34/10-17

WELL TESTING REPORT

CLASSIFICATION

MADE BY

Steinar Lyngroth

SUBTITLE

TITLE

WELL TESTING REPORT

34/10-17

JANUARY 1984

COMPLETED St. Liging. HL 6.1.84

APPROVED 25/1 - 84 Jon Hansboat

2

•

CONT	ENTS		PAGE
1.	Intro	oduction	1
2.	Well	Data	3
3.	Test	ed Intervals	4
4.	Obje	ctives	6
5.	Resu	lts and Conclusions	7
	5.1	Summary of Test Performance	7
	5.2	Reservoir Pressure	10
	5.3	Reservoir Temperature	13
	5.4	Permeability and Skin	15
	5.5	Other Results/Conclusions	16
6.	Test	Performance and Analysis	18
	6.1	General	18
	6.2	DST No. 1, Performance and Analysis	20
	6.3	DST No. 2, Performance and Analysis	40
	6.4	DST No. 3, Performance and Analysis	68
	6.5	DST No: 4, Performance and Analysis	94
7.	Refe:	rences	125
	Apper	ndices:	
	Apper	ndix 1: Cement Bond Quality	

.,

Appendix 2: CPI+1og

.-

1. INTRODUCTION

Well 34/10-17 is the first exploration well drilled on the Beta structure in block 34/10. The structural map on figure 1.1 shows the location of the well.

The well was drilled to a total depth of 3466 mRKB into a formation of Lower Jurassic age.

Hydrocarbon bearing formations were encountered if sands of Middle Jurassic age (Brent).

Four production tests were performed in the gas; oil and water bearing sands in the Brent formation. The tests were designed with conventional downhole and surface equipment.

NOTE: All depths in this report refer to RKB level (measured depth), unless others are indicated.

.

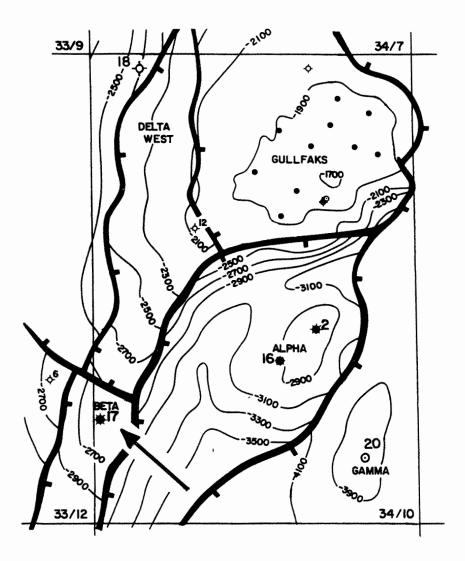


Fig. 1.1 Top Jurassic Structural Map, Block 34/10

2. WELL DATA

Licence:	PL 050
Well:	34/10-17
Location:	61 ⁰ 03'58.93"N 02 ⁰ 00'50.78 "E
Classification:	Exploration (Wildcat)
Rig:	Deep Sea Bergen
Spud Date:	23.02.83
Test Period:	27.05.83 - 29.06.83
Completion Date:	08.07.83
RKB Elevation:	25m
Water Depth:	135m
Total Depth:	3466 mRKB
Status:	Plugged and abandoned

3. TESTED INTERVALS

The following intervals were tested:

DST no.	Perf. interval	Formation	Produced fluid
1	2934.0-44.0 mRKB	Etive/Rannoch	Water
2	2880.0-90.0 mRKB	Ness	Oil and Gas
3	2835.0-45.0 mRKB	Ness	Gas and Cond.
4	2754.0-57.0 mRKB 2763.0-65.0 " 2767.5-71.5 " 2773.0-77.0 " 2784.5-90.5 "	Ness	Gas and Cond.

The test intervals are shown on the Well Data Summary, figure 3.1. Figure 3.2 shows the 34/10-17 lithology.

Fig. 3.1

WELL: 34/10-17

	ATI	LIT STR. GRA	HO - ATI - PHY	LITHOLOGY	GRAIN SIZE SEDIMENTARY STRUCTURES 8		DIPMETER - LOG AZIMUTH FREQ. PLOTS	GAMMA RAY, SP CALIPER - LOGS	LDL/CNL LOGS	RESISTIVITY LOGS	SONIC - LOG	SHALE VOLUME (CALCULATED)	POROSITY	WATER / HC SATURATION	PERMEABILITY	r test Results
(ref LDL/CNL) SERIES	STAGE	FORMATION	ZONATION	CORE NO. D GRAPHIC LIT	DESCRIPTION	SEDMENTARY ENVIRONMENT	DIP ANGLE AND DIRECTION		La RHDB La X3 La PHIN		MAR DI	La Y1		La <u>Y1 100</u> La SH 100 STORCORDO DL-RO	KLK KLV	DST-Drill stem tes RFT-Repeated formation te pressure cosample fail
9.5		9 NG	HEATHER FM.		R	MARINE		2850								
<u> </u>	ATH		TARBERT FM.	2				2700		Krach of the			Wet And Wet			400,56 ber 401,32 ber 401,32 ber
		BRENT	52		+ + + + + + + + + + + + + + + + + + +	TA FRONT Frace (? mouth bars)		2725					A Market Market			2754 ← 403,39 bor
MIDDLE JURASSIC			NESS FM.			I F							MAN MAN ANA MAN			2757 2763
	ATHON					NNEL BAY		2800			Mont		M. M. C.			← 405,46 ber ← 405,94 ber
	EARLY	BRENT GROUP	22			LAIN /mrsh Lower-upper shoreface Bay		2850	MAN CANA				With the second second			2835
			818			TA Bay F		2875		8			5 }			•— 408,49 bor

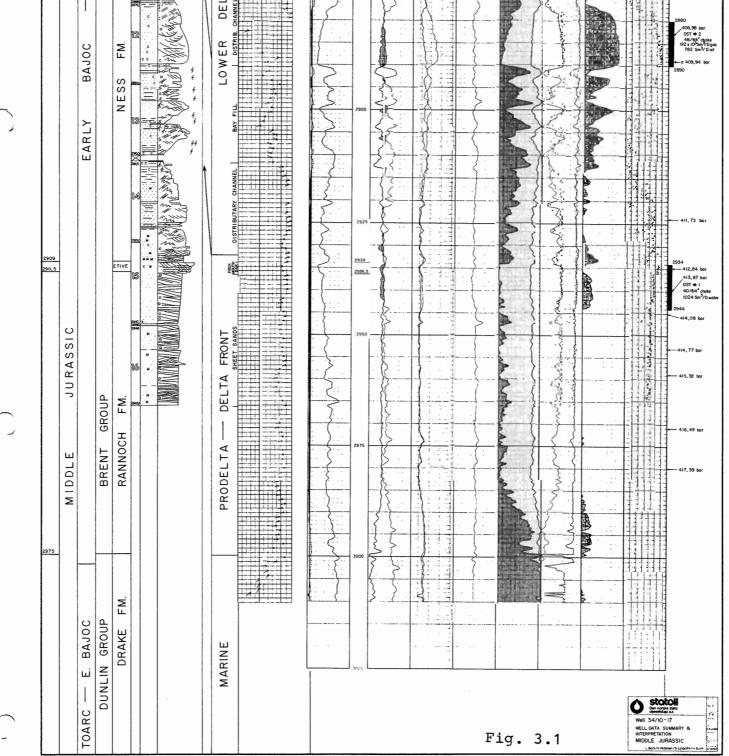
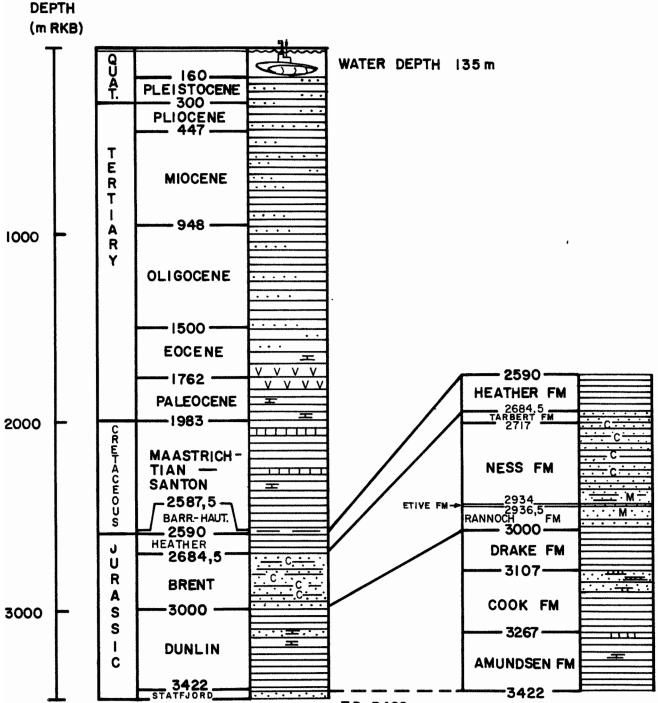



Fig. 3.2

34/10-17 LITHOLOGY

T.D. 3466 m

- 5 -

4. OBJECTIVES

The objectives of testing well 34/10-17 were:

- Obtain representative samples of the reservoir fluids: Gas, oil and water.
- 2. Evaluate reservoir rock properties and productivity.
- 3. Determine reservoir pressure and temperature.

5. RESULTS AND CONCLUSIONS

5.1 Summary of the Test Performance

Table 5.1 shows a summary of the test performance, flow rates, bottom hole pressures etc. for each of the tests.

The given flow rates are average for the last 2 to 3 hours of stabilized flow. It should be noted that the metering practices are questionable, especially for the oil rates, and that the difference in the gas-oil ratio for the different flow periods probably are due to this problem.

More detailed test performance data are shown in chapter 6.

34/]
m
.1
പ
Table
Та

3RAV 1							74		74		T
GAS (Air=									0		
OIL GRAV a/cc							በ ጸና		0.85		
WATER RATE OIL GRAV GAS GRAV Sm ³ /D g/cc Air= 1			1024				C		0		
GOR Sm ³ /Sm ³							245		246	-	
GAS RATE 10 3sm ³ /D			0			•	192		134		
OIL RATE GAS RATE Sm ³ /D 10 3Sm ³ /D			0				782		545		
ВНР bar	352	409	363	409	398	407	400	407	403	407	
СНОКЕ 1/64"	48		40		32		48		28		
DURATION mins	2.5	65	511	652	ъ	66	352	370	478	475	
OPER.	INITIAL FLOW	INITIAL SHUT IN	SECOND	SECOND SHUT IN	INITI AL FLOW	INITIAL SHUT IN	SECOND FLOW	SECOND SHUT IN	THIRD FLOW	THIRD SHUT IN	
PERFS. mRKB	2934-	2944				2880-	2890				
FORM.	Etive/	Rannoch					Ness				
DST no.	r-4	1					7				

contd	
5.1	
Table	

.

DST no.	FORM.	PERFS. mRKB		DURATION mins	CHOKE 1/64"	BHP bar	OIL RATE Sm ³ /D	GAS RATE 10 ³ Sm ³ /D	GOR Sm ³ /Sm ³	VATER RATE : Sm ³ /D		OIL GRAV GAS GRAV. g/cc Air=l
			INITIAL FLOW	4	32	399						
			INITIAL SHUT IN	68		404						
	Ness	-2845 2845	SECOND FLOW	495	48	399	734	530	722	0	0.80	0.72
			SECOND SHUT IN	473		404						
*****			THIRD FLOW	427	32	401	452	364	805	0		0.72
			THIRD SHUT IN	409		404						
		2754 57 +	INITIAL FLOW	2	32	391						
		2763	INITIAL SHUT IN	61		400						
	Ness	- 65	SECOND FLOW	546	48	395	501	653	1303	0	0.76	0.71
		2767.5 -71.5	SECOND SHUT IN	533		401	•					
		+	TH IRD FLOW	453	32	398	320	428	1338	0	0.76	0.71
		2773 -77	THIRD SHUT IN	442		401						
		+ 2784.5 -90.5					*****		-			

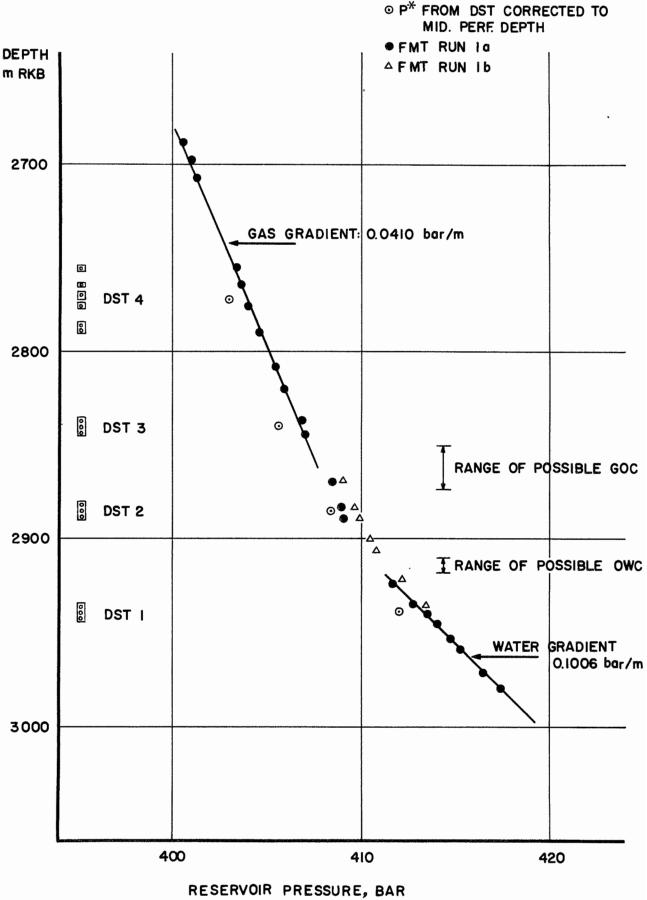
- 9 -

5.2 Reservoir Pressure

A series of pressure samples were obtained by an FMT log (Formation Multi-Tester) throughout the hydrocarbon and water bearing sections prior to the running of the 7" liner. A separate FMT report (ref. 2) discusses the details of that test. The FMT pressures and resulting gradients are shown in figure 5.1.

Reservoir pressure is also obtained by extrapolating pressure build up curves (Horner plot) from the production tests. This extrapolation is believed to give reliable results because of an early start of the semilog straight line and the low value of the slope m (see chapter 6 for details). The extrapolated reservoir pressure was determined for all the gauges on each build up. The pressures were then corrected to the mid perforation depth by applying the pressure gradients obtained from the FMT. The resulting pressures for the build up giving the highest pressure are as follows:

DST no.	Gauge no.		P* at mid perf. depth, bar
1	SS 0151	(s)	412.1
1	SDP 82009		412.4
1	SS 0100		412.2
2	SS 0151	(s)	408.4
2	SDP 82020		407.8
2	SDP 82009		408.1
3	SDP 82003		405.3
3	SS 0222		405.7
3	SS 0181	(s)	405.7
4	SDP 82020		402.5
4	SS 0222	(s)	403.0
4	SS 0151		No reliable data

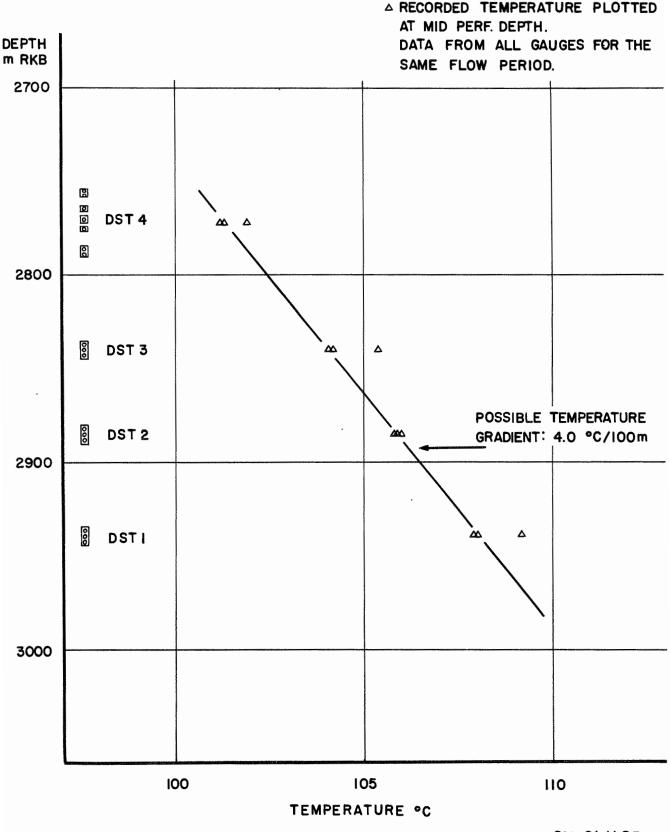

The small differences between the gauges indicate that the reservoir pressure can be determined within a range of \pm 0.5 bar.

The gauges marked (s) seem to have the best data quality and they are therefore selected for the test analyses. The p* from these gauges are plotted on figure 5.1.

It should be noted that the absolute pressures recorded by the FMT are 1.0 to 1.5 bar high (assuming that the DST pressures are correct).

WELL 34/10 - 17

(See FMT Report for details)


5.3 Reservoir Temperature

The bottom hole temperature was continuously recoreded by three gauges throughout all the tests. A significant difference between flowing and shut in temperatures was observed (5 to 8°C higher flowing temperature). This might be due to cooling through the well media during shut in and possible heating during flow because of pressure loss close to the well bore (skin). No conclusion is made as to which temperature is correct, and for convenience the maximum recorded flowing temperature is considered as the reservoir temperature.

The maximum flowing temperature for each test (and each gauge) is plotted versus depth and shown in figure 5.2. A temperature gradient of 4.0° C per 100 m is drawn through points where two or three gauges read the same temperature.

Fig. 5.2 MAXIMUM FLOWING BOTTOM HOLE TEMPERATURE VS. DEPTH

WELL .34/10-17

5.4 Permeability and Skin

The permeability of the tested zones have been calculated from the pressure build up data obtained during the tests. The results are as follows:

	Perf.intv.	Max.thickness	Test perm.
DST No.	mRKB	m	Darcy
1	2934 - 44	79	0.2
2	2880 - 90	18	2.0
3	2835 - 45	14	0.6
4	2754 - 90	23.5	0.3

The test derived permeabilities for DST no. 3 and DST no. 4 are lower than the permeability measured or core samples, indicating that only a part of the interval has contributed to the test response, and that condensate drop out may have reduced the permeability.

None of the test zones were stimulated and some positive skin, mainly due to formation damage, was observed:

		-	Skin press.loss as
DST No.	<u>Skin factor</u>	<u>loss, bar</u>	fraction of drawdown
1	112	43	0.93
2	23	4.9	0.72
3	18	3.8	0.68
4	15	3.9	0.64

5.5 Other Results/Conclusions

Productivity

The hydrocarbon zone tests showed low pressure drawdown in the reservoir at fairly high production rates. This indicates a high productivity. The dewpoint pressure and bubble point pressure in the gas- and oil zones respectively are, however, measured to be close to the reservoir pressure. The productivity will therefore, at lower pressures, be less than what was seen in the tests.

The pressure distribution in the production system for each test production rates are shown in table 5.2. The high increase in tubing pressure loss with rate shows that $3\frac{1}{2}$ inch tubing is not optimal for such high rates. Significant higher production rates (at a given wellhead pressure) can be achieved by using a larger tubing (f. ex. $4\frac{1}{2}$ inch).

	428	. 302	0			257	stan da para ta anana kara ta Mana kara da ang kara ta ang kara kara ta ang kara ta ang kara ta ang kara ta ang			3	403
4	653	501	0		188				209	- e -	403
	364	452	0			247			155	4	406
£	530	734	0		177			223		- e -	406
	134	546	0		215			189	an for the state of the state o	4	408
2	192	782	0		104		297		****	- <i>1</i>	408
-	0	0	1025		42		324			46	412
DST no.:	Gas rate, 10 ³ Sm ³ /d:	Oil rate, Sm ³ /d:	Water rate, Sm ³ /d:	Pressure, bar	Wellhead pressure:		Pressure loss	in tubing:		Drawdown:	Reservoir pressure:

Test production rates & pressure, well 34/10-17 Table 5.2

6. TEST PERFORMANCE AND ANALYSIS

6.1 General

All the tests were designed conventionally with a short initial flow period followed by an initial shut in period of about one hour, a main flow and shut in period and for DST 2, 3 and 4 also a third flow and shut in period. At the end of DST 2, bottom hole samples were collected.

Four pressure gauges were run on the test string in all the tests, but one gauge failed in each test. Test analyses are made on the pressure data from all the gauges. The data quality is, however, for some of the gauges rather poor and one gauge has therefore been selected as the most reliable. The test analysis calculations, pressure plots etc. for this gauge are included in the report while the results of the analyses of the other gauges are shown.

All the tested zones have high permeabilities and the pressure drawdown during the production period was therefore low. The pressure stabilized after a short production time and actually showed an increase with time (at a constant flow rate) in all the tests. This effect made reliable drawdown analysis impossible.

Pressure buildup (Horner) analyses were made for all the tests. Because of the excellent reservoir quality, the slope m on the Horner plot is very low. Small errors in the gauge readings (f.ex. because of temperature correction) can therefore affect the slope to some degree. The permeability, skin etc. calculated from these test analyses should therefore be considered as approximate values only.

In the following paragraphs, test analysis and test performance data are shown in this order for each test:

- 1. Results of the test analysis
- 2. Comments on the test analysis
- 3. Data input to the analysis
- 4. Calculations
- 5. Pressure plots used in the analysis
- Comparison of results obtained from all the pressure gauges
- 7. Diary of events
- 8. Flow data, graphical illustration
- 9. Flow data, table
- 10. Layout of the teststring
- 11. Gauge arrangement
- 12. Sampling summary

6.2 DST no. 1, Performance and Analysis

6.2.1 Results of the Test Analysis

The following results are obtained from the test:

Reservoir pressure: 412 bar at 2939 mRKB (mid perf.)

Reservoir temperature: 108°C

Produced reservoir fluid: Water with 32000 mg/l NaCl eq.

- Permeability: 190 md average over a total interval of 79 m. (10 m were perforated)
- Skin: Skin factor of 112 corresponding to a pressure loss of 43 bar. Total drawdown was 46 bar. About 3% of the skin was due to partial penetration (perforated 10m of 79m total).

No boundary effects are seen.

6.2.2. Comments to the Test Analysis

The test was evaluated using the conventional Horner analysis of the second shut in period. No significant wellbore storage effects were observed (the well was shut in downhole). The main flow period was disturbed by clean up effects, and drawdown analysis was therefore not performed.

The thickness of the formation interval contributing to the test is somewhat uncertain. No vertical boundaries are seen on the cores below the perforated interval (21m of cores available). The permeability, however, decreases with depth. A tight zone located 56m below the test zone is seen on the logs. It has, for the test analysis, been assumed that this entire interval has affected the test response. The partial penetration skin factor was calculated using a "corrected" total thickness equal to (k h) of the total interval devided by (k) of the perforated interval because of the large permeability variance over the section.

6.2.3 Data Input to the Analysis

Bottom hole pressure data from the pressure gauge SS0151 were selected for the analysis. The quality of these data seems to be good.

The reported water production rate was not constant with time. The flowing BHP and WHP were, however, fairly constant and it was therefore assumed that the rate variations were due to metering problems. An average water rate was used for the analysis.

Water viscosity, water formation volume factor, water compressibility and rock compressibility were derived from standard correlations. Residual oil compressibility was assumed to be as for DST no. 2.

Porosity and saturation data were taken from the log analysis report (ref. 1).

The pressure gradient in the water zone was taken from the FMT report (ref. 2).

The formation thickness contributing to the test response has been estimated using the available core and log analyses data.* Very low vertical permeabilities are measured on plugs from 2901.60m to 2921.10m, and this section is therefore assumed to represent a vertical flow barrier. Some scattered plugs from 2921.10m to 2934m (top perf.) also show low permeabilities, but they might only represent small local barriers. Below the perforated interval (below 2944m), no permeability barriers are seen (core data down to 2965m). The permeability of this section is, however, much lower than in the perforated interval. Log evaluation shows a possible barrier at 3000m.

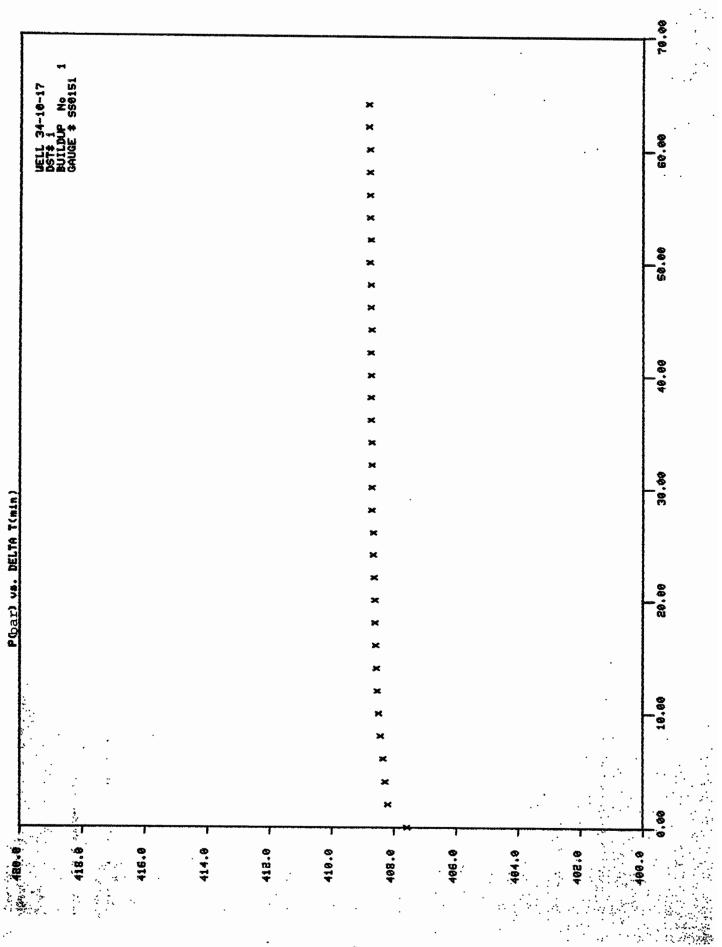
The maximum thickness will then be 79m (2921m to 3000m). The cement bond log shows a good bond up to 2920m (see Appendix 1), eliminating "behind casing flow" from zones higher in the well.

Arithmetic average horizontal liquid permeabilities from the core analysis are as follows (for comparison with test derived permeability thickness):

Interval, m	Thickness, m	avg.k _{hl} ,md	<u>k h,md m</u>
2921-2965 (cored)	44	360	15800
2965-3000	35	30 (est.)	1000
Total:	79	210	16800
2934-44 (perf.int	.) 10	916	9160

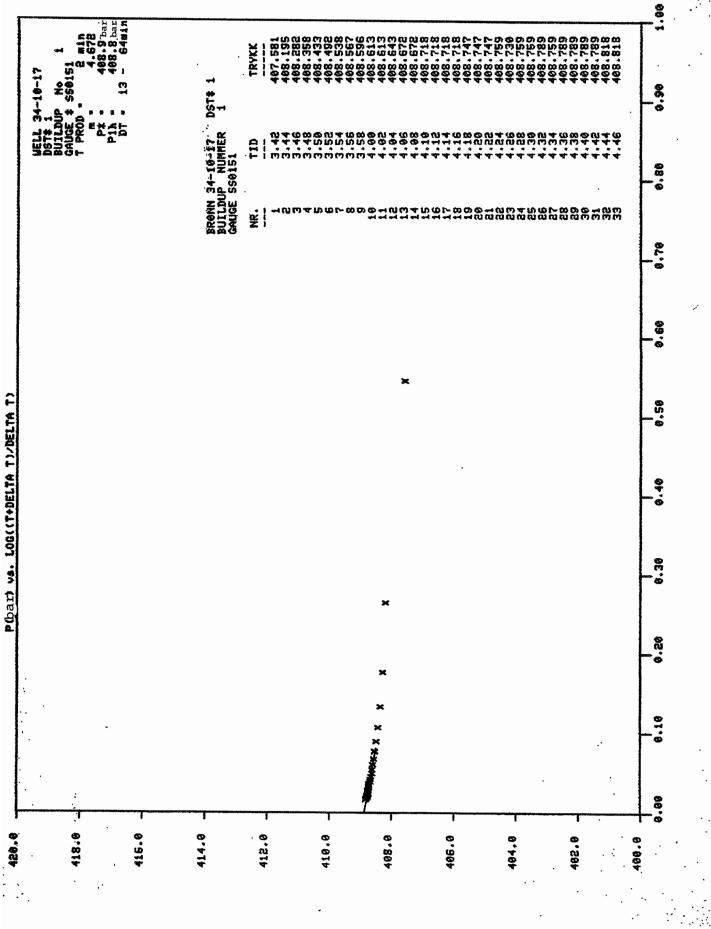
Test k h = 15265 md m

*Core depths are corrected to log depths.

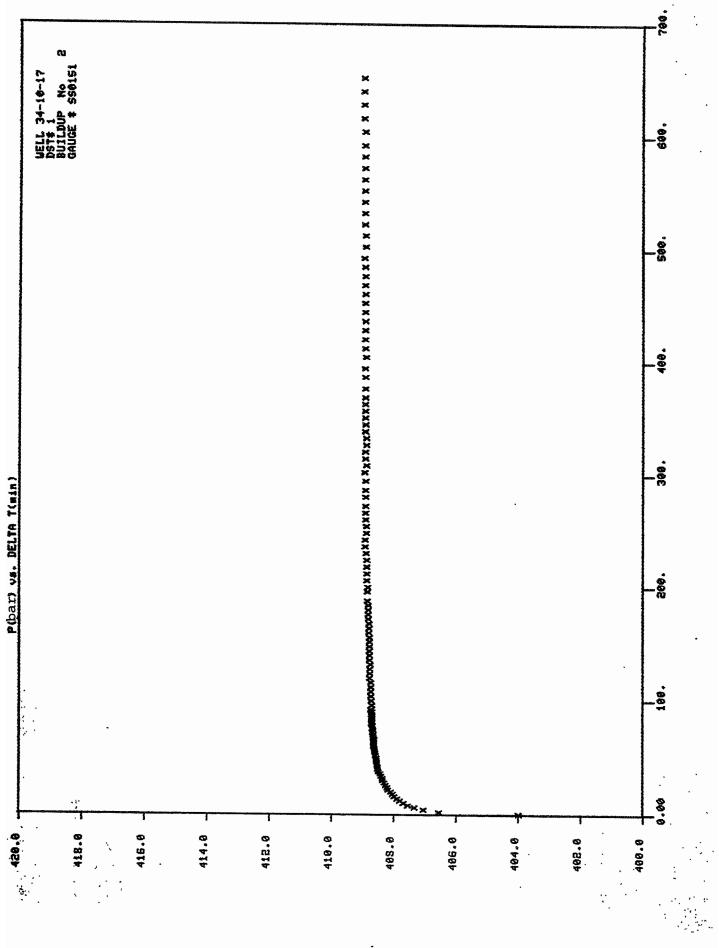

INPUT TO TEST ANALYSIS

Well no. <u>34/10-17</u> DST no. <u>1</u>	Test Date	02.06.83
Reservoir Parameters		
Perforations <u>2934</u> – <u>2944</u> m RKB	Zone (s)	ive/Rannoch
	Wellbore radiu	sm
	RKB Elev.	<u></u> m
•	m RKB	
Pressure Gauge no. SS 0151 Depth 2908	<u>.8</u> m RKB	2883.8 m SS
Pressure Gradient: <u>0.1006</u> bar/m		
Pressure Correction, Gauge to Mid. Perfs.:	bar	
Formation Volume Factor <u>1.028</u> Res.m ³	′Sm ³ Viscosity	<u> </u>
	20.4 %	
		10 ⁻⁶ bar ⁻¹
		10 ⁻⁶ bar ⁻¹
Gas Saturation % Gas Com	pressibility	10 ⁻⁶ bar ^{_1}
Formatio	n Compressibility5	010- ⁶ bar-1
System Compressibility $C_t = S_0 C_0 + S_W C_W + S_0 C_t = \frac{.038 \times 298}{10^{-6} + \frac{0.962 \times 43}{10^{-6} \text{ bar}^{-1}}$		_10 ^{_6} , <u>50</u> _10 ^{_6}
Flow Data: Flow Period no2	-	
Choke <u>40 / 64</u> inches Oil Rate0	Sm ³ /D Gas	RateSm ³ /D
Ptfbar Water Rate1025	Sm ³ / D GOR	Sm ³ /Sm ³
Oil Spec. Grav		
Cumulative Production Oil Sm		
Water <u>N/A</u> Sm ²	3	
Equivalent Gas Rate (Gas/Cond System) = q	g + qo Vsc =	Sm ³ /D

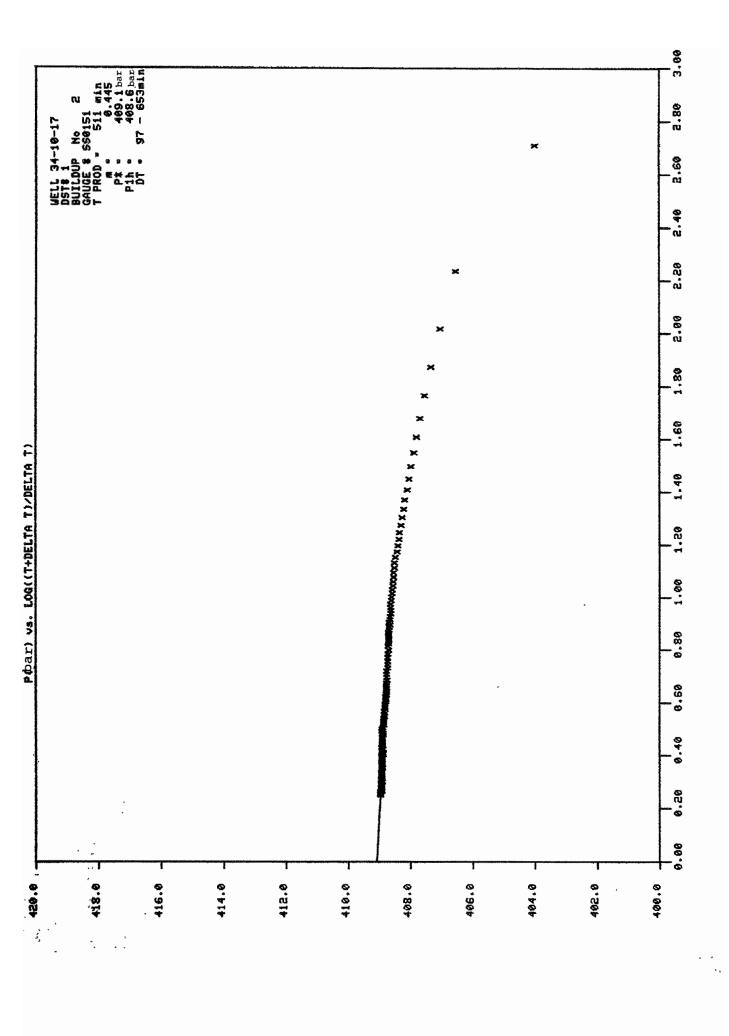
.

