

CLASSIFICATION

MADE BY

Bengt Hultberg

SUBTITLE

TITLE

Well Testing Report 34/10-16 LET/BERGEN June 1984 COMPLETED APPROVED /

Bey + Hutz

1. Hansweit APPROVED

CONTENTS

General	2
Мар	3
Generalized stratigraphy	4
Introduction	5
Objectives	6
Conclusion	7
Testresults	9
Pressure gradients	10
Discussion	11
Analysis	16
Productivity/Deliverability DST no. 2	17
CPI	20
References	21
Appendix 1	22
Appendix 2	38

GENERAL

Licence:	PL 050
Well:	34/10-16
Location:	61 ⁰ 05'36" N 02 ⁰ 10'47" E
Rig:	Neptuno Nordraug (drilling) Ross Isle (testing)
Spudded:	14 December 1982
Rig Released:	13 April 1983
Reentered:	30 August 1983
Rig released:	28 September 1983
RKB-elevation:	25m (N. Nordraug) 22m (Ross Isle)
Water Depth:	138m
Total Depth:	4042m
Objective:	Jurassic Sandstones
Operator:	Statoil
Partners:	Norsk Hydro, Saga Petroleum
Status:	Plugged and Abandoned

- 2 -

34/10-16 GENERALIZED STRATIGRAPHY

T.D. 4042 m RKB (25m)

INTRODUCTION

Well 34/10-16 is the second well drilled on the Alpha structure in block 34/10.

The well was drilled into sediments of Triassic age to a total depth of 4017 m MSL.

The two primary objectives were sandstones of middle- and lower Jurassic age, the Brent Group and the Statfjord Formation.

The Brent sandstones was found to be hydrocarbonbearing while no hydrocarbons were encountered in the Statfjord formation.

This report contains test analysis of two production tests and two runs with RFT-A carried out in the Brent Group.

In the following, RKB-depths refers to Ross Isle (22 m).

OBJECTIVES

The objectives for testing well 34/10-16 were:

- a) Estimate reservoir properties
- b) Estimate reservoir pressure and temperature
- c) Obtain fluid samples
- d) Estimate productivity

CONCLUSION

DST no 1 (3397 - 3407 m RKB)

The average production rate during the main flow was: (choke size = 48/64")

Oil: 960 Sm^3/D Gas: 182 x 10³ Sm^3/D GOR: 191 Sm^3/Sm^3 Oil gravity: 0.857 g/cc Gas gravity: 0.670 (air = 1)

The drillstem test analysis gives a reservoir pressure of 458.4 bar at the midpoint of the perforated interval.

The permeability is calculated to 138 md.

The total skinfactor is estimated to 11.

The maximum recorded bottomhole temperature was 128.8°C.

Three sets of PVT samples were taken during the main flow.

One succesful run with two bottomhole samplers were carried out.

No sand was produced.

DST no 2 (3177 - 3187 m RKB)

The reservoir pressure is estimated to 449.2 bar.

The permeability is calculated to 379 mD (second build up) 360 mD (third build up).

The total skinfactor is estimated to 71.5 (second) 77.8 (third).

The average production rate was:

	Gas	Condensate	GOR	Oil grav	Gas grav
	10Sm ³ /D	Sm ³ /D	Sm ³ /Sm ³	g/cc	(air=1)
Second flow (48/64")	1293	314	4120	0.79	0.66
Third flow (80/64")	1647	400	4118	0.79	0.66

The maximum recorded bottomhole temperature was 117.9°C.

Four sets of PVT samples were taken from the separator. Two during the second and third flow resp.

The test produced a small amount of water.

No sand was produced.

RFT-A

Two segregated fluid samples were successfully recovered.

Sampling results (6 gallon chambers)

Depth, m RKB	3356	3345
Fluid type	Oil	Condensate
Fluid density, g/cc	0.88 .	0.80

The sampling results proves that the gas/oil contact is, as expected, between these two points.

	t															
S	SKIN			11					71.5		77.8					
ANALYSI	K K (MD)			138					379		360					
TEST	HH (MUM) HX			1790					7200		6832					
	GAS GRAV (AIR=1)			0.67					0.66		0.66					
	OIL GRAV g/cc			0.86					0.79		0.79					
	GOR SM/SM ³			191					4120		4118				·	
	GAS RATE 10 ^{SM/D}			182					1293		1647					
ATION	DIL RATE SM ^{/D}			955					314		400					
OPEI	⊧ ಲ	122	124	129	129	127	110	112	117	118	18	118				
TEST	нокЕ /64"	48		48		8	52		22		30					
	3AR C		.4					.2		6.		.6				
	BHP 1	348	458	307	460	450	396	449	408	448	392	448				
	DURATIO MIN.	3	64	667	656		2	66	550	539	423	575				
	OPER.	Initial flow	Initial build-up	Second flow	Second build-up	BHS	Initial flow	Initial build-up	Second flow	Second build-up	Third flow	Third build-up		-		
	PERF. INT. MRKB	3397-	3407				3177- 3187		.				 L		L	
	FM	Etive					Tarbert						 			
	DST NO.	-					2									

TESTF WELL 34/10-16 TABLE 1

-

DISCUSSION:

Operations DST no. 1

The test was performed in the Etive sand. The test was conducted according to the test program.

The testinterval 3397-3407 m RKB was perforated with 4 shots/ft.

Seawater was used as cushion in the teststring.

A conventional Halliburton teststring with a LPR-testing valve was used during the test, see appendix A1-10 for layout of the teststring.

The choke manifold and the LPR-valve was closed simultaneously for the buildups. Observation of increasing well head pressure for the first 30 mins. of the main buildup indicated that the LPR-valve was leaking. See buildup plots in appendices A1-3 and A1-12.

The test was performed with a short initial flow, followed by an initial buildup with a duration of approximately one hour.

The main flow had a duration of approximately 11 hours.

Cleaning up the well and getting a fairly stable flow took approx. 3 hours. The oil was very viscous and it was therefore decided to go through the heater in order to get a good separation (a pour point of $+24^{\circ}C$ and a wax appearance point of $+35^{\circ}C$ are later measured in the laboratory).

The following flow rates were recorded during the main flow (48/64" choke):

Oil rate: $954-963 \text{ Sm}^3/\text{D}$ Gas rate: $181-185 \times 10^3 \text{ Sm}^3/\text{D}$ The bottomhole pressure increased during the main flow from 303 bar to 307 bar and the wellhead pressure increased from 103 bar to 107 bar.

The well was shut in for an eleven hours long buildup period.

The well was then opened up on a 12/64" choke prior to inserting the bottomhole samplers in the teststring, the well produced however only gas on this choke size. The reason for this was the high pour point (+24^OC) in combination with that the teststring had cooled off during the buildup. It was therefore decided to increase the choke size and flow the well so that the teststring would have time to warm up.

One succesfull run with two bottomhole samplers was done, and the test was ended. Both samplers were run through the bottom hole assembly and the samples were taken at 3389 resp. 3393 m RKB.

The sampling pressure was recorded with a surface read-out system.

Sampling conditions were (8/64" choke):

0i1	rate:	68	Sn	n ³ /đa	ay
Gas	rate:	15	х	10^{3}	Sm ³ /day

Sampling pressure was 449 bar.

Sampling at surface:

Three sets of PVT samples
 Dead oil

3. Water

All samples were taken from the separator. Sampling details are given in appendix A1-8.

The cement bond above/below the testinterval was considered good and hence no cement squeeze was needed. A copy of the cement bond log is included in appendix A1-11.

Operations DST no. 2

The test was performed in the Tarbert sand. The test was conducted according to the test program.

The testinterval 3177-3187 m RKB was perforated with 4 shots/ft.

Seawater was used as cushion in the teststring.

A conventional Halliburton teststring with a LPR-testing valve was used during the test, see appendix A2-10, for layout of teststring.

Both the choke manifold and the LPR-valve were closed during the buildups.

The LPR-valve was however opened 30 minutes before the second buildup ended. This was to see whether the valve was leaking or not. The wellhead pressure did not change when the LPR-valve was opened, and this indicates that the valve leaked.

The test was performed with a short initial flow, followed by an initial buildup that lasted for approximately one hour.

The second flow period had a duration of approximately 9 hours.

The flow was considered clean enough to divert through the separator after only 45 minutes, getting a stable flow took however almost 2 hours.

The following flow rates were recorded during the second flow (52/64" choke):

Condensate: $310-322 \text{ Sm}^3/\text{day}$ Gas: $1281-1296 \times 10^3 \text{ Sm}^3/\text{day}$

The bottomhole pressure increased during the second flow from 403 bar to 408 bar and the wellhead pressure increased from 229 bar to 233 bar.

The well was shut in for a 9 hours buildup period and then opened up on a 80/64" choke for a third flow which lasted for 6 hours. The flow stabilized quickly and readings on the separator could start after one hour flow.

The following rates were recorded during the third flow (80/64" choke):

Condensate: $371-402 \text{ Sm}^3/\text{day}$ Gas: $1638-1649 \times 10^3 \text{ Sm}^3/\text{day}$

The bottom hole pressure in the third flow increased during the stable flow period from 390 bar to 392 bar and the wellhead pressure increased from 144 bar to 145 bar.

