1: Milling and Underreaming Operation

L\&U DOK.SENTER
 L.NR. 30287300039
 KODE Well 31/2-7 nr 21

Returneres etter bruk
a) The milling of the $95 / 8 ", 47$ lbs/ft casing and the underreaming to 20 " was planned conducted as follows:
i) Cut $95 / 8 "$ casing at 1585.0 m , using viscous mud.
i) Mill 9 5/8" casing from 1595.0-1591.0m, using viscous mud.
ii) Underream with rock type underreamer to 14 ", 1585,0 1591,0, using CaCl_{2} brine and sized CaCO_{3}
iii) Underream with drag type underreamer to 20", 1585,0 $1591,0 \mathrm{~m}$, using CaCl_{2} brine and sized CaCO_{3}.

The 9 5/8" casing was actually clic at $1584,0 \mathrm{~m}$ instead of the planned $1585,0 \mathrm{~m} .0,5 \mathrm{~m}$ of the 1 m difference was due to a $0,5 \mathrm{~m}$ sub which was taken out of the bha. but not compensated for. The last $0,5 \mathrm{~m}$ could not be explained.

The milling of the $95 / 8^{\prime \prime}$ casing was conducted in the interval 1584,0-1590,5m. The milling itself was successfully completed in 6 hrs. The bit was pulled above the window and the well circulated for $2,5 \mathrm{hrs}$. A clean up trip with $8 \frac{13}{}=$ bit to top of bridge plug at $1596,0 \mathrm{~m}$ was conducted, and the well circulated for 2 hrs .

The well was then displaced to CaCl_{2} brine, containing sized CaCO_{3} as fluid loss agent.

It was believed that the formation sand was very unconsolidated. Jse of drag type underreamer was then preferred to a rock type underreamer since it was possible to achieve a bigger hole size. However, the consolidation of the formation sand caused severe failure of the drag type underreamer, and only the interval 1984,0-1987,0 was opened. No back up tool was available on the rig, but a 18" rock type underreamer was brought to the rig, causing approximately 12 hours waiting.

The section $1987,0-1990,5$ was then successfully underreamed.

It is doubtful that the same program will be used for later wells if a similar operation is to be conducted. A more consolidated formation sand than previously believed, indicates the following program:
i) Cut casing
ii) mill section
iii) underream to 14" using rock type underreamer
iv) underream to 18" (or max available diameter) using rock type underreamer and stabilizers plus guide nose.

The service company involved, Servco, indicated that it was believed possible to combine points iii) and iv) in one operation.
b) Clean up of metal debris from the casing milling operation was not satisfactory even after extensive circulation both in viscous mud and CaCl_{2} brine.

Metal debris was recovered inside the screen when sand bailer was run.

Abstract

The mud shale shakers, ditch, one of the mud pits, trip tank and some of the mud piping was used for the brine system in addition to two twin cartridge type filters (16 elements) coupled in series, 4×350 bbl portable tanks, 2×47 bbl acid tanks, paddle mixer and pump unit supplied from Dowell Schl. $4,5 \mathrm{hrs}$ was spent on cleaning the mud system, but severe plugging of the filter elements due to CaCO_{3} particles was experienced.

This emphasizes the problem of using the mud system for brine handling due to insufficient clean up.

The deck space used by Dowell Schl. for their equipment was $15 \mathrm{~m} x 12 \mathrm{~m}$ 。

45 mins were lost in the displacealent process from CaCl_{2} brine containing CaCO_{3} (underreaming fluid) to clean CaCl_{2} brine (gravel pack fluid). This was due to that the agitator was accidently switched on in the mud pit used as settling tank just after crew change.

In future, the brine handling system should be tried to be kept as a closed system. The only recommended connection to the mud system is the shale shakers.

Avoiding use of the mud system (pits and flowlines) will eliminate unavoidable losses of fluid caused by the system itself (e.g. suction above bottom of the pits) and also eliminate the time consuming operation of cleaning the pits.