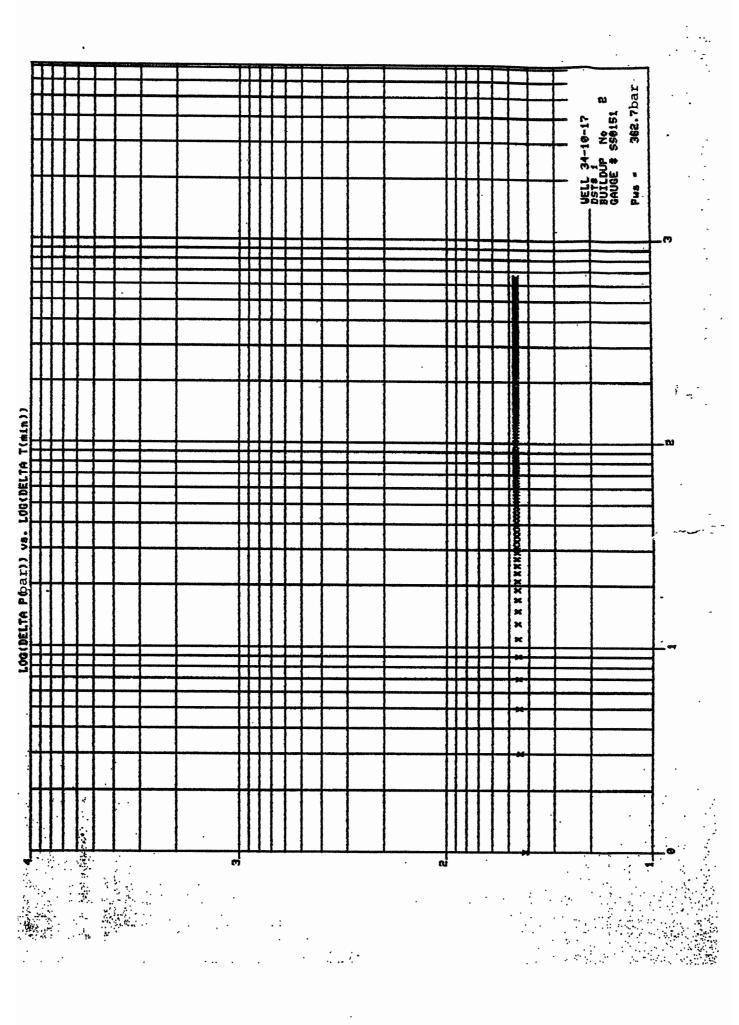

Horner Analysis

Well no. <u>34/10-17</u> DST no. _____1 Build Up no. 2 Gauge no. _____SS 0151 Test Date 02.06.83 Effective Production Time tp = Cumulative Production / Last Rate Straight Line Starts at ______hrs Slope: m = 0.445 _____ bar/cycle Pwf = <u>362.7</u> bar Plbr <u>408.6</u> bar P*<u>409.1</u> bar Estimated Reservoir Pressure (P*) at Mid. Perfs. (2914 mSS): <u>412.1</u> bar Permeability: $Kh = \frac{21.49 \,q \,Bu}{m} = \frac{21.49 \,\cdot 1025 \,\cdot 1.028 \,\cdot 0.30}{15265} \,m d.m$ 0.445 K = Kh/h = 15265 / 79 = 190 md. Skin: S = 1.1513 $\begin{bmatrix} P \mid hr - Pwf \\ m \end{bmatrix} + Log \begin{bmatrix} tp + 1 \\ tp \end{bmatrix} - Log \begin{bmatrix} K \\ 2u \mid Ct \mid rw2 \end{bmatrix} + 3.098 \end{bmatrix}$ S = 1.1513 $\begin{bmatrix} 408.6 - 362.7 \\ 0.445 \end{bmatrix} + Log \begin{bmatrix} 8.5+1 \\ 8.5 \end{bmatrix} - Log \begin{bmatrix} 190 \\ 9.204 \cdot 0.3 \cdot 103 \cdot 10^{-6} \cdot 0.11^2 \end{bmatrix} + 3.098$ S = _____112____ For the Previous Flow Period: $\Delta Ps = \frac{18.665 \cdot q B \mu}{kh} \quad S = \frac{18.665 \cdot 1025 \cdot 1.028 \cdot 0.30 \cdot 112}{43} = \frac{43}{43} \text{ bar}$ 15265 $\Delta Pdd = P^* - Pwf = _____{46.4} bar$ Skin as Fraction of Total Drawdown: $\frac{\Delta Ps}{\Delta Pdd} = \frac{0.93}{2}$



-26-


- 2



-27-

-28-

- 3¢-

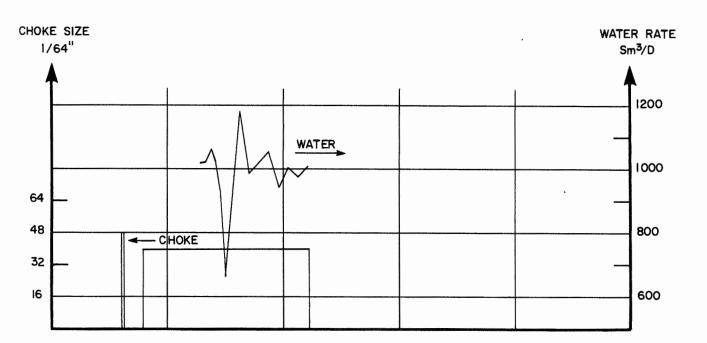
		111		0	7.	-1		म	ហុរ	Ů, c	2	ι nj	Ľ,	ΨL	v a	2-1	i ui	Ċ.	4 I	ກັດ	2	ຸດ	ء ن ب	t un	÷											
		101	100	9	\odot \circ	סע	20	9			-					4	4 លា	010	ດມຄ	110	101	ពារផ	<u>nı n</u>	ោភា	m											
		488.739	405.739	408.768	498.768	408.780	498.786	488.788 482.798	408.780	408.780	408.810	408.793	408.822	405.200	408.822	408.851	408.851	408.864	108.864	408.864	E68.801	408.922	408.876	408.876	408.906	408.906	408.906	408,906	408,889	408.918	408.889	408.5859	408.918	408.918	408.918 408.918	
		ហំ	14.15	i.	ហំរ	ກ່ານຄື	ហំ	ທີ່ນ	ົທີ	ທ່າ	ທີ່ມ		ŵ	ů u	່ທ່	ŵ	ຜ່າ		i coi	ŵr		r r		r.	17.44	17.50	18.84	18.12	18.26	18.38	100	18.50	10.05	19.14	19.20 19.26	 ,
		ន		55	56	200	05	69	29	63	64 64	66	67		202	7	01 C	2 <u>4</u>	22	9 <u>7</u>	32	62	99 90 100	000	0 0 0 0	58	000	00 0 00 0	105	20	50	4 (C) () ()	88	- 00	88 88	
DST\$ 1 2	TRVKK	403.989 406 FE0	402.045	407.336	407.685	407.802	407.889	408.035	408.033	408.180	408.267	408.297	408.355 408.355	408.397	408.426	408.484	408.513	408.542	408.542	408,555	408.584	408.613	408.613	408.642	408,526	402,625 402,655	408,655	408.655	408.684	408.713	408,697	468.697	408.697 408.697	408.726	408.697	408.739 408.739
14-14-17. 9 NUMMER 550151	TID	30	13.22	~~~	רח רי	m.	13.38	13.36	13.38	13.40	13.44	13.46	13.48	13.52	13.54	13.55	14.00	•	T 7	rτ	•••	• •	•	77	-Τ.	4 4		44	T '	T	4.4	TT		· • ·	\mathbf{r}	15.02 15.06
BRONN 34 BUILDUP GAUGE SS	NR.		um	₹L	n (0	5	co c	2 G I	1			15	9 F	18	6	80.	100		4 L	ນ ເບ	22	200	00	10 10		1 1 1 1 1 1	36	28 8 7	DE SE	40	4	१ ४ ४	AS AS	4	84 Q	50

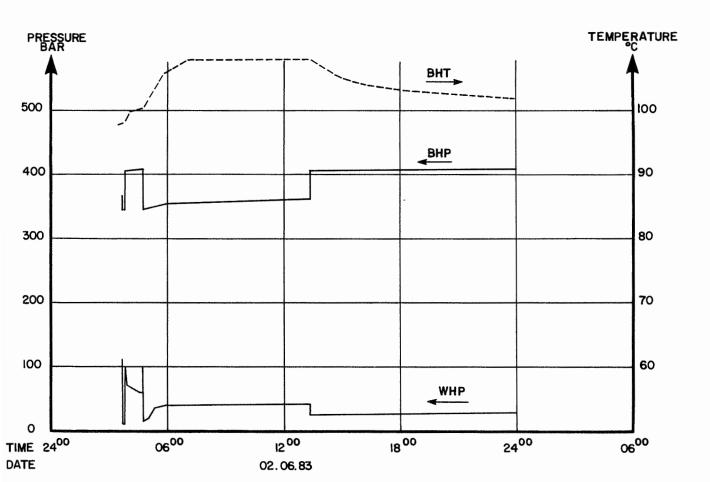
4688.9446888.931 4688.931 4688.931 4688.931 4688.931 4688.9331000000000000000000000000 COMPARISON OF RESULTS OBTAINED FROM ALL GAUGES

WELL no.: 34/10-17

DST no.: 1

	Selected Gauge	d Gauge		Other Gauges	auges	
Gauge no.:	SS 0151	.51	SDP 8	SDP 82009	SS 0100	00
Build Up no.:	г	2	г	7	г	2
Data Quality:	Good	Good	Fair	Quest,	Quest.	Poor
Horner Slope,bar/cycle:	4.67	0.445	10.52	0.431	3 ° 23	0.364
Permeability, md:		190		200		236
<pre>p* Corrected to mid perf., bar:</pre>	411.9	412.1	412.3	412.4	412.1	412.2


Well 34 DST no	1/10-17 . 1	DIARY OF EVENTS	CHP/PG Perfs.:2934-44 m Zone tested BRENT
1983 Date	Time	OPERATIONS	
		PERFORATING	
27.05	04.00	Perforated for squeeze at 2925 m.	Could not inject at
	06.30 13.00	Squeezed 3.5 m ³ cement.	
	18.00 12.00	Ran CBL, cement good. Perforated for DST no. 1, 4 sh/ft, 120 shots 2934 - 44 m.	120 ⁰ phasing,
		TEST STRING	
	13.04 13.07	Started Sperry Sun MK III 0230 4 Started Sperry Sun MK III 0100 2	
	13.12	Started Flopetrol DSP 82009 30 se	
	13.13	Started Sperry Sun MK III 0151, 2	
	13.26 13.36	Placed Sperry Sun gauges 0100 and Placed Sperry Sun gauge 0151 and F	-
	12.20	in XN-nipple. Running in hole wit	_
01.06	02.00	Discovered leak in teststring, pul Found leak, cont. RIH.	
		P.U. SSTT	
	15.15	P.U. STT Could not close SSI , pulled OOH	
	21.30		es)
	23.00		
02.06	03.23		
		INITIAL FLOW/BUILD-UP	
	03.37	Opened LPR-N valve.	
	03.39	Opened choke manifold on 48/64" fi	xed choke.
	03.41	Produced 7 bbls to surge tank. Closed LPR-N valve and choke manifold for build-up.	
		SECOND FLOW/BUILD-UP	
	04.46	Opened LPR-N valve	
	04.47	Opened choke manifold on 40/64" fi	xed choke.
	05.06	Rat hole mud to surface.	to check for
	05.20	Changed to 40/64" adjustable choke plugging in the fixed choke.	to check for
	05.25	Flow directed through 40/64" fixed	choke.
	07.06	Flowed through separator.	


Remarks :

Date Time OPERATIONS 07.30 Flowed to tank for meter factor. 07.46 07.30 Flow directed to port gas flare line. 08.50 08.50 Flow directed to port gas flare line. 08.50 08.50 Flow directed to port gas flare line. 08.50 08.51 Started to pump out of tank through oil guns. 09.29 09.29 Pypassed separator due to low and variable separator pressure. The separator pressure oscillated (10 bar + 3 bar) which influenced the water rate. Impossible to get accurate meter factor. 09.45 Bypassed and pumped out of tank. 10.05 Flowed to tank. 10.05 Flowed and pumped out of tank. 10.15 Bypassed and pumped out of tank. 11.55 Bypassed and pumped out of tank. 11.55 Bypassed and pumped out of tank. 12.06 Flowed to tank. 13.05 Flowed to tank. 12.05 Flowed to tank. 12.15 Bypassed and pumped out of tank. 12.06 Flowed to tank. 13.06 Flowed to tank. 13.18 Closed LPR-N valve and choke manifold for build-up
 07.46 Bypassed tank. 08.50 Flow directed to port gas flare line. 08.52 Started to pump out of tank through oil guns. 09.29 Bypassed separator due to low and variable separator pressure. The separator pressure oscillated (10 bar ± 3 bar) which influenced the water rate. Impossible to get accurate meter factor. 09.30 Flowed to tank for rate measurements 09.45 Bypassed and pumped out of tank. 10.06 Flow directed to tank. 10.15 Bypassed and pumped out of tank. 10.30 Flowed to tank. 11.00 Flowed to tank. 11.00 Flowed to tank. 11.00 Flowed to tank. 11.00 Flowed to tank. 12.00 Flowed to tank. 13.05 Bypassed and pumped out of tank. 14.55 Bypassed and pumped out of tank. 12.00 Flowed to tank. 12.15 Bypassed and pumped out of tank. 12.30 Flowed to tank. 12.30 Flowed to tank. 12.45 Bypassed and pumped out of tank. 13.16 Elymest to tank. 13.18 Closed LPR-N valve and choke manifold for build-up 03.06 00.10 Killed well by bullheading into formation.

34/10 - 17 DST no. I

STL. 31.10.83

		Well		34/10-17											CHP/PG				
		DST	no. 1							FLOW	FLOW DATA				Zone te	0	2934-44Ш ted врғыт		
1083						,												-]
Date/	Bottom hole	hole	Well head	head	Chokes	Chokes 1/64"				Separator data	r data				Liq. an	d gas a	Liq. and gas analysis		Γ
time 02 . 06	press. bar	temp. °C	1	press temp. bar °C	manifold	heater	press. tei bar	d u	gas rate 10 ³ Sm ³ /6	oil rate V Sm3/d	Water Sm ³ /đ	sp.gr.oil	sp.gr.gas	Water %	Sedim. %	ငို့2	H ₂ S N	NaC1 g/1	ЪН
	*	*																	
	SECOND	H	MO	PERIOD															
04.47	346.5	6.99	16.3	8.3	40		OPENED		FOR	CLEAN UP	ON 40/64"	4" FIXED	D CHOKE						
	350.9103.1 356.6107.4	103.1	37.5 40.0	33 . 1 68 . 4	40 40		RATHOLE N SWITCHED	≊ ດ	MUD TO SURFACI		SEPARATOR								
07.45	357.0	107.6	40.0	71.2	40		9.624	۳. ا	0	0	1022			100				33	7.0
	357.1	107.6	40.0	72.4	40		10.730	0.6	<u></u>	<u></u>	1028					m	0	32	7.1
08.30	357.5107.74	107.7	40.0	/3.3 71.6	40 40		10.438.	3.5 .7	>	>	1027				Tràce	m	0		
08.45	357.4	107.8	39.8	73.1	40		9.041. 6 043.	1.0	•	1	937 666				over 11	7	c	32	7.0
00.00) F										20011	۲	>	,	
09.29		5107.9	42	73.4	40		BYPASSE	۵	SEPARATOR		STARTED METERING		WATER RAFE	АТ	TPNK.		***	53	0 2
10.15	363.1	1107.9	42	76.4	40						992			•		m	0	 7)
11.15	363.2	107		75.6	40						1053 046				0	ب ب	c	۲	o V
12.15	4	108	42	75.7	40						1007				0		>	4	
12.45 12.15		2108.0	41	75.2	40						977 7001				0	3.0	0	ر د	C 7
13.18	•		• • •) F		SHUT IN	N WELL	FOR	BUILD-U	<u>م</u>							4	
						•	٩	·····											
	Remarks		* Flo	Flopetrol	ol dauge	SDP	82009 at		2912.50m.										inisiane e grog
				4															
																			5. 5. 17. ¹

.

Well 34/10-17

1

DST no

LAYOUT OF TEST-STRING

CHP/PG Perfs 29

Perfs 2934 - 2944 m Zone tested BRENT

TEST-STRING	ID inch	OD inch	LENGTH m	DEPTH mRKB
OTIS STT w/X-0 4 3/8" B x $3\frac{1}{2}$ " TDS PIN				
TOP FIRST JOINT TUBING				- 7.04
1 JT. 3 ¹ / ₂ TDS TBG. 12.7 LBS/FT L-80	2.75	3.50	9.45	2.41
J JT. "	".	"	8.93	11.34
X/O $3\frac{1}{2}$ TDS BOX x $4\frac{1}{2}$ ACME PIN	2.80	6.00	0.34	11.68
OTIS LUBRICATOR VALVE	3.00	13/10.75	1.61	13.29
X/O 4 ¹ / ₂ ACME PIN x 3 ¹ / ₂ TDS PIN	2.80	6.00	0.38	13.67
5 STANDS 31 TDS TBG	2.75	3.50	137.88	151.55
PUPJOINT 3 ¹ / ₂ TDS	"	11	2.02	153.57
X/O $3\frac{1}{2}$ TDS BOX x $4\frac{1}{2}$ ACME PIN	2.80	6.00		153.78
OTIS SSTT	3.00	13.00		155.56
SLICK JOINT 3 ¹ / ₂ TDS	2.25	3.50	2.23	157.79
TOP 18 3/4" WELLHEAD AT 158 M				-
FLUTED HANGER	3.00	12.00	0.30	158.09
X/O $4\frac{1}{2}$ ACME PIN x $3\frac{1}{2}$ TDS PIN	2.80	6.00	0.44	
PUP JOINT 31 TDS	2.75	'3.50	3.21	161.74
269 JOINTS (89 STANDS + 2 SINGLE) $3\frac{1}{2}$ TDS	"		1	2653.37
X/O $3\frac{1}{2}$ TDS BOX x $3\frac{1}{2}$ " IF PIN	2.75	4.50	0.56	2653.93
SLIP JOINT (OPEN)	2.25	5.00	5.54	2659.47
SLIP JOINT (CLOSED)	2.25	5.00		2663.49
5 STDS + 2 SINGLES DRILL COLLARS	2.25	4.75		2815.11
RTTS MECH. CIRC VALVE	2.25	4.625		2816.01
1 STD DRILL COLLARS		4.75		2844.44
SLIP JOINT (CLOSED) SLIP JOINT (CLOSED)		5.00		2848.46
1 STD DRILL COLLARS		5.00	1	2852.48
APR-MSAFETY/CIRC VALVE		4.75		2880.91
DRILL PIPE TESTER VALVE		5.00		2883.21
LPR-N TESTER VALVE		5.00	£	2884.67
FUL FLO HYD. BYPASS		4.625		2889.77
BIG JOHN JAR		4.625		2891.88
RTTS SAFETY JOINT	2.44	5.00	0.95	2893.47 2894.42
RTTS PACKER (ABOVE)	2.44	5.75	0.56	2894.98
RTTS " (BELOW)	1	5.75	0.82	2895.80
PERF. 27/8" FULL EUE JNT (PINUP)	2.44	2.88	9.45	2905.25
X/O = 27/8" EUE PIN x 2 3/8" EUE BOX	2.00	3.25	0.25	2905.25
OTIS "XN"- NIPPLE (PIN X PIN)	1.79	3.25	0.25	2905.75
2 3/8" EUE COLLAR	2.00	2.38	0.14	2905.89
X/O 2 3/8" EUE PIN x 2 7/8" EUE PIN	2.44	4.15	0.14	2906.07
2 7/8" EUE FULL JOINT	2.44	2.88	9.44	2915.51
S.O.S. DST HANGER	_		-	2515.51
2 7/8" EUE FULL JOINT BULL PLUG W/CROSS 2 7/8" EUE BOX	3.44	3.88	8.35	2924 86
BULL PLUG W/(CROSS 2 7/8" EUE BOX	12:44	13:25	0.15	3334-86

Remarks.

All measurements to bottom of each item.

Well 34/10-17	GAUGE ARRANGEMENT	
DST no. 1		Perfs.: 2934-44m Zone tested BRENT
531 IIQ. T		BRENT
		•
	WIRELINE NIPPLE at 2905.75	mRKB
	Gauge type and number: Sperry Sun MK	III 0151
	Depth, pressure elemement : 2908.78 m	Range : 0 - 690 baj
	Mode: 2 min	Delay, 17 hrs
	Actuated : time 13.13	date : 31.05.83
	Will run out, time 14.13	date , 03.06.83
	Gauge type and number: Flopetrol DSP	
	Depth, pressure elemement : 2912.50m	Range : 0~690 bar
	Mode: 30 sec.	· Detay, 17 hrs
	Actuated : time 13.12	date: 31.05.83
	Will run out i time	date 1
	Gauge type and number :	
	Depth, pressure elemement :	Range :
	Mode :	Delay ı
	Actuated : time	date :
	Will run out ; time	date 1
	D.S.T. HANGER at 2915.	75 _{т в кв}
		TTT 0100
	Gauge type and number: Sperry Sun MK	
	Depth, pressure elemement : 2918.64m	Range;0+690 bar
	Mode: 2 min	Dekay, 17 hrs
	Actuated : time 1.3.07	date: 31.05.83
	Will run out ı time 14.07	date : 03.06.83
	Course turns and sumber . Charry Curn MK	TTT 0230
	Gauge type and number: Sperry Sun MK Depth, pressure elemement: 2921.62 m	Range: 0-690 bar
	Mode: 4 min	Delay, 17 hrs
	Actuated : time 13.04	date: 31.05.83
LJ	Will run out i time 22.04	date 1 05.06.83
	Gauge tupe and sumber -	
	Gauge type and number :	Dagas
	Depth, pressure elemement :	Range :
	Mode :	Delay 1
	Actuated : time	date :
	Will run out : time	date 1

-

Weli	34/10-17
DST no	1

CHP/PG Perfs.: <u>2934-44m</u> Zone tested BRENT

SEPARATOR SAMPLES (NONE)

Time/date	Sample no.	Type of sample	Transfer time	Bottle no

BOTTOM HOLE SAMPLES (NONE)

Time/date	Sample depth mRKB	Estimated PB bar/°C	Transfering pressure(bar)	Bottle no
		•		

WELLHEAD SAMPLES

Time/date	Sampling point	Sampling equipment	Remarks
	-	2 x 251 Plastic cans	Water
		10 x 11 Plastic bottles	Water

6.3 DST No. 2, Performance and Analysis

6.3.1 Results of the Analysis

The following results are obtained from the test:

Reservoir pressure: 408 bar at 2885 mRKB (mid. perf.)

Reservoir temperature: 106^oC

Produced reservoir fluid: Oil with associated gas at a ratio of 245 Sm³ gas per Sm³ oil.

Permeability: 2000 md

Skin: A skin factor of 23 corresponding to a pressure loss of 4.9 bar. Total drawdown was 6.8 bar (for the highest flow rate).

No boundary effects are seen.

6.3.2 Comments on the Test Analysis

The test was evaluated using the conventional Horner analysis of the second and third shut in periods. The LPR-n valve did not close properly at the second shut in, and for the third shut in the well was shut in at the surface only. No significant wellbore storage effectes were, however, observed.

Drawdown analyses were not performed because of the data quality. The bottom hole pressure increased slightly during the flow periods indicating a continuous clean up of the well.

The bottom hole flowing pressure during the second flow period was about 1 bar below the bubble point pressure of 402 bar obtained in the laboratory. For the third flow period the flowing pressure was above the bubble point pressure. The small difference in the analysis results for the two build up periods indicate that no significant gas saturation can have developed in the reservoir during the second flow.

6.3.3 Data Input to the Analysis

Bottom hole pressure data from the pressure gauge SS0151 were selected for the analysis. The quality of these data seems to be good.

Average production rates for the last part of the flow periods are used in the analysis.

Oil viscosity and compressibility were taken from the PVT analysis report made on a bottom hole sample from this test (ref. 3). The oil formation volume factor was derived by simulating a 2 stage separation (test separator conditions), utilizing the results from the PVT analysis.

Connate water compressibility and formation compressibility were derived from standard correlations.

Porosity and saturation data were taken from the log analysis report (ref. 1).

The pressure gradient in the oil zone was taken from the FMT report (ref. 2) and the PVT report (ref. 3).

The formation thickness contributing to the test response has been estimated using the available core and log analyses data*. Low permeability zones are seen from 2869.85m to 2877.45m and from 2890.60m to 2891.95m. These zones are assumed to be laterally continuous.

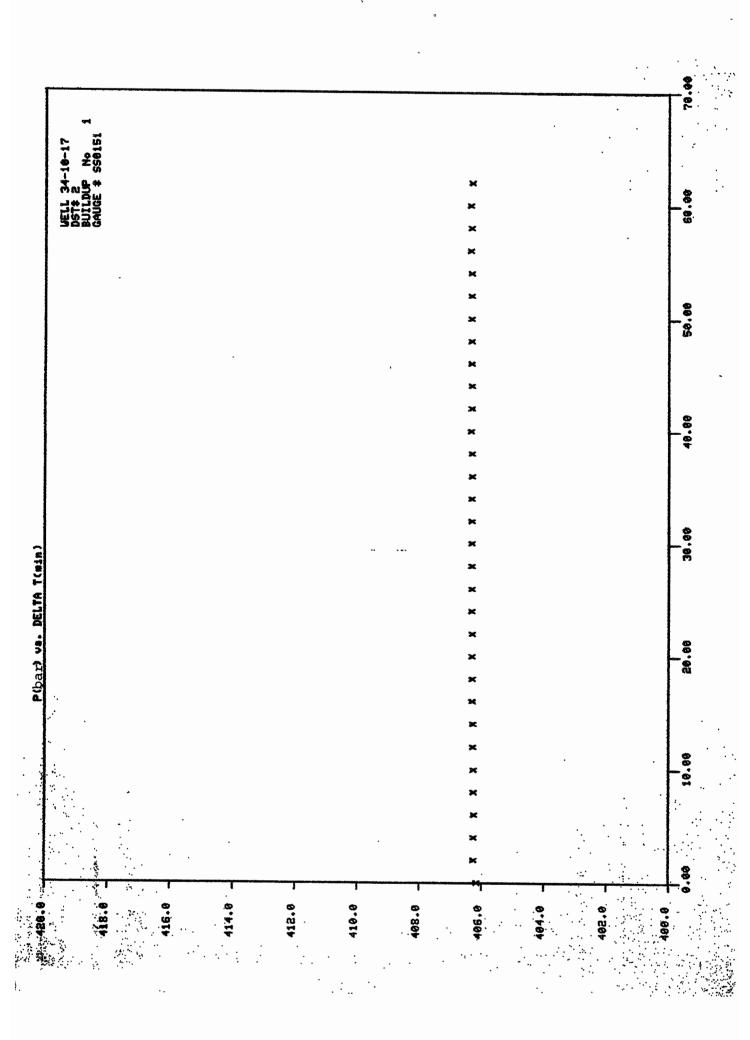
The thickness of the tested zone will therefore be 13.15 m (2877.45 to 2890.60m). The cement bond log shows a good bond from 2878m to 2904m (see Appendix 1). Because the very top of the permeable section is not covered with a good cement bond, there is a possibility that a permeable zone from 2864.35m to 2869.50m can have affected the test results.

Arithmetic average horizontal liquid permeability from the core analysis are as follows (for comparison with test derived permeability thickness):

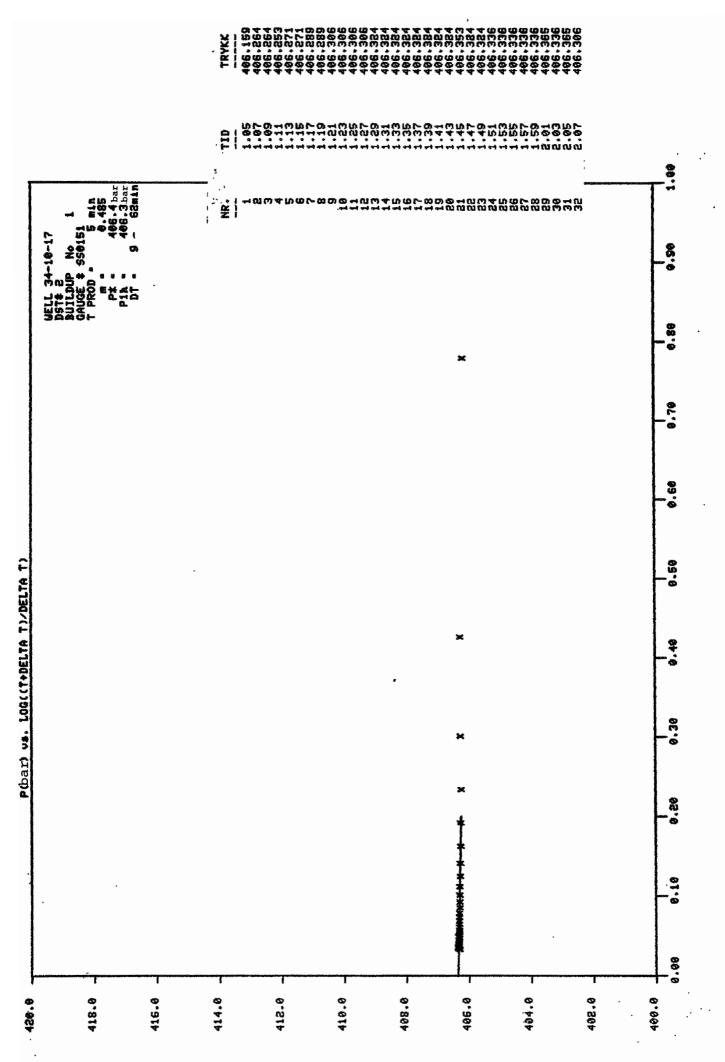
<u>Interval, m</u>	Thickness, m	avg. k _{hl} ,md	<u>k h, md m</u>
2877.45-90.60	13.15	2220	. 29200
2864.55-69.50	4.95	980	4800
Total:	18.10	1880	34000
2880-90 (perf.int	.) 10	2823	28200

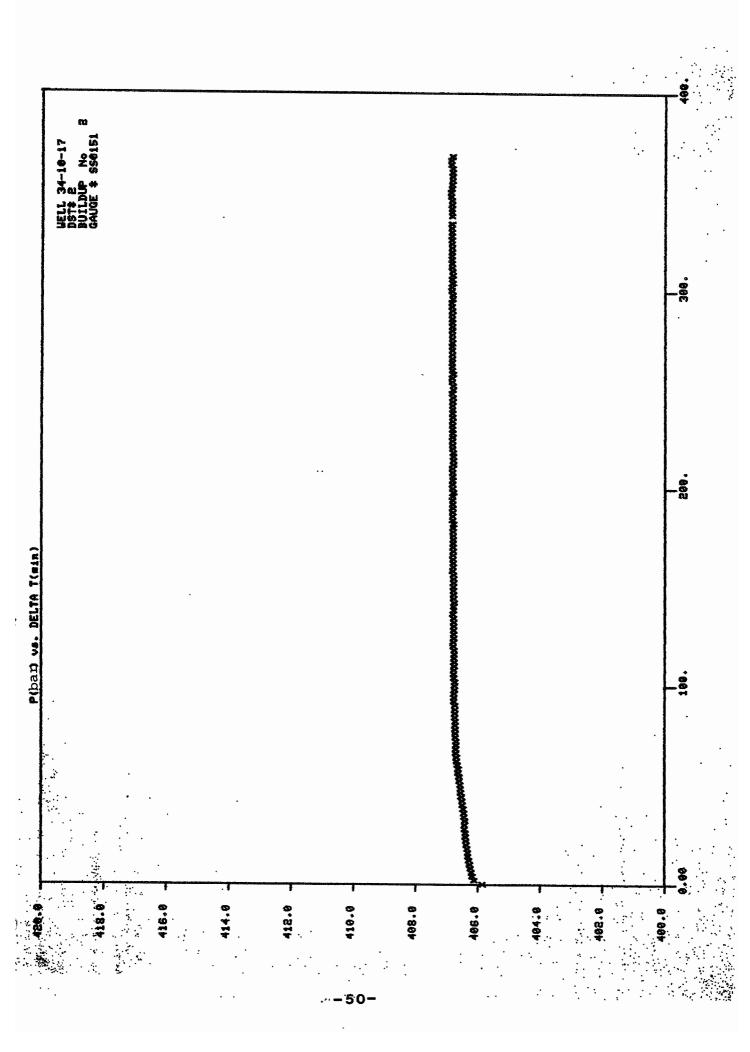
Test k h = 34800 md m (analysis of second build up) = 38200 md m (analysis of third build up)

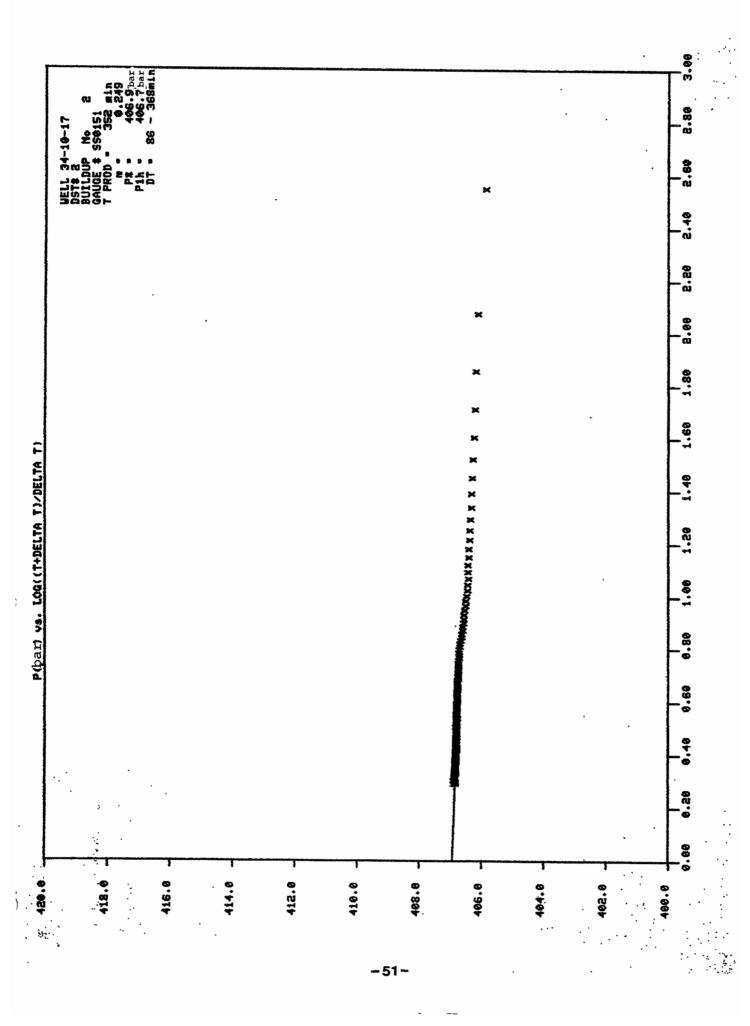
* Core depths are corrected to log depths.

