ROBERTSON RESEARCH INTERNATIONAL LIMITED

REPORT NO. RRLS/6

SPECIAL CORE ANALYSIS STUDY FOR STATOIL DEN NORSKE STATS OLJESELSKAP a.s. WELL: 34/10 - 16, GULLFAKS FIELD NORWEGIAN SECTOR, NORTH SEA.

VOLUME 1

by

R. J. EVANS M. G. VINCENT

REFERENCE NO .: SCAL - 0181

Prepared by:

Robertson Research International Limited, Ty'n-y-Coed, Llanrhos, Llandudno, Gwynedd LL30 1SA, Wales, U.K. Prepared for:

Statoil, Den Norske Stats Olieseiskap a.s., Forus, Postboks 300, N-4001 Stavanger, Norway.

November, 1984

PAGE 1 of 109 FILE NO: SCAL-0181 VOLUME 1

INTRODUCTION

This report comprises the results of Special Core Analysis tests performed on a suite of samples from Well 34/10-16 of the Gullfaks field situated in the Norwegian sector of the North Sea.

The request and specifications for the study were originally outlined in a telex from Mr. Jon Ringen of Statoil, ref. telex ZCZC 091001 dated 20/9/83. These test requirements were later modified in a letter from Mr. Kora Sørheim of Statoil, ref. letter THE/BF dated 2/11/83.

The results of the analyses have been presented in three volumes. Volume 1 comprises the results of the initial Klinkenberg permeabilities, the residual gas determinations and gas-oil relative permeability tests. Volume 2 comprises the results of the high rate waterflood tests and Volume 3 includes the results from the low rate waterfloods with the accompanying high rate 'bump floods'.

Exact details of the organisation of each volume are presented on the contents pages which like the introduction are also included in each volume to ensure their individual clarity.

PAGE 2 of 109 FILE NO: SCAL-0181 VOLUME 1

CONTENTS

Page No.

VOLUME 1

SAMPLE AN	D TEST SUMMARY CHART	5
PERMEABIL	ITY AND POROSITY SUMMARY CHART	6
SAMPLE PR	EPARATION AND BASE PERMEABILITY MEASUREMENTS	7
1.3.1	Test and Calculation Procedures	7
1.3.2	Helium Porosity, Grain Density and Klinkenberg	
	Permeability Results	10
1.3.3	Brine Permeabilities	15
1.3.4	Irreducible Water Saturations and Klinkenberg	
	Permeabilities at SW ir	16
DETERMINA	TION OF RESIDUAL GAS SATURATION BY LOW RATE OILFLOOD	19
1.4.1	Test and Calculation Procedures	19
1.4.2	Residual Gas Determination Results	21
GAS-OIL,	RELATIVE PERMEABILITY TESTS	23
1.5.1	Test and Calculation Procedures	24
1.5.2	Gasflood Production Data	25
1.5.3	Summary of Results	52
1.5.4	Gas-011, Relative Permeability Data	53
ndix T	Sample Dimensions	107
	-	207
HUIA IL		108
ndix III		100
	PERMEABIL SAMPLE PR 1.3.1 1.3.2 1.3.3 1.3.4 DETERMINA 1.4.1 1.4.2 GAS-OIL, 1.5.1 1.5.2 1.5.3	 1.3.1 Test and Calculation Procedures 1.3.2 Helium Porosity, Grain Density and Klinkenberg Permeability Results 1.3.3 Brine Permeabilities 1.3.4 Irreducible Water Saturations and Klinkenberg Permeabilities at SW_{ir} DETERMINATION OF RESIDUAL GAS SATURATION BY LOW RATE OILFLOOD 1.4.1 Test and Calculation Procedures 1.4.2 Residual Gas Determination Results GAS-OIL, RELATIVE PERMEABILITY TESTS 1.5.1 Test and Calculation Procedures 1.5.2 Gasflood Production Data 1.5.3 Summary of Results 1.5.4 Gas-Oil, Relative Permeability Data

PAGE 3 of 109 FILE NO: SCAL-0181 VOLUME 1

CONTENTS

Page No.

ROBERTSON RESEARCH

VOLUME 2

for reference

2.1	SAMPLE AN	D TEST SUMMARY CHART	5
2.2	PERMEABIL	ITY AND POROSITY SUMMARY CHART	6
2.3	HIGH RATE	WATERFLOODS (400 c.c./hr CONSTANT FLOWRATE)	7
	2.3.1	Test and Calculation Procedures	7
	2.3.2	Waterflood Production Data	9
	2.3.3	Summary of Waterflood Test Results	35
	2.3.4	Waterflood Susceptibility Data	36
	2.3.5	Water-Oil, Relative Permeability Data	76
2.4	RESTORATI	ON BY 'DYNAMIC DISPLACEMENT' OF BRINE WITH OIL	124
Арре	ndix I	Sample Dimensions	126
Арре	ndix II	Composition and Specifications of the Fluids Used	
		During Testing	127
Арре	ndix III	Abbreviations	128

PAGE 4 of 109 FILE NO: SCAL-0181 VOLUME 1

CONTENTS

Page No.

ROBERTSON RESEARCH

VOLUME 3

for reference

3.1	SAMPLE AN	D TEST SUMMARY CHART	5
3.2	PERMEABIL	ITY AND POROSITY SUMMARY CHART	6
3.3	SAMPLE PR	EPARATION AND BASE PERMEABILITY MEASUREMENTS	7
	3.3.1	Test and Calculation Procedures	7
	3.3.2	Helium Porosity, Grain Density and	
		Klinkenberg Permeability Results	9
	3.3.3	Brine Permeabilities	13
	3.3.4	Irreducible Brine Saturations and Oil Permeabilities	14
3.4	LOW RATE	WATERFLOODS (4 c.c./hr CONSTANT FLOW RATE)	
	AND HIGH	RATE WATERFLOODS (400 c.c./hr CONSTANT FLOW RATE,	
	'BUMP FLO	OD')	15
	3.4.1	Test and Calculation Procedures	15
	3.4.2	Waterflood Production Data	17
	3.4.3	Summary of Waterflood Test Results	32
	3.4.4	4 c.c./hr Waterflood Susceptibility Data	33
	3.4.5	4 c.c./hr Water-Oil, Relative Permeability Data	62
	3.4.6	400 c.c./hr 'Bump Flood', Production Data	87
	3.4.7	Summary of Waterflood Test Results	104
	3.4.8	400 c.c./hr Waterflood Susceptibility Data	105
3.5	COMPARISO	N OF HIGH RATE AND LOW RATE/ BUMP FLOOD WATERFLOODS	134
Арре	ndix I	Sample Dimensions	136
Арре	ndix II	Composition and Specifications of the Fluids Used	
		During Testing	137
Арре	ndix III	Abbreviations	138

SPECIAL CORE AN STATOIL, NORWAY WELL: 34/10-16	A	LYSIS STUDY FIELD: GULLFAKS	S								PAGE 5 of 109 FILE NO: SCAL-0181 VOLUME 1	109 :CAL-0181
				1.1		SAMPLE AND TEST SUMMARY CHART	SUMMARY (CHART				
SAMPLE NUMBER	DEPTH (metres)	FORMATION	K ₁ Perm	Kw	K _l Perm SW _{ir}	Res Gas	Kg/Ko	High rate Waterflood	K ₁ Perm	Kw	Low rate Waterflood	High rate 'Bump Flood'
7.1	3171.85	ZONE 1	×	×	×	×	×	×	×	×	×	M
57.1	3190.00	ZONE 1	х	×	×	x	×	x	×	×	x	×
81.1	3200.00	ZONE 1	х	×	×	×	×	x	×	×	х	×
93.1	3204.15	ZONE 1	x	×	×	x	×	х	×	×	×	×
135.1	3219.00	ZONE 2	×	×	×	x	×	x	×	×	х	×
316.1	3284.25	ZONE 2	x	×	x	x	×	x	x	×	x	×
408.1	3325.15	ZONE 2	x	×	×	x	×	x	×	×	x	×
471.1	3347.50	ZONE 2	×	×	×	×	×	×	×	×	x	×
487.1	3359.15	ZONE 2	x	×	×	×	×	х	×	×	x	x
586.1	3396.00	ZONE 3	×	×	×	×	×	×	×	×	х	×
604.1	3401.65	ZONE 3	×	×	×	×	x	X	×	×	х	×
623.1	3407.50	ZONE 3	x	×	×	×	×	X	x	×	x	×
657.1	3419.10	ZONE 4	×	×	×	×	×	x	×	×	×	×
666.1	3422.10	ZONE 4	x	×	×	×	×	х	×	×	х	×
700.1	3433.70	ZONE 4	×	×	×	×						

PAGE 6 of 109 FILE NO: SCAL-0181 VOLUME 1

1.2 PERMEABILITY AND POROSITY SUMMARY CHART

SAMPLE	DEPTH	FORMAT	ION	AIR PERMEABILITY*	POROSITY(Ø)**
NUMBER	(metres)			Ka (mD)	(per cent)
7.1	3171.85	ZONE	1	1013	26.2
† 7.1	3171.85	ZONE	1	1015	24.7
57.1	3190.00	ZONE	1	36	21.9
† 57. 1	3190.00	ZONE	1	34	21.7
81.1	3200.00	ZONE	1	195	24.5
† 81.1	3200.00	ZONE	1	198	23.1
93.1	3204.15	ZONE	1	485	25.8
† 93. 1	3204.15	ZONE	1	456	24.5
135.1	3219.00	ZONE	2	37	22.3
†135. 1	3219.00	ZONE	2	35	22.0
316.1	3284.25	ZONE	2	80	19.6
†316.1	3284.25	ZONE	2	75	19.0
408.1	3325.15	ZONE	2	8.9	20.5
†408. 1	3325.15	ZONE	2	8.8	19.9
471.1	3347.50	ZONE	2	2316	22.8
†471. 1	3347.50	ZONE	2	2210	22.0
487.1	3359.15	ZONE	2	511	21.1
†487. 1	3359.15	ZONE	2	470	20.3
586.1	3396.00	ZONE	3	27	18.0
†586.1	3396.00	ZONE	3	27	17.7
604.1	3401.65	ZONE	3	6.3	15.4
†604. 1	3401.65	ZONE	3	6.5	14.3
623.1	3407.50	ZONE	3	128	19.5
†623. 1	3407.50	ZONE	3	128	19.2
657.1	3419.10	ZONE	4	2.00	13.3
†657. 1	3419.10	ZONE	4	1.90	12.5
666.1	3422.10	ZONE	4	17.8	18.4
†666. 1	3422.10	ZONE	4	18.0	18.4
700.1	3433.70	ZONE	4	0.76	14.0

* Extrapolated value from Klinkenberg permeability results.

** Helium Porosity, calculated using a bulk volume determined by immersion in brine.

+ Parameters re-determined after second cleaning cycle.

1.3 SAMPLE PREPARATION AND BASE PERMEABILITY MEASUREMENTS

1.3.1 Test and Calculation Procedures

ROBERTSON BESEABCH

1.3 SAMPLE PREPARATION AND BASE PERMEABILITY MEASUREMENTS

1.3.1 Test and Calculation Procedures

The test suite for this study comprised 15 plug samples of one and one half inches diameter. The samples had been drilled and trimmed into right cylinders prior to transportation to Robertson Research. Upon receipt an examination of the samples confirmed that there had been no damage to the samples during transit and that the samples appeared suitable for the requested test programme.

Sample Cleaning

All of the samples were cleaned of residual mobile reservoir and drilling fluids by solvent extraction. This was achieved by Soxhlet retorting the samples in a low boiling point azeotrope of methanol and toluene. The samples were deemed clean when the refluxing solvent showed no discolouration and tests for salt proved negative. The samples were then dried in a humidity controlled oven at 60°C and 40 per cent relative humidity.

Air Permeability and Porosity Measurement Techniques

In order to derive air permeability and Klinkenberg correction, the gas permeability of each sample was determined at four mean pressures. The measurements were made by flowing nitrogen gas through the samples after they had been loaded in Hassler core holders with a net overburden stress of 200 psi applied. Differential pressure across the sample was measured by manometer and back pressure was monitored by either manometer or electronic pressure transducer.

From this data a graph of gas permeability versus the reciprocal of mean pressure was plotted for each sample and air permeability and Klinkenberg permeability were determined by extrapolation. A plot of Klinkenberg permeability versus porosity is presented in Figure 1.3.2.

Porosity values were determined indirectly. The grain volume of each sample was measured by the expansion of helium gas from standard volumes into the sample loaded in a Matrix cup. Pressures in the system were monitored by electronic transducer and the grain volume was calculated by applying Boyle's law to the data. Pore volume and subsequently porosity were calculated after saturating and immersing the samples in brine to derive the bulk volume. Upon completion of the base air permeability and grain volume measurements the samples were saturated with simulated formation brine. Saturation was achieved in two stages. Firstly the samples were carefully positioned in an air-tight vessel and this vessel was then evacuated. De-aired simulated formation brine was then introduced and the system was pressured up to approximately 70 bars. This pressure was maintained overnight for approximately 16 hours.

The saturated pore volume of each sample was calculated by material balance and sample bulk volume was determined by immersing the samples in brine and applying Archimedes' principle. The helium pore volumes and the saturated pore volumes were compared and in all cases the levels of saturation were considered suitable for testing to continue.

The brine permeability of each sample was then determined. The measurements were performed by flowing brine at three different flowrates. A graph of flowrate versus brine permeability was plotted for each sample and the data was taken to be valid if a straight line could be drawn through the data points and the co-ordinate 0.00, 0.00.

All of the samples were then loaded onto a brine saturated porous plate and desaturated in a single desaturation stage using humidified air at 200 psi. The time taken to reach SW_{ir} was approximately seven days, the desaturation profile of the sample being monitored periodically throughout this stage. Once irreducible brine saturation had been attained gas permeability measurements were performed using the techniques previously described. Air permeability SW_{ir} and Klinkenberg Permeability SW_{ir} were then calculated from this data.

The gas permeabilities at SW were later used as the base values for the Gas-Oil Relative Permeability calculations.

1.3 SAMPLE PREPARATION AND BASE PERMEABILITY MEASUREMENTS

1.3.2 <u>Helium Porosity, Grain Density and Klinkenberg</u> <u>Permeability Results</u>

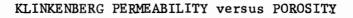
PAGE 11 of 109 FILE NO: SCAL-0181 VOLUME 1

1.3.	2 HELIUM	POROSITY, GE	RAIN DENSIT	Y AND KLI	NKENBERG	PERME	ABILITY RE	SULTS
SAMPLE NUMBER	DEPTH (metres)	FORMATION	HELIUM POROSITY (per cent)			ILITY		KLINKENBERG PERMEABILITY Kl (mD)
7.1	3171.85	ZONE 1	26.2	2.64	1013 999 984 978 970	(Ka)	1.28 1.81 2.07 2.32	946
57.1	3190.00	ZONE 1	21.9	2.65	36 33 32 31 30	(Ka)	1.80 2.49 3.17 4.60	29
81.1	3200.00	ZONE 1	24.5	2.66	195 191 189 188 187	(Ka)	1.39 1.74 2.10 2.44	182
93.1	3204.15	ZONE 1	25.8	2.65	485 476 470 465 460	(Ka)	1.27 1.56 1.80 2.36	440
135.1	3219.00	ZONE 2	22.3	2.66	37 34 33 32 32	(Ka)	1.80 2.53 3.21 4.71	30

PAGE 12 of 109 FILE NO: SCAL-0181 VOLUME 1

1.	3.2 <u>HELIUM</u>	POROSITY,	GRAIN DENS	ITY AND K	LINKENBERG PEH	MEABILITY	RESULTS
SAMPLE NUMBER	DEPTH (metres)			DENSITY			KLINKENBERG PERMEABILITY Kl (mD)
316.1	3284.25	ZONE 2	19.6	2.69	80 (Ka) 78 77 77 76	1.32 1.61 1.87 2.13	72
408.1	3325.15	ZONE 2	20.5	2.67	8.9 (Ka) 7.4 7.1 7.0 6.8	2.59 3.89 5.07 6.75	6.5
471.1	3347.50	zone 2	22.8	2.65	2316 (Ka) 2299 2289 2272 2269	1.22 1.44 1.87 2.11	2223
487.1	3359.15	ZONE 2	21.1	2.65	511 (Ka) 502 491 488 485	1.27 1.80 2.09 2.32	465
586.1	3396.00	ZONE 3	18.0	2.65	27 (Ka) 25 24 23 23	1.77 2.14 2.98 4.05	21

PAGE 13 of 109 FILE NO: SCAL-0181 VOLUME 1


1.3	.2 HELIUM	POROSITY, (GRAIN DENSI	TY AND KL	INKENBERG PERM	EABILITY R	ESULTS
SAMPLE NUMBER		FORMATION	POROSITY	DENSITY	GAS PERMEABILITY (mD)		
604.1	3401.65	ZONE 3	15.4	2.68	6.3 (Ka) 5.8 5.7 5.5 5.2	1.47 1.93 2.59 4.82	4.9
623.1	3407.50	ZONE 3	19.5	2.65	128 (Ka) 126 125 124 123	1.32 1.65 2.13 2.89	120
657.1	3419.10	ZONE 4	13.3	2.67	2.00 (Ka) 1.72 1.67 1.57 1.48	1.68 1.99 2.70 4.82	1.35
666.1	3422.10	ZONE 4	18.4	2.67	17.8 (Ka) 16.4 16.0 15.5 15.3	1.77 2.30 2.60 4.60	14.6
700.1	3433.70	ZONE 4	14	2.72	0.76 (Ka) 0.60 0.58 0.54 0.49	1.87 2.20 2.90 5.07	0.43

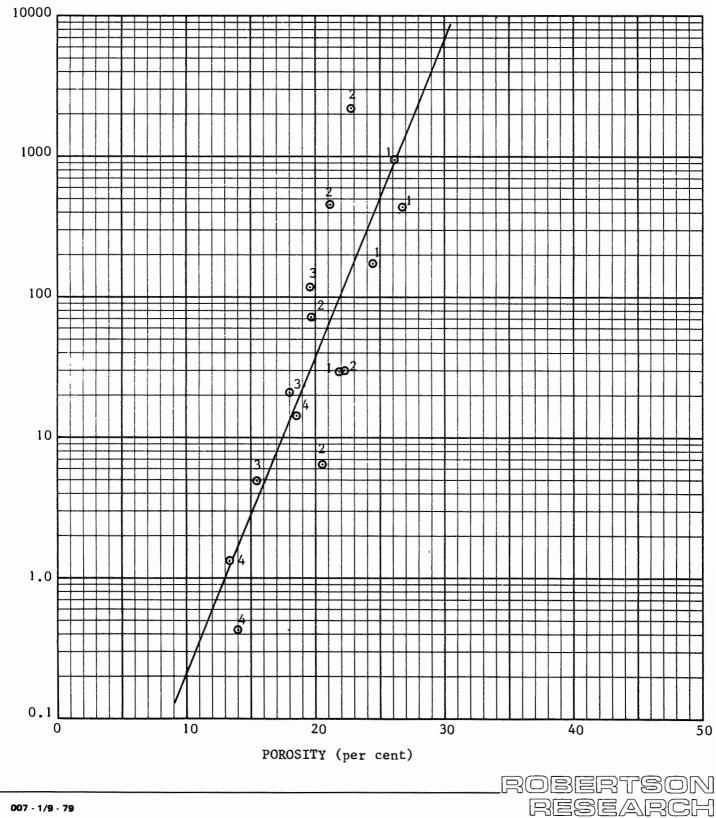

Page....14...of....109

Figure 1.3.2.

