

WELL SUMMARY

A/S NORSKE SHELL

WELL NO. 31/2-7

WELL SUMMARY

A/S NORSKE SHELL

WELL NO. 31/2-7

GENERAL SUMMARY

OPERATOR NORSKE SHELL

WELL NO. 31/2-7

OPERATOR'S REPRESENTATIVES

J. DALY, J. HULME

CONTRACTOR DOLPHIN DRILLING SERVICES

RIG BORGNY DOLPHIN

CONTRACTOR'S REPRESENTATIVES

H. FRIESTAD, H. KILPATRICK

ANCHOR ENGINEERS

-

C. ATKINSON, A. YOUNG, C. BLANCHARD

-- _*

· · · · · · · · · · · ·

WATER DEPTH 338 m					
SEA	BED to RKB	363 m			
36"	HOLE DRILLED TO	455 m			
30"	CASING SET AT	449 m			
26"	HOLE DRILLED TO	825 m			
20"	CASING SET AT	812 m			
17 ½'	' HOLE DRILLED TO	1517 m			
13 ¾'	' CASING SET AT	1495 m			
12¼'	' HOLE DRILLED TO	1660 m			
9 5⁄/8'	' CASING SET AT	1652 m			
8 ½'	' HOLE DRILLED TO				
7"	LINER SET AT				
6"	HOLE DRILLED TO				

WELL NAME 31/7-2

OPERATOR NORSKE SHELL

ENGINEERS C.

C. ATKINSON

DATE 20.4.82

Rig on location. Ran anchors.

Carried out materials and screen inventories (ordered as necessary).

Checked on testing equipment.

DATE 21.4.82

Finished running anchors. Ballasted rig. Tensioned anchors. Made up 36" BHA. Prepared to spud. Mixed 1385 bbls prehydrated Bentonite spud mud. Dressed shakers with 20/20 - 20/40 - 20/40 ; Thule has 150s.

DATE 22.04.82

Ran and landed temporary guide base. RIH with 26" bit and 36" hole opener.

Spudded well at 11:30 hrs. Used sea water and 35 bbls hi-vis pills as required. Drilled from 363 m to 444 m. (Surveyed at 420 m = $\frac{1}{2}$ °).

Flocculated spud mud with Lime prior to pumping as pills.

WELL NAME 31/7-2

OPERATOR

NORSKE SHELL

ENGINEERS C .ATKINSON

DATE 23.4.82

Drilled 36" hole from 441 m to 455 m. Pumped a 200 bbls hi-vis pill. Made check trip. O.K. Displaced hole with 600 bbls hi-vis mud. POOH. Ran and cemented 30" casing. POOH with landing string.

Mixed 150 bbls Calcium Chloride cement mix water. Started mixing new gel/seawater mud (600 bbls).

Dressed Thule unit with 200 mesh screens.

DATE 24.4.28

POOH. Made up 26" hole opener and $17\frac{1}{2}$ " bit assembly. RIH. Tagged cement at 437 m. Drilled cement to 451 m. Drilled 26" hole from 455 m to 465 m.

Circulated hole clean with seawater. POOH. Laid down hole opener. Made up $17\frac{1}{2}$ " BHA. Made up pin connector and RIH with marine riser - latched same.

Had 1075 bbls gel/seawater mud mixed for displacement. Also 320 bbls kill mud at 1.40 sg in pit no 4. Made up SAPP/Caustic bags for use if necessary in Barite PWE recipe.(1 bag for each 10 bbls final volume.)

DATE 25.4.82

Rigged up diverter. Filled riser with seawater. Made up $17\frac{1}{2}$ " BHA. RIH to 465 m. Checked diverter. Circulated with seawater. Displaced hole (lost 100 bbls due to open valve under sand traps). Drilled $17\frac{1}{2}$ " hole from 465 m to 708 m,

Continued water addition for mud weight below 1.12 sg. Mixed CMC (hi-vis) and Drispac for visc. maintenance. Caustic for alkalinity.

WELL NAME 31/2-7

OPERATOR

NORSKE SHELL

ENGINEERS

C. ATKINSON

DATE 26.04.82 Drilled 17¹/₂" pilot hole 708 m to 823 m. Circulated 1 hr to clean hole. Wiper trip to shoe (recovered survey). RIH to T.D. Circulated B.U - no gas. Pumped 360 bbls of 1.40 sg mud in open hole. POOH to log. Made up $17\frac{1}{2}$ " bit and RIH. Maintained system at 1.10 sg max while drilling. Drispac for hi-vis. Screens changed to 20/360 due to blinding of (40x40) by sand. Dumped and cleaned out sand traps. Changed 2 broken 200 mesh Thule screens. DATE 27.4.82 RIH to T.D. (823 m). Circulated hole to seawater - lost returns with (1.10-1.40 sg) system above shoe. E.C.D. = 1.28 sg. Opened dump valve to dump riser volume. Closed valve and obtained returns again with slow pump. Opened dump again. Circulated hole clean with sea water. Stopped and checked for flow $\frac{1}{2}$ hour. О.К. Pumped 350 bbls hi-vis gel to displace open hole. POOH with $17\frac{1}{2}$ " bit. Pulled marine riser and pin connector. Made up new 26" BHA. RIH to 450 m. Picked up kelly. Tagged at 465 m. Opened to 26" from 465 m to 470 m. Increased visc. in pits no. 1 and 2 to 100+ with XC Polymer for hi-vis pills. Started to mix hi-vis gel mud also for pills. Received shaker screens as per order of 21.4.82. DATE 28.4.82 Opened to 26" hole 470 m - 822 m. Pumped 30 bbls hi-vis pills on connections. Circulated ½ hour with seawater. Spotted 200 bbls hi-vis gel. Circulated hole clean for 1 hour. Dropped survey and POOH to 30" shoe. Recovered survey. RIH to T.D. Circulated $\frac{1}{2}$ hour with sea water. Pumped 200 bbls hi-vis pill. Circulated 1 hour with seawater. Displaced open hole with + 800 bbls of 1.30 sg hi-vis gel. POOH to run casing. Mixed total of 800 bbls hivis gel. Weighted up + 800 bbls to 1.30 sg for displacing hole. Dumped and cleaned out pit no. 2. Ready for mixing CaCl₂.