3: Gravel Pack Operation

5200 kg gravel was mixed into the slurry and pumped into the hole. This includes 50% excess, 1730 kg , which theoretically should have been reverse circulated out after the test. However, 2800 kg were reverse circulated, indicating incomplete pack.

The length of blank pipe run is normally chosen to allow reduction in the pack volume following the effect of the viscosity breaker added in the gravel pack slurry. The volume reduction is laboratory tested to be ca. 35\%. Thus, if too much gravel is reversed out after the test, this may give as result that the top of the gravel pack is lower than the top of the screen after the 35% volume reduction is experienced. This may, of course, cause complete failure of the gravel pack. The gravel pack assy. run in 31/2-7 did not have either bottom (lower) or top (upper) tell tale screens (lower tell tale screens usually used in high density gravel pack operations as 31/2-7). The gravel slurry weight of 1.46 SG compared to the displacement fluid density of 1.15 SG will cause the heavy gravel slurry to "rope" down the work string. By not using tell tale screen only one screen out is observed, - the final. After final screen out only small amounts are able to be squeezed 10,08 m^{3} experienced). If roping then, only little amount of gravel slurry are trapped opposite the blank pipe when the operation is believed completed. The result is too little slurry opposite the blank pipe.

4: Reversed Flapper Valve

A reversed flapper valve was used above the screen in order to reduce/eliminate fluid losses to the formation in the period between the gravel packing and flowing the well. The flapper valve was held open by the wash pipe during the gravel pack operation and closed as soon as the wash pipe was pulled. The flapper and the seat was made of a material designed to shatter when subjected to 550 kg weight originated by the mule shoe on the production string.

Regarding fluid losses, the valve is believed to have functioned. No/minor losses was experienced after shattering some fluid losses were experienced.

However, fill was falling on top of the flapper valve causing severe problems to clean out.

The amount of fluid lost which was able to trace back to actual operation was:
$9.0 \mathrm{~m}^{3}(56 \mathrm{bbls})$ lost in the gravel pack operation (when the $4 \mathrm{~m}^{3}$ (25661) $15 \% \mathrm{HCl}$ entered the formation). $3.0 \mathrm{~m}^{3}$ (20 bbls) lost when squeezing $15 \% \mathrm{HCl}$ prior to start flowing.
$0.6 \mathrm{~m}^{3}(4 \mathrm{bbls})$ lost when shattering the reversed flapper valve.

During flow, a total of $19-22 \mathrm{~m}^{3}(120-140 \mathrm{bb} 1 \mathrm{~s})$ brine was "regained", indicating $6-10 \mathrm{~m}^{3}(40-60 \mathrm{bbls})$ lost during the milling and under reaming operation.

Date	Time	Operation
220582	2100	Rigged up Schlumberger. Ran and logged CBL/VDL/CCL/GR. No satisfactory CCL achieved. Decided to rerun CCL/GR.
	2330	Prepared, ran and logged CCL/GR.
230582	0100	Prepared and ran junk basket
	0230	Ran bridge plug. Set same with top at 1596 m
	0500	Rig down Schlumberger
		Milling and Under reaming Operation
	0530	Make up 9 5/8" casing cutter. RIH.
	0930	Broke circulation. Tagged bridge plug at 1596 m . NOTE: Installed 3 white painted singles so that the middle $5^{\prime \prime}$ pipe rams would close around one of them. The tool joint pin of the lower painted single was chosen to be at least be $3-4,5 \mathrm{~m}$ below the 9 5/8" wear bushing.
		Closed 5" middle pipe rams for spacing out purposes while tagging bridge plug at 1596 m with 10 tons.
	1000	POH until white painted singles at surface. Spaced out Marine Swivel so that casing cutter knives was at the top of the 6 m interval to be milled. RIH and landed the marine swivel in the 9 5/8" wearbushing.
	1930	Cut 9 5/8" casing at $1584,5 \mathrm{~m}$. Flow check negative. Milling mud: 110 MF , 50 YP .