File No. . SCAL-0.1.81

COMPANY: STATOIL	FORMATION: ZONES. 1., 2, 3., 4
WELL:	LOCATION: NORWEGIAN NORTH SEA
FIELD: GULLFAKS	COUNTRY: NORWAY.
SAMPLE NUMBER:	PERMEABILITY md :

PAGE 15 of 109 FILE NO: SCAL-0181 VOLUME 1

1.3.3 BRINE PERMEABILITIES

SAMPLE NUMBER	DEPTH (metres)	FORMATION	AIR PERMEABILITY Ka (mD)	KLINKENBERG PERMEABILITY KL (mD)	BRINE PERMEABILITY Kw (mD)
7.1	3171.85	ZONE 1	1013	946	799
57.1	3190.00	ZONE 1	36	29	27
81.1	3200.00	ZONE 1	195	182	168
93.1	3204.15	ZONE 1	485	440	437
135.1	3219.00	ZONE 2	37	30	27
316.1	3284.25	ZONE 2	80	72	56
408.1	3325.15	ZONE 2	8.9	6.5	5.3
471.1	3347.50	ZONE 2	2316	2223	1923
487.1	3359.15	ZONE 2	511	465	407
586.1	3396.00	ZONE 3	27	21	18
604.1	3401.65	ZONE 3	6.3	4.9	4.2
623.1	3407.50	ZONE 3	128	120	117
657.1	3419.10	ZONE 4	2.00	1.35	0.61
666.1	3422.10	ZONE 4	17.8	14.6	11.8
700.1	3433.70	ZONE 4	0.76	0.43	0.16

1.3 SAMPLE PREPARATION AND BASE PERMEABILITY MEASUREMENTS

1.3.4 Irreducible Water Saturations and Klinkenberg Permeabilities at SW

PAGE 17 of 109 FILE NO: SCAL-0181 VOLUME 1

1.3.4 IRREDUCIBLE WATER SATURATIONS AND KLINKENBERG PERMEABILITIES AT SW ir

SAMPLE NUMBER	DEPTH (metres)	FORMATION	SW (per cent)	GAS PERMEABILITY (mD)	MEAN PRESSURE (bars)	KLINKENBERG PERMEABILITY K1 (mD)
7.1	3171.85	ZONE 1	8.5	884 (Ka) 875 868 865 861	1.25 1.51 1.78 2.05	838
57.1	3190.00	ZONE 1	20.2	31 (Ka) 28 28 28 28 28	2.61 3.29 3.99 4.64	27
81.1	3200.00	ZONE 1	17.7	180 (Ka) 177 175 174 173	1.38 1.73 2.11 2.42	169
93.1	3204.15	ZONE 1	14.8	462 (Ka) 455 450 451 448	1.91 2.57 3.26 3.94	437
135.1	3219.00	ZONE 2	22.2	32 (Ka) 30 29 29 29 29	1.91 2.57 3.26 3.94	27
316.1	3284.25	ZONE 2	22.4	69 (Ka) 67 66 66 66	1.29 1.56 1.82 2.09	63
408.1	3325.15	ZONE 2	33.8	6.7 (Ka) 6.2 6.0 5.7 5.5	1.59 1.89 3.41 6.85	5.3
471.1	3347.50	ZONE 2	5.3	2309 (Ka) 2283 2272 2246 2254	1.20 1.37 3.97 5.70	2192

PAGE 18 of 109 FILE NO: SCAL-0181 VOLUME 1

SAMPLE NUMBER	DEPTH (metres)	FORMATION	SW (per cent)	GAS PERMEABILITY (mD)	MEAN PRESSURE (bars)	KLINKENBERG PERMEABILITY Kl (mD)
487.1	3359.15	ZONE 2	14.3	462 (Ka) 458 456 454 453	1.27 1.54 1.80 2.07	455
586.1	3396.00	ZONE 3	31.0	433 22 (Ka) 21 20 20 20 20	1.98 2.61 3.31 4.76	19
604.1	3401.65	ZONE 3	39.4	5.2 (Ka) 4.9 4.8 4.6 4.5	1.69 2.03 3.34 4.56	4.3
623.1	3407.50	ZONE 3	22.2	123 (Ka) 121 120 119 118	1.28 1.54 1.81 2.33	114
657.1	3419.10	ZONE 4	44.9	0.89 (Ka) 0.83 0.81 0.80 0.78	1.77 2.08 2.63 3.64	0.74
666.1	3422.10	ZONE 4	28.6	16.0 (Ka) 15.3 15.1 14.8 14.5	1.51 1.80 2.31 3.49	13.9
700.1	3433.70	ZONE 4	55.0	0.32 (Ka 0.25 0.23 0.21 0.21) 1.95 1.72 3.97 5.70	0.17

PAGE 19 of 109 FILE NO: SCAL-0181 VOLUME 1

1.4 DETERMINATION OF RESIDUAL GAS SATURATION BY LOW RATE OILFLOOD

1.4.1 Test and Calculation Procedures

PAGE 20 of 109 FILE NO: SCAL-0181 VOLUME 1

1.4 DETERMINATION OF RESIDUAL GAS SATURATION BY LOW RATE OILFLOOD

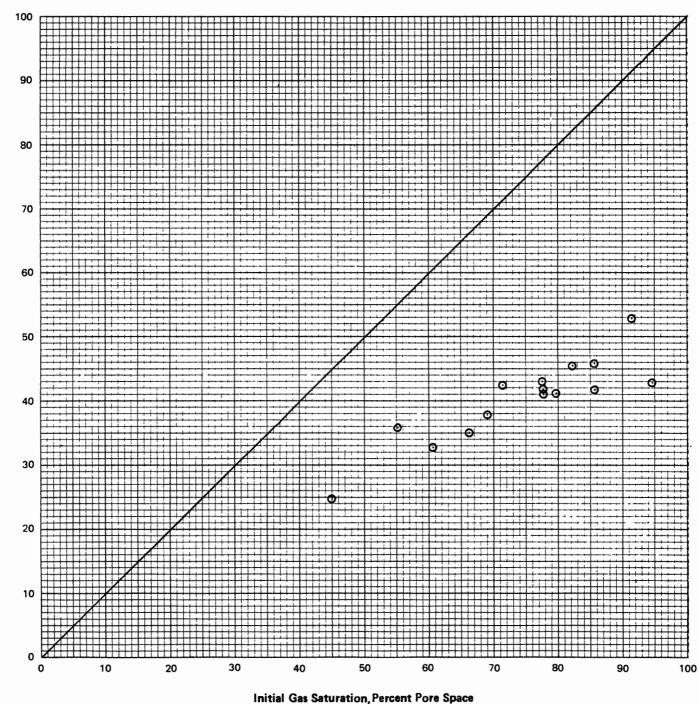
1.4.1 Test and Calculation Procedures

The samples scheduled for this test had been driven to irreducible brine saturation in a single desaturating phase as described in Section 1.3.1. Each sample was then individually loaded into a specially prepared overburden cell. The cell containing the sample and the gas collection system were then pressurised until the core was sustaining approximately 20 bars pore pressure and 20 bars net overburden pressure.

The residual gas saturation of the samples was established by performing a low rate 4 c.c./hr constant rate oilflood. The differential pressure across the sample and downstream back pressure were monitored using electronic transducers.

The floods were continued until there was no more removal of gas and then the permeability to oil was measured.

PAGE 21 of 109 FILE NO: SCAL-0181 VOLUME 1


SPECIAL CORE ANALYSIS STUDY STATOIL, NORWAY WELL: 34/10-16 FIELD: GULLFAKS

Ko (Sgr) (mD) PERMEABILITY PERMEABILITY 0.52 0.21 11.5 3.4 4.7 OIL 175 45 911 230 15 89 484 92 24 21 Sgr (per cent) RESIDUAL GAS 52.9 41.8 41.8 43.0 35.0 42.9 45.8 37.8 41.0 35.9 42.4 24.8 41.2 45.5 32.7 (per cent) (per cent) Kg (SW_{1r}) (mD) PERMEABILITY 0.32 0.89 5.2 6.7 1.4.2 RESIDUAL GAS DETERMINATION RESULTS GAS 2309 123 16 462 69 462 884 180 32 22 31 SW_{fr} 8.5 14.8 22.4 33.8 5.3 31.0 55.0 20.2 22.2 14.3 39.4 22.2 44.9 28.6 17.7 KLINKENBERG POROSITY 19.6 21.9 25.8 22.3 20.5 26.2 24.5 22.8 21.1 18.0 15.4 19.5 13.3 18.4 14.0 PERMEABILITY 1.35 0.43 6.5 4.9 14.6 KI (mD) 120 440 2223 946 30 465 29 182 72 21 FORMATION ZONE 1 ZONE 1 3 2 ZONE 1 ZONE 1 ZONE 2 ZONE 2 ZONE 2 ZONE 3 ZONE 3 ZONE 3 ZONE 4 4 ZONE 4 ZONE ZONE ZONE (metres) DEPTH 3171.85 3190.00 3204.15 3284.25 3325.15 3347.50 3359.15 3396.00 3419.10 3422.10 3433.70 3200.00 3219.00 3401.65 3407.50 SAMPLE NUMBER N5 316.1 N3 408.1 7.1 57.1 93.1 RZ 700.1 81.1 N2B 471.1 N2A 487.1 74 135.1 604.1 R3 666.1 623.1 23 657.1 E/N 586.1 5 12 74 74 11 1-1

ROBERTSON RESEARCH

COMPANY: STATOIL	FORMATION: ZONES 1, 2, 3 and 4
WELL:	LOCATION: NORVEGIAN NORTH SEA
FIELD: . GULLFAKS	COUNTRY: NORUAY
SAMPLE NUMBER:	PERMEABILITY md :

RESIDUAL GAS SATURATION versus INITIAL GAS SATURATION

SPECIAL CORE ANALYSIS STUDY	PAGE 23	of 109
STATOIL, NORWAY	FILE NO:	SCAL-0181
WELL: 34/10-16 FIELD: GULLFAKS	VOLUME 1	

1.5 GAS-OIL, RELATIVE PERMEABILITY TESTS

1.5.1. Test and Calculation Procedures

1.5 GAS-OIL, RELATIVE PERMEABILITY TESTS

1.5.1 Test and Calculation Procedures

The samples scheduled for testing had previously been used for residual gas saturation determination. They were restored for further testing by immersion in oil and evacuation, and then by flooding with oil against back pressure.

After removing the back pressure source the oil permeability of each sample was measured at three different pressures. From this data graphs of oil flowrate versus differential pressure were plotted. The samples were deemed to be fully restored when a straight line could be drawn through the data and the origin.

The gasfloods were performed using a constant differential pressure against a back pressure of approximately 20 bars. Throughout the flood oil and gas production was monitored against elapsed time. In the early stages of the flood the gas volume was collected using a 'sight glass' system similar to that used in the residual gas test, and as the gas volume increased the gas volume was recorded on a wet test meter. Throughout the test oil volumes were collected in a burette within the 'sight glass' system. The gas flood was continued until approximately 1000 pore volumes of gas had been flooded through each sample.

Liquid saturations and individual gas and oil relative permeabilities were then calculated using adaptations of the Johnson, Bossler and Nauman equations. Gas-Oil relative permeability ratios were then calculated from this data.

1.5 GAS-OIL, RELATIVE PERMEABILITY TESTS

1.5.2 Gasflood Production Data

ROBERTSON RESEARCH

SAMPLE NUMBER	DEPTH (metres)	FORMATIC	DN AIF	R PERMEABILITY Ka (mD)	POROSITY (per cent)
7.1	3171.85	ZONE 1		1013	26.2
	ER SATURATION per cent)			RMEABILITY SW ir (SW _{ir}) (mD)	
	3.5	**************************************	884		769
Cumulative] (seconds)		overed (Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
68.5 85.2 107.1	3.7 4.3 4.9	4	5.56 11.01 20.52	0.11 0.11 0.11	20.50 20.50 20.50
149.5 198.3 261.0	5.6 6.1 6.7	9	45.42 84.41 146.7	0.11 0.11 0.11	20.50 20.50 20.50
338.1 420.8	7.2 7.6		239.3 355.2	0.11 0.11	20.50 20.50
521.6 636.7 1058	8.0 8.3 9.1	.5	515.4 722.1 1636	0.11 0.11 0.11	20.50 20.50 20.50
1217 1380 1558	9.3 9.5 9.6	2	2026 2445 2922	0.11 0.11 0.11	20.50 20.50 20.50
2000 2500 3600 5950	9.9 10.2 10.4 10.8	:0 •6	4311 5900 9860 18520	0.11 0.11 0.11 0.11	20.50 20.50 20.50 20.50

ROBERTSON RESEARCH

SAMPLE NUMBER	DEPTH (metres)	FORMATION	AIR PERMEABILIT Ka (mD)	Y POROSITY (per cent)
57.1	3190.00	ZONE 1	36	21.9
INITIAL WATER : SW _{ir} (per		GAS PERMEABILI Kg (SW _{ir}) (PERMEABILITY SW ir o (SW _{ir}) (mD)
20.2		31		25
Cumulative Time (seconds)	e Cumulati Oil Recov (c.c.)		overed Differentia	
85.51	2.02	1.72	2 2.41	19.58
100.2	2.57	5.78	3 2.45	19.58
115.4	2.94	11.51	2.48	19.58
136.2	3.37	20.51	2.44	19.58
178.8	3.92	46.51	2.46	19.58
236.9	4.44	92.81	2.47	19.55
302.1	4.83	155.0	2.43	19.55
376.3	5.21	239.8	2.45	19.56
442.3	5.47	324.6	2.43	19.57
525.1	5.72	441.1	2.44	19.57
605.8	5.93	567.4	2.44	19.57
735.6	6.22	785.9	2.43	19.57
855.7	6.42	1003	2.44	19.57
1035	6.67	1356	2.44	19.57
1214	6.88	1732	2.44	19.57
1401	7.06	2146	2.45	19.56
1590	7.20	2583	2.45	19.55
1767	7.32	3009	2.45	19.60

SPECIAL CORE ANALYSIS STUDY STATOIL, NORWAY WELL: 34/10-16 FIELD: GULLFAKS				28 of 109 NO: SCAL-0181 E 1
Cumulative Time	Cumulative	Cumulative Gas Recovered	Gasflood,	Back Pressure

(seconds)	(c.c)	Gas Recovered (c.c)	Differential Pressure (bars)	(bars)
 2317	7.62	4407	2.44	19.55
2495	7.70	4881	2.46	19.53
2675	7.77	5367	2.51	19.55
2848	7.83	5841	2.45	19.55
3085	7.88	6500	2.45	19.55
3380	7.93	7333	2.45	19.55
6550	8.03	16227	2.45	19.55

PAGE 29 of 109 FILE NO: SCAL-0181 VOLUME 1

ROBERTSON RESEARCH

SAMPLE NUMBER	DEPTH (metres)	FORMATION	AIR PERMEABILITY Ka (mD)	POROSITY (per cent)
81.1	3200.00	ZONE 1	195	24.5
INITIAL WATER SW _{ir} (pe	er cent)	GAS PERMEABILIT Kg (SW _{ir}) (m		ERMEABILITY SW (SW _{ir}) (mD)
17 Cumulative T: (seconds)			vered Differential	166 Back Pressure (bars)
60.90 92.8 116.6 154.3 209.1 271.4 341.3 421.3 526.7 626.9 739.2 862.4 995.6	1.41 2.27 2.76 3.31 3.92 4.42 4.82 5.21 5.60 5.88 6.16 6.38 6.60	2.83 12.20 21.60 39.40 74.10 120.6 181.4 258.7 371.2 488.6 629.5 794.0	0.33 0.34 0.34 0.34 0.34 0.34 0.34 0.34	20.24 20.24 20.24 20.24 20.24 20.24 20.24 20.24 20.24 20.23 20.25 20.25 20.25 20.25
995.6 1130 1290 1459 1621 1822	6.60 6.78 6.97 7.14 7.28 7.43	982.0 1182 1429 1699 1969 2315	0.34 0.34 0.34 0.34 0.34 0.34	20.25 20.25 20.25 20.26 20.26 20.27

SPECIAL CORE ANALYSIS STUDY	PAGE 30 of 109
STATOIL, NORWAY	FILE NO: SCAL-0181
WELL: 34/10-16 FIELD: GULLFAKS	VOLUME 1

Cumulative Time (seconds)	Cumulative Oil Recovered (c.c.)	Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
1993	7.54	2616	0.34	20.25
2193	7.65	2 98 0	0.34	20.23
2386	7.75	3338	0.34	20.22
2571	7.84	3686	0.34	20.23
3000	7.97	4520	0.34	20.23
5000	8.28	8483	0.34	20.23
9500	8.56	17840	0.34	20.23

PAGE 31 of 109 FILE NO: SCAL-0181 VOLUME 1

ROBERTSON RESEARCH

SAMPLE NUMBER	DEPTH (metres)	FORMATION	AIR PERMEABILITY Ka (mD)	POROSITY (per cent)
93.1	3204.15	ZONE 1	485	25.8
INITIAL WATER SW _{ir} (pe		GAS PERMEABILIT Kg (SW _{ir}) (m		ERMEABILITY SW ir (SW _{ir}) (mD)
14.	8	462		402
Cumulative Ti (seconds)	me Cumulativ Oți Recove (c.c.)		-	Back Pressure (bars)
56.8	2.13	4.38	0.15	20.54
70.9	2.49	9.73	0.15	20.54
83.2	2.75	15.5	0.16	20.54
101.3	3.08	25.0	0.15	20.54
117.9	3.31	34.6	0.15	20.54
175.7	3.90	74.8	0.15	20.54
228.1	4.29	120.8	0.15	20.53
292.8	4.69	185.4	0.16	20.54
363.4	5.05	263.9	0.15	20.54
439.0	5.35	356.4	0.15	20.54
525.4	5.62	472.1	0.15	20.55
606.3	5.85	587.9	0.15	20.55
698.3	6.06	726.9	0.15	20.55
827.6	6.31	935.5	0.15	20.55
949.8	6.50	1144	0.15	20.55
1092	6.69	1399	0.15	20.55
1241	6.85	1677	0.15	20.55
1398	6.99	1978	0.15	20.54
1571	7.14	2326	0.15	20.54

SPECIAL CORE ANALYSIS STUDYPAGE 32 of 109STATOIL, NORWAYFILE NO: SCAL-0181WELL: 34/10-16 FIELD: GULLFAKSVOLUME 1

Cumulative Time (seconds)	Cumulative Oil Recovered (c.c.)	Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
1763	7.26	2721	0.15	20.54
1939	7.36	3092	0.15	20.54
2121	7.46	3486	0.15	20.52
2360	7.54	4002	0.15	20.52
2660	7.64	4660	0.15	20.52
3255	7.77	5972	0.15	20.52
3770	7.86	7140	0.15	20.52
4515	7.95	8859	0.15	20.52
5820	8.04	11947	0.15	20.52
7550	8.67	16220	0.15	20.52

