

TBP distillation of condensate from 6407/1-2 DST 1

STATOIL EXPLORATION & PRODUCTION LABORATORY

by Hans Petter Rønningsen

July-83

LAB 8

Prepared

Annroyed

Den norske stats oljeselskap a.s

Classification		

Rec	uested	bv
-----	--------	----

Jon Hanstveit

Subtitle

Co-workers

Oddbjørn Kopperstad, Eivind Osjord, Terje Schmitt.

Title

TBP distillation of condensate from 6407/1-2 DST 1

STATOIL **EXPLORATION & PRODUCTION LABORATORY**

by Hans Petter Rønningsen

July-83

LAB 83.36

Prepared

Hans P. Rønningsen
Ham P. Rønningsen

Approved

D. Malthe-Sørenssen

CONTENTS

	• •	Page
1.	SUMMARY	2
2.	METHODS AND EQUIPMENT	3
	2.1 Distillation	3
	2.2 Gas chromatographic analysis	3
	2.3 Other measurements	4
3.	RESULTS	4
	REFERENCES	5
	TABLES	6-12
	FIGURE I TBP - and density profiles	13
	APPENDIX - GAS CHROMATOGRAMS	14

1. SUMMARY

This report presents the results from a true boiling point distillation, performed on a 179.5ml sample from single flash of separator liquid, bottle no. 821217 from 6407/1-2 DST 1.

The sample was fractionated from room temperature to 153.1°C at atmospheric pressure, and from 71.4°C to 202.9°C at 25.4 mbar reduced pressure (corresponds to range 153.1°C - 331.0°C at atmospheric pressure).

Table 1. Summary of some essential data for condensate from 6407/1-2 DST 1.

	Condensate	C ₁₀ +	C ₂₀ +
Density (15°C, g·cm ⁻³)	0.799	0.848	0.890
Molecular weight 8 by weight of total sample	147 100	64.02	24.40

2. METHODS AND EQUIPMENT

2.1 Distillation

TBP distillation was performed according to ASTM D-2892 with a Fisher HMS 500 distillation apparatus.

Fractions were collected according to the boiling point ranges between successive n-alkanes as given by Katz and Firoozabadi (1). The light end fractions (<C $_{10}$) were separated at atmospheric pressure, the C $_{10}$ +-fractions at reduced pressure (25.4mbar).

2.2 Gas chromatographic analysis

Component analysis of gas and liquid fractions was performed using a Hewlett Packard 5880 gas chromatographic system.

Chromatographic conditions :

Column for gas fraction : Chrompack $50m \times 0.23mm$ i.d.

WCOT, Cp sil 5 on fused silica,

filmthickness 0.3 m.

Column for liquid fractions: Chrompack 25m x 0.22mm i.d.

WCOT, Cp sil 5 on fused silica,

filmthickness 0.14 m.

Carrier gas : Helium, 22 cm/sec linear

velocity at 10°C.

Detector : Flame ionization, nitrogen

make-up gas, 320°C.

Injection : All glass splitter, with a

packed "Jennings tube". Split ratio 1:80, temp. 310°C for

liquid and 200°C for gas

fraction.

LAB 83.36

Temp. program

: For fractions <C₁₂ injectiontemp. was 10°C, isothermal 4 min then 4°C/min. For fractions C₁₂ - C₁₉ injectiontemp. was 100°C. For gas fraction -30° isothermal 4 min, then 8°C/min to 160°C.

Gas chromatogram of the collected fractions are enclosed in the appendix , as is the fingerprint chromatogram of total condensate 6407/1-2, DST 1.

2.3 Other measurements

Molecular weights were determined by freezing point depression using a Cryette cryoscope, with benzene as reference substance.

Densities were measured using a Paar 602 frequenzy densiometer thermostatted at 15°C . The C_{20}^{+-} fraction was measured at 40°C , and the measured density corrected to 15°C according to API standard 2540 (2).

3. RESULTS

Compositional data from the TBP distillation is given in table 2.

The calculated density of the distillate

 $S = \frac{\text{cum.weight}}{\text{cum. volume}}$

and % by volume distilled are given in table 3, whereas calculated molecular weights and densities are given in table 4.

In table 5, % by weight overlap between fractions are given for each cut.

The composition of the gas and the light end fractions (< $\rm C_9$) as determined by GC is given in table 6 and 7.