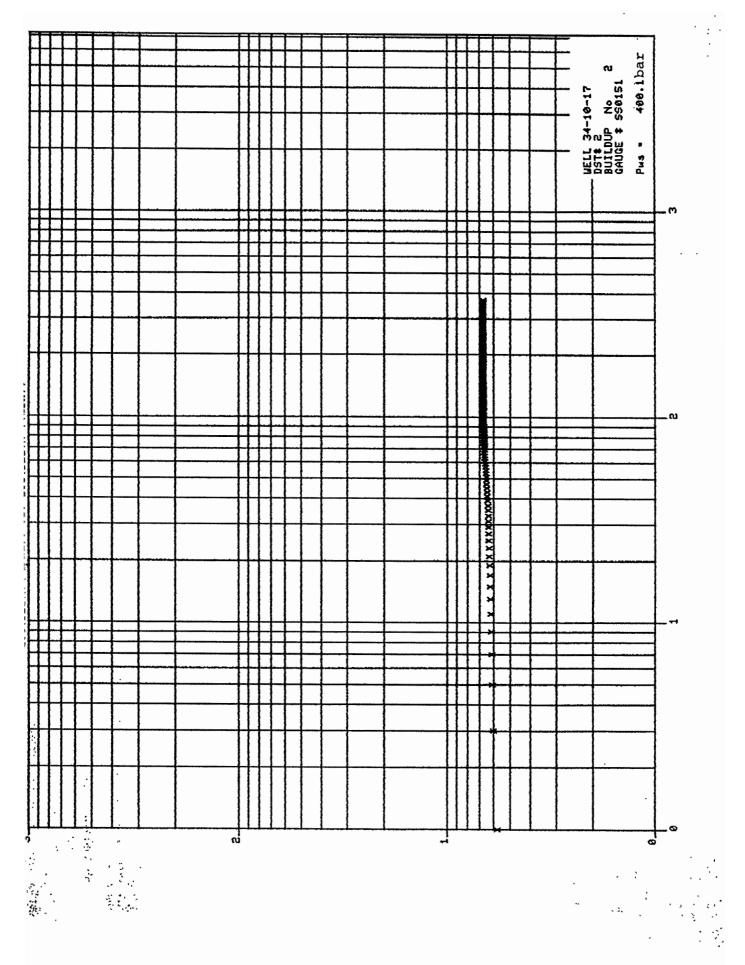

INPUT TO TEST ANALYSIS

Well no. <u>34/10-17</u> DST no. <u>2</u>	Test Date <u>07.06 - 08.06.83</u>
<u>Reservoir Parameters</u>	
Perforations <u>2880</u> – <u>2890</u> m RKB	Zone (s) <u>Ness</u>
	Wellbore radius <u>0.11</u> m
	RKB Elevm
Depth Mid.Perfs:	<u>2885</u> m RKB <u>2860</u> mSS
Pressure Gauge noSS_0151 Depth	<u>2858.8</u> m RKB <u>2833.8</u> m SS
Pressure Gradient: <u>0.058</u> bar/m	
Pressure Correction, Gauge to Mid. Perfs.: _	<u> 1.5</u> bar
	Res.m ³ /Sm ³ Viscosity_ <u>0.273</u> cp
Thickness <u>18.1</u> m	Porosity23.1%
Oil Saturation <u>68.5</u> %	Oil Compressibility <u>298</u> 10 ⁻⁶ bar ⁻¹
	Water Compressibility4310 ⁻⁶ bar ^{_1}
	Gas CompressibilityIO ⁻⁶ bar ⁻¹
	Formation Compressibility5010- ⁶ bar- ¹
System Compressibility $C_t = S_0 C_0 + S_y$ $C_t = 0.685x 298 10^{-6} + 0.315x - C_t = 268 10^{-6} bar^{-1}$	v ^C w ⁺ ^S g ^C g ^{+ C} f <u>43</u> 10 ⁻⁶ + <u>0</u> x 10 ⁻⁶ + <u>50</u> 10 ⁻⁶
Flow Data: Flow Period no2	
Choke <u>48</u> / <u>64</u> inches Oil Rate _	<u>782Sm³/D Gas Rate_192000_</u> Sm³/D
Ptfbar Water Rate	
	85 Gas Spec. Grav0.744
Cumulative Production Oil	Sm ³ Gas Sm ³
Water	
	em) = qg + qo Vsc = Sm ³ /D


Horner Analysis Well no. 34/10-17 DST no. _____2 Build Up no. 2 Gauge no. _____SS 0151 Test Date 07.06 - 08.06.83 Effective Production Time tp = Cumulative Production / Last Rate tp = ______ = ____5.9 · Straight Line Starts at _____hrs Slope: m = 0.249 _____bar/cycle Pwf = ___400_1_____bar P_1hr ___406_7____bar P*___406_9_____bar Estimated Reservoir Pressure (P*) at Mid. Perfs. (2860 mSS): <u>408.4</u> bar Permeability: $Kh = \frac{21.49 q Bu}{m} = \frac{21.49 \cdot 782 \cdot 1.89 \cdot 0.273}{34820} m d.m$ 0.249 K = Kh/h = _____34820 /_____18_1 = ____1900 md. Skin: S = 1.1513 $\left[\frac{P \ln r - P w f}{m} \right] + Log \left[\frac{tp + l}{tp} \right] - Log \left[\frac{K}{\varrho_{\mu} Ct r w^{2}} \right] + 3.098 \right]$ S = I.1513 $\begin{bmatrix} 406.7 - 400.1 \\ 0.249 \end{bmatrix} + Log \begin{bmatrix} 5.9 + 1 \\ 5.9 \end{bmatrix} - Log \begin{bmatrix} 1900 \\ 0.231 \cdot 0.273 \cdot 268 \times 10^{-6} \cdot 0.1 \end{bmatrix}_{2}^{2} 3.098$ S = ______ For the Previous Flow Period: $\Delta Ps = \frac{18.665 \cdot q B \mu}{kh} \quad S = \frac{18.665 \cdot 782 \cdot 1.89 \cdot 0.273 \cdot 23}{34820} = \frac{4.9}{bar}$ 34820 $\Delta Pdd = P^* - Pwf = \underline{6.8}$ bar Skin as Fraction of Total Drawdown: $\frac{\Delta Ps}{\Delta Pdd} = \frac{0.72}{0.72}$

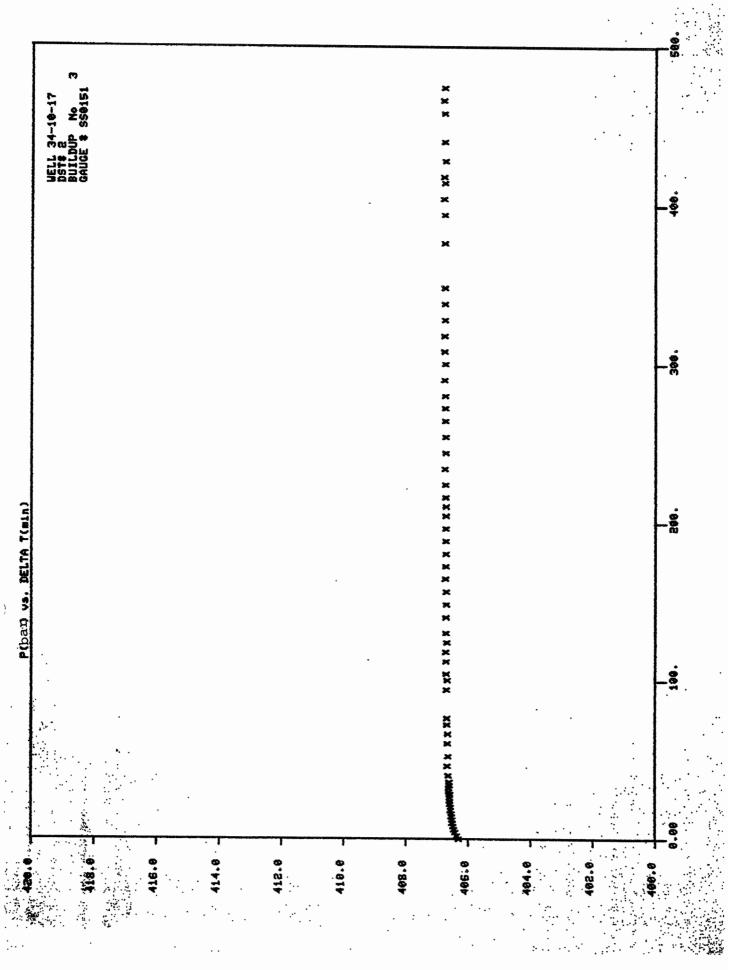

INPUT TO TEST ANALYSIS			
Well no34/10-17 DST no2	Test Date 07.06 - 08.06.83		
Reservoir Parameters As for Flow Period	no.2		
Perforationsm RKB	Zone (s)		
	Wellbore radius m		
	RKB Elev m		
Depth Mid.Perfs:	m RKBmSS		
Pressure Gauge no Depth	m RKB m SS		
Pressure Gradient:bar/m			
Pressure Correction, Gauge to Mid. Perfs.:	_ bar		
Formation Volume FactorRes.m ³ /Sm	3 Viscositycp		
Thicknessm Porosity	·%		
Oil Saturation% Oil Compres	sibility 10 ⁻⁶ bar -1		
Water Saturation% Water Comp	ressibility10 ⁻⁶ bar ⁻¹		
	ssibility10-6 bar-1		
Formation Co	mpressibilityIO ⁻⁶ bar ^{_1}		
System Compressibility $C_{f} = S_{o}C_{o} + S_{w}C_{w} + S_{g}C_{g} + C_{f}$			
C ^t =x 10 ^{-e} +x 10 ^{-e}	×10 ^{_6} +10 ⁻⁶		
C _t = 10 ⁻⁶ bar ⁻¹			
Flow Data: Flow Period no3			
Choke <u>28</u> / <u>64</u> inches Oil Rate <u>545</u>	Sm ³ /D Gas Rate <u>134000</u> _Sm ³ /D		
Ptfbar Water Rate0	Sm ³ / D GOR <u>246</u> Sm ³ /Sm ³		
Oil Spec. Grav. 0.85	Gas Spec. Grav. 0.738		
<u>Cumulative Production</u> OilSm ³	Ga s Sm ³		
Water Sm ³			
Equivalent Gas Rate (Gas/Cond System) = qg +	qo Vsc = Sm ³ /D		

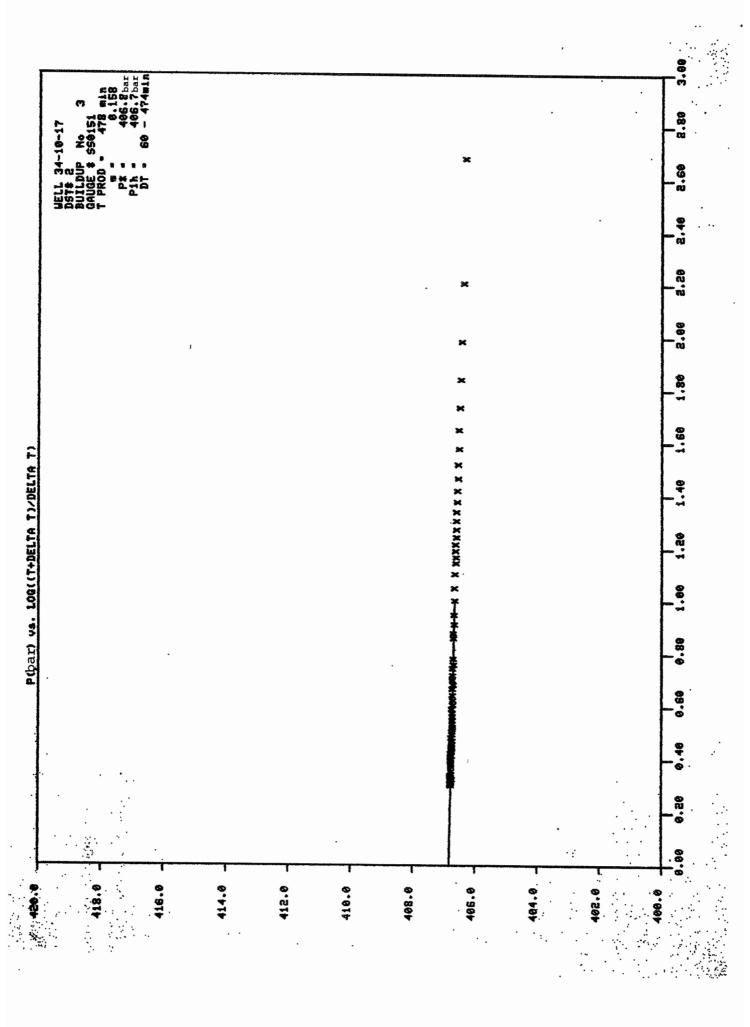

Horner Analysis Well no. <u>34/10-17</u> DST no. ____ Build Up no. 3 Gauge no. ______SS 0151 Test Date 07.06 - 08.06.83 Effective Production Time tp = Cumulative Production / Last Rate Straight Line Starts at <u>1.0</u> hrs Slope: <u>m = 0.158</u> bar/cycle Pwf = _______ bar P_1hr ______ bar P*______ bar p*______ bar Estimated Reservoir Pressure (P*) at Mid. Perfs. (2860 mSS): <u>408.3</u> bar Permeability: $Kh = \frac{21.49 \,q \,Bu}{m} = \frac{21.49 \cdot 545 \cdot 1.89 \cdot 0.273}{0.158} = \frac{38250}{m} \,md.m$ $K = Kh/h = ____38250$ / _____18.1 = ___2100 md. Skin: S = 1.1513 $\left[\frac{P \ln r - P w f}{m}\right] + Log \left[\frac{t p + 1}{t p}\right] - Log \left[\frac{K}{\rho_{11} C + r w^2}\right] + 3.098$ S = 1.1513 $\begin{bmatrix} 406.7 - 402.6 \\ 0.158 \end{bmatrix} + \log \begin{bmatrix} 8.0+1 \\ 8.0 \end{bmatrix} - \log \begin{bmatrix} 2100 \\ 0.231 \cdot 0.273 \cdot 268 \times 10^6 \cdot 0.12 \end{bmatrix} + 3.098$ S = _____22____ For the Previous Flow Period: $\Delta Ps = \frac{18.665 \cdot q B \mu}{kb} \quad S = \frac{18.665 \cdot 545 \cdot 1.89 \cdot 0.273 \cdot 22}{b m} = 3.0 \text{ bar}$ 38250 $\Delta Pdd = P^* - Pwf = 4.2$ bar Skin as Fraction of Total Drawdown: $\frac{\Delta Ps}{\Delta Pdd} = \frac{0.71}{0.71}$



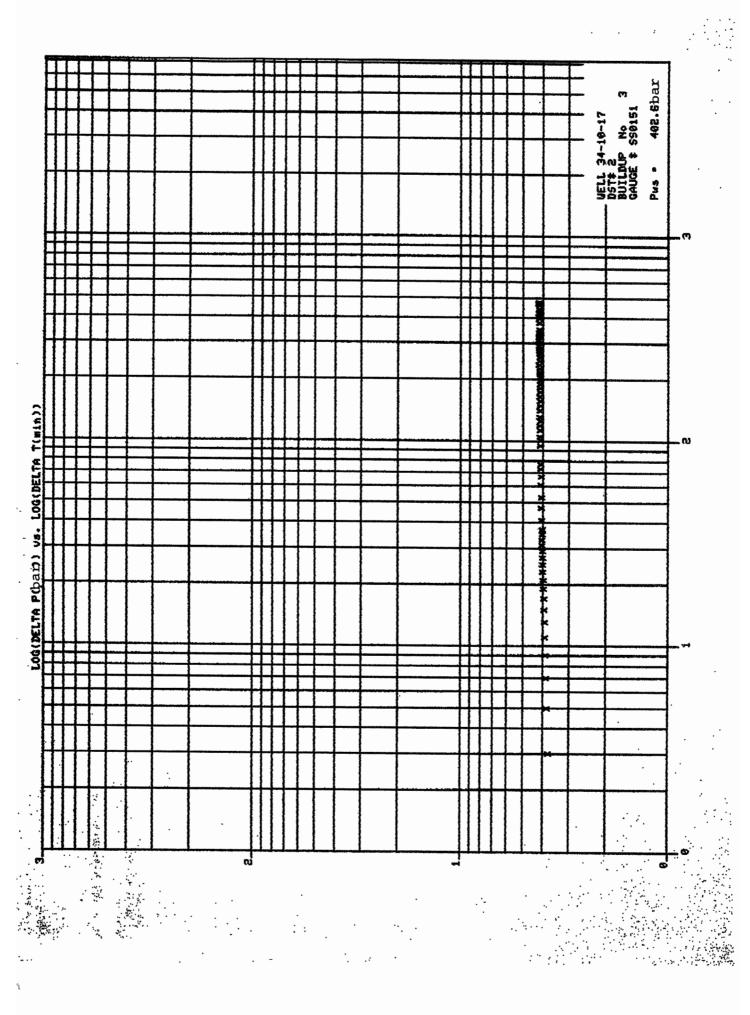
- 48 -

-52-


~	404400	00000000000000000000000000000000000000	0001000 0001000	40000 000000	~00000 00+00	88888	2000-19	0-1441		59
TRYK	00000 00000 00000 00000 00000 000000 0000								00000000000000000000000000000000000000	¢6.8
	****		***	****	* * * * * *	*****	****	• • • .•.		4
								·.		
	100000-				1000 000 000			1001		10
					000000	,	, ססס מ	1990	4444444 9990044	7
.	·	•			· .		•			
3 8 2 2			າ 🖛 ເກ ເດ 🧠 ເດ		10.958	82282	1985-	2221	<u>007001:00</u>	2


.

.


-53-

- -

-55-

-56-

	46000-0-0
x x	00000000000000000000000000000000000000

	20220000000000000000000000000000000000
	N N N N
₩₩₩ ₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	IJ <u>₽</u> ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽

>

8

ຑຑໟຏຏຏຎຏຎຨ຺ຨ຺ຨ຺ຏຎຎຎຎຎຨ ໟ຺ຬຬ຺ຬຬຬຬຬຎຬຬຬຬຬຬຬຬຬຬຬຬ ຺຺

COMPARISON OF RESULTS OBTAINED FROM ALL GAUGES

.

ł

ļ

WELL no.: 34/10-17

DST no.: 2

	Selec	Selected Gauge	ıge			Other Gauges	Gauges		
Gauge no.:	ũ	SS 0151		ß	SDP 82009		ß	SDP 82020	0
Build Up no.:	Г	7	£	г	7	m	Ч	2	m
Data Quality: G	Good	Good	Good	Quest.	Goođ	Fair	N/A	Quest, Quest,	Quest.
Horner Slope,bar/cycle:	0.485	0.249	0.158	3.184	0.169	0.169 0.119		0.071	0.074
Permeability, md:		1900	2100		3100	2800		7400	4500
<pre>p* Corrected to mid perf., bar:</pre>	407.9	408.4	408.3	408.1	408.1	408.1 408.0		407.8	407.7

-

- 58 -

• - ·

.

.

Well 34	/10-17		CHP/PG			
DST no	. 🤈	DIARY OF EVENTS	Perfs.: 2880-90 mRKB Zone tested BRENT			
	2		ZONG RESIEC BRENT			
1983 Date	Time	OPERATIONS				
		PERFORATING				
05.06	23.00	Rigged up Dresser Atlas.				
06.06	02.00 02.50	Ran CBL/VDL, cement O.K. RIH w/perforating gun. Perforated 2880 - 90 mRKB (ref. De 4 sh/ft, 120° phasing. Out of hole, all 120 shots fired.	ensity-Neutron log)			
		TEST STRING				
07.06	03.20 03.30 03.50 04.00 23.00 00.30 00.39 00.52	Started to run in hole with tail p Installed gauges in DST-hanger Installed gauges in XN-nipple. RIH with Halliburton BHA and tubin Started pressure testing surface of Finished pressure testing. Sat packer Closed MPR	ıg.			
		INITIAL FLOW/BUILD-UP				
	00.50 00.58 01.03	Opened choke manifold on 32/64" fixed choke. Flowed back 2.6 m ³ cushion to surge tank.				
		2.FLOW/BUILD-UP				
	02.06 02.09 02.18 02.19 02.25 02.48	Opened LPR-n valve. Opened choke manifold on 8/64" adj to 32/64" adj. in 2 min. Mud to surface, adj. choke plugged Changed to 32/64" fixed choke. Burner ignited Changed to 48/64" adj. choke.				
	02.57 03.37	Flowed through heater to increase separation (thick heavy oil).	temp. for better			
	03.40 04.29	Flowed through seaprator. Indication on surface pressure that few minutes (annulus pressure dro				
Remark	Leak i Commun mudpum	n rig standpipe causing dropping an dication between mudpump no. 1 with up no. 2 to annulus. Shut of water as. Total of 11 m lost due to the	water to burner and pump and isolate			

•

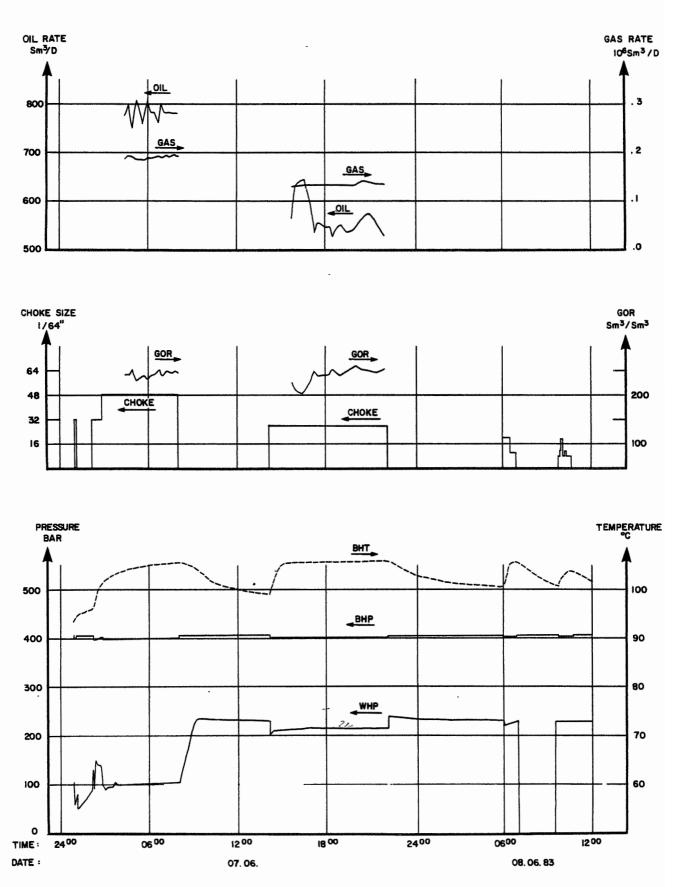
Well DST no	34/10-17 o. 2	DIARY OF EVENTS	CHP/PG Perfs.: 2880-90 mRKB Zone tested BRENT					
Date	Time	OPERATIONS						
07.06	04.45 05.15 08.01	Started to take first set of PVT-sa (one oil and one gas bottle) Finished sampling. Closed LPR-n valve and choke manifo up. (LPR-n valve leaking.)	-					
		THIRD FLOW/BUILD-UP						
	13.58	Started glycol injection to avoid a gas on top of teststring started to	-					
	14.06	Opened LPR-n valve. No response or						
	14.11	Opened choke manifold on $28/64$ " fix the flow through heater to burner 2 x 128/64").	ked choke. Directed					
	14.28	Stopped glycol injection.						
	1	Flowed through separator.						
	•	Started to take 2. set of separat	cor samples.					
	19.40	" 3. "	-					
	20.30	н 4. и						
	20.50	Separator conditions unstable, oil increased.	level and pressure					
	22.09	Closed choke manifold for surface shut-in.						
		BOTTOM HOLE SAMPLING						
08.06	06.00	Started glycol injection to avoid freezing.						
	06.04	Opened choke on 20/64" adj. choke.						
	06.32	Changed to 10/64" fixed choke.						
		Flowed to separator to tank. Estin	nated rate.					
		Closed choke manifold, surface pres						
	07.00	Closed lubricator valve. Bled off test O.K.	to 42 bar on choke,					
	07.18	Bled to zero pressure and closed ch Test O.K. Recut slick line twice.	noke manifold.					
	08.15	Started clocks on sample chambers	(2.5 hrs).					
	08.32	Opened swab valve to install sample						
	09.00	Flushed line and pressure up to equ						
		across lubricator valve, leaking in						
		Replaced O-ring seal.						
	09.15	Installed samplers again.						
	09.25	Increased surface pressure to 224 1	oar to equalize					
	1	pressure across the lubricator value	_					

Remarks :

.

-

	DIARY OF EVENTS	CHP/PG Perfs.: 2880 - 90m Zone tested BRENT
Time	OPERATIONS	
09.36 09.45 09.51 09.52 09.55 09.56 09.58 10.03 10.05 10.14	Opened lubricator valve and RIH with Opened choke manifold on 8/64" fixed Choke plugged (freezing due to gas) Changed to 12/64" adj. choke. Increased to 20/64" adj. Decreased to 10/64" adj. Changed to 8/64" fixed, plugged aga Back to 10/64" adj. Samplers at bottom (2831.6 m) Back to 8/64" fixed choke. Flowed to tank, estimated rate. Closed choke manifold. Samplers closing. Started to POOH with samplers. Closed lubricator. Bled off surface pressure to 35 ban manifold, test O.K. Bled to zero pressure, pull out sam (No leaks.)	ed choke. Ain. Through choke Aplers. Samplers O.K. Valve, equalize
s :		
		-
	Time 09.32 09.36 09.45 09.51 09.55 09.56 09.58 10.03 10.35 10.45 11.02 11.53 11.54 12.00 12.35	Yime OPERATIONS 09.32 Closed kill valve. 09.36 Opened lubricator valve and RIH with 09.36 Opened choke manifold on 3/64" fixed 09.37 Changed to 12/64" adj. 09.38 Changed to 12/64" adj. 09.39 Enarged to 20/64" adj. 09.50 Increased to 20/64" adj. 09.51 Increased to 20/64" adj. 09.52 Changed to 8/64" fixed, plugged aga 10.35 Changed to 8/64" fixed choke. 10.05 Samplers at bottom (2831.6 m) 10.14 Back to 8/64" fixed choke. Flowed to tank, estimated rate. 10.35 Closed choke manifold. Samplers closing. 11.02 Started to POOH with samplers. 11.53 Closed lubricator. 11.54 Bled off surface pressure to 35 bar manifold, test 0.K. 12.00 12.35 Closed choke manifold, opened kill pressure across lubricator valve. 12.39 Opened lubricator valve and started mud. END OF TEST


.

-

.

--

FLOW, CHOKE, PRESSURE AND TEMPERATURE DIAGRAM

}

3

STL. 31.10.83.

.

-

.