ROBERTSON RESEARCH

SAMPLE NUMBER	DEPTH (metres)	FORMATION	AIR PERMEABILITY Ka (mD)	POROSITY (per cent)
135.1	3219.00	ZONE 2	37	22.3
INITIAL WATER SW _{ir} (per		GAS PERMEABILI Kg (SW _{ir}) (PERMEABILITY SW ir (SW _{ir}) (mD)
22.2		32		26
Cumulative Tim (seconds)	e Cumulativ Oil Recove (c.c.)		vered Differential	Back Pressure . (bars)
106.4	1.89	3.8	4 1.48	19.72
131.3	2.39	9.3	3 1.48	19.72
164.4	2.84	18.8	8 1.48	19.72
191.0	3.13	28.5	0 1.48	19.72
215.0	3.38	38.4	0 1.48	19.72
277.0	3.78	68.2	0 1.48	19.72
295.0	3.88	78.2	0 1.48	19.72
384.0	4.29	134.0	1.47	19.72
483.0	4.66	209.0	1.47	19.72
587.0	4.96	302.0	1.48	19.73
706.0	5.25	420.0	1.48	19.72
835.0	5 .5 2	560.0	1.48	19.72
980.0	5.74	731.0	1.48	19.72
1124	5.93	912.0	1.48	19.72
1303	6.14	1153	1.48	19.71
1491	6.31	1418	1.48	19.70
1702	6.48	1731	1.48	19.71
1927	6.63	2081	1.48	19.71
2180	6.78	2488	1.48	19.72

SPECIAL CORE ANALYSIS STUDYPAGE 34 of 109STATOIL, NORWAYFILE NO: SCAL-0181WELL: 34/10-16 FIELD: GULLFAKSVOLUME 1

Cumulative Time (seconds)	Cumulative Oil Recovered (c.c.)	Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
2455	6.92	2949	1.48	19.72
2762	7.06	3479	1.48	19.72
3093	7.19	4070	1.48	19.72
3453	7.30	4733	1.48	19.72
4364	7.55	6470	1.47	19.74
4902	7.67	7531	1.48	19.74
5504	7.78	8749	1.48	19.74
6193	7.89	10172	1.47	19.74
6851	7.99	11558	1.48	19.74
7535	8.08	13030	1.49	19.74
8242	8.17	14573	1.48	19.74
9117	8.25	16504	1.49	19.74

ROBERTSON RESEARCH

SAMPLE NUMBER	DEPTH (metres)	FORMATION	AIR PERMEABILIT Ka (mD)	Y POROSITY (per cent)
316.1	6.1 3284.25		80	19.6
INITIAL WATER SW _{ir} (per		GAS PERMEABIL Kg (SW _{ir})		PERMEABILITY SW _{ir} o (SW _{ir}) (mD)
22.4		69		61
Cumulative Tim (seconds)	e Cumulat: Oil Recov (c.c.)	vered Gas Rec	overed Differentia	
64.5	1.41	2.6	4 0.67	21.10
83.0	1.75	7.5	8 0.67	21.10
107.0	2.11	16.7	0.66	21.10
163.0	2.55	40.0	0.62	21.10
225.0	2.90	74.3	0.66	21.10
295.0	3.21	120.7	0.64	21.10
342.0	3.37	155.6	0.65	21.10
484.0	3.76	272.0	0.66	21.10
575.0	3.97	353.6	0.65	21.10
661.0	4.15	435.2	0.67	21.10
778.0	4.34	551.8	0.66	21.10
885.0	4.50	663.8	0.66	21.10
999.0	4.64	785.1	0.66	21.10
1166	4.81	971.9	0.65	21.10
1388	5.01	1228	0.65	21.10
1564	5.15	1438	0.66	21.10
2174	5.52	2208	0.66	21.12
2456	5.65	2582	0.66	21.12
2733	5.75	2956	0.66	21.11

SPECIAL CORE ANALYSIS STUDYPAGE 36 of 109STATOIL, NORWAYFILE NO: SCAL-0181WELL: 34/10-16 FIELD: GULLFAKSVOLUME 1

Cumulative Time (seconds)	Cumulative Oil Recovered (c.c.)	Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
2902	5.81	3189	0.66	21.10
3071	5.86	3423	0.65	21.10
4000	6.09	4755	0.65	21.10
5000	6.28	6196	0.65	21.10
6500	6.46	8430	0.65	21.10
10300	6.81	14410	0.65	21.10

PAGE 37 of 109 FILE NO: SCAL-0181 VOLUME 1

ROBERTSON RESEARCH

SAMPLE	DEPTH	FORMATION	AIR PERMEABILITY	POROSITY
NUMBER	(metres)		Ka (mD)	(per cent)
408.1	3325.15	ZONE 2	8.9	20.5
	INITIAL WATER SATURATION GAS PERMEABILIT SW _{ir} (per cent) Kg (SW _{ir}) (ml			ERMEABILITY SW ir (SW _{ir}) (mD)
33.	8	6.7		5.4
Cumulative Ti (seconds)	me Cumulati Oil Recov (c.c.)	ered Gas Reco	vered Differential	Back Pressure (bars)
224.0	2.30	15.2	5.71	16.67
263.0	2.67	24.7		16.67
381.0	3.23	69.0		16.67
504.0 597.0 714.0	3.77 4.01 4.26	136.0 198.0 289.0	5.82 5.82	16.66 16.67 16.68
843.0	4.48	402.0	5.82	16.69
979.0	4.69	531.0	5.84	16.67
1113	4.86	673.0		16.67
1288	5.04	871.0		16.69
1496	5.23	1125		17.00
1733	5.42	1436	5.83	16.70
1977	5.58	1775	5.82	16.70
2209	5.70	2114	5.83	16.70
2468	5.83	2510	5.85	16.70
2718	5.94	2906	5.82	16.71
2995	6.05	3358	5.82	16.72
3296	6.15	3867	5.82	16.72

SPECIAL CORE ANALYSIS STUDYPAGE 38 of 109STATOIL, NORWAYFILE NO: SCAL-0181WELL: 34/10-16 FIELD: GULLFAKSVOLUME 1

Cumulative Time (seconds)	Cumulative Oil Recovered (c.c.)	Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
3606	6.25	4404	5.82	16.71
3908	6.33	4942	5.82	16.71
4219	6.41	5507	5.83	16.70
4523	6.48	6073	5.82	16.72
4822	6.54	6638	5.82	16.71
5124	6.60	7218	5.84	16.71
5436	6.66	7826	5.83	16.71
5750	6.72	8448	5.86	16.70
6116	6.78	9183	5.83	16.71
6496	6.84	9947	5.84	16.70
6876	6.89	10739	5.85	17.00
7575	6.97	12236	5.85	17.00
8540	7.03	14316	5.85	17.00

PAGE 39 of 109 FILE NO: SCAL-0181 VOLUME 1

ROBERTSON RESEARCH

SAMPLE NUMBER (1	DEPTH : netres)	FORMATION	AIR PERMEABILITY Ka (mD)	POROSITY (per cent)
471.1	3347.50	ZONE 2	2316	22.8
INITIAL WATER SA SW _{ir} (per c		GAS PERMEABILITY Kg (SW _{ir}) (mI		ERMEABILITY SW (SW _{ir}) (mD)
5.3		2309		2144
Cumulative Time (seconds)	Cumulative Oil Recover (c.c.)	Cumulativ ed Gas Recove (c.c.)	-	Back Pressure (bars)
37.6	2.85	1.74	0.05	20.55
55.2	3.87	8.43	0.05	20,55
66.9	4.25	14.21	0.04	20.55
84.9	4.68	23.69	0.05	20.55
126.1	5.39	51.07	0.05	20.55
380.6	7.32	350.2	0.05	20.55
787.0	8.21	1258	0.05	20.58
916.0	8.40	1582	0.05	20.55
1066	8.59	1976	0.05	20.55
1217	8.75	2394	0.05	20.55
1371	8.90	2835	0.05	20.55
1557	9.04	3391	0.05	20.55
1670	9.11	3739	0.05	20.55
1950	9.20	4633	0.05	20.55
2700	9.34	7060	0.05	20.55
3350	9.44	9196	0.05	20.55
3950	9.50	11179	0.05	20.55
5248	9.56	15529	0.05	20.55

SAMPLE NUMBER	DEPTH (metres)		RMATION	AIR	PERMEABILITY Ka (mD)	POROSITY (per cent)
487.1	3359.1	5 Z	ONE 2		511	21.1
**	ER SATURATI per cent) 	ent) Kg (SW ₁) (mD) Ko		-	ERMEABILITY SW (SW _{ir}) (mD)	
Cumulative (seconds)	lime Cu	umulative L Recovered (c.c.)	462 Cumulati Gas Recov (c.c.)		Gasflood, Differential Pressure (bars)	419 Back Pressure (bars)
49.5 62.2 74.6	Allen allen av an	1.96 2.43 2.79	2.29 5.92 10.70		0.15 0.16 0.15	20.45 20.45 20.45
87.6 103.0 145.3 186.7		3.08 3.37 3.89 4.28	16.63 24.76 53.16 87.75		0.15 0.16 0.16 0.16	20.45 20.45 20.45 20.45
240.3 305.5 382.9		4.66 5.05 5.40	141.0 215.2 315.2		0.16 0.16 0.16	20.45 20.44 20.44
474.9 595.0 734.4 924.5		5.73 6.05 6.33 6.61	447.8 641.0 885.6 1246		0.16 0.15 0.16 0.16	20.44 20.44 20.44 20.44
1079 1251 1437 1614		6.79 6.96 7.11 7.24	1559 1922 2333 2738		0.16 0.16 0.16 0.16	20.44 20.45 20.44 20.44

SPECIAL CORE ANALYSIS STUDY	PAGE 41 of 109
STATOIL, NORWAY	FILE NO: SCAL-0181
WELL: 34/10-16 FIELD: GULLFAKS	VOLUME 1

Cumulative Time (seconds)	Cumulative Oil Recovered (c.c.)	Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
1791	7.34	3158	0.16	20.45
1966	7.43	3578	0.16	20.45
2200	7.53	4155	0.16	20.45
3000	7.63	6195	0.16	20.45
3850	7.70	8448	0.16	20.45
5050	7.77	11725	0.16	20.45
5800	7.79	13805	0.16	20,45

PAGE 42 of 109 FILE NO: SCAL-0181 VOLUME 1

ROBERTSON RESEARCH

SAMPLE NUMBER (DEPTH metres)	FORMATION	AIR PERMEABILITY Ka (mD)	POROSITY (per cent)
586.1	3396.0	ZONE 3	27	18.0
INITIAL WATER S SW _{ir} (per		GAS PERMEABILITY Kg (SW _{ir}) (mI		ERMEABILITY SW ir (SW _{ir}) (mD)
31.0		22		19
Cumulative Time (seconds)	e Cumulative Oil Recover (c.c.)		ve Gasflood, ered Differential Pressure (bars)	Back Pressure (bars)
96.5 124.0	1.67 2.19	3.83	3.17 2.95	18.35 18.35
171.1 235.9 311.7	2.65 3.07 3.38	35.41 78.91 140.6	3.16 3.20 3.19	18.35 18.34 18.33
455.4 581.7 707.0	3.82 4.08 4.28	279.8 421.7 574.1	3.16 3.14	18.35 18.35
857.6 999.2	4.28 4.46 4.61	770.4 966.7	3.16 3.16 3.16	18.35 18.33 18.35
1158 1346 1542	4.74 4.87 4.89	1198 1482	3.17	18.34 18.34
1732 1917	4.99 5.08 5.16	1790 2100 2410	3.17 3.16 3.18	18.34 18.35 18.34
2128 2549 3176	5.24 5.37 5.53	2772 3496 4685	3.16 3.17 3.17	18.35 18.35 18.35

SPECIAL CORE ANALYSIS STUDY STATOIL, NORWAY WELL: 34/10-16 FIELD: GULLFAKS				43 of 109 NO: SCAL-0181 E 1
Cumulative Time (seconds)	Cumulative Oil Recovered (c.c.)	Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
5000	5.74	8718	3.17	18.35
7000	5.84	13250	3.17	18.35

ROBERTSON RESEARCH

SAMPLE NUMBER	DEPTH (metres)	FORMA	TION	AIR PERMEABILITY Ka (mD)	POROSITY (per cent)
604.1	3401.65	ZONE	3	6.3	15.4
	R SATURATION er cent)			ERMEABILITY SW (SW _{ir}) (mD)	
39	.4		5.2	na far far far far far far far far far fa	4.1
Cumulative T (seconds)		overed	Cumulative Gas Recover (c.c.)	Gasflood, ed Differential Pressure (bars)	Back Pressure (bars)
138.0 179.0 211.0	0.7	.4	9.4 19.2 29.2	7.11 7.38 7.38	15.15 15.15 15.15
265.0 311.0	1.5	58 74	49.0 68.8	7.36 7.37	15.15 15.15
369.0 562.0 821.0	1.8 2.2 2.6	29	99.0 222.0 429.0	7.40 7.37 7.41	15.15 15.16 15.11
964.0 1110 1282	2.7 2.9 3.0	2	559.0 702.0 878.0	7.38 7.40 7.38	15.15 15.15 15.16
1454 1686	3.1	4	1064 1328	7.40 7.40	15.16 15.16 15.16
2020 2326 2655	3.3 3.4 3.5	9	1730 2117 2551	7.38 7.38 7.40	15.16 15.17 15.16
3005 3367	3.6 3.7		3031 3542	7.38 7.38	15.17 15.18

SPECIAL CORE ANALYSIS STUDYPAGE 45 of 109STATOIL, NORWAYFILE NO: SCAL-0181WELL: 34/10-16 FIELD: GULLFAKSVOLUME 1

Cumulative Time (seconds)	Cumulative Oil Recovered (c.c.)	Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
3750	3.84	4100	7.40	15.15
4123	3.90	4657	7.40	15.16
4498	3.96	5230	7.40	15.15
6064	4.14	7739	7.37	15.19
6483	4.18	8436	7.38	15.17
7355	4.26	9923	7.40	15.12
7854	4.30	10791	7.38	15.14

PAGE 46 of 109 FILE NO: SCAL-0181 VOLUME 1

ROBERTSON RESEARCH

SAMPLE	DEPTH	FORMATION	AIR PERMEABILITY	POROSITY
NUMBER	(metres)		Ka (mD)	(per cent)
623.1	3407.50	ZONE 3	128	19.5
INITIAL WATE SW _{ir} (p 	er cent)	GAS PERMEABILI Kg (SW _{ir}) (123		ERMEABILITY SW (SW _{ir}) (mD) 119
Cumulative T (seconds)	ime Cumulati Oil Recov (c.c.)	vered Gas Reco	vered Differential	Back Pressure (bars)
55.5	1.37	1.43		20.34
65.6	1.69	3.40		20.34
75.9	1.97	6.05		20.34
91.9 106.7 120.3	2.24 2.46 2.64	10.90 16.38 22.00	0.42 0.42	20.34 20.34 20.34
140.3	2.84	31.42	0.38	20.34
158.6	3.00	41.10		20.34
223.2	3.44	82.80		20.34
324.7	3.88	166.7		20.33
428.5	4.24	269.5	0.42	20.33
536.0	4.53	391.2	0.42	20.33
666.3	4.78	555.0	0.42	20.33
812.0	5.01	756.4	0.42	20.33
960.2	5.19	976.50	0.42	20.33
1138	5.36	1257	0.42	20.32
1302	5.49	1529	0.42	20.33
1497	5.63	1866	0.42	20.32
/ /	5.05	1000	0.42	20.32

SPECIAL CORE ANAI STATOIL, NORWAY WELL: 34/10-16 FI				47 of 109 NO: SCAL-0181 E 1
Cumulative Time (seconds)	Cumulative Oil Recovered (c.c.)	Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
1692	5.74	2218	0.42	20.33

2582

2957

0.42

0.42

20.34 20.35

5.84

5.92

1888

2085

PAGE 48 of 109 FILE NO: SCAL-0181 VOLUME 1

1.5.2 GASFLOOD PRODUCTION DATA

SAMPLE NUMBER (1	DEPTH I	FORMATION	AIR PERMEABILITY Ka (mD)	POROSITY (per cent)
657.1	3419.10	ZONE 4	2.0	13.3
INITIAL WATER SA SW _{ir} (per c		GAS PERMEABILITY Kg (SW _{ir}) (mD		ERMEABILITY SW ir (SW _i) (mD)
44.9		0.89		0.68
Cumulative Time (seconds)	Cumulative Oil Recover (c.c.)	Cumulativ ed Gas Recove (c.c.)	-	Back Pressure (bars)
238.0	0.44	4.93	9.07	15.01
324.0	0.82	11.20	9.51	15.01
425.0	1.89	18.50	9.71	15.01
532.0	1.28	28.00	9.71	15.01
626.0	1.40	38.00	9.75	14.94
706.0	1.50	48.00	9.82	14.87
786.0	1.58	58.00	9.80	14.90
1063	1.78	98.50	9.75	14.87
1220	1.88	124.0	9.70	15.00
1364	1.96	149.0	9.68	15.01
1489	2.02	175.0	10.16	14.57
1654	2.09	210.0	10.00	15.01
1832	2.15	251.0	10.00	15.02
2221	2.28	344.0	9.65	15.04
2424	2.34	400.0	9.65	15.04
2639	2.40	460.0	10.00	15.00
3317	2.52	663.0	9.84	14.88
4218	2.70	971.0	9.65	15.08
4919	2.98	1210	9.65	15.10

ROBERTSON RESEARCH

PAGE 49 of 109 FILE NO: SCAL-0181 VOLUME 1

Cumulative Time (seconds)	Cumulative Oil Recovered (c.c.)	Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
8349	3.08	2602	9.70	15.00
9812	3.17	3258	9.70	15.00
13209	3.32	4884	9.72	15.02
18580	3.52	7667	9. 70	15.04
20422	3.56	8667	9.71	15.03
22340	3.60	9931	9.72	15.03

PAGE 50 of 109 FILE NO: SCAL-0181 VOLUME 1

ROBERTSON RESEARCH

SAMPLE NUMBER	DEPT (metre		ORMATION	AIR PERME Ka (POROSITY (per cent)
666.1	3422.	10	ZONE 4	17.	.8	18.4
	per cent)		GAS PERMEABILITY Kg (SW _{ir}) (mD		OIL PERMEABILITY (Ko (SW ₁) (mD)	
2 Cumulative (seconds		Cumulative Dil Recovere (c.c.)	16. Cumulativ d Gas Recove (c.c.)	red Diffe Pre	aflood, erential essure pars)	13.3 Back Pressure (bars)
147.0 170.2 193.3 216.6 327.8 409.2		2.23 2.62 2.91 3.14 3.80 4.10	4.91 10.67 19.45 28.95 99.74 167.3		3.60 3.52 3.65 3.52 3.60 3.64	18.20 18.20 18.20 18.20 18.20 18.10
489.0 808.0 952.3 1053 1183 1366 1553 1749 1955		4.32 5.00 5.12 5.23 5.35 5.50 5.61 5.73 5.83	245.3 635.9 844.4 1001 1209 1522 1861 2226 2643		3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60	18.20 18.20 18.20 18.20 18.20 18.20 18.20 18.20 18.20
2194 2449 2694		5.93 6.03 6.12	3139 3686 4234	:	3.60 3.60 3.60 3.60	18.20 18.14 18.15