ANCHOR DRILLING FLUIDS AS

OSLO - STAVANGER

DAILY SUMMARY REPORT

WELL NAME 31/2-7____

OPERATOR NORSKE SHELL

ENGINEERS

C. ATKINSON/A. YOUNG

DATE 29.04.82

Continued POOH. Lost one cone of H.O. Made up 26" bit. RIH to 471 M. Reamed 471 M to 822 M. Drilled to 825 m. POOH wiper trip. RIH to 664 M. Reamed back to T.D. Circulated sea water. Pumped 200 bbls Hi-Vis pill. Circulated hole clean for $1\frac{1}{2}$ hrs.

Made up \pm 700 bbls Hi-Vis gel at 1.30 sg. (Pits no. 3 and no. 4). Mixed \pm 700 bbls Hi-Vis gel in pits no. 1 and no. 2.

DATE 30.04.82

Displaced hole with + 770 bbls of 1.30 sg mud. POOH. Rigged up and ran 20^{TT} casing. Picked up hanger and RIH. Tight spot at 666 M.

Picked up kelly. Washed tight spot. Set and cemented casing.

Dumped and cleaned out all pits and lines. Mixed $CaCl_2$ water for cementing. (150 bbls pit no. 2)

Dressed mud cleaner screens to 150 x 120. Pits empty. Waited on KCl brine.

DATE 01.05.82

Waited on weather. Received 554 bbls KCl brine. Mixed Kcl/Polymer system.

_

DAILY SUMMARY REPORT

..... 21**-**2

WELL NAME 31/2-7

ATE			<u> </u>
2.5.82			
Ran BOP's and ris	er. Pulled same to in	spect for leak.	
Completed mixing	new mud.		
Weight: 1.26	Viscosity: 55	Depth: (825) m	
ATE 3.5.82			
Worked on BOP's a	nd riser.		
Ran BOP's and ris	er.		
Mud sheared in ta	nks with rig pumps.		
Weight: 1.26	Viscosity: 55	Depth: (825) m	
ATE 4.5.82			
Pulled BOP's to in	rs. Tested same. nspect and repair leak	۲.	
Checked brine sam 70+ ppb. Attempted	ple from "Balder Fosna d to increase KCl conc ppb. 20 ppb addition	a". KCl concentration centration in mud resulted in 10 <u>+</u> ppb	
increase.			

and the second second

· __

		DRILLINIC FULIDS AS	DAILY SUM	MARY REPORT
		OSLO ~ STAVANGER	WELL NAME	31/2-7
			OPERATOR	NORSKE SHELL
NGINE	ERS	YOUNG/E. SUNDE		
DATE C	05.05.82		······································	<u>,, , , , , , , , , , , , , , , , , , ,</u>
F W	Pulled stad with the ri Carried out	ck. Tested BOP's. Ran ig pumps. t pilot-tests.	riser/BOP's. S	heared mud
й \ I	Weight: Viscosity: Depth:	1.26 55 (825) m		
DATE (06.05.82 Ran stack.	Tested BOP's. Made u	o 17½" BHA. RIH	
V V I	Veight: Viscosity: Depth	1.26 50 (825) m		
DATE	07 05 82			
I V I	Orilled centric of the second	ment with sea water 788 96 m to 812 m. Cleaned 2" hole 825 m to 848 m.	m to 796 m. Dr rat hole to 825	illed cement m.
I r	Dumped head nud as nec	der tank and Gumbo box (essary.	each connection.	Made new
V N	Weight: Viscosity:	1.26 50		

1: 100

.....

ne de postavi i la qui vez com en co

• 、

-: •...

Î

;

| ;

Ц

ANCHOR DRILLING FLUIDS AS OSLO - STAVANGER

DAILY SUMMARY REPORT

WELL NAME 31/2-7

OPERATOR

NORSKE SHELL

ENGINEERS ____A. YOUNG/E _____

DATE 08.05.82

> Drilled 17¹/₂" hole to 1076 m (wiper trip at 919 m). Pumped 20 bbls viscous mud prior to wiper trip at 1076 m. Increased mud weight to 1.30 sg as per instructions. Serviced mud cleaner. Replaced and washed out cones and removed blockages.

Dressed screens to 150 x 150. Mixed reserve mud including 320 bbls kill mud at 1.42 sg.

Depth: 1076 m Weight: 1.30+

Viscosity: 47

DATE 09.05.82

Circulated prior to wiper trip. Wiper trip to 20" shoe. Tight spots at 1003 m to 1022 m and 937 m to 927 m.

RIH and drilled 17¹/₂" hole to 1114 m. Ran survey. Drilled ahead to 1139 m. POOH for bit-change. RIH with bit no. 4. Drilled ahead to 1257 m (survey at 1248 m).

Conditioned mud to maintain KCl concentration, rheology and sg. Dumped and cleaned settling pits, gumbo box and header tank during trip. Dressed shaker screens to B 40/B Mixed 350 bbls dilution treatment. 60.

Depth: 1257 m

Weight: 1.30+

Viscosity: 47

DATE 10.05.82

> Drilled ahead to 1379 m. Circulated and ran survey. Drilled ahead to 1436 m. Hook unlatched during connection. Recovered and laid down kelly and one bent joint drill pipe. Repaired leak on goose neck. Drilled ahead to 1517 m Circulated hole clean.