Ratios involving \mathbf{C}_{19} and \mathbf{C}_{20} isoprenoid hydrocarbons are given in table 8.

In table 9, the PNA-distribution of fractions up to ${\rm C}_{10}$, as determined by GC, is given.

REFERENCES

- 1. Katz, D.L., Firoozabadi, A., Journ. Petr. Tech., Nov. 1978, 1650.
- 2. Manual of Petroleum Measurement Standards, table 53A, First edition, August 1980.

Table 2 TBP distillation data for single flash condensate from separator liquid 6407/1-2 DST 1.

Fraction	Cut point ¹ (^O C, 760mm Hg)	Actual cut head- temp. at 25.4mbar	Density at 15 ^O C(gcm ⁻³)	Mol.weight	% by weight of condensate	% by weight distilled	Mole percent	% by volume of condensate
Gas			0.511	47	0.471	0.471	1.466	0.728
Cold trap	< 36.5	-	0.617	70	8.488	8.959	17.733	10.867
	69.2	_	0.684	85	3.493	12.452	6.009	4.037
c ₆	98.9	_	0.743	93	8.882	21.334	13.966	9.444
c ₇	126.1	- · .	0.753	107	7.860	29.194	10.742	8.241
с ₈	151.3	-	0.776	120	7.102	36.296	8.655	7.232
C ₁₀ +	> 151.3	_	0.848	226	64.015	_	41.422	59.618
	174.6	71.4	0.790	134	5.402	41.699	5.896	5.405
C ₁₀	196.4	89.3	0.795	147	4.746	46.445	4.721	4.714
c ₁₁	216.8	106.0	0.807	161	4.358	50.802	3.958	4.268
C ₁₂	235.9	122.0	0.823	174	4.588	55.390	3.856	4.405
c ₁₃	253.9	137.4	0.831	188	4.358	59.748	3.390	4.141
C ₁₄	271.1	151.7	0.836	202	4.037	63.785	2.922	3.813
C ₁₅	287.3	164.5	0.843	217	3.037	66.821	2.046	2.847
C ₁₆	303.0	178.4	0.840	234	3.601	70.422	2.250	3.386
C ₁₇	317.0	190.9	0.845	251	2.776	73.198	1.617	2.596
c ₁₈	331.0	202.9	0.856	259	2.406	75.604	1.358	2.220
c ₂₀ +	> 331.0	> 202.9	0.890	397	24.396	100.000	9.413	21.656

Recovery of sample: 99.8% by weight Loss: 0.2%

¹⁾ According to Katz and Firoozabadi. Boiling point of n-alkane plus 0.5 °C.

^{*)} Calculations based on GC-data.

Table 3. Cumulative weight and volume, % by volume distilled and calculated density.

S = cum.weight/cum.volume

Fraction	Cum. weight	Cum. volume	Cum.weight cum.volume	% by volume distilled
Gas	0.674	1.319	0.511	0.728
Cold trap	12.820	21.005	0.610	11.596
² 6	17.818	28.317	0.629	15.633
27	30.527	45.425	0.672	25.077
8	41.774	60.353	0.692	33.318
- 9	51.937	73.453	0.707	40.550
10	59.667	83.244	0.717	45.955
11	66.458	91.783	0.724	50.669
212	72.693	99.513	0.730	54.936
213	79.258	107.493	0.737	59.341
13	85.494	114.994	0.743	63.482
15	91.270	121.901	0.749	67.296
16	95.616	127.058	0.753	70.142
17	100.768	133.191	0.757	73.528
218	104.740	137.894	0.760	76.124
219	108.183	141.915	0.762	78.344

Table 4 Measured and calculated molecular weights and densities from distillation of 6407/1-2 DST 1 condensate.

	Condensate	c ₁₀ +	C ₂₀ +
Measured MW		226	379
Calculated MW	147		
using C ₁₀ + MW	1 7 /		
Calculated MW using C ₂₀ + MW	146	225	
Measured densities	0.799		0.890
Calculated density using C ₁₀ + density	0.791	·	
Calculated density using C ₂₀ + density	0.790	0.846	

Table 5. Weight distribution and % overlap between fractions from distillation of 6407/1-2 DST 1 condensate.