,]										0		
		Well	34/10-17	-17							< + < C				Darfe	1	00.00	
		DST	По. 2							FLOW	FLOW DAIA				Zone	test	2880-90m ed BRENT	
1 98 7]										-1							
	Bottom hole		Well head	be	Chokes	1/64"				Separator	or data				Liq. and	gas	analysis	
time 07.06	press. te bar °	emp °C	press temp. bar °C	1	manifold	heater	press. bar	°C 1	gasrate 10 ³ Sm³∕ð	oil rate Sm ³ /D	GOR Sm ³ /Sm3	sp.gr.o i l	sp.gr.gas (Air=1)	Water %	Sedim. %	c02 %	H ₂ S ppm	
	*	*																
	SECOND	FLOW	W PERIOD	:OD:														
02.09					ω		OPENED	WELL	FOR CL	EAN UP	L FOR CLEAN UP ON 8/64"	ADJ.	CHOKE.					u
1	-10-	96.2	78.61	· •	32		сн. т	32/	(64" ADJ									
.18	99.5	0		3.3	32		RATHOLE		MUD TO SURFACE	REACE								
.19	102.2 9	Q	45	2.7	32		•			ត្ត								
.48	400.9101	2	39.72	9.6	48					•				0	г			
	396.81UL	5	78.98	2.2	48		CH. TO	148/0							l			
03.40 8	1011 103		105.988.	8.7	48		SWITCHED FLOW		TOW THROUGH		SEPARATOR				Trace	C F	 С	
		5 7			40			<u>ч</u> г	C 201	799 5	2.252	0 853	0 744			2.		
	400.1104	04.51	02.345.8	. 8	48		ათ	24.2	189.9	749.8	253.3	0.847			*			
	400.2104.	04.\$103.		0.4	48		н	2	186.3	808.2	230.5							
	400.2104.	.2104.7103.	-	1.4	48		_	<u>.</u>	184.9	784.8	235.6	0.847	0.744			6.0	0.7	- 17 4 ₂
	400.310	04.81		1.0	48			.1	184.3	756.8	240.7							
		3104.9103	03.4	1.8	48		4.	m (188.1	806.8	233.1	0.852	0.744					
		05.01	03.7	4.7	48		d .		L87.5	701.04	239.4							
		Т. Т.	0.50	2.0	48		et u	٥	101 2	6.18/	242.8 JE1 6	U.84/	U. /44					
		1 1 1 1 1 1		ο α • υ	40		0.10	'nσ	7.161	803 B	0.102	0 848				6	0.7	
	100.5105.31	05.31	04.2	55.8	48		21.6		194.1	780.4	248.7							
	400.510	35.41	04.2	6.9	48		T	5	192.6	781.9	246.3	0.844						
	400.510	J5.\$1	04.3	6.4	48		5	8	193.7	779.0	248.6							
8	100.510	05 . 51	04.1	4.6	48			8	.4	781.9	247.7	0.847						
08.01							SHUT	IN WELL	FOR	BUILD-U	۵.							
	Remarks	s		1														
		* 1		5.	l gauge	SDP	82009 ⋷	at 287	2873.17 m.									
		ĸ	at	+ 														
_																		

-63 -

		1												_	_	_					-					Т			
																							- <u></u>		 				
2880-90m	BRENT		analysis	H ₂ S ppm			1.0			1.0	•			1.0			1.0		1.0		л.0				 				
	s		gas	- C0 %			1.0			1.0				6.0			6.0		6.0		6.0					1			
CHP/PG Perfs. :	Zone tested			Sedim. %					•					<u> </u>			<u> </u>		<u> </u>		<u> </u>				 				
				Water % S		c) <u> </u>	1	•														<u></u>		 				
				sp.gr.gas (Air=1)					062 0	0001.0		0.738							0.738				0./38	-	 				
				sp.gr.oil !		EJ								0.856					0.848				068.0		 				
DATA			data	GOR Sm ³ /Sm ³		IXED CHOKE.	208.7	205.7	204.0	225.8	248.4	239.6	242.2	242.7	242.7	252.7	239.6	248.9	261.2	50.5		247.3	2.4.2		 				
	LCW		Separator	oll rate Sm ³ /D		28/64" FIXED			æ		536.4 2			546.5 2							575.4				 				
				gas rate 1.0 ³ Sm ³ /d		۵ No	132.2	132.0	131.6	133.2	133.2	133.1	133.1	132.6	132.6	132.6	132.3	133.5	133.5	141.4	N/A	136.7	LL FOR						
				° C		ME	5			0 00	4		9	.2		6.		9	æ.	m,	٠	9	27.0 IN WE						
				press. bar			ი დ	9.	~ "			22.0					22.0				24.9		25.1 SHUT						
			1/64"	heater																						1			
			Chokes	manifold		28	28	28	28	87	28	28	28	28	28	28	28	28	28	28	28	28	28		 		٤		
34/10-17	2		Well head	press temp. bar °C	PER TOD:		240.8	743.1	1.141.1	345.9	346.0	145.6	246.8	_	146.4	1.146.4	549.3	448	548.4	20	£0	<u>с</u>	.949.4		 				
	-or		Well				213	213	214		214	214	214	214.1	214.1	8214	9214.	3214.4	9214.5	9214.	214	214	214		 				
Well	DST		Bottom hole	temp °C	D FLCW		3105.5	3105.5	9105.6	9 20 LD	3105.7	105.7	J105. 8	0105.E	3105 <i>£</i>	105.	0105.	9105.5	0105.	0105.	0105.5	0106.C	0106.0		 	Domarke	SYID		
				press. bar	THIRD	, , ,	402.5	402.5	402.5	402.0	402.5	402.5	403.0	403.0	403.0	402.9	403.0	402.5	403.0	403.0	403.0	403.0	403.(lier		
100 °C		1983	Date/	time 07.06		14.11	15.45 #02.9105.5	16.15	16.30402.9105.6	A 2010 2010 210 20 20 20 20 20 20 20 20 20 20 20 20 20	17.15402.9105.7	17.30402.9105.7	17.45	18.00403.0105.8	18.15	18.30	19.00403.0105.9214.	19.30	20.00403.0105.9214	20.30403.0105.9214	21.00403.0105.9	21.30403.0106.0	22,00						

,

-

Well 34/10-17			CHP/PG
	LAYOUT OF	TEST-STRING	Perfs 2880-90 m
DST no 2			Zone tested BRENT

TEST-STRING	ID inch	0D inch	LENGTH m	DEPTH mRKB
OTIS STT $W/O-OVER$ (4 3/8"B x $3\frac{1}{2}$ "TDS P)				
TOP FIRST JOINT TUBING				-7.04
JNT $3\frac{1}{2}$ " TDS TBG 12.7 LBS/FT L-80	2.75	3.50	9.45	
JNT 31 TDS TBG 12.7 LBS/FT L-80	2.75			
X-OVER $3\frac{1}{2}$ " TDS BOX x $4\frac{1}{2}$ " ACME PIN	2.80	6.00	0.34	11.68
OTIS LUBRICATOR VALVE	3.00	10.75	1.61	
X-OVER $4\frac{1}{2}$ " ACME PIN x $3\frac{1}{2}$ " TDS PIN	2.80	6.00		
5 stds 3 ¹ / ₂ TDS TBG	2.75	3.50	137.88	151.55
PUP JNT $3\frac{1}{2}$ " TDS	2.75	3.50	2.02	153.57
X-OVER $3\frac{1}{2}$ " TDS BOX $4\frac{1}{2}$ " ACME PIN	2.80	6.00	0.21	3 3
OTIS SSTT	3.00	13.00	1.78	
SLICK JUNT 3 ¹ / ₂ " TDS	2.25	3.50		157.79
TOP 18 3/4" WELLHEAD AT 158M				
FLUTED HANGER	3.00	12.00	0.30	158.09
X-OVER $4\frac{1}{2}$ " ACME PIN x $3\frac{1}{2}$ " TDS PIN	2.80	6.00	0.44	158.53
264 JNTS (88STDS) 3 ¹ / ₂ " TDS	2.75		2445.12	2603.65
X-OVER $3\frac{1}{2}$ " TDS BOX x $3\frac{1}{2}$ " IF PIN	2.75	4.50	0.56	2604.21
SLIP JNT (OPEN)	2.25	5.00	5.54	2609.75
SLIP JNT (CLOSED)	2.25	5.00	4.02	2613.77
5 STDS + SINGLE DRILL COLLAR	2.25	4.75	151.62	2765.39
RTTS MECHANICAL CIRC VALVE	2.25	4.625	0.90	2766.29
1 STD DRILL COLLARS	2.25	4.75	28.43	2794.72
1 SLIP JNT (CLOSED)	2.25	5.00	4.02	2798.74
SLIP JNT (CLOSED)	2.25	5.00	4.02	2802.76
1 STD DRILL COLLARS	2.25	4.75	28.43	2831.19
APR-M SAFETY/CIRCULATION VALVE	2.25	5.00	2.30	2833.49
DRILLPIPE TESTER VALVE	2.25	5.00	1.46	2834.95
LPR-N TESTER VALVE	2.25	4.625	5.10	2840.05
FUL FLO HYDRAULIC BYPASS	2,25	4.625	2.11	2842.16
BIG JOHN JAR	2.25	4.625	1.59	2843.75
RTTS SAFETY JOINT	2.44	5.00	0.95	2844.70
RTTS PACKER (ABOVE)	2.40	5.75	0.56	2845.26
RTTS PACKER (BELOW)	2.40	5.75	0.82	2846.08
PERF. 2 7/8" FULL EUE JNT (PIN UP)	2.44	2.88	9.45	2855.53
X-OVER 2 7/8" EUE PIN x 2 3/8" EUE BOX	2.00	3.25	0.25	2855.78
OTIS XN-NIPPLE (PIN x PIN)	1.79	3.25	0.25	2856.03
2 3/8" EUE COLLAR	2.00	2.38	0.14	2856.17
X-OVER 2 3/8" EUE PIN x 2 7/8" EUE PIN	2.44	4.15	0.18	2856.35
1 2 7/8" EUE FULL JOINT "	2.44	2.88	9.44	2865.79
S.O.S. DST-HANGER				
1 2 7/8" EUE FULL JOINT	2.44	2.88	9.35	2875.14
BULL-PLUG w/CROSS 2 7/8" EUE BOX	2.44	3.25	0.15	2875.29
		<u> </u>	l	1

Remarks.

1

100

All measurements to bottom of each item.

DST no. 2

GAUGE ARRANGEMENT

.

CHP/PG Perfs.: 2880-90 m Zone tested BRENT

		• .
	WIRELINE NIPPLE at 2855.78	mRKB
	Gauge type and number: Sperry Sun MK	III 0151
	Depth, pressure elemement : 2858.81	Range : 0-690 bar
	Mode: 2 mins	Delay, 17 hrs
	Actuated : time 3.52	date : 06.06.83
	Will run out : time 04.51	date, 09.06.83
	Gauge type and number: Flopetrol DSP	
	Depth, pressure elemement ; 2863.24	Range ; 0-690 bar
	Mode: 10 sec.	· Delay,24 hrs
	Actuated : time 3.40	date :06.06.83
	Will run out i time	date I
	Gauge type and number :	
	Depth, pressure elemement ;	Range :
	Mode :	Delay ı
	Actuated : time	date :
	Warun out : time	date i
·		
	D.S.T. HANGER at 2865.79	mRKB
	D.S.T. HANGER at 2865.79 Gauge type and number : Sperry Sun MK Depth, pressure elemement : 2868.68	
	Gauge type and number : Sperry Sun MK	III 0100
	Gauge type and number : Sperry Sun MK Depth, pressure elemement : 2868.68	III 0100 Range : 0-690 bar
	Gauge type and number: Sperry Sun MK Depth, pressure elemement: 2868.68 Mode: 4 mins	III 0100 Range : 0-690 bar Delay,17 hrs
	Gauge type and number: Sperry Sun MK Depth, pressure elemement: 2868.68 Mode: 4 mins Actuated: time 03.35 Will run out: time 12.35	III 0100 Range : 0-690 bar Delay,17 hrs date : 06.06.83 date : 11.06.83
	Gauge type and number: Sperry Sun MK Depth, pressure elemement: 2868.68 Mode: 4 mins Actuated: time 03.35 Will run out: time 12.35 Gauge type and number: Flopetrol SDP	<pre>III 0100</pre>
	Gauge type and number: Sperry Sun MK Depth, pressure elemement: 2868.68 Mode: 4 mins Actuated: time 03.35 Will run out: time 12.35 Gauge type and number: Flopetrol SDP Depth, pressure elemement: 2873.11	III 0100 Range : 0-690 bar Delay,17 hrs date : 06.06.83 date : 11.06.83 0 82009 Range : 0-690 bar
	Gauge type and number: Sperry Sun MK Depth, pressure elemement: 2868.68 Mode: 4 mins Actuated: time 03.35 Will run out: time 12.35 Gauge type and number: Flopetrol SDP Depth, pressure elemement: 2873.11 Mode: 30 sec.	III 0100 Range : 0-690 bar Delay.17 hrs date : 06.06.83 date : 11.06.83 0 82009 Range : 0-690 bar Delay. 16 hrs
	Gauge type and number: Sperry Sun MK Depth, pressure elemement: 2868.68 Mode: 4 mins Actuated: time 03.35 Will run out: time 12.35 Gauge type and number: Flopetrol SDP Depth, pressure elemement: 2873.11 Mode: 30 sec. Actuated: time 3.37	III 0100 Range : 0-690 bar Delay 17 hrs date : 06.06.83 date : 11.06.83 82009 Range : 0-690 bar Delay 16 hrs date : 06.06.83
	Gauge type and number: Sperry Sun MK Depth, pressure elemement: 2868.68 Mode: 4 mins Actuated: time 03.35 Will run out: time 12.35 Gauge type and number: Flopetrol SDP Depth, pressure elemement: 2873.11 Mode: 30 sec.	III 0100 Range : 0-690 bar Delay.17 hrs date : 06.06.83 date : 11.06.83 0 82009 Range : 0-690 bar Delay. 16 hrs
	Gauge type and number: Sperry Sun MK Depth, pressure elemement: 2868.68 Mode: 4 mins Actuated: time 03.35 Will run out: time 12.35 Gauge type and number: Flopetrol SDP Depth, pressure elemement: 2873.11 Mode: 30 sec. Actuated: time 3.37	III 0100 Range : 0-690 bar Delay 17 hrs date : 06.06.83 date : 11.06.83 82009 Range : 0-690 bar Delay 16 hrs date : 06.06.83
	Gauge type and number : Sperry Sun MK Depth, pressure elemement : 2868.68 Mode : 4 mins Actuated : time 03.35 Will run out : time 12.35 Gauge type and number : Flopetrol SDP Depth, pressure elemement : 2873.11 Mode : 30 sec. Actuated : time 3.37 Will run out : time	III 0100 Range : 0-690 bar Delay 17 hrs date : 06.06.83 date : 11.06.83 82009 Range : 0-690 bar Delay 16 hrs date : 06.06.83
	Gauge type and number : Sperry Sun MK Depth, pressure elemement : 2868.68 Mode : 4 mins Actuated : time 03.35 Will run out : time 12.35 Gauge type and number : Flopetrol SDP Depth, pressure elemement : 2873.11 Mode : 30 sec. Actuated : time 3.37 Will run out : time Gauge type and number :	III 0100 Range: 0-690 bar Delay:17 hrs date: 06.06.83 date: 11.06.83 0 82009 Range: 0-690 bar Delay: 16 hrs date: 06.06.83 date:
	Gauge type and number : Sperry Sun MK Depth, pressure elemement : 2868.68 Mode : 4 mins Actuated : time 03.35 Will run out : time 12.35 Gauge type and number : Flopetrol SDP Depth, pressure elemement : 2873.11 Mode : 30 sec. Actuated : time 3.37 Will run out : time Gauge type and number : Depth, pressure elemement :	<pre>III 0100</pre>
	Gauge type and number : Sperry Sun MK Depth, pressure elemement : 2868.68 Mode : 4 mins Actuated : time 03.35 Will run out : time 12.35 Gauge type and number : Flopetrol SDP Depth, pressure elemement : 2873.11 Mode : 30 sec. Actuated : time 3.37 Will run out : time Gauge type and number : Depth, pressure elemement ; Mode :	<pre>III 0100</pre>

SEPARATOR SAMPLES

Time/date	Sampie no.	Type of sample	Transfer time	Bottie no
07.06.83			mins	
04.45	1	Oil	20	SOS 108
04.45	2	Gas	20	SOS 1011
18.25	3	Oil	28	SOS 105
18.25	4	Gas	28	SOS 1002
19.40	5	Oil	30	810692
19.40	6	Gas	30	SOS 1022
20.30 20.30	7	Oil	35	810222
20.30	ð NOL B ON	Gas	35	'SOS 1014

BOTTOM HOLE SAMPLES

(One sample chamber contained only gas, - not representative)

Time/date	Sample depth mRKB	Estimated PB bar/°C	Transfering pressure(bar)	Bottie no
08.06.83				
10.45	2831.6	379/10	483	810698

WELLHEAD SAMPLES (NONE)

OTHER SAMPLES:

Time/date	Sampling point	Sampling equipment		Remarks
07.06.83				
07.15	Separato	r Glass-jar	2 x 1 1	Oil
07.15	"	Jerry-can	1 x 20 1	11
17.05	н	Glass-jar	1 x 1 l	11
17.20	n		**	n
18.00	n	"	97	11
18.10	n	11	17	"
17.25	11	Jerry-can	1 x 20 l	н
17.50	71	11	1 x 10 l	17
	11	Glass-jar	3 x 3 1	Water

-67-

6.4 DST No. 3, Performance and Analysis

6.4.1 Results of the Analysis

The following results are obtained from the test: Reservoir pressure: 405.5 bar at 2840 mRKB (mid.perf.) Reservoir temperature: 104⁰C Produced reservoir fluid: Gas with associated condensate

Produced reservoir fluid: Gas with associated condensate at a ratio of 1250 - 1400 Sm³ condensate per 10⁶Sm³ gas (or 720 - 800 Sm³ gas per Sm³ condensate).

Permeability: 570 md

Skin: Skin factor of 18 corresponding to a pressure loss of 3.8 bar for the highest flow rate (total drawdown was 5.6 bar) and a skin factor of 9 corresponding to a pressure loss of 1.6 bar for the lower flow rate (total drawdown was 3.1 bar). The increase of skin with increasing rate is due to turbulent flow.

No boundary effects are seen.

6.4.2 Comments to the Test Analysis

The test was evaluated using the conventional Horner analysis of the second and third shut in periods. No significant well bore storage effects were observed (the well was shut in downhole).

Drawdown analyses were not performed because of the data quality: Clean up disturbance during the second flow and very low pressure drawdown during the third flow period.

The reported producing gas oil ratio is somewhat higher for the low flow rate period than for the high flow rate period. This is believed to be due to inaccurate oil rate metering. No conclusion is made on which ratio is correct.

The test derived permeability thickness is significantly lower than the permeability thickness calculated from core data. This can be due to reduced permeability because of condensate drop out in the reservoir. The laboratory measured dew point pressure (375 bar) is lower than the DST no. 4 dew point (384 bar) and is not considered to be reliable.

6.4.3. Data Input to the Analysis

The bottom hole pressure data from the pressure gauge SS0181 were selected for the analysis. The quality of these data seems to be fairly good.

Average production rates for the last part of the flow periods are used in the analysis. An equivalent (total) gas rate was obtained by adding the condensate rate expressed as gas rate (for the given condensate gravity and separator pressure) to the gas rate.

The gas characteristics were taken from the PVT analysis report made on a recombined sample from this test (ref. 4).

Connate water compressibility and formation compressibility were derived from standard correlations.

Porosity and saturation data were taken from the log analysis report (ref. 1).

The pressure gradient in the gas zone was taken from the FMT report (ref. 2).

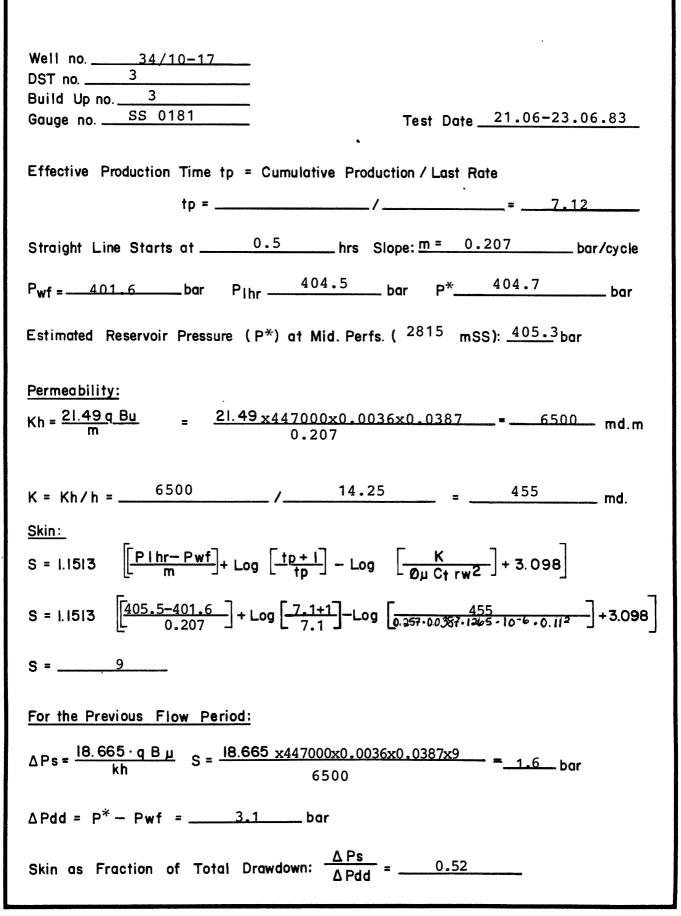
The formation thickness contributing to the test response has been estimated using the available core and log analyses data.* Low permeability zones are seen from 2823.6m to 2833.75m and from 2848.0m to 2864.2 m. These zones are assumed to be laterally continuous.

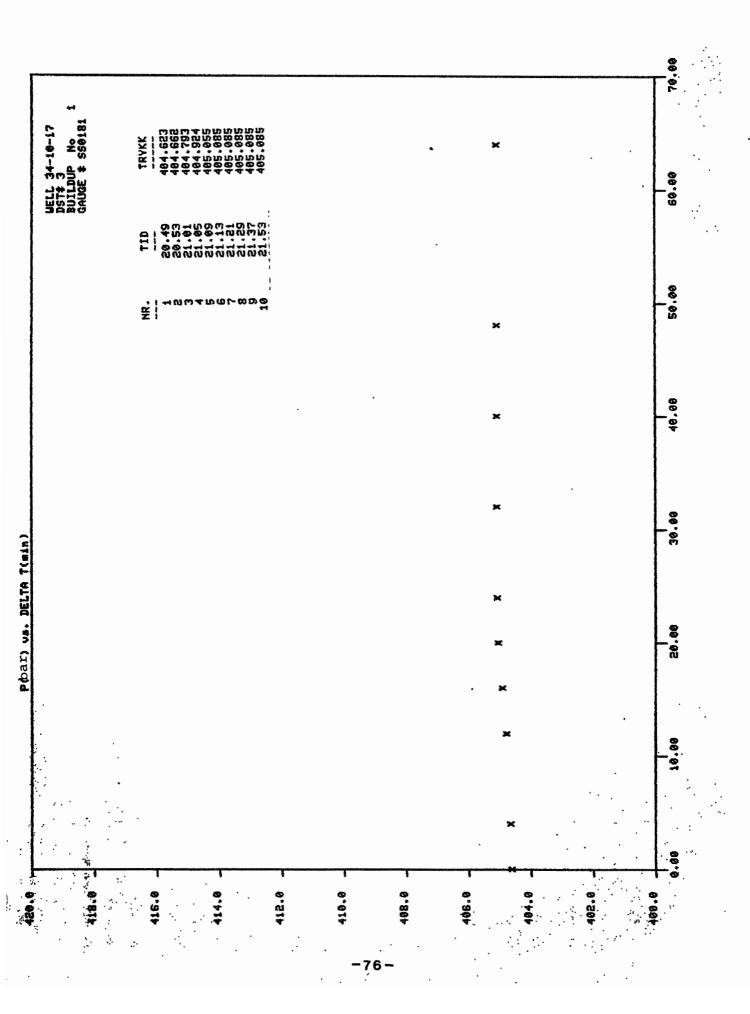
The thickness of the tested zone will therefore be 14.25m (2833.75m to 2848.0m). The cement bond log shows a good bond from 2813m to 2849m (see Appendix 1), eliminating "behind casing flow" from other zones.

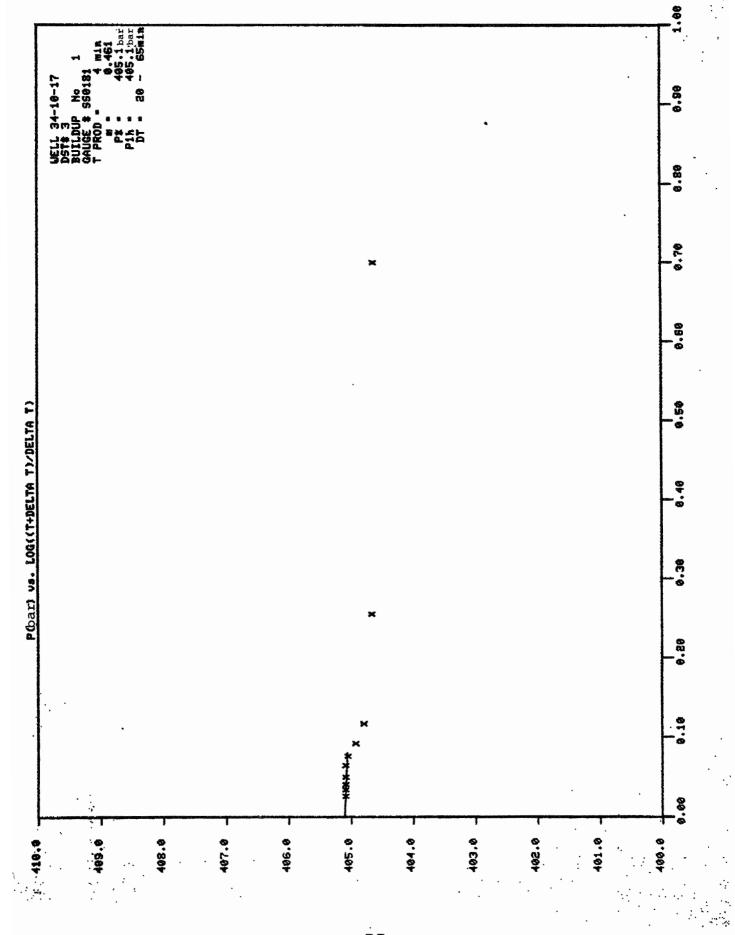
Arithmetic average horizontal liquid permeabilities from the core analysis are as follows (for comparison with test derived permeability thickness):

Interval, m	<u>Thic</u>	kness, m	avg.k	hl,md	<u>k h</u> ,	md m
2833.75-48.	0	14.25	385	50	55	5000
2835-45 (per	f.int.)	10	481	13	48	8100
Test k h =		n (analysis n (analysis				-

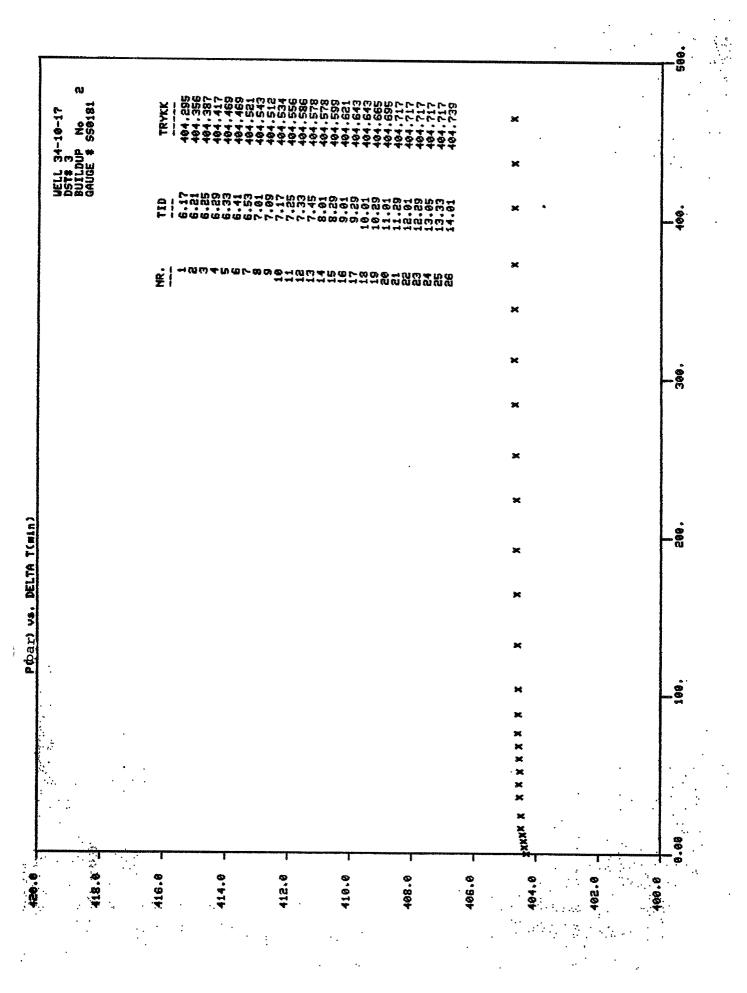
*Core depths are corrected to log depths.

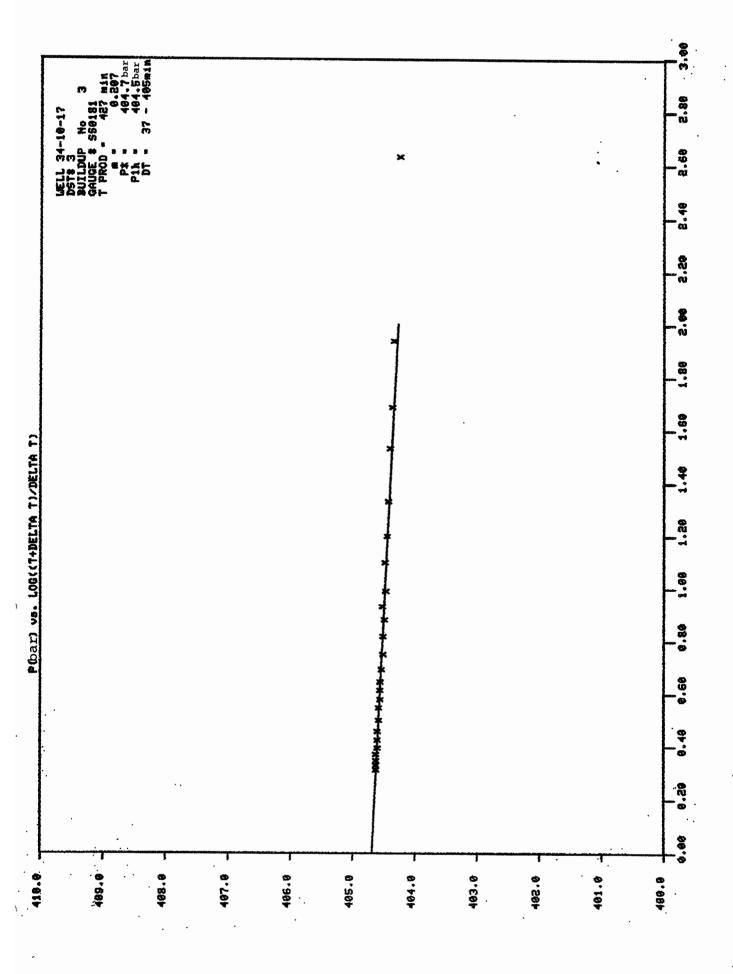

INPUT TO TEST AI (GAS / COND. SYS	
Well no. <u>34/10-17</u> DST no. <u>3</u>	Test Date <u>21.06-23.06.83</u>
Reservoir Parameters	
Perforations <u>2835-2845</u> m RKB	Zone(s) <u>Ness</u>
	Wellbore radius <u>0.11</u> m
	RKB Elev25 m
Depth Mid.Perfs:2840	_ m RKB2815mSS
Pressure Gauge no. <u>SS 0181</u> Depth <u>2825.9</u>	_ m RKB2800.9 m SS
Pressure Gradient: <u>0.041</u> bar/m	
Pressure Correction, Gauge to Mid. Perfs.:0,6	_ bar
Formation Volume Factor <u>0.0036</u> Res.m ³ /Sm	3 Viscosity0.0387cp
Thickness <u>14.25</u> m Porosity	0 <u>.257</u> %
	sibilityIO ⁻⁶ bar ^{_I}
	ressibility43IO ⁻⁶ bar ^{_1}
	ssibility <u>1400</u> 10 ⁻⁶ bar-1
Formation Co	mpressibility <u>49</u> IO ⁻⁶ bar ⁻¹
System Compressibility C _t = S _o C _o + S _w C _w + S _g C	n + C _f
$C_{f} = 0 \times 10^{-6} + 0.135 \times 43 \times 10^{-6} + 10^{-6}$	-
C _t = <u>1265</u> 10 ⁻⁶ bar ⁻¹	
Flow Data: Flow Period no. 2	
Choke <u>48</u> / <u>64</u> inches Cond. Rate <u>734</u>	
Ptfbar Water Rate0	Sm ³ / D GOR <u>722</u> Sm ³ /Sm ³
Cond. Spec. Grav. 0.802	Gas Spec. Grav. 0.720
Cumulative Production CondensateS	5m ³ GasSm ³
Water Sm ³	
Equívalent Gas Rate = qg + qc Vsc + qw · 7390 =_	<u>662000</u> Sm ³ /D


Horner Analysis
Well no. <u>34/10–17</u> DST no. <u>3</u> Build Up no. <u>2</u> Gauge no. <u>SS 0181</u> Test Date <u>21.06–23.6–83</u>
Effective Production Time tp = Cumulative Production / Last Rate tp = =
Straight Line Starts at0.5hrs Slope: <u>m = 0.245</u> bar/cycle
Pwf= <u>399.2</u> bar Plhr <u>404.6</u> bar P [*] <u>404.8</u> bar
Estimated Reservoir Pressure (P*) at Mid. Perfs. (2815 mSS): <u>405.4</u> bar
<u>Permeability:</u> Kh = <u>21.49 q Bu</u> = <u>21.49 x662000x0.0036x0.0387</u> = <u>8100</u> md.m
K = Kh/h = 8100 / 14.25 = 570 md.
$\frac{Skin:}{S = 1.1513} \left[\frac{P \ln r - P wf}{m} \right] + Log \left[\frac{tp + 1}{tp} \right] - Log \left[\frac{K}{0\mu Ct rw^2} \right] + 3.098 \right]$
S = 1.1513 $\begin{bmatrix} 404.6 - 399.2 \\ 0.245 \end{bmatrix} + \log \begin{bmatrix} 8.25+1 \\ 8.25 \end{bmatrix} - \log \begin{bmatrix} 570 \\ 0.257 \times 0.0387 \times 1265 \times 10^6 \times 0.2 \\ 1000 \times 10^6 \times 10^6 \end{bmatrix} + 23.098$
S =18
For the Previous Flow Period:
$\Delta Ps = \frac{18.665 \cdot q B \mu}{kh} S = \frac{18.665 \times 662000 \times 0.0036 \times 0.0387 \times 18}{8100} = \frac{3.8}{bar}$
$\Delta Pdd = P^* - Pwf =5.6$ bar
Skin as Fraction of Total Drawdown: $\Delta Pdd = -0.68$