Dropped survey and POOH to casing shoe. Retrieved survey. Changed out mud cleaner screens to 200 x 150. Continued conditioning treatment as before.

Depth: 1517 m Weight: 1.30 Viscosity: 54

WELL NAME 31/2-7

OPERATOR NORSKE SHELL

ENGINEERS A. YOUNG

DATE 11.05.82

> RIH from 20" casing shoe. Washed and reamed tight spots 1335 m to 1379 m, 1401 m to 1455 m. Circulated 15 minutes. Pulled 7 stands - no drag. RIH. Circulated bottoms up and POOH.

Rigged up Schlumberger and ran logs. Rigged down Schlumberger. Made up casing hanger and stand in derrick. RIH with bit no. 4 RR. Weighted up active pit to 1.34 sg as per instructions.

Weight: 1.34

Prepared 300 bbls at 1.20 sg for cement job.

Depth: 1517 m

DATE 12.05.82

RIH to shoe. Slipped and cut drilling line. Installed new compensation hose and dolly guide roller. RIH. Washed and reamed to bottom - 10 m fill.

Circulated hole clean. Increased mud weight to 1.34 sg. Hole still caving. Increased weight to 1.37. Caving stopped. POOH. Retrieved wear bushing. Rigged up and ran 13 3/8" casing.

Depth: 1517 m

Weight: 1.37

Viscosity: 49

Viscosity: 49

DATE 13.05.82

Ran and landed 13 3/8" casing. Circulated casing volume. Pumped 250 bbls 1.20 sg mud. Cemented casing. Displaced with 4400 strokes. Set seal assembly.

Flushed out well head. POOH with landing string. Made up test tool and tested stack. POOH with test tool. RIH with wear bushing and set same. Changed out BHA. RIH and tagged float collar at 1478 m. Dumped and cleaned settling pits, header tank and gumbo trap. Prepared 1000+ bbls mud at 1.20 sg to displace hole prior to drilling. 320 bbls in reserve as kill mud.

Depth: 1517 m

Weight: 1.34

Viscosity: 54

WELL NAME 31/2-7

NORSKE SHELL OPERATOR

ENGINEERS C. BLANCHARD/A. YOUNG

DATE 14.05.82 Displaced hole to 1.20 sg. mud. Diluted further 250 bbls. 1.37 sg. with sea water to provide 300+ bbls reserve. Drilled rat hole. Performed leak off test. Weight: 1.19 Viscosity: 46 Depth: 1547 m DATE 15.05.82 Ran core barrel. Cored from 1547 m to 1556.5 m. Recovered core no. 1. POOH. Cut core no. 2 from 1556.5 m to 1559 m. POOH. Made up new core barrel. Weight: 1.18 +Viscosity: 57 1559 m Depth: DATE 16.05.82 Core no. 3. Cut from 1559 m to 1578 m. POOH to recover core. RIH to cut core no. 4 from 1578 m 1597 m. Weight: 1.18+ Viscosity: 52 Depth: 1597 m

.. •

. .

WELL NAME 31/2-7

OPERATOR NORSKE SHELL

ENGINEERS

C. BLANCHARD

DATE 17.05.82

Cut core no. 5 from 1597 m to 1616 m. POOH to recover core no. 5.

RIH to cut no. 6 core from 1616 m to 1635 m. POOH.

Weight: 1.18+ Viscosity: 54 Depth: 1635 m

DATE 18.05.82

RIH with new BHA. Tagged bottom at 1547 m. Reamed $8\frac{1}{2}$ " hole to 12 1/4" to 1605 m. Circulated bottoms up.

Drilled to 1660 m. Ran wiper trip. 4 m fill. Spotted hivis pill on bottom. POOH.

. .

Weight: 1.18 Viscosity: 50 Depth: 1660 m

DATE 19.05.82

Ran logs.

Weight: 1.18 Viscosity: 46 Depth: 1660 m

WELL NAME 31/7-2

OPERATOR NORSKE SHELL

ENGINEERS C.

C. BLANCHARD

DATE 20.05.82

Logged. Ran wiper trip for casing. Spotted 40 bbls hi-vis pill before pulling out. Built 380 bbls of hi-vis mud for milling.

Weight: 1.18 Viscosity: 50 Depth: 1660 m

DATE 21.05.82

Ran and cemented 9 5/8" casing. Dumped 532 bbls of mud during cement job.

Weight: 1.19 Viscosity: 46 Depth: 1660 m

DATE 22.05.82

Mixed 555 bls of Bentonite mud for milling. Tested BOP's. Ran casing scraper and circulated bottoms up.

RIH with CBL log.

Weight: 1.18 Viscosity: 100+ Depth: 1660 m

WELL NAME 31/2-7

OPERATOR NORSKE SHELL

ENGINEERS C. BLANCHARD

DATE			
	22	05	Q2
	2.0	• U J	.02

Ran logs. Made up casing cutter. RIH to 1570 m. Cut casing. Displaced hole with hi-vis mud. POOH.

Weight: 1.18 Viscosity: 110 Depth: 1660 m

DATE 24.05.82

Milled 9 5/8" casing from 1584.5 m to 1590.5 m. Cleaned out hole. Jetted well head and BOP,s.

RIH to circulate out metal cuttings. Displaced casing and hole with HEC MUD.

Weight: 1.20 Viscosity: 95 Depth: 1600 m

TE	 ·		
··· ···		·	

OPERATOR: NORSKE SHELL

WELL NO. 31/2-7

36" HOLE/ 30" CASING INTERVAL

After making up 36" BHA, the temporary guide base was run and landed.