Fraction	<pre>% by weight of condensate</pre>	<pre>% by weight overlap between fractions</pre>
Gas	0.471	
Cold trap	8.488	-
C ₆	3.493	3:77:20
C ₇	8.882	6:74:20
C ₈	7.860	10:81:9
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	7.102	8:81:11
C ₁₀	5.402	7:81:12
C ₁₁	4.746	12:75:13
C_{12}^{11}	4.358	13:71:16
C ₁₃	4.588	10:77:13
C ₁₄	4.358	12:71:17
C ₁₅	4.037	13:73:14
C ₁₆	3.037	12:76:12
C ₁₇	3.601	8:69:23
C ₁₈	2.776	5:76:19
C ₁₉	2.406	8:70:22

Table 6. Total composition of gas and lightend fractions (<C $_9$) as determined by GC. % by weight of total condensate:

Component (fraction)	% by weight of condensate
c ₁	0.01 1)
	0.06 1)
c ₂ c ₃	0.29 1)
i-C ₄	0.36
n-C ₄	1.59
i-C ₅	1.91
n-C ₅	3.01
C_6^{2}	4.88
c ₇ 2)	8.24
C ₈ 2)	8.71

¹⁾ Unreliable because of evaporaton prior to distillation.

²⁾ Without overlap to adjacent fractions.

Table 7. Content of some abundant identified light end compounds in condensate 6407/1-2 DST 1 as determined by GC.

Compound	% by weight of condensate
n-hexane	2.111
Cyclohexane	2.032
2-methylhexane	0.902
n-heptane	1.889
Methylcyclohexane	2.715
Toluene	1.048
4-methylheptane	1.122
n-octane	1.495
m+p-xylene	1.034
o-xylene	0.802
n-nonane	1.471

Table 8. Characteristic isoprenoid hydrocarbon ratios of 6407/1-2 DST 1 condensate.

	Ratio
C ₁₇ /pristane	1.45
C ₁₈ /phytane	1.63
Pristane/phytane	1.26

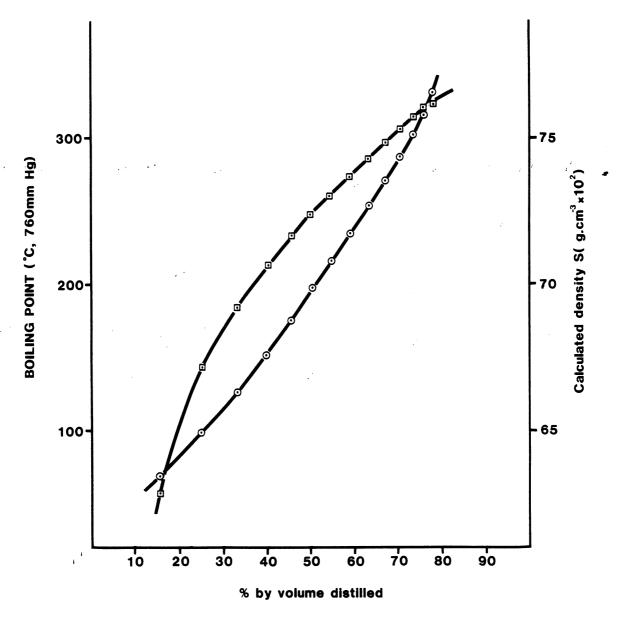
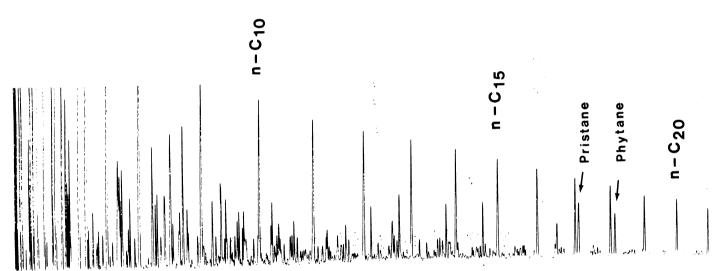
Table 9. PNA-distribution of light end fraction (% by weight)*

