Norsk Petroleum Services AIS

POST - WELL AUDIT

COMPANY: Statoil

WELL NAME: 15/9-14

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA Statoil 15/9-14

```
INDEX
I Summary
II Conclusions and Recommendations
III Materials Used Per Casing Interval
IV Total Material Consumption
V Daily Operations Log
VI Mud Property Recap
VII Bit and Hydraulic Record
VIII Graphs
```

OIL COMPANY	$:$ Statoil
CONTRACTOR	: ODCC
RIC	$:$ Deep Sea Saga
WELL NAME/No.	$: 15 / 9-14$
LOCATION/BLOCK No. : $15 / 9$	
ENCINEERS	$:$Craddock, Tattersfield, Hanmond, Urguhart, Griff T.D. TOTAL DEVIATION

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA STATOIL 15/9-14
COST SUMMARY
OPERATOR : STATOIL
BLOCK No./LOCATION 15/9
WELL NAME/No. 15/9-14
TOTAL DEPTH 3563 m
DEVIATION $=43 / 4^{0}$
SPUD DATE 1 May 1982
DATE T.D. REACHED 17 June 1982
TOTAL DRILLING. DAYS
Cost Of Mud Materials Used On Well : \$191,196.90
Cost Of Mud Materials Used For Drilling : $\$ 187,046.62$
MUD COST/Ft $\$ 55.56$
MUD COST/DAY
MUD COST/ROTATING HOUR $\$ 543.33$
DAYS ENGINEERING SERVICE 87
Cost Of Mud Materials \& Engineering Service $\$ 228,606.90$
END OF WELL INVENTORY ADJUSTMENT $\$ 1,109.70$ included in mud cost
Engineering Days Not Included In Total Cost Nil

NORSK PETROLEUM SERVICES A／S

OPERATING AREA NORTH SEA，NORWAY

OPERATOR

WELL NAME／No．

CONTRACTOR

RIG

BAROID ENGINEERS R．CRADDOCK／R．HAMMOND／J．TATTERSFIELD／J．URQUHART／
P．GRIFFITHS／K．DIESBERGEN
T．D．

STATOIL

15／9－14

ODCC

＂DEEP SEA SAGA＂

3563 m

$\begin{aligned} & \text { HOLE } \\ & \text { SIZE } \end{aligned}$	CASING SIZE	CASING SET AT	MUD TYPE	mud cost	drilling DAYS
36＂	301	186．8m	Seawater Spud mud	6350.90	1
$26^{\prime \prime}$	20＂	500 m	Seawater Spud mud	20334.10	1彦
17⿺⿱土龰己 ${ }^{\prime \prime}$	13 3／8＂	135 lm	Gel／Lignosulphonate	44260.62	4
12 1／4＂	9 5／8＂	3001m	Gyp／Lignosulphonate	73238.08	17
82＂	－	－	Lignite／ Lignosulphonate	41516.72	12

Tota 1 interval days

1

5

8

NORSK PETROLEUM SERVICES A/S

OPERATING AREA Statoil 15/9-14
Deep Sea Saga

CONCLUSIONS AND RECOMMENDATIONS

30" CASING SET AT 186.8 m

The well was spudded on the lst May 1982. The seabed was tagged at 122 m at 1130 hrs and a $36^{\prime \prime}$ hole was drilled from 122 m to 185 m using seawater as the drilling fluid. High viscosity (35 ppb Bentonite, 40-70 bbl) slugs were pumped before each connection. The hole was displaced with high viscosity spud mud prior to running survey, and again, prior to running $30^{\prime \prime}$ casing. All returns were to the seabed. The 36" hole was drilled, the $30^{\prime \prime}$ casing set at 186.8 m , cemented and drilled out to 190 m , in 1 day. The interval mud cost at $\$ 6,350.90$ was slightly less than estimated at $\$ 6,809.70$. Although the volume of mud used, and therefore the amount of bentonite used, was more than estimated, no weight material was used on this interval. The per barrel cost of $\$ 3.40$, and per meter cost of $\$ 97.71$ were less than the estimated costs (estimated $\$ 4.62$ per barrel, $\$ 104.76$ per meter).

NORSK PETROLEUM SERVICES A/S

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

CONCLUSIONS AND RECOMMENDATIONS

20" CASING SET AT 500 m

The $30^{\prime \prime}$ casing shoe and new formation (3 m) were drilled to 190 m with a $26^{\prime \prime}$ bit. The riser was run, and a 12 1/4" pilot hole drilled to a depth of 516 m . All solids control equipment were run. Desander, (effective although loses 40 to 50 bbls per hour). The mud cleaners were run as desilters, (with no underflow return to the activo). Output in excess of 1.30 SG . The centrifuge was run on liquid recovery. $20 \times 40 / 560$ screens were used on the shakers even though losses occurred, as heavy delution was needed to maintain the required <1.10 SG mud weight. Saltwater and concentrated prehydrated gel were run into the activo to maintain pit volume and necessry dilution. After Schlumberger logging, the hole was displaced with seawater and observed at $\frac{1}{2}$ and full displacement. Well observed static. It was necessary to dump 180 bbls of mud a/c insufficient pit volume available for the displaced mud, because reserve pit contained l. 25 SG kill mud. The hole was displaced with mud, and the riser with seawater. A 26" hole was drilled using a $12 \frac{1}{2}$ but, $17 \frac{1}{2} "$ H.O. and $26^{\prime \prime}$ H.O. to a depth of 515 m (519.5 with 12 l/4" bit) using seawater as the drilling fluid. Slugs of spud mud were pumped before every $3 r d$, and later, every $2 n d$ connection. All returns were to the seabed. At casing depth, the hole was displaced with 900 bbl of 1.09 SG mud. After a survey was run the hole was again displaced with 1000 bbl mud $(700 \mathrm{bbl}$ at

NORSK PETROLEUM SERVICES A/S .

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

CONCLUSIONS AND RECOMMENDATIONS

20" CASING SET AT 500 m (contd.)
1.08 SG and 300 bbl at l .25 SG). There was a delay to mix the second batch of displacement mud as drill water to prehydrate bentonite is available at $34 \mathrm{~min} / l 00 \mathrm{bbl} .20 "$ casing was landed and cemented at 500 m . The cement and float collars were drilled on the 7 th May, making a total of 5 days for the interval. The interval mud cost of $\$ 20,334.10$ was less than the $\$ 24,954.60$ estimated cost. Due to the smaller volume of mud used than estimated, the per barrel was higher than estimated at $\$ 4.12$ (estimated $\$ 3.74$). While the cost per meter was much lower than estimated at 64.97 compared to $\$ 76.55$.

NORSK PETROLEUM SERVICES A/S

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

CONCLUSIONS AND RECOMMENDATIONS

13 3/8" casing set at 1351 m

The $20^{\prime \prime}$ casing shoe and 3 m of formation were drilled out with a $17 \frac{1}{2}$ " bit (on 7 th May) to 522 m . A leak off was conducted (1.07 SG mud) to 1.51 SG . A $17 \frac{1}{2} "$ hole was drilled to a depth of 1371 m over 3 days. Surveys + wiper trips were conducted every 95 m , with regular drilling breaks for flow checks. It was necessary to run all solids control equipment. The desander + centrifuge. The mudcleaners again were run as desilters (output 1.30 - 140 SG). With the high pump rate of $200 \mathrm{spm}(25.6 \mathrm{bbl} / \mathrm{min})$ and penetration rate of $30 \mathrm{~m} /$ hour large. Losses were experienced at the three double deck shakers (screens varied 20×20 or $20 \times 40 / 50 \times 50$ or 60×60 or $80 / 80$). On one occasion the shaker box (possumbelly) was blocked by clay balls. These losses, however, were only in keeping with the dilution rate necessary to maintain the mud weight at 1.10 SG. The use of lignosulphonate thinner (Q Broxin) was kept to the minimum necessary to keep gels at a satisfactorily low level, thus minimizing drilled clay dispersion, and therefore, the already substantial dilution rate necessary to control the mud weight at 1.10 SG . The yield point was maintained at 20^{+}by adding dilution volume of $Q \mathrm{Mix}$ (concentrated 45-50 ppb Bentonite) plus seawater, at a $15^{+} \mathrm{ppb}$ Bentonite content, and suplementing this by additions of $X C$ Polymer (Barazan). The water loss was maintained at 10-15 ml API by additions of CMC L.V. (Aided by Q Broxin additions). pH was maintained at 9.5-10.5 by additions of caustic soda. Ca controlled with soda ash additions.

NORSK PETROLEUM SERVICES A/S

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga
CONCLUSIONS AND RECOMMENDATIONS

13 3/8" casing set at 1351 m (contd.)

At casing depth a wiper trip prior to survey, showed no drug and 10 m of fill. Survey and Schlumberger logs were run in 1 day, and the $133 / 8^{\prime \prime}$ casing was run and set at 1351 m . Delays occurred when testing BOP's a/c leaks at BOP seals resulting in a total interval time of 8 days.

The total interval cost of $\$ 44,497.12$ was slightly less than the estimated $\$ 45,761.40$. More Barite (36 mT vs 20 mT) was used (to weight the 1.25 SG kill mud and for the high weight slugs for trips) than estimated. More Bentonite (40.6 mT vs 28 mT) was used than estimated, partly due to a larger volume of mud being used than was estimated (4320 vs 4050 bbls) but mainly due to running a higher gel content than in the estimate (as requested). QBroxin, as already mentioned, was not used to the estimated levels (99 sx vs 440 sx) which would also have kept the quantity of bentonite and/or XC Polymer used, to a minimum. The cost per barrel (\$10.30 vs $\$ 11.30)$ and per meter (\$51.98 vs \$54.80) were both lower than the interval estimated costs.

NORSK PETROLEUM SERVICES A/S

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

CONCLUSIONS AND RECOMMENDATIONS

12 1/4" hole drilled to 3016 m
9 5/8" casing set at 3001 m

A new gypsum/lignosulphonate mud was mixed in the active and reserve pit (pits 1234 \& 5) using the 490 bbls of kill mud, and 200 bbls of the old gel - lignosulphonate mud salvaged from the previous section. This was diluted with seawater (400 bbls) and 200 bbls of fresh gel. Gypsum was added to a 6 ppb excess. The cement was tagged at 1304 m and drilled to 1313 m using the old mud. This was circulated through pits 6 and 7, normally the slug + premixpits. The hole was then displaced with the new gyp/lignosulphonate mud, which had been treated with 2 ppb CONDET, to clear the hole and BMA, and to prevent bit balling in the soft clays.