PAGE 51 of 109 FILE NO: SCAL-0181 VOLUME 1

Cumulative Time (seconds)	Cumulative Oil Recovered (c.c.)	Cumulative Gas Recovered (c.c.)	Gasflood, Differential Pressure (bars)	Back Pressure (bars)
2955	6.20	4834	3.60	18.20
3241	6.28	5512	3.60	18.20
3531	6.35	6216	3.60	18.20
3950	6.42	7256	3.60	18.20
4710	6.53	9182	3.60	18.20
5550	6.63	11380	3.60	18.20
7120	6.71	15614	3.60	18.20

of 109 SCAL-0181		OIL RECOVERED	: (per cent) e) oil in place)	62.5	61.5	57.4	55.8	64.3	59.3	73.3	64.8	61.3	63.3	66.0	54.5	52.7	88.7
PAGE 52 of 109 FILE NO: SCAL- VOLUME 1		110	(per cent pore space)	57.2	49.1	47.2	47.5	50.0	46.0	48.5	61.4	52.5	43.7	40.0	42.4	37.6	48.9
		TFRMINAL CONDITIONS	GAS PERMEABILITY Kg (mD) kg(5c)	370	12	69	166	16	27	3.6	737	195	8.0	2.3	54	0.59	8.2
	ABILITY DATA N INCREASING	TFRMINAL	0IL SATURATION Sr (per cent pore space)	34.3	30.7	35.1	37.7	27.8	31.6	17.7	33.3	33.1	25.3	20.6	35.4	17.5	22.5
	TABLE: 1.5.3 SUMMARY OF GAS-OIL RELATIVE PERMEABILITY DATA UNSTEADY-STATE, RESTORED-STATE, GAS SATURATION INCREASING	INITIAL CONDITIONS	0IL PERMEABILITY Ko (mD) ko(5ω)	769	25	166	402	26	61	5.4	2144	419	19	4.1	119	13.3	0.68
	OF GAS-OIL RI FORED-STATE, (INITIAL (WATER SATURATION Swit (per ^t cent pore space)	8.5	20.2	17.7	14.8	22.2	22.4	33.8	5.3	14.3	31.0	39.4	22.2	28.6	44.9
	. 3 <u>SUMMARY</u> STATE, RES'		POROSITY (per cent)	26.2	21.9	24.5	25.8	22.3	19.6	20.5	22.8	21.1	18.0	15.4	19.5	13.0	18.4
LYSIS STUDY FIELD: GULLFAKS	TABLE: 1.5.3 SUM		KLINKENBERG PERMEABILITY K1 (mD)	946	29	182	440	30	62	6.5	2223	465	21	4.9	120	1.35	14.6
A			FORMATION	ZONE 1	ZONE 1	ZONE 1	ZONE 1	ZONE 2	ZONE 3	ZONE 3	ZONE 3	ZONE 4	ZONE 4				
SPECIAL CORE ANALYSIS STUDY STATOIL, NORWAY WELL: 34/10-16 FIELD: GULL			DEPTH (metres)	3171.85	3190.00	3200.00	3204.15	3219.00	3284.25	3325.15	3347.50	3359.15	3396.00	3401.65	3407.50	3419.10	3422.10
SPEC STAT WELL			SAMPLE NUMBER	7.1	57.1	81.1	93.1	135.1	316.1	408.1	471.1	487.1	586.1	604.1	623.1	657.1	666.1

1.5 GAS-CIL, RELATIVE PERMEABILITY TESTS

1.5.4 Gas-011, Relative Permeability Data

GAS-OIL RELATIVE PERMEABILITY DATA

INITIAL WATER SATURATION PERCENT PORE SPACE 8.5.

OIL PERMEABILITY AT

INITIAL WATER SATURATION md. . 769

SAMPLE DEPTH

3171.85 m

LIQUID SATURATION PERCENT PORE SPACE	GAS OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS *, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
78.4	0.096	0.043	0.444
75.4	0.157	0.057	0.363
72.0	0.351	0.077	0.219
68.6	0.665	0.105	0.158
65.8	1.19	0.130	0.110
63.1	1.80	0.157	0.087
60.7	2.82	0.184	0.065
58.6	3.89	0.208	0.054
56.6	6.09	0.235	0.039
53.6	10.8	0.284	0.026
50.9	19.9	0.321	0.016
49.9	22.6	0.337	0.015
49.0	30.9	0.351	0.011
47.8	46.5	0.412	0.0089
46.4	64.3	0.416	0.0065
45.1	148	0.472	0.0032
43.4	210	0.483	0.0023

* Relative to oil permeability

All analyses, opinions or interpretations are based on observations and meterials supplied by the client whom, and for whose exclusive and confidential use, a report is mede. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and amployees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitebleness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

GAS-OIL RELATIVE PERMEABILITY DATA

North Wales Office.

ROBERTSON RESEARCH

petroleum engineering laboratory

OIL PERMEABILITY AT

INITIAL WATER SATURATION md. 25....

SAMPLE DEPTH

3190.00 т

LIQUID SATURATION PERCENT PORE SPACE	GAS OIL RELATIVE PERMEABILITY RATID	RELATIVE PERMEABILITY TO GAS *, FRACTION	RELATIVE PERMEABILIT TO OIL*, FRACTION
100			1.00
85.9	0.068	0.049	0.714
83.1	0.143	0.066	0.464
80.6	0.193	0.076	0.394
77.6	0.437	0.108	0.246
74.3	0.823	0.140	0.171
71.5	1.47	0.168	0.114
69.1	2.06	0.201	0.098
67.2	3.01	0.226	0.075
65.6	4.31	0.248	0.058
64.2	5.56	0.276	0.050
62.6	6.96	0.297	0.043
61.1	10.1	0.320	0.032
59.8	13.0	0.347	0.027
58.3	16.5	0.370	0.022
57.1	21.2	0.390	0.018
56.2	28.8	0.407	0.014
55.3	32.8	0.424	0.013
54.1	43.1	0.448	0.010
52.9	54.7	0.469	0.0086

All analyses, opinions or interpratations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

Page...56...of...1.0.9... File NoSCAL-0.18.1....

GAS-OIL RELATIVE PERMEABILITY DATA

OIL PERMEABILITY AT

INITIAL WATER SATURATION md. 25

SAMPLE DEPTH

3190.00 m

LIQUID SATURATION PERCENT PORE SPACE	GAS OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS.*, FRACTION	RELATIVE PERMEABILIT TO OIL*, FRACTION
52.4	64.1	0.476	0.0074
52.0	73.0	0.483	0.0066
51.7	122	0.489	0.0040
51.4	154	0.498	0.0032
50.9	822	0.494	0.0006

Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

Page. . 57 . . of . . 109. . File NoSCAL-0181

GAS-OIL RELATIVE PERMEABILITY DATA

INITIAL WATER SATURATION

OIL PERMEABILITY AT

INITIAL WATER SATURATION md

SAMPLE DEPTH

3200.00 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS.*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
89.7	0.107	0.059	0.552
85.9	0.188	0.079	0.421
83.0	0.318	0.095	0.299
79.7	0.558	0.127	0.228
76.6	0.913	0.150	0.164
74.1	1.49	0.175	0.117
71.9	1.94	0.194	0.100
69.7	2.83	0.214	0.076
67.8	4.11	0.235	0.057
66.3	4.94	0.252	0.051
64.9	7.34	0.268	0.037
63.6	8.39	0.283	0.034
62.5	10.9	0.299	0.027
61.5	12.8	0.310	0.024
60.4	15.6	0.321	0.021
59.6	18.9	0.335	0.018
58.8	22.6	0.346	0.015
58.0	26.9	0.354	0.013
57.4	32.5	0.366	0.011

* Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusiva and confidantial use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts inc.,/Robertson Research international Limited and their officers and employees assume no responsibility end make no warrenty or representation as to the productivity, proper operations, or profitableness of any oil, gas or othar mineral well or send in connection with which such a report is used or relied on.

File No. \$ÇAL-0181 ...

GAS-OIL RELATIVE PERMEABILITY DATA

North Wales Office.

ROBERTSON RESEARCH

petroleum engineering laboratory

INITIAL WATER SATURATION

OIL PERMEABILITY AT

INITIAL WATER SATURATION md.

SAMPLE DEPTH

3200.00 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS *, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
56.8	35.1	0.373	0.011
56.3	37.9	0.378	0.0100
55.7	63.0	0.390	0.0062
54.5	125	0.398	0.0032
52.8	328	0.418	0.0013

Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and meke no warranty or representation as to the productivity, proper operations, or profitableness of any oil, ges or other mineral well or sand in connection with which such a report is used or relied on.

GAS-OIL RELATIVE PERMEABILITY DATA

OIL PERMEABILITY AT

INITIAL WATER SATURATION md. 402

SAMPLE DEPTH

3204.15 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS.*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
88.9	0.082	0.051	0.626
86.4	0.141	0.064	0.454
84.6	0.209	0.078	0.372
82.8	0.275	0.089	0.324
81.2	0.395	0.097	0.245
78.7	0.648	0.117	0.181
75.9	1.12	0.148	0.132
73.5	1.53	0.168	0.110
71.3	2.07	0.187	0.090
69.3	2.93	0.206	0.070
67.7	4.07	0.225	0.055
66.2	4.78	0.241	0.050
64.9	6.28	0.254	0.040
63.5	7.92	0.271	0.034
62.2	10.4	0.287	0.028
61.1	12.7	0.302	0.024
60.1	16.5	0.314	0.019
59.2	20.4	0.323	0.016
58.3	22.0	0.338	0.015

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Anelysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or send in connection with which such a report is used or relied on.

Page...60. of... 109. File No.SCAL-0181

GAS-OIL RELATIVE PERMEABILITY DATA

OIL PERMEABILITY AT

SAMPLE DEPTH

3204.15 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS.*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
57.6	31.3	0.346	0.011
56.9	35.2	0.355	0.010
56.3	37.4	0.364	0.0097
55.8	61.2	0.363	0.0059
55.3	62.5	0.369	0.0059
54.6	95.8	0.371	0.0039
53.9	123	0.382	0.0031
53.4	181	0.388	0.0021
52.9	326	0.398	0.0012
52.5	1352	0.416	0.0003

* Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robartson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or send in connection with which such a report is used or relied on

Page. $61 \dots of$. $109 \dots$ File No. SCAL-0181...

GAS-OIL RELATIVE PERMEABILITY DATA

North Wales Office.

ROBERTSON RESEARCH

petroleum engineering laboratory

INITIAL WATER SATURATION md.

SAMPLE DEPTH

3219.00 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
87.0	0.101	0.063	0.622
84.1	0.195	0.082	0.421
81.8	0.305	0.103	0.338
80.2	0.364	0.118	0.323
78.2	0.685	0.137	0.200
76.7	0.920	0.158	0.172
75.1	1.25	0.179	0.143
72.8	1.87	0.216	0.116
70.7	2.85	0.255	0.089
68.9	3.74	0.283	0.075
67.2	4.77	0.309	0.065
65.7	7.15	0.336	0.047
64.5	8.77	0.358	0.041
63.3	10.6	0.384	0.036
62.1	14.3	0.402	0.028
61.1	16.9	0.423	0.025
60.1	21.5	0.443	0.021
59.2	25.0	0.458	0.018
58.3	30.3	0.478	0.016

* Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a raport is mada. Any interpratations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and meke no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

OIL PERMEABILITY AT

Page ... 62. of ... 109. File No. SCAL-0181

GAS-OIL RELATIVE PERMEABILITY DATA

INITIAL WATER SATURATION

OIL PERMEABILITY AT

SAMPLE DEPTH

3219.00 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS *, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
57.5	34.8	0.492	0.014
56.6	41.8	0.509	0.012
55.9	55.5	0.525	0.0095
55.2	61.0	0.536	0.0088
54.4	66.6	0.550	0.0082
53.7	81.4	0.562	0.0069
53.0	102	0.577	0.0057
52.3	119	0.589	0.0049
51.7	128	0.600	0.0047
51.1	150	0.613	0.0041
50.6	158	0.622	0.0039
50.0	222	0.629	0.0028

* Relative to oil permeability

All analyses, opinions or interpretations are based on observetions and materiels supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any Interpretetions or opinions expressed represent the best judgement of The Anelysts Inc.,/Robertson Research Internetionel Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

ROBERTSON RESEARCH petroleum engineering laboratory North Wales Office. Page...63. of. 109... File No. SCAL-0181

GAS-OIL RELATIVE PERMEABILITY DATA

INITIAL WATER SATURATION 22.4

OIL PERMEABILITY AT 61 INITIAL WATER SATURATION md.....

SAMPLE DEPTH

3284.25 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS.*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
89.0	0.139	0.074	0.536
86.6	0.242	0.106	0.438
83.8	0.505	0.116	0.229
81.1	0.935	0.154	0.165
78.8	1.43	0.185	0.129
77.2	2.08	0.207	0.099
75.3	2.85	0.228	0.080
73.2	3.71	0.250	0.067
71.8	4.32	0.264	0.061
70.5	5.85	0.277	0.047
69.3	6.68	0.291	0.044
68.3	8.27	0.296	0.036
67.2	10.5	0.311	0.030
65.9	12.2	0.322	0.026
64.8	14.3	0.332	0.023
63.0	19.9	0.351	0.018
61.2	27.4	0.369	0.013
60.4	35.7	0.376	0.011
59.9	37.0	0.384	0.010

Relative to oil permeability

All analyses, opinions or interpretations are based on observations and metarials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or send in connection with which such a report is used or relied on.

Page. .64 . . of . . 109. . File NoSCAL-0181

GAS-OIL RELATIVE PERMEABILITY DATA

Т

T

OIL PERMEABILITY AT

Г

INITIAL WATER SATURATION md.

Т

SAMPLE DEPTH

3284.25 m

7

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS.*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
59.5	44.6	0.385	0.0086
58.5	55.2	0.399	0.0072
57.1	72.4	0.401	0.0055
55.8	118	0.415	0.0035
54.0	163	0.438	0.0027
 Relative to oil permeabi 	 in/		

* Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and amployees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

Page...65...of...109. File No.SCAL-0181...

GAS-OIL RELATIVE PERMEABILITY DATA

OIL PERMEABILITY AT

INITIAL WATER SATURATION md.

SAMPLE DEPTH

3325.15 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS *, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
82.8	0.218	0.076	0.347
79.6	0.668	0.116	0.174
75.7	1.05	0.168	0.161
73.0	2.18	0.206	0.094
71.3	3.07	0.240	0.078
69.7	4.34	0.271	0.062
68.2	5.19	0.293	0.057
66.9	7.06	0.328	0.046
65.7	9.29	0.350	0.038
64.4	11.3	0.378	0.033
63.1	13.8	0.406	0.029
61.9	17.9	0.430	0.024
60.9	23.9	0.452	0.019
60.1	25.7	0.473	0.018
59.2	30.4	0.490	0.016
58.4	34.7	0.505	0.015
57.7	43.0	0.523	0.012
57.0	45.4	0.536	0.012
56.4	56.8	0.551	0.0097

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose axclusive and confidential use, a report is mada. Any interpretations or opinions expressed represent the best judgement of Tha Analysts inc.,/Robertson Research International Limited and their officars and amployees assume no responsibility and make no werranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

Page...66. of ...1.0.9. File No. \$CAL-0181...

GAS-OIL RELATIVE PERMEABILITY DATA

INITIAL WATER SATURATION

OIL PERMEABILITY AT

INITIAL WATER SATURATION md.

SAMPLE DEPTH

3325.15 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
55.9	59.7	0.562	0.0094
55.3	68.3	0.576	0.0084
54.9	79.5	0.584	0.0073
54.5	81.7	0.594	0.0073
54.1	85.6	0.603	0.0070
53.6	87.6	0.612	0.0070
53.2	103	0.621	0.0060
52.8	108	0.622	0.0058
52.4	134	0.644	0.0048
52.0	158	0.662	0.0042
51.5	293	0.666	0.0023

* Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, ges or other mineral well or send in connection with which such a report is used or relied on.

Page ... 67. of ... 1.0.9. ... File No. SCAL-0181

GAS-OIL RELATIVE PERMEABILITY DATA

OIL PERMEABILITY AT

INITIAL WATER SATURATION md

SAMPLE DEPTH

3347.50 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS.*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
78.4	0.065	0.039	0.603
73.9	0.150	0.051	0.337
71.3	0.218	0.054	0.249
67.6	0.381	0.068	0.179
59.1	1.53	0.121	0.079
50.0	10.1	0.230	0.023
46.5	16.8	0.258	0.015
45.3	20.5	0.270	0.013
44.2	25.8	0.285	0.011
43.2	29.0	0.294	0.010
42.2	39.2	0.307	0.0078
41.6	49.1	0.317	0.0065
41.1	98.1	0.328	0.0033
40.3	171	0.333	0.0019
39.5	211	0.338	0.0016
39.0	327	0.340	0.0010
38.6	716	0.345	0.0005

Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is mada. Any Interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or send in connection with which such a report is used or relied on.

Page. . 68. . of . . 109 . . File No. SCAL-0181

GAS-OIL RELATIVE PERMEABILITY DATA

North Wales Office.

ROBERTSON RESEARCH

petroleum engineering laboratory

OIL PERMEABILITY AT

INITIAL WATER SATURATION md

SAMPLE DEPTH

3359.15 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS *, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
85.1	0.075	0.049	0.658
82.3	0.129	0.066	0.512
80.1	0.199	0.078	0.394
78.2	0.272	0.091	0.335
75.4	0.530	0.115	0.218
72.4	0.861	0.144	0.167
69.8	1.36	0.171	0.126
67.1	1.85	0.196	0.106
64.6	2.77	0.222	0.080
62.3	3.90	0.248	0.064
60.2	5.86	0.277	0.047
58.1	8.48	0.302	0.036
56.2	12.5	0.326	0.026
54.7	16.9	0.348	0.021
53.5	20.7	0.363	0.018
52.4	26.6	0.380	0.014
51.4	30.2	0.394	0.013
50.7	40.8	0.408	0.010
50.0	45.3	0.413	0.0091

* Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions axpressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officars and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitablaness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

GAS-OIL RELATIVE PERMEABILITY DATA

INITIAL WATER SATURATION

OIL PERMEABILITY AT

Г

INITIAL WATER SATURATION md. 419

SAMPLE DEPTH

3359.15 m

49.4 48.7	56.0	0.424	
48.7		0.424	0.0076
	198	0.439	0.0022
48.1	312	0.456	0.0015
47.7	454	0.470	0.0010
47.4	1010	0.477	0.0005
	47.7 47.4	47.7 454 47.4 1010	47.7 454 0.470

Relative to oil permeability

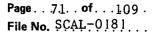
All analyses, opinions or interpretations are based on observations and materiels supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any Interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warrenty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or ralied on.

Page ... 70 ... of ... 1.0.9. ... File No. \$CAL-0181

GAS-OIL RELATIVE PERMEABILITY DATA

OIL PERMEABILITY AT

INITIAL WATER SATURATION md.