Sea water was used when spudding in, and 35 bbls hi-vis pills flocculated with Lime were pumped as required. The hole was drilled to 455 m without any problems, and a 200 bbls hi-vis pill was pumped. Then a check trip was made, but no evidence of obstructions. The hole was then displaced with 600 bbls hi-vis mud, and the 30" casing was landed and cemented.

OPERATOR: NORSKE SHELL

WELL NO. 31/2-7

______ HOLE/ _____ CASING INTERVAL

A 26" hole opener/ $17\frac{1}{2}$ " bit assembly was made up. The cement was tagged at 437 m. Cement and open hole was drilled to 465 m. A $17\frac{1}{2}$ " BHA was made up, and a pilot hole was drilled to a TD of 823 m.

Gel, CMC hi-vis and Drispac took care of the viscosity, and water had to be added to keep the weight below 1.12 sg. A survey was dropped after TD was reached, and a wiper trip to the shoe was made. Survey was recovered.

RIH to TD. Displaced open hole to 1.40 sg prior to logging. After logging, the hole was displaced to sea water - lost returns. Established returns after dumping riser volume and pumping at a low rate.

Displaced hole with a 350 bbls hi-vis pill and POOH. Pulled riser and RIH with 26" BHA. Tagged at 465 m and opened up to 822 m. A 30 bbls hi-vis pill was pumped on each connection. 200 bbl hi-vis gel was spotted, and a wiper trip was made. Another 200 bbls gel was spotted and the hole circulated with sea water for one hour. Open hole was displaced with 800 bbls/1.30 sg hi-vis gel, and the H/O was pulled, left roller in hole.

RIH with 26" bit. Reamed 427 m to 822 m and drilled to 825 m. POOH for wiper trip. Reamed 664 m - T.D. A 200 bbls hi-vis pill was pumped, then the hole was circulated with sea water for $1\frac{1}{2}$ hour. Open hole was displaced with 770 bbls 1.30 sg hi-vis gel and casing run and cemented.

OPERATOR: NORSKE SHELL

WELL NO. 31/2-7

<u>173" HOLE/ 13 3/8" CASING INTERVAL</u>

After mixing the programmed KCl/Polymer system for this section, it showed that the K+-concentration in the brine only was 70 ppb instead of 100 ppb, and sack material of KCl had to be added to obtain the right concentration.

After a few minor BOP-problems, the cement was drilled out with sea water from 788 m to 796 m. The hole was displaced to mud and drilled to 848 m. Drilled ahead to 1436 m with necessary bit-changes and weight increases.

At 1436 m the kelly hook unlatched during connection. Kelly and one bent joint drill pipe was recovered. The hole was then drilled to TD - 1517 m. Survey and wiper trip was then made. Tight spots were encountered at 1335 m to 1379 m, 1401 m to 1455m. Circulated 15 minutes and pulled 7 stands. No drag.

Logs were run and a wiper trip was made. 10 m of fill indicated that the hole was caving, and the mud weight was raised to 1.34 sg and then to 1.37 sg to remedy this. Casing was run and cemented.

OPERATOR: NORSKE SHELL

WELL NO. 31/2-7

83 Core____HOLE/ __9_5/8"___CASING INTERVAL

12 1/4 to TD

The float collar of the 13 3/8" casing was tagged at 1478 m and the bit was pulled after locked cones. The cement was drilled out and a 12 1/4" rat hole drilled from 1495 m - 1517 m. After drilling ahead a drilling break was encountered from 1543 m to 1547 m. Coring wascarried out from 1547 m to a total of 1635 m.

A total of 6 cores were taken and then the 8 $\frac{1}{2}$ " hole was reamed out to 12 1/4" and drilled to a total depth of 1660 m. After reaching T.D., a wiper trip was run with 4 m of fill. In order to remedy this problem a hivis Bentonite pill was spotted on bottom and logs were run with no problem.

After logging, a wiper trip was made for casing, and another hivis pill was spotted before pulling out of hole. While running and cementing casing, 532 bbls of mud were dumped.

The casing was cemented and BOP's were tested. Then a casing scraper was run.

A total of 1085 bbls of 100+ viscosity Bentonite mud was mixed for milling casing for testing. The casing was cut at 1584.5 m and milled to a depth of 1590.5 m.

After cleaning up the well with hivis mud, the well was displaced with XC Polymer HEC-mud for under-reaming and testing.

NORSKE SHELL OPERATOR

31/2-7 WELL NO.

MATERIAL CONSUMPTION & COST ANALYSIS

36" HOLE DRILLED	то ₄₅₅	Meters	0" CASI	NG SET AT	449 Meters
ACTUAL AMOUNT OF HOLE	DRILLED	92 Meter	s C	DAYS ON INTER	RVAL 4
DRILLING FLUID SYSTEM	SEA WAT	ER/SPUD MU	D		
				r	
MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
BENTONITE	M.T.	20	33	+ 13	10.824.00
BARITE	50 kg	0	150	+150	945.00
CAUSTIC SODA	25 kg	20	16	- 4	304.00
SODA ASH	50 kg	3	16	+ 13	296.00
LIME	25 kg	6	8	+ 2	40.00
L				 	<u> </u>

COST/DAY

US \$3.102.25

TOTAL COST FOR INTERVAL

US \$12.409.00

US \$134.88

PROG. COST FOR INTERVAL

US \$7.025.50

COST/Mt. gazet.