Throughout this section it was necessary to pump out on wiper + survey trips due to hole swabbing. High viscosity pills were used before wiper trips, initially containing CONDET. CONDET treatment was discontinued at 1784 m . The mud weight was raised to 1.20 SG then to 1.23 SG (at 2258 m) . It was later raised to 1.25 (at 2433 m). Constant dilution and use of the centrifuge was necessary to maintain a reasonable $M B T$. QBroxin was added to reduce IP and gels. An excess of $4-6 \mathrm{ppb}$ Gypsum was maintained.

A later part of this section (2684 m-2946m) was drilled with a turbine assembly. Less problems were had on trips than in the previous clay formation, however, several times it was necessary to work stuck pipe.

NORSK PETROLEUM SERVICES A/S

OPERATING AREA

```
Statoil 15/9-14
Deep Sea Saga
```

CONCLUSIONS AND RECOMMENDATIONS

$$
\frac{121 / 4^{\prime \prime} \text { hole drilled to } 3016 \mathrm{~m}}{95 / 8^{\prime \prime} \text { casing set at } 3001 \mathrm{~m} \text { (contd.) }}
$$

Shlumberger logs were run in 1 day, the $95 / 8^{\prime \prime}$ casing run + set at 3001 m .

The interval cost of $\$ 73,238.08$ was higher than the estimated cost of $\$ 65,087.06$ (which did not include the use of CONDET in the estimate).

A total mud usage of 4,389 bbl was higher than the estimated 3,500 bbl giving a lower per bbl. cost.

NORSK PETROLEUM SERVICES A/S

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga
CONCLUSIONS AND RECOMMENDATIONS

83 ${ }^{\prime \prime}$ open hole interval

The 9 5/8" casing shoe and cement were drilled out using mud salvaged from the previous interval. Bicarbonate was added to treat out cement contamination and also some Q-Broxin to prevent any excessive viscosity build-up and maintain the water loss. After the leak-off test the mud was weighted up from 1.25 to 1.35 SG. Tight filtration control (around 5 $\mathrm{ml} / 30 \mathrm{~min}$) was maintained throughout this production interval using Q-Broxin/caustic and CMC. CCl6 was also employed to help maintain the HPHT fluid loss at around 15 $\mathrm{ml} / 30 \mathrm{~min}\left(\right.$ at 500 psi and $200^{\circ} \mathrm{F}$). Rheological properties were adjusted with Q-Mix or seawater additions. Gypsum treatments were discontinued and the excess gypsum and calcium content were allowed to drop.

In order to minimize dilution costs the shale shakers and mud cleaners we employed continously during drilling with minimum " 100 " and " 200 " mesh screen sizes respectively. The centrifuge was also run, as required, for solids control or barite recovery.

Drilling proceeded without problems to the target depth and two cores were taken, at $3228-3242 \mathrm{~m}$ and $3267-3286 \mathrm{~m}$ respectively. At 3466 m there was a positive flow check. However, the rate of flow was very low and no pressure was registered when the well was shut in. This difficulty was overcome by circulating 1.38 SG mud and taking returns through the choke line with the well shut in. At bottoms up

NORSK PETROLEUM SERVICES A/S

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

CONCLUSIONS AND RECOMMENDATIONS

8䒜" open hole interval (contd.)
the chloride content of the mud was up from 2150 to 24000 ppm , indicating that this was probably a salt water flow. The new mud weight proved adequate to control formation pressures down to T.D.

4 days were spent on Schlumberger logging, during which the well started to flow. The mud weight was raised to 1.42 SG and later to 1.47 SG .

The interval cost of $\$ 41,516.72$ was much higher than the estimated $\$ 24,430.94$. This was partially due to the higher concentrations of CCl6 and Q-Broxin needed to treat the gyp/lignosulphonate mud salvaged from the previous section to get the requested properties and higher caustic usage to maintain pH. Also the mixing of 500 bbl of spare mud to be kept as reserve mud. The mud usage was 1610 bbls compared to the estimate of 575 bbl .

NORSK PETROLEUM SERVICES A/S

OPERATING AREA
Statoil 15/9-14
Deep Sea Saga
CONCLUSIONS AND RECOMMENDATIONS
$36^{\prime \prime}$ hole

This was drilled with seawater and high viscosity bentonite slugs were pumped before each connection. There were no problems on this section.

26" hole

This was drilled in two passes. First a l2 1/4" pilot hole was drilled with a basic (and thus inexpensive) Bentonitec spud mud. This was drilled very quickly, and subsequently heavy dilution was necessary to maintain the 1.10 SG mud wt. Controlled drilling would reduce this dilution requirement but only at the cost of rig time. After logging the hole was expanded to $26^{\prime \prime}$, using seawater as the drilling fluid and pumping high viscosity bentonitic slug every 3 rd and later every 2nd connection. Returns were to the seabed. At casing depth the hole was displaced to the 30 " shoe with 900 bbl of bentonite spud mud, and after survey with 700 bbl of 1.08 SG spud mud followed by 300 bbl of the 1.25 SG kill mud. This method was effective and without hole problems.

NORSK PETROLEUM SERVICES A/S

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

CONCLUSIONS AND RECOMMENDATIONS

17文" hole

This was drilled successfully with a gel/lignosulphonate mud. A high pumprate ($25.6 \mathrm{bbl} / \mathrm{hr}$) and high penetration rate were maintained causing clay balls to block the shaker box on one occasion. It was necessary to pump out on survey and wiper trips due to hole swabbing. Reducing rheology prior to trip did not appear to reduce these problems. pills of wallnut shells and CONDET prior to wiper trips may be effective in reducing this problem in future wells. Inceasing the inhibition of these "sticky" shales by increased Chloride ion concentration, by use of a gyp mud, or by use of an encapsulating polymer such as Dextrid for API fluid loss control may also help on future wells to reduce this problem in this section.

12 1/4" hole

This section was successfully drilled with a gyp/lignosulphonate mud. Throughout this section it was necessary to pump out on wiper and survey trips due to hole swabbing. This problem was less in the later part of this section when these troublesome clay sections had been wiper cleaned several times and the mud weight increased from the initial l. 12 SG to a final weight of 1.25 SG. The gyp system was run with a higher Calcium content (average

NORSK PETROLEUM SERVICES A/S

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga
CONCLUSIONS AND RECOMMENDATIONS
$2000 \mathrm{ppm})$ than previous wells. The system ran well, but still required a large dilution to maintain reasonable MBT values.

Pills of wallnut shells and CONDET prior to wiper trips may help to reduce the swabbing problem. This plus reducing the rheology prior to trips may aid on future wells.

NORSK PETROLEUM SERVICES A/S

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

CONCLUSIONS AND RECOMMENDATIONS

```
8\frac{12}{2}"hole
This section was drilled successfully with a
lignite/lignosulphonate mud. Gyp treatments were
discontinued to the mud from the previous section letting the Calcium and Gypsum levels to drop. No problems were encountered running this mud on this section.
```


MATERIALS USED PER CASING INTERVAL

$30^{\prime \prime}$ casing set at 186.8 m

MATERIALS	UNIT	ESTIMATED		ACTUAL	
		QUANTITY	COST $\$$	QUANTITY	COST \$
Barite	M/T	16	$1,912.00$		
Bentonite	M/T	14	$4,558.40$	18	$5,860.80$
Caustic Soda	25 kg	9	154.80	13	223.60
Soda Ash	50 kg	9	184.50	13	226.50

NORSK PETROLEUM SERVICES A/S.

MATERIALS USED PER CASING INTERVAL

$20^{\prime \prime}$ casing set at 500 m

MATERIALS	UNIT	ESTIMATED		ACTUAL	
		QUANTITY	COST \$	QUANTITY	COST \$
Barite	M/T	30	3,585.00	32	3,824.00
Bentonite	M/T	61	19,861.00	48	15,628.88
Caustic Soda	25 kg	40	688.00	19	326.80
Soda Ash	50 kg	50	820.00	26	533.00
Bicarbonate	50 kg			1	21.50
Total Cost			24,954.60		20,334.10
Cost Per Day		5		5	4,066.82
Cost Per Barrel		6670	3.74	4939	4.12
Cost Per Bbl/Day					0.82
Cost Per Meter		325	76.55	313	- 64.97

OPERATING AREA 15/9-14

MATERIALS USED PER CASING INTERVAL
$133 / 8^{\prime \prime}$ casing set at 1351 m

MATERIALS	UNIT	ESTIMATED		ACTUAL	
		QUANTITY	COST \$	QUANTITY	COST \$
Barite	M/T	20	2,390.00	36	4,302.00
Bentonite	M/T	28	9,116.80	34	11,070.40
Aquagel	100 lb			146	2,219.20
Caustic	25 kg	128	2,201.60	97	1,668.40
Soda Ash	50 kg	110	2,255.00	31	635.50
Sodium Bicarbonate	$50 \mathrm{~kg}$			11	236.50
Qbroxin	25 kg	440	8,659.20	99	1,948.32
CMC LV	25 kg	147	8,232.00	132	7,392.00
HPD	25 kg			8	544.00
(XC POLY)	50 lb	41	12,906.80	46	14,480.80
Total Cost			45,761.40		44,497.12
Cost Per Day				8	5,562.14
Cost Per Barrel		4050	11.30	4320	10.30
Cost Per Bbl/Day					1.29
Cost Per Meter		835	54.80	856	51.98

MATERIALS USED PER CASING INTERVAL

95/8" casing set at 3001 m

MATERIALS	UNIT	ESTIMATED		ACTUAL	
		QUANTITY	COST \$	QUANTITY	COST \$
Barite	M / T	85	10,157.50	63	7,528.50
Aquagel	M/T	16	5,209.60	3	976.80
Aquagel	100 lb			423	6,496.70
Caustic Soda	25 kg	172 sx	2,958.40	285	4,902.00
Soda Ash	50 kg	18 sx	369.00	32	656.00
Qbroxin	25 kg	255 sx	5,018.40	451	8,875.68
Dextrid	50 lb	407 sx	21,164.00	207	10,764.00
Barazan	50 lb	35 sx	11,018.00	11	3,462.80
CMC LV	25 kg	92 sx	5,152.00	216	12,096.00
Gypsum	40 kg	443 sx	10,157.50	768	6,988.80
CONDET	55 gal			18	6,966.00
Lime				148	1,346.80
Barpol				2	254.00
Staflo				13	1,924.00
Total Cost			65,087.06		73,238.08
Cost Per Day				20	3,661.90
Cost Per Barrel		3,500	18.60	4389	16.69
Cost Per Bbl/Day					0.83
Cost Per Meter		16,50	39.45	1650	44.39