The gas rate was fairly stable during this period, but the oil rate fell almost constantly. The meter factor is most likely incorrect during this flow. A rate of 400 Sm³/day have been used in the calculations, as this gives a GOR similar to that measured in the second flow.

The well was shut in for a buildup period of 9.6 hours.

Sampling at surface:

2 sets of PVT samples (second flow)
 2 sets of PVT samples (third flow)

- 2. Dead condensate
- 3. Water

All samples were taken from the separator, for details see appendix A2-8.

The cement bond above/below the testinterval was considered good and hence no cement squeeze was considered needed. A copy of the cement bond log is included in appendix A2-11.

RFT-A

No pressure points or samples were taken during the reservoir logging due to bad hole conditions.

Two successful runs with the RFT-A tool (through casing) were performed between DST 1 and DST 2.

Two segregated samples were taken, (each consisting of one 1-gallon chamber and one 6-gallon chamber). The 1-gallon chambers were sealed off and sent to Statoil Lab for analysis. The 6-gallon chambers were bled off on the rig and the results are listed below.

Sampling results (6 gallon chambers) :

	Run 1	Run 2
Depth m RKB, Ross Isle	3356	3345
Fluid type	Oil	Condensate
Fluid recovery, cm ³	17000	1800
Fluid density, g/cm ³	0.88	0.80
Gas recovery, m ³	25.06	54.57
CO ₂ (draeger) %	0.8	1.75
H ₂ S (draeger) %	0	0
•		

Pressure results

Depth	Hydr.bef.	Form.pr.	Hydr.after
m RKB	bar	bar	bar
3283	511.7	451.2	511.9
3312	516.0	452.6	516.8
3345	522.9	452.9	524.7
3356	528.8	453.8	524.2

ANALYSIS

DST no. 1

The reservoir pressure is 458.4 bar at the midpoint of the perforated zone, calculated from the initial buildup.

The Horner method was chosen for the calculations as the semilog straight line is well defined from the main buildup. The reservoir reached a semilog straight line behavior after approximately 45 minutes, see appendix A1-3.

The afterflow, due to leaking LPR-valve had a duration of 30 min.

A kh value of 1790 mdm is calculated using a slope, m, of 0.574 bar/cycle, see appendix A1-3. The formation thickness contributing to the test response has been estimated using the available core and log analysis data. A low permeability zonr is seen from 3409-3411 m RKB. The coal layer on top of the Etive formation is belived to be impermeable. This gives a producing interval of 13 m, which is used in the calculations. The calculations gives a permeability of 138 md, whic is less than the aritmetic mean of the laboratory measured core permeability (208 md). The skin was estimated to 11.

DST no. 2

The initial build up indicates a reservoir pressure of 449.2 bar at the midpoint of the perforated interval.

The Horner method was used in both the second and the third build up, as the semilog straight lines were well defined. See appendix A2-3.

The reservoir reached in both buildups, a semilog straight line behavior after approximately 30 minutes.

A coal layer at 3175-3177 m RKB and a shale layer at 3196 m RKB defines the vertical extent of the contributing formation in this test. A producing interval of 19 m in the calculations gives the following results:

	m	kh	k	S
	(bar/cycle)	(mdm)	(md)	
second build up	0.754	7200	379	71.5
third build up	0.750	6832	360	77.8

Laboratory measurements give a core permeability of 536 md (aritmetric mean over the perforated interval).

Productivity DST no. 2

One of the objectives of this test was to evaluate the productivity of the Tarbert formation.

A plot of pressure versus rate for the two flow rates on back pressure curves gives a n-exponent of 0.73, indicating pressure drop due to turbulent flow.

The turbulent and laminar parts of the total drawdown has been calculated, assuming radial semisteady state gas flow in the reservoir.

Rate no.	e da	▲ ^P turb.	▲ ^P laminar	▲ ^P tot
	(10°Sm/°D)	(bar)	(bar)	(bar)
1 2	1.293 1.647	13.5 22.0	26.5 34.0	40.0 56.0

One can see that the turbulent part of the total drawdown increases with the rate.

Pressure drawdown at higher rates can be calculated by the following formula (assuming negligible change in viscosity and z-factor with pressure, and no change in saturation):

$$pwf = (p*^2 - Cq_g - Dq_g^2)^{0.5}$$

The constants C (for laminar flow) and D (for turbulent flow) have, by using the test results, been calculated to:

$$C = 0.018$$

 $D = 7.0 \times 10^{-9}$

Bottom hole pressure for higher rates have been estimated as shown in figure 4.

Figure 4 also shows that the well was flowing almost at the maximum rate, for this specific teststring (2700 m 5" and 450 m 3 1/2"), during the third flow period.

WELL: 34/10-16

(mss)	CRONC	OSTR- APHY	LITHO ATIGR	STR-	DEPTH	GRAIN SIZE SEDIMENTARY STRUCTURES 8 DESCRPTION		NT	DIPMETER - LOG AZIMUTH FREQ. PLOTS	GAMMA RAY CALIPER- LOGS	PTH (R K.B) (/CNL)	FDC/CNL LOGS		SONIC- LOG	CALCULATED	POROSITY	WATER/HC SATURATION	PERMEABILITY	RESULTS
DEPTH (ref FDC	SERIE	STAGE	FORMATIC	ZONATION	CORE NO. GRAPHIC	- Mud sitt - Sitt - V. Fine - Mad. - V. Coorse - Congl.	EL	SEDIMENT &	DIP ANGLE AND DIRECTION 0 10 20 30 40 50 60	ала <u>GR</u> 19.00 ала <u>X1 10.00</u> ала <u>X2 10.00</u> ала <u>X2</u> 10.00 ала ала ала ала ала ала ала ала ала ала	LOG DEI (ref FDC	4.14 X3 -3.14 4.14 PHIN -4.14 EIIII 1998-79118 - 53-791	RX0		La <u>V5H</u> La State entra La <u>C0AL</u> La CML est	2.00 . RHOMAR 2.00 2.00 . PORHE 2.00 3.00 . RHOMA 2.00	Kon SH Jan MTERECREBE (11-96		DST- Drill sterm test FIT - Formation int- erval test RFT- Repeated formation test pressure sample
3146	MIDDLE JURASSIC MIDDLE JURASSIC		BRENT GROUP	TARBERT FM		MARTIN STARS WARDEN STARS AND	P ESTUARINE - SHALLOW MARINE / SHALLOW MARINE	SHOREFACE UPPER SHOREFACE		a management	- 3171 . 3175 3200	BORNO A Manager A Martin				A ANY A A A A A A A A A A A A A A A A A			360 DST + 2 80/04 ⁷ conking 400 m/34 content 300 m/34 content 3190 32/64 ² content 314 m ³ /4 cond. 314 m ³ /4 cond. GRT 4120
				NESS FM			LOWER DELTA PLAIN	BAY FIL			3225								
	MIDDLE JURASSIC	EARLY BATHONIAN	BRENT GROUP				UPPER DELTA PLAIN	AY FILL CHANNEL MARSH (P) MARSH CHANNEL		Mar Manuel Mar	3275 3300 3325	A MAN MANA A	A Contraction of the second se			Charles and the sources			451.2 bor
		HONIAN		NESS FM			LOWER DELTA PLAIN	Y FILL MARSH/BAY FILL CHANNEL CONSISTING MULTISTOREY DISTR. BA	e namenaran manangkan sa ng C C pang ga s		3352 - 3352 - 3375								
33374		BAJOCIAN - EARLIEST BAT	-	ETIVE FM		MANNAN MANNAN ANA ANA ANA ANA ANA ANA AN	SHALLOW MARINE	DISTRIBUTARY / PROXIMAL MOUTH BAR			- 3399 3400 - 3412 -								3400 DGT +1 48/64 * choke 960 m3/d oil 182 * T02 #0 GOR : 191 sm 3/sm 3410 OL / WATER CONTA
	MIDDLE JURASSIC	EARLY BAJOCIAN = AALENIAN)	BRENT GROUP	RANNOCH FM		AND	MARINE	CODELTA DELTA FRONT SHEET SANDS			3420								
		-						ā			3475			<u></u>				Well 34/10 WELL DAT & INTERPH Middle jura	D-16 A SUMMARY EtaTATION Ssic

REFERENCES

Fetrophysical Evaluation, 1. Well 34/10-16, Statoil, Oct. 1983 PVT-Analysis, well \$4/10-16 2. DST no. 1, Statell, 1ab, 84.202 TEP distillation of oil from 3. 34/10-16, DST no. 1 Statoil, lab.84.206 4. Sperry Sun Pressure Survey Report : DST no. 1, gauge no. 0076, 0105, PIM 68 n DST no.2, gauge no. 0076, 0105, PIM 847 Ħ DST no.1, Mr six surface pressures ÷. DST no. 2, Mr six и surface pressures 5. Flopetrol Well testing report, DST no: 1, no.83/2301/36 Well testing report, DST no. 2, no.83/2301/37 Reservoir Fluid Study Core Lab 6. 34/10-16, DST no.2