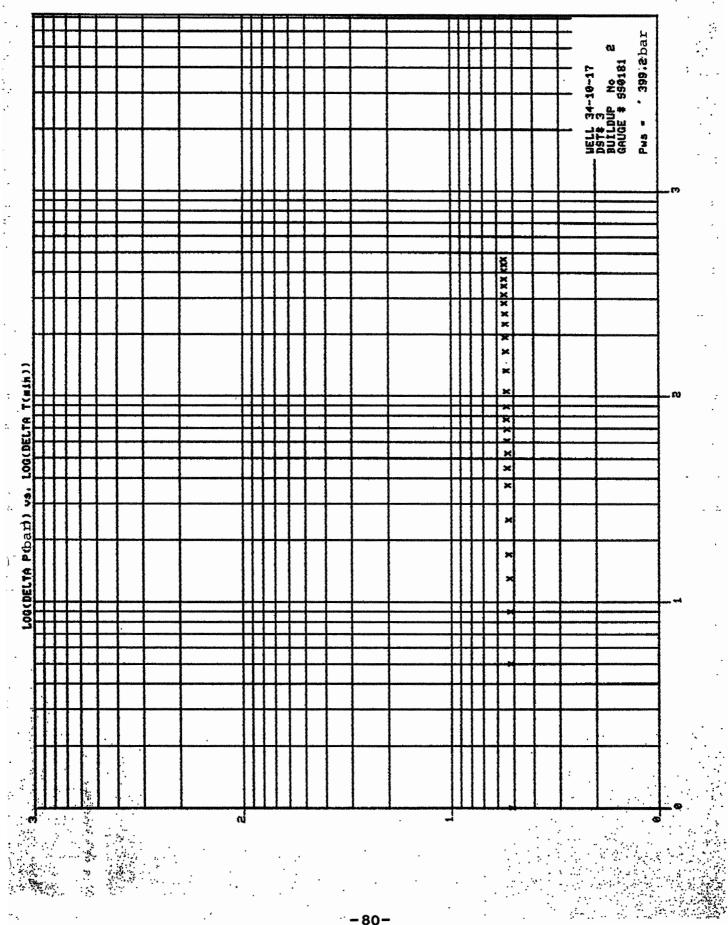

INPUT TO TEST AI (GAS / COND. SY	
Well no34/10-17	
DST no3	Test Date
Reservoir Parameters As for Flow Period	no. 2
Perforationsm RKB	Zone (s)
	Wellbore radiusm
······································	RKB Elev m
Depth Mid.Perfs:	m RKBmSS
Pressure Gauge no Depth	_ m RKB m SS
Pressure Gradient: bar/m	
Pressure Correction, Gauge to Mid. Perfs.:	_ bar
Formation Volume Factor Res.m ³ /Sm	3 Viscositycp
Thicknessm Porosity	%
	sibility 10 ⁻⁶ bar ⁻¹
	ressibility10 ⁻⁶ bar ⁻¹
Gas Saturation% Gas Compres	ssibility10 ⁻⁶ bar ⁻¹
	mpressibility10 ⁻⁶ bar ⁻¹
System Compressibility $C_t = S_0 C_0 + S_w C_w + S_g C_s$	-
$C_{\dagger} =x - 10^{-6} +x - 10^{-6}$	××10-°
C _t = 10 ⁻⁶ bar ⁻¹	
Flow Data: Flow Period no3	
Choke <u>32</u> / <u>64</u> inches Cond. Rate <u>452</u>	Sm ³ /D Gas Rate <u>364000</u> Sm ³ /D
Ptf247bar Water Rate0	Sm ³ / D GOR <u>805</u> Sm ³ /Sm ³
Cond. Spec. Grav. 0.777	Gas Spec. Grav. 0.715
Cumulative Production CondensateS	5m ³ GasSm ³
Water Sm ³	
Equivalent Gas Rate = qg + qc Vsc + qw · 7390 =_	<u>447000</u> Sm ³ /D

--

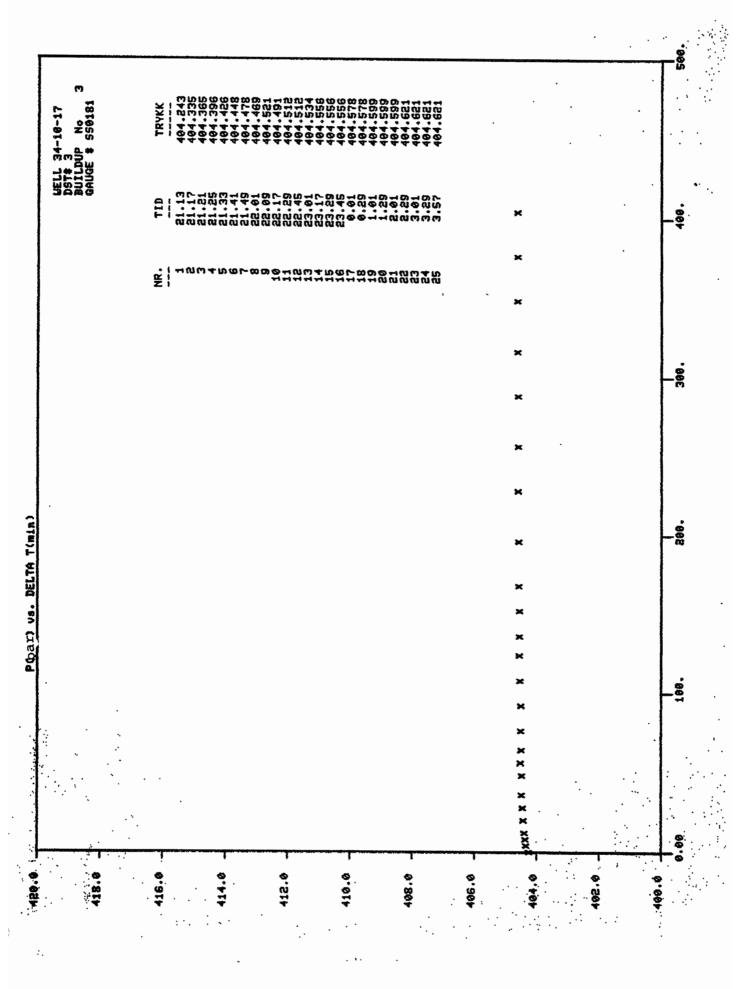

Horner Analysis



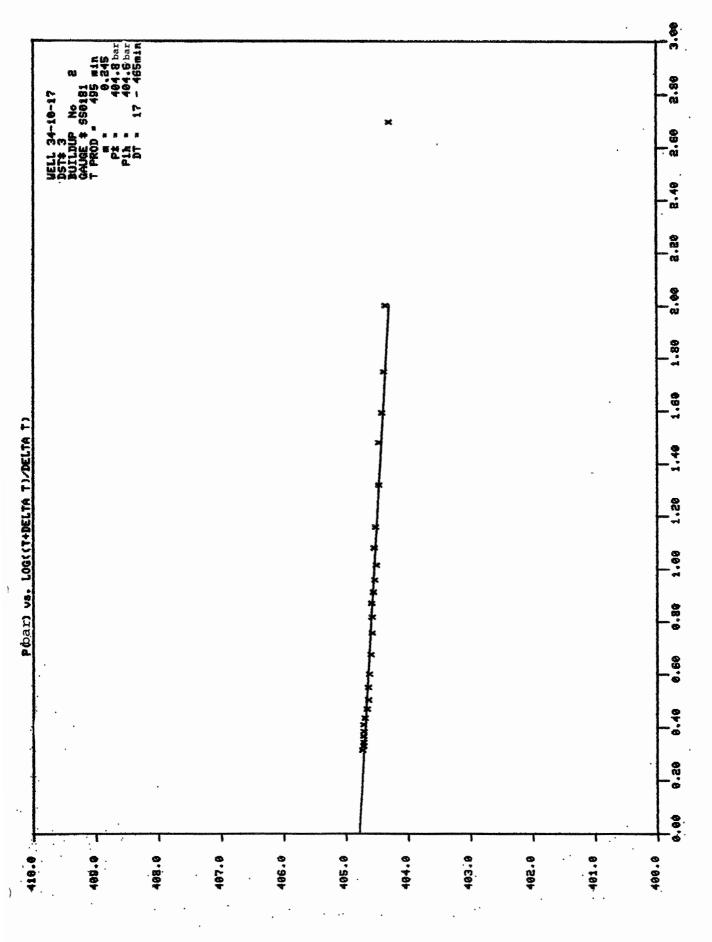
-77-



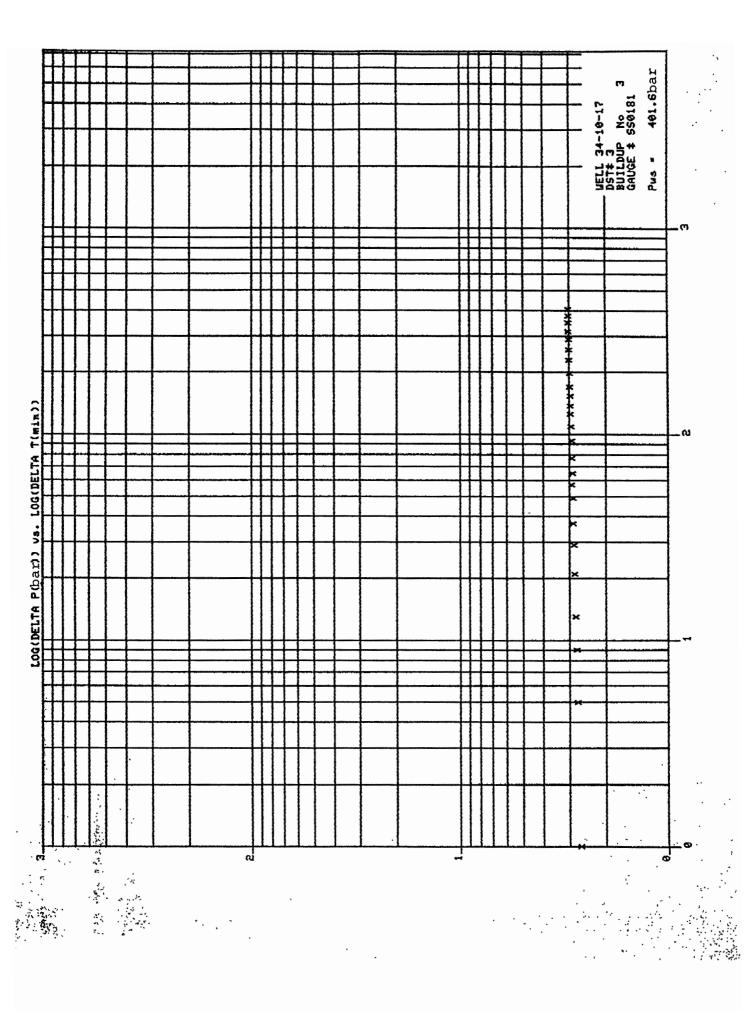
-78-


-

-79-



- 80-



- 81 -

-

- 82 -

-83-

COMPARISON OF RESULTS OBTAINED FROM ALL GAUGES

ì

1000

WELL no.: 34/10-17

DST no.: 3

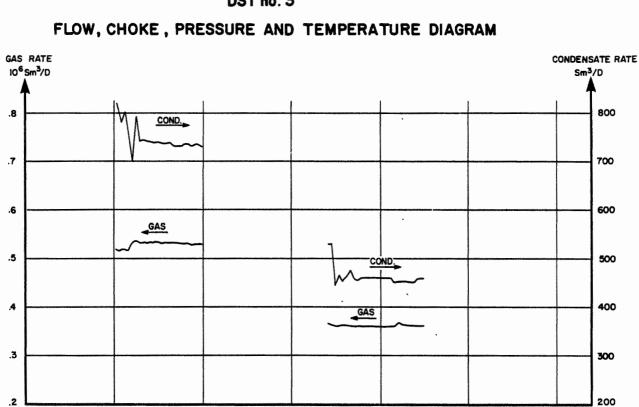
	Sel	Selected Gauge	uge		oth	Other Gauges	es			
Gauge no.:		SS 0181			SS 0222		SDP 82003	2003		
Build Up no.:	-	3	£	-	7	m	-	7	e	
Data Quality:	Fair	Fair	Good	Quest.	Quest. Quest.	Quest.	Quest. Quest. Poor	Poor	Poor	
Horner Slope, bar/cycle:	.461	.245	.207	.244	.262	.252	.139	.204	.322	
Permeability, md:		570	455		530	370		680	290	
<pre>p* Corrected to mid perf., bar:</pre>	405.7	405.4	405.3	405.7 405.4	405.4	405.3	405.3 405.3 405.3 405.2	405.3	405.2	

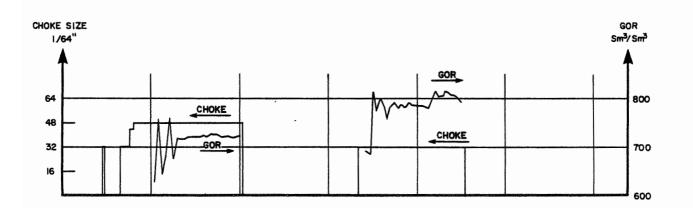
- 84 -

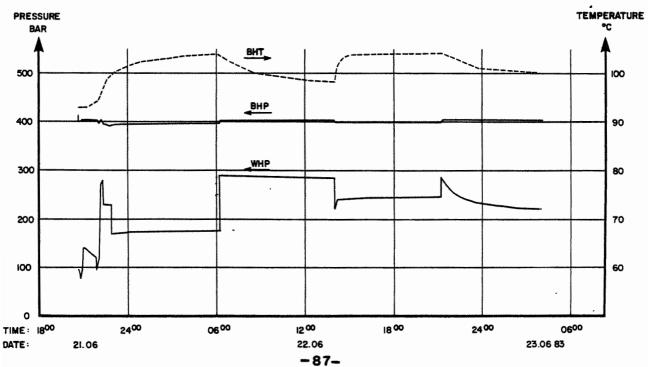
	34/10-17	DIARY OF EVENTS	CHP/PG Perfs.: 2835-45 m
DST no	- 3		Zone tested BRENT
1983 Date	Time	OPERATIONS	
		PERFORATING	
20.06		Rigged up Dresser Atlas. Ran CBL. RIH with perforating gun. Perfora (ref. Density-Neutron log) 4 sh/ft	ated 2835-45 m.
21.06	00.55		, 100 Francis,
		TEST STRING	
	01.30 01.47 18.00 20.24	5 5 5	g and surface eq.
		INITIAL FLOW/BUILD-UP	
	20.34 20.44 20.48	Opened choke manifold on 32/64" fi Flowed back 2.8 m ³ to surge tank.	
		SECOND FLOW/BUILD-UP	
22.06	21.56 22.00 22.10 22.19 22.36 22.48 23.10 01.05 04.35 05.40	Mud to surface. Gas to surface. Adjustable choke plugged. Changed to 32/64" fixed choke. Changed to 44/64" adjustable choke Changed to 48/64" fixed choke. Flowed through separator. Flowed to surge tank for meter tac Started to sample 1. set of PVT sa "2." By-passed separator.	e. ctor. amples.
		THIRD FLOW/BUILD-UP	
	14.03 14.04 14.11 15.00	Flowed through separator.	
Remark	(S :		

-

1983 Date Time OPERATIONS 22.06 19.00 19.10 Started to sample 3. set of PVT samples. Unstable separator pressure, progably due to failure in pressure controller. 20.14 Started to sample 4. set of PVT samples. 21.11 23.06 04.00 Opened LPR-n valve and killed well by bullheading into formation. 23.06 04.00 FTEST	Well 3, DST no	4/10-17 3	DIARY OF EVENTS	CHP/PG Perfs.: 2835-45 m Zone tested BRENT
 19.10 Unstable separator pressure, progably due to failure in pressure controller. 20.14 Started to sample 4. set of PVT samples. 21.11 By-passed separator. 21.13 Closed choke manifold and LPR-n valve. Opened LPR-n valve and killed well by bullheading into formation. END OF TEST 		Time	OPERATIONS	
Remarks :		19.10 20.14 21.11 21.13	Unstable separator pressure, proga in pressure controller. Started to sample 4. set of PVT sa By-passed separator. Closed choke manifold and LPR-n va Opened LPR-n valve and killed well into formation.	bly due to failure mples. lve.
	Remark	8:	L	


2


7


-

,

•

34/10-17

DST no. 3

	Well													CHP/PG				
		-OT /FC		Т					FLOW	FLOW DATA				Perfs. :	.: 2835	5 -	45m	
	DST	5T no- 3	•											Zone	Zone tested	BRENT	ΥΤ	
1983										•*								
Date/	Bottom hole	le Well head	┣—	Chokes 1/	1/64"				Separator	r data				Liq. and	gas	analysis	10	
time 21.06	press. temp bar °C	press te bar	emp. manifold °C		heater pr	press. ter bar °	r E C	gas rate 10 ³ Sm ³ /d	oil rate Sm ³ /D	GOR Sm ³ /Sm ³	sp.gr.ołi	sp.gr.gas (Air=1)	s Water %	Sedim. %	c02 %	H ₂ S ppm		
		┼																
	*																u A William ann an A	
	SECOND	FLOW PERIOD	GO															
21 56			32		4O	OPENED	WEILL F	FOR OLI	CLEAN UP	ON 32/64"	4" ADJ.	CHOKE						
22.00	398.9	d 121.923			RA	RATHOLE	D M M	. 01	SURFACE									
22.10	403.8 96.0	.0279.330.5	.5 32		G	CHOKE P	ğ											
	403.8	.1 281.620			5				FIXED									
22.36	397.2	5 232.630			ដ		4		ADJUSTABLE	C.E.					0.5			
22.48	393.	4 171.635.6	-		Ü	CHOKE TO		54" FI								•		
23.10	396.2100	ব	.3 48		SI	SWITCHED	D FLOW	W THROUGH		SEPARATOR								
22.06 00.15	397.9101	. B 174.156	.4 48		60		4		820.2	630.5	0.795	0.790		Trace	0.5	0		
60. 30	398	Ч	.2	-	90	60.7 31	5		681.8	756.3								
8 00.45		2 174.758			90		°ں		803.2	645.3					1	1		
		4 175.059.0			90		٢,		752.4	685.9	0.795	0.790			0.5	0		
01.15		175.560			90		9		703.0	757.7								
01.30		.6174.958			90		e.		790.5	677.6								
01.45		398.4102.6175.461.3			90	60.2 34	م، م		742.5	718.5 716.0	102 0				ц С			
		2 007 C/T 0.2				60 5 34	0 1		742.5	0.01/			C	0		0		
	103010 805	d 176 063	=				2	2	739.7	720.3))		,		
		1175.761		_	190		1	ω	738.3	721.7								
03.00	1998.6103.1	1 176.062.9	- 6		90		9		739.7	720.3	0.802	0.720	•	•				
03.15	398.7103.3	175.863	.1	_	90		0	5.	736.9	721.2								
03.30	398.7103	\mathbf{r}			60	.8 37	.5	ۍ	35.	•	-							
03.45	398.7103.	4		_	60	6	.5 531	5	736.9	721.2								
	Remarks																	
		* Flopetrol		gauge S	SDP 82003	03 at	2817.03	.03 m.										
							1											

	T														W COLONIA MALE OF THE									onkaana					Т
																											<u></u>		
	5-45m	BRENT		analysis	H ₂ S ppm								0																-
5	Perfs.: 2935-45m	ested		gas	CO2 H % P	0.5							0.5										. ک						
CHP/PG	Perfs.	Zone t		Liq. and	8												 C) (<u> </u>						
					% Sedim.																								-
					Water '	i											c												
					sp.gr.gas (Alr=1)	0.720				0.720			0.720						0.715				0.715				0.715		
					sp.gr.o i i	0.802				0.802			0.802			P			0.777				0.777				0.777		-
	DATA			data	GOR Sm ³ /Sm ³	726.7	725.8	724.9	720.8	720.8	723.1	720.3	723.1	цЪ				684.0	812.5	774.5	797.7	786.3	760.4	783.4	792.2	782.2	786.6	782.2	
	FLOW DATA			Separator	oil rate Sm ³ /D	731.3	731.3	731.3	735.5	735.5	731.2	734.L	731.2	-		10 / CA					455.2	461.7	476.2	460.4	456.5	~	459.1	461.7	
					gasrate 10 ³ Sm³∕ð	531.5	530.8				528.8	5,20°0	528.8	WELL FOR		NO	Š	362.6						360.7	361.6	361.1	361.1	361.1	
					°C 1		٢.	æ	r.	5	4.	4 C	. 4	Z		T KINT T	5 -	1 1	~		~1	01	~	-		Ŀ.	e.	Ч	•
				с. 2	press. bar	60.93	60.93	60.93	60.93	60.93	61.13		61.239	SHUT		Canado		48.916	47.618.	47.819.4	47.42	47.32	47.32	47.32	47.324.	47.324	47.424	47.32	-
				1/64"	heater												******								0-1-41 v 25 G				
				. Chokes	manifold	48					2 2		5			27	4 = 0	1	2	2				=		:	=	=	
0-17		e		ead	press temp. bar °C	63.9	65.0	64.7	63.3	65.2	65.6	2°C0	.066.0		0D:		, , ,	1 1	51.2	54.7	55.7	55.2	55.6	56.8	57.3	57.2	.756.4	2	
34/10-17		ė		Weii head	press bar	176.4	176.465.0	176.564.7	176.0	176.6	176.6	0.0/T	177.0		PERIDD:		0 11 0	243.2	244.2	245.154.7	244.6	244.6	401.3104.0244.755.6	245.0	245.757.3	1.2104.0245.85	245.7	245.8	
Well		DST		hole	¢C	6103.4	103.5	103.5	103.6	103.7	103.7	103.0	398.8103.7	103.8	FLON			103.61	7	103.9	103.9	L03.9	104.0	104.¢	. 3104 D	104.0	104.1	3104.1	
			•	Bottom hole	press. bar	398.8	398.7	398.7	398.7	398.8	398.7	- 205	398.8	398.8103	THIRD		-0	401.3103	401.3	401.3	401.3	401.3	401.3	401.3	401.3	401.2	401.2	401.3	
			1983		time	04.00	04.15	04.30	04.45	02.00	05.15	02.00	00.00		in the last	14 0V				15.15	15.30	15.45	16.00	16.15	16.30			17.15	
						90										~ ~													

22.06

3

-89-

	•															2			
	_				T					FLOW	FLOW DATA				Perfs.	: 26	2835-45m	<u>5m</u>	
		DST n	-or	3											Zone	Zone tested	BRENT	Ē	
1983	•																		
	Bottom hole	hole	Well head	ead	Chokes	1/64"				Separator	or data				Liq. and gas		analysis		
tlme	press. temp bar °C	temp °C	press temp. bar °C		manifold	heater	press. bar	°C 3	gasrate ≟t0 ³ Sm ³ ∕đ	oil rate Sm ³ /D	GOR Sm ³ /Sm3	sp.gr.oil	sp.gr.gas (Air=1)	Water %	Sedim. %	c02 %	H ₂ S ppm		
17.30	401 3 104.1	I .	246.058	58.2	32		47.3	24.5	361.6	457.8	6.687								
17.45401		.3104.12	245.957.	57.3	:		47.4	24.6	361.1	459.1	786.6								
18.00401.3104.1		104 1	245.856.4	56.4	=		47.3	24.4	361.6	460.4	785.4	0.777	0.715						
18.15401.3104.1	401.3	104 1	246.2	58.6	5		47.3	24.5	361.3	460.4	785.4								
18.30401.3104.2	401.3	104.2	246.258.8	58.8	= 1		47.4	24.4	360.7	460.4	701.1					********			
18.45401.2104.2	401.2	104.2	246.1	57.9	=		47.4	25.1	360.7	461.7	1.18/								
19.00401.	~	N	246.358.7	58.7	= :		47.4	25.3	359.7	449.9	799.6	0.777	cT/.0						
19.15401		2	246.459	59.6	: :		44.6	25.0	d. / 95	451.2	814.4								
19.30401.	N		246.358.3	. 80	=		46.0	7.02		C. 2CF	1.00								
19.45401	401.2		246.660.2	50.2	=		46.1	26.6		452.5	804.7								
20.00401.2	401.2	3	246.659.6	59.6	=	•	46.2	27.0	364.2	447.3	814.2	0.777	cT/.0						
20.15401.	2	'n-	246.759.9	59.9	2		46.2	27.1	363.7	449.9	808.4								
20.30401	~	3	247.061.1	51.1	=		45.9	27.5	363.2	449.9	807.3				Trace				
20.45401	401.2	m,	246.961.0	51.0	=		46.0	28.2	367.7	457.8	803.3								
	401.2	3	247.16	62.1	=			28.2		457.8	792.4	0.777	0.715		Trace				
21.13							SHUT :	IN WEI	IN WELL FOR	BUILD-U	д,				-				
					<u></u>	in the factor of the													
											-								
-																			

				1												-			
	Remarks	rks																	

22.06

1

Well 34/10-17

3

DST no

-

LAYOUT OF TEST-STRING

CHP/PG Perfs 2835-45 m

Zone tested BRENT

÷

TEST-STRING	1D inch	OD inch	LENGTH m	DEPTH mRKB
OTIS STT W/X-OVER $(4-3/8"$ B x $3-\frac{1}{2}"$ TDS P)				
TOP FIRST TUBING $(4-3/8^{\circ} \text{ B x } 3-\frac{1}{2}^{\circ} \text{ TDS P})$				7 04
1 JNT $3-\frac{1}{2}$ " TDS TBG 12.7 LBS/FT L-80	2.75	3.50	9.45	-7.04
1 JNT $3-\frac{1}{2}$ " TDS TBG 12.7 LBS/FT L-80	2.75	1	9.45	
X-OVER $3-\frac{1}{2}$ " TDS BOX x $4-\frac{1}{2}$ " ACME PIN	2.80	6.00	0.34	1 1
OTIS LUBRICATOR VALVE	3.00	13/10.75		13.29
X-OVER $4-\frac{1}{2}$ " ACME PIN x $3-\frac{1}{2}$ " TDS PIN	2.80	6.00	0.38	1
5 STDS $3-\frac{1}{2}$ " TDS TBG	2.75	3.50	137.88	151.55
PUP JNT $3-\frac{1}{2}$ "TDS	2.75	3.50	12.02	153.57
X-OVER $3-\frac{1}{2}$ " TDS BOX x $4-\frac{1}{2}$ " ACME PIN	2.80	6.00	0.21	153.78
OTIS SSTT	3.00	13.00		155.56
SLICK JNT $3-\frac{1}{2}$ " TDS	2.25	3.50	2.23	157.79
TOP 18 3/4" WELLHEAD AT 158 m.				
FLUTED HANGER	3.00	12.00	0.30	158.09
X-OVER $4-\frac{1}{2}$ " ACME PIN x $3-\frac{1}{2}$ TDS PIN	2.80	6.00		158.53
258 JTS (86 STDS) $3-\frac{1}{2}$ " TDS	2.75	3.50	2390.06	2548.59
1 JNT $3-\frac{1}{2}$ "TDS	2.75	3.50	9.30	2557.89
X-OVER $3-\frac{1}{2}$ " TDS BOX x $3-\frac{1}{2}$ " IF PIN	2.75	4.50	0.56	2558.45
SLIP JNT (OPEN)	2.25	5.00	5.54	2563.99
SLIP JNT (CLOSED)	2.25	5.00		2568.01
5 STDS + 2 SINGLES DRILLCOLLARS	2.25	4.75		2719.63
RTTS MECHANICAL CIRC VALVE	2.25	4.625		2720.53
STD DRILL COLLARS	2.25	4.75		2748.96
SLIP JNT (CLOSED)	2.25	5.00		2752.98
SLIP JNT (CLOSED)	2.25	5.00		2757.00
1 STD DRILL COLLARS	2.25	4.75		2785.43
SPR-M SAFETY CIRC.VALVE	2.25	5.00		2787.73
DRILLPIPE TESTER VALVE	2.25	5.00		2789.19
LPR-N TESTER VALVE	2.25	4.625		2794.29
FUL FLOW HYDRAULIC BYPASS	2.25	4.625		2796.40
BIG JOHN JAR	2.25	4.625		2797.99
RTTS SAFETY JOINT	2.44	5.00		2798.94
RTTS PACKER (ABOVE)	2.40	5.75		2799.50
RTTS PACKER (BELOW)	2.40	5.75		2800.32
PERF. 2-7/8"FULL EUE (PIN UP).	2.44	2.88		2809.77
X-OVER 2-7/8" EUE PIN x 2-3/8" EUE BOX OTIS XN-NIPPLE (PIN x PIN)	2.00	3.25	0.25	2810.02
2-3/8" EUE COLLAR.	1.79	3.25	0.25	2810.27
X-OVER 2-3/8" EUE PIN x 2-7/8" EUE PIN	2.00	2.38	0.14	2810.41
2-7/8" EUE FULL JOINT	2.44	4.15	0.18	2810.59
S.O.S. DST- HANGER	2.44	2.88	9.44	2820.03
	2 11	2 00	0.25	2020 20
S-7/8" EVE FULL JOINT BULL-PLUG WCROSS 2-7/8" EUE BOX	2:44	3:25	8:35	2829:33

Remarks.

All measurements to bottom of each item.

DST no. 3

CHP/PG Perfs. 2835-45 m Zone tested BRENT

-

WIRELINE NIPPLE at Gauge type and number; Sperry Sun, MK III 0221 Depth, pressure elemement : 2813.64 m Range : 0-690 bar 2 min Mode 1 Delay, 17 hrs. Actuated : time 01.09 date 121.06.83 Will run out i time 02.07 date : 24.06.83 Gauge type and number; Flopetrol, SDP 82003 Depth, pressure elemement :2817.03 m Range: 0-690 bar 15 hrs. 30 sec. Mode 1 Delay 1 Actuated : time 01.05 date : 21.06.83 Will run out i time _ date 1 Gauge type and number : Depth, pressure elemement : Range : Mode : Delay 1 Actuated : time date : Will run out i time date 1 2820.03 така D.S.T. HANGER at Gauge type and number: Speery Sun, MK III 0222 Depth, pressure elemement : 2823.16 m Range: 0-690 bar Delay, 17 hrs. Mode: 2 min. Actuated : time 01.08 date : 21.06.83 date : 24.06.83 Will run out : time 02.08 Gauge type and number: Sperry Sun, MK III 0181 Depth, pressure elemement : 2825,90 m Range : 0-690 Mode: 4 min. Delay, 17 hrs. Actuated : time 01.07 date : 21.06.83 Will run out : time 08.00 date : 26.06.83 Gauge type and number : Depth, pressure elemement : Range : Mode : Delay . Actuated : time date : Will run out i time date 1

SAMPLING

CHP/PG Perfs.: 2835-45m Zone tested BRENT

SEPARATOR SAMPLES

Time/date	Sample no.	Type of sample	Transfer time	Bottle no
22.06.83			mins	
04.30	1	Condensate	35	SOS 104
04.30	2+3	Gas	35	SOS 1012+1006
05.35	4	Condensate	25	SOS 103
05.35	5+6	Gas	25	SOS 1000+1020
18.55	7	Condensate	40	SOS 110
18.55 20.10	8+9 10	Gas Condensate	40 30	SOS 1003+1005 SOS 106
20 10 BOTTOM	HOLE SAN	Gas MPLES (NONE	30)	SOS 1010+1007

Time/date	Sample depth mRKB	Estimated PB bar/°C	Transfering pressure(bar)	Bottle no
				- - - -
				· ·

WELLHEAD SAMPLES (NONE)

}

	OTHER SAMPLES:					
	'Time/date	Sampling point	Sampling equipment		Remarks	
	22.06.83					
	07.00	Separato	r Jerry-can	1 x 20 1	Condensate	
	07.00	81	Jerry-can	2 x 10 l	11	
	07.30	"	Plastic- bottle	1 x 1 1	Water	
	07.30	*1	Glass-jar	6 x 1 l	Condensate	
	07.30	- 91	Barrel	1 x 200 l	**	
;	19.00	Mud Pit	Plastic- bottle	1 x 1 l	Mud	

-93-

6.5 DST No. 4, Performance and Analysis

6.5.1. Results of the Analysis

The following results are obtained from the test:

Reservoir pressure: 403 bar at 2772 mRKB (mid. perf.)

Reservoir temperature: 101.5°C

Produced reservoir fluid: Gas with associated condensate at a ratio of about 750 Sm³ condensate per 10⁶ Sm³ gas (or 1330 Sm³ gas per Sm³ condensate)

Permeability: 270 md

- Skin: Skin factor of 15 corresponding to a pressure loss of 3.9 bar. Total drawdown was 6.0 bar (for the highest flow rate).
- Productivity: Fairly high flow rates with low corresponding pressure drawdowns were observed indicating a high well productivity (at initial reservoir pressure), see fig. 6.5.2.

No boundary effects are seen.

6.5.2. Comments on the Test Analysis

The test was evaluated using the conventional Horner analysis of the second and third shut in periods. No significant well bore storage effects were observed (the well was shut in downhole).

Drawdown analysis were not performed because of the data quality; clean up disturbance during the second flow and . very low pressure drawdown during the third flow period.

The variations in the reported producing gas-oil ratio are probably due to inaccurate metering.

The test derived permeability thickness is significantly lower than the permeability thickness calculated from core data. One reason for this can be that only one or two of the perforated zones have contributed to the test. The others might have limited areal extent or poor clean up of the perforation.

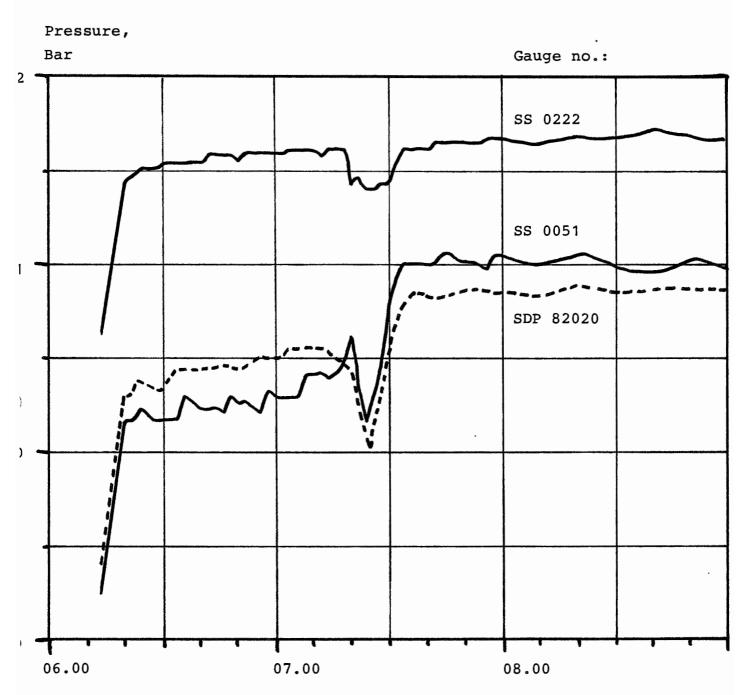
Anomalies in the pressure build up data:

The pressure data obtained during the early part of the second shut in period were examined in more detail to evaluate the reason for a strange pressure build up behavior. Figure 6.5.1 shows the pressure data for all the gauges for the first 3 hours of the shut in period.