SAMPLE DEPTH

3396.00 m

LIQUID SATURATION PERCENT PORE SPACE	GAS – OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS.*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
85.4	0.147	0.056	0.381
81.7	0.452	0.089	0.197
78.4	0.933	0.122	0.131
75.7	1.79	0.148	0.083
72.8	2.85	0.177	0.062
70.2	4.91	0.202	0.041
68.4	6.86	0.221	0.032
67.0	9.82	0.237	0.024
65.8	11.8	0.252	0.021
64.7	16.1	0.266	0.017
63.7	19.7	0.274	0.014
62.8	23.1	0.285	0.012
62.0	31.0	0.296	0.0096
61.4	34.9	0.304	0.0087
60.8	40.7	0.312	0.0077
60.0	50.1	0.312	0.0062
58.9	66.9	0.344	0.0051
57.5	173	0.402	0.0023
56.3	408	0.412	0.0010

Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

GAS-OIL RELATIVE PERMEABILITY DATA

North Wales Office.

ROBERTSON RESEARCH

petroleum engineering laboratory

OIL PERMEABILITY AT

SAMPLE DEPTH

3401.65 m

LIQUID SATURATION PERCENT PORE SPACE	GAS OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
91.0	0.212	0.075	0.354
88.5	0.411	0.098	0.239
86.4	0.618	0.115	0.187
84.5	0.966	0.135	0.140
83.1	1.57	0.164	0.104
80.5	2.40	0.200	0.083
77.1	4.90	0.251	0.051
74.7	5.97	0.286	0.048
73.3	8.58	0.308	0.036
72.2	11.4	0.322	0.028
71.1	14.5	0.340	0.023
70.1	17.2	0.358	0.021
68.9	24.1	0.378	0.016
67.9	30.2	0.398	0.013
66.9	33.9	0.415	0.012
66.1	41.6	0.431	0.010
65.3	49.8	0.444	0.0089
64.5	54.4	0.458	0.0084
63.9	72.4	0.469	0.0065

Relative to oil permeability

All analyses, opinions or interpretations are based on observetions and materials supplied by the client whom, and for whose exclusive and confidential use, a raport is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limitad and their officers and employees assume no responsibility and make no warrenty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral wall or send in connection with which such a report is used or relied on.

GAS-OIL RELATIVE PERMEABILITY DATA

 INITIAL WATER SATURATION

 PERCENT PORE SPACE
 39:4

 POROSITY PERCENT
 1.5.4

OIL PERMEABILITY AT

INITIAL WATER SATURATION md

SAMPLE DEPTH

3401.65 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS*, FRACTION	RELATIVE PERMEABILIT TO OIL*, FRACTION
63.3	74.5	0.480	0.0065
62.2	109	0.504	0.0046
61.2	136	0.523	0.0038
60.6	145	0.536	0.0037
60.0	169	0.547	0.0032

* Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or send in connection with which such a report is used or relied on.

Page...73. of. 109. File No. SCAL-0181...

GAS-OIL RELATIVE PERMEABILITY DATA

North Wales Office.

ROBERTSON RESEARCH

petroleum engineering laboratory

OIL PERMEABILITY AT

INITIAL WATER SATURATION md.

SAMPLE DEPTH

3407.50 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS.*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
89.0	0.059	0.045	0.755
86.8	0.091	0.059	0.650
84.8	0.173	0.070	0.403
83.0	0.240	0.085	0.355
81.6	0.301	0.095	0.316
80.2	0.454	0.108	0.239
78.9	0.584	0.122	0.209
76.8	0.914	0.149	0.163
73.6	1.84	0.190	0.103
70.7	2.76	0.228	0.083
68.4	4.05	0.261	0.064
66.4	6.32	0.289	0.046
64.7	8.45	0.318	0.038
63.2	11.8	0.342	0.029
61.9	15.9	0.363	0.023
60.9	20.2	0.382	0.019
59.9	23.2	0.398	0.017
59.0	30.9	0.416	0.013
58.2	35.1	0.428	0.012

* Relative to oil permeability

All analyses, opinions or interpretations are based on observations and materials supplied by the cliant whom, and for whose exclusive and confidential usa, a report is made. Any interpratations or opinions expressed represent the best judgement of The Analysts inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral wall or send in connection with which such a report is used or ralied on.

Page...74. of...109. File No. \$CAL-0181...

GAS-OIL RELATIVE PERMEABILITY DATA

OIL PERMEABILITY AT

INITIAL WATER SATURATION md. . . 119

SAMPLE DEPTH

3407.5 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS *, FRACTION	RELATIVE PERMEABILIT TO OIL*, FRACTION
57.6	45.2	0.438	0.0097
56.3	61.3	0.447	0.0073
53.8	210	0.525	0.0025
	ļ		

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and amployees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

Page...75.. of...109. File No. SCAL-0181...

GAS-OIL RELATIVE PERMEABILITY DATA

INITIAL WATER SATURATION md ... 0.68

SAMPLE DEPTH

3419.10 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS.*, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
100			1.00
93.4	0.121	0.098	0.808
90.0	0.198	0.097	0.489
87.6	0.358	0.116	0.325
85.9	0.610	0.142	0.233
84.8	0.739	0.169	0.228
83.8	0.906	0.166	0.183
82.4	1.49	0.197	0.132
80.8	1.87	0.217	0.116
79.8	2.29	0.232	0.102
79.1	3.17	0.278	0.088
78.4	3.66	0.284	0.078
77.7	5.00	0.308	0.062
76.7	5.24	0.328	0.063
75.7	6.83	0.352	0.051
75.2	8.78	0.373	0.042
74.2	11.4	0.401	0.035
72.7	14.1	0.457	0.032
71.3	17.5	0.456	0.026
70.3	25.3	0.467	0.018

All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officars and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

OIL PERMEABILITY AT

North Wales Office.

ROBERTSON RESEARCH

petroleum engineering laboratory

Page...76...of...109. File No. \$ÇAL-0181...

GAS-OIL RELATIVE PERMEABILITY DATA

OIL PERMEABILITY AT

Г

INITIAL WATER SATURATION md . . 0.68

SAMPLE DEPTH

3419.10 m

	LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS *, FRACTION	RELATIVE PERMEABILITY TO OIL*, FRACTION
ſ	68.7	38.3	0.574	0.015
	67.2	53.4	0.600	0.011
	65.9	79.3	0.640	0.0081
	64.1	102	0.693	0.0068
	62.8	183	0.726	0.0040
	62.4	231	0.882	0.0038
L	 Relative to oil permeabil 	[[4]	1	

Relative to oil permeability

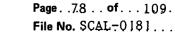
All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgemant of The Analysts inc.,/Robertson Research International Limited and their officers and employees assume no responsibility end make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

Page...77... of....10.9... File No. SCAL-0.18.1...

GAS-OIL RELATIVE PERMEABILITY DATA

OIL PERMEABILITY AT

INITIAL WATER SATURATION md.


SAMPLE DEPTH

3422.10 m

LIQUID SATURATION PERCENT PORE SPACE	GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TO GAS.*, FRACTION	RELATIVE PERMEABILIT TO OIL*, FRACTION
100			1.00
82.2	0.134	0.056	0.416
79.7	0.274	0.085	0.311
77.8	0.373	0.092	0.245
74.6	0.972	0.143	0.147
71.1	2.11	0.186	0.088
69.2	3.07	0.220	0.072
66.2	6.21	0.275	0.044
63.3	8.21	0.324	0.040
62.1	12.9	0.346	0.027
61.2	15.7	0.360	0.023
60.3	20.2	0.384	0.019
59.3	25.6	0.407	0.016
58.4	27.5	0.420	0.015
57.6	37.8	0.453	0.012
56.9	44.9	0.466	0.010
56.2	49.5	0.482	0.0097
55.5	55.1	0.502	0.0091
54.8	67.9	0.517	0.0076
54.3	76.7	0.532	0.0069

Relative to oil permeability

All analyses, opinions or interpratations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or sand in connection with which such a report is used or relied on.

GAS-OIL RELATIVE PERMEABILITY DATA

North Wales Office.

ROBERTSON RESEARCH

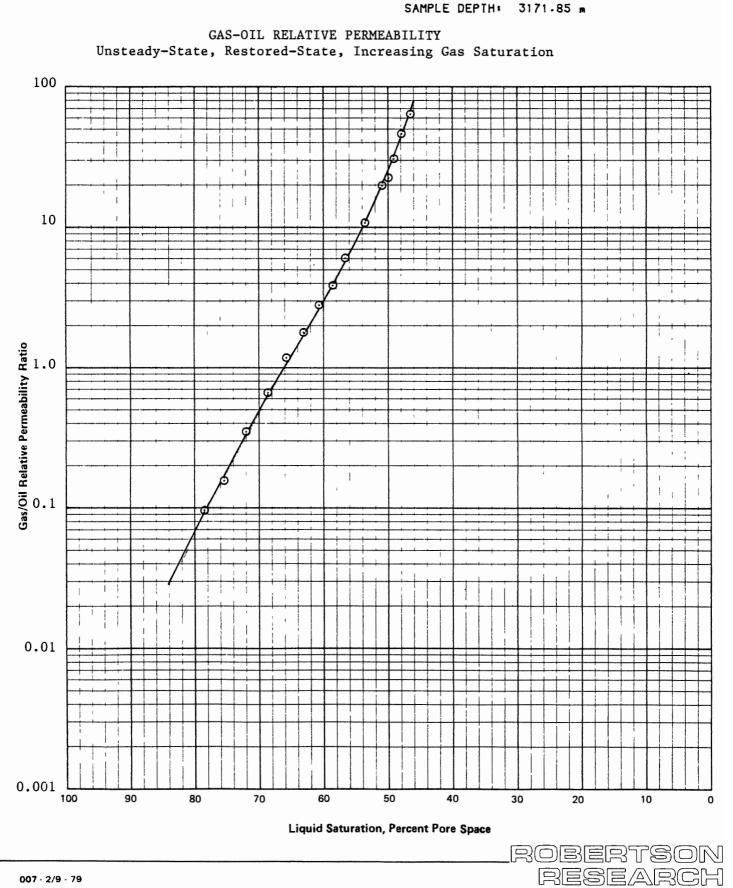
petroleum engineering laboratory

OIL PERMEABILITY AT

INITIAL WATER SATURATION md. . . 13.3

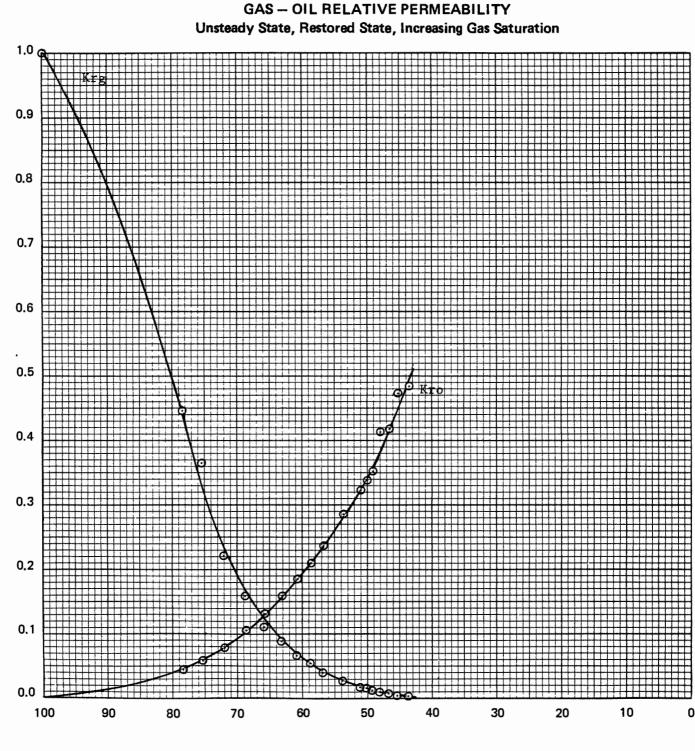
SAMPLE DEPTH

3422.10 m


GAS - OIL RELATIVE PERMEABILITY RATIO	RELATIVE PERMEABILITY TD GAS *, FRACTION	RELATIVE PERMEABILITY TO DIL*, FRACTION
91.1	0.546	0.0060
135	0.557	0.0041
159	0.569	0.0036
199	0.587	0.0030
479	0.605	0.0013
	PERMEABILITY RATIO 91.1 135 159 199	PERMEABILITY RATIO TD GAS*, FRACTION 91.1 0.546 135 0.557 159 0.569 199 0.587

Relative to oil permeability

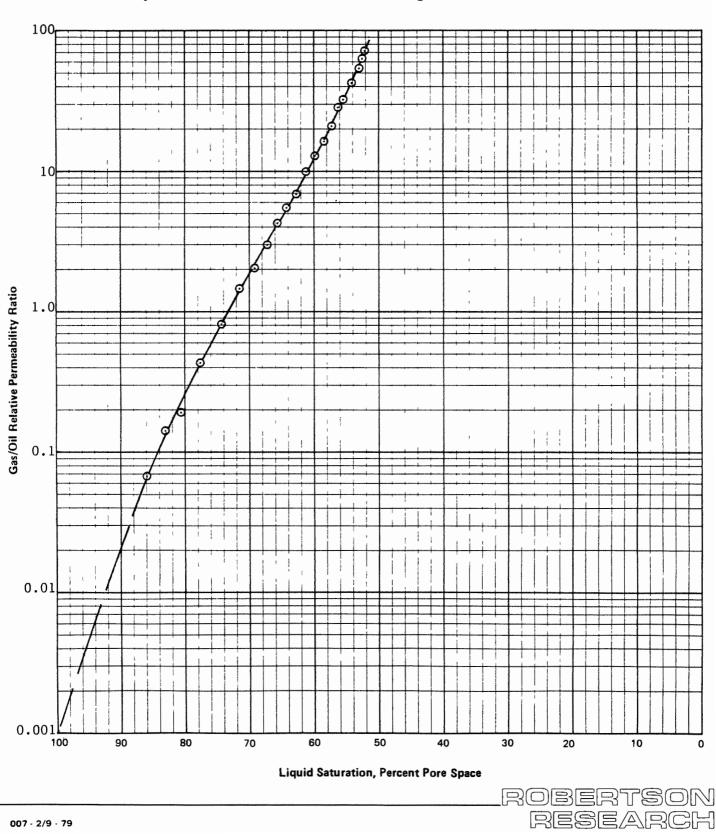
All analyses, opinions or interpretations are based on observations and materials supplied by the client whom, and for whose exclusive and confidential use, a report is made. Any interpretations or opinions expressed represent the best judgement of The Analysts Inc.,/Robertson Research International Limited and their officers and employees assume no responsibility and make no warranty or representation as to the productivity, proper operations, or profitableness of any oll, gas or other mineral wall or sand in connection with which such a report is used or relied on.


File No. SCAL-0181

COMPANY:	STATOIL	FORMATION	ZONE 1				
WELL:	34/10-16	LOCATION:	NORWEG	IAN	NORTI	H SI	EA
FIELD:	GULLFAKS	COUNTRY:	NORWAY				
SAMPLE NU	MBER: 71.	PERMEABILI	TYmd:	769	(K₀	at	SWIR
FIELD:	GULLFAKS				(Ko	at	sw

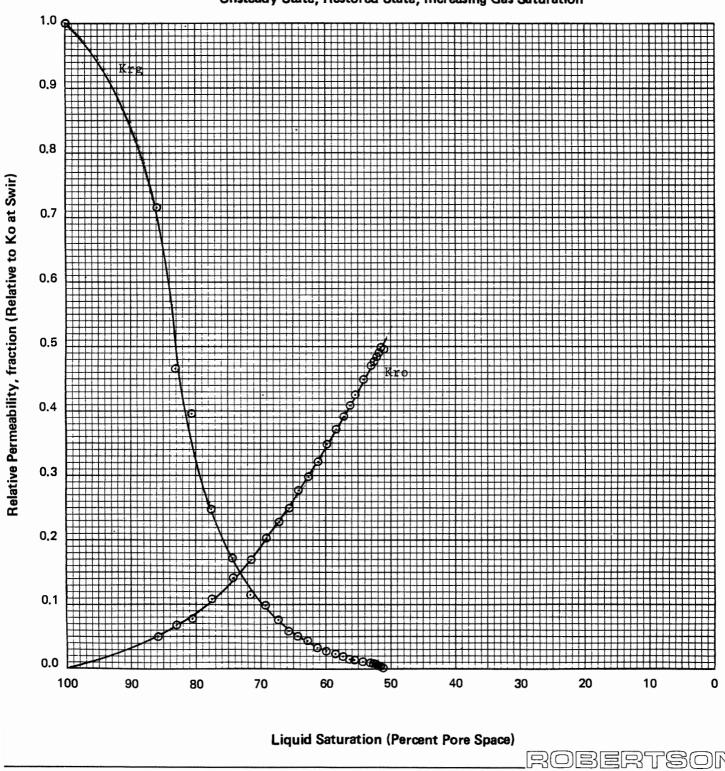
File NoSCAL-0.1.81

COMPANY: STATOIL	FORMATION: ZONE. 1
WELL: 34/10-16	LOCATION: .NORWEGI.AN .NORTH .SEA
FIELD: GULLFAKS	COUNTRY: .NORWAY.
SAMPLE No.:	PERMEABILITY md:769. (Kaet.SWir)
	SAMPLE DEPTH: 3171.85 m


Liquid Saturation (Percent Pore Space)

File No. SCAL-0181

COMPANY: STATOIL	FORMATION: ZONE. 1
WELL:	LOCATION: NORWEGIAN NORTH SEA
FIELD: GULLFAKS	COUNTRY: NORWAY
SAMPLE NUMBER: 57 . 1	PERMEABILITY md : 25 (Ko at SWIR)

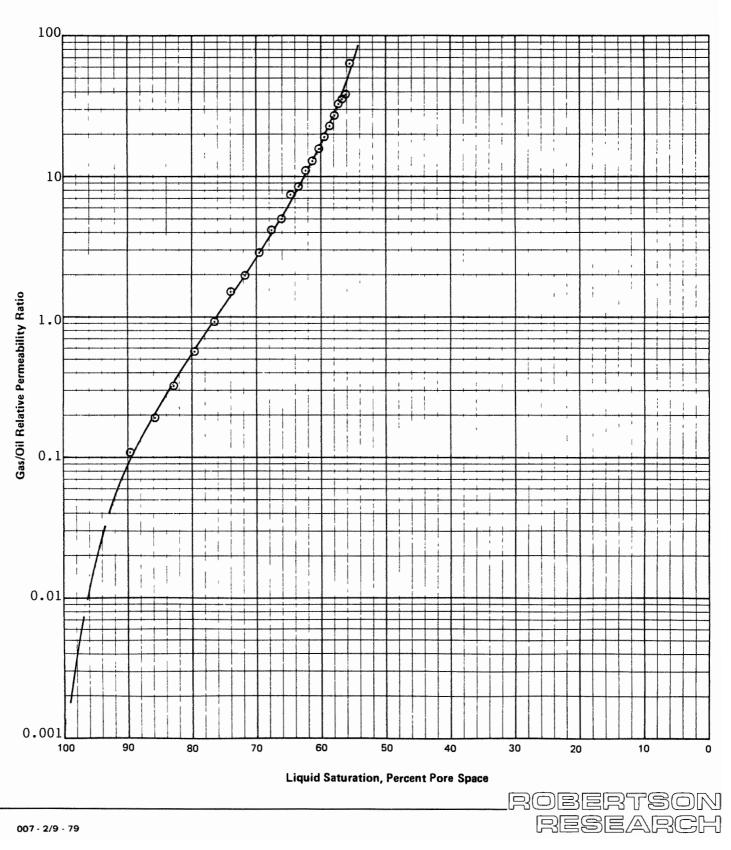

SAMPLE DEPTH: 3190.00 m

File NoSCAL-0181

RESEARCH

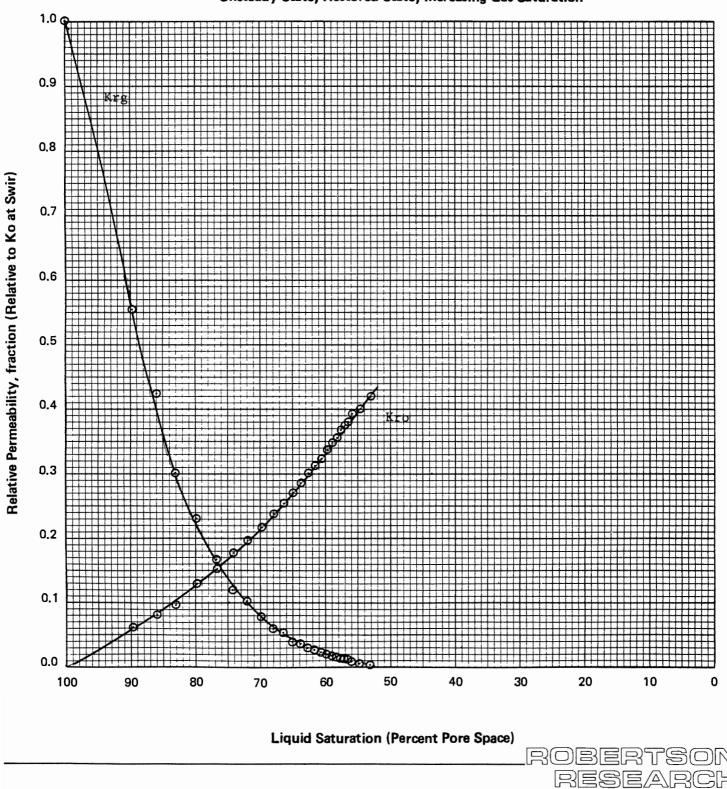
COMPANY: STATOIL	FORMATION: ZONE. 1
WELL: 34/10-16	LOCATION:NORWEGIAN .NORTH .SEA
FIELD:GULLFAKS	COUNTRY: NORWAY
SAMPLE No.: 57-1	PERMEABILITY md: 25 (Ko. st .SWIr)
	SAMPLE DEPTH: 3190.00 -

Page... 83 of 109 ...