7. Gécov: Routine Coré Analysis, well 34/10-16 APPENDIX 1

- A1-1 Flowdiagram
- A1-2 Flow Data
- A1-3 Pressure Plots
- A1-4 Listing of Pressure Data
- A1-5 Input to Test Analysis
- A1-6 Horner analysis
- A1-7 Diary of Events
- A1-8 Sampling
- A1-9 Gauge arrangements
- A1-10 Layout of test-string
- A1-11 Cement bond log
- A1-12 Well head pressure plot and datalisting

34/10-16 DST #1 PRESSURE, TEMPERATURE, RATE, GOR AND CHOKE SIZE

		Well	34/10	-16	متعدير سامانا								I	i i i	CHP	PG			
	<u> </u>	DST no								FLOW	' DATA				Perfs. Zone	tested	97-3407	7 m RKE	ш
					-												ECTV6		٦
Date/	Bottom	hole	Well	head	Chokes	1/64"				Separato	ır data				Liq. and	d gas a	analysis		
	press. bar	temp °C	press bar	temp. °C	mani- fold	heat.	press. bar	°C 1	gas rate 0 ⁸ Sm³∕D	oll rate Sm ³ /D	GOR Sm3/Sm3	sp.gr.oil	sp.gr.gas (Air=1)	Water %	Sedim. %	C02 %	H ₂ S ppm		
10/9-83 13:30	303.7	128.8	103.2	71	48		23.1 5	5.6	184.5	955.4	193	0 REG	0 250						
14:00	304.1	128.8	103.7	72	48		22.7 5	7 8	184 0	0 EA D	c 01			1	ŀ	0.1	<u> </u>		
14:30	304.5	128.8	104.0	73	48		20 7	0	1 2 7				0.060	1	I		1		
15:00	304 - 8	128 R	104 4	2		<u>. ``</u>	1		# CO		0 1	968.0	0.669	1	I	1.5	1		
15.20				2 6			1.22	۶ ۰ ۳	192./	2.866	191	0.856	0.669	I	1				
	204°2	0.021	c. 104	٤/	48	<u> </u>	22.7	59.4	182.7	958.2	191	0.856	0.669	I	ı				
16:00	305.0	128.6	104.7	73	48	<u></u>	22.7	59.4	181.5	959.7	189	0.856	0.669	I		1.0	1		·
16:30	305.1	128.6	104.8	74	48	<u></u>	2.7	59.4	181.5	957.5	190	0.856	0.669	I	1				
17:00	305.3	128.6	105.0	75	48		2.7	59.4	181.7	958.2	190	0.857	0.668	I	I				
17:30	305.4	128.6	105.1	75	48		2.7	59.4	181.7	958.2	190	0.857	0.668	I	I				
18:00	306.0	128.6	105.4	76	48		22.7	59.4	181.7	959.0	189	0.857	0.668	1	I	ע ר	1		
18:30	306.2	128.6	105.7	76	48		22.7	59.4	181.6	961.8	189	0.857	0.668	1	I	л 			
19:00	306.1	28.6	105.7	77	48		22.7	50.0	180.8	963.2	188	0.857	0.670	1	1	<u>.</u>	l		
19:30	806.5	28.6	106.1	77	48		22.7	50.0	181.6	962.5	189	0.857	0.670	1	1	- م	č		
20:00	806.7	28.6	106.4	77	48		22.4 (52.2	182.8	955.4	191	0.857	0 670			2	5		
11/9-83										 	•				I				
13:30	450.5	125.6	222.3	21	œ		14.4	12.2	5.2	68.4	223	0.857	0.672	1	I				
13:45	450.7	125.6	223.4	20	80		14.4 5	5.6 1	4.9	68.3	218	0.857	0 672						
										, , , ,			1		I				
	Remark	S]	1													Τ
																			et disente a

- 24 -

A1-3-3

- 28 -

	Time	21.41	22.01	22.11	22.31	22.41	22.51	19.62	23.41	0.01	0.21	0.41	10.1	2.01	2.31	3.01	16.E	19.4		5.31	6.01	6.31		6.57														
	Nr.	61	5 1 1 1	ល្អ	7 4	52	95	22	20 CZ	69	61		50	59	99	67	89	69	2.5	10	EL	4	52	65														
	(bar)																																					
	Pressure	96.083	09.588 12.324	15.001	18.048	24.113	27.367	30.701	33.776	39.596	42.036	43.872	45.214	46.146	47.212	47.552	47.850	48.100	407.24	10.000	48.989	49.167	49.330	196.24	49.819	49.952	50.025 50.218	50.381	50.485		50.822	50.926	51.015	51.222	146.15	51.415	51.578	51.652 51.726
DST# 1 2		4	44		4 4	• •	. 4	4.	4 4	1 4	•	4	•	* 4	4	•	4	4 -	4 4	. 4	4	4	4	4 1	•	4.	क न	. 4	4.	4 4	t d	4	4 1	4	-	4 4	* •	**
34-10-16 P NUMMER 550105	Time	20.05	20.07	20.11	20.13	20.17	20.19	20.21	20.23	20.23	20.29	20.31	20.33 10.33	20.23	26.39	20.41	20.43	20.45	14.00 07 40	26.51	20.53	20.55	20.57		E1.03	81.05	21.02	et.11	21-13	c1.15	21.19	21.21	61.63	21.27	21.29	21.31 22.92	21.35	21.37 21.39
BRONN BUILDU GAUGE	NR.	-	N M	•	in u	0 ~	- 60	0	9	11	15	1	5	<u>9</u> 1	8	61	ູ້ຄ	ភូវ	ນຕິ	0 Q	ខ្ល	90		30	ie n	50	38	ie.	ж;	0 r	- 00 7 m	8	9 .		4	1	<u>ب</u>	4

Pressure data DST#1, build-up no. 2.

29 -

Pressure (bar)

INPUT TO TEST A	NALYSIS
Well no	
DST no1	Test Date
Reservoir Parameters	
Perforations 3397-3407 m RKB	Zone(s)
	Wellbore radius m
	RKR Elev. 22 m
Denth Mid Perfs: 3402	m PKR 3380mSS
Pressure Gauge no. S S 0105 Depth 3405.24	m RKBm SS
Pressure Gradient:bar/m	
Pressure Correction, Gauge to Mid. Perfs.:0.2	bar
Formation Volume Factor <u>1.64</u> Res.m ³ /Sn	3 Viscosity 0.50 cp
13	7.9
Thicknessm Porosity	
Water Saturation <u>30.9</u> Water Comp	pressibility10-6 bar -1
Gas Saturation% Gas Compre	essibility10 ⁻⁶ bar ⁻¹
Formation Co	ompressibility ^{55.4} IO ⁻⁶ bar ^{_1}
System Compressibility C1 = S2 C2 + S., C., + S2 (C_ + C_
-0.691 207 10^{-6} -0.309 51.5 10^{-6}	⁻ g τ - -6, 55,4 μο-6
$C_{+} = \frac{214.3}{10^{-6} \text{bar}^{-1}}$	
Flow Data: Flow Period no	
Choke <u></u>	$-Sm^{2}/D$ Gas Kate <u>10/1000</u> Sm ² /D
Ptfbar Water Rate	-Sm7D GUK <u>190.4</u> Sm7Sm ²
UII Spec. Grav	_ Gas Spec. Grav.
<u>Cumulative Production</u> Oil <u>442.8</u> Sm ³	Gas79200 Sm ³
Water Sm ³	

- 30 -

Horner Analysis DST no. _____1 Build Up no. ____2 Gauge no. Sperry Sun 0105 Effective Production Time tp = Cumulative Production / Last Rate tp = _____442.8 /___956.0 = ____11.1 hrs Straight Line Starts at _____0.75 hrs Slope: <u>m = 9.413</u> bar/cycle Pwf = ______ bar Plhr ______ bar P*_____ bar p*_____ bar Estimated Reservoir Pressure (P*) at Mid. Perfs. (3380 mSS): 460.0 bar Permeability: $Kh = \frac{21.49 \text{ q Bu}}{\text{m}} = \frac{21.49 \times 956.0 \times 1.64 \times 0.50}{9.413} = \frac{1790}{\text{md.m}}$ $K = Kh/h = \frac{1790}{2} / \frac{13}{2} = \frac{138}{2} md.$ Skin: S = 1.1513 $\left[\frac{P \ln r - P w f}{m} \right] + Log \left[\frac{tp + l}{tp} \right] - Log \left[\frac{K}{\theta_{11} C + r w^2} \right] + 3.098 \right]$ S = 1.1513 $\begin{bmatrix} 449.8-307.0\\ 9.413 \end{bmatrix}$ + Log $\begin{bmatrix} 11.1+1\\ 11.1 \end{bmatrix}$ - Log $\begin{bmatrix} 138\\ 0.179x0.5x214.3x10^{-6}x0.11^2 \end{bmatrix}$ + 3.098 S = <u>11</u> For the Previous Flow Period: $\Delta Ps = \frac{18.665 \cdot q B \mu}{kh} \quad S = \frac{18.665 \times 956 \times 1.64 \times 0.5 \times 11}{1790} = 90 \text{ bar}$ $\Delta Pdd = P^* - Pwf = 153$ bar Skin as Fraction of Total Drawdown: $\frac{\Delta Ps}{\Delta Pdd} = \frac{59\%}{59\%}$

