

DRESSER NORWAY A.S.

MAGCOBAR

n Norske Stats Oljeselskap A/S atoil D. Box 10, CCB Basen NORSCO OIL BASE N-4056 TANANGER

PHONE: (04) 69 60 33

TELEX: 33 1 68 - «DRENO» N

63 ÅGOTNES

tn: Mr. T. Brinch/O. Ør

Denne rapport tilhører

01.83

R/sk

LTEK DOK.SENTER

L. NR. 12483040051

KODE WW 30/2-1 No-75

RETURNERES ETTER BRUK

ar Sirs,

ease find attached Dresser Norway A/S' Drilling Fluid Recap for your cent well 30/2-1. We hope that the information presented is of benet to your operation. At the same time we want to thank you for the portunity to be of service to Statoil.

ease do not hesitate to contact us if there are any questions regarding is summary, or any other matter.

urs faithfully,

lf H. Retz

nager Sales and Engineering

py: N. Blomberg, Dusaviken

DRESSER NORWAY A.S.

MAGCOBAR

Den Norske Stats Oljeselskap A/S Statoil

N-4056 TANANGER PHONE: (04) 69 60 33

NORSCO OIL BASE

P.O. Box 10, CCB Basen

TELEX: 33 1 68 - «DRENO» N

5363 AGOTNES

Denne rapport tilhører

() STATOIL

01.83

R/sk

Attn: Mr. T. Brinch/O. Ør-

LTEK DOK.SENTER

L. NR. 12483040051

KODE WWW 30/2-1

RETURNERES ETTER BRUK

Dear Sirs,

Please find attached Dresser Norway A/S' Drilling Fluid Recap for your recent well 30/2-1. We hope that the information presented is of benefit to your operation. At the same time we want to thank you for the opportunity to be of service to Statoil.

Please do not hesitate to contact us if there are any questions regarding this summary, or any other matter.

Yours faithfully,

Rolf H. Retz

Manager Sales and Engineering

Copy: N. Blomberg, Dusaviken

DRESSER NORWAY A.S.

MAGCOBAR

Den Norske Stats Oljeselskap A/S Statoil P.O. Box 10, CCB Basen NORSCO OIL BASE N-4056 TANANGER PHONE: (04) 69 60 33 TELEX: 33 1 68 - «DRENO» N

5363 ÅGOTNES

Attn: Mr. T. Brinch/O. Ør

Denne rapport tilhører **OSTAIOIL**

01.83

IR/sk

LTEK DOK.SENTER

L. NR. 12483040051

KODE WW. 30/2-1 Ni-75

RETURNERES ETTER BRUK

Dear Sirs,

Please find attached Dresser Norway A/S' Drilling Fluid Recap for your recent well 30/2-1. We hope that the information presented is of benefit to your operation. At the same time we want to thank you for the opportunity to be of service to Statoil.

Please do not hesitate to contact us if there are any questions regarding this summary, or any other matter.

Yours faithfully,

Rolf H. Retz

Manager Sales and Engineering

Copy: N. Blomberg, Dusaviken

DATE: 17th November 1982

COMPANY	DEN NORSKE STATS OLJESELSKAP A/S - STATOIL
ADDRESS	P.O. BOX 10 - COAST CENTER BASE
	_
	5363 ÅGOTNES
WELL	30/2-1
	NORWEGIAN NORTH SEA
COATION	11011111021111 11011111 111111

PREPARED BY H. Yttri

F. Smith

INDEX

STATOIL WELL 30/2-1

SECTION	1.	WELL	SUMMARY	
---------	----	------	---------	--

SECTION 2. DAILY OPERATIONS LOG

SECTION 3. MATERIAL CONSUMPTION BY INTERVAL

SECTION 4. TOTAL MATERIALS CONSUMPTION

SECTION 5. DAILY MATERIALS CONSUMPTION

SECTION 6. DAILY MUD PROPERTIES

SECTION 7. MUD VOLUME DATA

STATOIL, 30/2-1

WELL SUMMARY

SUMMARY STATOIL WELL 30/2-1

The well was spudded on the 17th May 1982. Bentonite was prehydrated prior to spudding using Magcogel, Caustic Soda, Lime and Soda Ash. The well was drilled to 216 meters R.K.B. and 30" casing was run with no problems.

The existing mud was used to drill from 216 meters to 1035 meters. The specific gravity of the fluid was kept at 1.05-1.07. A pilot hole 12-1/4" was used and then opened to 26". No adverse problems were encountered except by using a large amount of dilution. 20" casing was run and cemented with no problems at 1020.5 meters.

The 17-1/2" hole was drilled to 2656 meters using an excess Gypsum system. The excess Gypsum was carried at between 4 lbs per bbl to 3.2 lbs per bbl. The pH was carried at 9.0-9.5 preferably below 9.5. Hole conditions were very good at all times.

At 1765 meters a short trip was made and the trip gas increased to 48% as per the Ex-log monitoring unit. The mud density was increased to 1.24. The pore pressure increased as drilling was resumed and the specific gravity was increased to 1.52 by 1932 meters. The fluid loss was controlled at 10.0 cc or less using CMC Low Viscosity and CMC Hi Viscosity. All Magcogel and Gypsum was prehydrated prior to adding into system.

At 2125 meters the pore pressure increased and the fluid density was raised to 1.60 specific gravity. The well was drilled to 2156 meters and electric logs were run. The 13-3/8" casing was run and became stuck at 1998 meters. Circulation was established and a 100 bbl Oilfaze/Pipe-lax pill was mixed up with a weight of 1.60 and spotted around the casing to soak. Another pill

consisting of Imco spot and Pipe-lax was mixed and the Oilfaze pill was returned and stored. The Pipe-lax Imco spot pill was pumped down and followed by the original Oilfaze/Pipe-lax pill. The Pipe-lax Imco spot pill was circulated out and another Pipe-lax Imco spot pill was spotted. This was followed by the previous pills and the pill was left to soak. The casing came free and was run to 2150.5 meters. The casing was cemented.

After the cement was drilled out and a leak off test run to 1.85 specific gravity the system was changed to an XP-20/Resinex mud using the existing Gypsum mud and the Calcium was reduced gradually. The mud density was increased to 1.66 specific gravity prior to drilling any further. At 2227 the density was raised to 1.70 specific gravity. A diamond bit and turbine was run into the hole. At 2433 the pore pressure increased and the density was raised to 1.77 while drilling ahead. At 2794 meters, the drill solids content was increasing and the centrifuge was run. This had to be run taking mud from the active and centrifuging the Barite into the slug pit, to a weight of 1.77 or equal to the active system density. It was then strung into the system and the process repeated. This procedure works but with a few suggested changes the efficiency of the operation would be improved greatly. All Bentonite that was added to the system was prehydrated and coated with Spersene and XP-20.

At 3100 meters the Chloride content increased rapidly and the magnesium content increased also. The fluid density was increased to 1.80. The resistivity as per the Ex-log monitoring system decreased also at this point.

At 3470 meters the connection gas increased to 6.7% and the fluid density was increased to 1.82. The pipe was stuck for 15 minutes and worked free. The well was drilled to 3501 meters. A wiper trip was made and while circulating bottoms up the pipe stuck. A Pipe-lax Imco spot pill of the

following was mixed up and spotted, 82 sacks of Imco spot, 46 bbls of Diesel, 18 bbls of water, 8 drums of Pipe-lax, and weighted up to 1.82 specific gravity. The pipe was free one hour after spotting. Electric logs were run and 9-5/8" casing was run and landed at 3491 meters.

The well was drilled to 3611 meters and the pore pressure increased. The specific gravity was raised to 1.85. As drilling resumed the background gas increased and the mud density was increased to 1.87 at 3678 meters.

Lost circulation was experienced at 3678.3 meters, and a Nut Plug/Mica pill was spotted. The well was drilled to 3696 meters. Losses were constantly experienced and L.C.M. pills were spotted. Electric logs and R.F.T. tests were made. The core bbl was run and coring resumed. The well was cored to 3794 meters. Losses continued and L.C.M. pills were spotted. The well was drilled to 3836 meters. The hole was conditioned for logging and the survey showed a very high angle build up. The dog-legged section was wiped and the hole was conditioned for logging and running 7" liner.

Prior to P.O.H. an 18m³ LCM pill was spotted on bottom. While pulling out to run casing, the hole was not tacing the correct amount of fluid. Although periodic flow checks were made the well was not flowing. After ninety-nine stands had been pulled, it was decided to run back to bottom and circulate bottoms-up. At 3180m a flow check showed the well to be flowing. The well was then shut-in. A total of 12m³ pit gain was noted. The gas was circulated out using the choke with 1.91 S.G. mud. Running in to 3766m bottoms up was again circulated through the choke until casing pressure registered zero. The hole was again circulated through the riser. At this point it was noticed that the pipe was stuck. The well again started flowing. A 4m³ kick was taken. The kick was circulated through the choke. Two Diesel/Pipe Lax pills were pumped and spotted with the second one successful. The hole was then circulated and an LCM pill spotted on bottom. The bit was pulled and

7" liner was run with the shoe at 3834m and the liner hanger at 2906m.

An 8-1/2" bit was run to drill out cement in 9-5/8" casing. Again the hole was not taking the correct amount of fluid. No flow was encountered , on the first flow check but the second one showed a small flow. The well was shut-in and a $3m^3$ kick was noted in pit levels. The hole was circulated with no significent gas show. While reaming to 2718m, the well started flowing again. After shutting-in the well a $12m^3$ gain was noted. The kick was circulated out with a 2.15 S.G. mud. The well was opened and observed to be static.

It was presumed that a leak was in the 7" liner hanger and it was tested for this. No leak was encountered.

The B.O.P. stack was pulled for repairs and re-run. The mud weight was cut back to 1.91 prior to drilling out the 7" shoe. The well was drilled to 4217 meters and the pipe was stuck. A pipe lax pill was spotted and the pipe was pulled out of the hole. Electric logs were run and also R.F.T. testing was tried.

Drilling resumed to 4230 meters and the drill pipe became stuck again. A pipe lax pill was again spotted and the pipe came free. The well was drilled to 4243 meters and because of continued stuck pipe drilling was not resumed and logs were run. The well was plugged back to 4040 meters. Then plugged to 3836 meters. The plug was dressed off to 3838 meters. The well was then prepared for testing.

Cement contamination was experienced while squeezing cement behind the 7" liner. This was heated with Sodium Bi-carbonate and Spersene. The solids build up from the cement needed water to disperse them. Contaminated mud was dumped and the mud was treated in the limited time allowed. The test string was run and tested and the mud treated accordingly.

STATOIL, 30/2-1

DAILY OPERATIONS LOG

STATOIL, 30/2-1

May 16th 1982

Mix up 1020 bbls of spud mud, using 35 lbs/bbl Bentonite, Lime, Caustic and Soda Ash.

May 17th 1982

Mix up 750 bbls spud mud same as above. Drill 26" hole to 216 meters.

May 18th 1982

W.O.C. Mixed up 500 bbls of mud.

May 19th 1982

Mix up 600 bbls of mud 1.06 sp.gr.

May 20th 1982

Drill 12-1/4" hole. Mixed up 800 bbls of mud, 1.06 sp.gr. Drill to 268 meters.

May 21st 1982

Drill to 748 meters using sea water for dilution.

May 22nd 1982

Drill 12-1/4" pilot hole to 1034 meters. Built 868 bbls of new mud. Diluting with sea water to maintain weight at 1.06 sp.gr.

May 23rd 1982

Open 12-1/4" hole to 26". Pump high viscosity pill when necessary for hole cleaning.

May 24th 1982

Reaming to 26". Pump high viscosity pills to clean hole. Dumping mud and diluting with fresh mud to maintain weight at 1.06 sp.gr.

May 25th 1982

Continue opening 12-1/4" hole to 26". Pumping high viscosity pills to clean the hole.

May 26th 1982

Open hole to 1035 meters and run 20" casing.

May 27th 1982

Premix mud slowly as a strike may be called. Mixing up Gypsum system.

May 28th 1982

Continue mixing mud as strike has been called off. Rig to run B.O.P. and riser. Test same.