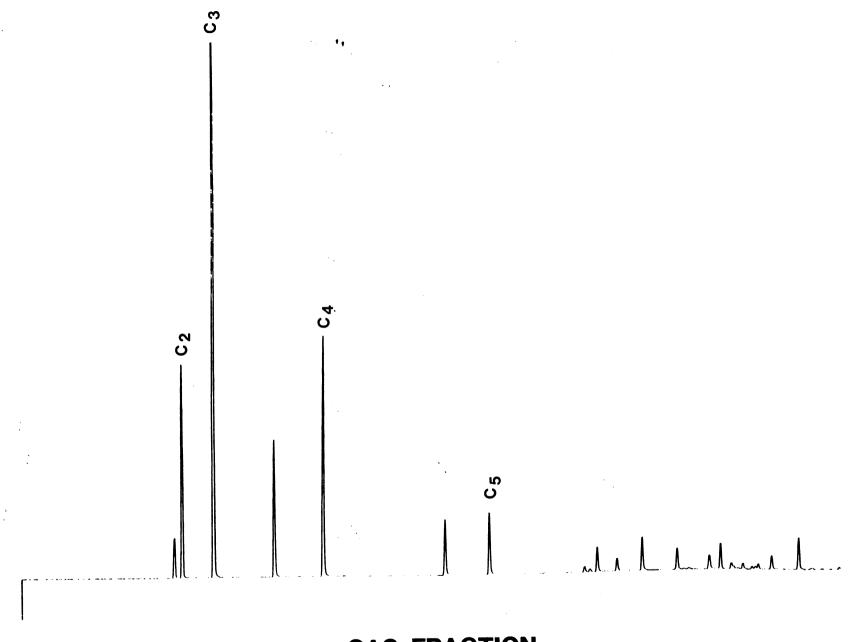
Fraction	Paraffines	Naphtenes	Aromatics
C ₆	72.9	23.1	_
^C 6 C ₇	45.6	51.0	3.4
,	49.9	34.0	16.1
С ₈	58.0	17.0	25.0

^{*} In fact area % from integrated gas chromatograms, which is converted to wt % by assuming equal FID respons to the different compounds.

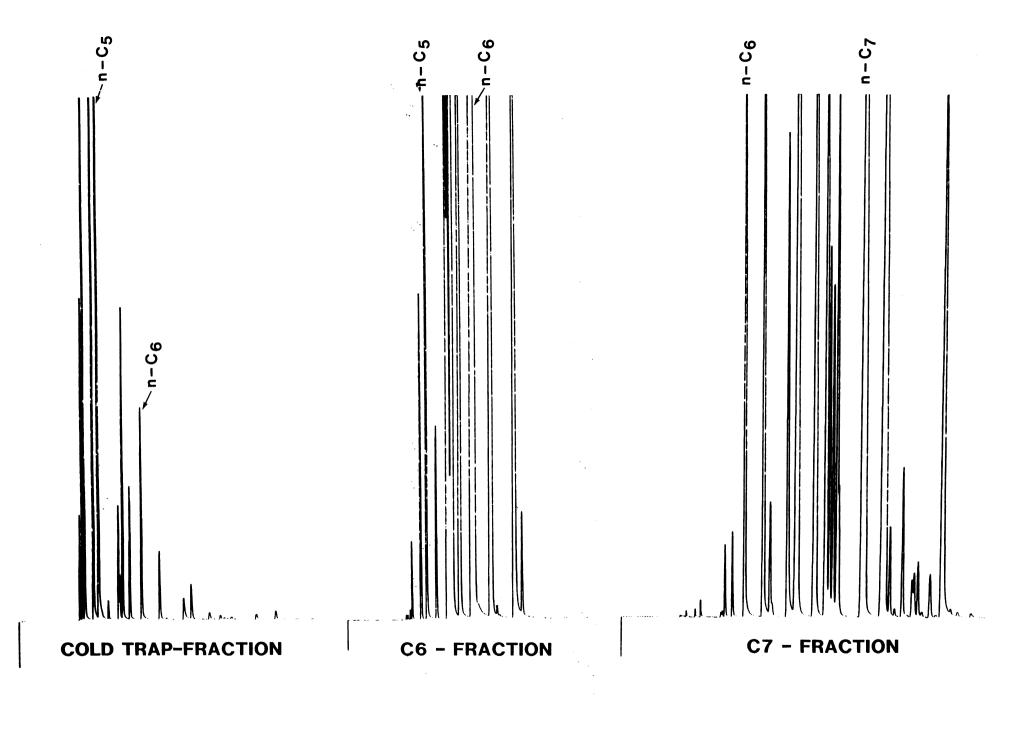
- ⊙ Boiling point vs. % by volume distilled
- Calculated density of distillate recovered