- 31 -

A1-6

Well 34/10-16			CHP/PG					
		DIARY OF EVENTS	Perts.: 3397 - 3407					
DST no	ь <u> </u>		Zone tested ETIVE					
Date	Time	OPERATIONS						
9:9.83	05.45	Perforated 3397 - 3407 mRKB.						
	07.00	Started running the teststring. In	nstalled the					
		pressure gauges in the F-nipple and	d the bundle					
		carriers. Pressure tested the test	tstring and all					
		the equipment involved.	-					
10.9.83	06.14	Set packer.						
	07.55	Opened LPR-valve.						
	08.05	Opened choke manifold on 48/64" fix	ked choke for					
		initial flow.						
	08.08	Closed choke on manifold and LPR-va	alve for initial					
		build up. Flowed 1.12 m^3 to tank.						
	09.11	Opened LPR-valve.						
	09.12	Opened choke manifold on 48/64" fix	xed choke for main					
		flow.						
	09.34	Gas to surface.						
	11.30	Switched flow through heater.						
	12.10	Switched flow to starboard burner (due to plugging of					
	12 50	port burner. Switched flow back to port burner.						
	12.50	Switched flow back to port burner.						
	13 30	Directed flow to tank for meter fac	Directed flow through separator.					
	15.00	Directed flow to tank for meter factor.						
	16.51	Started taking 2nd set of PVT samp	les.					
	18.53	Started taking 3rd set of PVT samp	les.					
1 1	20.00	Bypassed the separator.						
	20.04	Closed LPR-valve and choke on the r	manifold for main					
	•	build up.						
11.9:83	07.00	Opened choke manifold on 20/64" ad	justable choke.					
	07.02	Opened LPR-valve.						
	07.30	Changed to 12/64" fixed choke.						
	07.56	Closed in well at choke manifold.						
	08.37	Opened well at choke manifold on 2	8/64" fixed choke to					
		obtain higher temperature in fluid	•					
	09.46	Closed in well at choke manifold.						
	11.44	Started to RIH with bottom hole sam	mplers.					
	12.20	Opened well on 8/64" fixed choke.	Only gas to surface.					
	12.55	Opened adjustable choke on 12/64"	to get oil flowing					
	12.04	to the surface. (total: 8/64"+12/64	4" = 14/64").					
	12.04	Closed adjustable Choke.						
	13.05	Directed flow through separator.						
	T2*08	chambers reached sampring depth.						

Remarks :

Well 3 DST no	34/10-16 . 1	DIARY OF EVENTS	CHP/PG Perfs.: 3397 - 3407 Zone tested ETIVE
Date	Time	OPERATIONS	
11.9.83	13.17 13.25 13.50 14.43 15.02 16.45	<pre>First chamber started sampling Second chamber started sampling Started to POOH with samplers. Closed in well at choke manifold ar bottom hole samplers at surface. Started bullheading. END OF DST NO. 1 </pre>	nd LPR-valve.

Well 34/10-16		CHP/PG
	SAMPLING	Perfs.: 3397-3407
		Zone tested ETIVE

SEPARATOR SAMPLES

Time/date	Sample no.	Type of sample	Transfer time	Bottle no
10.09.83				
15.17	l:set	Oil	50 min	83021001
15.27		Gas	40 min	A 14799
16.51	2:set	Oil	47 min	83021302
16.55		Gas	38 min	A 14754
18.53	3:set	Oil	41 min	83021412
18.56	•	Gas	33 min	A 14693
	1 ;		l	1

BOTTOM HOLE SAMPLES

Time/date	Sample depth mRKB	Estimated PB bar/°C	Transfering pressure(bar)	Bottle no
11.09.83	3389.03	381.6/12	415	9214/315
	3392.65	382.3/10	415	16251/33
Í	1 1			1

SAMPLES

Time/date	Sampling point	Sampling	equipment	Remarks
10.09.83	separator	6 x 1 l	glass jar	oil samples
		1 x 2 1	plastic bottle	water
		2 x 20 1	jerry cans	oil samples
		l x 140 l	barrel	oil sample
	mud pit	1 x 2 1	plastic bottle	mud sample

- 35 -

Well 34/10-16	GAUGE ARRANGEMENT	CHP/PG
DST no. 1		Zone tested ETIVE

	Bundle Carrier at: 3383.3	4 mRKB		
	Gauge type and number: Sperry Sun, 1	MK III	0076	
	Depth, pressure elemement : 3386.63 mR	KB	Bance : 690	bar
S&S	Mode: 2 mins.	Delay ,	17 hrs.	241
MK TTT	Actuated : time 07.49	date :	09.09.83	
	Will run out , time 09.34	date i	12.09.83	
	Gauge type and number: Sperry Sun,	MK III	PIM	
	Depth, pressure elemement ; 3390.93 mR	KB	Range ; 690	bar
S&S	Mode: 4 mins	Delay ,	17 hrs.	
MK III	Actuated : time 07.47	date :	09.09.83	
	Will run out r time	date r		
	Course tune and number (
	Gauge type and number :		Panga /	
	Deptit, pressure elementent ;	Defeu	nalige ;	
		Deldy i		
		date :		
LI	Will run out i time	date i		
		040		
L	P-nipple at: 3402.14	MKKB		
	Gauge type and number : Sperry Sun	MK III	0105	
	Depth, pressure elemement : 3405.24 m	RKB	Range : 690	bar
S&S	Mode: 2 mins.	Delay 1	17 hrs.	
MK III	Actuated : time 07.22	date :	09.09.83	
	Will run out , time 09.34	date ı	12.09.83	
		-	00010	
	Gauge type and number: Flopetrol SD	P no.	82818	
T 1	Depth, pressure elemement : 3409.24 mR	KB	Range ;	
Flopetro	Mode: 10 sec.	Delay 1	18 hrs.	
SDP	Actuated : time 07.22	date :	09.09.83	
	Will run out i time 17.52	date 1	14.09.83	
	Gauge type and number .			
	Denth pressure elemenent :		Ranco I	
	Mode -	Dolou	nange :	
	Actuated a time	date ·		
	Actuated : Ume	uate !		
1	14/100			

A1-9

Nell	34/1	0-16
------	------	------

LAYOUT OF TEST-STRING

CHP/PG Perfs 3397 - 3407 Zone tested ETIVE

DST no 1

DEPTH mRKB
-5.41
15.35
17.45
23.92
149.58
151.57
151.88
152.93
153.19
155.63
158.57
158.86
159.15
169.34
2706.59
2706.82
3121.71
3122.01
3127.55
3131.57
3302.48
3303.58
3332.07
3336.09
3340.11
3368.60
3370.89
3372.24
3377.23
33/9.25
3380.83
3381.71
3383.09
3383.34
338/.6/
3391.97
2401 56
2401.00
2402 20
3411.65

Remarks.

A1-11 Cement Bond Log

Well head pressure A1-12-1

DST# 1 2	TRYKK	 112.419	120.693	124.830	129.242	133.793	138.412	143.239	148,203	153,236	158,338	163,509	168.749	173.920	179.229	184.332	189.503	194.467	199,293	203.637	208.118	212.136	215.910	219.282	222.253	224.373
34-10-16 P NUMMER MR-SIX	TID	20.04	20.05	20.05	20.07	20.08	20.03	20.10	20.11	20.12	20.13	20.14	20.15	20.16	20.17	20.18	20.19	20.20	20.21	20.22	69, 63	20.24	20.25	20.26	20.27	20,28
BRØNN BUILDU GAUGE	NR.	 ٦	ı م	(C)	4	- w	g	~	• 00	0	5		(0) +	1	+	15	16	(- -	18	0	20	1	, ល . ល	ŝ	1 đ	ເມ

TRYKK	 227.010	228.872	230.251	231.423	232.319	232.940	233.491	233.836	234.043	234.319	234,338	234.525	234.663	234.732	234.801	234.870	234.870	235.422	235.766	235.894	236.042	236.042	235.042	236.042
TID	 20.29	20.30	20.31	20.32	20.33	20.34	20.35	20.36	20.37	20.33	20.33	20.40	20.41	20.42	20.43	20.44	20.45	21.00	21.15	21.30	21.45	22.00	22.15	22.30

APPENDIX 2

A2-1	Flowdiagram
A2-2	Flow Data
A2-3	Pressure Plot
A2-4	Listing of Pressure Data
A2-5	Input to Test Analysis, second flow
A2-6	Horner Analysis, second build-up
A2-7	Input to Test Analysis, third flow
A2-8	Horner Analysis, third build-up
A2-9	Diary of Events
A2-10	Sampling
A2-11	Gauge Arrangement
A2-12	Layout of Test-string
A2-13	Cement Bond Log