The data from the gauges SS0051 and SDP82020 might at first sight indicate a special reservoir characteristic (f.ex. a multilayer system). The gauge SS0222 does not show this effect, neither do any of the gauges during the third shut in period. SS0222 does, however, show a slight pressure drop for about 10 minutes before the other two gauges show a pressure increase.

It has, based on these facts, been concluded that the anomalies in the pressure data are due to some mechanical or

-95-



hydraulic effects in the well. This could be a slight movement of the packer, a change in annulus pressure or partial plugging of the communication between the perforations and the gauges. The latter seems most likely because the three gauges show different pressure behaviors. The gagues SS0051 and SDP82020, hanging in the xn-nipple, could have been plugged partially off while the gauge SS0222, hanging in the DST hanger below, had communication with the well through the open ended bull plug. The pressure drop at 07.20 hours can be due to a slight pressure release as a result of unplugging of the entrance to the xn-nipple gauges.

Fig. 6.5.1

No.

DETAILED PLOT OF PRESSURE VS TIME EARLY PART OF SECOND SHUT IN DST no. 4 34/10-17

Time, Hrs.

6.5.3 Data Input to the Analysis

The bottom hole pressure data from the pressure gauge SS0222 were selected for the analysis. The quality of the data seems to be fairly good.

The average production rates for the last part of the flow periods are used in the analysis. An equivalent (total) gas rate was obtained by adding the condensate rate expressed as gas rate (for the given condensate gravity and separator pressure) to the gas rate.

The gas characteristics were taken from the PVT analysis report made on a recombinded sample from this test (ref. 5).

The connate water compressibility and formation compressibility were derived from standard correlations.

The porosity and saturation data were taken from the log analysis report (ref. 1).

The pressure gradient in the gas zone was taken from the FMT report (ref.2).

The formation thickness contributing to the test response has been estimated using the available core and log analyses data*. Five intervals were perforated and the thickness of each of these and other zones contributing to the test have been determined:

			JUN
Perforated	Perforated	Total	Total
interval,m	thickness,m	<pre>interval,m</pre>	thickness,m
2754 0 57 0	2.0		4 1
2754.0-57.0	3.0	2753.9-58.0	4.1
2763.0-65.0	2.0	2763.0-64.6	1.6
2767.5-70.5	3.0	2767.4-71.3	3.9
2773.0-77.0	4.0	2773.0-77.0	4.0
2784.5-90.5	6.0	2784.3-91.3	7.0
		2801.4-02.6	1.2
		2806.6-08.3	1.7
	18.Om		23.5m

The cement bond log shows a good bond above the top perforation and below 2813m, eliminating "behind casing flow" from other zones than those listed above (see Appendix 1).

Arithmetic average horizontal liquid permeabilities from the core analysis are as follows (for comparison with test derived permeability thickness):

	Thickness,m	avg.k _{hl} ,md	<u>k h,md m</u>
Total intv.:	23.5	1500	35300
Perf. intv.:	18.0	1730	31100

Test k h = 6400 md m (analysis of the second build up) 5100 md m (analysis of the third build up)

* Core depths are corrected to log depths.

INPUT TO TEST ANALYSIS (GAS / COND. SYSTEM)				
Well no34/10-17 DST no4	Test Date27.06-29.06.83			
Reservoir Parameters				
Perforations <u>2754–2757</u> m RKB	Zone(s)Ness			
2763-2765	Wellbore radius <u>0.11</u> m			
2767.5-2770.5	RKB Elev25m			
2773-2777				
2784.5-2790.5 Depth Mid.Perfs:	_ m RKBmSS			
Pressure Gauge no. <u>SS 0222</u> Depth <u>2745.6</u>				
Pressure Gradient: <u>0.041</u> bar/m				
Pressure Correction, Gauge to Mid. Perfs.: <u>1.1.</u>	bar			
Formation Volume Factor <u>0.0034</u> Res.m ³ /Sm	3 Viscosity <u>0.0339</u> cp			
Thickness <u>23.5</u> m Porosity	<u>23_5%</u>			
	sibility 10-6 bar-1			
	ressibility <u>43</u> 10 ⁻⁶ bar -1			
Gas Saturation <u>72.5</u> % Gas Compressibility <u>1400</u> 10 ⁻⁶ bar ⁻¹ Formation Compressibility <u>49</u> 10 ⁻⁶ bar ⁻¹				
System Compressibility $C_t = S_0 C_0 + S_w C_w + S_g C_0$	-			
$C_{t} = \underbrace{0 \ x \ 10^{-6} + \underbrace{0.275 \ x \ 43 \ 10^{-6}}_{t}}_{C_{t}} = \underbrace{1076}_{1076} 10^{-6} \text{bar}^{-1}$	<u>0.725x 1400 10-0+ 49</u> 10-0			
Flow Data: Flow Period no. 2				
Choke <u>48</u> / 64 inches Cond. Rate <u>501</u>	Sm ³ /D Gas Rate_653000Sm ³ /D			
Ptfbar Water Rate0	Sm ³ / D GOR <u>1303</u> Sm ³ /Sm ³			
	Gas Spec. Grav0.714			
<u>Cumulative Production</u> CondensateS				
Water Sm ³				
Equivalent Gas Rate =qg + qc Vsc + qw · 7390 =757000Sm ³ /D				
Equivalent dus Rule - dy + do vsc + dw + 1000				

--

)

-100-

Horner Analysis

Well no34/10-17 DST no4 Build Up no2 Gauge noSS_0222 Test Date27.06-29.06.83
Gauge noSS 0222 Test Date27.06-29.06.83
Effective Production Time tp = Cumulative Production / Last Rate
tp =/=9.1. hrs
Straight Line Starts at1.5 hrs Slope: $m = 0.293$ bar/cycle
Pwf = <u>395.9</u> bar Pihr <u>401.6</u> bar P* <u>401.9</u> bar
Estimated Reservoir Pressure (P*) at Mid. Perfs. (2747.5 mSS): <u>403.0</u> bar
$\frac{\text{Permeability:}}{\text{m}} = \frac{21.49 \times 757000 \times 0.0034 \times 0.0339}{0.293} = \frac{6400}{\text{m}} \text{m} \text{m} \text{m} \text{m}$
K = Kh/h =6400 /23.5 =270 md.
$\frac{Skin:}{S = 1.1513} \left[\frac{P \ln r - P wf}{m} \right] + Log \left[\frac{tp + 1}{tp} \right] - Log \left[\frac{K}{0\mu Ct rw^2} \right] + 3.098 \right]$
S = 1.1513 $\begin{bmatrix} 401.6 - 395.9 \\ 0.293 \end{bmatrix} + \text{Log} \begin{bmatrix} 9.1+1 \\ 9.1 \end{bmatrix} - \text{Log} \begin{bmatrix} 270 \\ 0.335 \times 0.0339 \times 10.16 \times 10^{-6} \\ 0.339 \times 10.16 \times 10^{-6} \\ 0.0339 \times 10.16 \times 10^{-6} \\ 0.000 \end{bmatrix} + 3.098 \end{bmatrix}$
S = <u>15</u>
For the Previous Flow Period:
ΔPs = $\frac{18.665 \cdot q \ B \mu}{kh}$ S = $\frac{18.665 \times 757000 \times 0.0034 \times 0.0039 \times 15}{6400}$ = 3.9 bar
$\Delta Pdd = P^* - Pwf =6.0$ bar
Skin as Fraction of Total Drawdown: $\frac{\Delta Ps}{\Delta Pdd} = \frac{0.64}{\Delta Pdd}$

INPUT TO TEST ANALYSIS (GAS / COND. SYSTEM)				
Well no. <u>34/10-17</u> DST no. <u>4</u>	Test Date27.06-29.06.83			
Reservoir Parameters As for Flow Period 1	no. 2			
Perforationsm RKB	Zone (s)			
	Wellbore radius			
	RKB Elevm			
•	_ m RKBmSS			
Pressure Gauge no Depth	m RKBm SS			
Pressure Gradient:bar/m				
Pressure Correction, Gauge to Mid. Perfs.:	_ bar			
Formation Volume Factor Res.m ³ /Sm	³ Viscositycp			
-				
	sibility 10 ⁻⁶ bar ⁻¹			
	ressibility10 ⁻⁶ bar ⁻¹			
	ssibilityIO ⁻⁶ bar ^{_I} mpressibilityIO ⁻⁶ bar ^{_I}			
System Compressibility $C_{t} = S_{0}C_{0} + S_{w}C_{w} + S_{g}C_{g} + C_{f}$ $C_{t} =x - 10^{-6} +x - 10^{-6} +x - 10^{-6} +x$				
C _t = 10 ⁻⁶ bar ⁻¹				
Flow Data: Flow Period no3				
Choke <u>32 / 64</u> inches Cond. Rate <u>320</u>				
Ptf <u>257</u> bar Water Rate 0				
Cond. Spec. Grav. 0.760	Gas Spec. Grav. 0.714			
Cumulative Production CondensateS	Sm ³ GasSm ³			
Water Sm ³				
Equivalent Gas Rate = qg + qc Vsc + qw · 7390 = <u>494000</u> Sm ³ /D				

.

Horner Analysis

Well no34/10-17 DST no4 Build Up no3 Gauge noSS_0222 Test Date 27.06-29.06-83
Effective Production Time tp = Cumulative Production / Last Rate
tp =/ =7.55 hrs
Straight Line Starts at <u>1.0</u> hrs Slope: <u>m = 0.239</u> bar/cycle
Pwf= <u>398.5</u> bar Plhr <u>401.5</u> bar P [*] <u>401.7</u> bar
Estimated Reservoir Pressure (P*) at Mid. Perfs. (2747.5 mSS): <u>402.8</u> bar
<u>Permeability:</u> Kh = <u>21.49 q Bu</u> = <u>21.49 x494000x0.0034x0.0339</u> = <u>5100</u> md.m 0.239
K = Kh/h =5100 /23.5 =220 md.
$\frac{Skin:}{S = 1.1513} \left[\frac{P \ln r - Pwf}{m} + Log \left[\frac{tp + 1}{tp} \right] - Log \left[\frac{K}{0\mu Ct rw^2} \right] + 3.098 \right]$
S = 1.1513 $\begin{bmatrix} 401.5 - 398.5 \\ 0.239 \end{bmatrix} + \log \begin{bmatrix} 7.55 + 1 \\ 7.55 \end{bmatrix} - \log \begin{bmatrix} 220 \\ 0.235 \cdot 0.0039 \cdot 1076 \cdot 10^{-6} \cdot 0.11^{2} \end{bmatrix} + 3.098 \end{bmatrix}$
S =6
For the Previous Flow Period:
ΔPs = $\frac{18.665 \cdot q B \mu}{kh}$ S = $\frac{18.665 \times 494000 \times 0.0034 \times 0.0339 \times 6}{5100}$ = <u>1.5</u> bar
∆Pdd = P* - Pwf =3_2bar
Skin as Fraction of Total Drawdown: ΔPs = 0.47

-103-

Productivity/Deliverability

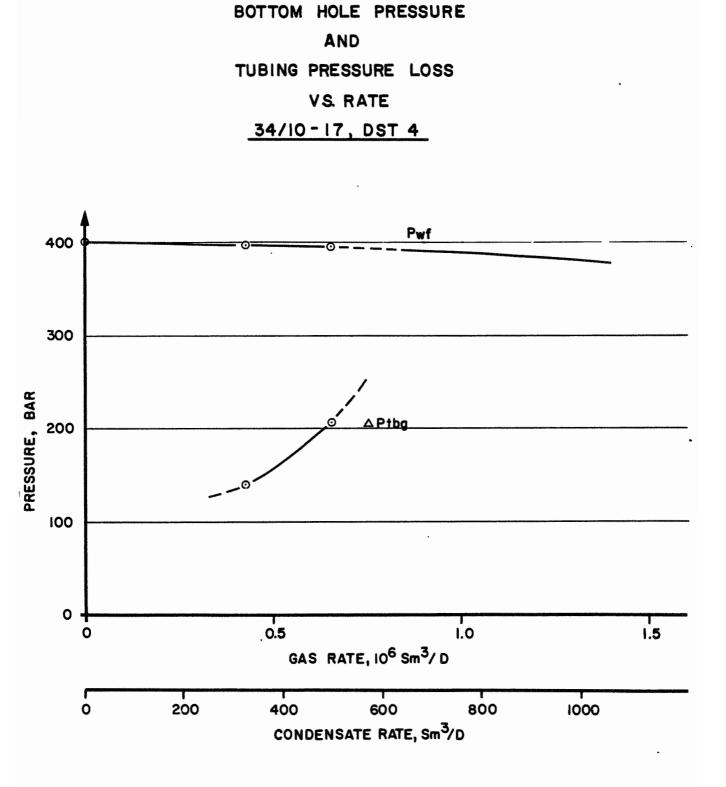
One of the objectives of this test was to evaluate the productivity of the Ness formation.

Plotting of pressure versus rate for the two flow rates on back pressure curve gives an n exponent of 0.77, indicating some pressure drop due to turbulence flow. By assuming radial semisteady state gas flow in the reservoir, the turbulent and laminar parts of the total drawdown has been calculated to be:

Rate no.	<u>g</u> ,10 ³ Sm ³ /D	Δ Pturb.	<u>∆Plam.</u>	<u>∆Ptot.</u>
1		2.0 bar		
2	428	0.9 bar	2.5 bar	3.4 bar

Pressure drawdown at higher rates can be calculated by the following formula (assuming insignificant change in viscosity and z-factor with pressure, and no change in saturation):

$$pwf = (p*^2 - Cq_g - Dq_g^2)^{0.5}$$


The constants C (for laminar flow) and D (for turbulent flow) have, by using the test results, been calculated to:

$$C = 4.74$$

 $D = 0.0038$

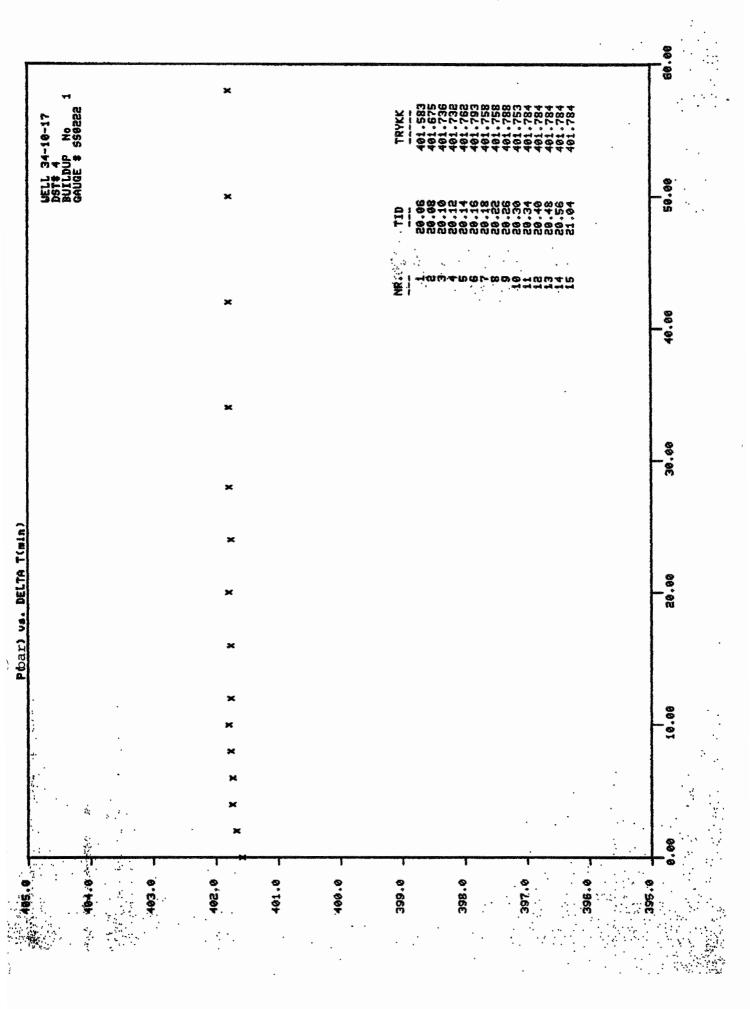
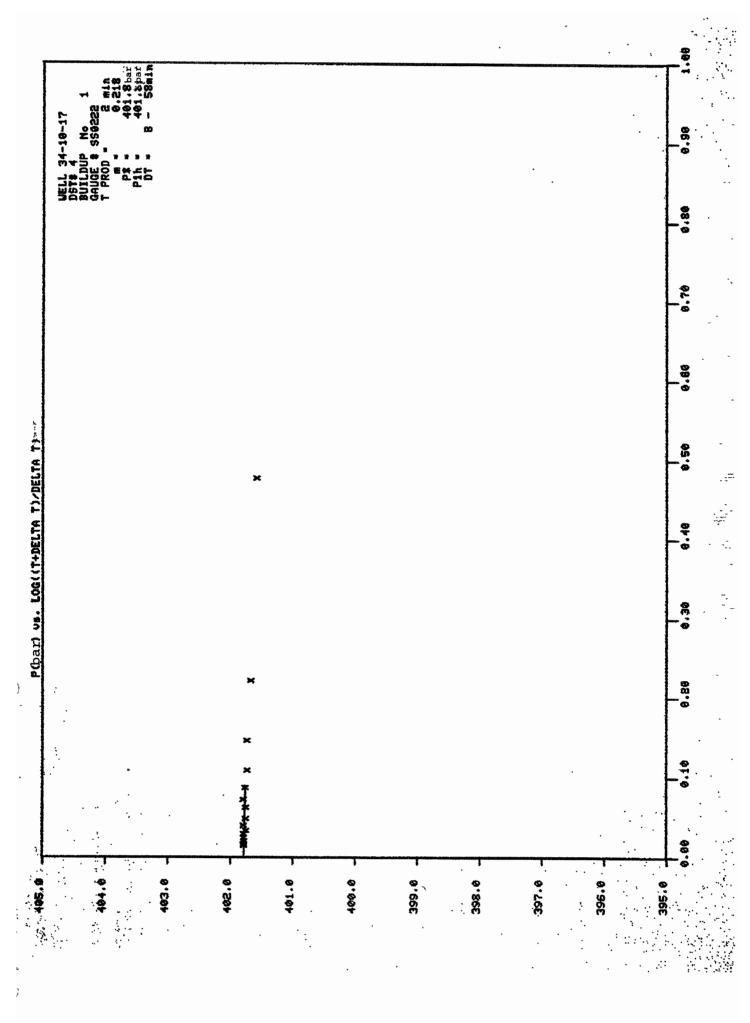
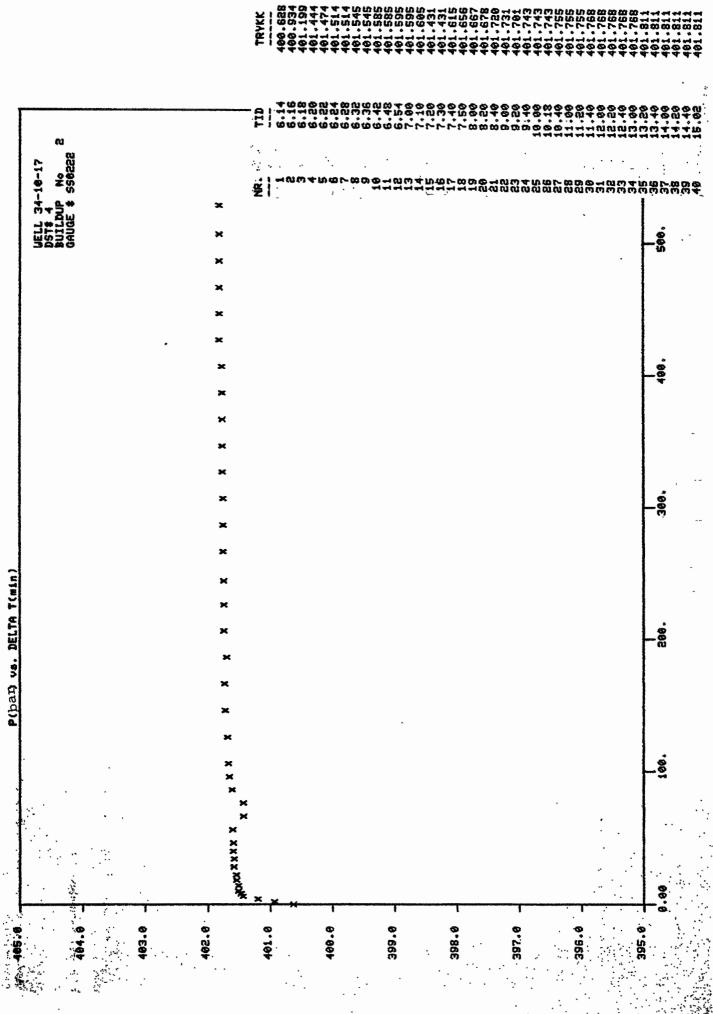
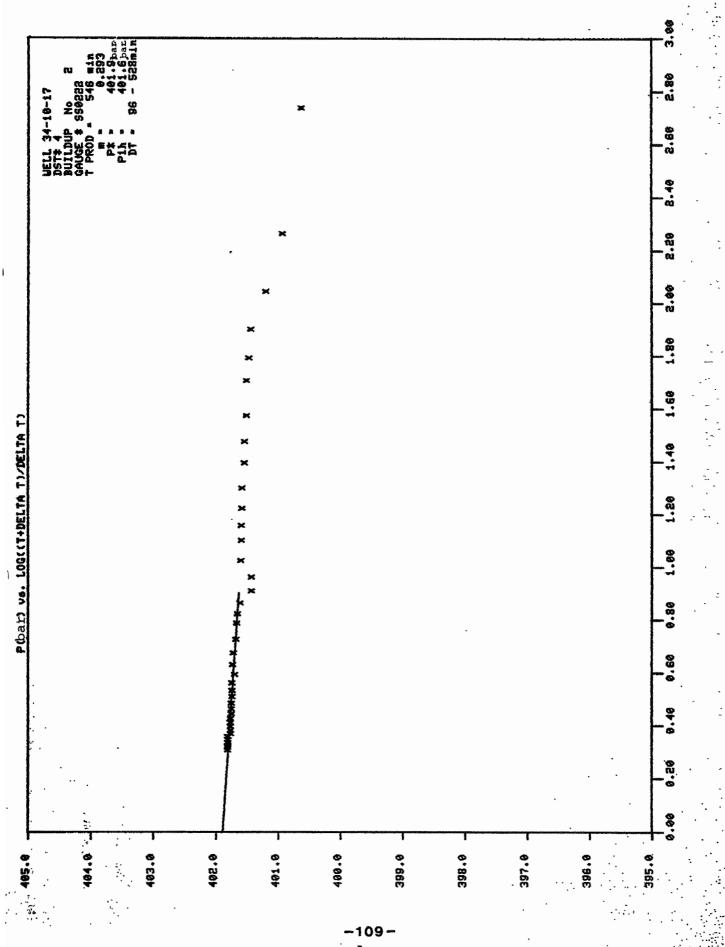

Bottom hole pressure for higher rates have been estimated as shown in figure 6.5.2. At pressures below the dew point (384 bar) more detailed reservoir studies are required to estimate the productivity. Figure 6.5.2 also shows the pressure drop in the $3\frac{1}{2}$ " test tubing. This pressure drop shows a large increase with a rate above 0.5 x $10^6 \text{Sm}^3/\text{D}$ and it is obvious that much higher production rates could be obtained by using a larger tubing.

Fig. 6.5.2


-



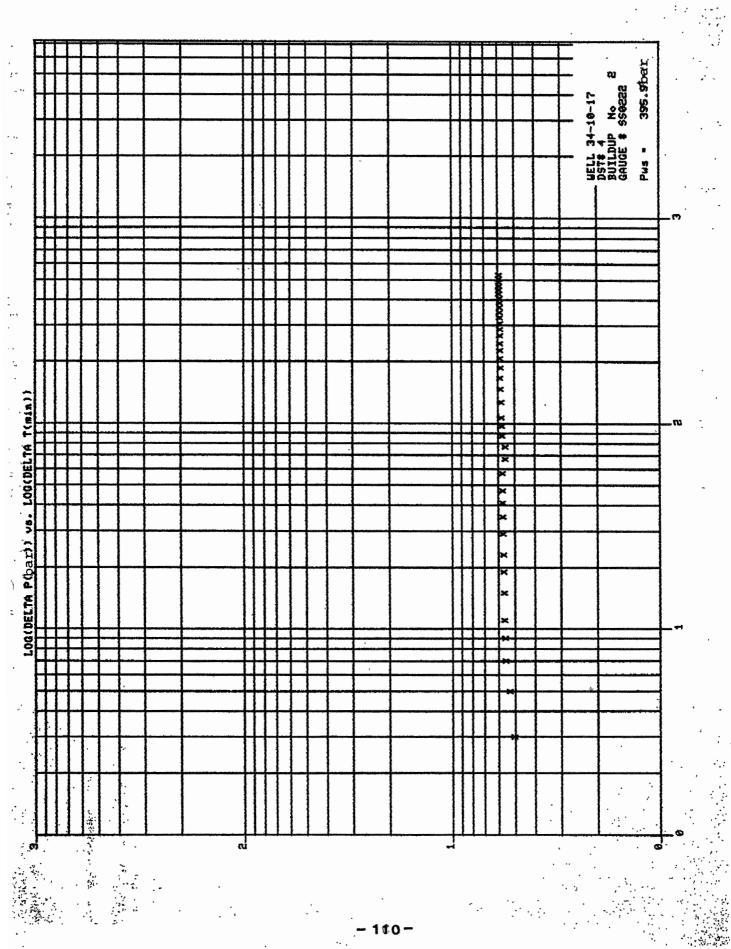
StL 04.11.83

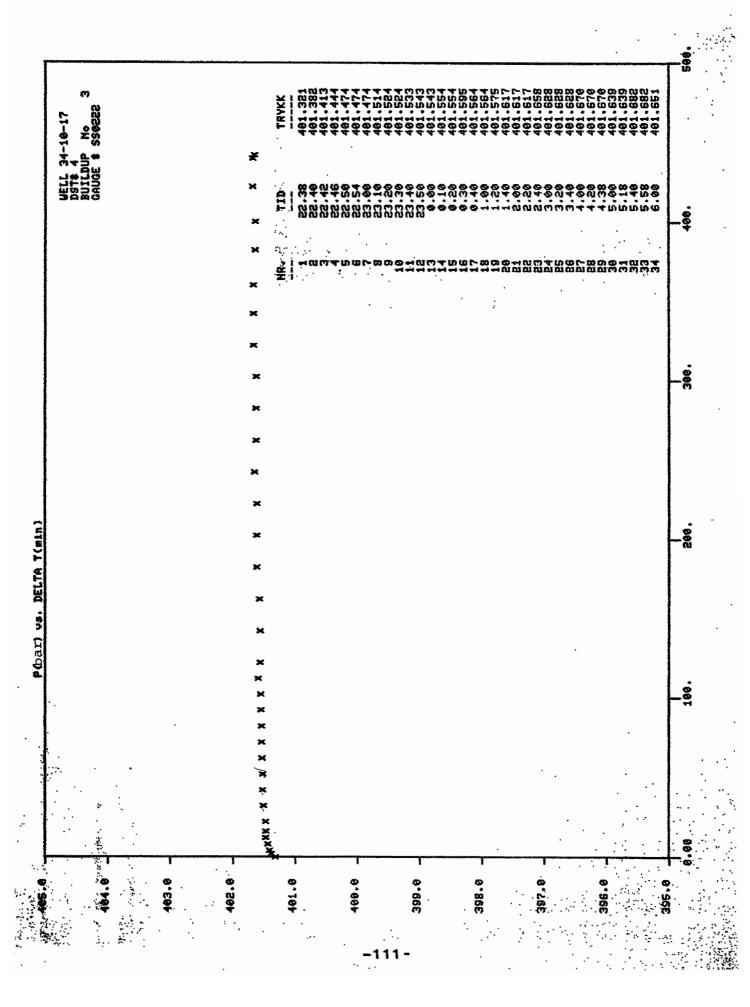


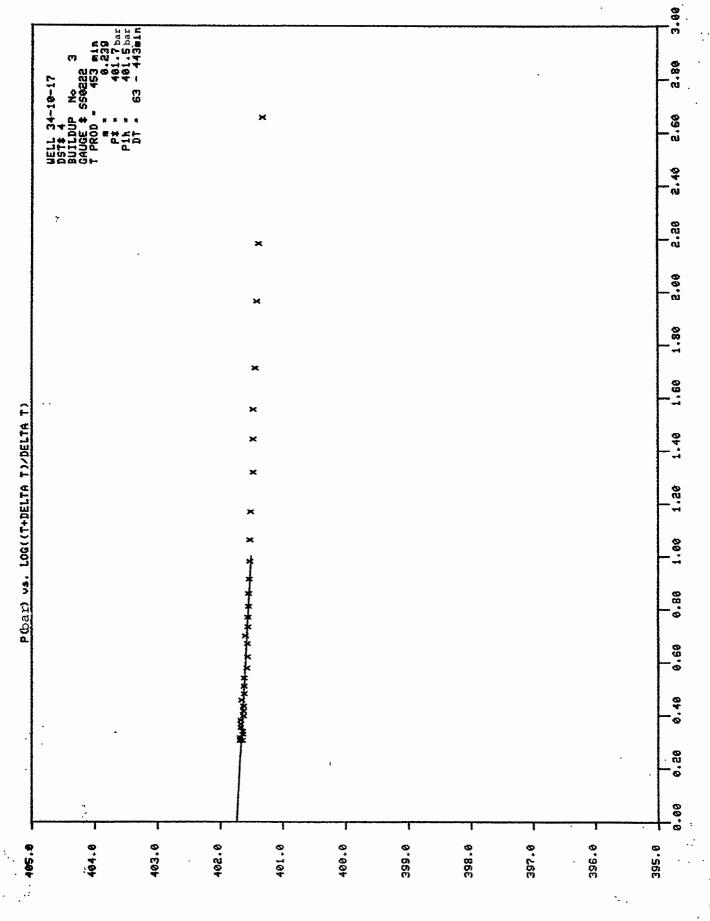
-106-

-108-

۱

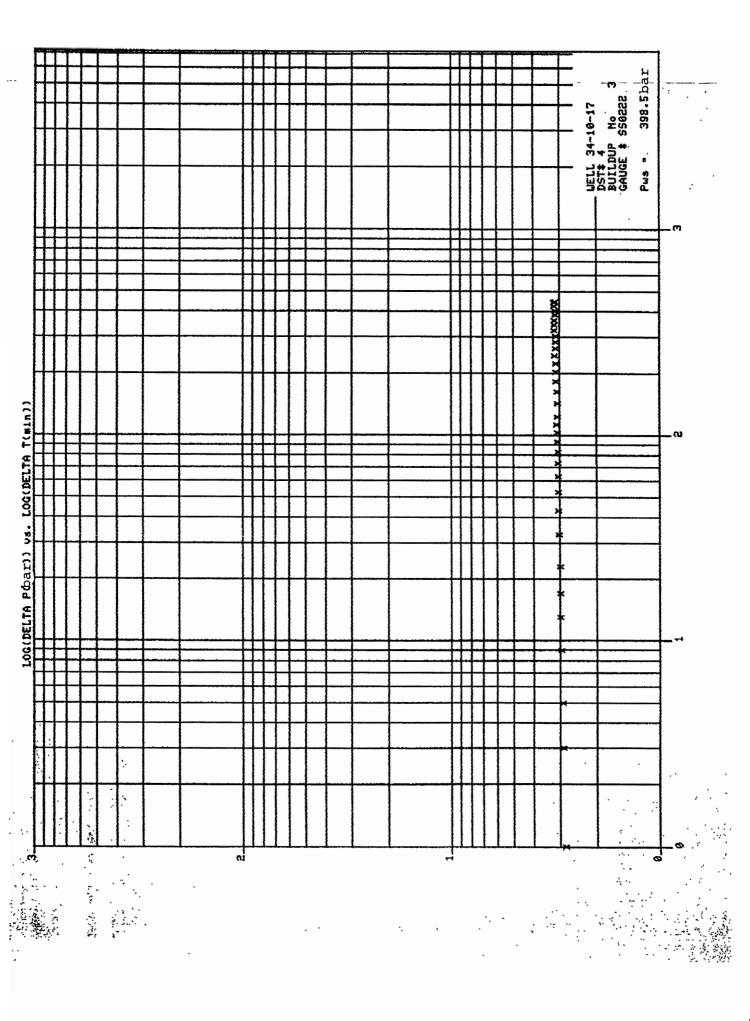

. .


.


-

.