May 29th 1982

Continue mixing mud - Displace riser with new mud. Drill float collar and shoe. Drill to 1037 meters. Run leak off test. (1.70 sp.gr.) - Drill ahead. Run mud cleaners as per Statoil orders. Dilute with premix as necessary.

May 30th 1982

Drilling ahead. Diluting with Gypsum, Gel, premix. Losing mud over shakers and all other solids control equipment. Cuttings are not sticky at all and no problems on connections.

May 31st 1982

Trip at 1450 meters, no drilling. R.I.H. with new bit and no fill on bottom. Adding cone to lower and control fluid loss. Adding Caustic to control pH.

June 1st 1982

Diluting heavily as per Statoil orders plus lowering fluid loss. Drilling ahead with no problems.

June 2nd 1982

Increase mud weight to 1.20 as per orders. Increase mud weight to 1.27 as per orders. Gas has increased , 48% on wiper trip at 1858 meters.

June 3rd 1982

Increase mud weight to 1.30, 1.35 and start increasing to 1.40. Raise to 1.45 and lower fluid loss with CMC. Adding Spersene to maintain rheology.

June 4th 1982

Raise mud weight to 1.52. P.O.H. 8½" bit. Added Spersene and Caustic to control rheology. Drill rat hole for core bbl 20 meters. P.O.H.

June 5th 1982

R.I.H. with core barrel to cut core no. 1. Bit would not drill. P.O.H. Check core head - recovery 2 meters. R.I.H. with core barrel to cut core no. 2.

June 6th 1982

Cut core no. 2 - 91% recovery. Test B.O.P. R.I.H. with $8\frac{1}{2}$ " bit. Drill to 2020 meters. P.O.H. to run electric logs.

June 7th 1982

Run logs and R.I.H. with 17½" bit.

June 8th 1982

Open up 8½" in rat hole to 17½". Drill ahead from 2020 meters. Adding Caustic, Spersene and CMC Low Vis to maintain rheology.

June 9th 1982

Drill to 2125 meters. Gas increase. Circulate. Raise mud weight to 1.57. Circulate bottoms up. Raise mud weight to 1.60. Adding Spersene and Caustic to control rheology.

June 10th 1982

Continue raising mud weight to 1.60. Adding Gypsum to maintain concentration. Cuttings are firm and not sticky over the shaker. Drilled to 2156m. Circulate bottoms up. Made wiper trip to shoe. R.I.H. Circulate bottoms up. P.O.H. to log.

Added 20m³ seawater to reduce viscosity lost 10m³ mud.

June 11th 1982

Continue logging. R.I.H. Circulate to condition mud. Added Spersene, XP-20, Caustic to reduce Y.P. and gels.

June 12th 1982

P.O.H. Rigged up and ran 13-3/8" casing. Casing stuck at 1998 meters. Maintained full circulation. Added 11m^3 seawater for dilution.

June 13th 1982

Pumped 100 bbl Oilfaze/Pipelax pill 1.60 and spotted. Started mixing 100 bbl imco spot pill.

June 14th 1982

Circulate out Oilfaze/Pipelax pill. Mixed & pumped 14m³ Imco spot pill. (1.60 S.G.). Followed with 25m³ of previous pill.

June 15th 1982

Pumped pill no. 2 out of hole and returned to no. 3. Mix pill no. 3 Imco spot/Pipe Lax. Added easy spot and Pipe lax to used pill. Pumped $25m^3$ used pill, follow with $32m^3$ new pill. Follow with $6m^3$ used pill.

June 16th 1982

Continue to soak casing with Imco spot/Pipe-lax. Casing free. Ran casing to 2151m. Circulate out solution. Cemented 13-3/8" casing with full returns.

June 17th 1982

Ran packer, tested casing.

Dumped 5m³ mud. Added 7m³ seawater to lower viscosity.

June 18th 1982

R.I.H. tagged cement at 2141 meters. Drilled cement and 3m new hole. Ran leak off test.

Treated cement contamination with Soda Ash/Sodium Bicarbonate. Treated mud with Spersene/XP-20/Resinex. Added 18m^3 seawater. Lost 8m^3 mud. Weighted up reserve mud to 1.66 and active.

June 19th 1982

Increased mud weight to 1.70 sg. Diluting with 10m³ sea water and adding Spersene/XP20 to control rheology. R.I.H. with Turbine. Drilled to 2227 meters.

June 20th 1982

Drilled 12-1/4" hole from 2227m to 2357 m.

Added $22m^3$ sea water for dilution, Spersene/XP-20 for rheology. Added Barite to maintain weight. Volume added $25m^3$, lost $5m^3$.

June 21st 1982

Drilled 12-1/4, from 2357 to 2497 meters.

Added $20m^3$ sea water, Spersene/XP-20/Caustic to maintain properties. Started to weight up active to 1.75 sg.

June 22nd 1982

Drilled 2497 to 2600 meters. Diluted with $18m^3$ sea water. Added Spersene, Caustic and Lime to maintain properties. Weight active system to 1.77 sg.

June 23rd 1982

Drilled 2600-2706 meters. Made wiper trip at m. Added 15m³ water for dilution, Spersene/Caustic/XP20 to maintain properties. Formation keeping MBT high difficult to control viscosity.

June 24th 1982

Drilling ahead 12-1/4" hole. High build-up of drill solids is causing a rheology problem. Running the centrifuge and using the slug pit as best we can is not the most efficient way of utilizing this equipment.

The centrifuge underflow is 1.15 sp.gr. We are having to add large amounts of sea water to help reduce the amount of drill solids, and are also adding Caustic and Lignite to help control rheology. A trip was made to test BOP's and check the turbine.

June 25th 1982

Test B.O.P. R.I.H. Lost 40m^3 over shakers on bottoms up. Very high solids content. Increased viscosity while out of the hole. Added 18m^3 of new mud to system. Added 24m^3 of sea water to system. Added Spersene, Caustic and XP-20 to system to control rheology.

June 26th 1982

Survey. Lost part of survey tool. Trip to retrieve. Adding water and Barite to control solids and density. One pump down for a while. Safety valve.

June 27th 1982

Drilling ahead. Adding prehydrated gel, wet with Spersene and XP-2Q. Running sea water at all times. Adding Barite to maintain density. Trip for bit at 2930 meters.

June 28th 1982

Diamond bit completely watered. R.I.H. with conventional bit. Drill to 2936 meters. P.O.H. Treated mud with Spersene/XP-20/Caustic. Adding prehydrated gel from pit no. 3. Adding sea water while drilling. Maximum gas on bottoms up 26-45%. Mud weight cut to 1.68.

June 29th 1982

Finish running in the hole with turbine and diamond bit. Circulate and drill ahead. 5.3% gas on bottoms up. Large splintered shale coming over shaker. Adding water while drilling.

June 30th 1982

Drill ahead. At 3069 chloride content increased to 15,500 ppm. Started raising mud density to 1.80 sp.gr. Have run the centrifuge for 12 hrs.

July 1st 1982

Drill ahead. Ran centrifuge for 3 hrs. Make wiper trip, no drag. Running sea water and prehydrated gel.

July 2nd 1982

Increase in Calcium and Chlorides after short trip. Ran centrifuge for 6 hrs.

July 3rd 1982

Properties were out of line due to Chloride and Calcium increase. Treated with Caustic Soda, Spersene and XP-20. Lowered HP.HT fluid loss with premix.

July 4th 1982

Make a wiper trip at 3376m, 2.1% gas after connection. Make short trip. Check Chlorides on bottoms up. No change. Ran centrifuge for 9 hrs. Treat with Caustic, Spersene and XP-20.

July 5th 1982

Drill ahead. Raise density to 1.82. Drill ahead, background gas of 3-4%. Maximum 6.7%. Stuck pipe at 3501 meters while drilling. Adding water and Caustic Soda to reduce solids and get properties in line.

July 6th 1982

Make trip, lay down turbo drill and diamond bit. R.I.H. with conventional bit. Circulate bottoms up. Stuck in the hole.

July 7th 1982

Mix up pipe lax pill and spot. Work pipe one hour, pipe free. Circulate out pill. P.O.H. for logs.

July 8th 1982

Run logs. Wiper trip. Reduce yield point to 10. P.O.H.

July 9th 1982

Run 9-5/8" casing.

July 10th 1982

Cement 9-5/8" casing. Test seal assembly.

11th July 1982

R.I.H. with RTTS tool. Displace mud in riser with seawater.

12th July 1982

Set cement plug after packer failure. Disconnect riser.

July 13th 1982

Change subsea stacks.

July 14th 1982

Change subsea stacks.

July 15th 1982

Lower and test subsea stack:

July 16th 1982

R.I.H. Drill cement plug at 1420m. P.O.H. Test subsea stack. R.I.H. Drill cement plug and float collar.

July 17th 1982

Drill shoe. Leak-off test (1.99 s.g.) Drill to 3513m. Trip for bit. Drill to 3517m.

July 18th 1982

Drill to 3548m. Trip for bit. Started seawater additions to dilute solids increase.

July 19th 1982

R.I.H. Drill to 3601m. Diluting mud system with $27m^3$ seawater.

July 20th 1982

Drill to 3611m. Weighted mud to 1.85 s.g. Drill to 3624m. Circulate bottoms up. P.O.H. Change bit. R.I.H. Drill to 3630m.

July 21st 1982

Drill to 3638m. Circulate out 5% gas. Drill to 3676m. Circulate bottoms up for gas. Weighted mud to 1.87 s.g. Drill to 3678m. Circulate bottoms up. Weighted mud to 1.89 s.g.

July 22nd 1982

Lost circulation at 3687.3m. Mixed up slug pit with 20 lb/bbl of Mica Fine. 20 lb/bbl of Nut Plug Fine. Spotted pill over loss zone. Pull eight stands. Let loss zone heal. Run in the hole 2 stands at a time, circulate until well stabilized. Start drilling and add 3-5 lb/bbl of Mica Fine and Nut Plug Fine constantly. Losing 1-3 m³ per hour while drilling. Increased pump strokes. Make swab tests and gas peaks experienced on each one. Make short trip to shoe. Swabbed 6 bbls into well. Circulate bottoms up. Maximum gas 10.6%, background gas while circulating and drilling 0.8%. Mixed up L.C.M. pill with 25 lb/bbl Fine Mica, 25 lb/bbl Fine Nut Plug. Spot on bottom and P.O. H.

July 23rd 1982

P.O.H. to run logs and R.F.T. with Schlumberger. R.F.T. shows pore pressure of 1.86 sp.gr. Bottom hole temp. recordings were at 233, 244, 254 F. Time from circulation to last run, 20 hrs. R.I.H. open ended drill pipe.

July 24th 1982

Finish running in hole open ended. Circulate to establish losses, up to 4m³ per hour at 90 strokes per minute. Mix up L.C.M. pill with 50 lb/bbl Nut Plug, Mica. Spot on bottom over loss zones. P.O.H. Test BOP's. Pick up core bbl to cut core no. 3.

25th July 1982

R.I.H. with core barrel. Circulate at shoe to set L.C.M. pill in loss zone. Establish rate of 80 strokes per minute. Core to 3701 meters. P.O.H. with jammed barrel. Will treat mud for fluid loss high temp. and add gel to system to increase yield point. Prehydrated gel in pit no. 3 and coat with Spersene and XP-20. Add slowly to system to build volume. Add Resinex to reduce HT.HP fluid loss. R.I.H. with core barrel to cut core no. 4.

26th July 1982

P.O.H. with core no. 4. R.I.H. with core bbl to cut core no. 5. Cut core no. 5.

27th July 1982

Finish cutting core no. 5. P.O.H. R.I.H. cut core no. 6. Adding sea water to mud. Add Barite to control weight at 1.91.

28th July 1982

Finish cutting core number 6. P.O.H. R.I.H. with core barrel. Adding sea water at all times while coring. Running mud cleaners.

29th July 1982

Cut cores no. 7, no. 8 and R.I.H. to cut core no. 9. Recovery from 20% to 100%.

30th July 1982

P.O.H. with core no. 9. Dumped sand trap. Build volume by adding pre-ydrated gel, Spersene, XP-20, Resinex, Caustic and Barite.

31st July 1982

P.O.H. Test B.O.P. R.I.H. with new bit. Drill to 3836 meters. Lost circulation. Build up L.C.M. pill, 48 lb/bbl Mica Coarse, Nut Plug Coarse. Spot in hole. (18m³). Added Mica Coarse and Nut Plug Coarse while circulating.