Date Time Operation

2000 Displace hole with clean milling mud.

2130 POH. Layed down casing cutter assy.

2405820030 Made up milling assy with jars, 2 stds 6年" DC.

0130 Slipped and cut drilling line.

0230 RIH. Tagged top bridge plug (filled every 10 stds.) Checked location of cut-out. Spaced out kelly.

0500 Cleand up cut. Started milling. Milled casing from $1584,5 \mathrm{~m}$ to $1590,5 \mathrm{~m}$.

1100 Pulled back to top of window and circulated hole clean with milling mud.

Pit No. 4 used as active. Pit No. 1,2, and 3 dumped and cleaned in preparation of mixing the under reaming fluid.

Formulation of underreaming fluid.
0.556 bbls of 1.00 SG fresh water
0.444 .bbls of 1.15 SG calcuim chloride brine

1 ppb HEC (viscosifier) (DOW)
1 ppb XC-polymer (yield capacity, viscosifier)
(Anchor)
25 ppb Norcal $N 40$ Calcium Carbonate (DOW).

HEC added when $\mathrm{pH}+-4$, then raised to $+-8-9$.

Boosted riser through $k+c$ line.
Date Time Operation

1330 poh and layed down mill.

1700 Ran jet sub. Jetted well head and BOP. Picked up above BOP. Functioned rams. RIH to 420 m . Circulated riser clean. POH.

2030 Ran 8 $\frac{1}{2}$ " bit (no nozzles) on DP. Tagged btm. of window at $1590,5 \mathrm{~m}$. Stabbed into 9 5/8" below window. 1m fill. Washed down to plug to 1596 m . Circ. 30 bbl on btm. Picked up to 1580 m . Circulated hole clean at + - $26 \mathrm{bbl} / \mathrm{min}$. Ran back to 1m above the bridge plug.

2505820030 Displaced 1.18 SG mud by a 50 bbl 1.11 SG hivis pill followed by 100 bbl 1.15 SG formulated Calcium Chloride brine containing 50 ppb sized Calcium Carbonate. (Pit No. 3).

Brine at surface 1000 strokes/118 bbl before expected. (Due to pill mud density difference?).

Pulled back above the window, 1580 m , and continued circulating brine from pit No. 3. When pit No. 3 empty, took mud return in same. Circulate bottoms up. POH. Gelled "fish eyes" observed over shaker together with mud. (Too fast mixing of HEC). Pick up the Servco $7200 \mathrm{x} 14^{\prime \prime}$ rock type underreamer and RIH with the same string as used for milling the window. Located top of window and underream the hole to 14 ", using mud pumps for circulating.

0745 Ream 3m. Pick up for check. RIH. Tagged shoulder. OK. Continue reaming.
SPM: $75 \mathrm{SPM} / 8.9 \mathrm{bbl} / \mathrm{min}$
WOB: 1 - 2 tons
Torq.: 120 - 200 Amps. (120 - free torquc)

Date Time Operation

0805
Pull up above window. Circ. bottom-up at 14 bbl/min, plud 50\%. Sand and cement over shaker, together with mud and some fish eyes.

Observed well static. POH.

1125 Rig up Schlumberger. Run and logged BGT/GR to check underreamed section. 4 m fill. $\mathrm{POH} . \mathrm{Rig}$ down.

Pick up and run Servco $7200 \times 20^{\prime \prime}$ drag type underreamer. Reamed 2,5m in 45 min.

	$\frac{1}{\mathrm{~m}}$	$\frac{1 \mathrm{~m}}{3 \text { tons }}$	$\frac{0.5 \mathrm{~m}(=2.5 \mathrm{~m})}{4-5}$ tons
WOB	2 tons	85	85
SPM	85	$2-400$ Amps	400 Amps
TQ	200 Amps	20	

Pulled up to top of window for checking. OK. RIH but not possible to locate the shoulders. Located, however lower window. POH. Experienced 2,5 tons overpull when pulled into $95 / 8^{\prime \prime}$ casing.