GAS

FLOW DATA FLOW DATA FLOW DATA read Chokes 17.6" Separative data Lin, mid gas analysis term mainfold heater serves lin rei Separative data term mainfold heater press. term Separative data term bit term separative data Lin, mid gas analysis term bit 22.5 40.5 1.0 77 mode 1283 311.2 4155 0.565 2.5 1.0 77 mode 61.3 1283 311.2 4155 0.6660 1.283 311.2 4155 77 mode 61.3 1283 309.1 4101 0.799 1.0 2.0 - 79 mode mode 14049 0.789 0.6660 1.283 311.2 4125 79 mode mode 1.4049 0.789 0.566 2.0 - - 79 mode 1.4049 0.789 <	Partner FLOW DATA Terms in the second flow in the interiment of the index of of	DST NO.	34 / IU-IC						i					CHP	5 D			- T
ead Chokes 1/64" Separator data Liq. and gas analysis comp. manifold log analysis Separator data Liq. and gas analysis comp. manifold log analysis sint state Separator data Separator comp. manifold log analysis sint state Separator state Separator 74 52 62.7 43.9 1283 318.2 4051 0.789 0.655 2.5 2.0 - 75 m 61.0 frage 1283 310.1 4151 0.789 0.6655 2.6 2.0 - 77 m 61.0 frage 1293 310.2 4151 0.789 0.6660 1.0 - 2.0 - - 79 m m m 0.6660 m m 2.0 - - - - - - - - - - - - -	and Choken 17.4* Aspandar data Llq. and one analysis two.m. manifold hasis birst Separator data Llq. and one analysis two.m. birst and analysis and and and analysis two.mainfold hasis birst and and and and and and analysis analysis 74 52 62.7 43.9 1289 318.2 4051 0.788 0.655 1.0 - - 75 " 61.3 " 1293 311.2 4151 0.788 0.655 2.0 -	1							FLOW	/ DATA				Perts Zone	tested	77-318	37 mRKB	
and Choken 1/64" Separator data Life, and gas analysis tomp. manifold heater press. tomp Separator data Life, and gas analysis tomp. manifold heater press. tomp Separator data Life, and gas analysis Life, and gas analysis 75 T Life, and gas analysis Cold 1/3 Soldin, % press. Cold 1/45 Heat Soldin, % press. Cold 1/45 Heat Soldin, % press. Cold 1/45 Heat Life, and gas analysis 75 T E Soldin, % press Soldin, % press Soldin, % press Cold 1/45 Heat Soldin, % press Cold 1/45 Heat Soldin, % press Cold 1/45 Heat Soldin, % press Cold 1/45 Life, and gas analysis Life, and gas analysis Life	and Choice Lite Separator data Lite Concentration														i	4	2	1
Norm Main fold Press Fire Old Pass Fire Sum3/Sins S	name manual least form array base line cold hast cold hast cold hast hast cold hast hast </th <th>Å Ie</th> <th>bad</th> <th>Chokes</th> <th>1/64"</th> <th></th> <th></th> <th></th> <th>Separat</th> <th>or data</th> <th></th> <th></th> <th></th> <th>Llq. an</th> <th>d gas a</th> <th>nalysis</th> <th></th> <th><u> </u></th>	Å Ie	bad	Chokes	1/64"				Separat	or data				Llq. an	d gas a	nalysis		<u> </u>
74 52 62.7 43.9 1283 318.2 4051 0.788 0.655 2.5 1.0 $-$ 77 " 62.4 45.0 1222 314.9 4041 " 0.664 2.5 2.5 2.0 $-$ 77 " 61.0 " 1281 316.4 4049 " 1.5 2.0 $-$ 77 " 61.3 " 1283 309.1 4151 0.789 " 1.55 2.0 $-$ 79 " 61.3 " 1293 310.0 471 " 1.56 2.0 $-$ 79 " 47.2 " 4155 " 0.666 1.20 2.0 $-$ 79 " 47.2 " 318.7 4054 " 3.0 2.0 $ 0.0$ $-$ " " " 472 " 318.7 4054 <	74 52 62.7 43.9 1289 318.2 4051 " 0.555 2.5 1.0 - 77 " 61.0 45.6 1283 314.4 4001 " 0.655 2.5 2.0 - 78 " 61.0 " 1283 309.1 4151 0.789 " 2.5 2.0 - 79 " " 47.2 " 310.0 4171 " 0.660 trace 2.0 - - 79 " 47.2 " 310.0 4171 0.789 " 3.0 2.0 - - - - - - - - - - - - - - - - - - 0.660 trace 2.0 -	688 L	c °C	manifold	heater	press. bar	temp .c	gas rate d0 ³ Sm3	oil rate Sm ³	GOR Sm3 /Sm3	sp.gr.oil	sp.gr.gas air=1	Water %	Sedim. % BSW%	c02 %	H ₂ S ppm		r
75 $=$ 62.4 45.0 1281 314.9 4071 $=$ 0.664 2.5 2.5 2.6 78 $=$ 45.6 1281 316.4 4049 $=$ 1281 316.4 4049 $=$ 1281 316.4 4049 $=$ 1281 316.4 4049 $=$ 1281 316.4 4049 $=$ 1281 310.0 4171 1282 311.2 4155 $=$ 0.6660 $trace$ 2.0 $=$ 1292 320.3 4034 $=$ 3.0 1292 320.3 4034 $=$ 3.0 1292 320.3 4034 $=$ 3.0 1292 320.3 4034 $=$ 3.0 1292 320.3 4034 $=$ 3.0 2.0 $=$ 2.0 $=$ 129 320.3 4034 $=$ 3.0 2.0 $=$ 2.0 $=$ 129 2.0 $=$ 129 $=$ 1292 320.3 21404 $=$ 3.0 $2.$	75 70 1283 310.1 4151 0.799 1 trace 2.0 2.0 - 70 - 70 1 10.1 11.1 11.293 311.1.2 4151 0.799 1 10.791 1 10.660 1 10.6 70 - 70 2.0 - 70 <td< td=""><td>0.8</td><td>74</td><td>52</td><td></td><td>62.7</td><td>6 5</td><td>1289</td><td>318.2</td><td>4051</td><td>0 788</td><td>0 655</td><td></td><td></td><td>- -</td><td></td><td></td><td>r</td></td<>	0.8	74	52		62.7	6 5	1289	318.2	4051	0 788	0 655			- -			r
77 " 61.0 " 1281 316.4 4049 " " trace 2.0 - 79 " 61.3 " 1293 311.2 4151 0.789 " trace 2.0 - 79 " 47.2 " 310.0 4171 0.791 trace 2.0 - 79 " 47.2 " 310.0 4171 0.791 " 2.0 - " 47.2 " 310.0 4171 0.791 " 2.0 - - " 47.8 1292 320.3 4034 " 3.0 2.0 - - 0.560 - 2.0 - - 0 - 0 3.0 2.0 - 0 3.0 2.0 - 0 5.0 - 0 5.0 - 0 5.0 - - 0 5.0 - - 0 5.0 - - 0 5.0 - - 0 5.0 <	77 " 61.0 " 1281 316.4 4049 " " trace 2.0 - 79 " 61.3 " 1293 311.2 4155 " 0.789 " trace 2.0 - 79 " 61.3 " 1293 311.2 4155 " 0.660 trace 2.0 - 79 " 47.2 1293 310.0 4171 " 0.791 " 3.0 2.0 - 79 " 47.8 1292 320.3 4034 " 0.791 " 3.0 2.0 - - 80 " 48.9 1292 320.3 4054 " " 3.0 2.0 - <td>1.2</td> <td>75</td> <td>1 =</td> <td></td> <td>62.4 4</td> <td>15.0</td> <td>1282</td> <td>314.9</td> <td>4071</td> <td>=</td> <td>0.664</td> <td></td> <td>2.5</td> <td>•</td> <td></td> <td></td> <td></td>	1.2	75	1 =		62.4 4	15.0	1282	314.9	4071	=	0.664		2.5	•			
78 " 45.6 1283 309.1 4151 0.789 " trace 79 " 61.3 " 1293 311.2 4155 " 0.660 trace 2.0 - 79 " 47.2 " 310.0 4171 " 0.660 trace 2.0 - 79 " 47.8 1294 321.0 4031 0.791 " 3.0 -	78 " 45.6 1283 309.1 4151 0.789 " trace 2.0 - 79 " 61.3 " 1293 311.2 4155 " 0.660 trace 2.0 - 79 " 47.2 " 1293 311.2 4155 " 0.660 trace 2.0 - " " 48.9 1292 320.3 4034 " " 3.0 2.0 - 80 " " 48.9 1292 320.3 4034 " " 3.0 2.0 - - 80 " " 318.7 4054 " " 3.0 2.0 - - 81 " 50.6 1293 297.4 4088 0.789 " 3.0 2.0 -	1.3	77	=	<u> </u>	61.0	=	1281	316.4	4049	=	=			2.0	1		
79 110 4155 110 4155 110 2100 4171 1100 4171 1100 4171 1100 4171 1100 4171 1100 4171 1100 4171 1100 4171 1100 4171 1100 4171 1100	79 " 61.3 7.2 " 4155 " 0.660 ±race 2.0 - 79 " 47.8 1294 310.0 4171 " 0.761 ±race 2.0 - " 47.8 1294 320.0 4031 0.791 " 2.0 - " " 48.9 1292 320.3 4034 " " 3.0 2.0 - - 3.0 - - 3.0 - - - - - - - - 3.0 - </td <td>1.3</td> <td>78</td> <td>=</td> <td></td> <td>-</td> <td>15.6</td> <td>1283</td> <td>309.1</td> <td>4151</td> <td>0.789</td> <td>=</td> <td></td> <td>trace</td> <td></td> <td></td> <td></td> <td></td>	1.3	78	=		-	15.6	1283	309.1	4151	0.789	=		trace				
79 " 47.2 " 310.0 4171 " trace 2.0 - " " 47.8 1294 321.0 4031 0.791 " trace 2.0 - " " 48.9 1292 320.3 4034 " " 3.0 2.0 - 80 " " 318.7 4054 " " 3.0 2.0 - 81 " 322.5 4064 " " " 3.0 2.0 - 81 50.6 1293 297.4 4088 0.789 0.789 0.660 3.0 - 81 52 61.3 50.6 1293 298.6 4105 0.789 0.660 3.0 -	79 " 47.2 " 310.0 4171 " trace 2.0 - " " 47.8 1294 321.0 4031 0.791 " 3.0 2.0 - " " 47.8 1294 320.3 4034 " " 3.0 2.0 - 80 " " 138.7 4054 " " 3.0 2.0 - 81 " " 318.7 4054 " " 3.0 2.0 - 81 " 50.6 1293 297.4 4088 0.7899 " 3.0 2.0 - 81 52 61.3 50.6 1293 299.6 4105 0.7899 0.660 3.0 - 3.0 2.0 - <t< td=""><td>5.0</td><td>2</td><td>=</td><td></td><td>61.3</td><td>E</td><td>1293</td><td>311.2</td><td>4155</td><td>E</td><td>0.660</td><td></td><td></td><td>2.0</td><td>1</td><td></td><td></td></t<>	5.0	2	=		61.3	E	1293	311.2	4155	E	0.660			2.0	1		
1 47.8 1294 521.0 4031 0.791 1 2.0 - 1 48.9 1292 320.3 4034 1 1 3.0 2.0 - 80 1 1 1 318.7 4054 1 1 3.0 2.0 - 81 1 1 1 322.5 4064 1 1 1 3.0 2.0 - - 81 1 1 50.6 1293 297.4 4088 0.789 1 3.0 2.0 - <td>" " 40.1 0.791 " 3.0 2.0 - " " 40.8 1292 320.3 4034 " 3.0 2.0 - " " " 318.7 4054 " " 3.0 2.0 - 80 " " 318.7 4054 " " 3.0 2.0 - 81 " " 318.7 4054 " " " 3.0 2.0 - 81 " " 50.6 1293 297.4 4088 0.789 " 3.0 2.0 - - 81 52 61.3 50.6 1293 298.6 4105 0.789 0.6600 3.0 2.0 - - 81 52 61.3 50.6 1293 298.6 4105 0.789 0.6600 3.0 - - - - - - - - - - - - - - - - - -<!--</td--><td>0.0</td><td>. 79</td><td>= :</td><td></td><td>= :</td><td>1.2</td><td>= (</td><td>310.0</td><td>4171</td><td>= 1</td><td>= :</td><td></td><td>trace</td><td>(</td><td></td><td></td><td></td></td>	" " 40.1 0.791 " 3.0 2.0 - " " 40.8 1292 320.3 4034 " 3.0 2.0 - " " " 318.7 4054 " " 3.0 2.0 - 80 " " 318.7 4054 " " 3.0 2.0 - 81 " " 318.7 4054 " " " 3.0 2.0 - 81 " " 50.6 1293 297.4 4088 0.789 " 3.0 2.0 - - 81 52 61.3 50.6 1293 298.6 4105 0.789 0.6600 3.0 2.0 - - 81 52 61.3 50.6 1293 298.6 4105 0.789 0.6600 3.0 - - - - - - - - - - - - - - - - - - </td <td>0.0</td> <td>. 79</td> <td>= :</td> <td></td> <td>= :</td> <td>1.2</td> <td>= (</td> <td>310.0</td> <td>4171</td> <td>= 1</td> <td>= :</td> <td></td> <td>trace</td> <td>(</td> <td></td> <td></td> <td></td>	0.0	. 79	= :		= :	1.2	= (310.0	4171	= 1	= :		trace	(
81 52 61.3 50.6 1293 297.4 4054 " " " 3.0 81 " " " 318.7 4054 " " " 3.0 81 " " " 32.5 4064 " " " " 3.0 81 " " 32.5 4064 " " " " " " " " 3.0 "	1 1	0.0	: :	= =		= =	0.0	1294	321.0	4031	0.791	= =		c r	2.0	1		
" " " 318.7 4054 " " " " " " " 318.7 4054 "	""""""""""""""""""""""""""""""""""""	, ,	;	:		s	 מי מי	1292	320.3	4034	:	:		0. r		•		
80 " " 322.5 4064 "	80 " " 322.5 4064 " " " " 49.4 1296 301.2 4129 0.792 " " 3.0 2.0 - 81 " " 50.6 1293 297.4 4088 0.789 " 3.0 2.0 - 81 52 61.3 50.6 1293 298.6 4105 0.789 0.660 3.0 2.0 - - 9 1 - " 313.8 4120 " 3.0 3.0 -		:	=		=	=	=	318.7	4054	=	=		=				1
81 " 49.4 1296 301.2 4129 0.792 " 3.0 2.0 - " " 50.6 1293 297.4 4088 0.789 " 3.0 2.0 - 81 52 61.3 50.6 1293 298.6 4105 0.789 0.660 3.0 - - 81 52 61.3 50.6 1293 298.6 4120 " 3.0 3.0 - - -	2 81 " 49.4 1296 301.2 4129 0.792 " 3.0 2.0 - 1 " 50.6 1293 297.4 4088 0.789 " 3.0 2.0 - 81 52 61.3 50.6 1293 298.6 4105 0.789 0.660 3.0 2.0 - - 9 " " 313.8 4120 " 3.0 3.0 - <td></td> <td>3 80</td> <td>8</td> <td>÷ .</td> <td>:</td> <td>=</td> <td>=</td> <td>322.5</td> <td>4064</td> <td>=</td> <td>2</td> <td></td> <td>=</td> <td></td> <td></td> <td></td> <td></td>		3 80	8	÷ .	:	=	=	322.5	4064	=	2		=				
" 50.6 1293 297.4 4088 0.789 " 3.0 2.0 - 81 52 61.3 50.6 1293 298.6 4105 0.789 0.660 3.0 2.0 - " " 313.8 4120 " 3.0 3.0 - -	1 " 50.6 1293 297.4 4088 0.789 " 3.0 2.0 - 81 52 61.3 50.6 1293 298.6 4105 0.789 0.660 3.0 2.0 - 1 " " 313.8 4120 " 3.0 3.0 3.0 3.0 2 " " 313.8 4120 " " " " 3.0 2 " " 313.8 4120 "		2 81	=		=	9.4	1296	301.2	4129	0.792	=						_
81 52 61.3 50.6 1293 298.6 4105 0.789 0.660 3.0 " " " 313.8 4120 " " " "	81 52 61.3 50.6 1293 298.6 4105 0.789 0.660 3.0 " " 313.8 4120 " " " " " age waterproduction during the second flow was 2.98. 1200 kmas 2.98.6 1000 kmas 2.98.6 1000 kmas 2.98.6 1000 kmas 2.98.6	5 . 4	2	=		<u>ເກ</u>	0.6	1293	297.4	4088	0.789	=		3.0	2.0	1		
= 313.8 4120 = = = = = = = = = = = = = = = = = = =	age waterproduction during the second flow was 2.9%.		81	52		51.3 5	.0.6	1293	298.6	4105	0.789	0.660		3.0				1
	Age waterproduction during the second flow was 2.9%.	3.2	:	=		=	=	F	313.8	4120	:	=		=				-
	age waterproduction during the second flow was 2.9%.																	
	age waterproduction during the second flow was 2.9%.																	