MATERIALS USED PER CASING INTERVAL

$8 \frac{1}{2}{ }^{\prime \prime}$ casing set at 3563 m

MATERIALS	UNIT	ESTIMATED		ACTUAL	
		QUANTITY	COST \$	QUANTITY	COST \$
Aquage 1	100 lb			253	3,845.60
Aquage 1	M/T	6	1,953.60		
Caustic Soda	25 kg	38	653.60	100	1,720.00
Soda Ash	50 kg	7	143.50	6	123.00
Qbroxin	25 kg	53	1,043.04	189	3,719.52
Barazan	50 lb	4	1,259.20	7	2,203.60
CMC LV	25 kg	40	2,240.00	81	4,536.00
CC 16	50 lb	63	1,354.50	262	5,633.00
Sodium					
Bicarbonate	50 kg	6	129.00	7	150.50
Baroid	M/T	131	15,654.50	149	17,805.50
CMC HV	25 kg			24	1,632.00
Staflo				1	148.00
Estimated Cost			24,430.94 Actual cost 41,516.72		
Cost Per Barrel		725	33.70	1610	25.79
Cost Per Meter		575	42.49	547	75.90

MATERIALS USED PER CASING INTERVAL Completion

MATERIAL	UNITS	AMOUNT	COST \$
Barioid	M/T	12	$1,434.00$
Caustic Soda	25 kg	2	34.40
Sodium Bicarbonate	50 kg	38	817.00
Q-Broxin	25 kg	21	413.28
CC 16	50 lb	20	430.00
CMC LV	25 kg	7	392.00
Barazan	50 lb	2	629.60

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA 15/9-14

MATERIALS USED PER CASING INTERVAL

 END OF WELL INVENTORY ADJUSTMENT| MATERIAL | UNITS | AMOUNT | COST \$ |
| :--- | :---: | :---: | :---: |
| Sodium Bicarbonate | 50 kg | +12 | 258.00 |
| CC 16 | 50 lb | +9 | 193.50 |
| Surflo W300 | 55 gal | 1 | 658.20 |
| | | | |
| | | | |
| Total Cost Adjustment | | | |

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA Statoil 15/9-14

TOTAL MATERIAL CONSUMPTION

MA.TERIAL
AQUAGEL
AQUAGEL
BARAZAN
BARPOL
CAUSTIC SODA
CC-16
CMC LV
CMC HV
CON DET
DEXTRID
GYPSUM
HPD
LIME
Q-BROXIN
SODA ASH
SODIUM BICARBONATE
STAFLO
BAROID

PACKAGING

M/T
100 lb
50 1b
25 kg
25 kg
50 lb
25 kg 436

25 kg24
55 gal 18
50 lb 207
40 kg 768
25 kg 8
40 kg 148
25 kg 760
50 kg 82
50 kg 57
25 kg 14
M/T 292

COST PER INTERVAL

I.	30" Casing	$6,350.90$
II.	$20^{\prime \prime}$ Casing	$20,334.10$
III.	$133 / 8^{\prime \prime}$ Casing	$44,497.12$
IV.	$95 / 8^{\prime \prime}$ Casing	$73,238.08$
V.	$81 / 2 "$ Open Hole	$41,516.72$
VI.	Testing	$4,150.28$
	TOTAL COST	$190,087.20$

Statoil 15/9-14
Deep Sea Saga
DAILY OPERATIONS LOG

29th April 1982

3 anchors set. WOW to set other 5. Surface test BOP's. Possible to fill only one pit (No. 4) with mud until rig anchored and ballasted.

30th April

Mix 110 bbls gel (hi vis). Unable to mix more a/c no drill water available till anchors are set. Anchor handing 2355 hrs till 1825 hrs. Ballasted from 28^{\prime} at 1740 hrs to 68^{\prime} at 2040 hrs. Pretensioned anchor chains finished 2200 hrs wow. Start to mix hi vis (35 ppb) gel in active pits.

1st May

WOW. Mixed total 1400 bbls hi vis (35 ppb) gel in active + reserve pits. 1030 hrs. RIH and tagged seabed at 122 m 1130 hrs.

Drilled $36^{\prime \prime}$ hole 122 m - 185 m . Pumped hi vis gel slugs before each connection (total 264 bbl). Displaced hole with 300 bbl hi vis gel mud. Dropped survey. PO w/l st and retrieved survey. $\mathrm{POOH} \mathrm{w} / \mathrm{l}$ std and washed and reamed 125 m to 143 m . Picked up 8 joints HWDP + RIH. Displaced hole $w / 400 \mathrm{bbl}$ of 195 sec viscosity spud mud. POOH. Rigged up to run $30^{\prime \prime}$ casing. Started to run $30^{\prime \prime}$ casing.

NORSK PETROLEUM SERVICES A/S.

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

2nd May

Ran $30^{\prime \prime}$ casing and cemented. Made 720 bbl spud mud in active 500 bbls prehydrated gel in reserve. Made up new BMA and RIH w/26" WOC. Drilled cement from 175 m . Drilled to 190 m. Pumped 40 bbl high vis gel mud. POOH to wellhead. Washed wellhead. Rig up to riser.

3rd May

Ran connector and landed same. Rigged up diverter. Made up new BHH and RIH. Displaced hole with mud. Checked out overboard system. Made 500 bbls 1.25 SG kill mud in No. 5 reservepit. Drilled $121 / 4^{\prime \prime}$ pilot hole from 191 m to 516 m. Ran all solids control equipment. Desander, mud cleaner run as a desilter (no returns to active), centrifuge. Shaker screens were changed to a finer mesh 20/40 over 60^{2} even though losses occurred as heavy dilution was required to maintain a mud wt $<1.10 \mathrm{SG}$. Salt water was run into the active (685 bbl) and prehydrated gel mixed and added (600 bbl). Circulated bottoms up. Dropped survey. PO to shoe. Retrieved survey. RIH. Circulated bottoms up. POOH .

4th May

POOH. Ran Schlumberger ISF/SONIC log 02l0HRS - 042 IHRS. RIH with 12 l/4" bit circulated bottoms up. Displaced hole

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA
Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

from 516 m to 191 m with seawater. Observed 15 min. -static. Displaced with seawater from 191 - surface observed well 30 min - static. Unable to take full return volume of mud. Dumped 181 bbl. Circulated bottoms up w/seawater. Displaced hole with mud and circulate POOH. Displaced riser with seawater. Pull connector. Made up 12 l/4" bit 17\%" H.O. and $25^{\prime \prime}$ H.O. and RIH. Added 110 bbls gel to active to raise YP.

5th May

Drilled $26^{\prime \prime}$ hole (hole opener) 191 m to 515 m (519.5 with l2 $\frac{1}{2}$ " bit). Drilled with seawater. Pumped slugs 30 bbl mud every $3 r d$, then $2 n d$, connection, circulated bottoms up. Displaced hole with 900 bbls 1.09 SG mud. Dropped survey. POOH to shoe. Light spot at 324 m . Retrieved survey. Delay to mix mud. Prehydrate bentonite (drill water supply $34 \mathrm{~min} / 100 \mathrm{bbl})$. RIH 3 m fill. Displaced hole with 1000 bbl mud ($7001.08 \mathrm{SG}+300 \mathrm{bbl} 1.25 \mathrm{SG}) \mathrm{POOH}$ and washed wellhead. Rigged up and started to run $20^{\prime \prime}$ csg.

6th May

Ran 20" csg. landed csg. connected. Displaced cement w/seawater circ at wellhead at PO. RIH to wellhead w/jet sub and washed wellhead. P.O. brake and L/P 26" hole opener $+17 \frac{1}{2} "$ H.O. Rigged up for running riser + BOP. nippled up BOP. Tested BOP's. Ran BOP. Press tested K / C line.

NORSK PETROLEUM SERVICES A／S．

OPERATING AREA Statoil 15／9－14
Deep Sea Saga
Daily operations log

7th May

Ran BOP press test K / C line to 7500 psi．Sand BOP．RIH w／testplug．Tested BOP＇s． POOH w／test plug．RIH +POOH w／wearbushing．M Made up BMA $17 \frac{1}{2} "$ RIH tag cement at 481 m ． Drilled cement at float collar．Dumped seawater returns． SPR at 495 m ．Drilled cement at float collar．Dumped seawater returns．SOR at 495 m ．Drilled cement and 3 m new hole to 522 m ．Circ．cond mud．Running all solids control equipment．Running mud cleaners as desilter 150 mesh underflow l．37／l．30 SG MW at l．8．Establish leak off test SPR at 485 1．07 SG mud．

8th May

Performed leak off equivalent l．5l SG．Drilled $17 \frac{1}{2} "$ hole 522－526 m．Pressure drop 1200 psi．Pressure tested surface 1 ok．POOH．One bit nozzle missing．RIH．Drilled 526－609 m SPR at 526 m ．Circulated bottoms up．Drop survey．POOH retrieve survey．RIH drilled l7⿺辶⿳亠二口丿＂609－704 m． Circ and drop survey．PO to shoe．Drilled 704－799 m．Circ PO to shoe．Retrieve survey．RIH to 704 m ．Drilled 704－799 m．Circ．Running all solids control equipment． Running mud cleaners blind，desander and centrifuge．Losses at shakers on 20×20 top screens，possumbelly overflowing． Diluting to reduce mud wt．Adding conc to retain low wh．Q Broxin to reduce gels XC Polymer to raise YP．

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

9th May

Po to shoe retrieve survey. Drilled $17 \frac{1}{2} "$ hole 799 m to 894 m. Dropped survey POOH. Pumped out 849 m to 795 m . Retrieve survey. RIH. Drilled from 894 m at 923 m flow ck. static. Wash down to 929 m flow ck. well static circ. 15 min. Drilled 929-989 m. Circ btms up and drop survey. P.O. to shoe. Pumped out 850 to 795 m . Retrieve survey RIH. Drilled 989 m to 1083 m . Circ. + dropped survey. PO to shoe. Retrieve survey. RIH. Drilled 1083-1097m. Large losses of mud at shakers a/c high pump rate, and clay balls clocking possumbelly on one occasion. Diluting necessary to keep mud wt down to 1.10 SG . Added Q mix and seawater. Retaining Wh by cabling CMC LV, and Q Broxin added to lower gels helping with W.L. Adding XC Polymer to retain $Y P$ at 20 .