Reamer to surface. Arms jammed in partly closed position. Failed seals in piston. Body damaged. (Ref.,attached copy of telex). Worked on underreamer. (Complete set of arms available on rig, but only 2 holding pins for the arms).

2100 RIH with $8 \frac{1}{2}$ " bit plus junksub.

2300 Circulated above window. Serviced compensator. Ran to bottom and washed out fill in sump. Worked junk sub to 1580 m . Continue circulating.

0830 At surface. Retrieved 1.51 debries from casing milling. Start rig up Schlumberger.

1100 Ran and logged BGT. POH. Waiting on rock type underreamer to be brought out.by helicopter.

1430 Helicopter arrived with underreamer. Measured reaming diam. of tool: 17.75". Pick up kelly and functiontest arms. OK. RIH. (Use 4.4m pup joint ahead of reamer, plus centralizer above top window). Slight problems in entering the sump. Washed out fill. Picked up and started to ream.

TO: 120 - 150 Amps
WOB: 2 - 3000 lbs
Rot: 58.5 rpm
SPM: $60+55$ SPM

1820 Completed underreaming. Pumped 1000 strokes/$118 b b l s . P u l l e d ~ a b o v e ~ w i n d o w ~ a n d ~ c o n t i n u e d ~ c i r c u l a-~$ tion. POH.

2120 Stuck in the wellhead. Pulled 200000 tons. Worked free, but continnous drag for 250 m .

2245 Rig up Schlumberger. Ran and logged BGT. (No restriction experienced in well head/riser). POH. Rig down.

2705820005 RIH w/bit plus junk sub (and casing scraper spaced out to be 700 m below surface. No restriction observed).

0500 Circulated above window. Tried to enter sump, but negative POH. 1.01 junk from milling operation retrieved. Rigged up centralizer. RIH.

1400 Entering rathole without problems. Circulated 1 hour at 248 BPM. Pumped 50 bbl clean hi-vis (No Calcium Carbonate) plus 150 bbl clean brine (No Calcium Carbonate).

1415 Stop circulation. Flow check negative. Disconnected kelly and added one single jt. DP. Dump pit no 2 and cleaned it, plus gumbo box, ditch, slug pit, trip tank and ditch. Cleaned shakers and changed to 2×100 Mesh screen.

Displaced brine from Dowell tanks to pits no 1 and 2. Made up 50 bbl hi-vis pill in slug pit.

1830 Start displacing at 26 bpm by using mud pumps. Dumping return through gumbo box.

1852 Contaminated brine to surface $(2$ mins later than expected). Pumped oppr. 700 bbl .

1853 Stop circulation, pits no 1 and 2 empty. Flow check negative.

1900 Lower bit to bottom.

1903 Dowell start pumping. Mixing back up 50 bbl hivis pill in slup pit.

1908 Close gumbo trap and direct flow over shakers to pit No. 1 at 8 bpm. Fill up pit No. 1 .

1945 Flow through 10 um plus 3 um filters. Plug 10 umfilters after 1 min. Direct flow to 2nd filter, 10 um, but plugs after 1 min . Change to 20 um 10 um filters.
Date Time Operation

1950 Stop circulation while reparing leak on rigfloor chicksans. Flow check negative.

2005 Start circulation again to pit No. 1.

2010 Stop circulation, pit No. 1 full and filters plugging to fast to allow continuous flow.

2100 Direct part of flow through desilters.

214515 - 20 mins. to plug 20 um filters. 10 um filters stays longer before plugging.

Note: i) CaCO_{3} collected on filter elements ii) 7-8 mins required to change filters in a 16 element pot.

2805820030 Observed that agitators had been turned on accidently in pit No. 1.

Note: At this time the filters had been changed to $10 \mathrm{um}-3 \mathrm{um}$. Due to the agitation of pit No. 1, extensive plugging of the 10 filter was observed. This resulted in change to 20 um - 10 um filters. It took about 45 mins before noticing the agitators was on. After stopping the agitators it was possible to change back to 10 um - 3 um filters.