1st July 1982

P.O.H. to shoe. Squeeze L.C.M. to formation. R.I.H. 2 stands at a time. Circulate until well is stable or for 10 minutes. R.I.H. to bottom.

2nd August 1982

Circulate bottoms up. P.O.H. to log. Run electric logs. R.I.H. with bit. Survey $7-3/4^{\circ}$. Built $3\frac{1}{2}^{\circ}$ angle in 42 meters. Will R.I.H. and ream dogs leg Loss zone 3814-3826 meters, Caliper log showed build up across loss zone.

3rd August 1982

R.I.H. with bit. Ream through dog-legged section. Spot 18m³ of L.C.M. pill on bottom. P.O.H. to run dipmeter and R.F.T's.

4th August 1982

Run R.F.T. Finish all logging. R.I.H. Break circulation at shoe. R.I.H. to condition mud for running 7" liner.

Mixed up 40m^3 of 1.91 mud. Added 45 lb/bbl of L.C.M., Mica Coarse and Nut Plug Coarse.

5th August 1982

Ream from 3810 to 3836. Circulate bottoms-up. Spot $18m^3$ LCM pill. POH 90 stands. Lost $36m^3$ while reaming and circulating. Hole not taking fluid during POH. RIH to 3166. Gain $4.5m^3$. Circulate through choke. Losing mud to formation.

6th August 1982

Circulate out gas.

7th August 1982

Circulate out gas. Work stuck pipe. Circulate.

8th August 1982

Circulate out gas at various pump rates.

9th August 1982

Circulate out gas at various pump rates.

10th August 1982

Spot 13m Pipe-lax/Imco-spot pill. Work pipe.

11th August 1982

Soak and work pipe. Circulate out Pipe-lax/Imco-spot pill. Spot second Pipe-Lax/Imco-spot pill. Soak and work pipe.

12th August 1982

Soak and work pipe. Pipe free. Circulate out pill. Wash and ream from 3767 to 3836. POH to 9-5/8" casing shoe. RIH to 3836. Circulate out gas.

13th August 1982

Continue circulating. Spot 17m³ LCM pill, 1.91 S.G., 54 lb/bbl LCM. POH. RIH with 7" liner.

14th August 1982

Continue RIH with 7" liner. Circulate. Cement liner. POH. RIH with new 8-1/2" bit to 1542, well flowing. Shut-in. Circulate. Pump 3.5 bbls mud with shut-in (4600 psi). No leak-off. Strip to bottom.

15th August 1982

Continue strip-in hole. Tag cement at 2705. Ream to 2718. Circulate out gas. Raise mud weight to 2.15 S.G. Circulate out gas.

16th August 1982

Circulate out gas. Displace riser with 2.15 S.G. mud. Wash and ream cement from 2718 to 2878. Circulate bottoms-up. Fifty stand wiper trip. Circulate bottoms-up. POH twenty-five stands. Observe well. No chemicals or water to be added as per Statoil instructions.

17th August 1982

Cont. observe well. RIH to bottom. Observe well, static. Circulate bottoms up. POH. RIH with bit. Drill cement from 2889 to 2906. Circulate bottoms up. POH. Treat cement contaminated mud. Also add seawater as mud is prehydrated. No further treatment required as per Statoil instructions.

18th August 1982

Cont. POH. RIH with mill. Mill 7" liner, tie back sleeve to 2908. Circulate bottoms-up. Test liner. Circulate bottoms-up. POH. RIH with 6" bit. No chemical treatment or water to be added as per Statoil instructions.

19th August 1982

Checking for leak in casing by setting packer and displacing drill pipe with water. Checking for flow back. Reverse out and check for gas.

20th August 1982

Same as above. POH for cement bond log.

21st August 1982

Drop fish in hole, RIH to retrieve fish. Circulate bottoms up. Added sea water to heavy spots to maintain mud density at 1.91.

22nd August 1982

RIH. Second attempt to retrieve fish. POH with fish. Lay cement plug. POH. Lay down 5" D.P.

23rd August 1982

Pick up $3\frac{1}{2}$ " drill pipe. RIH. Tag cement plug. Displace riser with sea water. Rig to pull riser and BOP.

24th August 1982

Pull riser and BOP. Reduce mud density to 1.95 as per orders. Clean all pits on surface.

25th August 1982

Repair BOP. Reduce mud density to 1.91.

26th August 1982

Run riser and BOP stack. Reduce mud density to 1.91. Test BOP. Adding only sea water to reduce mud density.

27th August 1982

RIH. Displace riser with 1.91 mud. Drill cement plug. Reduce hole mud from 2.15 to 1.91. Treat mud for contamination. Barite used for trips.

28th August 1982

POH. Pick up 6" bit. RIH to bottom. Could not circulate 2.15 mud from bottom. Pull up 10 singles. Circulate bottoms up. Work mud back to 1.91. RIH to bottom and circulate bottoms up. Large amount of cement to mud from bottom of hole. Dumped $4m^3$. Treat mud for rheology.

29th August 1982

Drill cement plug and shoe. Drill 3 meters for formation. Make leak off test. (2.05). Drill ahead to 3843. POH to pick up turbine and diamond bit.

30th August 1982

RIH with turbine and diamond bit. Adding prehydrated Bentonite to mud. Losing mud to firmation periodically. Running riser boost pump.

31st August 1982

Drilling ahead and adding prehydrated Bentonite to system.

1st September 1982

Drilling ahead, adding prehydrated Bentonite to system to increase CFL. Adding Spersene + XP-20 to control rheology.

2nd September 1982

Drill to 4152m. Wiper trip to shoe. Circulate bottoms up. POH.

3rd September 1982

Continue POH. Test BOP's. RIH. Wash and ream to 4152m. Drill to 4172m. Add prehydrated Bentonite to system.

4th September 1982

Drill to 4190m. Flow check. Drill to 4217m. Pipe stuck on connection at 4211m. Spot $8m^3$ Pipe Lax/Imco-spot pill. Pipe free in one hour. Circulate out pill. POH. Mix $32m^3$ prehydrated Bentonite.

5th September 1982

Continue POH. RIH with new bit. Wash and ream from 4174m to 4217m. Circulate bottoms up and reduce fluid loss. POH.

6th September 1982

Continue POH. Run logs. Wiper trip. POH. Added prehydrated Bentonite to system.

7th September 1982

Continue POH. Run RFT tool. Tool failed to seal. RIH with turbine. Drill to 4223m. POH.

8th September 1982

Drill to 4237m. Flow check. Pipe stuck during flow check, at 4230m. Work pipe free. Drill to 4240m. Lost 20m³ mud due to stuck float in trip tank while filling. Drill to 4243m. Leak in BOP's detected. POH to casing. Displace riser with seawater. Pull top section BOP's.

9th September 1982

Continue repair BOP's. Displace seawater in riser with mud. RIH to 4200m. Ream to 4343m. No fill. Circulated bottoms up.

10th September 1982

POH. Test BOP's. Run logs.

11th September 1982

Continue logging. Logging tool protector sleeve dropped in hole. RIH with $8\frac{1}{2}$ " bit to wellhead. POH. RIH with 6" bit and push fish to bottom. Stuck at 4200m. Pull free. Circulate bottoms-up. POH.

12th September 1982

Continue POH. No drag. Run logs. RFT failed to seal.

13th September 1982

Continue logging. RIH to 4243m open-ended. Pipe-sticking. Lay out one single. Circulate. Pipe stuck at 4230m. spot 6m³ Pipe-Lax/Imco-spot pill. Pipe free (14 minutes) Pull two stands. Circulate bottoms-up.

14th September 1982

Pump and displace 3 cement plugs, circulating long way after each. POH. RIH with 6" bit and scrapper. Tag cement at 3836m. Dress off to 3838m. Circulate bottoms up. Treated cement contaminated mud.

15th September 1982

Continue circulating. POH. RIH with gauge ring and junk sub. Close rams. Pump down kill line. Formation breaks down with 800 PSI. RIH with cement retainer. Set at 3820m. Pump and squeeze cement plug. Reverse circulate and POH. Treat cement contaminated mud.

16th September 1982

The 7" liner was perforated and squeezed with cement to isolate the test zone.

17th September 1982

The testing string was run into the hole and tested.

18th September 1982

Finish running test string. P.O.H. for C.B.L.

19th September 1982

Mud was treated for 2 circulations. HP-HT fluid loss was reduced to 25 cc, as per orders. 40 $\rm m^3$ of new volume was built as per orders. Drispac to perforate test zone.

20th September 1982

All testing equipment was rigged up and tested.

21st September 1982

Wait on weather.

22nd September 1982

Finish rigging up to test.

23rd September 1982

The well was tested. Gas was circulated out and well shut in for final build up.

24th September 1982

Well shut in for pressure test.

No mud treatment.

25th September 1982

Testing.

No mud treatment.

26th September 1982

R.I.H. with Schlumberger and perforated at 3758 meters. R.I.H. to 3745 meters. Squeeze cement. Circulate bottoms up. P.O.O.H. Added Drispac to maintain Y.P. Dumped $8m^3$ cement contaminated mud.

27th September 1982

R.I.H. with bit and scraper to tag cement. No cement. Circulate bottoms up. P.O.O.H. Ran CBL.

28th September 1982

Ran junk basket and gauge ring to 3750 meters. R.I.H. with Schlumberger. Perforated 3761-3771 meters. R.I.H. with $3\frac{1}{2}$ " tubing.

29th September 1982

Continue running $3\frac{1}{2}$ " tubing. Pressure tested lines. No mud Treatment.

30th September 1982

Wait on daylight. Open D.S.T. tool. Flow well to burner. Close well in. Reverse circulate. Circulate the long way.

1st October 1982

Continue circulating. Shut well in and observe.

2nd October 1982

Circulate bottoms-up. P.O.H. with tubing. Service drill collars. Lay down testing assembly.

3rd October 1982

RIH with drill pipe and stinger. Circulate bottoms up. Pump and squeeze cement. Reverse out. Dump $3m^3$ cement contaminated mud. P.O.H. R.I.H. and perforate. R.I.H. and set cement retainer at 3730m. R.I.H. with drill pipe and stinger.

4th October 1982

Pump and squeeze cement . Reverse out. Circulate long way. Dump $1m^3$ cement contaminated mud. P.O.H. Test BOP's. Run CBL log.

5th October 1982

R.I.H. and perforate. R.I.H. and set packer at 3684m. P.O.H. R.I.H. with D.S.T. tool and tubing. Mix $5m^3$ hi-vis Bentonite and water pill for test.

6th October 1982

Cont. R.I.H. with D.S.T. tool and tubing. Open D.S.T. tool and flow well.

7th October 1982

Cont. flow well. Shut well in. Reverse out. Circulate the long way. Shut well in and observe.

8th October 1982

Cont. observe well. Circulate bottoms up. Flow check. Well flowing. Shut-in. No pressure. Continue circulating. P.O.H. with drill pipe and tag packer at 3684m. Circulate bottoms up.

9th October 1982

Pump and squeeze cement plug. Reverse out. P.O.H. to 2955m. Pump and squeeze cement plug. P.O.H. to 2746m. Reverse out. Dump $2m^3$ cement contaminated mud. P.O.H. Lay down tubing.

10th October 1982

Cont. laying down tubing. R.I.H. with 8-1/2" bit and casing scraper. Tag cement plu- at 2823m. Pressure test casing. Circulate bottoms up. P.O.H. R.I.H. with gauge ring and junk basket. P.O.H. R.I.H. with open-ended drill pipe. Pump cement plug. Reverse out. Dumped 5m³ cement contaminated mud. P.O.H. laying down drill pipe.

11th October 1982

Cont. laying down drill pipe. R.I.H. and tag cement plug at 2120m. P.O.H. to 910. Pump cement plug. Lay down drill pipe. R.I.H. and tag cement at 987. Lay down drill pipe. Displace riser with seawater. Dump mud in pits. Pull riser.

12th October 1982

Install corrosion cap on well head. Pull anchors.

13th October 1982

Pull anchors.