Weil 34/10-16

A2-2-1

	analysis	H ₂ S Ppm		1 1	1 1 1.	I I I. I.
	nd gas e	° C02	1.0		2.0	2.0
	Llq. a	Sedim. % BSW%	2.0 1.0 1.5		2.0	2.0
		Water %				
		p.gr.gas air=1	0.663 0.665 1.665 1.663			
		p.gr.oil s	0.793			0.794
	ta)R /Sm3 Bf	86 61 4 86 61 4 86 61 4	.	86 11 11 11 11	0 T T Y 9 Y C 8
	ator da	S S S S S C S S S S S S S S S S S S S S	411 5 408 6 423 2 423 3 423 9 423	<u> </u>	5 426 7 433 5 424 5 423 5 429 5 438	444330 444330 44443 444330 44443 444330 44443 444330 44443 444330 44443 44434 44433 44434 44433 44434 44434 44434 44434 44434 44434 44434 44444 44444 44444 44444 44444 44444 4444
	Separa	oil rate Sm ³	400.3 401.6 387.3 387.9		384.6 378.7 386.5 382.5 375.5	384.6 378.7 376.1 374.1 374.1 371.1
		gas rate c10 ³ Sm3	1647 1639 1640 1638 1643		1642 1640 1639 1642 1647	1642 1640 1640 1642 1645 1649 1647
		temp ·C	47.2 50.6 51.7 52.2 53.3		53.3 53.9 54.4 54.4	55.0 55.6 55.6
		press. bar	64.8 64.4 64.1 63.7 "		63.4 " 63.7	63.4
	1/64"	heater				
1	Chokes	manifold	0====			
	bad	c p. °C	71 72 74 13	-	75 75 76	75 76 77 77
	Well h	press bar	143.5 143.5 144.4 144.5 144.5		144.8 144.9 144.9 144.8 145.0 145.0	144.8 144.9 145.0 145.2 145.2 145.2 145.2
	n hole	temp. °C	1167 " 1169 "			116.7
	Botton	press. bar	390.2 390.2 391.3 391.3 391.3		391.3 391.5 391.7 391.8 391.8 391.8	391.5 391.5 391.6 391.6 391.6 391.6 391.6
	Date/	0 UD	/9-83 [11:00 [1:30 [2:00 [2:30 [3:00		13:30 14:00 14:30 15:00 15:30	13:30 14:00 15:00 15:00 15:30 16:00 17:00