ENGR. COST

COST VARIANCE FOR INTERVAL US \$+5.383.50

1.º 10.71.**

WELL NO. 31/2-7

MATERIAL CONSUMPTION & COST ANALYSIS

26 "HOLE DRILLED	то ₈₂₅	Meters Reex 20	" CASI	NG SET AT	812 Meters
ACTUAL AMOUNT OF HOLE		367 Meter	s D	AYS ON INTE	RVAL 7
DRILLING FLUID SYSTEM SEA WATER/GEL					
MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
BARITE *	М.Т.	0	105	+105	14.070.00
BENTONITE	м.т.	45	29	- 16	9.512.00
X-C POLYMER	50 lb	00	6	+ 6	1.992.00
DRISPAC REGULAR	50 lb	0	59	<u>+ 59</u>	9.988.07
C.M.C. HI-VIS	25 kg	0	30	+ 30	1.830.00
CAUSTIC SODA	25 kg	50	54	+ 4	1.026.00
SODA ASH	50 kg	. 8	25	+ 17	462.50
CALCIUM CHLORIDE	50 kg	0	21	+ 21	483.00
S.A.P.P.	25 kg	0	1 .	+ 1	105.00
LF-5	25 kg	44	0	- 44	
* Barite consumpti	on due to	nole displ	acement of	weighted	and make
COST/DAY US \$5.6	38.45 TC	DTAL COST FC	R INTERVAL	US \$39.4	169.20
COST/Mt. or Ft. US \$107	.55 PF	ROG. COST FO	RINTERVAL	us \$17.9	970.00
ENGR. COST COST VARIANCE FOR INTERVAL US \$+21.499.20					

1: mon

WELL NO. 31/2-7

MATERIAL CONSUMPTION & COST ANALYSIS

KCL/POLYMER

171 HOLE DRILLED	ro 1517	Meters	13 3/8"	CASING SET AT 1495	Meters Bentx
ACTUAL AMOUNT OF HOLE	DRILLED	695	Meters	DAYS ON INTERVAL	12
DRILLING FLUID SYSTEM					

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
BARITE	М.Т.	205	163	- 42	21.842.00
DRISPAC REG.	50 lb	90	131	+ 41	22,178.30
CMC LO-VIS	25_ kg		100	+ 19	
LF-5	25 kg	180	198	- 18	9.504.00
CAUSTIC SODA	25 kg	115	74	+ 41	1.406.00
SODA ASH	50 kg	30	39	<u>`9</u> `	721.50
ANCOPOL	25 kg	85	36	- 49	4.752.00
KCL BRINE	BBL	Let Q	864	+864	11.793.76
KCL	50 kg	954	970	+ 16	1.736.00
BICARBONATE	50 kg	0	10	10	192.00
DETERGENT	200 ltr.	15	4	- 11	1.400.00
		······			
l					

COST/DAY

US \$8.083.25

TOTAL COST FOR INTERVAL

PROG. COST FOR INTERVAL

US \$96.999.06

US \$139.57

US \$92.412.60

ENGR. COST

COST/Mt. BKRt.

COST VARIANCE FOR INTERVAL

US \$+4.586.46

WELL NO. 31/2-7

MATERIAL CONSUMPTION & COST ANALYSIS

12 1/4" HOLE DRILLED TO 1	660 Meters ₩₩₩	9518	CASING SET AT 1652	Meters
ACTUAL AMOUNT OF HOLE DRILL	ED 143	Meters 【 米 ぞド	DAYS ON INTERVAL	5
DRILLING FLUID SYSTEM KC	L - POLYMER	/GEL/LIG	NO	

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
BARITE	М.Т.	100	80	+ 20	10.720.00
BENTONITE	м.т.	0	9	+ 9	2.952.00
BENTONITE	50 kg	220	20	-200	354.00
DRISPAC REGULAR	50 lbs	60	34	_ 26	5.756.20
C.M.C. HI-VIS	25 kg	0	26	+ 26	1.586.00
C.M.C. LO-VIS	25 kg	25	34	+ 9	2.006.00
CAUSTIC SODA	25 kg	70	38	- 32	722.00
LF~5	25 kg	50	127	+ 77	6.096.00
X-C POLYMER	50 lbs	15	27	+ 12	8.964.00
SODA ASH	50 kg	4	24	+ 20	444.00
SODA BICARBONATE	50 kg	0	3	+ 3	57.75
KCL	50 kg	0	13	+ 13	232.70
SPERCELL	25 kg	175	0	-175	
DRILLING DETERG.	200 1	10	0	- 10	

COST/DAY

US \$7.978.13

<u>US \$278.96</u>

TOTAL COST FOR INTERVAL

US \$39.890.65

· · ·

COST/Mt. atx St.

PROG. COST FOR INTERVAL

US \$44.221.00 COST VARIANCE FOR INTERVAL US \$ - 4.330.35

-

_ _.

ENGR. COST

/: man**

WELL NO. 31/2-7

TOTAL CONSUMPTION & COST ANALYSIS

TOTAL DEPTH

1660 Meters

TOTAL HOLE DRILLED

1297

Meters Kowik

TOTAL DAYS

MATERIAL	UNIT SIZE	PROG.	USED	VARIANCE ±	COST
BENTONITE	М.Т.	65	71	+ 6	23.288.00
BENTONITE SACKS	50 kg	220	20	-200	354.00
BARITE	50 kg	0	150	+150	945.00
BARITE	M.T.	305	348	+ 43	46.632.00
KCL BRINE	BBLS	0	864 BBL	5 +864	11.739.76
KCL	50 kg	954	983	+ 29	17.595.70
C.M.C HI-VIS	25 kg	0	56	+ 56	3.416.00
C.M.C. LO-VIS	25 kg	106	134	+ 28	7.906.00
CALCIUM CHLORIDE	50_kg	0	21	+ 21	483.00
S.A.P.P.	-	0	1	+ 1	105.00
LF-5	25 kg	274	325	+ 51	15.600.00
ANCOPOL	25 kg drum	85	36	- 49	4.752.00
CAUSTIC SODA	25 kg	255	182	- 73	3.458.00
SODA ASH	50 kg	45	104	+ 59	1.924.00
X-C POLYMER	50 lbs	15	33	+ 18	10.956.00
LIME	25 kg	6	8	+ 2	40.00
DRISPAC REGULAR	50 lbs	150	224	+174	37.923.02
SODA BICARBONATE	50 kg	0	13	+ 13	250.25
DRILLING DETERGENT	2001 drum	25	4	- 21	1.400.00
SPERCELL C	25 kg	175	0 ·	-175	

COST/DAY

US \$6.741.71

TOTAL COST FOR INTERVAL

US \$188.767.91

COST/Mt. RK Kt.