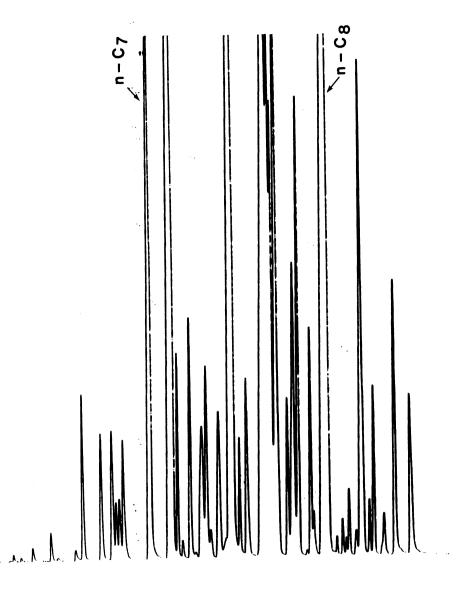
 $S = \frac{\text{cum.weight}}{\text{cum.volume}}$ vs. % by volume distilled

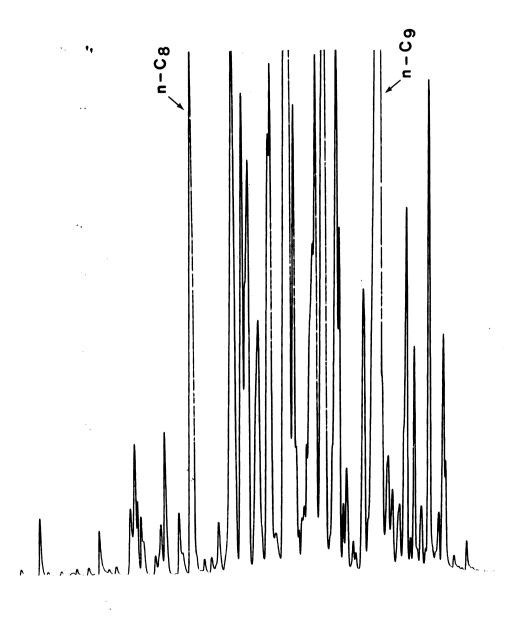