0400 Circulated through 3 filters for approximately 30 mins without plugging. Stopped circulating and РОН.

```
Date Time Operation
```


Gravel Pack Operation

0645 Bit to surface. Close shear rams. Picked up the 2 joints of $5 \frac{1}{2} "$ blank pipe in the rotary, using 2 3/8" lifting subs. Picked up, and ran through the 2 joints of $5 \frac{1}{2} "$ blank pipe, two joints of 2 3/8" VAM wash pipe plus $23 / 8^{\prime \prime}$ spacer subs (in order to allow the bottom pin of the lower $23 / 8^{\prime \prime}$ joint to protrude from the lower and of the blank pipe joints). Clamped off the 2 3/8" VAM wash pipe onto the top joint of the blank pipe and stood assy back in the derrick.

Picked up the pre-made GP screen assembly made up of:
a) $5 \frac{1}{2}$ " LTC box up GP bull plug
b) $5 \frac{1}{2}$ " Bakerweld screens (3)

Picked up 2 3/8" wash pipe (with tapered collars), ran into screen assy and clamped 2 3/8" wash pipe with box end protruding from tap. Held the flapper valve open and dropped it over the top of the clamped $23 / 8^{\prime \prime}$ wash pipe protruding from the screen assy.

Picked up blank pipe assy and connected to the screen assy.

0915 Set blank pipe - screen assy back in derrick. Discovered that kill and choke line had been forgotten to flush. Choke line dumped after filtration/circulation had stopped. Thus, 7 bbl viscous mud in hole. Flushed kill line. RIH with bit to + _ 700 m for circulation and attemp to flush the 7 bbl mud pill.
Date Time Operation

1150 Displaced annulus voulme from 700 m using rig pumps (26 BPM), then using Dowell.

1400 Stop circulation. POH .

1510 Start pick up blank pipe-screen assy. RIH.

2045 Make up circulation head. Start curculation at 2 BPM to pit No. 1.

2200 Drop packer setting ball. Pressure test. Dowell lines to rig floor.

2240 Set SC-1 packer at $1547,25 \mathrm{~m}$ (top) with 2000 psi. Kept pressure for 5 mins., and sheared ball seat with 2500 psi. Tested annulus to 500 psi for 10 mins. O.K.

2905820015 Broke circulation and carried out circulation test.

```
Date Time Operation
```

29.05 .82

Rate	p	Tot.bbls	Tot.bbls
$(6 \mathrm{pm})$	(psi)	pumped	lost to
			$\underline{\text { form }}$

0047 Started pumping acid, 25bbls 5

5	$650-800$	--	0
5	$800-850$	25	0
5	850	50	0
2,5	500	75	5

(200 psi back pressure)
0106 Acid at X-over
0110 Gravel start roping
0115 Brine at X-over
0119 Pumping post pad
0120 Displace with brine Prepad at X -over Sand at X -over First screen out Allow pressure to drop Squeeze pos., squeeze $0,5 \mathrm{bbl}$ - final squeeze 1050 171,5 56

Date Time Operation

0152 Pressured annulus to 500 psi. O.K.

0203 Started reversing out. Pumped 200 bbls brine 2,8 tons sand retrieved in sand trap.

Installation of Production String-oil zone

0730 Picked up X-mas tree and made up connections layed down same.

0830
Picked up $4 \frac{1}{2} "$ tbg. with sstt and lubricator valve \cdot spaced out in well head and stood tbg. back in derrick.

Made up and tested satisfactorily sub assemblies and RIH on 5^{n} VAM 15,0 Ibs/ft tubing to 1215 m .

3005820030 Rigged up wire line and ran Otis Q test plug in XN nipple at 1180 m . Satisfactorily tested string to 3000 psi for 15 mins. Retrieved test plug and rigged down wire line.

0330 Ran tbg. on 12 stds. DP and located G 22 seal at top of $S C-1$ packer by observing pressure increase while.circulating. Closed MPR on white painted joint. Opened rams and poh for space out.