US \$145.54

PROG. COST FOR INTERVAL

<u>US \$161.629.10</u>

ENGR. COST

COST VARIANCE FOR INTERVAL

US \$+27.138.81

Ţ	L	NOH			UIDS	AS							31,	2-7				ATH SEA NO	RWAY
Dril	lling N syster	Aud Prc	perties Reco	ord SPUD M	UD/GET/	SEA WATT	E I					ERATOR .	NOR	SKE SH	NUUNG		31G. BOI	HATIOU MUDA	N
	DATE	DEPTH							MC M	D PROPERT	ries								
2					COSITY	/GEL	S S			Filtrate	Analysis	RETOR	RT /	74					
·····		FEET C METERS X	S SS ALIS	Th CD2	5001/# 503 Λ	0	UIW OE SSO	SDU , UQS	Ha	udd ++	Fry 10 %	Sailos	ONVS &	BE # 3LINO	188/# 43WA	N	k.	PERATION REI	MARKS
	1982		DEN	~		01 10 10 10	c)	*		₽ D		26	BEN	*	10 ₀				
	20.4							 		 		 							
7	21.4		1.07 100																
m	22.4	441	+ + 1.07 100					 											
4	23.4	455	1.07 100																
S	24.4.	465	1.07 50																
و	25.4	708	1.10 50					9.6											
2	26.4	823	1.10 48			7.5	1	9.7	19000										
80	27.4	470	1.10 100																
a	28.4	822	1.30 100																
0	29.4	822	1.30 100																
	30.4	822	W A	N I I I I	0 X 0 5	B	И И												
12	1.5	822	HW	X I N G	K C	P O L	X W E	æ											
13	2.5	822	1.26 60																
4	3.5	822	1.25 54	38 25	26 <u>3</u> 26	3 4.2		10.0) 57K	80 0.45 80 1.	2			39.0					
ЧE ЧE	MARKS																		
	L																د		

17		NCH N	_a Se	DRI SLO -	STAVA			OS /	I SA	-				-	-	MEI	MAM	31/2				A A	E N	WAY N	ORUTH	SEA
Dri	lling M systen	Ind Pro	perti	es Re	scord	KCL	/POLA	MER								OPER	ATOR	NOR	KE SH G/ATK	INSON		BIG.	E E	D D	IHATIO	z
Day	DATE	DEPTH													DERTIES											
o z	1982	FEET METERS		D DS DS ALISNO	16,305	Sas V.A.		4 65 001/4 d	er (UIW OE SSOT QUE	CAKE 35 UDS	S.J. HALL	Ha	E und	rrate Ana	Nysis An Oli	RETO % SOLIDS	ONVS %	TBB/# JLINOLNO	188/# HSVIC	188/# 188/#	×¥.	OP	PERATIO	N REMA	ARKS
15	4.5	822	1.2	6 54	40	25	м М	4	4	2	 	10,5	7100	0 80	0.8					30.0		 				
16	5.5	822	1.2	6 55	35.5	5 25	2,	2 m	4			10.4	7300	0 80	8°0					30.0						
17	6 ° 5	822	1 2	6 50	32	21	23	m (n	4	-		10.5	7300	0 80	8		 			30:0						
18	7.5	848	1.2	7 50	34	23	22	<u>~</u> ~	4.(-		10.5	7200	0 240			3 TH	2		35.0						
19	8.5	1076	1.3	0 47	33	24	18	n m	4.	-		10.2	0069	0 110	دد. ر و. 0		2 1.	5 7		39.0						
20	9.5	1257	- M	47	34	25	15	n m	4	2		9.8	6700	0 180	0.2		31.	5 14.5		41.0						
51	10.5	1517	1.3	0 54	37	28		n C	4	-		9.8	0069	0 220	0.7		5 1.	5 20		40.0						
22	11.5	1517		4 49	37	28	1	n da	4.			9.8	0069	0 210	0.7	-	5 -	0 20		40.0						
53	12.5	1517	1-3	7 54	40	31	-18	n vor	4	7		9.6	6900	0 200	0,7		6 1.	0 20		40.0						
24	13.5	1517	1-2	0 48	39	23		24	4.	-		10.2	5600	0 320	1.0		0	25 14		1						
25	14.5	1547		946	58	20	1	n m	4			11.7	5000	0 150	1.5	-	۴ ٥	14		1						
26	15.5	1559		8 57	1 24	17	7	<u>n 20</u>	4		12	11.0	4600	0 270	0.6	-	0 0	25 12		1						
27	16.5	1597		27 27 80 +	24	1	1	20	4	2	12.6	11.0	4500	0 240	0.35		0	25 12	<u>-</u> ц							
58	17.5	1635		8 + 54	22.5	5 15	4	2 2 2 2	4			11.5	4300	0 200	0.4		0	25 12								
RE	MARKS																									