File No. SCAL-0181

COMPANY: TATOIL	FORMATION: ZONE 1
WELL: 34/10-16	LOCATION: NORWEGIAN NORTH SEA
FIELD: GULLFAKS	COUNTRY: NORWAY
SAMPLE NUMBER: 81 .1	PERMEABILITY md : . 166 (Ko at SWIr)

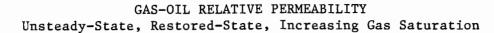
SAMPLE DEPTH: 3200.00 m

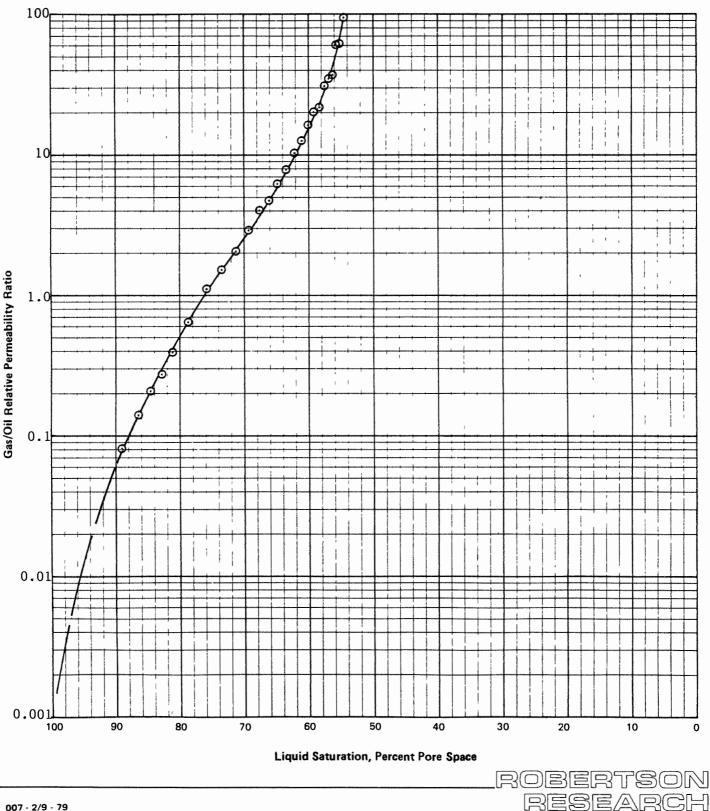

GAS-OIL RELATIVE PERMEABILITY

Unsteady-State, Restored-State, Increasing Gas Saturation

File NoSCAL = 0.1.81.

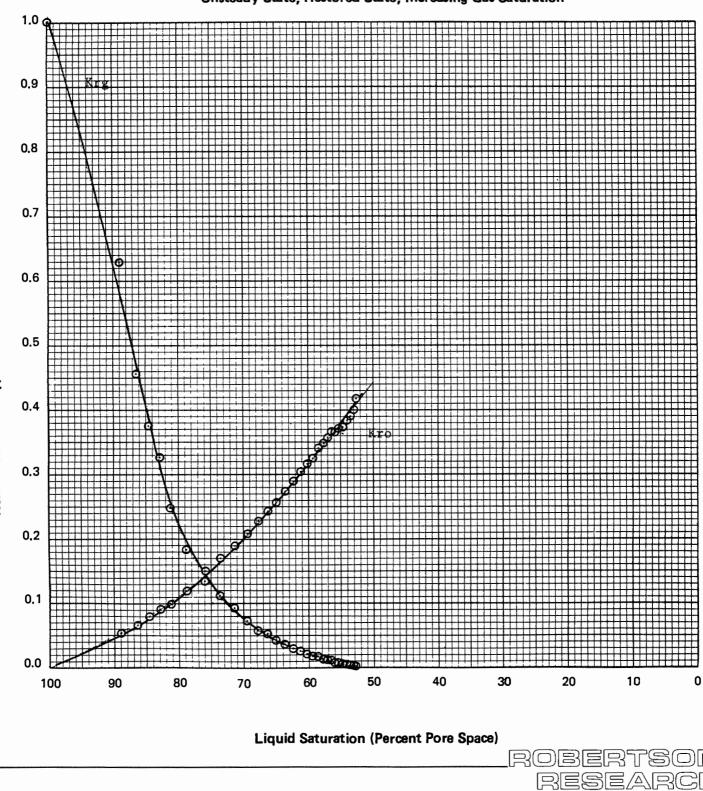
COMPANY: STATOIL	FORMATION:ZONE. 1
WELL: 34/10-16	LOCATION:NORWEGIAN NORTH SEA
FIELD:GULLFAKS	COUNTRY:NORWAY.
SAMPLE No.:	PERMEABILITY md:166. (Koat.SWIr)
	SAMPLE DEPTH: 3200.00 m



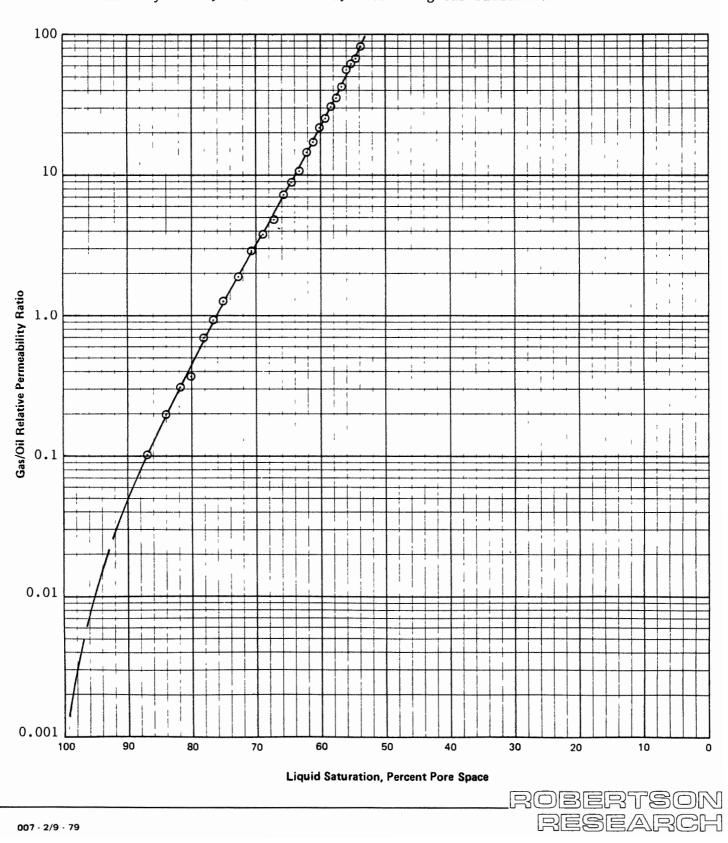

Page . 85 of .. 109...

File No. SCAL-0181

COMPANY: STATOIL GULLFAKS FIELD: SAMPLE NUMBER: 93.1


FORMATION:	ZONE .1
LOCATION:	NORWEGIAN NORTH SEA
COUNTRY:	NORWAY
PERMEABILI	fYmd: 402 (K₀ st SWir)
SAMPLE DEPI	H: 3204.15 m

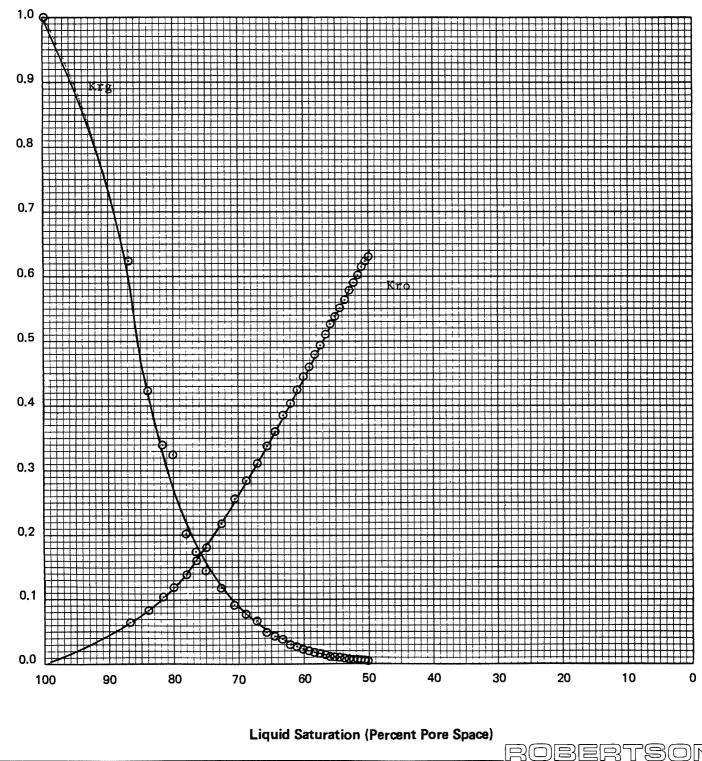
File NoSCAL - 0.1.81.


COMPANY: STATOIL	FORMATION: ZONE. 1
WELL: 34/10-16	LOCATION: NORWEGIAN NORTH SEA.
FIELD: GULLFAKS	COUNTRY: .NORWAY.
SAMPLE No.:	PERMEABILITY md:402. (Koat.SWIF)
	SAMPLE DEPTH: 3204.15 m

Page. 87 . of . 109

File No. SCAL-0181

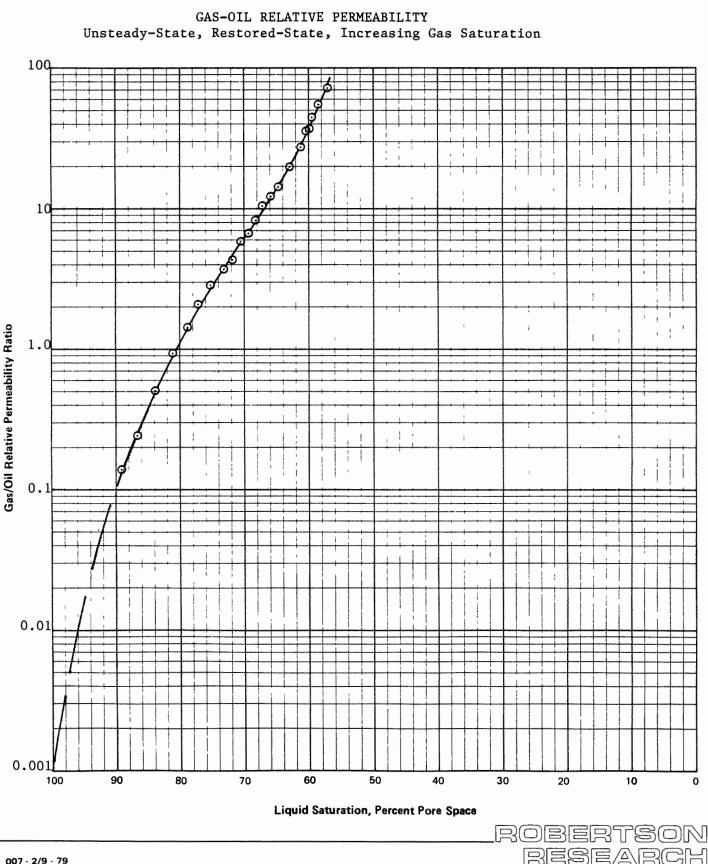
COMPANY: TATOIL	FORMATION: ZONE, 2
WELL:	LOCATION: NORWEGIAN NORTH SEA
FIELD: GULLFAKS	COUNTRY: NORWAY
SAMPLE NUMBER: 135-1	PERMEABILITY md : 26 (Ko at SWIR)
	SAMPLE DEPTH: 3219.00 m



Page. 88. of .109.

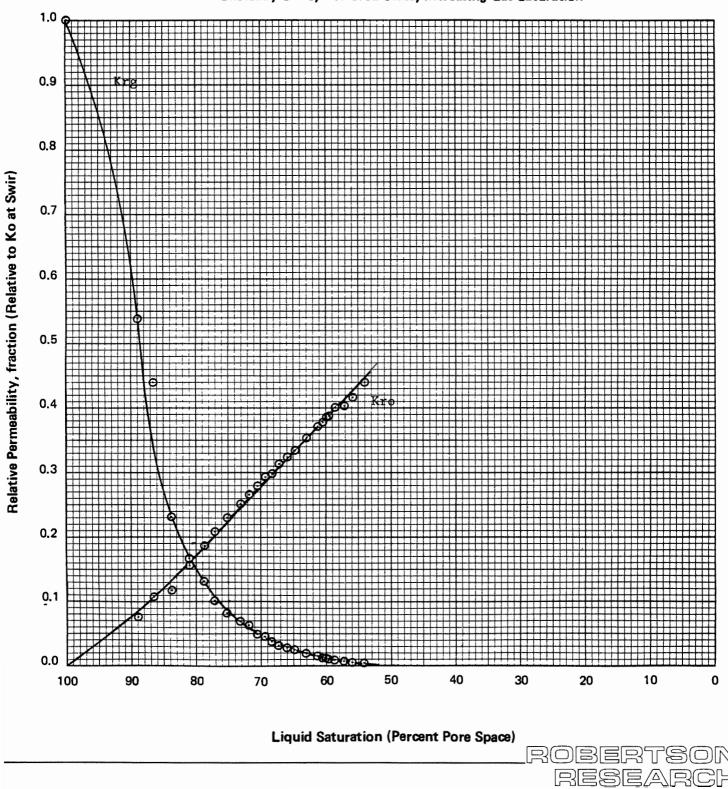
File NoSCAL-01.81

RESEARCH


COMPANY: STATOIL	FORMATION: ZONE. 2
WELL: 34/10-16	LOCATION: NORWEGIAN . NORTH .SEA.
FIELD:GULLFAKS	COUNTRY: NORWAY
SAMPLE No.: 135.1	PERMEABILITY md:
	SAMPLE DEPTH: 3219.00 m

File No. SCAL-0181

COMPANY: STATOIL WELL: 34/10-16 FIELD: GULLFAKS SAMPLE NUMBER: 316-1

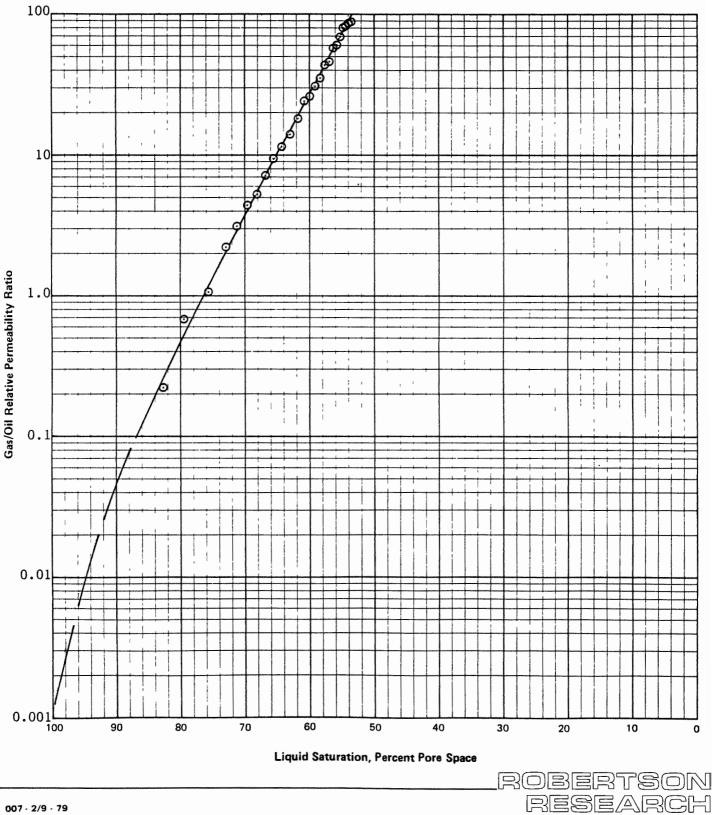

FORMATION: ZONE 2 ... LOCATION: NORWEGIAN NORTH SEA COUNTRY: NORWAY PERMEABILITY md : 61 (Ko at SWIP) SAMPLE DEPTH: 3284.25 m

Page. 90. . of ..109..