0530 Picked up sand filter manifold.

0600 Spaced out $5^{\prime \prime}$ tbg. and RIH with EZ tree on 43/2 ph-6 tbg. and lubricator.

0900 Rigged up wire line and ran Otis Q test plug to XN - nipple. Satisfactorily tested string to 3000 psi for 15 mins. Retrieved test plug and rigged down.

Date Time Operation

Mixed hi-vis brine and circulated 2 x 20 bbls visc. pills around string. After first pill stabbed through packer seal hore with locator seal using 17 tons set down weight. Continued circulating at ca. $6 \mathrm{bbl} / \mathrm{min}$ until visc. pill in riser. Then boosted riser with rig pumps and displaced dumped pills.

Attempted to shear flapper valve and enter packer with upper locator seal. Workd pipe but unable to lower pipe into packer with max 17 tons. Set 9 ton weight down on packer and pressured up to ca 1200 psi down tubing. Pressure bled off and indicated that flapper valve had given away.

Attempted to lower seal into $\mathrm{SC}-1$ packer. Maximum set down 27 tons weight but unable to sting into packer. Ca 9 tons overpull experienced when picking up. Continued to work pipe without success. Rechecked position of packer by pulling back above
packer with lower locator seal. (Re-stabbed seal with difficulty, ca 18 tons set down weight). Attempted to sting in with upper seal locator without success, max ca 27 tons set down weight. Picked up ca $1 m$ above seal bore with upper seal locator.

0300 Rigged up wireline and RIH to retrieve straddle. Unable to retrive same on first run. Successfully reran retrieving tool.

Ran impression block to top of fill at $1591,50 \mathrm{~m}$. Tubing all clear.

Ran sand bailer and recovered sand/debries (including metal chips) sample.

Pumped 20 bbl hi-vis brine pill and displaced with 35 bb . Lost return. Estimate 20 bbl lost to formation.

Lowered pipe and stabbed into packer with upper seal without difficulty. Landed sstt in wear bushing and nippled up production line. Installed wireline bop and lubricator. Tested satisfactorily anṇulus to 1000 psi against pipe rams for 15 mins.

1155 Pressure tested lubricator and surface lines against closed lubricator valve. Repared leaks. Finally accepted test to 3000 psi for 15 mins. Closed wire line bop to 3000 psi for 15 mins. RIH and set Otis Q plug in XN nipple POH .

Prepare to run XA-sliding side door strifting tool. Fluid level in tubing dropped. Flush surface lines. Test lubricator. RIH.

Date Time Operation

1430 Rigged up wireline. Ran and set Otis Q test plug in XN nipple. Tested plug to 3000 psi / 15 mins.

1730 Spotted 5 bbl diesel ahead of $30 \mathrm{bbl} 15 \% \mathrm{HCl}$ followed by 50 bbl diesel.

1800 RIH to close XA-ssd and recover plug. Closed ssd but unable to pull plug. POH. Ran in an pulled plug. Negative. Ran in an pulled plug. Seccess. Tested annulus to 500 psi for 10 mins and then held 200 psi on annulus.

2323 Opened well on $16 / 64$ "choke for clean up flow. Initial tubing hend pressure 391 psi. Initial flow rate ca $350 \mathrm{bbl} / \mathrm{d}$, increased to max 1250 bbl/d.

0255 Gas to surface

0600 Flow reduced to $1250 \mathrm{bbl} / \mathrm{d}$ at 7 psi WHP.

0800 Rig up and ran Otis Q plug in $X N$ nipple. Open sliding side door. Reverse circulate to brine. 80 bbl water/brine recovered. SG 1,06. Circulate diesel down to dds, $5 / 0 s e$ dds and retrieve test plug.
blnderreaming. Operation, 14". Rock type underreamer.

Indicative drilling parameters:

Under reaming Operation, 20" Drag type underreamer.

Indicative Drilling Parameters:

$31 / 2-7, G P$ assy

(