10th May

Drilled $17 \frac{1}{2}$ " hole 1097 m to 1178 m . Drilling break at 1168 m. Flow check negative. Circ. btms up. Dropped survey PO to shoe. Pump out $1100 \mathrm{~m}-944 \mathrm{~m}$. Max OP 50,000 lb. Retrieve survey $R I H$ reamed 998 m to 1016 m . Washed from 1016 to 1029 m . Cont RIH. no fill. Drilling $17 \frac{1}{2}{ }^{\prime \prime}$ hole from 1178 m to 1272 m . Drilling breaks + flowchecks at 1215 m - 1160 m . $30,000 \mathrm{lb}$ overpull. Retrieve survey. RIH 14 m fill. Drilled $17 \frac{1}{2} "$ hole to 1371 m . Circ btms up. Adding

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA
Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

Abstract

conc gel (Q Mix) and running seawater into system for dilution to lower mud wt and retain $Y P$. Adding caustic to retain pH at 10 CMC to retain $W \mathrm{~L}$ at $10-15 \mathrm{ml}$. API.

11th May

Circulated btms up. P.O. to shoe. no drag. RIH 10 m fill circ btms up. Dropped survey multishoot. PO to shoe. No drag. Retrieve survey. POOH. Rig up Schlumberger. Log No. I ISF, SONIC, GR IN 1425 hrs OOT 1720 hrs No. 2 NDT, CNT, GR in 1310 OOT 2115. Rig down Schlumberger. Made up 13 3/8". Casing hanger + stand in derrick.

12th May

RIH with $17 \frac{z_{2}^{\prime \prime}}{}$ bit. Cut 200^{\prime} slep 100^{\prime} drlg line cont RIH 10 m fill Running pilot test on conversion of surface system to a gyp mud system. Changed liner + piston No. l pump. Reamed + washed 1361 m to 1321 m . Circulated btoms up. POOH to wellhead. No drag. Washed wear bushing. POOH. RIH + retrieved wear bushing. POOH. Rig up and run 13 3/8" casing. Pull back out to retireve dropped dope brush. Made up 13 3/8" csg shoe + float jnt $+\mathrm{xxx} 133 / 8 \mathrm{csg} 2310 \mathrm{hrs}$. Rig down 500 ton elevator 2330 hrs. RI w/landing.

NORSK PETROLEUM SERVICES A/S.

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

Cemented 133/8 casing. Pulled out with landing string. RIH and washed wellhead. Dumped cement contaminated mud. RIH to 189 m and circulated bottoms up. Pumped a 30661 high visc gel pill at wellhead. Attempted to test seal assembly. No success. Using pits 6 and 7 as active. Running centrifuge on kill mud to lower weight. . Diluted back kill mud and 200 bbls of mud with 400 bbls of seawater. Added 200 bbls of fresh gel. Mixed up gyp mud.

14th May

Added gyp to increase excess gyp to 6 ppb. Dextrid to lower W.I. XC - Polymer to raise YP. Attempted to test seal assembly. No success.

15th May

Tested seal assembly to 2500 psi. OK. Tested BOP and 13 $3 / 8$ casing to 2500 psi. OK. Set wear bushing RIH with 12 l/4" bit. Tagged cement at 1304 m . Drilled to 1313 m with old mud. Added 2 ppb CONDET and XC polymer to surface vol. Displaced hole with GYP-Lignosulfonate mud. Drilled shoe at 1351 m , rat hole and 3 m of new formation to 1374 m . Circulated bottoms up.

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

l6th May

Did leak off test to Equiv to 1.71 SG. Made up 110 bbls of Premix gel. Drilled to 1395 m . Circulated bottoms up. POOH. RIH with a new BHA. Reamed down from 1348-1412m. Drilled from 1412 m - 1501 m . Adding GYP to increase excess. Caustic and lime to maintain PH. Stringing in fresh gel. Added Q-Broxin to control wt and YP. Circulated bottoms up. PO to shoe. Hole swabbing. Pumped out from 1470-1351 m. RIH. Reamed and washed from 1377 m to 1501 m . Drilling 12 1/4" hole.

17th May

Changed bottom shake screens to 80×80. Running centrifuge to lower weight. Added CONDET to maintain concentration. Adding Dextrid for water loss and encapsulation. Running water to control MBT and weight. Drilled to 1595 m . Changed bottom screens on shakers $1 \& 2$ to 100 's. Adding lime/caustic for pH. Circulated $\frac{1}{2}$ hour and PO to shoe. Hole swabbing, pumped out from 1483 m . Had maximum overpull of 30,000 lb. RIH. 2 m of fill. Drilled $121 / 4 "$ hole from 1595 m - 1690 m . Adding Soda Ash to reduce Ca, Q-Broxin to control YP. Circulated bottoms up. PO to shoe with survey. Hole swabbing. Pumped out from 1658-1631 m and 1604 1509 m . Tight hole at 1425 m . Pumped out from 1428 m . Max overpull of $30,000 \mathrm{lb}$.

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA
Statoil 15/9-14
Deep Sea Saga
DAILY OPERATIONS LOG

18th May

RIH. Reamed from 1455 - 1483 m. RIH. No fill. Drilled from 1690 to 1784 m . Pumped a $H I$ VIS PILL with 5 ppb CON DET. Circulated bottoms up. PO to shoe. Pumped out from 1752-1455 m, had tight spots from 1590 - $1536 \mathrm{~m}, 1510-1483$ m. RIH to $1771 \mathrm{~m}, 13 \mathrm{~m}$ of fill. Reamed and washed to bottom. Drilled from 1784 m to 1879 m . Increased the mud wt to 1.20 sg , and lowered the YP to $10-12$ with additions of Q-Broxin. Adding GYP to maintain excess, Lime and Caustic for alkalinity. Adding water to control the MBT and solids. At 1879 circulated for $\frac{1}{2}$ hour and PO 4 stands. Pumped out from 1847 to 1784 m .

19th May

RIH. Reamed last single. No fill. Drill 12 1/4" hole to 1973 m . Circulated for $\frac{1}{2}$ hour. P.O.O.H. Had tight spots at 1937 - 1901 m with maximum overpull of $50,000 \mathrm{lb}$. Pumped out from 1937 - 1901, 1877 - 1712 m . Had tight spot at 1405 m with maximum overpull of $30,000 \mathrm{lb}$. RIH with a new bit no fill. Drilled to 2000 m . Adding water to control the MBT and mud wt. Adding Q-Browin to control viscosity, Lime and Caustic for pH control - GYP to maintain excess between 4-6ppb.

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

20th May

Drilled to 2078 m . Circulated $\frac{1}{2}$ hour PO to 1958 m . Had tight spots at 2010-2006 m and 1981-1972 m. Maximum overpull of 50 000. RIH. 2 m of fill. Drilled from 2078 2163 m . Sand plugging shaker screens. Changed to 60 x 60 on bottoms. Lost mud over screens. Strung in 110 bbls of fresh gel to toughen wall cake. Added CMC (LV) to control WL. Adding water and running centrifuge to control the mud wt. At 2163 m circulated 15 min . and PO to 2025 m . Pumped out from 2106-2052 min. Had tight spots at 2106 - 2104 m and 2100-2088 m. Maximum overpull of $50,000 \mathrm{lb}$.

2lst May

RIH. No fill. Changed shaker screens to 40×40 on tops and bottoms because of sand plugging. Ran the desander. Transferred mud from the reserve to maintain volume. Drilled to 2258 m . Strung in 110 bbls of fresh gel. Circulated for $\frac{1}{2}$ hour. Dropped survey and PO to 1838 m . Pumped out from 2226-2172 m and 1906-1880 m. RIH to 2249 m , reamed to 2258 m . Drilling $12 \mathrm{l} / 4 \mathrm{l}$ hole. Raised mud wt to 1.23 sg . Adding water to control the MBT and mud wt. Adding CMC(LV) to control W.L.

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

Drilled to 2343 m . Circulated bottoms up. Dropped survey and POOH . Had tight spot at 2220 m . Maximum over-pull of $50,000 \mathrm{lb}$. Pumped out from 2220-2200 m-POOH. Tested BOP. RIH with new bit and junk basket. Reamed from 2308 m to 2343 m with maximum $W O B$ of 25,000 lb. Worked junk basket Drilling 12 1/4" hole.

23rd May

Drilling. Adding water and running centrifuge to control the mud wt and MBT. At 2433 m circulated 30 min , dropped survey and PO to 2145 m . Had tight hole from 2333-2145 m, pumped out from 2335-2308 m. Maximum over-pull of 50,000 1b. RIH reamed from $2410-2433 \mathrm{~m}$, maximum W.O.B. of 20,000 . Drilling 12 l/4" hole. Increased the mud wt to 1.25 sg . Added CMC (LV) to lower the $W L$ down to 7 cc .

24th May

Drilled to 2528 m . Circulated 30 min . Dropped survey. PO to 2389 m . Tight at $2482-2470 \mathrm{~m}$. Max OP of 50,000 . Pumped out from 2470-2389 m. RIH, 1 m of fill. Drilling 12 1/4" hole. Adding water and running centrifuge to control mud wt and MBT. Adding CMC LV to maintain WL at 7.0 cc . Q-Broxin to lower gels. Changed to coarser shaker screens because of sand plugging. At 2579 m , circulated bottoms up. POOH .

NORSK PETROLEUM SERVICES A/S.

Statoil 15/9-14
Deep Sea Saga

Daily operations log

Had tight hole from 2386-2373, 2330-2131 with maximum OP of 50,000. Hole swabbing from 1564-1550 m and 1537-1530 m POOH .