and a second second

N BE

WELL NAME 31/2-7 AREA NORTH SEA N	OPERATOR NORSKE SHELL RIG. BORGNY DOLPH ENGINEERS YOUNG/ATKINSON/BLANCHARD	MUD PROPERTIES	Score Filtrate Analysis RETORT Bd Score	$\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i$		1 13.5 11.0 36000 200 0.5 10 12 12	1 13.5 11.0 32000 240 0.4 10 0.25 12	1 13.5 11.2 30000 200 0.4 10 0.25 11.5	1 13.8 11.0 30000 240 0.5 10 TR 10	1 11.0 13000 150 0.7 45	1 11.0 10000 150 0.6 45 45	1 10.9 9000 150 0.4 40						
31/2 [.]	TOR NORS			CIIVS & SCITOS &	38	12	0.25 12	0.25 11.	TR 10	45	45	40	 	 				
	OPERA	TIES	Analysis	10 % O'		2 5 10	4 10	4 10	2 10. 5. 10	4 . 7	4.6	3.		 				
		MUD PROPER	Filtrate	CL DE-		000 200 0.	000 240 0.	000 200 0.2	0.240 0.2	000 150 0.4	000 150 0.	000 150 0		 		-		
-	NG MUD			40 5.35 JH 1 H Spu	/ /	.5 11.0 36	.5 11.0 324	.5 11.2 30	.8 11.0 30	11.0 13	11.0 10	10.9						
	ITE WILLI		BELS CC	WOE SSOTO	2 / 2 /	.3 1 13	.4 1 13	.1 1 13	3 1 13	.5 1	.2 1	.3 1		 				
DS AS	ER/BENTON			11 be 201 4	1 01 1	6 5 4	4 2 4 4	5 6 4	4 5 5 4	15 20 4	55 15 35 4	15 38 4			\sum	\sum	\sum	
AG FLUI	XC1/POLYM		VISCOS	P. V. CPA	/ /	5 15 1	13	5 15 1	15	5 35 4	5 45 5	5 45 4	 					
DRILLIN DSLO - STAV	ies Record		100	ASITY PPG		8 50 23.	8 46 20	8 50 22.	9 46 22	+ 8 100 57.	8 110 72.	0 95 67.	 					
HOR	Id Propert	ОЕРТН	<u> </u>	теет с	, s	1660 1.1	1660 1.1	1660 1.1	1660 1.1	1660 1.1	1660 1.1	1660 1.2						
													 	 	┟───~	<u>├</u> ───┤	<u>├</u> ───┤	

		- STAVAN			S A	l			-			N AME	31/2-					ORWAY	NORTH	SFA
Drilling Fluid	& Material (Consur	nption	Repoi	ť						OPER	ATOR -	NORSI	KE SHEL			HIG. BI	ORGNY	Harloo	z
MUD SYSTEM	SPUD MUD/G	EL/SEA	WATER							1	ENGI	VEERS _	C. A	NOSNIXI	/A. YO	DVC				
Day DATE No.		TED DAILY OLUMES	M	BULK ATERIAL	S MAT						MATERIA	ILS ADDE	D TO CON	ITROL PRO	PERTIES		C/F		F.	
	1 3 1 23 1	134	~ /	1.	E T	LEA	Тні	NNERS	1	न २ ४	OLYMERS			0	•	10	HEBS/2	2012	DE	4
1982	5254 2222 2556 BB 2554	NB ONW	A A A	BENTON	RABLE	LIGNO			KC RUN	ELES'	K TS S	SIAT	SUS ST	HST HOOS	LIME BICARB	ACCA AL		CI KI	241-12 24-1-12 24-1-12	S.A.P
1 20.04			z	0	z	ы		n	س	ш							$\left \right\rangle$	$\left \right\rangle$		$\left \right\rangle$
2 21.04		1385		20 1	50								8 DR	80			$\left \right\rangle$	$\left \right\rangle$		
3 22.04	390	320		4									2 DR	2	4		\sum	$\left \right\rangle$		
4 23.04	1000	600		6									6 DR	9	4			\mathbb{R}		
5 24.04		475	20										1 SX		\geq			$\left \right\rangle$		-
6 25.04	250	785	m	2						5	30		8,	ம	\sum		$\left \right\rangle$	$\left \right\rangle$		
7 26.04	400	515	12	m					נת 	54			5				$\left \right\rangle$	$\left\{ \right\}$		
8 27.04	50 1315	500							9				8	4	\sum			$\left \right\rangle$		
9 28.04	845	800	29	16									16	ω	\sum					
10 29.04	1550	1390	41	ø									16	8		\sum		$\left \right\rangle$		
11 30.04	970																$\left \right\rangle$	\mathbb{R}	21	
12 01.05		1385											16	15	\sum			7		
13 02.05		65	47						<u></u>	35	43	85					$\left \right\rangle$	$\left\{ \right\}$		\square
14 03.05																	$\left \right\rangle$			\downarrow
FORWARD 5() 6720 8	3220 1	52	62 1	50				6 9	94	30 43	85	86	56	8			Tr Tr	21	
ESTIMATED TOTALS																				
REMARKS.																		+		
-		i																		