STATOIL, 30/2-1

MATERIAL CONSUMPTION BY INTERVAL

STATOIL, 30/2-1

MATERIAL COSTS PER INTERVAL

36" hole section

R.K.B. - 216 meters

UNIT SIZE	UNITS	UNIT COST	TO	TAL COST
Metric ton	26	\$ 389.97	\$	10139.20
25 kg/sx	27	\$ 21.41	\$	578.07
20 kg/sx	22	\$ 4.35	\$	95.70
50 kg/sx	21	\$ 21.73	\$	456.33
	Metric ton 25 kg/sx 20 kg/sx	Metric ton 26 25 kg/sx 27 20 kg/sx 22	Metric ton 26 \$ 389.97 25 kg/sx 27 \$ 21.41 20 kg/sx 22 \$ 4.35	Metric ton 26 \$ 389.97 \$ 25 kg/sx 27 \$ 21.41 \$ 20 kg/sx 22 \$ 4.35 \$

Total cost: \$ 11269.30

Estimated cost: \$ 8921.87

Difference: \$ 2347.43

Meters drilled: 216m

Cost per meter: \$ 52.20

STATOIL, 30/2-1

MATERIAL COSTS PER INTERVAL

12-1/4" pilot hole, open to 26"

216 - 1035 meters

PRODUCT	UNIT SIZE	UNITS	UNIT COST	TO	TAL COST
Magcogel	Metric ton	39	\$ 389.97	\$	15208.80
Magcobar	Metric ton	48	\$ 141.96	\$	6814.08
Caustic Soda	25 kg/sx	78	\$ 21.41	\$	1669.98
Soda Ash	50 kg/sx	28	\$ 21.73	\$	608.44
Lime	20 kg/sx	29	\$ 4.35	\$	126.15
			Total cost:	\$	24427.50
			Estimated cost:	\$	42809.18
			Difference: -	\$	18381.68
			Meters drilled:		819m
			Cost per meter:	\$	29.80

Less Magcogel was used while preparing hi-viscosity pills.

STATOIL, 30/2-1

MATERIAL COSTS PER INTERVAL

17-1/2" Hole

1020 - 2156 meters

PRODUCT	UNIT SIZE	UNITS	<u>UN</u>	IT COST	TO	TAL COST
Magcobar	Metric ton	824	\$	141.96	\$	116975.04
Magcogel	Metric ton	81	\$	389.97	\$	31587.57
Caustic Soda	25 kg/sx	282	\$	21.41	\$	6037.62
CMC H.V.	25 kg/sx	65	\$	66.78	\$	4340.70
CMC L.V.	25 kg/sx	227	\$	64.24	\$	14582.48
Gypsum	40 kg/sx	1095	\$	10.39	\$	11377.05
Spersene	25 kg/sx	581	\$	19.56	\$	11364.36
XP-20	50 lb/sx	95	\$	31.85	\$	3025.75
Pipe Lax	55 gal/dr	29	\$	998.52	\$	28957.08
Oilfaze	50 lb/sx	55	\$	57.12	\$	3141.60
SE-11	55 gal/dr	1	\$	1082.40	\$	1082.40
		Total cos	t:		\$	232471.65
		Estimated	cost	•	\$	127529.70
		Differenc	e:		\$	104941.95
		Less stuc	k pip	e solutions:	\$	33181.08
		Actual dr	illin	g cost:	\$	199290.57
		Drilling	costs	per day:	\$	9964.52
		Cost per	meter	:	\$	175.43

The additional cost on this section was due to an increase in density due to higher pore pressures and additional Bentonite used for this. This hole was trouble free during drilling and the Gypsum mud was very easy to control. The dilution rate was high due to solids control equipment being inefficient.

STATOIL, 30/2-1

MATERIAL COSTS PER INTERVAL

12-1/4" hole section.

PRODUCT	UNIT SIZE	UNITS	UN	IT COST	<u>T</u>	OTAL COST
Barite	Metric ton	917	\$	141.96	\$	130177.32
Bentonite	Metric ton	16	\$	389.97	\$	6239.52
Caustic Soda	25 kg/sx	312	\$	21.41	\$	6679.92
Spersene	25 kg/sx	840	\$	19.56	\$	16430.40
XP-20	50 lb/sx	382	\$	31.85	\$	12166.70
Resinex	50 lb/sx	220	\$	75.54	\$	16618.80
Soda Ash	50 kg/sx	3	\$	21.73	\$	65.19
Sodium Bicarb.	50 kg/sx	8	\$	25.32	\$	202.56
Lime	40 kg/sx	9	\$	8.20	\$	73.80
Pipe Lax	55 gal/dr	8	\$	998.52	\$	7988.16
Imco Spot	(not charged)	82.		-	<u>.</u>	<u>-</u>

Total cost: \$ 196642.37

Estimated cost: \$ 162290.94

Difference \$ 34351.43

Meters drilled: 1345m

Cost per meter: \$ 146.20

The excess cost was due to the higher density required to overcome pore pressures and the additional days used to drill the well.

STATOIL, 30/2-1

MATERIAL COSTS PER INTERVAL

8-1/2" hole section 3491 - 3836 meters

PRODUCT	UNIT SIZE	UNITS	UN	IT COST	TC	TAL COST
Magcobar	Metric ton	868	\$	141.96	\$	123221.28
Magcogel	Metric ton	65	\$	389.97	\$	25348.05
Spersene	25 kg/sx	273	\$	19.56	\$	5339.88
XP-20	50 lb/sx	136	\$	31.85	\$	4331.60
Resinex	50 lb/sx	299	\$	75.54	\$	22586.46
Caustic Soda	25 kg/sx	190	\$	21.41	\$	4067.90
Pipe Lax	55 gal/dr	12	\$	998.52	\$	11982.24
Soda Ash	50 kg/sx	2	\$	21.73	\$	43.46
Mica	25 kg/sx	477	\$	20.54	\$	9797.58
Nut Plug	25 kg/sx	371	\$	18.90	\$	7011.90
Lime	20 kg/sx	2	\$	4.35	\$	8.70
	Tota	l cost:			\$	213739.05
	Cost	per day:			\$	7370.31
	Cost	of material use	ed t	o kill well:	\$	93617.31
	Dril	ling cost:			\$	120121.70
	Cost	per day:			\$	4142.12
	Esti	mated cost:			\$	169401.22
	Diff	erence:			\$	44337.83

The additional costs were accumulated during the control of the well kicking. The time consumed to drill the section was also a factor. Without the cost of killing the well the cost was considerably below the estimated cost.

STATOIL, 30/2-1

MATERIAL COSTS PER INTERVAL

6" hole section

3836 - 4243 meters

PRODUCT	UNIT SIZE	UNITS	UNIT COST	TOTAL COST
Magcobar	Metric ton	707	\$ 141.96	\$ 100365.72
Magcogel	Metric ton	33	\$ 389.97	\$ 12869.01
Spersene	25 kg/sx	. 319	\$ 19.56	\$ 6239.64
XP-20	50 lb/sx	145	\$ 31.85	\$ 4618.25
Caustic Soda	25 kg/sx	67	\$ 21.41	\$ 1434.47
Resinex	50 lb/sx	152	\$ 75.54	\$ 11482.08
Pipe Lax	55 gal/dr	6	\$ 998.52	\$ 5991.12
Drispac	50 lb/sx	3	\$ 191.90	\$ 575.70

Total cost: \$ 143575.99

Cost per day: \$ 4631.48

Cost per meter: \$ 352.76

There was no estimate on this section of the well, but stuck pipe increased costs plus the weighting up of the fluid to 2.05 sp.gr. greatly increased the consumption of Barite.

STATOIL, 30/2-1

MATERIAL COSTS PER INTERVAL

Interval: Testing, plug and abandon

PRODUCT	UNIT SIZE	UNITS	UN	IT COST	TO	TAL COST
Barite	Metric ton	226	\$	141.96	\$	32082.96
Bentonite	Metric ton	15	\$	389.97	\$	5849.55
Spersene	25 kg/sx	32	\$	19.56	\$	625.92
XP-20	50 lb/sx	10	\$	31.85	\$	318.50
Resinex	50 lb/sx	57	\$	75.54	\$	4305.78
Caustic Soda	25 kg/sx	26	\$	21.41	\$	556.66
Sodium Bicarb.	50 kg/sx	4	\$	25.32	\$	101.28
Drispac	50 lb/sx	8	\$	191.90	\$	1535.20
CMC H.V.	25 kg/sx	6	\$	66.78	\$	400.68

Total cost for interval: \$ 45776.53

STATOIL, 30/2-1

TOTAL MATERIALS CONSUMPTION

TOTAL MATERIAL CONSUMPTION

PRODUCT	UNIT SIZE	UNITS	UN	IT COST	TO	TAL COST
Magcobar	Metric ton	3590	\$	141.96	\$	509636.40
Magcogel	M/T	275	\$	389.97	\$	107241.75
Caustic Soda	25 kg/sx	982	\$	21.41	\$	21024.62
Gypsum	40 kg/sx	1095	\$	10.39	\$	11377.05
CMC H.V.	25 kg/sx	71	\$	66.78	\$	4741.38
CMC L.V.	25 kg/sx	227	\$	64.24	\$	14582.48
Lime	40 kg/sx	9	\$	8.20	\$	73.80
Lime	20 kg/sx	53	\$	4.35	\$	230.55
Spersene	25 kg/sx	2045	\$	19.56	\$	40000.20
XP-20	50 lb/sx	768	\$	31.85	\$	24460.80
Resinex	50 lb/sx	728	\$	75.54	\$	54993.12
Soda Ash	50 kg/sx	54	\$	21.73	\$	1173.42
Drispac	50 lb/sx	11	\$	191.90	\$	·2110.90
Pipe Lax	55 gal/dr	55	\$	998.52	\$	54918.60
Oilfaze	50 lb/sx	55	\$	57.12	\$	3141.60
SE-11	55 gal/dr	1	\$	1082.40	\$	1082.40
Sodium Bicarb.	50 kg/sx	12	\$	25.32	\$	303.84
Mica	25 kg/sx	477	\$	20.54	\$	9797.58
Nut Plug	25 kg/sx	371	\$	18.90	\$	7011.90
Imco Spot	(not charged)	82		-		-

Total cost: \$ 867902.39

STATOIL, 30/2-1

DATE DEPTH FF E E E E E E E E E E E E E E E E E E	PAGE 1		Building s	ded in 36" hole.	1396.36 Drld 36" hole. Set & cmt 30" csq.	Drlg cmt with sea-	12-1/4" hole	86.40 Drlg 12-1/4" hole (pilot)	- 1	5417.39 Drlg 26" hole.		4424.07 Drlg 26" hole.	3208.79 Running csg & cementing 20"	1574.26	10412,93 Built gyp mud - Ran riser	0 5550,35 Drlq	.07 Drlg 1	30 8134.02 Drlg 17 ⁴ " hole.	30 2355.17 Drlg.	15 57 25180.58 Circ. gas 48% out of mud.	Increased mud weight	Circ. incr. MW to 1.	100 30308.28 " " 1.52 - Trip -	RIH with 83" bit,	40 12553.90 Coring.	623.40 2nd core/circ/Test BOP/Drilling	to 20	25 1063.60 POOH. Logging.	₽١	hole/Drilling ahead.	MW to 1.	Circ/cond. 14 hrs - 10635,16 Circ out gas 8.7% - POOH to log.	
E DEPTH HT SE STATOLL, 30/2-1 E DEPTH HT SE STATOLL, 30/2-1 E DEPTH HT SE STATOLE E 216 C C C CODA SE STATOLE E 216 C C C C C C C SE STATOLE E 216 C C C C C C C C SE STATOLE E 216 C C C C C C C C SE STATOLE E 216 C C C C C C C C C C C C C C C C C C C														9	260	\dashv	\dashv	140				90	30		70	09		45				C	200
E DEPTH FT BANGEL STATOLL, 30/2-1 E DEPTH FT BANGEL SCORE 2 16		LIME	14	4	4	4	Ţ		7	7	9	6	9																				
E DETH H H H H H H H H H H H H H H H H H H	!	HSA AGOS	15	3	3	3	4	2	9	m	2	~	Ŋ	2																		_	
STATOIL, 30/2-1 E DEPTH HE BS M BB		CAUSTIC	12	6	9	9	6	2	13	6	9	18	15	9	6	3	0	1	20	30		33	30		12			2	25		45		
STATOIL, 82 M 82 M 82 M 5	1-1	CET	17	9	3	2	6		2	7	2	9	7	2	1.2	9	34	3		16		5			4				-				
	11	BARITE				2	18		11	17					20			10		88		147	193		65				22		104	رر	99
	TATOII	DEРТН М	ı	216	216	216	268	748	1034	277	750	1035	1035	1035	1035	1104	1370	1495	1695	1860		1932	1932		1954	1990		2020	2060		2125	216	7120
■	WELL_S	DATE 1982	16/5	17/5	_	19/5	20/5	I			24/5	25/5	26/5	27/5	28/5	29/5	30/5	31/5	1/6			3/6	_		2/6	9/9					9/6	7, 0,	10/6