;



-112-

5

COMPARISON OF RESULTS OBTAINED FROM ALL GAUGES

)

Well no.: 34/10-17 DST no.: 4

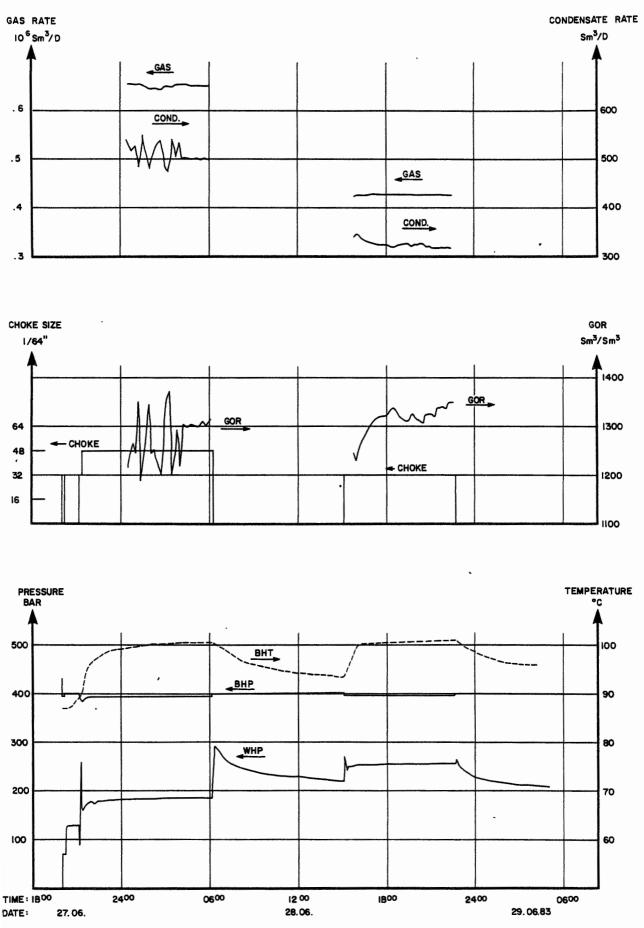
	S	Selected Gauge	uge		0	Other Gauges	auges		
Gauge no.:		SS 0222		SDP	SDP 82020			SS 0151	
Build up no.:	-	7	ю	-	5	m	-	7	ю
Data Quality:	Fair	Fair	Fair	Quest.	Fair	Fair	Poor	Poor	Poor
Horner Slope, bar/cycle:	.218	. 293	. 239	5.14	.247	. 168	No ar	ıalysis	No analysis possible
Permeability, md:		270	220		320	310			
p* Corrected to mid perf., bar:	402.9	403.0	402.8	401.5	402.5	402.5 402.3			

•

•

	4/10-17	DIARY OF EVENTS	CHP/PG Perfs.: 2754 - 90.5 m			
DST no	- 4		Zone tested BRENT			
1983 Date	Time	OPERATIONS				
		PERFORATING				
25.06	15.30	Rig up Dresser Atlas and perforate 2754 mRKB.	4 shots around			
26.06	17.30 05.30 18.00	RIH with bit and scraper drlg cmt	and cond. mud. ood cementbond			
	20.00		2790.5-2784.5mRKB			
	22.30		2770.5-2767.5mRKB			
27.06	23.55 00.10 00.13 00.21 00.25 00.36 19.55	Perforation job complete. Started gauges. Started rigging bottom hole assemb Started RIH. Gauges set in DST hanger. Gauges set in XN-nipple, cont. RIH	ly.			
		INITIAL FLOW/BUILD-UP				
		Open LPR-valve WHP = 132 bar. Open choke-manifold on $32/64$ " fixe Produced 1.3 m ³ cushion to surge t Close LPR-valve and choke manifold	ank (8 Bbls)			
		SECOND FLOW/BUILD-UP				
	 21.05 Open LPR-valve, WHP=132 bar, no indication of opening Start glycol injection. 21.06 Open choke manifold on 16/64" adj. choke. Gradually increase choke: 					
	21.06 Open choke manifold on 16/64" adj. choke.					
	21.16 21.17		hoke. Increase			
	21.18 21.42 22.00	Change to 48/64" fixed choke. WHP Stop glycol injection. WHP = 175.8	9 = 213.1 bar. 36 bar. slug of mud.High readin			
Remark	(5;	No sand detected. WHP = 174.8 bar				
	*	2770.5 2765.0	- 2784.5 m - 2777.0 m - 2767.5 m - 2763.0 m - 2754.0 m			

ž


)

Well 34 DST no	4/10−17 ^{0.} 4	DIARY OF EVENTS	CHP/PG Perfs.: 2754 - 90.5m Zone tested BRENT
1983 Date	Time	OPERATIONS	
28.06	23.52 00.00 00.45 01.15 01.45 02.15 03.18 04.34 04.45 06.05 06.12 06.13	Drained water outlet from separato Started flowing to tank for correct Finished flowing to tank. Started condensate sampling from of Measured shrinkage. Started PVT-sampling from separato Finished PVT-sampling. 2 sets, eac condensate + 2 gas, taken. Continue condensate sampling on r: Bypassed separator. Closed LPR-valve for second build	or to remove all water. ction factor. goose-neck. or. ch containing l ig floor. -up. jerry can
		THIRD FLOW/BUILD-UP	
	20.52 21.08 22.00 22.32 22.35 22.38 22.45 05.06	<pre>WHP = 274.8 bars. Opened choke ma fixed choke. Directed flow throug Adjusted separator pressure to 55 Bypassed heater. Stopped glycol-injection. Malfunction on 2" flow-meter. Swa while repairing 2" meter. Switched flow back to 2" flow and tank for correction factor. Took Started PVT-sampling from separator Finished PVT-sampling. 2 sets take Started condensate-sampling at goo Finished wellhead sampling, 6 lit: Closed oil outlet to raise condens Bypassed separator. Closed LPR-valve and choke manifo period. Sample one barrel and two 10 l je: from separator. No water produce Open choke manifold on 32/64" fixe pressure above LPR-N valve.</pre>	anifold on 32/64" gh heater and separator bars. WHP = 249.2 bars ithced to 3" flow directed flow to shrinkage measurements or. en (1 cond + 2 gas each) ose-neck. re glasses taken. sate level in separator ld for final shut-in rry cans condensate ed. ed choke and bleed
Remari	05.30	Close choke-manifold, WHP = 220 p Open kill valve, close failsafe. 1 51 bbls mud.	

Well 3 DST no	∉/10-17 ⊶ 4	DIARY OF EVENTS	CHP/PG Perfs.: 2754-90.5 Zone tested BRENT
1983 Date	Time	OPERATIONS	
28.06	06.18	failsafe valve and choke manifold. burner. Release packer. XN-nipple gauges up.	cator valve. Open

-

FLOW, CHOKE, PRESSURE AND TEMPERATURE DIAGRAM

-118-

STL. 31.10.83

Chokes 1/4. Separator data 20me tested 20me testested		Well	34/10-17										CHP/PG Perfs.:	PG : 7764	00	
Chokes 1/64" Separator data Separator data manifold heater pers. temp as rate oil rate COM Separator data 1 manifold heater pers. temp as rate oil rate COM Separator data 1 bar °C 10 ³ Sm ³ /0 Sm ³ /0 Sm ³ /0 Sm ³ /s ³ /s ³ /s ³ sport.oil	DST no. 4	.on						J L		-			Zone		I H	Π
Chokes 1/64" Separator data Separator	1983															
manifold heater pers. tend gag rate oil rate COI sportgas sportgas water % Sedim. % CO 1 10 bar -C 103Sm/d Sm ³ /S Sm ³ /S Sportgas water % Sedim. % CO 1 1 0 PENED WELL FOR ADU Scale ADU AD	Date/ Bottom hole Well head		1	Chokes	1/64"			Sepa					Liq. and	d gas an	alysis	
16 OPENNED WEIL FOR CLEAN UP 228 ON 16/64" ADJ. CHOKE 28 CH. to 28/64" ADJ. CHOKE D 32 CH. to 28/64" ADJ. ON 16/64" ADJ. CHOKE 52 CH. to 23/64" ADJ. O O 6 S2 CH. to 23/64" ADJ. O 7 32 CH. to 23/64" ADJ. O 6 S2 CHOKE PLUGGING. CH. to 52/64" ADJ. O 7 AB SWITCHD FUNDTION TRINCID. O 7 48 S77.624.9 655.4 539.7 1214.3 O.714 1 48 S77.624.9 655.1 519.7 1215.5 0.714 0.4 1 48 S77.624.9 655.1 519.7 1250.7 0.758 0.714 0 9 481.2 1351.5 0.758 0.714 0.2 1.0 0 0 9 57.229.6 647.5 531.7 1250.7 0.758 0.714 0.2 1.0 0 0 9 57.120.2 647.5 531.7 1250.7 0.758 <	time press. temp press temp. bar °C bar °C		10	manifold	heater	•	°C 10 ³ Sm				sp.gr.gas (Air=1)	Water %			2S pm	
16 OPENED WELL FOR CLEAN UP ON 16/64" ADJ. CHOKE 22 CH. tb 28/64" ADJ. CHOKE ADJ. 32 CH. tb 28/64" ADJ. CHOKE ADJ. 632 CH. tb 28/64" ADJ. CHOKE PLOW THROUGH SEPARTOR 0.14 48 SWITCHED FLOW THROUGH SEPARTOR 0.758 0.7114 48 SWITCHED FLOW THROUGH SEPARTOR 0.758 0.7114 48 SWITCHED FLOW THROUGH SEPARTOR 0.7144 0.714 57.66149 655.1 519.2 1265.6 0.7144 57.126.8 657.1 519.2 1265.6 0.7144 57.126.8 657.1 519.2 1265.6 0.7144 57.128.8 650.0 1351.5 0.758 0.7144 57.128.8 650.0 1351.5 0.758 0.7144 57.128.8 650.0 1210.7 1210.7 0.758 57.128.8 650.0 1345.5 0.7748 0.7144 57.1310.0 647.5 517.7 1216.7 0.758 57.1310.7 647.5 517.7 1210.7 0.714 57.1310.6 647.5 <th>*</th> <th></th> <th></th> <th></th> <th>.<u> </u></th> <th></th>	*				. <u> </u>											
6 OPENRED WELL FOR TOR Distribution CH LO 28/64" ADJ. CHOKE CHOKE <td>SECOND FLOW PERIOD</td> <td>LOW PERIOD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SECOND FLOW PERIOD	LOW PERIOD								- ,						
2 CH. tb 28/64" ADJ. 22 CH. tb 32/64" ADJ. 22 CH. tb 32/64" ADJ. 23 CH. tb 32/64" ADJ. 24 RATHOLE MUD TO SURFACE. 25 CH. tb 32/64" ADJ. 28 SWITCHED FLOW THROUGH SEPARATOR 29 CH. to 52/64" ADJ. 20 CH. tb 38/64" FLOW THROUGH SEPARATOR 21 CH. tb 48/64" FLOW THROUGH SEPARATOR 29 SWITCHED FLOW THROUGH SEPARATOR 21 CH. tb 28/641 FLOW THROUGH SEPARATOR 27.126.8 655.4 539.7 27.229.6 647.5 512.126.6 27.128.8 650.0 517.7 27.229.6 647.5 512.7 27.120.2 647.5 512.7 27.120.2 647.5 517.7 27.120.2 647.5 517.7 27.120.2 647.5 517.7 27.120.2 647.5 517.7 27.120.2 647.5 517.7 27.120.2 647.5 517.7 27.120.2 647.5 517.7 27.120.2 647.5 647.5	06			16		DENED	WELL FOR	CLEAN	UP ON 16/	64" ADJ.						
22 CH. TD 32/64" ADJ. 22 CH. TD 32/64" ADJ. 22 CHOKE PLUGGING. CH. to 52/64" ADJ. 23 CHOKE PLUGGING. CH. to 52/64" ADJ. 24 CH. TIMED. CHOW THROUGH SEPARATOR 25 CHOKE PLOW THROUGH SEPARATOR 8 SWITCHED FLOW THROUGH SEPARATOR 8 SWITCHED FLOW THROUGH SEPARATOR 8 SNITCHED FLOW THROUGH SEPARATOR 9 57.624.9 57.126.8 557.1 57.126.8 557.1 57.126.8 557.6 57.128.8 555.6 57.128.8 555.6 57.128.8 557.7 57.128.8 557.7 57.130.7 644.5 57.130.7 644.5 57.131.0 644.5 57.131.2 654.7 57.131.2 1210.7 57.131.2 557.331.0 57.131.2 557.331.5 57.131.2 557.331.5 57.131.2 654.7 57.131.2 557.331.5 57.131.2 557.331.5 57.132.4 537.4 <	90.4 89.0 96.7	96.7			<u> </u>	4	28/64" A	ים								
22 CHOKE PLUGGING: CH. to 52/64" ADV. CHOKE PLUGGING: CH. to 52/64" ADV. CHOKE PLUGGING: CH. to 52/64" ADV. 0.4 8 SWITCHED FLOW THROUCH SEPARATOR CH. TARBOU 0.758 0.714 18 57.624.9 553.1 519.2 1265.6 57.126.8 57.1 519.2 1265.6 1248.6 57.427.7 556.3 485.6 1184.5 0.714 57.428.3 655.3 552.6 1184.5 0.714 57.428.3 656.3 485.6 1184.5 0.714 57.428.3 656.53 485.6 1184.5 0.714 57.128.8 657.1 1184.5 0.714 1.0 57.128.8 657.0 481.2 1128.5 0.714 57.128.8 657.0 481.2 1210.7 0.758 57.130.7 647.5 517.7 1250.7 0.758 57.131.2 652.0 483.6 1348.2 0.714 57.131.2 652.0 1210.7 57.131.8 0.723.3 57.131.2 653.3 541.3 1220.1 0.724 57.131.2 653.3	87.7 89.0 88.1	0 88.1 17.7			5	Ê	32/64" A	ЪЛ. 2011								
Image: Section of the section of th		9.25 2.6814	0 0	22		I GAOR	-									
I8 SWITCHED FLOW THRDUGH SEPARATOR 0.758 0.7114 0.4 I8 57.624.9 655.4 539.7 1214.3 0.758 0.7114 57.126.8 657.1 519.2 1265.6 1248.6 1214.3 0.758 1.0 57.427.7 656.3 485.6 1351.5 525.6 1248.6 1351.5 57.427.7 656.3 485.6 1345.5 1248.6 1314.5 57.128.8 656.0 517.7 1255.7 1245.5 1.0 1.0 57.128.8 650.0 517.7 1255.7 0.758 0.714 1.0 1.0 57.130.2 644.5 517.7 1250.7 0.758 0.714 1.0 1.0 57.131.2 644.5 533.0 1210.7 1250.7 0.714 0.2 1.1 1.0 57.131.2 644.5 531.7 1220.15 0.714 0.2 1.1 1.0 57.131.2 644.5 531.6 1248.2 57.331.5 473.0 1210.7 1.1 1.0 1.1 1.1 57.	10.6213.1	6213.1 39.7	7	48		ų ų	48/64" F	TXED.		•						407-14.3433 (F 202
18 57.624.9 555.4 539.7 1214.3 0.758 0.714 1.0 10 57.126.8 657.1 519.2 1265.6 1248.6 1351.5 1248.6 1351.5 1.0 1.0 1.0 1.0 11 57.428.3 656.3 485.6 1184.5 555.6 1184.5 1351.5 1.0 1	9 4. 1 99		4	48		SWITCH		THROUGH	SEPARATOR				0.4			
57.126.8 657.1 519.2 1265.6 1248.6 100 57.427.7 656.3 525.6 1248.6 1351.5 100 100 57.428.3 656.3 485.6 1351.5 552.6 1184.5 100 100 57.428.3 656.3 485.6 1351.5 552.6 1184.5 551.7 1255.7 57.128.8 650.0 517.7 1255.7 1245.5 0.714 1.0 57.130.2 647.5 517.7 1250.7 0.758 0.714 1.0 57.131.2 652.0 481.2 1348.2 0.714 0.714 0.2 57.131.2 652.0 483.6 1348.2 0.714 0.2 1.1 40 57.131.2 652.0 1348.2 0.714 0.72 1.1 40 57.131.8 650.3 541.3 1201.5 0.714 0.2 1.1 40 57.132.4 650.3 541.3 1222.9 0.714 0.2 1.1 40 57.132.4 654.7 535.4 1222.9 0.714				48		57.604	0	539	2		0.714					AN REAL POINT IN COMPANY
1.0 57.427.7 656.3 525.6 1248.6 1351.5 126.928.3 656.3 485.6 1351.5 100 100 57.428.3 656.3 485.6 1184.5 552.6 1184.5 1184.5 100 100 57.128.8 650.00 517.7 1255.7 1255.7 1345.5 1146.5 1.00 80 57.128.8 650.00 517.7 1250.7 0.758 0.714 1.00 80 57.130.2 647.5 517.7 1250.7 0.758 0.714 1.00 80 57.130.7 645.3 533.0 1210.7 198.5 0.714 0.714 1.00 80 57.131.2 652.00 473.5 1198.5 0.714 0.714 0.2 1.1 80 57.131.2 652.03 537.7 1198.5 0.7748 0.714 0.2 1.1 80 57.131.2 652.03 541.3 1201.5 0.714 0.714 0.2 1.1 80 57.131.2 652.03 541.3 1201.5 0.758 0.714<			0	=		57.126	ω	519	5							
1.0 57.428.3 556.3 485.6 1351.5 1255.7 1255.7 1255.7 1255.7 1255.7 1255.7 1265.7 1265.7 1265.7 1265.7 1265.7 1265.7 1265.7 1265.7 1265.7 1265.7 1265.7 1255.7 1255.7 1255.7 1255.7 1255.7 1255.7 1255.7 1255.7 1265.7 1255.7 1255.7 1255.7 0.714 1.00 \$0 57.130.2 647.5 537.7 1128.5 0.714 0.714 0.714 1.1 \$0 57.131.2 652.0 483.6 1348.2 0.758 0.714 0.2 1.1 \$0 57.131.2 652.0 483.6 1348.2 0.758 0.714 0.2 1.1 \$0 57.131.2 652.0 473.3 1270.9 0.758 0.714 0.2 1.1 \$0 57.131.8 650.3 541.3 1220.9 0.7158 0.714 0.2 1.1 \$0 57.131.8 650.3 541.3 1220.9 0.758 0.714 0.2 1.1	01.00394.3 99.8184.8 56.6		0	:		57.42	5							1.0		
" 56.928.3 654.5 552.6 1184.5 126.57 1.0 %0 " 57.128.8 650.0 517.7 1255.7 0.714 1.00 %0 " 57.128.8 650.0 517.7 1250.7 0.758 0.714 1.00 %0 " 57.130.2 647.5 517.7 1250.7 0.758 0.714 1.00 %0 " 57.130.2 647.5 517.7 1250.7 0.758 0.714 1.00 %0 " 57.130.2 644.5 533.0 1210.7 0.758 0.714 1.0 %0 " 57.131.2 652.0 483.6 1348.2 0.714 0.2 1.1 %0 " 57.131.2 652.0 483.6 1348.2 0.714 0.2 1.1 %0 " 57.131.2 650.3 541.3 1201.5 0.714 0.2 1.1 %0 " 57.131.8 650.3 541.3 1201.5 0.714 0.2 1.1 %0 %1 %0 %1		184.9	0	:		57.428	С									******
" 57.128.8 650.0 517.7 1255.7 1250.7 57.229.6 647.5 481.2 1345.5 57.130.2 647.5 517.7 1250.7 0.758 0.714 " 57.130.2 647.5 517.7 1250.7 1210.7 1250.7 0.758 0.714 " 57.130.2 647.5 537.7 1198.5 0.714 0.2 1.1 <0	394.3100.0 185.6	185.6	4	:		56.928	m							°.	•ْت آ	
" 57.229.6 647.5 481.2 1345.5 0.714 " 57.130.2 647.5 517.7 1250.7 0.758 0.714 " 57.130.2 647.5 517.7 1250.7 0.758 0.714 " 57.130.2 647.5 517.7 1250.7 1210.7 1250.7 " 57.130.2 644.5 533.0 1210.7 198.5 0.714 0.2 " 57.131.2 652.0 483.6 1348.2 0.714 0.2 1.1 40 " 57.131.2 652.0 483.6 1244.5 0.714 0.2 1.1 40 " 57.131.8 650.3 541.3 1201.5 0.714 0.2 1.1 40 " 57.132.4 654.7 506.0 1294.0 0.714 0.2 1.1 40 " 57.132.4 654.7 535.4 1222.9 0.714 0.2 1.1 40 " 57.132.4 654.7 535.4 1222.9 0.714 0.2 1.1 41 <t< td=""><td>185.7</td><td>185.7</td><td></td><td>=</td><td></td><td>57.128</td><td>ω</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	185.7	185.7		=		57.128	ω									
" 57.130.2 647.5 517.7 1250.7 0.758 0.714 " 57.130.7 645.3 533.0 1210.7 0.758 0.714 " 57.130.7 644.5 533.0 1210.7 0.758 0.714 " 57.131.0 644.5 537.7 1198.5 0.714 0.2 " 57.131.2 652.0 483.6 1348.2 0.714 0.2 " 57.131.2 652.0 483.6 1210.5 0.714 0.2 " 57.131.8 650.3 541.3 1201.5 0.714 0.2 " 57.131.8 650.3 541.3 1201.5 0.714 0.2 " 57.132.4 654.7 506.0 1294.0 0.714 0.2 " 57.132.4 654.7 535.4 1222.9 0.714 0.2 1.1 " 57.132.4 654.7 535.4 1222.9 0.714 0.2 1.1 " 57.132.4 654.7 535.4 1222.9 0.714 0.2 1.1	186.2	186.2	0	=	240.000,000	57.22	9									
" 57.130.7 645.3 533.0 1210.7 108.5 " 57.331.0 644.5 537.7 1198.5 1198.5 " 57.131.2 652.0 483.6 1348.2 0.714 0.2 " 57.131.5 652.0 483.6 1348.2 0.758 0.714 0.2 " 57.131.8 650.3 541.3 1201.5 0.714 0.2 1.1 " 57.131.8 650.3 541.3 1201.5 0.714 0.2 1.1 " 57.132.4 654.7 506.0 1294.0 1222.9 0.714 0.2 1.1 " 57.132.4 654.7 535.4 1222.9 1222.9 1.12 1.1 gauge SDP 82020 at 2736.50 m. * * * * * * gauge SDP 82020 at 2736.50 m. * * * * * * * faust perforated. See Diary of events for details. * * * * *	185.3	185.3	m			57.13(2	517		0	0.714	int-Arren				
" 57.131.0 644.5 537.7 1198.5 1198.5 " 57.131.2 652.0 483.6 1348.2 0.758 0.714 0.2 " 57.131.8 650.3 541.3 1274.8 0.758 0.714 0.2 " 57.131.8 650.3 541.3 1201.5 0.714 0.2 " 57.131.8 650.3 541.3 1201.5 0.714 0.2 " 57.232.3 654.7 506.0 1294.0 1222.9 1.1 1.1 " 57.132.4 654.7 535.4 1222.9 1.222.9 1.1 1.1 " 57.132.4 654.7 535.4 1222.9 1.2 1.1 gauge SDP 82020 at 2736.50 m. " * * * * * at sperforated. See Diary of events for details. * * * * *	394.6100.1 185.9	185.9	35	: :		51. 12 21. 12	`									
" 57.331.5 473.0 473.0 1374.8 0.758 0.714 0.2 " 57.131.8 650.3 541.3 1201.5 1294.0 1294.0 " 57.232.3 654.7 506.0 1294.0 1294.0 1.1 " 57.132.4 654.7 535.4 1222.9 121 1.1 gauge SDP 82020 at 2736.50 m. " 2736.50 m. * * * *	0 13 3 30 1 C 00 1 C 00 0 C 23 30 0 C 24 30 0 C 25 30 1 C 00 1 C 00 1 C 00 0 C 25 30 0	1 02 6	* ~	: :		57.12	л с	150						-	ſ	
" 57.131.8 650.3 541.3 1201.5 57,232.3 654.7 506.0 1294.0 " 57.132.4 654.7 535.4 1222.9 gauge SDP 82020 at 2736.50 m. als perforated. See Diary of events for details.	187.0	187.0	~~~~	=		57.33	ı N	473		0	0.714			1)	
" 57,232.3 654.7 506.0 1294.0 57.132.4 654.7 535.4 1222.9 gauge SDP 82020 at 2736.50 m. rals perforated. See Diary of events for details.	394.7100.4 187.0	187.0		=		57.13	8		۳ ا							(aganan)
" 57.132.4 654.7 535.4 1222.9 1 gauge SDP 82020 at 2736.50 m. rals perforated. See Diary of events for details.	100.4 187.4	187.4	~	=		57,23.	ŝ									di di seconda di second
gauge SDP 82020 at 2736.50 m. rals perforated. See Diary of events for details.	394.8100.4 187.7	187.7		_		57.13	4							1.1		
gauge SDP 82020 at 2736.50 m. rals perforated. See Diary of events for details.	Remarks															Ι
rals perforated. See Diary of	* Flopetrol	* Flopet	11		SDP									~		
	** 2 1	ß	F	tervals]	perfor	ated.	See Diar	of	rents for	details.						

- - -

	100		Well													CHP/PG	/PG		
				1	34/TU-T/						FLOW	FLOW DATA				Perfs. :		JĴ€A_QO E m	
			DST	по. 4	4											Zone	Zone tested	BRENT	
	1983																		
	Date/	Bottom hole	hole	Well h	head	Chokes	1/64"				Separator	or data				Liq. ar	and gas a	analysis	
	time	press. bar	temp °C	press bar	press temp. bar °C	manifold	heater	press. bar	temp. °C	10 ³ Sm ³ /d	oil rate Sm ³ /D	GOR Sm ³ /Sm ³	sp.gr.oH	sp.gr.gas (Air=1)	Water %	Sedim. %	со ₂ %	H ₂ S ppm	-
.06	04.15	394.8	A100.4	187.7	764.4	48		7.1	3.1		502.4	1303.1	0.758	0.714					
	04.30	394.8	394.8100.5		64.7	=		7.1	3.6		503.6	1300.1					1.0	<0.5	
	04.45	394.8100.8	100.8	187.865	55	=			33.9		500.1	1305.9							
	05.00	394.9100.6	100.6	188.1	65.6	=			3.9		501.3	1302.8					1.0		
	05.15	394.9100.6	100.6	187.964.8	64.8	=		57.1	3.6		501.3	1302.8	0.758	0.714		0.9			
	05.30	394.9	100.7	188.265.	-	=			4.0		497.8	1312.1					1.0		
	05.45	394.9100.7	-	188.2	65.9	=		57.0	4.0		502.4	1299.8							
	06.00	94	.9100.8	•	366.1	=		57.0	.6	3 . 0		1312.1							
	06.12	394.9	.9100.8	188.3	366.3			SHUT	IN WELL	LL FOR	BUILD-UP	<u>д</u>						•	
		THIRD	FLOW	V PERIOD	: 00														
-1	05.05					37		OPENED	D WELL	NC	33/64" FXD	D CHOKE	FT.OWED	THROUGH	H SEPARATOR	TOR			
20	15 45	7	90 5	753 2	ר ע ר) =		56.0	L L	с 1	341 8		0 762	0 714					
0	16.00	397.8	0.001	254.755.2		5			. 4		347.4	1230.6						<0.5	
	ິເ	397.7	97 - 71 00 - 2	255.4	57.3	E		55.1	. 9		339.6	1259.4						}	
	16.30	9.76		255.8	58.9	2			<u>,</u> 2	METER									
	16.45	97.7	100.4	256.0	60.0	5		55.1	9	0	331.7	1290.5	0.762	0.715		0.0	1.2		
	17.00	397.7	97.7100.5	256.2	.260.8			4.9			329.5	1307.6							
	17.15	397.7	97.7100.6	256	61.4	2		4.9	2		326.1	1317.5							
	17.30	397.8	397.8100.8	256	62.1			4.9	З		325.0	1320.2					1.1		
	17.45	397.8	.8100.9	256	62.5	5		5.0	0		325.0	1320.7	0.760	0.714			1.2		
	18.00	397.8	97.8100.8	256	63.0	2		5.0	4	429.7	325.0	1322.2							
	18.15	397.7	97.7100.8	256	63.2	=		55.0	б	429.7	321.6	1336.0							
	18.30	397.7	00 I	257	63.7	2		5.0	9.4	429.1	320.5	1338.9					1.0		
	18.45	397.7	100.9	257.1	.163.9	8		5.1	6.	429.1	322.7	1329.6	0.760	0.714					
		Remark	ırks																
		-																	