25th May

RIH with new Bit. Washed and reamed from 2550 m to 2579 m . Drilling sand and shale sequence. Adding water to control mud wt and lower MBT. Made up 65 bbls of HI VIS mud. At 2625 m circulated bottoms up for sample. Drilled to 2651 m . Circulated bottoms up for sample.

26th May

PO from $2669 \mathrm{~m}-2522 \mathrm{~m}$. No drag, no swabbing. RIH $1 \frac{1}{2} \mathrm{~m}$ of fill. Drilled to 2684 m . Pumped 100 bbls of Hi Vis mud and circulated bottoms up. POOH. Had tight spots at 2385-2380 m and 2302-2298 m with maximum overpulls of 30,000 lb. RIH with turbine.

27th May

RIH. Work tight hole at 2569 m and $2597-2601 \mathrm{~m}$. Ream from 2620 m - Made up 110 bbls of prehydrated gel. Running Desander and centrifuge to lower wt and control solids while reaming. Wash + reamed from 2624 to bottom (2684) tight at 2678 m. Turbodrilled $12 \mathrm{l} / 4^{\prime \prime}$ 2684-2695 m. Last torque at

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA
Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

2695 m . PO to 265l. SPR at 2695 m . Wash+ ream 265l-2695 m. Turbo drilled $2695 \mathrm{~m}-2749 \mathrm{~m}$. Flow chs at 27l6, 2724, 2747. Well static. Added 100 bbl. Qmix into active, ran in seawater. Added gyp. CMC caustic. Pumped 100 bbl Hi Vis pill. Circ + dropped survey.

28th May

PO to 2448 m tight at 2601 m . MOP $40,000 \mathrm{lb}$. Retrieved survey. RIH 1.5 m fill. Turbo drilled 12 l/4" $2749 \mathrm{~m}-$ 2758 m. Stuck. Work stuck pipe at 2758 m . Max OP 100,000 lb. Cont. drilling $2758 \mathrm{~m}-2798 \mathrm{~m}$. Changed btm screen to Sl00, $580, \mathrm{~S} 80$. Drilling rate $5-10 \mathrm{~m} / \mathrm{hour}$ through calcitic formation. Running MC (200 mesh). Desander $2 \frac{1}{2}$ hrs. Centrifuge on Barite recovery (underflow l.l2 SG 24 MBT). Reaming in QMix (l00 bbl) and seawater for dilutions and YP. Added Gypsum for excess. CMC LV to retain WL at 6.5 - 7.0 ml . Caustic for pH . Changed piston No. 2 pump. Drilled 2798 m - 2846 m . Flow ok static at 2810 m . Pumped 100 bbl hi vis pill.

29th May

Turbo drilled $121 / 4 " 2846 \mathrm{~m}-2850 \mathrm{~m}$. Circ. dropped survey PO to 2434 m . No drag. Retrieved survey. RIH 2 m fill. Changed shaker screens to $\mathrm{Sl00} \mathrm{~cm}$ btms. Continued turbo drilling 2850 - 2913 m . Running seawater to maintain mud at

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

1.25. Ran desander. Added Gyp for XS. Caustic \& lime for pH. String in Q Mix for YP. Changed piston on No. 1 pump. Centrifuge out of order - gear problems, mechanics unable to repair. Cleaned out cores on both desilter/mud clearer. Running seawater to keep mud at 1.25 SG.

30th May

Turbo drilled 2936 to 2945 m . Pumped 100 bbl hi vis mud. Circ. Dropped survey. PO to 2447 m . No drag. Retrieve survey. RIH 1 m fill. Stuck on btm. Worked stuck pipe free m.op. $100,000 \mathrm{lb}$. Washed and worked turbine up to 2892 m. Reamed and washed down to btm. Continued drilling 2945 - 2946 m . Stuck at 2945 m . Worked pipe. Pumped 100 bbl high viscosity mud. Attempted to drill, no success. Low torque. Pumped slug. POOH. Tight 2300-1923 m, 1572-1518 m. Mop 50,000 lb. 1472-1392 m. mop 40,000 lb. Broke +4 D turbine section. Made up new BHA and RIH w/new bit. Washed and reamed 2910-2946 m. Drilled 2946-2948m. Ran 100 screens on shakers. Ran mud cleaner and centrifuge. Added water to maintain l. 25 SG mud wt. Added Q Mix to raise YP. Gypsum to maintain $X S$. CMC LV for to retain VOL at 6.5-7.0 ml API. Caustic soda and lime for alkalinity.

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

Abstract

31st May

Drilled 12 1/4" hole 2948 to 2989 m. Added seawater to maintain l. 25 SG mud wt. Added Q Mix and XC Polymer for YP. CMC LV to retain API water loss Gypsum to retain XS. Ran desander, mud cleaners and centrifuge. Drilled 2989 to 3008 m . Added Q Mix for YP Gyp and Caustic. Worked on No. 2 pump. Drilled $3008 \mathrm{~m}-3014 \mathrm{~m}$.

1st June

Drilled $121 / 4^{\prime \prime}$ hole $3014 \mathrm{~m}-3016 \mathrm{~m}$. Pumped 100 bb hi vis mud. Circulated btms up. Dropped MSA Survey. Pump slug. POOH. Rigged up Schlumberger.

Run Log No. 1 Sonic/indvetion/GR in 0839 hrs out 1228 hrs Log No. 2 LDT ClT-GR in 1300 hrs out 1847 hrs Log No. 3 CST in 1925 hrs out 2246 hrs Log No. 4 CB2 in 2350 hrs out 0132 hrs.

2nd June

Schlumberger \log No. 4 out 0132 hrs. Rigged down
Schlumberger, made up 9 5/8" casing hanger. Made up $121 / 4^{\prime \prime}$ bit and new BHA. RIH to shoe. Slip 100^{\prime} and cut 200' drilling line: Reamed and washed for 3000-3016 m. Worked junk basket. Circ. Added caustic for pH . Slugged pipe and

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

POOH. Jet wellhead w/bit. Retrieved wearbushing. Measured MD RKB. Slep joint DP. Jetted wellhead and BOP. Rigged up and $\operatorname{ran} 95 / 8^{\prime \prime}$ casing.

3rd June

Ran 9 5/8" casing. Landed hanger 0815 hrs. Made up cement head. Circ. Made up 1.60 SG slurry for B.J. Pumped preflush and pressure tested surface lines. OK. Cemented. Displaced cont. Dumped excess pit volume (200 bb No. $5+$ 116 bbl returns). Tested BOP's. Ran pilot tests on lignite/lignosulphonate system.

4 th June

Tested BOP's. Pilot tested lignite lignosulphonate system. Need to add 5 ppb . 3 ppb Q -Broxin 0.5 ppb CMC LV and .12 ppb XC Polymer. Made up new BHA and RIH. Pressure tested casing. Repaired cooling water leak on drum and broken link on drawworks chair. Tagged cement at 2953 m . Took SPR. Drilled cement 2958 m to 2996 m . Added seawater and ran all solids control equipment. Added lignite. Added bicarbonate for cement contamination. Added Q-Browin to this and for water loss and reduce alkalinity from cement.

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

5th June

Drilled cement and shoe to 3016 m . Drilled new formation 3016 - 3019 m . Circulated cond mud at l. 25 SG. PO to shoe and performed leak off test (l.88 SG). POOH. Made up new BHA and RIH circulated and increased mud wt to 1.35 SG. Reamed and washed down 3001.5 to 3019 m . SPR. Drilled $8 \frac{1}{2}{ }^{\prime \prime}$ hole 3019-3024 m. Added Q-Broxin/caustic for HPHT. CMC for W.L. CCl6 for HPHT. Ran mud cleaners + centrifuge on barite recovery. Streamed in A Mix and seawater for YP and filtercake. Added XC Polymer to aid YP. Electrical failure. Pumped with BJ pump. Deballasted 70^{\prime} to 65'.

6th June

Electrical failure. Circulated with shear pump. Drilled $8 \frac{1}{2}$ " hole 3024 m to 3055 m . Flow check at 3044 m , well static. Ran centrifuge on barite recovery, streamed in Q Mix and seawater. Added CMC +CCl 6 . When pit volume became low added 60 bbl Q Mix (60 ppb) and 120 bbl seawater, weighted to l.35 SG. Dropped survey and POOH. Made up new bit + RIH. Made 480 bbl of 1.25 SG kill mud in No. 5 reserve. Drill water $10,500 \mathrm{ppm}$. Chloride. Drillwater tank drained + flushed. Refilled from another storage tank. Tested ok.

Statoil 15/9-14
Deep Sea Saga
DAILY OPERATIONS LOG

7th June

RIH. Mixed spare mud in No. 5 reserve pit. Worked junk basket and drilled $8 \frac{1}{2} "$ hole 3055 m to 3104 m . Added seawater when necessary to keep wt at 1.35 SG. Added CMC Hi vis and CCl6 for water loss. Caustic for pH. Mixed 100 bbls of Q Mix. Dropped survey.

8th June

POOH. Retrieved survey at surface. Made up new BHA + RIH slowly. Mud losses at 1047 m . Fill hole $\mathrm{w} / 20 \mathrm{bbl}$ mud. Observed well static. Filled pipe and circulated at 1774 m and 3001 m . Worked junk basket. Drilled $8 \frac{1}{2} "$ hole 3104 m to 3142 m . Added CCl6, Q Broxin/caustic, CMC LV + CMC HV, for water loss.

9th June

Drilled $8 \frac{1}{2} "$ hole 3142 m to 3168 m . Dropped survey pumped slug 100 m . Retrieved survey. POOH. Made up new bit and RIH. Most of the mud materials requested to be sent ashore have gone, 2 containers remain to go (13B2l + 84 Break) RIH no fill. Worked junk basket. Drilled $8 \frac{1}{2} "$ hole 3168 to 3170 m.

NORSK PETROLEUM SERVICES A/S.

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

10th June

Drilled $8 \frac{1}{2}$ " hole 3170 - 3193 m . Changed 2 bottom shaker screens to $100^{\prime} s$. Ran a little water and reserve mud to compensate for weight gain from slug. Maintained weight at 1.35 SG. Added CCl6 and CMC-LV for fluid loss, caustic for pH and Q-Broxin/caustic for water loss and viscosity control. Flow checked at 3193 m - negative. Circulated bottoms-up. Drilled 3193 - 3228 m with drilling break from 3223-5 m. Flow checked - static. Circulated. Surveyed. POH .