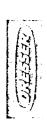
ır				(s				_	_:					_															_			_
PAGE_2	REMARKS	Prep. to run 13-3/8" casing.	. Csg stuck at 19	tuck (Mixing f		11 11 11 11	Cemented 13-3/8" casing.	packer, t	" hole.	Drlg 12-1/4", Incr. MW to 1.70.	12-1/4" hole.	Drlg 12-1/4", Incr. MW to 1,75.	" " " 1.	Drlq 12-1/4" hole.	" " Reduce D.S.	Test BOP. Drill ahead.	Drill ahead.	11 11	Drill and trip.	Drill ahead. Add prehydr, gel.	Drill ahead. CL. increase.	Drill ahead. Add prehydr. gel.	Drill ahead. CL. up.	Treat mud.	Gas, treat for CL content.	Raise MW Gas, High solids	er tri	mix pi	liper trip. Circulat	Run 9-5/8" casing	Cement 9-5/8, Test seal assem.	Test casing & seal assembly.
	DAILY MUD COST USD	8424.43			2839.20	27915.36	0	0	14291.41	19724.20	10392.93	7068.27	13277.49	10560.08	5999.45	6320.50	5394.48	7594.02	4641.11	2366.66	24048.76	3899,70	10363.08	10234.30	2428.55	2854.43	23	9	3425.90	0	2955.96	0
	SE-11			1					4		4																į					
	BEZINEX	\vdash	-		-	-	-		70	10				_							40	-		80	10	9	\dashv		_	\dashv	1	
:	OILFAZE			55									_									\Box										
	PIPE LAX			10		19																						8				
	XP-20	09	10	20					45	20	45	40	40	15	10	20			22	15	9			20	9	9						
	SPERSENE	125	15	45					06	30	06	70	10	06	20	40			45	30	80			40	20	20	20		50		35	
	CWC TA																													a		a
	СИС НЛ																													SUSE		S USE
	GYP																													MATERIALS		MATHRIALS
	riwe -											2	9																			
	HSA AGOS								3																					NO		ON N
	SITZUAS	30	10	10					Ŋ			7_	17	17	15	30			12	10	44			30	45	45	30					
2-1	сег																	2	1			10										
IL, 30/2-1	BARITE	23		49	20				39	125	50	30	72	26	35	30	38	48	17	11	117		73	15		3	81	19	15		16	
STATOIL,	DEРТН М	2156	2156	2156	2156	2156	2156	2156	2188	2227	2357	2497	2600	2706	2794	2814	2851	2930	2948	3028	3115	3204	3286	3363	3432	3501	3501	3501	3501	3501	3501	3501
WELL	DATE 1982	11/6	12/6	13/6	14/6	15/6	9/91	17/6	18/6	19/6	20/6	21/6		23/6	9	9/	9	27/6	9/	9/	30/6	1/7	2/7	3/7	4/7	5/7	6/7	7/7	8/7	9/7	10/1	11/7

																								H H							
REMARKS	Test seal assembly.	Change sub-sea stack.	e sub-sea	Test sub-sea stack.	Drill cement, test stack.	Drill shoe, leak-off test, Drl.	Drill ahead, trip.	Drill ahead,	Drill, raise MW, drill.	Drill, raise MW, drill.	Lost circ, Circ, & pump pills.	Logging + R.F.T.	RIH to core no. 3	Coring.	Coring - prehydrate Bentonite.	Coring.	Coring. Run sea water.	Dump sand trap. Build volume.	Coring.	Lost circulation.	Losing circulation.	Losing circulation.	Logging.	Finish logging. Circ. to run liner	Ream, spot LCM pill, POH, kick,	Circulate out gas.	Circulate out gas, stuck pipe.	Circulate_out gas.	Circulate out gas.	stuck, c	Work stuck pipe.
DAILY MUD COST USD	3939.97	779.94	0	0	348.47	6453,30	1749.12	8207.11	7251.89	10452,36	5777.46	0	5721.30	7599,56	5755,45	283.92	2271.36	8568.00	0	24963.06	14234,15	1972,00	1.1455,65	5110,56	13038,22	1.2492.68	36609,85	8360.25	642.30	0	11963.04
IMCO SPOT	 																											82		_	118
XAJ EGIG																												4			8
LIME																						_				2					
DUIA TUN											42		52							29	40	50	120								
MICA											49		51							29	40	20	120		1.00						
BEZINEX			USED	USED			10	35	10	55				40				30		10	10		10		23	20	21			USED	
0Z - 4X			IALS	IALS				5	10	15		IVES		15				7	IVES	7	7		10		1.5	1.5	30			MATERIALS	
SPERSENE			MATER	MATERIALS				15	15	20		ADDITIVES		30				15	ADDIT	15	18		20		35	30	09			MATEF	
HSA AGOS			NO									ON							ON											NO	
SITSUAS	5				1				3	3	20			10	2			5		29	2		2		13	1.5	20	15	30		
CEL		2			2	14								3	3					6	9		5		4	9	17	2			
BARITE	27				2	7	7	36	41	38	25		26	15	32	2	16	40		120	63		23	36	44	51	182	23			28
ОЕРТН	3501	3501	3501	3501	3501	3517	3548	3601	3630	3678	3698	3698	3696	3710	3717	3735	3758	3776	3794	3836	3836	3836	3836	3836	3836	3836	3836	3836	3836	3836	3836
DATE 1982	12/7	13/7	14/7	15/7	16/7	17/1	18/7	19/7	20/7	21/7	22/7	23/7	24/7	25/7	26/7	27/7	28/7	29/7	30/7	31/7	1/8	2/8	3/8	4/8	2/8	8/9	1/8	8/8	9/8	10/8	11/8

STATOIL, 30/2-1 WELL

PAGE

, –								99 8								_		-		7						<u>.</u>					_	- 71
PAGE	AARKS	Pipe free, POH to shoe, Circ gas	Circ out gas. Spot L.C.M.	iner.	flow	mud to 2.15,ci	t gas, wiper trip.	rve well, Drl cmt, Circ out	on ceme	bit.	ing for leak in ca		oi dun	ᆲ	se mud wt to 1.95.	Pull BOP stack, clean top pits.	Repair BOP.	Run BOP+Riser, Reduce mud to 1.9			Drill ahead.	Drill ahead with diamond bit.	Drill ahead.	ahead.	to 4152m. POH.	t BOP's, RIH, Drill to		POH.	Log, wiper trip, POH.	wiper trip, POH		Drl to 4237.Work stuck pipe free.
	DAILY MUD COST USD	4336.05	1063.86		779.94	15872.52	14337.96	•	993.72		0	0	•	•	1134.79	0	0	0	0	4358.07	1595.79	4791.53	7948.09	•	• [3300,77	10959.60			6835, 49		111896 74
	IMCO SPOT																										63				38	
	PIPE LAX																										4				~	
	PIWE																															
	NOT PLUG																															
	MICA																															
	BEZINEX	25						55																	40	13	10		17			9
	XP-20				_			2			TIVES	ADDITIVES			5					35		20	15	25	5		20					
	SPERSENE				_			33			ADDI.				10					7.0		40	33	20	10	5	40			\downarrow		4
	HSA AGOS	<u> </u>									ON ON	NO																		_	1	_
	SITEUAS				_	12		10												13		5	Ω.	15	8	1			7	1	\downarrow	
30/2-1	cer	3	2		2										2					3	3		5	2	4	2	Ţ				-	9
11	BARITE	6	2			110	101	09	L				40	7					17	3	3	23	34	66	12.	10	31			48	24	62
STATOIL,	DЕРТН М	3836	3836		3836	3836	3836	3836	3836		3836	3836	3836	3836	3836				2900	3824	3843	3897	4001	4108	4152	4172	4217		4217	4217	4223	4243
WELL	DATE 1982	12/8	13/8	4	14/8		16/8	17/8	18/8		19/8	20/8	21/8	22/8	23/8	24/8	25/8	26/8	27/8	28/8	29/8	30/8	31/8	1/9	2/9	3/9	4/9		5/9	. ~	7/9	8/9


ı r												on.																		_		_
PAGE 5	REMARKS	Drill to 4243m.	Work on BOP's. RIH. Wiper trip.	Circulate,	POH. Test BOP's. Log.	Log. RIH. Drill fish. Work	stuck pipe free, POH,	Log	Log, RIH, pipe stuck, Spot	pipe lax, POH.	Spot cement plugs.	Cmt squrrze Treat for contamination	Perforate, + squeeze cmt.	Build 14m new mud.	Rig to test.	Condition mud. Build 40m vol.	Wt up new mud. CMC-pill-	Halliburton.	Rig to test.	Rig to test. Test well.	Ran DST on formation,	Shut in well for pressure test.	Squeezed cmt, 3797m,	Perforated & squeezed cmt 3745m	Running CBL.	Running 31" tubing,	ě,	Flow well.	Shut-in well.	Circulate POH.	Set cmt plug. Perforate. Set	retainer.
	DAILY MUD COST	11896.74	0		2852.76	1492.86		0	283.92		81.94	2548.26	25.32	2741.42	0	6990.10	11260.57		0	0	0	0	1845,48	1995,30	425,88	801.35	0	21.41	759.74	1419.60	1703.52	
i	II-as														į						.											
	OIFFAZE															-																
	PIPE LAX																9															
	XP-20																									:						
	SPERSENE																											-				
	сис гл											2	1																			
	СМС НУ				7																			3					+			
	GXP		ADDE			7		S USED			2	6			5	50			₩.	S.	<u>53</u>	<u>02</u>					5					
	riwe -	Q	MATERIALS		1	7		MATERIALS							TIVE	9			ADDITIVES	ADDITIVES	ADDITIVES	ADDITIVES				-	TTVE	_				_
	HZA AGOS		MATE												ADDI	2	2										ADDI					
1	SITSUAS	CON	ON ON					ON			2	Ŋ		3	NO	10	10		NO	ON	ON	NO					ON					
?-1	BENLONILE				3									1		7																
L, 30/2-1	BARITE				6	2			2			16		16			74						13	10	т	2			4	10	12	
STATOIL,	ОЕРТН				4243	4243		4243	4243		3838	3820	3834	3797	3797	3797	3797		3797	3797	3797	3797	3797	3745	3770	3770	3730	3730	_	\rightarrow	3730	_]
WELL	DATE 1982	6/8	6/6		10/9	11/9		12/9	13/9		14/9	15/9	16/9	17/9	18/9	19/9	20/9		21/9	22/9	23/9	24/9	25/9	26/9	27/9	28/9	29/9	30/9	1/10	2/10	3/10	

9		ď.	Ī	- 10	well		down		te,												1			
PAGE	REMARKS	Pump. Squeeze cement plug		Set packer, RIH w/DST tool	Flow well. Flow well. Circ. Shut-in well.	Shut-in well, set packer	Set 2 cement plugs. Lay down	tubing.	Set cement plug. Circulate,															
	DAILY MUD COST USD	589.25	=	9)	0 0	18			927.02															
																						·		
			-	-				_																_
			-	$\frac{1}{1}$				_																_
			+	-	,				-		_												\dashv	-
			-		USED																		$\frac{1}{1}$	-
															_								-	-
	SPERSENE				MATERIALS MATERIALS			_	1				-	_										$-\parallel$
	DRISPAC S. BICAR			_	ON ON ON ON			-				-												-
i	SITZUAS	1		-		2				3														
	WAGCOGEL			7																			1	
30/2-1	възгите	4	+	٥		16	2		2	16														
STATOIL,	DEРТН М	3730	0	3/30	3730	3684	2800	-	2100	970														
WELL ST	DATE [4/10	- 1		6/10 7/10		9/10	-	_	1/10						 							$\frac{1}{2}$	
¥ [<u> </u>	<u></u>			<u></u>			<u>-1</u>	듸			<u> </u>	_	 Щ	 <u></u>	<u></u> _		<u> </u>	<u> </u>		_	<u> </u>	