CHP/PG Perfe.: 3177-3187 mRKB Zone tested

FLOW DATA

Well 34/10-16

- 43 -

A2-3-4

A2-3-7

DST# 2 3	Pressure (bar)	422.074	437.729	446.490	446.686	446.805	446-896	447,044	447.089	447.149	447.163				447.342	447.342	447.386	447.335	447.401	447.431	000 177	141.000 447 742		447.828	447.871	447.883	447.913	1447.967 1447 043	447.957	447.972	447.972	447.987					
34-10-16 P NUMMER 560105	Time	17.03	17.05	17.00	17.11	17.13	17.15	D1.71	17.21	17.23	17.25			10 - 1 1 - 23	17.35	17.37	17.39	17.41	17.43	17.45	12.15		10.45	20.15	20.45	21.15	21.45 7	71.77 71.77	21.65	23.45	0.01	0.09					
BRONN Buildi Gauge	NR.	1 -	n n	ل ە ئ	. n	ю I	~ 0	0 0	16	1	n N	۳) ۹ ۲۹ ۳		1 T	1	.81	19	202	21 1		זינ	ר ש ש מ	200	52	80 10	62	9	10))) 1	35	36					
	(bar)																																				
ល #	Pressure	412.516	446.371	447.069	447,311	447.400	447.445	447.504	447,504	447.638	447.668	447.697	447.712	447.727	447.746	441.181	447.801	447.816	447,846	447,846	447.962	448,035	448.109	448.105	101.044	448.224	448.225	448.239	448,269	448.251	448.280	448,295	448,295	448.310	448.399	448.325	
10-16 DST NUMMER 2 105	Time	1.01	1.05	1.07	1 . 62	51.1	1.15	1.17	1.19		1.25	1.27	1.29	1.31	66.1	1.45	27.1		. 4 . 1	1.45	2.15	c. 45	3,15	34. M	11. 11. 11.	5,15	5.45	6.15	6.45	7,15	- 10 - 10	8,45	9.15	9.45 0.45	9.55	9,57 9,59	
BRONN 34- BUILDUP GAUGE SSO	Q.		ນເຈ	•••••	u) (I	01-	100	Ð	01	fi +	101	*	15	16	17	51 22	51	9- U 1	10	រន	4	5 S S	56	53	20 11 11	200	31	200	8	÷.	5 G	200	38	00	24	ជុំដ	2

Pressure data DST#2, build-up no. 3.

INPUT TO TEST (GAS / COND.	ANALYSIS System)
Well no DST no2	Test Date16.09.83
Reservoir Parameters	
Perforations3177-3187 m RKB	Zone(s)
	Wellborg radius 0.11 m
	RKB Elev22 m
Depth Mid. Perfs:3182	2m RKB3160mSS
Pressure Gauge no. <u>S S 0105</u> Depth <u>3174</u> .	<u>5</u> m RKB3152.5 m SS
Pressure Gradient:bar/m	
Pressure Correction, Gauge to Mid. Perfs.: <u>+ 0.1</u>	± bar
Formation Volume Factor <u>3.55x10⁻³Res.m</u> ³	/Sm ³ Viscosity0_032cp
Thicknessm Porosity	<u> 17,6 </u>
Oil Saturation% Oil Com	pressibility10 ⁻⁶ bar ^{_1}
Water Saturation <u>13.7</u> % Water Co	ompressibility50.010-6 bar -1
Gas Saturation <u>86.3</u> % Gas Com	pressibility <u>1276</u> IO ⁻⁶ bar-1
Formatio	n Compressibility33.810-3 bar-4
System Compressibility C _t = S _o C _o + S _w C _w + S	_g C _g + C _f
$C_{t} = $ x $10^{-6} + 0.137 \times 50$ 10	0-6+ <u>0.863x 1276</u> 10-6+ <u>55.8</u> 10-6
C _t = <u>1164</u> IO ⁻⁶ bar ⁻¹	
Flow Data: Flow Period no2	-
Choke <u>52</u> / <u>64</u> inches Cond. Rate <u>313.8</u>	<mark>3Sm³/D Gas Rate</mark> <u>1293x10</u> ³ Sm³/D
Ptfbar Water Rate9.16	Sm ³ / D GOR4120Sm ³ /Sm ³
Cond. Spec. Grav. 0.789	Gas Spec.Grav0.660 (air=1)
Cumulative Production Condensate 119.9	<u>Sm³ Gas ^{493.9x10³S}</u> m ³
watter <u> </u>	= <u>1.693x10⁶</u> Sm ³ /D

Horner Analysis

INPUT TO TEST AN (GAS / COND. SYS	NALYSIS STEM)		
Well no. <u>34/10-16</u> DST no. <u>2</u>	Test Date	17.09.83	
Reservoir Parameters			
Perforations <u>3177-3187</u> m RKB	Zone (s) 🔔	Tarbert .	
	Wellbore rad	lius0.11	_ m
	RKB Elev.	_22	_ m
Depth Mid Perfs: 3182	m RKB	3160	mSS
Pressure Gauge no S S 0105 Depth	_ m RKB	3152.5	m SS
Pressure Gradient:bar/m			
Pressure Correction, Gauge to Mid. Perfs.:	_ bar		
Formation Volume Factor <u>3.55x10</u> Res.m ³ /Sm ³	³ Viscosi	ty	Cp
Thickness19m Porosity	17.6 %		
Oil Saturation% Oil Compress	sibility)- ⁶ bar- ¹
Water Saturation <u>13.7</u> % Water Compr	essibility	50IC)- ⁶ bar - ¹
Gas Saturation <u>°°.3</u> % Gas Compres	sibility <u>1</u>	55.8 IC)- ⁶ bar-1
System Compressibility $C_{t} = S_{0}C_{0} + S_{w}C_{w} + S_{g}C_{0}$ $C_{t} =x - 10^{-6} + 0.137 x - 50 - 10^{-6} $	+ C_f 0.863 x 12	<u>76_</u> 10 -6 ,55,	<u>8_</u> 10- ⁶
C _t =!O ⁻⁶ bar ⁻¹			
Flow Data: Flow Period no3			3
Choke <u>80</u> / <u>64</u> inches Cond. Rate <u>400</u>	Sm ³ /D Ga	s Rate ^{1647x1}	<u>_0 Sm³/D</u>
Ptfbar Water Rate	Sm ³ / D GO	R4118	Sm ³ /Sm ³
Cond. Spec. Grav	Gas Spec.Gr	<u>0.66 (a</u>	air=1)
<u>Cumulative Production</u> Condensate <u>117.5</u> S	m ³ Gas <u>484</u>	<u>x10³</u> Sm ³	
water <u> </u>)96x10 ³	- Sm ³ /D	

Horner Analysis Well no. <u>34/10-16</u> DST no. ____2 3 Build Up no.__ Gauge no. ______ Sperry Sun 0105 Test Date ________ 17.09.83 Effective Production Time tp = Cumulative Production / Last Rate $tp = 0.616 \times 10^6$ / 2.096 × 10⁶ = 7.05 hrs Straight Line Starts at ______hrs Slope: <u>m = 0.749</u> _____ bar/cycle Pwf = _______ bar Plbr ______ bar P*______ bar bar Estimated Reservoir Pressure (P*) at Mid. Perfs. (3160 mSS): <u>449.2</u> bar (Initial build-up) Permeability: $Kh = \frac{21.49 \text{ g Bu}}{m} = \frac{21.49 \times 2.096 \times 10^6 \times 3.55 \times 10^{-3} \times 0.032}{0.740} = \frac{-6832}{-6832} \text{ md.m}$ $K = Kh/h = _____{6832}$ /______ 19 = _____360 _____ md. Skin: S = 1.1513 $\left[\frac{P \ln r - P w f}{m}\right] + Log \left[\frac{t p + 1}{t p}\right] - Log \left[\frac{K}{0 \ln C + r w^2}\right] + 3.098$ S = 1.1513 $\begin{bmatrix} 447.5-392.0 \\ 0.749 \end{bmatrix}$ + Log $\begin{bmatrix} 8.05 \\ 7.05 \end{bmatrix}$ - Log $\begin{bmatrix} 360 \\ 0.176x0.032x1.164x10^{-3}x0.112 \end{bmatrix}$ + 3.098 S = ______ For the Previous Flow Period: $\Delta Ps = \frac{18.665 \cdot q B \mu}{kh} \quad S = \frac{18.665 \times 2.096 \times 10^6 \times 3.55 \times 10^{-3} \times 0.032 \times 77.8}{6832} = 50.6 \text{ bar}$ $\Delta Pdd = P^* - Pwf = ____56.2$ bar Skin as Fraction of Total Drawdown: $\frac{\Delta Ps}{\Delta Pdd} = \frac{90\%}{20\%}$