Ilth June

POH. Tested BOPs. POH with test plug. RIH with wear bushing and POH. Picked up $8 \frac{1}{2} "$ core barrel and BHA. RIH. Tagged bottom. Circulated bottoms-up. Dropped ball. Cored 3228 - 3243 m . Used CMC-LV and CCl6 for filtrate control.

12 th June

POH. Recovered core. Made up BHA. RIH. washed and reamed 3215 - 3243 m. Drilled 3243 - 3248 m. Flow checked static. Drilled 3248 - 3257 m . Flow checked - static. Drilled 3257 - 3262 m. Circulated bottoms-up. Dropped survey.

DAILY OPERATIONS LOG

13th June

POH. Picked up $8 \frac{1}{2} "$ core barrel. RIH. Transferred 110 SX Imco Spot, 5 dr EX-S, 5 dr Pipe Lax to Dyvi Delta. Tagged bottom. Circulated bottoms up. Dropped ball. Cored 3267 3286 m . Used $\mathrm{ZC}-16$ and $\mathrm{CMC}-\mathrm{LV}$ for fluid loss control and Q-Broxin/caustic for rheology and filtration control. Added water to maintain 1.35 SG weight. POH. Recovered core and laid down core barrel. RIH with $8 \frac{1}{2} "$ bit. Reamed 3267 3286 m .

14th June

Drilled $3286-3296 \mathrm{~m}$. POH for washout. Washed out bit nozzle. Made up new bit and RIH. Worked junk basket. Drilled $3296-3366 \mathrm{~m}$. Flow checked at 3319 and 3363 m well static. Added CC-16 and CMC-LV for filtration control and gel premix to maintain Y.P. Circulated. Surveyed. POH for wiper trip to shoe.

15th June

Recovered survey. RIH. Drilled 3366 - 3383 m. Drilled 3383 - 3430 m . Circulated bottoms-up. Took survey. Рон. RIH with new bit and junk basket. RIH. Drilled 3430-3466 m. Controlled rheology with water and Q-Broxin/caustic. Used CC-16, Q-Broxin and CMC-LV for filtration control.

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

1400 psi pressure drop due to pump valve failure. Flow check - positive. Closed in and watched for pressure negative. Opened hydril. Flowed. Hung off on upper pipe rams. Closed hydril. Opened rams. Moved pipe. Raised mud weight to 1.38 SG. Circulated through choke at 40 spm .
l6th June

Circulated bottoms-up. Flow checked - negative. Bottoms-up mud had 24000 ppm chlorides (i.e. salt water flow). Circulated bottoms-up again. Surveyed. POH to shoe.

17 th June

Drilled 3558 to 3563 m T.D. P.O. to shoe circ. B.U. Drop survey multi shot, POOH . Retrieve multi shot. Rig up Schlumberger, Schlum RIH. Logging.

18th June

Schlumberger logging. Schlumberger OOH. Rig down
Schlumberger. RIH for wiper trip. Slip 100^{\prime} drlg line. Con. RIH ream and wash down from 3120 to 3220 m and 3533 to TD 3563 m . Circ. B.U. POOH. Had over pull 40.000 lbs from 3451 to 3425 m . Con. PO to 3390 m . Ream down from 3390 to 3445 m . RIH to TD. Circ. and cond. mud due high mud weight 1.41 SG. Added $10 \mathrm{~m}^{3} \mathrm{~s} / \mathrm{w}$ and $30 \mathrm{~m}^{3}$ fresh mud to cut back

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

mud weight to SG 1.38. POOH Rig up Schlumberger. Logging.

19th June

Logging. Rig down Schlumberger. RIH for wiper trip circ. B.U. Hole in good condition. POOH. Rig up Schlumberger. Logging. Rig down Schlumberger. Start up weighing up in active part to SG 1.42.

20th June

RIH to 3220 m . Well start flowing due p.p. of l.37. Close bag and watch for pressure. Neg. start circ. shrue choke w/40 STR. 1200 psi l. 42 SG m.w. at bit after 1350 str. 1150 psi. Cont. pumping 5500 str until l. 42 sg in flowline. Close well in and start strap in hole w/reduced press on bag. Bleed off pressure from annulus while strapping in. Start circ. w/20 str. Cont. circ. out influx open Hydril, observe well, well static. Ream from 3574 m to 3563 m . Circ. BU. increase m.w. to 1.47 SG P.O. to shoe wait $\frac{1}{2} \mathrm{hr}$. Observe well, well static. RIH to bottom, tight spot at 3240 m . Circ. B.U. ROOH.

2lst June

Continued ROOH. Rig up Schlumberger, Logging - Rig down Schlumberger, RIH to 3563 m circ. B.U. ROOH tight spot at

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA
Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

3254 m 35000 lbs. Slack in transmission gear on draw-works. Repaired. RIH open ended for cement (plug) jot.

22nd June

Cir BU. Lay cem plug No. 1, 3563 to 3415 m PO to 3415 m , reverse out, 3 bbls cem plug No. 2, 3415 to 3265 m PO to 3265 m reverse out cement back. Circ./cond mud from 1.49 to 1.47 SG . Check for back flow in DP. Cont. cond. mud. POOH. RIH w/new bit. Circ. BU tag cement at 3323 m and drl out 3 m . Mud 1.47 in and out. POOH . Transf. 200 bbls mud to active system. Mixed 250 bbls fresh mud. Add sod bic. in active due cement contamination.
$23 r d$ June

POOH - RIH open ended. Circ. BU. Lay cement plug No. 3. 3326 to 3220 m reverse out. 4 bbls contamination mud set plug No. 43220 to 3115 m . Reverse out cir. and cond. mud. Add s.bic set cement plug No. 53050 to 2400 m . Reverses out, 2bbls cement. POOH slip and cut 10^{\prime} drilling line RIH with $8 \frac{1}{2}$ scraper bit.

24th June

POOH. RIH w/8 $\frac{1}{2}$ " bit to 2900 m . Circulated check for

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG

cement. Cont. RIH tagged cement at 2930 m . Circ. btms up. Vis out 90-100 sec. Added Q-Broxin and bicarbonate to lower vis. Pressure tested $95 / 8 \mathrm{csg}$ to 2900 psi. POOH. RI with open end DP to 1400 m . Circ. btms up. Laid cement plug No. 6. PO to 1300 m reverse cir. Dumped 7 bbl cement contaminated mud. Ran seawater into active (1.47 SG) POOH. Rigged up Schlumberger. RIH w/gauge ring and junk basket.

25th June

RI w/gauge ring and junk basket to 1260 m . RI w/baker bridge plug and set at 1243 m . RI w/perforation gun to 200 m. 2 perforation runs. No pressure drop in annulus. Cut + retrieved $95 / 8^{\prime \prime}$ casing (at 250 m) . Circ. cond. mud. Added seawater and bicarbonate. Pressure tested 9 5/8" x 13 3/8 annulus to 1450 psi. RI w/open end D.P. to 375 m . Laid cmt plug No. 7375 m - 250 m . Reverse cir. l bbl cmt contaminated mud. RI w/perf gun to 140 m .2 runs. Drillwater checked 4.400 Cl at pit supply. Storage tank 450 ppm.

26 th June

Perforated csg at $132.2 \mathrm{~m} w / 500 \mathrm{psi}$ on annul. pressure fluctuation. Cut $133 / 8^{\prime \prime} \mathrm{csg}$ at 153 m and retrieved. Displaced hole and riser with seawater. Laid a balanced cement plug from $250-150 \mathrm{~m}$. Reverse circ. Unlatched and

NORSK PETROLEUM SERVICES A/S.

OPERATING AREA

Statoil 15/9-14
Deep Sea Saga

DAILY OPERATIONS LOG
pulled BOP and rigged down same. Rigged up to pull BOP.

27th June

Rig move 15/9-14 to 15/9-16.
Engineer sent ashore for move.
NORSK PETROLEUM SERVICES A/S c/o Dolphin Services A/S
1056 Tansnger, Norway. Tolephone 04-696524 Teler 33235
MUD PROPERTY RECAP

WELL NAME: $\quad 15 / 9-14$ STATOIL

NORSK PETROLEUM SERVICES R/S c/o Dolphin Services A/S 4056 Tananger, Norway. Telephone 04-696524. Telen 33235
MUD PROPERTY RECAP