STATOIL, 30/2-1

DAILY MUD PROPERTIES

PAGE

	Ì
7	۱
30/2	
1,	
atoi	
Stat	
10/	
5	•

																										_
			VIS	CORR.	GELS		pH FL	SSOT GINTS	נר	Ø.	ALKALINITY	YTINI		RE	RETORT		>	G. ME	rer re	V.G. METER READING	@ 115°		198	-		
1982	Σ	l		115°F		BEC	BECK N 100	100 PSI 500 PSI API 300 °F	CACL				క	%	*	*		90	£	8	ဖ	m			\$ TOTAL	
DATE	ОЕРТН	WT.	SEC.	PV YP	•	10	Z Z	нт-нр	1	<u>ዜ</u> 		M.		9	SOLV	WATER		R.P.M.	R.P.M.	R.P.M.	R.P.M.	R P.W.	CEC		MUD COST	
16/5	1	1.0310	1001				SPUD	ODW 0	_	-	-												35.0		7327.46	
17/5	216	1.03 100+	L .				=	-		$\mid \cdot \mid$													35.0		9957.86	
18/5	216	1.03 10	100	5 13			=																30.0		11354.22	
19/5	216	1.06 100					=	-															1		12643.93	
	268	1.06 7	-		9	42	=	-															1		18996.75	
	748		40 (6 18		43	=	-				-											1		19053.15	
_	1034	1.06	34				=	- 2				-					-						1		21811.23	
23/5	277	1.07 3	39	5 18	-	1	=	-								1							ı		27228,62	- —
_	750	1.0510	104		1	1	=	•															ı		28229.68	
_	874	1.0510	01	8 27	- 1	1	=	-															1		32653.75	
	1035	⊢-	44 (6 15	- 9	1	=	=			_	_					_	•					. 1		35862.54	
27/5	1035	-			7.0	9	=	Ξ															١	,	37436.80	
	1035	1.10 4			1	20	=	=				_											-		47849.73	
29/5	1104	1.10 3	-	i	2	610.	8	20.0	5000	0 .3		4	7 380	J	Ŋ	95	21	17	15	14	7	9	20.0		53400.08	
	1370	1.10 3	-	5 11	10	30 9.	9	19.6	10000	0	4		5 720	_	9	94	77	16	13	뒤	9	4	27.5		69434.15	
31/5	1495	1.11 4	43 (6 15	18	43 9	0	20.2	10000	1	1	3	2 800	J	ত	_ {	27	77	17	15	#	12	32.5		77568.17	
1/6	1695	1.11 4	41	7 115	24	56 9	.2	14.4	11000	0 .1	7	4	3 720	0	9	94	29	22	18	16	14	13	30.0		79923.57	
2/6	1860	1.27 6	-	1 17	28	70 8	\vdash	13.0	11000	0		3	3 680	0	10	90	35	25	77	89	5	12	32.5		105104_15	
3/6	1932	1.40 5	52 1.	7 13	6	54 9	7	9.2	11500	7	7	4	3 680	d	16	84	47	30	21	16	9	8	37.5		133949_35	
4/6	1932		56 25	5 20	15	55 9	9	9.8	11500	0	_	5	5 600	0	19	81	70	45	35	25	1.2	10	29.0		164257.63	
9/9	1954				8	42 9		9.0	11500	0	7.	4	4 600	0	19	81	54	34	26	17	9	5	27.5		176811.53	
9/9	1990		58 20	0 15	8	39 9	0	8.0	12500	0	7.	4	5 640	0	19	81	53	34	26	7	2	4	27.5		- 4	
9/1	2020	_	65 1	4 17	10	39 9	.2	9.7	12500	0.1	7	4	4 60d	0	19	81	45	31	23	16	2	4	27.5		178498.53	
9/8	2060	-		20 19	10	45 9		8.2	12500	0	_	7	6 64d	o	20	80	59	39	30	2	8	7	27.5		185306.03	
	2125	-			10	5010	\dashv	7.5	13000	7	-	d	9 600	-0	22	78	69	43	34	22	7	9	30.0		203576.12	
10/6	2156			24 118	6	5910	0	8,5	13000	0 22	_	6	8 600	_	21	79									214211.28	
11/6	2156	_	12		9		6	8.8	13000	0 3	1	0	8 580	0	21	73									222635.71	
12/6	2156	_		6	4			7.2	13000	_	35 11.1		-	٦	21	73									223461_71	
	DATE SPUD:												DA	DATE T.D.:						COST:						
77	17th May	y 1982																								
			$\left \right $																							7

Well: Statoil, 30/2-1

DAILY MUD PROPERTIES

PAGE_

							 							-									-		
1982	Σ		VIS	CORR.	GELS		Ha	FLUID LOSS		<u>ಷ</u>	ALK	ALKALINITY			RETORT	ıRT		V.G. №	ЛЕТЕЙ	READ	V.G. METER READING @ 115°	115°		198	
!)	:	<u> </u>		115°F		BE							,		%	*									TOTAL
DATE	ОЕРТН	WT.	SEC.	- Ad	•	OT STR	STRIP	ਲ <u>ਜ</u>	HT-HP	NACL	<u>#</u>	¥ ×	MA 		OIL SOL	L WATER	R.P.M.	A. R.P.M.	200 R.P.M.	M. R.P.M.	<u>~</u>	 ∑	. ¥	CEC	MUD COST
13/6	2156	1.60 5	56	19 11	2	1510	0	7.4	1	13000	m.	1.1	8	560 (0	1 79					_				246358.25
14/6	2156	1,60 5	1	21 10		24 9	9	6.0	-	13000	18	.75 2	0	390	1 2							H			249197,45
15/6	2156	1,60 5		21 10	3		3	0.9	_ 1	13000	.18	.75 2	0.	390	1 21										277112.81
16/6	2156	1,60 6	65	24 10	3	26 9	7.	5.6	1	13000	. 18	. 75 2	0	560	3 21	1 76									277112.81
17/6	2156	-	58	23 10	3	26 9	5		1	13000	. 18	.75 2	0	560	3 2	1 76									277112.81
18/6	2158	1.60 5	57	24 12	7 2	4410	5.	6.0 1	2.5 1	13000	5	1.5 1	,6	450	3 2	1 76					_				291404.22
19/6					5	3810	4	6.5 1	5 1	3000	5	2.4 1	.8 4	490	3 2	24 73									311128,42
20/6	2357	1,70 5		23 9		3710	3			131.00	4	2.3 1	7 4	480	3 2	24 73									321521.35
21/6	2497	1,71 5		24 10	5	3810	C	4.9 1	16 1	13200	4	1.5 1	8	470	3 2	24 78			_	-		\dashv	1		328589.62
22/6	2600	1.77 6					4	_	16.5	13200	.3	1.4 1	, 7 4	420	3 2	26 71									341867.11
23/6	2706	1.77 6	63	26 13	3 5	41 9	9	_	17 1	13300	.2	1.4 1	.8	3902	5	26 715			_	-	_		-		352427,19
24/6	2794	1.77 6	65	27 13	9 8	42 9	8	4.6 1	7	13300	.3	1.6	.63	36d ;	2 2	27 71			_	_	-	-			358426.64
25/6	2814	1.77 6	61	29 13	3 7	3810	5	6.8 2	20 1	13500	9	2.8 2	.2	360	2	26 72	71	42	30	2	0 4	3		25.0	364747.14
26/6	2851	1,77 5	56	Ţ	9 4	28 9	ι,	6.2 1	16. 1	13500	2	2.3 1	6	3801	5 2	26 713	52	32	24	1	4 3	3		25	370141.62
27/6	2930	1.77 5	54	be 112	2 4	32 9	9	6.6 1	16.2	13500	7	1.42	0	380	1 2	26 73	64	38	28	7	8	3		24	377735.64
28/6	2948	1.77 5	55	26 15	5 4	41 9	ω	6.8 1	16.8 1	3500	7	1.82	न्	360	1 2	26 73	67	41	3		9	7	3	22.5	382376.75
29/6	3028	1.77 5	57	26 13	3 4	40 9	9	6.8 1	16.6	13500	٠3	1.9 2	.2	340	.5 2	26 73	65	39	27	-	9 4	3		23.0	384743.41
30/6	Γ	1.80 4		-	4	Ш	0	0		17200	4	2.5 2	2	450		27 72	62	37	25	1	5 4	7		25.0	408792.17
1/7	3204	-		26 14	4		0	6	20 1	18000	7	2.01	8	460		28 72 }	99	40	38	7	9	<u>۳</u>	\exists	26.0	412691.87
2/7	3286	1,80 5	59	25 18	7J	48 9	4	0.2 3	36 2	20000	15	1.42	2	500	5 2 2	29 70	89	43	32	21	1 5	4		31.0	423054.95
3/7	3363	1.80 5	54	27 15	5	45 9	.2	7.4 2	22 2	20000	.15	1.7 1	9	500	TR 2	28 72	69	42	30	20	0 4	3		27.5	433289.25
4/7	3432	1.80 5	52	25 15	5 4	34 9	7	6.6 1	16 2	21000	7	2.01	5	500	1R 2	28 72	65	40	9	19	9	3	7	29.0	435717.80
5/7	3501.	82 5	52	26 18	5	44 9	ω	6.2 1	5	23000	4	2.6 1	8 4	490	7	30 70	70	44	34	2	2 6	.2		28	438572.23
6/7	3501	1.82 4	47	24 16	5 4	48 10	o	6.2 1	4.42	23000	4	2.8 1	9	480	- 2	29 71	64	40	8	2	1	7	1	27.5	451494.46
1/7	3501	7	50	24 15		47 9	7	6.2.1	402	21000	m	251	9	480	7	29 71	63	39	5	20	0	7	3	27.5	462179.86
8/7	3501	1.82 4	48	23 10	4	32 10.	2	5.6 1	14.d2	21000	9	2.6 2	0	380	TR 3	30 70			_		-		+		ᆆ
1/6	3501	1.82 6	62	24 12	2	34 10.	0	5.8 1	14.02	21000	.5	2.6 2	0.	380 7	TR 3	30 70			_			-			7
10/7	3501	1.82 5	58	24 12	5	38 9	9	4.8 1	13,52	21000	15	1.4 1	0	360 7	TR 3	30 70		_			\dashv	\dashv	\dashv		468561,72
۵	DATE SPUD:												_	DATE T.D.:	:: O					Ö	COST:				
7	17th May	y 1982	C1							1															