FIG. 1 TBP-AND DENSITY-PROFILES FOR CONDENSATE 6407/1-2

APPENDIX

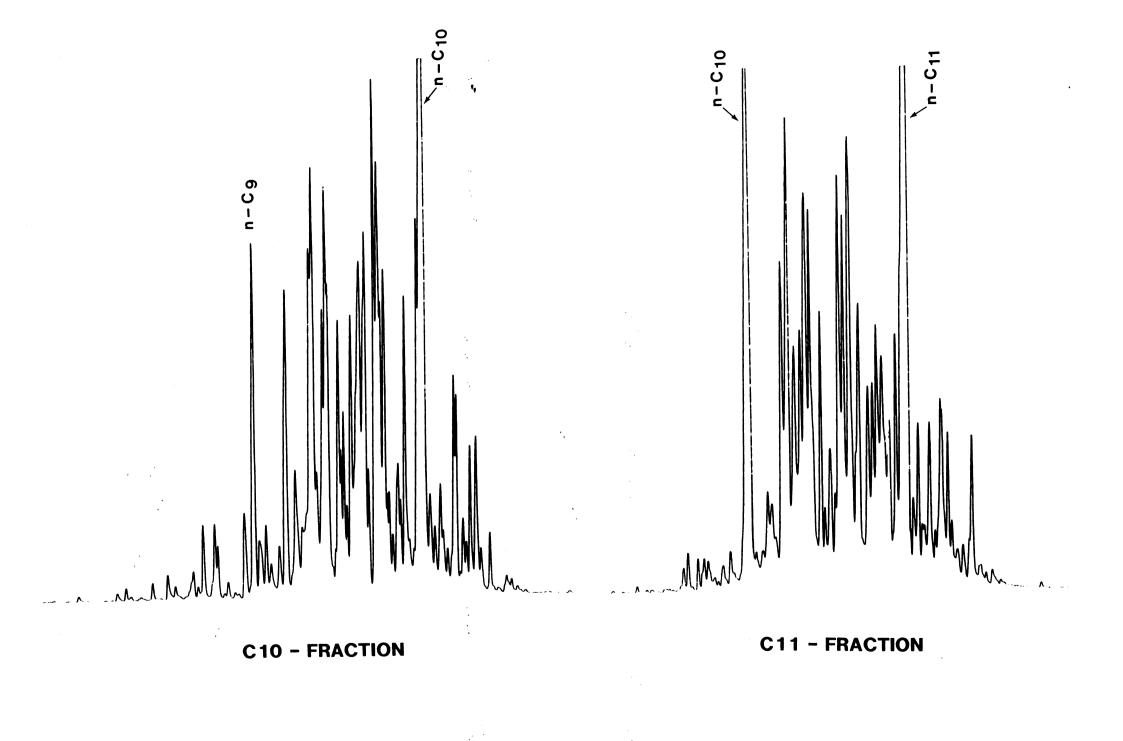

G A S C H R O M A T O G R A M S

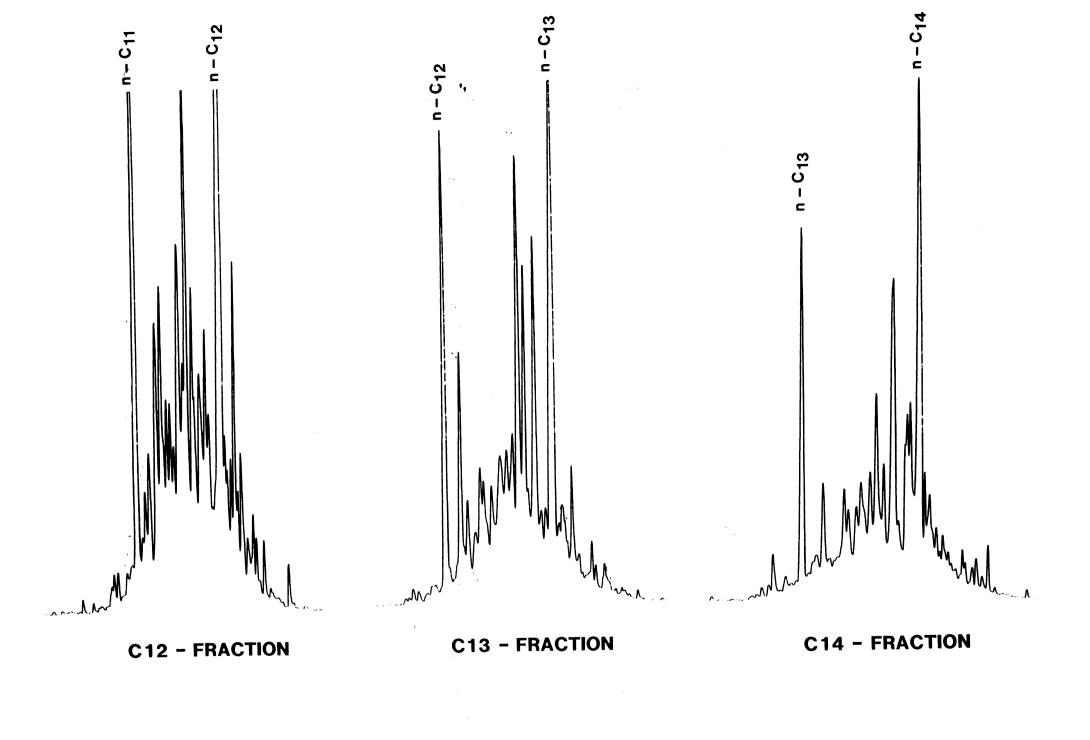