DATE	DEPTH teet motres		VISC: OSIIM secs	filtrate		Hy/HP filt		PH	RHEOLOGY				filtrate analysis					RETORT ANALYSIS			CEC	OTHER			
	teet motres	$\begin{array}{\|l} \hline \text { PPQ/ } \\ \text { SpCt/ } \\ \text { SG } \end{array}$				${ }^{\circ}$ 500psi			PV	YP	$10^{\prime \prime}$	10^{\prime}	CI	Ca	PI	M 1	P年	Oil	Water	Corr			EXGY		
						ccs	$\frac{\pi}{32} / \operatorname{man}$		cp	Ibs/1	$\mathrm{t}^{2}-\mathrm{g}$	maticm	$\mathrm{mg} /$ /itre	ppm				\%	\%	\%	(Bent.	Sand	ppb		
15.5	PIT	1.13	52	9.4	2			11.2	11	16	8	17	14000	1000	. 85	1.3	2.5	0	94	6	12.5	0	4.8		
16.5	1375 $1 n$ In	1.13	45	9.6	2			11.0	10	16	6	17	14000	1320	. 75	1.2	2.4	0	92	6	12.5	0	4.2		
	1379 Out	$1.13{ }^{\text {H }}$	50	9.8	2			10.9	11	15	6	16	14000	1480	. 7	1.2	2.4	0	94	6	12.5	0	4.0		
	PIT	1.15	49	10.4	2			10.6	13	14	5	21	13000	1800	. 45	. 95	2.7	0	93	7	15.0	0	4.4		
17.5	$1{ }^{17}$	1.15	55	8.4	2			10.6	13	17	5	21	13000	1880	. 45	1.0	2.6	0	93	7	17.5	0	4.1		
	Jut	$1.15{ }^{+}$	58	8.6	2			10.5	14	17	7	20	13000	1920	. 4	. 95	2.6	0	93	7	17.5	0	4.0		
	$\begin{aligned} & \text { In } \\ & 1575 \end{aligned}$	1.14^{+}	59	9.2	2			10.5	14	15	8	14	14500	2080	. 4	1.0	2.8	0	92	8	22.5	1/4	4.3		
18.5	$\begin{aligned} & \text { In } \\ & 1690 \\ & \hline \end{aligned}$	1.14	50	8.6	2			9.9	11	14	6	18	16000	1800	3	8	2.4		92		2	TR	3.7		
	$\begin{aligned} & \text { Out } \\ & 1701 \\ & \hline \end{aligned}$	1.15	54	8.7	2			9.9	12	15	8	22	16000	1760	,				2			$1 / 3$	3.7		
	PIT	1.14	60	9.3	2			10.6	13	15	9	22	17000	1720	. 32	. 8	2.1	0	92	8	24	TR	3.1		
19.5	$\begin{aligned} & \text { In } \\ & 1887 \end{aligned}$	1.20	51	8.1	2			70.4	13	11	7	18	16500	1560	. 4	1.0	2.7	0	89	11	26	TR	4.8		
	$\begin{aligned} & \text { 0ut } \\ & 1893 \end{aligned}$	1.20	55	8.8	2			10.5	14	14	9	18	16500	1520	. 4	. 95	2.6	0	39	11	26	TR	4.8		
	$\begin{aligned} & \text { In } \\ & 1942 \\ & \hline \end{aligned}$	1.20	51	9.1	2			10.2	12	13	8	13	17000	1720	. 4	1.1	2.8	0	39	11	27.5	TR	4.8		
20.5	$\begin{aligned} & \text { In } \\ & 2011 \end{aligned}$	1.21	50	9.0	2			10.8	13	11	4	13	17000	1760	. 45	1.1	2.7	0	38	12	30.0	1/4	4.6		
	Qut7	1.21	53	9.3	2			10.8	15	12	6	13	17000	1720	. 45	1.1	2.8	0	38	12	30.0	1/4	4.8		
	$\begin{aligned} & \text { In } \\ & 2134 \end{aligned}$	1.20	56	9.0	2			10.2	14	12	8	25	18500	2040	37	8.	1.4	0	$\beta 9$						
21.5	$\begin{aligned} & \text { In } \\ & 2194 \end{aligned}$	1.20	50	8.8	2			1.0	13	5	5	24	18500	2150	. 5	1.05	3.1	0	90	10	$\beta 0$	$1 / 4$	5.0		
	$\begin{aligned} & \text { Out } \\ & \text { O2022 } \\ & \hline \end{aligned}$	1.20^{+}	52	9.4	2			1.0	13	6	5	23	18500	2080	. 5	1.05	2.9	0	39	11	30	2	4.8		
	$\begin{aligned} & \text { In } \\ & 2282 \\ & \hline \end{aligned}$	1.23	50	8.0	2			0.3	15	11	4	22	18000	2040	. 23	. 73	2.5	0	37	13	32	1/4	3.8		

DATE	DEPTH	Density	$\left\lvert\, \begin{aligned} & \text { visc- } \\ & \text { OSITr }\end{aligned}\right.$	FILTRATE		Hy/tP filt		pH	RHEOLOGY				FILTRATE ANALYSIS					RETORT ANALYSIS			CE C	$\frac{\%}{\text { SND }}$	QJHER	Corr. solids
		$\begin{aligned} & \text { STRC// } \\ & \hline \text { PPG/ } \end{aligned}$			Cake		500psi		PV	Y P	10^{4}	10^{\prime}	Cl	Ca	PI	M 1	Pm	Oil	Water	Gote			XS GYP	
	metres		secs	ccs	$\frac{1}{32^{\prime \prime}} / \mathrm{mm}$	ccs	$\frac{\pi}{32} / \mathrm{mm}$		cp	Ibs/100ft ${ }^{2}$-9mum $/ \mathrm{cm}^{100}$			mg/itro	ppm				\%	\%	\%	(ent.			
2.6	$\begin{aligned} & \text { In } \\ & 3016 \end{aligned}$	1.25	57	6.2	$\frac{1}{2}$			10.7	15	15	3	20			. 20	. 38		0			31		4.1	
	$\begin{aligned} & \text { In } \\ & 3016 \end{aligned}$	1.25	52	6.3	$\frac{1}{2}$			10.7	75	14	3	18			. 20	. 39		0					4.1	
3.6	$\begin{aligned} & \hline \text { Pit } \\ & 3016 \end{aligned}$	1.25	52	6.4	$\frac{1}{2}$			10.6	15	13	4	23			. 15	. 37		0					4.0	
	PIT	1.26	48	6.2	$\frac{1}{2}$			10.4	16	13	3	20			. 15	. 63		0			30.5			
4.6		1.26	50	6.4	$\frac{1}{2}$			10.3	15	13	3	23		2040	. 17	. 58		0			31			
	PIT	1.26	52	6.6	$\frac{1}{2}$			10.4	15	11	3	25		$200 ¢$. 17	. 53		0			31	1/4	4.0	
	2905	1.25	52	6.6	$\frac{1}{2}$			9.5	13	12	3	16			. 12	. 30		0						
5.6	$\begin{aligned} & \text { In } \\ & 3015 \end{aligned}$	1.25	50	6.4	$\frac{1}{2}$			10.4	14	13	3	13		1040	. 28	. 68		0			27	$\frac{1}{2}$	5.5	
	$\begin{aligned} & \text { Out } \\ & 3016 \end{aligned}$	1.25	51	6.4	$\frac{1}{2}$			10.6	14	12	3	13		1080	. 26	. 67		0			27		5.5	
	3018	1.25	50	5.6	$\frac{1}{2}$	22.6	3	10.5	13	12	2	10	21000	1200	. 23	. 53		0	88	12	27	$\frac{1}{2}$	3.8	10.8
	PIT	1.25	55	5.6				10.5	11	13	2	14		1200	. 21	. 55		0						
6.6	$\begin{aligned} & \ln \\ & 3024 \end{aligned}$	1.38	53	5.5		19.4	3	10.3	12	12	2	10		1120	. 32	. 94		0	85	15	26	1/4	4.0	13.9
	Out	1.35	54	5.6		19.6	3	10.1	12	12	2	9		1120	. 30	. 87		0	85	15	26	1/4	3.9	13.9
	$\begin{aligned} & \text { In } \\ & 3048 \end{aligned}$	1.35	51	5.4		19.8	3	10.2	13	11	2	9	20500	1080	. 28	. 54		0	85.5	14.5	24.	1/4		13.4
7.6	$\begin{aligned} & \mathrm{Pit} \\ & 3056 \\ & \hline \end{aligned}$	1.35	55	5.3		19.6	$2 \frac{1}{2}$	10.0	15	12	4	17		1280	. 22	. 61		0	85.5	14.5	24.		3.0	13.4
	$\begin{aligned} & \operatorname{In} \\ & 3084 \end{aligned}$	1.35	55	5.5		19.6	3	10.7	15	13	3	15	21000	1200	. 27	. 62		0			24			
	$\begin{array}{\|l\|} \hline \text { In } \\ 3104 \\ \hline \end{array}$	1.38	55	5.2		19.5	2	10.6	15	13	3	16		1200	. 20	. 48		0			23.		2.6	
	Out 3104	1.35	58	5.2		19.4	2	10.6	17	13	3	14		1160	. 23	. 50		0			24		2.7	
8.6	$\begin{aligned} & \text { Sllu4 } \\ & \text { In } \\ & 3102 \\ & \hline \end{aligned}$	1.35	56	5.1		19.8	$2 \frac{1}{2}$	9.8	75	12	3	11		T280	. 18	. 53		0			23		1.7	