	1
(EVETA	
(3)	

m	4	\$ IOTA	MUD COST	468561.72	472501.69	473281.63	473281.63	473281.63	473630.10	480083,40	481832_52	490039.63	497291.32	507743.88	513521.34	513521.34	519242.64	526842.20	532597.65	532881.57	534869.01	543437_01	543437_01	568400.07	582634.22	584606.22	596061.87	601172,43	614210.65	626702.33	663313.18			
PAGE	Igg.		CEC												30.0	29.0	22.5	28.0	28	28	27.5	27.5	25	25	22.5	22.5	22.5	22.5	22.5	22.5	25.0l			
			B.P.M.				ĺ								3	2	2	7	7	2	7	7	2	3	٣	m	3	2	5	4	2			
	i @ 115°		6 R.P.M.												4	3	4	m	m	3	М	2	m	4	4	4	4	9	9	2	~			
	ADING		100 R.P.M.			Ì			Ì						17	16	15	14	14	14	16	12	17	13	13	12	11	18	18	12	15	COST:		
	TER RE		200 R.P.M.												28	26	24	20	23	24	27	21	25	20	20	20	18	27	26	19	24			
	V.G. METER READING		300 R.P.M.												38	36	34	30	33	33	37	31	34	29	28	28	27	32	33	28	30			
			8.P.M.												65	63	61	52	59	58	64	55	58	50	48	20	48	52	52	49	52			
	RT	%	WATER	07 (02 (0 70	20	0 70	0 70	70	27	0 70	07 (69 1	69	1 69	70	70	70	70	07 0	02 0	07 0	70	9 71	07 (70	69	69	69	11 69			
	RETORT	%	סור צסר	TR 30	TR 29	TR 30	TR 30	TR 31	TR 31	TR 31	TR 30	TR 30	TR 30	TR 30	TR 30	TR 30	TR 30	TR 30	TR 29	TR 30	TR 30	TR 31	TR 31	TR 31	TR 31	.D.:								
		;	A Ma	360	240	200	200	200	TR	280	200	160	320		380	380	440	360	300	400	420	360	400	380	360	360	360	340	340	240	320	DATE T.D.:	ļ	
	Δ		Σ	3 1.1	6 2,3	5 2.3	_	5 2,3	3.25	2 3.25	3.2	5 3.25	53.1	3,35	2.9	3.2	-	2.4		6 3.2	4.2	6 3.8	13.9	2 3.9	2 3.8	5 3.8	4.0	8 3.5	1	'	2 2 5			
	ALKALINITY		Ā	1	2	2.	2.5	2.	75 5,4	45 5.2	4.1	35 3,75	3,25	2	4.2	4.2	3.4	4.2	4.6	3.	3.0	m	3.4	3.	3	3	3.2	2	5 5.2	12.0	35 1.8			
	▼ ⊠		`	00	30 5	•	_ •	_ :		•	00	•	5, OC	<u> </u>	•	٠	Ľ	7.100	9 00	9. 00	9. 00	90 8	00	9. 00	9 00	•	•		20 1.	20 . 21	_			
	<u>C</u>		NACL	21000	.5 19000	19000	19000	19000	5 19000	20000	20000	19500	19500	20000	20000	20000	20000	20000	20000	20000	20000	5 20000	20000	18000	19000	20000	3 20000	21000	16.5 15000	16000	6.6 116.5117000			
	FLUID LOSS		300 °F HT-HP	8 13	8 12.	8 12	4 12	4 12	4 13,	4 14	6 14	6 14	6 14	4 13	8 14	0 15	4 15	0 16	5.0 14	6 22	5 20	8 16.6	8 17	5 17	1 16		2 16.8	8 16	4 16.	6.4 16	6 16			
	1	1 -	□ A P I	9.1 4.	.66	.6 6.8	9		8	8	2 7.	0 7.6	9 7.	3 6	8 6	5 7.0	8 7.4			4 5.6	2 5.5	6 4.8	3 4.8	8 5.5	5 5	5	Ŋ.	7	0 6.4		\neg			
	S.	BECK 🕅	10 STRIP	52 9	2010	2610.	2010,6	2110	2912.0	2910.	4511,	4611	4410	4510.	3610.	2610.	2610	2811.0	1510,8	3210.4	3410,	2810.6	3610	2810.8	2710.	2610.	2510.6	3540	3412	2810.5	2810.4			
	GELS		•	6 7	9 3	Э	0 3	3	5 3	4	ស	5	9	7	9	9 5	 	8 4	М	8 4	5	7 4	9	8	5	5	-	8	1 7	7 3	8 4			
30/2-1	CORR.	115°F	₹	21 16	21	24 10	21 10	21 10	21 10	23 11	32 12	28 13		31 15	27 11	27	27	22 8		25 8	27 10	24	24 10	21	\vdash	9	21 (20	20 1	21	22 8			
- 11	NIS	<u>ا</u> ن ک	SEC.	2 73	2 48	2 52	2 51		2 48	2 60	2 61	2 58	_		-	_	1-	_	1 51	1 54	_	1 48	1 53	1 44	1 46	-	_	1	1 48		91 47		1982	
Statoil,		ທ໌.	¥.	1.82	1.82	1	1.82	1.	1	1.	3 1.82	-			1.91	1.91	1.91	1.	7 1.91	5 1.91	1.91	1.91	1,91	5 1.91	5 1.91	5 1.91	1.91	1 91	1.91	1.91	-			
Well:	:	Σ	DEPTH	3501	3501	3501	3501	3501	3501	3517	3548	3601	3630	3678	3696	3698	3691	3710	3717	3735	3758	3776	3794	3836	3836	3836	3836	3836	3836	3836	3836	DATE SPUD:	17th May	
5	0	1982	DATE	11/7	12/7	13/7	14/7	15/7	16/7	17/7	18/7	19/7	20/7	21/7	22/7	23/7	24/7	25/7	26/7	27/7	28/7	29/7	30/7	31/7	1/8	2/8	3/8	4/8	5/8	8/9	1/8	3	1	

>	Well: S	Statoil,		30/2-1																			PAGE	4
			VIV.		3 130	 	17.0	550101111	2		VTIMITANIA	Z Z	_	a a	RETORT	-	>	MET	B RFAI	V G METER READING @ 115°	1150			
1982	Σ	ט י		CORR.	;	- -	¥				-	\mid	_		-	-	-	\mid	-		-		Bbi	₩
DATE	DEРТН		SEC. PV	<u> </u>	•	STRI STRI		100 PSI 500 PSI API 300 °F HT-HP] [E	CA	* li	% Sor w	% 6 WATER R.I	800 R.P.M.	300 R.P.M.	200 R.P.M.	100 R.P.M.	R.P.M.	B.P.M.	CEC	TOTAL
8/8	3836	1.91	50 29	113	10	34 9	8	8 16	17000	┝.	28 1	33	240	0	31 6	69 7	-	42	36	25	7	4	27.5	671673.43
	3836			۲	-	<u> </u>	\vdash	4			92 3	_ 2 _	320	0 0	31 6	Н	61	36	27		5	3	27.5	672315.73
. ~	3836			112		173		9	-	_:	87 3.	354.8	7		31 6			Н	31		\dashv		27.5	672315.73
11/8	3836	1.91	59 27	-		3011,	0.	0 18		•	5	.5 3	7 200	0	30 (9 69	64	37	27	16	4		20.0	684278.77
12/8	3836	1.91	61 31	7	_	1411.	5 6	6 18	.5 16000	00 1	2 3	.5 3.	1 160	9	26	68 6	69	38	26	14	4	3	27,5	688614,82
13/8	3836	1.91	66 BG	9 9	5	2411.	0 4	6 16	17000	_•	75 3,	0 4.1	15 200	0 4	31 (65 7	78	42	30	12	4	3	30.0	689678,68
14/8	3836	1.91	80 40	8	4	3210.	5 6.	.6 17	16000	•	55 3.	.753.5	54 16d	0 3	31 6	66 8	88	48	34	19	4	m	30.0	690458.62
15/8	3836	1.91	100 47	, 10		5411,	9 0	8 22	18000	30 1	0 3	.6 3.	5 160	0 4	32 6	64 104	4	57 4	44	25	80	2	30.0	706331.14
16/8	3836	2.15	75 44	13	14 8	8612	5 13	. 2 24.	5 18000		68 8,	0 3.	2 240	0	38 (60 101	-	57 4	43	24	8	2	21,25	720669.10
17/8	3836	2,15	94 56	6 9	23	7311	5 8	0 17		20 2,	0.5	2 3.	8 280	0 5	38	57 138	_	79 5	56	33 1	3 1	0	22.5	734360,23
18/8	3836	15	84 50	113	-	7312.	0.10	0.019.5	.5 17000	00	8	4 3.	9 200	0 3	38	59 11	3	63 4	47	29	8	9	21.25	735353,95
19/8	ı	15	85 44		_		010	6 20	19000	00	9 7	2 2.	7 320	0 3	38	59 108		64 4	48	38		9	21.0	735353.95
20/8		.15	86 44	07	17	7011.	410	.6 20	19000	00 1	9 7	.0 2.	6 320	0 3	38	59 108		64 4	45	35	8	6	21.0	735353.95
21/8		.15	79 45	18	16	6411	6 10	.4 20	19000	00 11	7 6	9 2.	6 320		38	59 108		63 4	42	14	œ	9	20,0	741032,35
22/8	3836	2.15	73 44	16	14 (6211	4 10	- 4		30 1	8	9 2	7 320	0	38	59 104	_	7 09	40	14	8	9	20.0	742026.09
23/8	3836	1,95	53 26	12	5	2611	0 12	9.	19000	000	6 4	3 2	9 380	0 2	34 6	64 6	64	38 2	28	18 1	1	5	27.5	743160.86
24/8	3836	1.95	53 26	12	5	2611.	0 12		19000	000	6 4	3 2.	9 380	0	34 6	64 6	64	38 2	28	18 1	1	5	27.5	743160.86
25/8	3836	1,91	50 25	11	5	2410	8 12	8	19000	000	5 4	0 2	3 380	0 2	31 6	9 29	64	38 2	28	18	6	4	27,5	743160.86
26/8	3836	1.91	50 25	11		2410	8 12		19000	000	5 4	4	3 380	2	31 6	- 29		-	-		-	,	25.0	743160.86
27/8	2900	1.91	52 27	14	12	4810,	6 13	. 2 27	19000	00	4 6	0	8 420	0	32 6	9 99	. 89	41	31	20	6	7	24.0	746745.78
28/8	3824	1.91	46 30	8	4	2811.	6 13	.2 28	20000	00 1.	3 6.	.8 3.	6 450	0	32 6	9 99	68	38	28	18	4	m	25.0	751103.85
29/8	3843	1.91	46 24	6	5,	3811	0 12	. 2 26	20000	00	0	0 2	9 420	0 2	32 6	66 5	57	33 2	22	13	4	3	27.5	752699.64
30/8	3897	1.91	47 26	8	9	3411	0	.6 28	20000	30 1	0	2 3.	2 400	0 2	31 (67 6	09	34	24	14	m	2	27.5	757491.17
31/8	4001	1,91	52 27	9	9	4711	0.13	0 29	20000	00 00	7 4	8 3.	5 360	0 2	31 6	67 6	63	36	25	15	4	m	24.0	765439.26
1/9	4108		57 27	H	\vdash	4811	0	2 =	19000	d oc	4 4	0 2	5 350	7	31	67 6	64	37 2	27	15	4	<u></u>	25.0	782368,64
2/9	4152	1.91	58 28	9	m	2611	2 8	8 18	5 19000	9	4	45.1	5 320	-	31 6	68	62	34	24	14	m	2	25.0	789179.77
3/9	4172	1.91	57 30	8	4	2910.	6	0 20	19000	00	8	0 4	8 320	7	<u> </u>	89	89	38	26	16	4	7	25.0	792480.54
4/9	4217	1.91	59 BO	6	7	3240	6	8 22	17000	_1	62 3	511.3	4 320	9	31	68 6	69	<u>ا</u>	28	15	4	7	25. ol	803440-14
	DATE SPUD:												DA	DATE T.D.:						COST:				
	17th May	у 1982	7							İ														