28.0

FLOW DATA FLOW DATA Person FLOW DATA Person Person <t< th=""><th></th><th></th><th>Well</th><th>34/10-17</th><th>-17</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>54/dH2</th><th>2</th><th></th><th></th></t<>			Well	34/10-17	-17										54/dH2	2		
Jost no. 4 Zone tested Bettern these Separation data Lit, and gas an gas ang one of the press term manifold heat pairs Zone tested Dest "CC Dest "CC Separation data Lit, and gas and ga				07/20							FLOM	V DATA			Perfs.	: 2754	- 1	
Pertent Concert 1/4* Separation data Life and gas Life and gas <thlift and="" gas<="" th=""> <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Zone</th><th>tested</th><th>BRENT</th><th></th></th<></thlift>															Zone	tested	BRENT	
Bottom Note Weit I hand Chotens 1/64" Seconds Aliant Second sate Aliant Aliant </th <th>~</th> <th></th>	~																	
press, term press, term manifold heat °C Ip3/3fm Go mai/2fm searchast searchas			hole	Well hea			1/64"				Separati	1			Liq. and	gas	alysis	
397.71003 257.254.3 32 55.1 80.5 428.5 325.0 1318.7 55.1 80.2 428.5 325.1 1314.1 55.1 80.2 428.5 325.1 1312.4 55.1 80.2 428.0 322.7 1326.0 55.1 80.2 428.0 322.7 1326.0 55.1 80.2 428.0 322.7 1326.0 55.1 80.2 428.0 325.1 1312.4 55.1 80.2 428.0 325.1 1312.4 55.1 80.2 428.0 325.1 1312.4 55.1 80.2 428.0 325.1 1312.4 55.1 80.2 428.0 325.1 1312.4 55.1 80.2 428.0 325.1 1312.4 55.1 80.2 428.0 325.1 1312.4 55.1 80.2 428.0 322.7 1326.0 0.760 0.714 11.0 307.7001 257.655.2 7 54.9 80.1 428.0 322.7 1326.0 0.7760 0.714 11.0 307.7001 257.655.6 7 54.9 80.7 427.4 319.4 1338.2 0.760 0.714 11.0 397.7001 257.655.6 7 54.9 80.7 427.4 319.4 1338.2 0.760 0.714 11.0 397.7001 257.655.6 7 54.9 80.7 427.4 319.4 1338.2 0.760 0.714 11.0 397.7001 257.655.9 7 54.9 80.7 427.4 319.4 1338.2 0.760 0.714 11.0 397.7001 257.655.9 7 54.9 80.7 427.4 319.4 1338.2 0.760 0.714 11.0 397.7001 257.755.8 7 54.9 80.7 427.4 319.4 1338.2 0.760 0.714 11.0 397.600 0	å	press. bar	°C °C	press te bar			heater	press. bar	r E O	gasrate lt0 ³ Sm ³ ∕ð		GOR Sm ³ /Sm3		sp.gr.gas (Air=1)			1 ₂ S ppm	
397.7101.0 257.34.5 55.1 55.1 35.1 1314.1 10.0 397.7100.3 257.34.7 55.1 50.2 428.0 326.1 1314.1 397.7100.3 257.34.7 55.1 50.2 428.0 326.1 1312.4 397.7100.4 557.454.9 55.0 50.1 428.0 326.1 1312.4 397.7101.0 257.455.3 55.0 50.1 428.0 326.1 1312.4 397.7101.0 257.455.3 55.3 50.1 428.0 327.7 1302.0 1.10.0 397.7101.0 257.655.3 54.9 50.1 428.0 322.7 1336.0 0.760 0.714 1.10 397.7101.0 257.655.4 54.9 50.7 428.0 322.7 1336.0 0.760 0.714 1.10 397.7101.1 257.755.8 54.9 50.7 428.0 322.7 1342.9 0.760 0.714 1.10 397.7101.1 257.755.8 54.9 50.7 429.4 318.3 144.9 38.7 397.6101.1 257.755.8 54		397.7	0	257.2		32		5.1		428.5	325.0	1318.7					0.6	
397.700.03 277.364.7 551.30.2 428.0 326.1 1312.4 1.0 397.700.03 257.364.7 551.30.2 428.0 326.1 1312.4 1.0 397.700.03 557.364.9 551.30.2 428.0 325.1 1316.8 0.760 0.714 1.0 397.700.05 557.464.9 54.9 30.1 428.0 325.1 1316.8 0.760 1.0 397.700.0557.465.3 54.9 30.1 428.0 327.2 1307.9 1.0 1.0 397.700.0557.465.3 54.9 30.4 428.0 327.7 1336.0 0.714 1.0 397.700.10527.665.3 54.9 30.1 428.0 327.7 1336.0 0.714 1.0 397.700.1227.755.8 54.8 30.7 47.4 318.3 1338.2 0.760 0.714 1.0 397.600.1227.765.8 54.8 30.7 47.4 318.3 1339.3 0.760 0.714 1.0 397.600.1227.765.8 55.8 54.8 30.7 427.4 318.3 1339.3 0.760 0.714 1.0<	Ľ	- L L D C		757 364		=					376 1)	
397.7100.0257.454.9 T 55.1 B0.2 428.0 325.1 1336.0 1714 1.0 1337.453 55.0 55.1 B0.2 428.0 325.1 1332.4 1332.4 1332.4 1332.4 1332.4 1332.4 1332.4 1332.4 1332.4 1332.4 1332.4 1332.4 1332.4 1332.4 1332.4 1332.4 1332.6 10.714 1.1 1332.7 155.5 1 55.3 50.4 428.0 322.7 1335.0 0.776 0.714 1.1 10 1377.7 155.8 10.4 428.0 322.7 1335.0 0.776 0.714 1.1 10 1377.7 155.8 10.4 428.0 322.7 1335.0 0.776 0.714 1.1 10 1377.7 101.0 257.655.4 154.8 10.0 222.7 1336.0 0.776 0.714 1.1 10 1377.7 101.0 257.655.4 155.8 10.7 427.4 319.4 1338.2 1336.2 1326.0 0.714 1.1 10 1377.7 101.0 257.655.4 155.8 10.7 427.4 319.4 1338.2 1337.2 1372.9 1321.5 1338.2 1307.4 10.0 257.7 155.8 10.7 427.4 319.4 1338.2 1337.9 1327.5 1336.2 10.0 774 11.0 1257.655.4 155.8 10.7 427.4 319.4 1338.2 1339.2 1331.5 1339.2 1337.9 1321.5 1339.2 1336.7 10.0 1257.855.7 1 55.8 10.7 427.4 319.4 1338.2 1339.2 1336.2 10.714 10.0 1257.655.8 155.7 1 55.4 10.0 1257.855.7 1 55.8 10.7 427.4 319.4 1338.2 1339.2 1339.2 1339.3 15577760 10.714 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	n c				ר י י	:		1.	•		1.020					(-	1	
397.7101.0277.654.8 ************************************		197.1	5.001	905.1C2					•	428.0	320.L	1312.4				л . т		
397.7101.4277.454.9 55.0 30.4 428.0 325.0 1316.8 0.760 0.714 1.1 397.7101.4277.455.1 54.9 30.3 428.0 327.1 1312.4 1.1 397.7101.4277.455.1 54.9 30.3 428.0 327.1 1326.0 0.760 0.714 1.1 397.7101.4277.455.3 54.9 30.6 428.0 322.7 1326.0 0.760 0.714 1.0 397.7101.9277.655.3 54.8 30.6 428.0 322.7 1326.6 1.10 397.7101.12277.755.8 54.8 30.7 427.4 319.4 1381.2 1.0 397.6101.1227.755.8 54.8 30.7 427.4 319.4 1342.9 1.0 397.6101.1277.955.8 54.8 30.7 427.4 319.3 1342.9 1.10 397.6101.1277.955.8 53.7 339.7 1349.3 1.349.3 1.349.3 1.10 397.6101.1277.955.9 53.7 30.5 429.4 318.3 1.349.3 1.10 397.6101.127.855.9 53.7 30.5 429.4 318.3	ŋ	397.7	T00.9	257.364	4°8	=		-	•	428.0	322.7	1326.0						
397.700L 0257.455.1 54.9 50.1 428.0 326.1 1312.4 1.1 397.700L 0257.555.2 54.9 50.3 428.0 327.2 1307.9 397.700L 257.655.4 54.9 50.3 428.0 327.2 1306.0 11.1 397.700L 257.655.4 54.9 50.3 428.0 322.7 1326.0 0.714 1.0 397.700L 257.655.4 54.8 50.6 428.0 323.9 1331.5 0.760 0.714 1.0 397.700L 257.755.8 54.8 50.7 427.4 319.4 1334.2 0.760 0.714 1.0 397.600L 257.755.8 54.8 50.7 427.4 319.4 1334.2 0.760 0.714 1.0 397.600L12 257.755.8 54.8 50.7 429.4 318.3 1349.3 0.760 0.714 1.0 397.600L1 257.855.9 54.8 50.6 429.4 318.3 1349.3 0.760 0.714 1.0 397.600L1 257.855.9 53.7 50.6 <td>0</td> <td>397.7</td> <td>101.0</td> <td>257.464</td> <td>4.9</td> <td>=</td> <td></td> <td>o</td> <td>•</td> <td>428.0</td> <td>325.0</td> <td>1316.8</td> <td>0.760</td> <td>0.714</td> <td></td> <td>1.0</td> <td>0.6</td> <td></td>	0	397.7	101.0	257.464	4.9	=		o	•	428.0	325.0	1316.8	0.760	0.714		1.0	0.6	
397.7h01.0 257.555.2 54.9 50.3 428.0 327.7 1326.0 1.11 397.7h01.9 257.655.4 54.9 50.4 428.0 322.7 1326.0 0.760 0.714 1.0 397.7h01.9 257.655.4 54.8 50.3 428.0 322.7 1326.0 0.760 0.714 1.0 397.7h01.2 257.655.4 54.8 50.3 428.0 322.7 1336.2 1326.0 1.0 1.0 397.7h01.2 257.765.8 54.8 50.7 427.4 319.4 1338.2 1349.3 1.0 1.0 397.6h01.1 257.765.8 54.8 50.7 427.4 319.4 1349.3 1349.3 1.0 397.6h01.2 257.865.0 80.7 429.4 318.3 1349.3 0.760 0.714 1.0 397.6h01.2 257.865.0 801.7 WHLL FOR BUILD UP. 0.760 0.714 1.0 397.6h01.2 257.865.0 801.7 419.4 319.4 3149.3 0.760 0.714 1.0 397.6h01.2 257.865.0	ы	397.7	101. 0	1257.465	5.1	=		٥.		428.0	326.1	1312.4						
397.71019 257.655.3 " 54.9 30.4 428.0 322.7 1326.0 0.760 0.714 1.0 397.71012 257.655.6 " 54.9 30.6 428.0 322.7 1326.0 0.760 0.714 1.0 397.7101.257.755.8 " 54.9 30.7 427.4 319.4 1338.2 397.7101.1257.755.8 " 54.9 30.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31342.9 307.7 427.4 319.4 1338.2 31349.3 357.6 101.2 257.865.0 " 554.8 30.7 427.4 319.4 138.3 1349.3 357.6 101.2 257.865.0 " 554.8 30.7 427.4 319.4 138.3 1349.3 357.7 30.5 429.4 318.3 1349.3 357.7 30.5 429.4 318.3 1349.3 357.7 30.5 429.4 318.3 1349.3 357.7 30.5 429.4 318.3 1349.3 357.7 30.5 429.4 318.3 1349.3 3 1349.3 3 1349.3 3 1349.3 3 1349.3 3 1349.3 3 1349.3 3 1349.3 3 1349.3 3 1349.3 3 1349.3 3 1349.5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	õ	397.7	101.0	257.565	5.2	=		σ.	•	428.0	327.2	1307.9					0.6	
397.7101.9257.665.4 " 54.8 30.6 428.0 322.7 1326.0 0.714 1.0 397.7101.257.655.6 " 54.8 30.3 427.4 318.3 1342.9 397.7101.257.755.8 " 54.8 30.7 427.4 318.3 1342.9 597.6101.1257.855.9 " 54.8 30.7 427.4 318.3 1343.2 597.6101.1257.855.9 " 54.8 30.7 427.4 318.3 1349.3 597.6101.1257.855.9 " 54.8 30.7 427.4 318.3 1349.3 597.6101.1257.855.9 " 54.9 30.7 427.4 318.3 1349.3 597.6101.1257.855.9 " 54.9 30.7 427.4 319.4 1338.2 0.760 0.714 533.7 30.5 429.4 318.3 1349.3 597.6101.1257.855.9 " 53.7 30.5 429.4 318.3 1349.3 597.6101.1257.855.9 " 53.7 30.5 429.4 318.3 1349.3 597.6101.1257.855.9 " 53.7 30.5 429.4 318.3 1349.3 597.6101.1257.855.9 " 54.9 40.7 4 319.4 1338.2 0.760 0.714 Family Family Famil	ŝ	397.7	101.9	257.665	5.3	=		<i>о</i>	•	428.0	322.7	1326.0						
397.7101.0257.665.6 " 54.8 30.3 428.0 323.9 1321.5 54.9 30.7 427.4 319.4 1338.2 397.7101.1257.755.8 " 54.9 30.7 427.4 319.3 1342.9 397.6101.1257.855.7 " 54.9 30.7 427.4 318.3 1342.9 397.6101.1257.855.7 " 54.9 30.7 427.4 318.3 1349.3 397.6101.1257.865.0 " 53.7 30.5 429.4 318.3 1349.3 397.6101.1257.865.0 " 53.7 30.5 429.4 318.3 1349.3 397.6101.2257.865.0 " 53.7 30.5 429.4 318.3 1349.3 397.6101.2257.865.0 " 53.7 30.5 429.4 318.3 1349.3 30.7 427.4 319.3 1349.3 397.6101.2257.865.0 " 53.7 30.5 429.4 318.3 1349.3 1349.3 397.6101.2257.865.0 " 53.7 30.5 429.4 318.3 1349.3 1349.3 397.6101.2257.865.0 " 53.7 30.5 429.4 318.3 1349.3 1349.3 397.6101.2257.865.0 " 53.7 30.5 429.4 318.3 1349.3 30.7 427.4 30.7 40.7 10.0 400.7 40	0	197.7	101.9	257.665	5.4	5		ω		428.0	322.7	1326.0	0.760	0.714			7.0	
397.7101.1277.755.8 " 54.9 30.7 427.4 319.4 1338.2 54.9 30.7 427.4 319.4 1338.2 54.8 30.7 427.4 319.4 1338.2 54.8 30.7 427.4 319.4 1338.2 54.8 30.7 427.4 319.3 1342.9 54.8 30.7 427.4 319.3 1342.9 55.7 855.0 " 55.7 855.0 " 55.7 30.6 429.4 318.3 1349.3 1349.3 55.7 855.0 " 55.7 30.6 429.4 318.3 1349.3 1349.3 55.7 855.0 " 55.7 30.6 429.4 318.3 1349.3 1349.3 1349.3 149.3 140.0 " 1.0 397.6[10.12277.855.0 " 55.7 30.6 429.4 318.3 1349.3 1349.3 1349.3 1349.3 140.0 " 1.0 397.6[10.12277.855.0 " 55.7 30.6 429.4 318.3 1349.3 140.0 " 1.0 397.6[10.12277.855.0 " 55.7 30.5 429.4 318.3 1349.3 1349.3 1349.3 140.0 " 1.0 397.6[10.12277.855.0 " 55.7 30.5 429.4 318.3 1349.3 1349.3 1349.3 140.0 " 1.0 397.6[10.12277.855.0 " 55.7 30.5 429.4 318.3 1349.3 1349.3 1349.3 140.0 " 1.0 397.6[10.12277.855.0 " 55.7 30.5 429.4 318.3 1349.3 1349.3 1349.3 140.0 " 1.0 397.6[10.12277.855.0 " 55.7 30.5 429.4 318.3 1349.3 1349.3 1349.3 140.0 " 1.0 397.6[10.12277.855.0 " 55.7 30.5 429.4 318.3 1349.3 1349.3 1349.3 140.0 " 1.0 397.6[10.12277.855.0 " 55.7 30.5 429.4 318.3 1349.3 1349.3 1349.3 140.0 " 1.0 397.6[10.12277.855.0 " 55.7 30.5 429.4 318.3 1349.3 1340.3 1340.3 1340.3 1340.3 1		7 705	0 1 0 1	257 665	5	=		α		428.0	923.9	1321.5						
397.7101.2 257.755.8 " 54.8 30.7 427.4 318.3 1342.9 397.6101.1 257.855.9 " 54.8 30.7 427.4 318.3 1349.3 397.6101.1 257.855.9 " 53.7 30.5 429.4 318.3 1349.3 53.7 30.5 429.4 318.3 1349.3 53.7 30.5 429.4 318.3 1349.3 54.0 0.714 53.7 100.2 257.866.0 " 54.9 54.0 0.714 54.0 0.714 1.0 1	<u>,</u>	102 TOS		257 7KF		=		, o	•	477 4	319 4	1338.2				C	6	
997.6101.1 257.855.9 997.6101.1 257.855.9 997.6101.1 257.855.9 997.6101.1 257.855.9 997.6101.2 257.856.0 897.6101.2 257.856.0 897.7 30.5 429.4 318.3 1349.3 897.6101.2 257.856.0 897.7 30.5 429.4 318.3 1349.3 897.7 30.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 4						=				V LCV						2)	
397.6101.1 257.855.7 " 54.8 30.7 427.4 319.3 134.9 1348.2 0.760 0.714 1397.6101.1 257.855.9 " 533.7 30.6 429.4 318.3 1349.3 1349.3 537.7 30.5 429.4 318.3 1349.3 540.0 " 550.0 " 550.6 429.4 318.3 1349.3 134	Û,	59/./	101.	.d/ ./ c7	ρ.			ρ		421.4	C.01C	P.242.		;				
997.6101.1 257.865.9 " 53.7 30.6 422.4 318.3 1349.3 997.6101.2 257.866.0 " 53.7 30.5 429.4 318.3 1349.3 SHUT IN WELL FOR BUILD UP. SHUT IN WELL FOR BUILD UP.		397.6	101.1	257.865	2.7	: 1		œ, ı	30.7	427.4	319.4	1338.2	0.760	0.714		(
397.6101.2 257.866.0 " 53.7 30.5 429.4 318.3 1 SHUT IN WELL FOR BUILD UP. Remarks	പ		101-1	257.865	6.0	-				429.4	318.3	L349.3				л.0		
Remarks	õ		101.2	257.866	0.0	5			۰	429.4	318.3	I349.3						
Benarks	8											Ъ.						
							-											
					- 1													
Bemarks								-										
Remarks			,															
Remarks																		
		•																
				-	-													
		Rema	Irks															

28.06

Well 34/10-17

DST no 4

LAYOUT OF TEST-STRING

CHP/PG

Perfs 2754 - 2790.5m Zone tested BRENT

TEST-STRING	ID inch	OD inch	LENGTH m	DEPTH mRKB
OTIS STT W/X-0 4 3/8" BOX x $3\frac{1}{2}$ " TDS PIN				
TOP FIRST JNT TUBING				-7.04
1 JNT $3\frac{1}{2}$ " TDS TBG 12.7 LBS/FT L-80	2.75	3.50	9.45	
L JNT 3 ¹ / ₂ " "		"	8.93	
$1 \times 0.3\frac{1}{2}$ " TDS BOX x $4\frac{1}{2}$ ACME PIN	2.80	13/10.75		
1 OTIS LUBRICATOR VALVE	3.00	6.00	1.61	
$1 \times 0 4\frac{1}{2}$ " ACME PIN x $3\frac{1}{2}$ " TDS BOX	2.80	13.00	0.38	
5 STDS $3\frac{1}{2}$ " TDS TBG	2.75	3.50	137.88	
1 PUPJOINT 3 ¹ / ₂ " TDS		"	2.02	
$1 \text{ X/O } 3\frac{1}{2}$ "TDS BOX x $4\frac{1}{2}$ ACME PIN	2.80	6.00	0.21	
1 OTIS SSTT	3.00	13.00	1.78	
1 SLICK JOINT 3 ¹ / ₂ " TDS	2.25	3.50	2.23	157.79
TOP 18 3/4" WELLHEAD 158 M.	0	0.00	2.20	_
1 FLUTED HANGER	3.00	12.00	0.30	158.09
$1 \times 0 4\frac{1}{2}$ " ACME PIN x $3\frac{1}{2}$ " TDS PIN	2.80	6.00	0.44	
1 PUPJOINT 3 ¹ / ₂ " TBG	2.75	3.50	2.79	
249 (83 STDS) $3\frac{1}{2}$ " TBG	"	11	2306.74	
1 JNT $3\frac{1}{2}$ " TBG	"			2477.36
$1 \text{ X/O } 3\frac{1}{2}$ " TDS BOX x $3\frac{1}{2}$ " IF PIN	"	4.50		2477.92
1 SLIP JOINT (OPEN)	2.25	5.00		2483.46
1 SLIP JOINT (CLOSED)	"			2487.48
5 STDS + 1 SINGLE DRILL COLLARS		4.75		2639.10
1 RTTS MECHANICAL CIRC. VALVE	11	4.625		2640.00
1 STD DRILL COLLARS	"	4.75		2668.43
1 SLIP JOINT (CLOSED)	"	5.00		2672.45
1 SLIP JOINT (CLOSED)	11			2676.47
1 STD DRILL COLLARS		4.75		2704.90
1 APR-M SAFETY CIRC VALVE		5.00		2707.20
1 DRILL PIPE TESTER VALVE		5.00		2708.66
1 LPR-N TESTER VALVE		4.625		2713.76
1 FUL FLOW HYDRAULIC BYPASS	11			2715.87
1 BIG JOHN JAR				2717.46
1 RTTS SAFETY JOINT	2.44	5.00		2718.41
1 RTTS PACKER (ABOVE)	2.40	5.75		2718.97
1 RTTS PACKER (BELOW)	2.40			2719.79
1 PERF. 2 7/8" FULL EUE (PINUP)	2.44	2.88		2729.40
X-0 2 7/8 " EUE PIN x 2 3/8" EUE BOX	2.00	3.25		2729.49
1 OTIS XN-NIPPLE (PIN x PIN)	1.79			2729.74
1 2 3/8" EUE COLLAR	2.00	2.38	0.14	2729.88
1 X-0 2 3/8" EUE PIN x 2 7/8" EUE PIN	2.44	4.15		2730.06
1 2 7/8" EUE FULL JOINT	11	2.88		2739.50
1 S.O.S DST-HANGER	-	-	-	-
1 2 7/8" EUE FULL JOINT	2.44	2.88	9,35	2748.85
Remarks. 1 BULL-PLUG w/CROSS 2 7/8" EUE BOX	11	3.25	0.15	2749.00

All measurements to bottom of each item.

Well	34	/1	0-	1
			_	

DST no.

4

•

CHP/PG Perfs.: 2754-90.5m Zone tested BRENT

	WIRELINE NIPPLE at 2729.74	mRKB
[]	Gauge type and number: Sperry Sun M	K III 0051
	Depth, pressure elemement : 2732.77 m	Range; 690 bar
	Mode: 2 min	Delay, 17 hrs.
	Actuated : time 00.13	date : 27.06.83
	Wa≇runout ıtime 01.13	date, 30.06.83
	Gauge type and number: Flopetrol SDP	82020
	Depth, pressure elemement : 2736.50 m	Range : 690 bar
		Delay, 17 hrs
	Actuated : time 00.10	date: 27.06.83
	Will run out: time	date i
	Gauge type and number :	
	Depth, pressure elemement :	Range :
	Mode :	Delay ı
	Actuated : time	date 1
	Will run out i time	date :
	D.S.T. HANGER at 2739.50	mRKB
LJ	D.S.T. HANGER at 2739.50	linkb
	Gauge type and number: Sperry Sun MK	
	Depth, pressure elemement : $2742.63~{ m m}$	Range : 690 bar
	Mode: 4 min	Delay, 17 hrs.
	Actuated ; time 00.10	date : 27.06.83
	Willrun out i time 09.10	date: 02.07.83
	Gauge type and number: Sperry Sun MK	III 0222
	Depth, pressure elemement : 2745.61	Range: 690 bar
	Mode: 2 min	Delay, 17 hrs.
	Actuated : time 00.11	date : 27.06.83
	Will run out : time 01.11	date , 30.06.83
	Gauge type and number :	
	Depth, pressure elemement :	Range :
	Mode :	Delay 1
	Actuated : time	date +
	Will run out i time	date :

₩eW 34/10-17 DST no 4

)

1

SAMPLING

CHP/PG Perfs.: 2754-90 5m Zone tested BRENT

SEPARATOR SAMPLES

.

Time/date	Sampie no.	Type of sample	Transfer time	Bottle no
28.06.83			mins	
03.18	1	Condensate	30	SOS 112
03.18	2+3	Gas	30	SOS 1004+1009
04.06	4	Condensate	26	SOS 107
04.06	5+6	Gas	26	SOS 1001+1008
19.07 19.06 20.10 20.11 BOTTOM	7 8+9 10 HOLE SAI	Condensate Gas Condensate Gas MPLES (NONE	41 43 41 41	SOS 109 SOS 1023+1047 SOS 102 SOS 1048+1034

Time/date	Sample depth mRKB	Estimated PB bar/°C	Transfering pressure(bar)	Bottle no

WELLHEAD SAMPLES/OTHER SAMPLES

Time/date	Sampling point	Sampling	equipment	Remarks
28.06.83				
02.20				
to 05.17	Goose- neck	Glass-jar	6 x 1 l	Condensate
06.20	Separato	- Jerry-can	1 x 10 1	17
06.30	"	Jerry-can	1 x 20 1	11
21.00 to				
21.30	Goose-			
	neck	Glass-jar	6 x 1 1	11
23.00	Separato: "	Jerry-san	1 x 10 1	11
23.30		Barrel	'1 x 200 l	1 H

7. REFERENCES

- 1. Petrophysical Evaluation Report Well 34/10-17, Statoil
- 2. FMT Report Well 34/10-17, Statoil
- 3. PVT Analysis of BHS Well 34/10-17 DST No. 2, Statoil
- 4. Condensate Study (PVT) Well 34/10-17 DST No. 3, Expro
- 5. Condensate Study (PVT) Well 34/10-17 DST No. 4, Expro

Other reports used:

Otis: Well 34/10-17, DST 1,2,3 and 4

Flopetrol: High Accuracy Pressure Temperature Measurements Reports for DST No. 1 (gauge SDP 82009) DST No. 2 (gauge SDP 82020) DST No. 2 (gauge SDP 82009) DST No. 3 (gauge SDP 82002) DST No. 4 (gauge SDP 82020) Sperry Sun: Pressure Survey Reports for DST No. 1 (gauges 0151 and 0100) DST No. 2 (gauge 0151) DST No. 3 (gauges 0222 and 0181) DST No. 4 (gauges 0151 and 0222) DST No. 1 Surface Pressures DST No. 2 Surface Pressures DST No. 3 Surface Pressures DST No. 4 Surface Pressures Corelab: Wellsite Gas and Water Analysis, Well 34/10-17

Statoil: Water Analysis Reports, Well 34/10-17 DST No. 1 Geco: Routine Core Analysis, Well 34/10-17

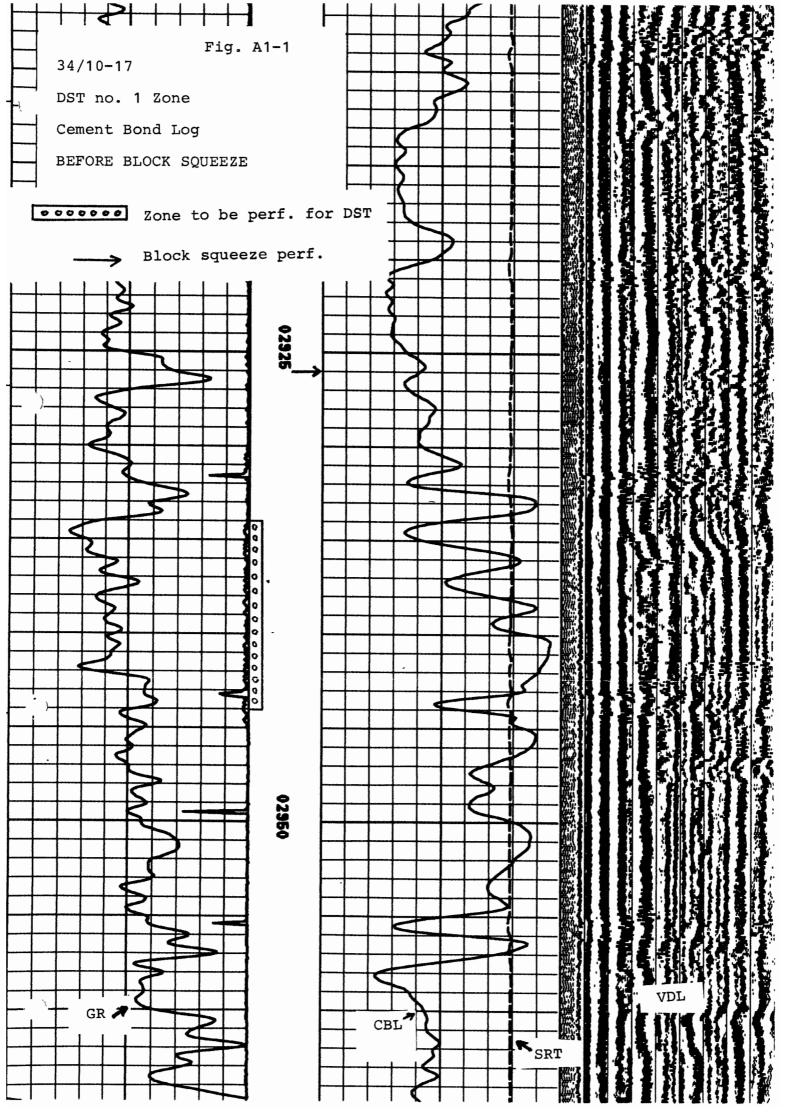
-125-

APPENDIX 1

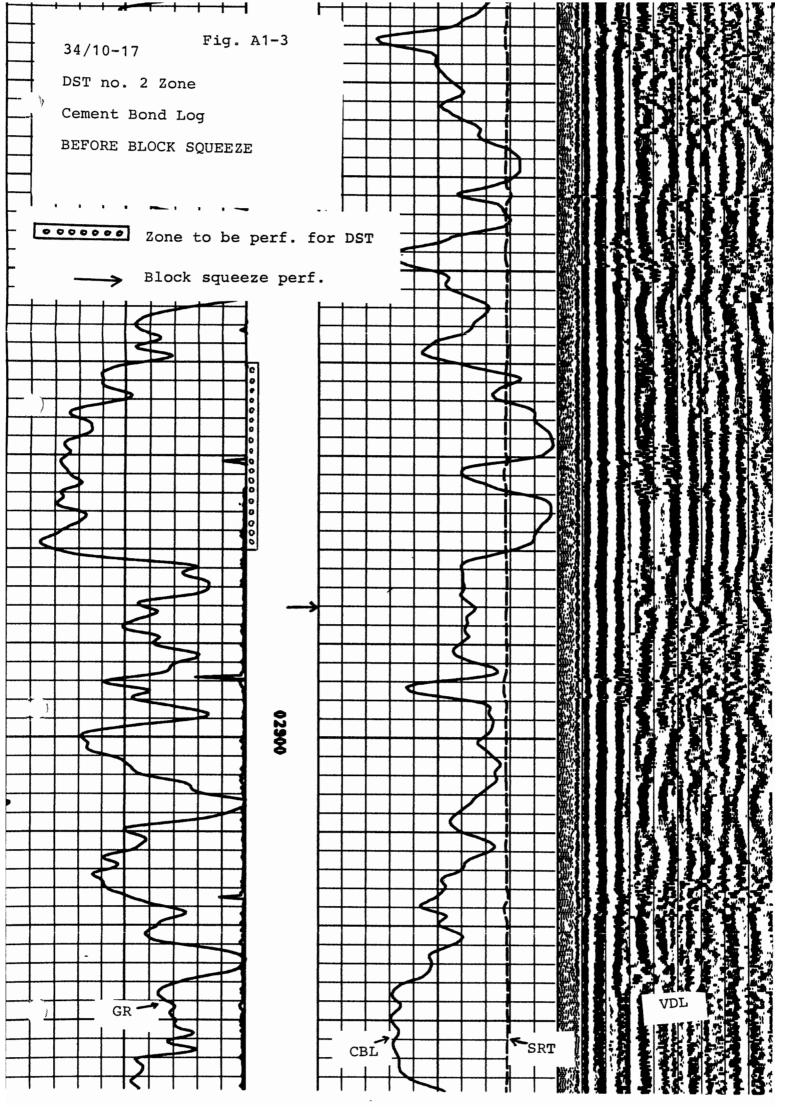
Cement Bond Quality

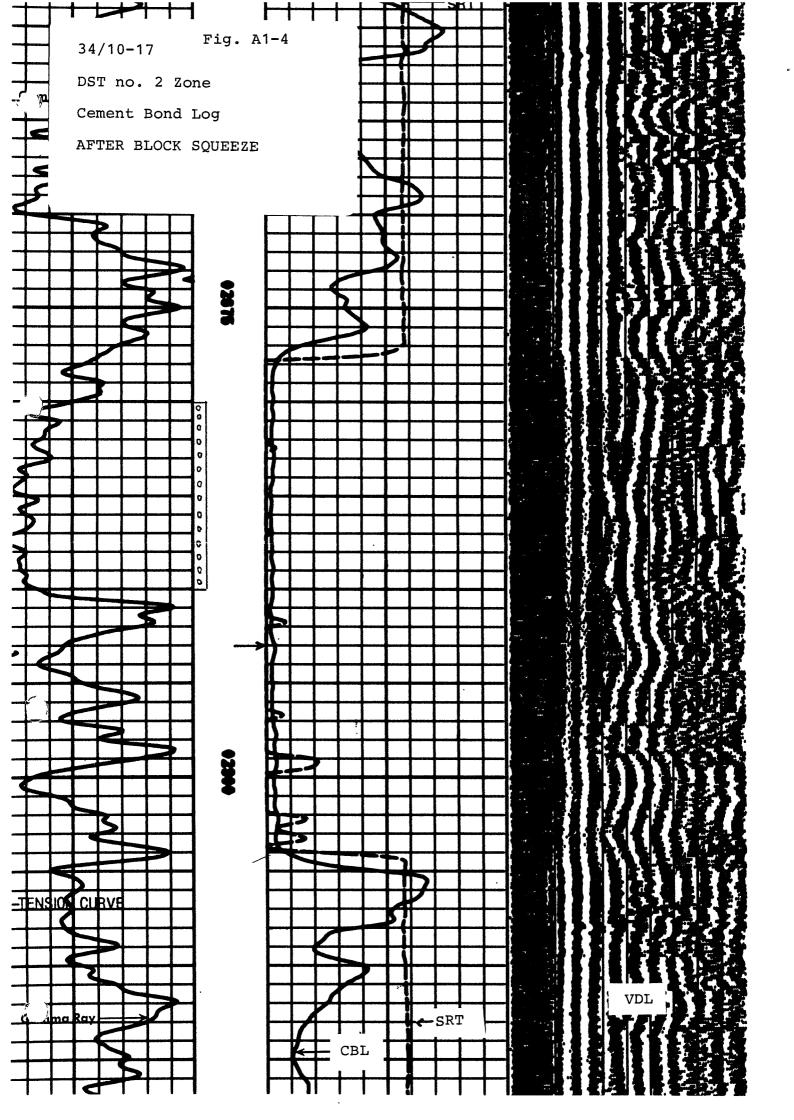
The cement bond log ran after the setting and cementing of the 7" liner showed fair to poor bond between the liner and the formation in all the intervals to be production tested.

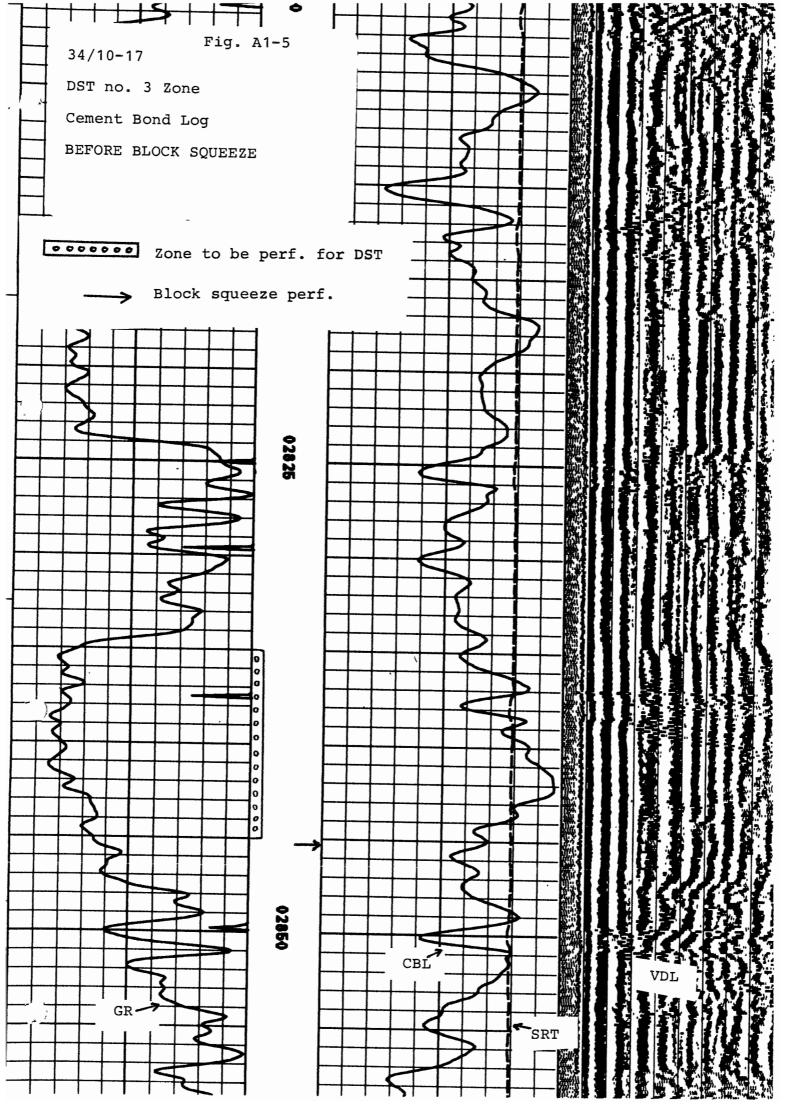
To improve the cement bond and thereby isolate the test zones from other permeable zones, four block squeezes were performed:


Block squeeze no.	Depth
1	2926m (above DST 1 interval)
2	2893m (below DST 2 interval)
3	2845m (at btm. of DST 3 intv.)
4	2754m (at top of DST 4 intv.)

Cement bond logs were run after each of the block squeezes. Figures Al-1 through Al-8 show the cement bond logs ran before and after the block squeeze for Block squeeze/DST zone no. 1,2,3 and 4 respectively. The logs show that the block squeezes improved the cement bond substantially for all the zones of interest.


Excellent bond is observed across, above and below the test zones 1 and 3. These zones are then isolated and it is therefore assumed that no production or pressure response from other zones occured during the test. Also for test zone 2 a good bond is seen across, above and below the tested zone. However, the very top of the zone (2777.5 -78.0) is not covered with a good cement bond. Flow from zones above is therefore possible. The block squeeze at the top of test zone 4 also resulted in a good bond at the top and above this zone while the bond quality below the zone is questionable (figure A1-8). It is therefore possible that the produciton zones between 2790.5m (lowest DST 4




perforation) and 2813m (top of good cement above DST 3 zone, see figure A1-6) could have contributed to the DST 4 production and pressure reponses.