File NoSCAL=0.1.81

COMPANY: STATOIL	FORMATION: ZONE. 2.
WELL: 34/10-16	LOCATION: NORWEGIAN NORTH SEA
FIELD:GULLFAKS	COUNTRY:NORWAY.
SAMPLE No.: 31 6 1.	PERMEABILITY md:61 .(Koat . SW1r)
	SAMPLE DEPTH: 3284.25 m

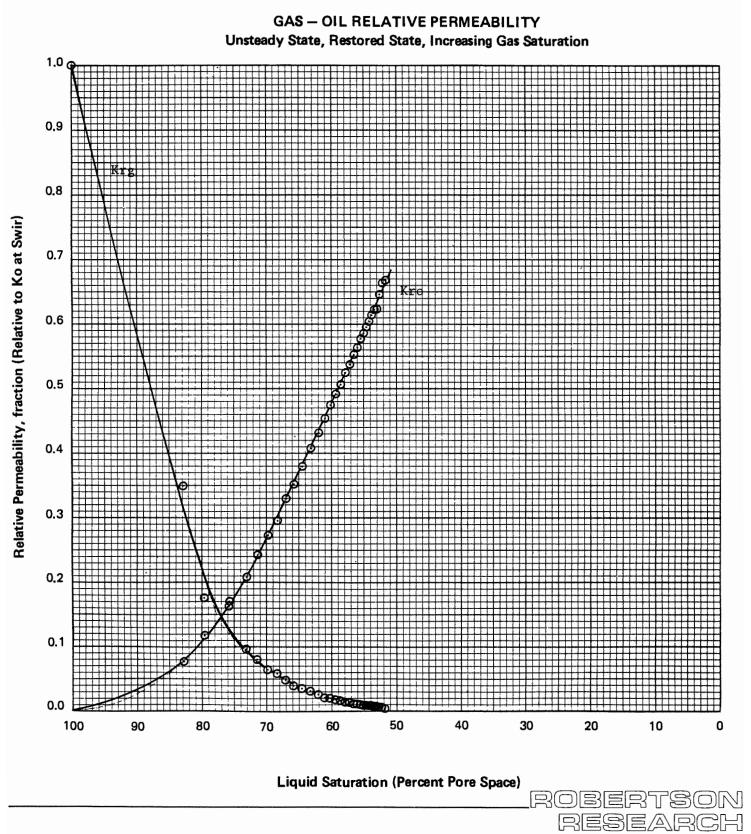
Page. .91. of ..109.....


File No. SCAL-0181

COMPANY: STATOIL	FORMATION: ZONE 2
WELL:	LOCATION: NORWEGIAN NORTH SEA
FIELD: GULLFAKS	COUNTRY: NORWAY
SAMPLE NUMBER: 408-1	PERMEABILITY md : 5.4 (Ko et SWIP)

SAMPLE DEPTH: 3325.15 m

GAS-OIL RELATIVE PERMEABILITY


Unsteady-State, Restored-State, Increasing Gas Saturation

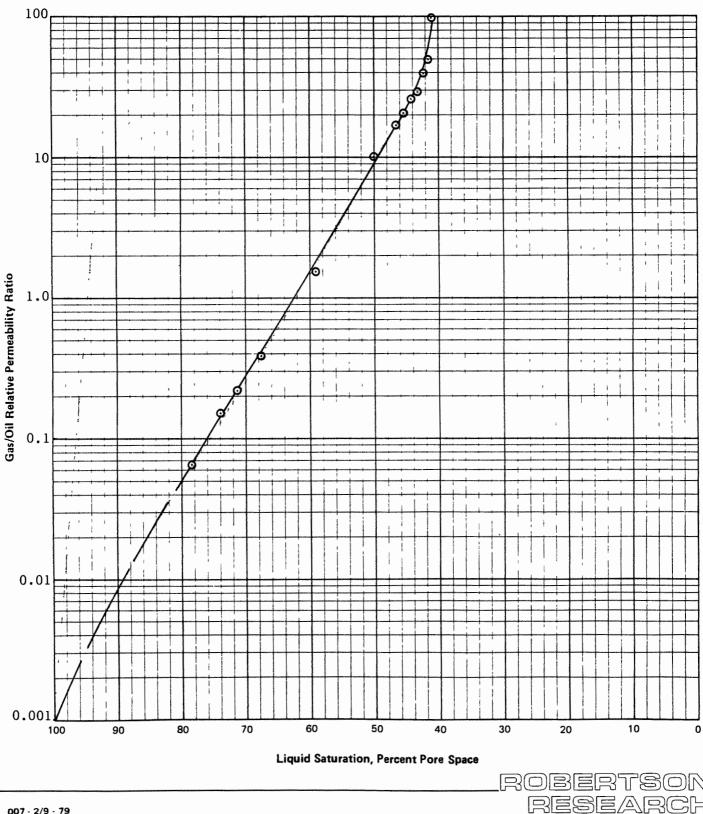
Page. 92 .. of . 109

File NoSCAL-0181

COMPANY: STATOIL	FORMATION: ZONE 2.
WELL: 34/10-16	LOCATION: NORWEGIAN NORTH SEA
FIELD: GULLFAKS	COUNTRY: NORWAY.
SAMPLE No.: 408+1	PERMEABILITY md:
	SAMPLE DEPTH: 3325.15 m

File No

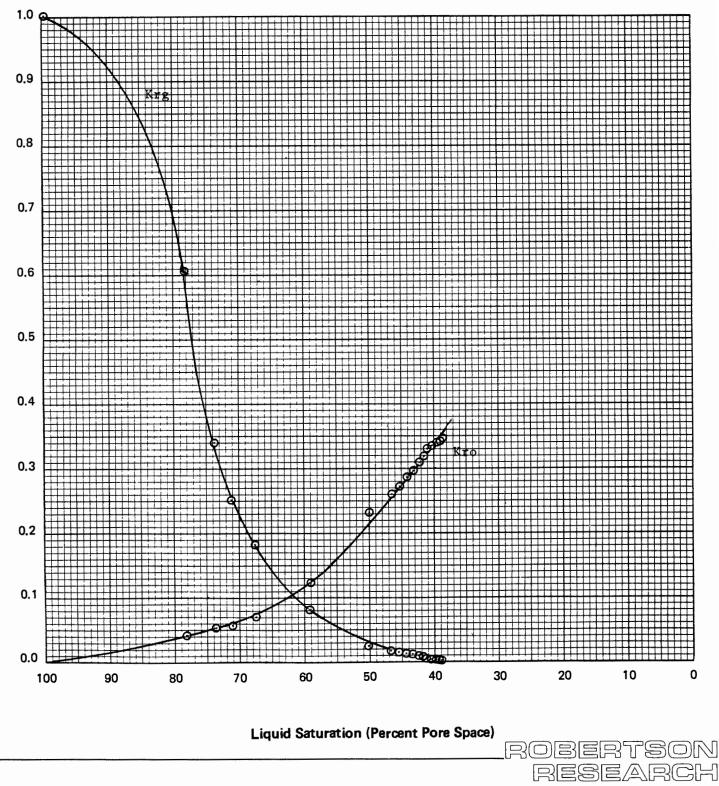
of ... 109 Page. ,93


File No. SCAL-0181

COMPANY: STATOIL	FORMATION: ZONE 2
WELL: 34/10-16	LOCATION: NORWEGIAN NORTH SEA
FIELD: GULLFAKS	COUNTRY: NORWAY
SAMPLE NUMBER: 471-1	PERMEABILITY md : 2144 (Ko at SWIr)

SAMPLE DEPTH: 3347.50 m

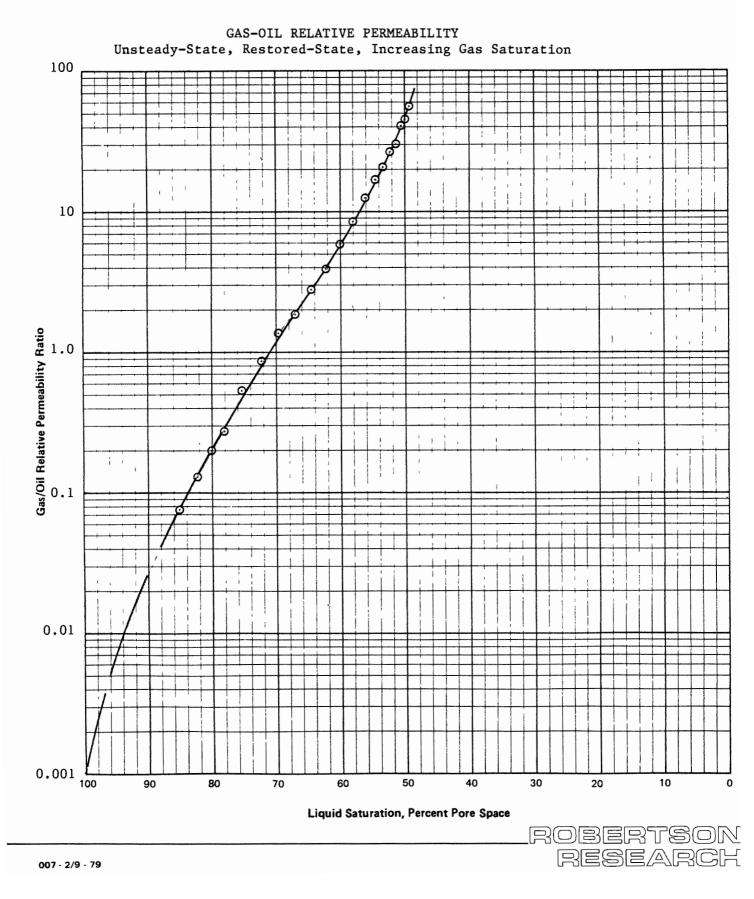
GAS-OIL RELATIVE PERMEABILITY


Unsteady-State, Restored-State, Increasing Gas Saturation

Page. 94 . of ..109.

File No.SCAL-0181

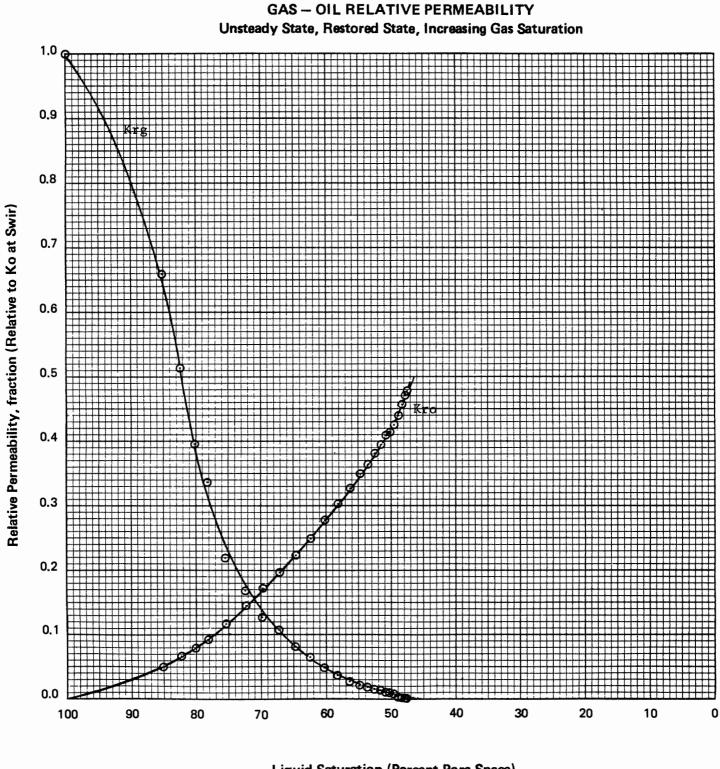
COMPANY: STATOIL	FORMATION: ZONE. 2
WELL: 34/10-16	LOCATION: NORWEGIAN, NORTH . SEA.
FIELD: GULLFAKS.	COUNTRY: NORWAY
SAMPLE No.: 471-1	PERMEABILITY md: 2144. (Ko.st. SWir)
	SAMPLE DEPTH: 3347.50 m



Page. 95. of . 109...

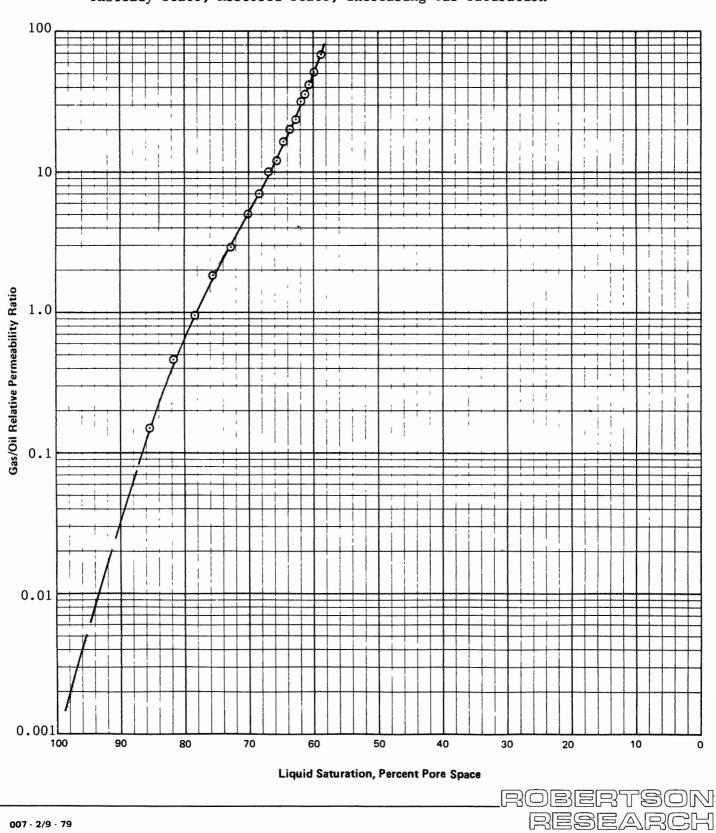
File No. SCAL-0181

COMPANY: STATOIL	FORMAT
WELL:	LOCATIO
FIELD: GULLFAKS	COUNTR
SAMPLE NUMBER: 487-1	PERMEA

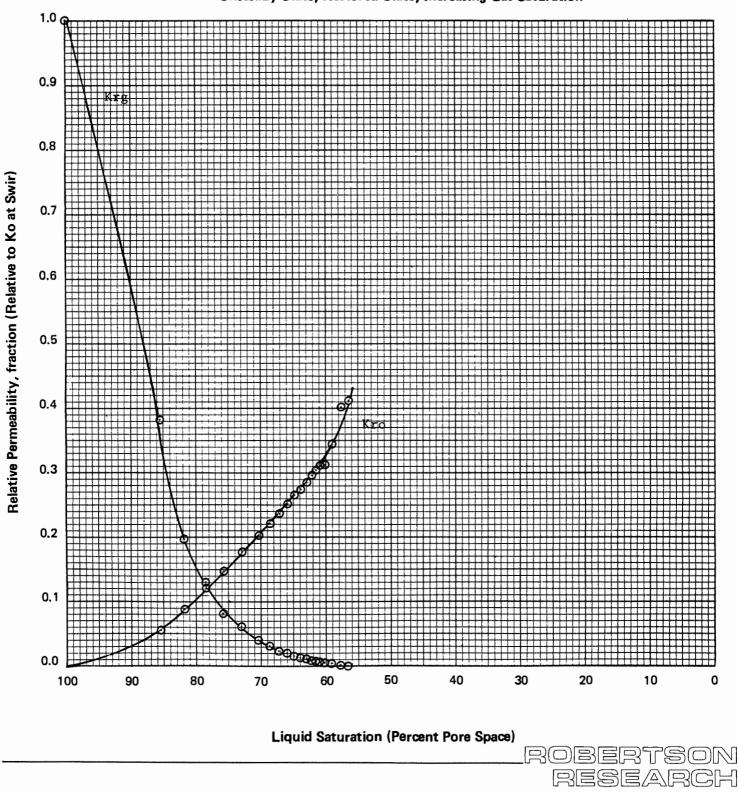

FORMATION:	ZONE 2	
LOCATION:	NORWEGIAN NORTH SEA	
COUNTRY:	NORWAY	
PERMEABILIT	Ymd: 419 (Ko et SWir)	
SAMPLE DEPT	H: 3359,15 m	

File No6CAL-0181

ROBERTSON RESEARCH


COMPANY: STATOIL	FORMATION: ZONE: 2.	
WELL: 34/10-16	LOCATION: NORWEGIAN . NORTH .SEA	
FIELD: GULLFAKS	COUNTRY: NORWAY	
SAMPLE No.: 487 . 1	PERMEABILITY md:419. (Koet.SWIF)	
	SAMPLE DEPTH: 3359.15	

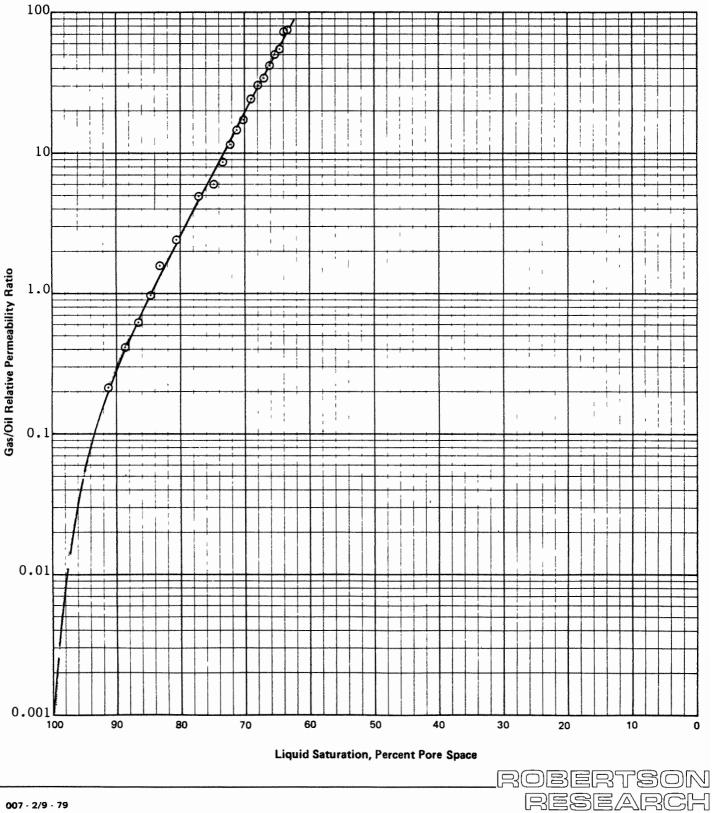
Liquid Saturation (Percent Pore Space)


File No. SCAL-0181

COMPANY: STATOIL	FORMATION: ZONE 3
WELL:	LOCATION: NORWEGIAN NORTH SEA
FIELD: GULLFAKS	COUNTRY: NORWAY
SAMPLE NUMBER: 586+1	PERMEABILITY md :
	SAMPLE DEPTH: 3396.00 m

File NoSCAL+0.1.81.

