Bar A	Gas Viscosity,-3 + Pascal-Seconds x 10 ⁻³ +
<u>448.7</u> Reservoir Pressure	0.0317
417.5 Dew Point Pressure	0.0303
380.2	0.0275
352.1	0.0243
269.9	0.0216
207.9	0.0190
145.8	0.0167
90.6	0.0148
49.3	0.0135

+ Calculated using the correlation of Carr, Kobayashi and Burrows, Aime Transactions, 1954, Vol 201, p264.

CORE LABORATORIES Petroleum Reservoir Engineering

CCB, ÅGOTNES

Hydrocarbon Analysis of Depletion Residual Liquid.

Component	Mol Percent	Weight Percent
Carbon Diovido	NTL	NTT.
Nitrogen		NTL.
Methane	NTL.	NTL.
Ethane	NTL.	NTL
Propane	NTL.	NTL
Butane	NIL	NIL
Pentanes	0.12	0.05
Hexanes	0.36	0.17
Heptanes	3.05	1,52
Octanes	9.36	5.39
Nonanes	10.10	6.77
Decanes	77.11	86.10
	100.00	100.00

Petroleum Reservoirs Engineering

 Page
 11
 of 16

 File
 RFLN
 830008A

BERGEN, NORWAY

Petroleum Reservoirs Engineering

 Page
 12 of 16

 File
 RFLN 830008A

BERGEN, NORWAY

VOLUME OF WELL STREAM PRODUCED DURING DEPLETION

Petroleum Reservoirs Engineering

Page $\frac{13}{\text{RFLN}}$ of $\frac{16}{30008}$

BERGEN, NORWAY

CUMULATIVE RECOVERY DURING DEPLETION

Petroleum Reservoirs Engineering

Page <u>14</u> of <u>16</u> File <u>RFLN 8300</u>08A

BERGEN, NORWAY

CUMULATIVE RECOVERY-PLANT PRODUCTS IN PRIMARY SEPARATOR GAS

Petroleum Reservoirs Engineering

Page <u>15</u> of <u>16</u> File <u>RFLN 830008A</u>

BERGEN, NORWAY

File <u>RFLN 850008</u>

Petroleum Reservoirs Engineering

Page <u>16</u> of <u>16</u> File <u>RFLN 830008A</u>

BERGEN, NORWAY

CALCULATED GAS VISCOSITY AT 117°C.