NORS c/o Dolphin 4056 Tananc	PETR Services A/S -r. Norway. I	OLEUM olephone 04-	$\begin{aligned} & \text { SERV } \\ & -696524 . \end{aligned}$							AUD		ME:		$\begin{aligned} & 5 / 9-1 \\ & \text { EEP S } \\ & \text { ECAP } \end{aligned}$	$\begin{aligned} & 14 \text { ST } \\ & \text { SEA S } \end{aligned}$	$\begin{aligned} & \text { TOI } \\ & \text { GA } \end{aligned}$								
DATE	DEPTH	DENSITY	$\begin{aligned} & \text { VISC- } \\ & \text { OSITY } \end{aligned}$	FILT	RATE	HY/HP		pH		RHEO	OGY		FIL	TRATE	E ANA	ALYSI		RETO	RT ANA	ALYSIS	CEC		OTHER	
		PPQ// Spret/					500psi		P V	YP	10^{4}	10^{\prime}	CI	Ca	Pf	M I	Pm	Oil	Water	Corr. Solids	PPB	SND	XS GYP	Corr. solids
	motres	$\mathbf{S G}$	secs	ccs	$\frac{1}{32} / \mathrm{mm}$	ccs	$3 \frac{1}{3} / \mathrm{mm}$		cp	lbs/10	$\mathrm{H}^{2}-\mathrm{g}$	$/_{\text {cm }} 100$	mg/litro	ppm				\%	$\%$	\%	$\begin{array}{\|c\|} \hline \text { Bent. } \\ \text { Eq. } \end{array}$			
8.6	$\begin{array}{r} \text { Out } \\ 3134 \end{array}$	1.35	60	5.0		20.0	3	10.7	18	13	3	15		1200	. 25	. 60		0			23.6		1.7	
9.6	$\begin{gathered} \ln \\ 3144 \end{gathered}$	1.355	57	5.0		19.8	2 $\frac{1}{2}$	10.6	16	13	3	14	20500	1140	. 27	. 57		0			24.		1.8	
	$\begin{array}{r} \text { Out } \\ 3150 \end{array}$	1.355	59	5.0		20.0	3	10.5	16	13	3	14		1200	. 22	. 53		0			24.		1.7	
	$\begin{array}{r} P i t \\ 3165 \end{array}$	1.35	57	4.7		19.8	21	10.0	15	15	3	16		1200	. 18	. 55		0			24.		1.7	
10.6	$\begin{gathered} I n \\ 3173 \end{gathered}$	1.355	59	4.6		19.8	$2 \frac{1}{2}$	10.5	16	14	3	16		1080	. 22	. 58		0			23		1.4	
10.6	$\begin{array}{r} \text { Out } \\ 3178 \\ \hline \end{array}$	1.35	62	4.9	$\frac{1}{2}$	19.9	$2 \frac{1}{2}$	10.3	17	14	3	14	20500	1100	. 18	. 57		0	85.5	14.9	23.	1/4	1.4	13.4
11.6	$\begin{array}{r} \text { Pit } \\ 3228 \\ \hline \end{array}$	1.35	56	5.4	1	17.4	3	10.5	16	13	3	16	22000	1120	. 20	. 65		0	85.5	14.5	24	1/4	1.3	13.4
12.6	$\begin{array}{r} \text { Pit } \\ 3243 \end{array}$	1.35	56	4.9	1	16.4	3	10.7	16	12	3	16	21500	1000	. 25	. 75		0	85	15	22	1/4	1.3	14
13.6	$\begin{array}{r} \mathrm{Pit} \\ 3267 \end{array}$	1.35	55	5.0	1	16.6	3	10.5	15	12	3	15	21500	920	20	.60		0	85	15	22	1/4	1.3	14
14.6	In 3295	1.35	58	4.7	1	16.2	3	10.5	15	L2	3	13	21500	1000	. 20	. 70		0	85	15	19	1/4	1.3	14
14.6	$\begin{aligned} & \text { 0ut } \\ & 3296 \end{aligned}$	1.35	57	4.8	1	16.4	3	10.4	14	12	3	13	27500	1000	. 15	. 60		0	85	15	19	1/4	1.3	14
15.6	$\begin{aligned} & \text { In } \\ & 3360 \end{aligned}$	1.35	58	5.1	1	16.6	3	100.6	15	12	3	14	21500	980	. 20	. 80		0	85	15	19	1/4	1.3	14
15.6	$\begin{aligned} & \hline \text { Out } \\ & 3370 \end{aligned}$	1.35	59	5.0	1	16.6	3	10.6	16	13	3	15	21500	960	. 20	. 75		0	85	15	20	1/4	1.3	14
16.6	In 3466	1.38^{+}	59	5.4	1	17.4	3	9.8	18	12	3	17	21500	960	.15	.60		0	84	16	19	$\frac{1}{2}$	1.2	15
16.6	out 3466	1.39	57	5.3	1	17.2	3	9.6	17	12	3	16	21500	924	.10	. 45		0	84	16	19	$\frac{1}{2}$	1.2	15
17.6	In 3551	$1.38{ }^{+}$	59	4.9	1	16.6	3	10.3	16	12	3	15	21500	800	. 2	. 7		0	84	16	19	1/4	1.2	15
17.6	Out 3552	$1.38+$	58	4.8	1	16.4	3	10.2	17	12	3	15	21500	760	. 2	. 7		0	84	16	19	TR	1.2	15
18.6	In	$1.38+$	69	4.9	1	16.4	3	9.5	18	14	3	16	22000	760	. 2	. 7		0	84	16	19	TR	1.2	15
18.6	$\begin{aligned} & \text { Out } \\ & 3563 \\ & \hline \end{aligned}$	1.39	93	4.4	1	16.3	3	9.6	21	14	3	16	21500	760	. 2	. 7		0	84	16	19	TR	1.2	15

NL PETROLEUM SERVICES (UK) LTD.
NL BAROID
15/9-14 STATOIL
DEEP SEA SAGA
BIT \& HYDRAULIC RECORD

BITNo	TYPE	SIZE	DEPTH OUT	FOOTAGE	HRS RUN	CUM TIME	WT on BIT	RPM	Pump Output	$\begin{array}{\|l\|} \hline \text { Pump } \\ \text { Press } \\ \hline \end{array}$	ANN VEL	Liner Size	5 PM	$\begin{aligned} & \text { Jet } \\ & \text { Sizes } \\ & \hline \end{aligned}$	Bit Grading
		ins/mmr	H/m	tr/m		hrs	$\begin{gathered} \times 100 \\ \text { Ibs/kgs } \end{gathered}$		$\left\{\begin{array}{l} v / t \\ \text { spmfhom } \end{array}\right.$	$\begin{gathered} \text { bar } \\ \text { post } k \mathrm{em}^{2} \end{gathered}$	DP 4/minn/min	ins/mm		32 nds	T B G
1	OSC-3A	26	187	84.5	5	5	0/7	$40 / 80$	3470	31		$63 / 4$		3×18	
IRR	OSC-3A4	26	191	4	2	7	Drld CM	T and	4 m of	new hol	E			3×18	
2	$\times 3$	12 1/4	516	325	4.8	11.8	$2 / 7$	120	3570	158		$63 / 4$		3×16	1-1-I
3	$\times 3 A$	171 $\frac{1}{2}$		Drid Cr	T and 7	m of ne	w hole				30/28	$63 / 4$	200	3×18	
4	X3A	$17 \frac{1}{2}$	1371	845	25.2	37	$2 / 13$	$\begin{aligned} & 110 / \\ & 130 \\ & \hline \end{aligned}$	4090	193	30/28	$63 / 4$	200	$\begin{aligned} & 7 \times 16 \\ & 1 \times 18 \\ & \times 20 \end{aligned}$	2-2-I
5	$\times 15$	$121 / 4$	1394	23	2	39	$2.5 / 13$	$\begin{aligned} & 20 / \\ & 120 \end{aligned}$	3070	200	70/48	$63 / 4$	150	3×15	$2-2-1$
6	$\times 3$	$121 / 4$	1973	561	27.5	66.50	12/16	120	2660	197	$61 / 42$	$63 / 4$	130	$\begin{array}{r} 2 \times 15 \\ \times 14 \\ \hline \end{array}$	4-3-I
7	$\times 3$	$121 / 4$	2343	368	34.6	101.1	11/18	110/8	O2620	186	$61 / 42$	$63 / 4$	130	3×15	7-4-1/6
8	X06	$121 / 4$	2579	236	31.6	132.7	18/20	$85 / 10$	2579	200	$57 / 39$	$63 / 4$	122	3×15	5-5-1/16
9	XD6	$121 / 4$	2684	105	21.7	154.4	18/22	80/12	O2525	200	57/39	$63 / 4$	122	3×15	7-5-1/16
10	LYNS	$121 / 4$	2946	262	49.7	204.1	19/24	-	2537	275	57/39	6	155	Turbine	bit 100\%
11	XD6	$121 / 4$	3016	70	23.4	227.5	25	9	2553	205	$71 / 49$	$63 / 4$	155	3×18	1-5-1
12	XIG-J	$8 \frac{1}{2}$	3019	3	3	230.5	9/13	$50 / 75$	1400					3×12	3-3-1
13	XDGJ	$8 \frac{1}{2}$	3055	36	17.1	247.6	17.0	100	1400	165	$\begin{aligned} & 86-106 \\ & 58-71 \end{aligned}$		$\begin{aligned} & 70 \\ & 86 \\ & \hline \end{aligned}$	3.11	48 / / 16
14	XDGJ	$8 \frac{1}{2}$	3104	49	16.6	264.2	17.0	100	1400	172	$84 \quad 56$		68	$\begin{aligned} & 2 \times 11 \\ & 1 \times 10 \end{aligned}$	3-8-I

NL PETROLEUM SERVICES (UK) LTD.
NL BAROID
WELL NAME: 15/9-14 STATOIL
BIT \& HYDRAULIC RECORD (2)

BIT No	TYPE	SIZE	DEPTH OUT	FOOTAGE	HRS RUN	CUM TIME	WT on BIT	RPM	Pump Output	$\begin{array}{\|l} \text { Pump } \\ \text { Press } \\ \hline \end{array}$	ANN VEL	$\begin{array}{\|l} \hline \text { Liner } \\ \text { Size } \\ \hline \end{array}$	5 PM	$\begin{aligned} & \text { Jol } \\ & \text { Sizes } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { Bit } \\ \text { Grading } \\ \hline \end{array}$
		ins/mm	t/m	14/m		hrs	$\begin{gathered} \times 100 \\ \text { tbo/kgs } \end{gathered}$		9pm/	$\begin{gathered} \text { BAR } \\ \text { pcy } k g<m^{2} \end{gathered}$	DC DP $1 / \mathrm{min} / \mathrm{m} / \mathrm{min}$	ins/rava		32 nds	T B G
15	J 2	$8 \frac{1}{2}$	3168	64	20.8	285	17.0	100	1400	172	84/56	$63 / 4$	68	$\begin{aligned} & 2 \times 11 \\ & 1 \times 10 \end{aligned}$	7-2-I
16	XDG	$8 \frac{1}{2}$	3228	60	16.7	301.7		100	1400	172	84/56	$63 / 4$	68	$\begin{aligned} & 2 \times 11 \\ & 1 \times 10 \end{aligned}$	4-2-I
17	CB403	81	3243	15	9.4	311.1	9/14	$\begin{array}{r} 100 / \\ 120 \end{array}$	$\begin{array}{\|} 820 / \\ 1230 \end{array}$	76/126	$62 / 41$	$63 / 4$	40/6	-	-
18	J2	81	3267	24	3.1	314.2	11/13	100	1431	186/19	3 84/56	$63 / 4$	68	$\begin{aligned} & 2 \times 11 \\ & 1 \times 10 \end{aligned}$	3-2-I
17 RR	CB403	$8 \frac{1}{2}$	3286	19	3.1	317.3	7/14	120	818	48.6		$63 / 4$			
19	XDG	$8 \frac{1}{2}$	3296	10	1.2	318.5	15	85	1390	180	84/56	$63 / 4$	68	$\begin{aligned} & 2 \times 11 \\ & 1 \times 10 \end{aligned}$	2-1-I
20	XDG	$8 \frac{1}{2}$	3430	134	14.2	332.7	15	85	1390	180	84/56	$63 / 4$	68	$\begin{array}{r} 2 \times 10 \\ 1 \times 10 \\ \hline \end{array}$	7-3-I
21	XDG	8 $\frac{1}{2}$	3563	133	19.2	351.9	15/17	60/85		186		$63 / 4$	68	$\begin{aligned} & 2 \times 11 \\ & 1 \times 10 \end{aligned}$	$531 / 16$
22	J3	81			Circ/	reaming								3×13	
23	$\times 19$	$8 \frac{1}{2}$												3×13	
23 RF	$\times 19$	$8 \frac{1}{2}$												3×13	

\square

 (V)IT \xrightarrow{T}

$$
1
$$

$$
\frac{10 n}{4}
$$

$$
4 r+m+4
$$

N-I