- 53 -

A2-8

Well 3	4/10-16	DIARY OF EVENTS	CHP/PG Perfs.: 3177-3187							
DST no	. 2	-	Zone tested Tarbert							
Date	Time	OPERATIONS								
15.9	17.55	Perforated 3177-3187 m RKB								
	19.30	Started running the test string								
16.9	15.00	Set packer								
	15.05	Opened LPR-valve								
	15.13	Opened well on 52/64" fixed choke								
	15.15	Closed in at chokemanifold and LPH	R-valve							
	16.19	Opened LPR-valve								
	16.21	Opened well on 52/64" fixed choke								
	16.25	Gas to surface								
	17.03	Diverted flow through separator								
	17.30	Diverted flow to surge tank for 1.	meterfactor							
	19.15	Diverted flow to surge tank for 2.	meterfactor							
	23.03	Started to collect first set of P	/T-samples							
17.9	00.05	Started to collect second set of H	PVT-samples							
	01.00	Bypassed separator								
	01.01	Closed in at choke manifold and Li	PR-valve							
	05.57	Opened LPR-valve	pened LPR-valve							
	10.00	Opened well on 80/64" fixed choke								
	10.25	Diverted flow through separator								
	10.45	Diverted flow to surge tank for 3.	. meterfactor							
	15.03	Started to collect third set of PN	/T-samples							
	16.06	Started to collect fourth set of H	PVT-samples							
	17.01	Bypassed separator								
	17.03	Closed in at choke manifold and LH	PR-valve							
18.9	00.37	Opened LPR-valve								
	00.42	Started bullheading								
		END OF DST NO. 2								
Remark	5:	.	an a							

^{Well} 34/10-16	SAMPLING	CHP/PG
DST no 2		Zone tested Tarbert

SEPARATOR SAMPLES.

Time/date	Sample no.	Type of sample	Transfer time	Bottle no
16.09.83 23:03	1:set	Cond. Gas Gas	29 min	8308922 A14786 A14681
17.09.83 00:05	2:set	Cond. Gas Gas	30 min	83021217 A14695 A14761
15:03	3:set	Cond. Gas Gas	37 min	8308308 A14668 A14751
16:06	4:set	Cond. Gas _{Gas}	39 min-	83021209 A14789 A14688

Time/date	Sample depth mRKB	Estimated PB bar/°C	Transfering pressure(bar)	Bottle no

SAMPLES

Time/date	Sampling point	Sampling equipment	Remarks
17.09.83	Separato	r 1 x 200 l drum 6 x 1 l glass j 2 x 20 l jerry c 4 x 1 l plasti bottle	ars condensate ans condensate c water s

[]							
Well 34/10-16	GAUGE ARRANGEMENT	CHP/PG					
DST no 2		Perfs.:3177 - 3187 mRKB					
551 110. 2		TARBERT					
[]	for Bundle Carrier - 2152 64 m	סעס					
·	top bundle Carrier ar3152.64 m						
	Gauge type and number: Sperry Sun, Mark III no. 0076						
	Depth, pressure elemement : 3155.97 mRKB	Range ; 690 bar					
MK III	Mode: 2	Delay, 17 hrs.					
	Actuated : time 19.28	date : 15.09.83					
	Will run out : time 21.13	date , 18.09.83					
<u>_</u>	Top Bundle Carrier a 3156.97 mRKB Gauge type and number: Sperry Sun, Mark III no. P1M						
	Depth, pressure elemement : 3160.23 mRKB	Range:690 bar					
MK ITI	Mode: 4 min	Dekay, 17 hrs.					
	Actuated: time 19.24 hrs.	date : 15.09.83					
	Willrunout, time 05.48 hrs.	date , 21.09.83					
	Gauge type and number :						
	Depth, pressure elemement :	Range ;					
	Mode:	Delay 1					
	Actuated : time	date :					
	Will run out : time	date 1					
	"E"-nipple a 3171.44 mRKB						
<u>_</u>	Gauge type and number: Sperry Sun. Ma	rk III no. 0105					
	Depth, pressure elemement : 3174.54 mRKB	Range: 690 bar					
MK III	Mode: 2 mins.	Delay, 17 hrs.					
	Actuated : time 19.10 hrs	date : 15.09.83					
	Will run out ; time 20.55	date : 08.09.83					
·							
[]	Gauge type and number: Flopetrol, SDP	CG no. 82818					
	Depth, pressure elemement : 3176.14 mRKB	Range : 690 bar					
SDP	Mode: 30 sec.	Detay, 15 hrs.					
CG	Actuated: time 19.11 hrs.	date : 15.09.83					
	Will run out i time "	date ı "					
	Gauge type and number :	D					
	Depth, pressure elemement :	Range :					
	Mode :	Delay 1					
	Actuated : time	date :					
	Will run, out i time	date i					

- 56 -

Well 34/10-16			CHP/PG		
	LAYOUT OF	TEST-STRING	Perfs 3177-3187		
DST no 2			Zone tested TARBERT		

TEST-STRING		OD inch	LENGTH m	DEPTH mRKB
SURFACE TEST TREE				-5.41
2 SINGLE + 1 PUP 5" VAM		5	20.76	15.35
LUBRICATOR VALVE AND X/O		9/13	2.10	17.45
3 PUP JOINTS 5" VAM	4.27	5	6.47	23.92
13 JOINTS 5"-18LBS/FT-L80 VAM	4.27	5	125.66	149.58
1 PUP JOINT	4.27	5	1.99	151.57
X-OVER	3.00		0.31	151.88
CENTRALIZER	3.00	17.5	1.05	152.93
SAVERSUB	3.00		0.26	153.19
EZ-TREE	3.00	10.87	2.44	155.63
SLICKJOINT	3.00	5.00	2.94	158.57
FLUTED HANGER	3.00	15.00	0.29	158.86
X-OVER	3.00		0.29	159.15
88 STDS 5"-18LBS/FT L80 VAM	4.27	5.00	2537.96	2697.11
X-OVER 5" VAM BOX x $3\frac{1}{2}$ "TDS PIN	2.75	6.25	0.25	2697.34
7 STDS $3\frac{1}{2}$ " - 12.7 LBS/FT L-80 TDS	2.75	3.5	193.67	2891.01
X-OVER $3\frac{1}{2}$ " TDS BOX x $3\frac{1}{2}$ " IF PIN	2.75	5.5	0.30	2891.31
SLIP JOINT	2.25	5.0	5.54	2896.85
SLIP JOINT	2.25	5.0	4.02	2900.87
6 STDS DRILL COLLARS	2.25	4.75	170.91	3071.78
RTTS CIRC VALVE (BACKUP)	2.44	4.87	1.10	3072.88
1 STD DRILL COLLAR	2.25	4.75	28.49	3101.37
SLIP JOINT	2.25	5.00	4.02	3105.39
SLIP JOINT	2.25	5.00	4.02	3109.41
1 STD DRILL COLLAR	2.25	4.75	28.49	3137.90
APR-M VALVE (BACKUP)	2.25	5.00	2.29	3140.19
DRILLPIPE TESTER VALVE (BACKUP)	2.25	5.00	1.35	3141.54
LPR-N TESTER VALVE (BACKUP)	2.25	5.00	4.99	3146.53
FUL FLOW HYDRAULIC BYPASS	2.25	4.62	2.02	3148.55
BIG JOHN JAR	2.37	4.62	1.58	3150.13
SAFETY JOINT	2.44	5.00	0.88	3151.01
RTTS PACKER (NEW RUBBERS)	2.4	5.75	1.38	3152.39
X-OVER 2 7/8" EUE BOX x $3\frac{1}{2}$ " IF PIN	2.50	4.75	0.25	3152.64
BUNDLE CARRIER 180 OUT OF PHASE		5.63	4.33	3156.97
BUNDLE CARRIER		5.63	4.30	3161.27
X-OVER $3\frac{1}{2}$ " IF BOX x 2 7/8" EUE PIN		4.75	0.23	3161.50
PERFORATED 2 7/8" EUE PIN		2.88	9.36	3170.86
X-OVER 2 $7/8$ " EUE BOX x 2 $3/8$ " EUE PIN		3.25	0.31	3171.17
\mathbf{r} -NIPPLE 2 3/8" EUE BOX X PIN		3.25	0.27	3171.44
x = 0 VER 2 3/8 " EUE BOX x 2 7/8" EUE PIN	2.00	3.25	0.24	3171.68
L JOINT 2 7/8" EUE JOINT	2.44	2.88	9.12	3180.80
BULLPLUG W/CROSS 2 7/8" EUE BOX		4.00	0.15	3180.95

Remarks.

58 -

A2-13 Cement Bond Log