Niam

SEA				a	d.k.s	$\left \right\rangle$		\square	\square		\square	\square				$\left \right\rangle$	\square	\square		-/		
HINO			E.E	याम् व	CaC) AL: S									<u> </u>						5	21	
NY N NY D				312 6			\sum			4			\square	\sum	\sum	\sum	\sum		\sum	\square	4	
NOR	CHAR		21	510		6	\sum	40	916 79	361	125	25	\sum	\sum	\sum	\sum	\sum	<u>_</u>	\sum	554	864 833	
- AREA	BLAN		5	OTHERS		\sum	\sum	\sum	\sum	\sum	\sum	\sum		\sum	\sum	\sum	\sum	\sum	\sum	\square	\square	
	ON/C.			17	2 ALCA	\sum	\sum	\sum			4		\sum		\sum	\sum	\sum	\sum				
	SNIXI		RTIES	•	LINE	\geq	\sum	\sum	/-	7	\sum	\sum		\sum	\mathbf{n}	\sum	\geq	\sum	\sum	∞ ⁽	∞)ñ	
HELL	C. A		. РВОРЕ		HSW				3 7	2		- 10				m 					13	
2-7 SKE S	COUNG,		ONTROL	3	¥OOS				(*)	12					ω	12			2	26	103	
31// NOR	A.Y		10 TO CI		· · · · · · · · · · · · · · · · · · ·				7	10	12	30		4	14	9	2	9		86	173	
NAME	LTOR - EERS -		LS ADDE		SLAT				22	57	20	14			20	32	~~~	∞	7	85	268	
MELL I			ATERIAI	YMERS	ELSK ELSK				7	29	-10				10			4		43	114	
	1		Σ	มี มี	5. C.		<u>_</u>													30	30	
				2	57/57 57/57 57/57					22		29	-1	и) 	14	7	~	~~		94	219	
					/sc/		<u>ட</u> ு										8	ی ا	۳ 	9	22	
			Ĩ	INNERS	//																	
				Ŧ			ى س	{														
		-	$\overline{\ }$		ONOTO																	
			ACK ERIALS	a la	NOLAD																	
		-	MAT	E	AN AN ALL															0		
			ULK ERIALS	311	NOINS															2 15	2 15	
בי בי			/ MAT	3.	I W		щ	4	80		0			0			4			6. 5	5 	
- mot			s S	17	no				~	m	-			4						15.	292	
	VER VII		TED DAI OLUME:	AF.	1000mm		Z	60	360	950	350	250	27	119	900			153	38	8220	1427	
erial	/FOLA		ESTIMA MUD V	- - - -	5075 5075 507		0		227	229	156	191			390	262	70			720	295 1	
e Mat	KG	$\left \right $		BUS	SUSES Pr		z								-					9		
Iuid 2	> > ∑			<u> </u>	~^^										55					50	105	
lina F	SYSTE		DATE		1982	04.04	05.05	06.05	07.05	08.05	09.05	10.05	11.05	12.05	13.05	14.05	15.05	6.05	7.05	RWARD	IMATED DTALS	AARKS
Dril	MUD		No.			15	16	17	18	61	02	5	22	53	54	25	26	27	58	õ	EST T(AE

T

ĺ

ſ

-444121

F	DN C	OSLC OSLC	RILE 0 - STAV				٩S					-				₩ !	1/2-7				-				• 5
Drilling F MUD SYSTEA	luid &	Materia _{KCL} /	Cons	tumptic ER - B	on Re	port TTE M	NITII	CIUM 5						A O A	LLL NAN ERATO GINEEF		YOUN	SHELL 3/C. 1	SNIXIA	ON/C.	- AREA - RIG BLANC	BORGN	JOL VOR	HI HI	\checkmark
Day DATE No		ESTIM	IATED DAI			L K	SAC	X						MATE	RIALS A	DDED TO	D CONTR	OL PROP	ERTIES			.		E	
2	×	30 100		+ + + + + + + + + + + + + + + + + + + +		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MALE	ET H		NNIHL	ERS		2	POLYME	RS						DTHERS (N N N	Jag	LUN	q
1982	1022E	BALLOSE	NOTONW TON	NUR NUR	BENT	INO,	JULATE	TION I				KC VI	ABC -	SIA	SIAT	5-3	TISUK	AST	LIME	ACOP C				JOE JOE	d.A.
29 18.05		50	22	4			16						m	; }		15	> -			Y H	v N				
30 19.05			z	0		Σ	A	F	ធ	ы	I 1	4		о ш		- 	0 N	fri-fri-		\square	\sum				
31 20.05			475	10	ى ا										2		2			\sum	\square				
32 21.05		532		12																\square	\square	\square			$\left \right\rangle$
33 22.05		200	555	1	4									23		34	4			\sum	\sum	\square			
34 23.05			150	19			m					ø	-	З		ω			\square	$\left[\right]$	\square				
35 24.05							-								15		-		\square	\sum	\square				$ \setminus$
36 25.05																			\sum	\sum	\sum	\sum			
37 26.05																			\sum		\sum	\sum			$ \setminus$
38 27.05																				\sum	\square		\square		$ \setminus$
39 28.05																			\geq		\square				
40 29.05																			\geq	\sum					
41 30.05																			\geq	\sum					$\left \right\rangle$
42 31.05																			\sum		\sum	\sum			
FORWARD	105	9295	11427	292	62	150						22	219	30 1	14 2	68 1	73 10	3 13	<u>~~</u>	9	\sum	864 983	4	22	$\lfloor \setminus$
ESTIMATED TOTALS	105	10077	12658	348	7	151	20					33	224	56 1	34 3	25 1	82 10	13	∞\(9	\sum	864 983	4	5	$\lfloor $
REMARKS										.															
11 15.00																									

I.

ר 7 --7 n. > n

GRAPHI-CAP

OPERATOR: J ō

	NCHOR DRILLING FLUIDS AS GRAPHI-CAP			OPERATOR WELL NAME CONTRACTO
DEPTH		COST	CASING PLAN	DENS
METERS	DAYS FROM SPUD 10 20 30 40 50 60 70 80 90	\$121 × 1000	اً بَرْ الْحَدْ الْحَدْ الْحَدْ الْحَدْمَ الْحَدْ	ار،ا مانا الانام
250				
500				
750		906		
1000	$\frac{1}{1}$	150		
		3		
500		50		
0511	T. D. 1460 M	0		

Y		
10 20 30	3 4 6	0 1.30
PV YP	AP! HTHP	
RHEOLOGY	FILTRATE	SITY
3 Borony Dolphir	in Services BIG	OR Dolp
110 DATE 22/4-82	- 7 SP	- <u>31/</u> 2
GF NO:	ve Shell PA	Norsh
•		