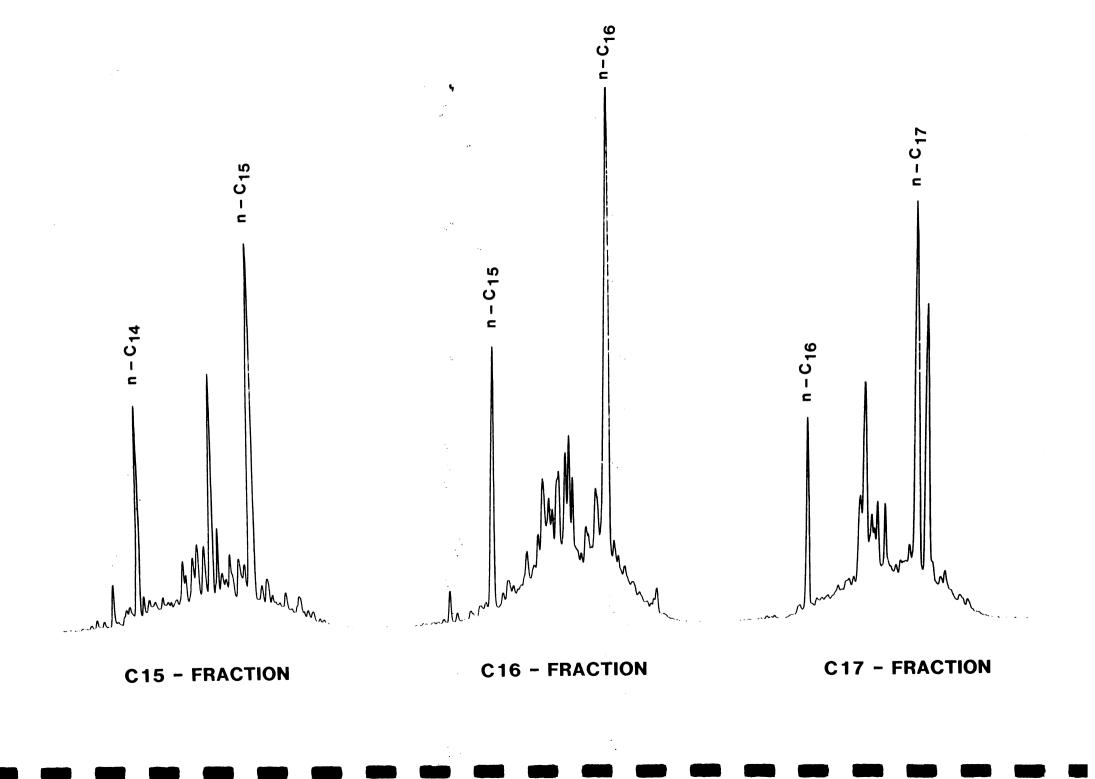
CONDENSATE 6407/1-2 DST 1

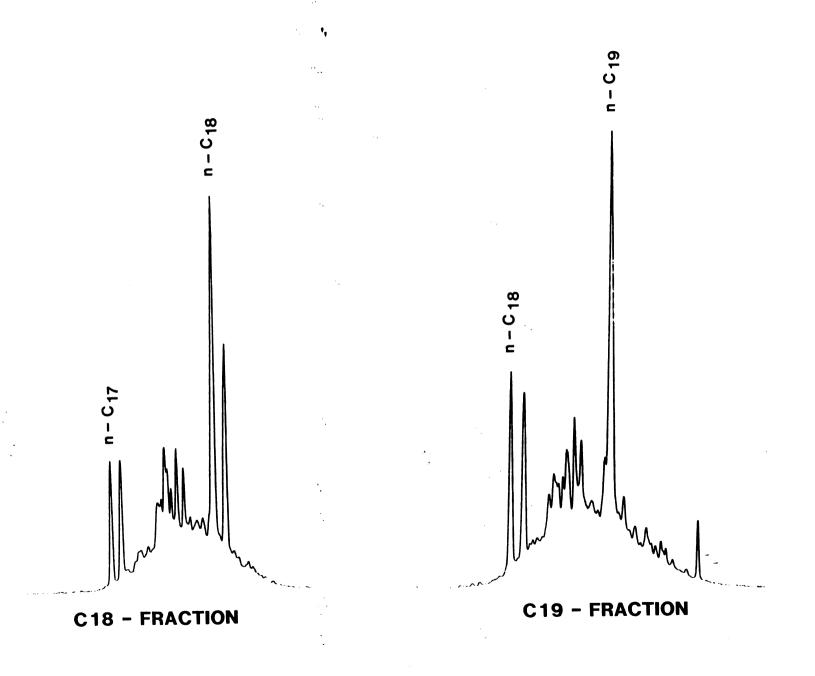


GAS-FRACTION






C8 - FRACTION



C9 - FRACTION