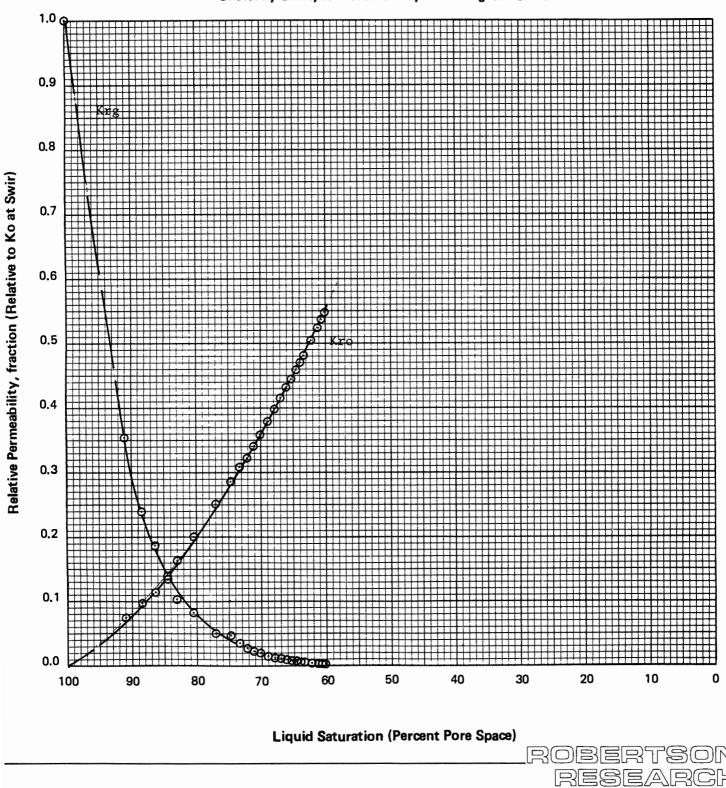
COMPANY: STATOIL	FORMATION:ZONE. 3.
WELL: 34/10-16	LOCATION: NORWEGIAN NORTH SEA
FIELD:GULLFAKS	COUNTRY: NORWAY.
SAMPLE No.:	PERMEABILITY md: 19 .(Ko. at .SWIr)
	SAMPLE DEPTH: 3396.00 m


File No. SCAL-0181

COMPANY:	STATOIL	FORMATION	20NE 3
WELL:	34/10-16	LOCATION:	NORWEGIAN NORTH SEA
FIELD:	GULLFAKS	COUNTRY:	NORWAY
SAMPLE NU	MBER: 604-1	PERMEABILI	TYmd: 4-1 (Ko at SWir)

SAMPLE DEPTH: 3401.65 m

GAS-OIL RELATIVE PERMEABILITY

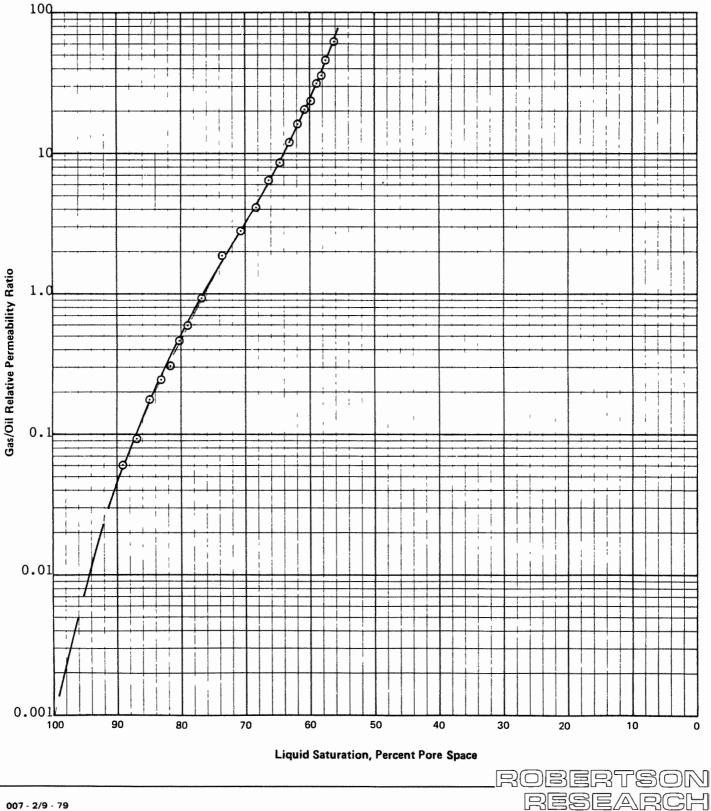

Unsteady-State, Restored-State, Increasing Gas Saturation

age. 100 of 109

File NoSCAL-01.81.

COMPANY: STATOIL	FORMATION:ZONE. 3.	
WELL: 34/10-16	LOCATION: NORWEGIAN NORTH SEA.	
FIELD:GULLFAKS	COUNTRY: NORWAY.	
SAMPLE No.:	PERMEABILITY md: 4.1. (Koat. SWJ.)	
	SAMPLE DEPTH: 3401.65 m	

.101 of .109.... Page

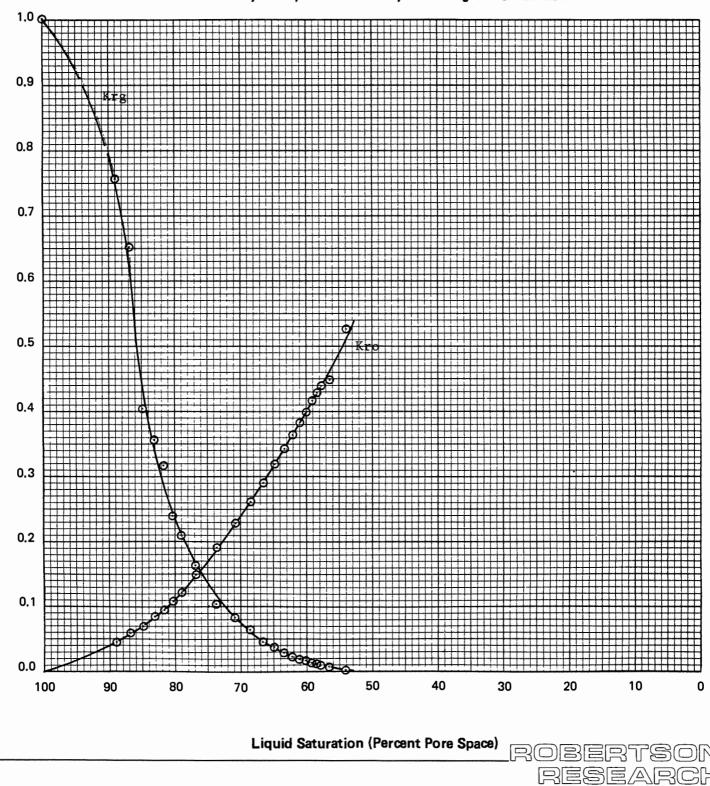

File No. SCAL-0181

COMPANY: STATOIL	FORMATION: ZONE 3
WELL:	LOCATION: NORWEGIAN NORTH SEA
FIELD: GULLFAKS	COUNTRY: NORWAY
SAMPLE NUMBER: 623.1	PERMEABILITY md : 119 (Ko at SWIF)

SAMPLE DEPTH: 3407.50 m

GAS-OIL RELATIVE PERMEABILITY

Unsteady-State, Restored-State, Increasing Gas Saturation



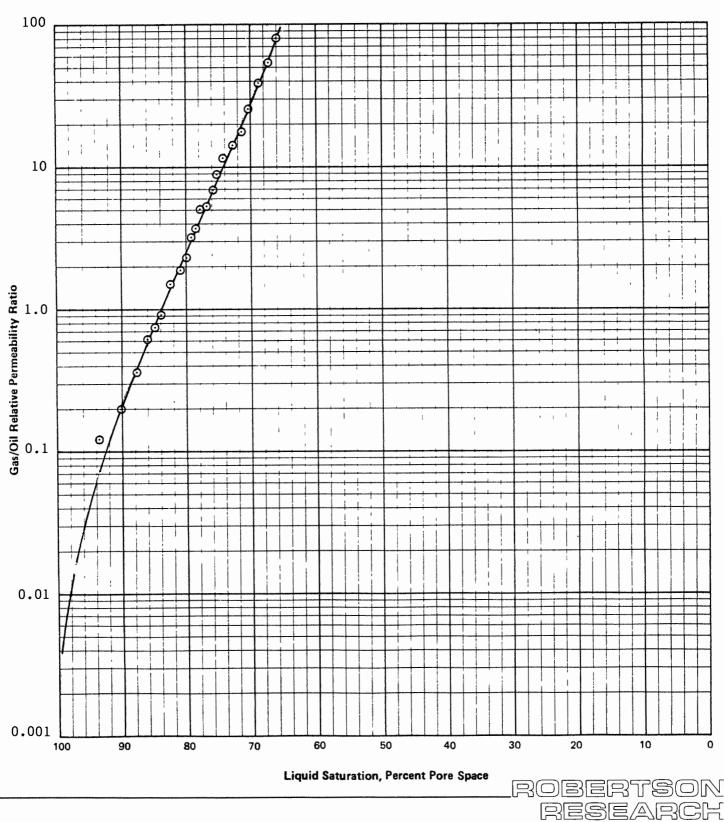
Page. 102. of .. 109.

File NoSCAL-0.1.81.

-1

COMPANY: STATOIL	FORMATION: ZONE. 3
WELL: 34/10-16	LOCATION: .NORWEGIAN .NORTH .SEA
FIELD:GULLFAKS	COUNTRY:NORWAY.
SAMPLE No.: 623.1	PERMEABILITY md: 119. (Ko. st. SW.1r.)
	SAMPLE DEPTH: 3407.50 m

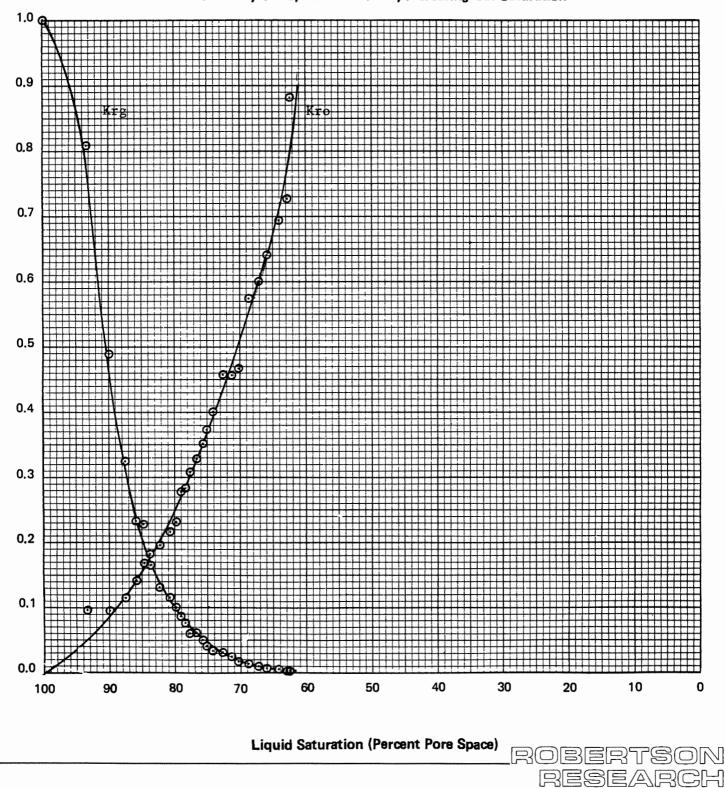
Page. 103. of ...109....


File No. SCAL-0181

COMPANY: STATOIL	FORMATION: ZONE .4
WELL:	LOCATION: NORWEGIAN NORTH SEA
FIELD: GULLFAKS	COUNTRY: NORWAY
SAMPLE NUMBER: 657-1	PERMEABILITY md: 0.68 (Ko st SWIP)

SAMPLE DEPTH: 3419.10 m

GAS-OIL RELATIVE PERMEABILITY

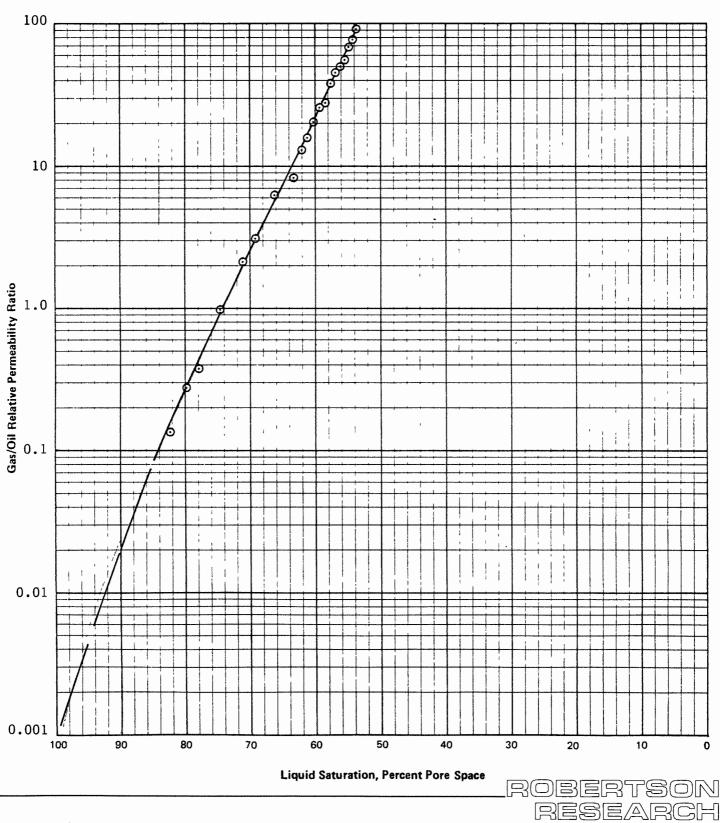

Unsteady-State, Restored-State, Increasing Gas Saturation

age. 104 of .. 109 ..

File Noscal-0181

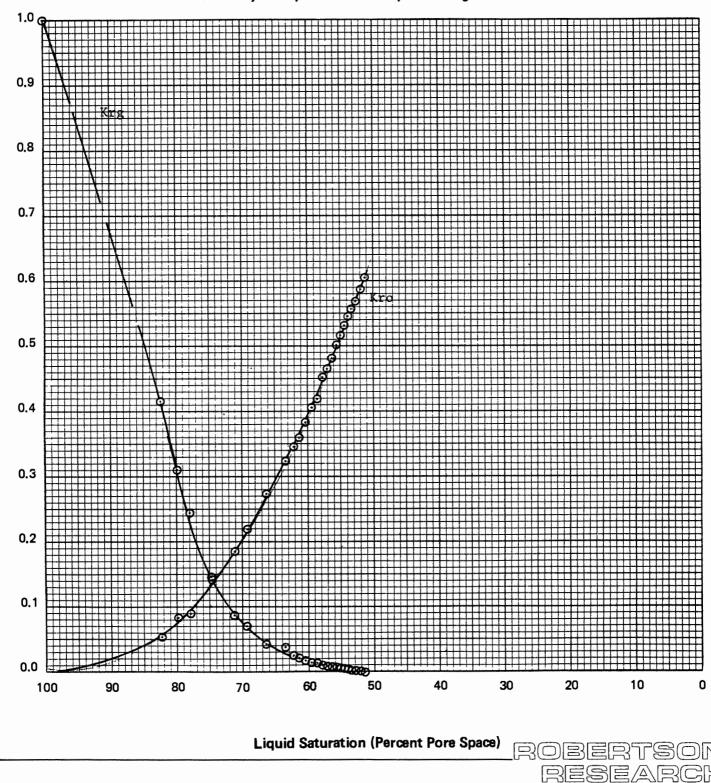
COMPANY: STATOIL	FORMATION: ZONE. 4.
WELL: 34/10-16	LOCATION:NORWEGIAN .NORTH .SEA.
FIELD:GULLFAKS	COUNTRY: NORWAY
SAMPLE No.:	PERMEABILITY md: .0.68. (Ko.st. Skin)
	SAMPLE DEPTH: 3419.10 m

Page. . 10,5 . of . .109.....


File No. SCAL-0181

COMPANY: STATOIL	FORMATION: ZONE 4
WELL: 34/10-16	LOCATION: NORWEGIAN NORTH SEA
FIELD: GULLFAKS	COUNTRY: NORWAY
SAMPLE NUMBER: 666.1	PERMEABILITY md : 13.3 (Ko st SWir)

SAMPLE DEPTH: 3422.10 m


GAS-OIL RELATIVE PERMEABILITY

Unsteady-State, Restored-State, Increasing Gas Saturation

File NoSCAL-0.1.81

COMPANY: STATOIL	FORMATION: ZONE 4.
WELL: 34/10-16	LOCATION:NORWEGIAN .NORIH .SEA
FIELD:GULLFAKS	COUNTRY:NORWAY
SAMPLE No.: 666-1	PERMEABILITY md:13.3 .(Kaet. SW.I.r.)
	SAMPLE DEPTH: 3422.10 m

SPECIAL CORE ANALYSIS STUDY STATOIL, NORWAY WELL: 34/10-16 FIELD: GULLFAKS

PAGE 107 of 109 FILE NO: SCAL-0181 VOLUME 1

APPENDIX I

SAMPLE DIMENSIONS

SAMPLE NUMBER	DEPTH (metres)	FORMATION	LENGTH (cm)	AREA (cm ²)
7.1	3171.85	ZONE 1	6.954	10.956
57.1	3190.00	ZONE 1	6.860	10.986
81.1	3200.00	ZONE 1	6.902	10.986
93.1	3204.15	ZONE 1	6.356	10.986
135.1	3219.00	ZONE 2	6.840	10.986
316.1	3284.25	ZONE 2	6.868	11.104
408.1	3325.15	ZONE 2	6.720	10.810
471.1	3347.50	ZONE 2	6.618	10.706
487.1	3359.15	ZONE 2	6.724	10.810
586.1	3396.00	ZONE 3	6.936	10.810
604.1	3401.65	ZONE 3	6.888	10.781
623.1	3407.50	ZONE 3	6.700	10.810
657.1	3419.10	ZONE 4	6.796	10.810
666.1	3422.10	ZONE 4	6.836	10.781
700.1	3433.70	ZONE 4	6.886	10.810

APPENDIX II

COMPOSITION AND SPECIFICATIONS OF THE FLUIDS USED DURING TESTING

SIMULATED FORMATION BRINE

- Salt g/1
- Na Cl 39.4
- K C1 0.72
- Ca Cl₂.6H₂0 600
- Mg Cl₂.6H₂O 0.92
- Sr Cl₂.6H₂0 0.7
- Viscosity at 20°C = 1.0896 cP

Density at $20^{\circ}C = 1.029 \text{ g/c.c.}$

DEPOLARIZED KEROSENE

Viscosity at 20°C = 1.92 cP

Density at $20^{\circ}C = 0.7882 \text{ g/c.c.}$

PAGE 109 of 109 FILE NO: SCAL-0181 VOLUME 1

APPENDIX III

ABBREVIATIONS

Ka	Air Permeability
Kg	Gas Permeability
Kl	Klinkenberg Permeability
Krg	Gas Permeability relative to Kg(SW _{ir})
Kro	Oil Permeability relative to Kg(SW _{ir})
Kw	Brine Permeability
Krw	Brine Permeability relative to Ko (SW _{ir})
Ko	Oil Permeability
Kw/Ko	Water-011, Relative Permeability
Kg/Ko	Gas-Oil, Relative Permeability
mD	Millidarcies
SWir	Irreducible Brine Saturation
Sgr	Residual Gas Saturation
Sor	Residual Oil Saturation
L.R.	Low Rate
H.R.	High Rate
g	Grams
c.c.	Cubic centimetres
cm	Centimetres
cP	Centipoise
hr	Hour
Res Gas	Residual Gas determination