-1
2
30
STATOIL,
=
Š

30/2-1	
STATOIL,	
Well	

6		\$ TOTAL MUD COST	866131.47	866720.72	868352.42	868352.42	868352,42	870666,60	871376.40	872303.42	874658.57																	
PAGE	77		20.0	20.0	20.0	20.0	20.0	20.02	20.0	20.0																		
		3 M.P.M.	4	Ω.	5	Ŋ	5	4	4	4	_																	
	@ 115°	8 P.M.	5	9	9	9	9	2	2	2	1												_					
	ADING	100 T.P.M.	19	22	22	20	21	18	17	17																	COST:	
	TER RE/	200 R. P.M.	29	31	31	30	30	27	26	26	ı																	
	V.G. METER READING @ 115°	300 R. P.M.	+'	41	40	39	41	37	35	36	1																	
	>	800 R. P.M.	65	70	68	65	69	64	90	62	1																	
		% WATER	89	69	69	69	69	69	70	70	ı		_		-)												
	RETORT	%	30	30	30	30	30	30	30		ı															_		
	88	% 10	2	l _l		-	4	4	TR		1																DATE T.D.:	
		CA mad	400	400	400	400	480	400		380	34		<u> </u>														DAŢ	
	≥	MF	2.25	2.65	1	1.7	2.3	235	2.5	2,35	2.0																	
	ALKALINITY	M	3.1	3.8	2.9	2.9	2.6	2.75	2.8	١	.82.75																	
	ALK,	H.	0.5	65	0.4	0.4	0.3	35	0.4	35			-	-														
	×		17000	000	17000	_	17000	17500	17000	_	17000		-		-							_						
	SS CL	PSI CACL	+	8 33.5 17000		32.5 17000		T	J.	 			_			-			-			_						
	FLUID LOSS	SI 500 PSI 300 °F HT-HP	4811.0 10.2 32	8 33	8 33	6 32	641	8 42	0 44	4 46	- 9•	_	_		_		_	_		_					_			
		7 API	01	2 10	0 10	0 10	611	0	2 12	8 12	.8 10.		_			_		_							_			
	Hd	BECK 🕅 STRIP 🗋	11	11	' '		5610.6	4411			6211.8																	
	GELS	01 0	9 48	1	2 5311	1 5011		9 44	9 4611			_	_		_													
30/2-1	-		111	12 12	12 12	13 11	13 13	9	10		16 16	_	-	-	-	\vdash	-	-		_								
30/	CORR.	115°F	27 1	29 1	28 1				75 1				-		-			_						 -				
II,	VIS	SEC.	58	l i	1	1 1		1 t																				
STATOIL,			.91	91	.91	91	91	91	0	91	.91																	
Well:		М ОЕРТН	3730 1	3730 1	3730 1	3730 1	3730 1	3684 1	2800 1	2100 1	970 1																DATE SPUD:	
≯		1982 DATE	3/10	4/10	5/10	6/10	7/10	8/10	9/10	10/10	11/10	-															۵	

STATOIL, 30/2-1

MUD VOLUME DATA

100	1+2=3. TOTAL CIRC.
MUD VOI	BBL'S HOLE ACTIVE TOTAL OF HOLE VOLUME PIT VOL CIRC.
•	1. HOLE VOLUME
A.S.	BBL'S OF HOLE DRLD
Mancoll (CORRED) DRESSER NORWAY A.S.	VISC.
SON RON	MUD WT.
明出	DEPTH METERS
Magcobar ESSER	HOLE SIZE INCHES
ם מ	DATE 1982

Λ0	
ΩD	-
	-

_	
\supset	
0	
Š	
Ω	
7	

•			
1			
•			
7			
۹			
Ш			
\			
<			
\supset			
_			
\simeq			
_			
$\overline{}$			
Ц			
\supset			
	UD VOLUME DATA.	LOME	LUME

Ш	
Σ	
$\bar{5}$	
0	
>	
Ω	

COST US 3 7327

TOTAL

DAILY

TOTAL 3+8.

MUD IN

CUM. LOSS

TOTAL

HOLE

DUMP

VOLUME

ADDED

SSO

ω.

MUD LOSSES

9

5

STORAGE VOL.

WELL: 30/2-1

DYVI DELTA

IIG:

STATOIL

COMPANY:

PAGE:

12643,93

1289,71

1700 2312

1700

1470

11354.22

1396.36

1.000

1000

1470

642

828

828

750

100+

.03

36" 36" 36"

16/5

100+ 100+

1.03

216

17/5

700

19053.15

86.40

2494 2603

965

118 188

300 bbls seawater

1529 1785

1048

489

800

1351

1010

341

100+

216 1.06

/1-21 pilot =

19/5

18/5

216 | 1.03

100+ 40 39

90. 90.

268 748

700

759

868

961

1658 1776 21811.23

2758.08

818

2535

28229.68 32653.75

27228,62

5417,39 1001.06 4424.07

2198

2198

3894

1359

600

559

954 520

r IN HOLE LIFTED)

MUD LEFT IN RISER \$EA-BED

(LOSSES MU AND WHEN 682

WATER

277 DRLG WITH SEA

1034 1.06

12-1/4"

22/2

26" 26"

23/5

12 - 1/4

21/5

20/5

(RETURNS TO

104

1.05

750

24/5

25/5

101

976 1.05

1103

1578 2248

1578

5033

1139

2248

6464

1431 3380 3380

18996.75

6352.82

69434.15 77568.17

452 442

37436.80 47849.73 53400.08

412

170

371

106 154 108 88 129

29 188 213 213 298

29

59

260

ı

265 .298

193

35

334

85 75

230 249 279 304

38 43 41 65

1370 1.10

17 - 1/2

30/2

1495 1.11 1695 1.11

31/5 | 17-1/2"

33

1104 1.10

1035 | 1.10

17 - 1/2" 17-1/2"

28/2

29/2

1035

17 - 1/2

25

35862.54

3208.79 1574.26 10412.93 5550.35 16034.07 8134.02 2355,40

899 899

899

9844

1800

=

=

=

44 40 42

1035 1.05

26" 26"

26/5

2101

180

242

88 72 68

154

899

9844

105104.15 133949.35

25180.58

28845.20

494 511

115 126 160

436 516 552 570 570 602 647

138

78 36

85

140 135 95 80

69 68

354 373 379 385 395 386 400 426 425 454

311 313

52 56 52 68

1932 1.40

17 - 1/2

3/6 4/6

1932 1.52

17-1/2"

1.27

1860

17 - 1/2

2/6

17-1/2"

1/6

72

8 71

314

1.52

17-1/2 8}" core 1954

2/6

315

ı

79923.57

442 502 176811.53 177434.93 178498.53 185306.03

12553.90

555

623.40 1063,60

164257.63

30308.28

203576.12 214211.28

18270.09

565 571

6777.50

545

119 140 117

32 45

65

85 26

340 357

95

331

20

547 537

147

ı

10 30

74

326

65 58 9 64

2020 1.52

83/173

1990 1.52

8}/17}

9/9 9// 1.52

2060

17-1/2

9/8

2125 1.60 2156 1.60

17 - 1/2

9/6

10/6 | 17-1/2"

151

18

10635,16

648

COST US \$	7327.46	9957.86
COST US \$	7327.46	2630.40
		ĺ

1020 942

	Magcobar	通	OBE	RESSER		•	MUI
מ	ESSI	ER I	מסא	DRESSER NORWAY A.S.	A.S.		
						1.	2.
SATE	HOLE	DEPTH	MUD	VISC.	BBL'S	HOLE	ACTIVE
	SIZE	METERS WT.	WT.		OF HOLE VOLUME PIT VOI	VOLUME	PIT VOI
1982	INCHES				DRLD		VOL.

>	
Ωſ	-
že i	
•	

=	
0	
5	
Q	
\supset	
_	

Ε,	
\supset	
0	
>	
_	

Σ	
\supset	
0	
>	

E DATA.

246358.25 249197.45

22896.54

122

108

2839.20

223461,71

826,00

619 640 640

107

677

29

222635.71

8424.43

632

117

648

648 SSO

TOTAL

DAILY COST

TOTAL

MUD IN

STORAGE VOL.

LOSS CUM.

TOTAL

HOLE

DUMP

ADDED

VOLUME

3+8

œ

MUD LOSSES

. ف

δ.

1+2=3. TOTAL CIRC.

SO

us \$

WELL: 30/2-1

DYVI DELTA

IG:

STATOIL

COMPANY:

PAGE:

291404.22 311128.42 321521.35

14291.41

19724.20 10392.93

277112.81

502 517 509 526 532 536 531 529 460 418 499 494 527 552

143 145 145 155 145 145

840

849

σ ω ស 0

24

857

862

871

g

277112.81

277112 81

27915

645 516

42

697

20

Imco spot

5 s/water) Imco spot

518

188

330 330

54

57 57

1.60

14/6

.60 1.60 1.60 1.60 1.70 1.70 1.70

2156

17 - 1/2

15/6

532

302

60ilfaze

16

512

182

330

62

1.60 1.60

17-1/2 2156

12/6

17-1/2 2156 17-1/2 2156

13/6

Oiltaze

51

515

158

357

9

1.60

2156

17-1/2

11/6

172

826

129m left behind casing

344

178

166 185

65

58 57

12-1/4 2156

17/6

12-1/4 2180

18/6

17-1/2 2156

16/6

330

359 372 369

174 187

> 185 189 195

503

438572.23 451494.46

2854.43

534 528

145

1209

12

1097

12922.23

511

100

1211

7

423054.95 433289.25 435717.80

> 10234.30 2428.55

541

412691.87

3899.70 10363.08

514 515

132 126 145 142

1051

16

26 26

382 389 396

160

222

49

1,80

12-1/4 3204 12-1/4| 3286

1/7 2/7

59

1.80

54 52 52

1.80 1.80

3363 3432

12-1/4

3/7 4/7

164

225 230 226

1068

1077

σ

16

166 160 158

16 ω 24

386

389

411

180

231 231

47

1.82

6/7 | 12-1/4 | 3501

1.82

12-1/4 3501

2/1

12-1/4

124

15

385

130 166

255 262

40

428

25

390

145

245

55

1.77

12-1/4 2948

28/6

57 48

1.77

12-1/4 3028

29/6

1.80

12-1/4 3115

30/6

54

1.77

2930

12-1/4

27/6

23

382376.75

4641.11

408792.17

384743.41

2366.66 24048.76

352427.19

341867,11

13277,49 10560.08 358426.64

5999.45

328589.62

7068.27

364747.14 370141.62 377735.64

6320.50

125

40 13 m σ ဖ

40

35

335

120 110 127

215

218 220

56

61

12-1/4 2814 12-1/4 2851

25/6 26/6

12

328 347

131 121

> 947 987 1000

32

895 915

24 20

24 10

10

 $26m^3$

408

170

238

65

1.77 1.77 1.77

12-1/4 2794

400

174

391

218 226

63 63

1.77 1.77

12-1/4 2600

22/6

12-1/4 2706

23/6 24/6

28m3 seawater 15m3

15 seawater

387

208

22 seawater seawate

368

180 173 179 173

9

2227

12-1/4

19/6

55 56

12-1/4 2357 12-1/4 2497

20/6

21/6

152 104 142

1003 1012 1018 1035

90

5394.48 7594.02

	Magco	ibar 💌	00	Magcobar Consessed					1.	1		COMI	COMPANY:	STATOIL	11	PAGE:	3: 3
						•		• MIND VOLU	Z Z	DAIA	•	OIG:	**	DYVI	DELTA	WELL	L: 30/2-1
II D	ESS	田田	ロロフ	NORWAY	A.5.												
						1.	2.	1+2=3.	5.	6. MI	MUD LOSSES	ES	7.	8.	3+8.		
DATE	HOLE SIZE INCHES	DEPTH	MUD WT.	VISC.	BBL'S OF HOLE DRLD	HOLE	ACTIVE PIT VOL	TOTAL CIRC.	VOLUME ADDED	DUMP	HOLE	TOTAL	CUM.	MUD IN STORAGE	TOTAL VOL.	DAILY COST US \$	TOTAL COST US \$
7/7	12-1/4	3501	1.82	50		287	136	423	14			16	1227	100	523	10685.40	462179.86
8/7	12-1/4	3501	1.82	48		287	136	423	0			0	1227	100	523	3425.90	465605.76
6/2	Run csg 9-5/8	3501	1.82	62		246	135	381	0		2	2	1229	160	541	0	465605.76
10/7	Cmt csg	3501	1,82	58		149	179	328	0	51		51	1280	133	461	2955.96	468561.72
11/7	9-5/8		1.82	73		123	196	319	0		2	2	1282	140	459	0	468561.72
12/7	9-2/8	3501	1.82	48		120	190	310	2	4		4	1286	147	457	3939.97	472501.69
13/7	9-5/8	3501	1.82	52		120	190	310	0			0	1286	147	457	779.94	473281.63
14/7	9-5/8	3501	1.82	51		120	190	310	0			0	1286	147	457	0	473281.63
15/7	9-5/8	3501	1.82	50		120	190	310	0			0	1286	147	457	0	473281.63
16/7	8-1/2	3501	1.82	48		124	150	274	0	33		33	1319	150	424	348.47	473630.10
17/7	8-1/2	3517	1.82	09		124	158	282	0	1		1	1370	141	423	6453.30	480083.40
18/7	8-1/2	3548	1.82	61		141	140	281	2	1		-	1321	141	422	1749.12	481832.52
19/7	8-1/2	3601	1.82	58		127	175	302	27	2		2	1323	145	447	8207.11	490039.63
20/7	8-1/2	3630	1,85	09		131	178	309	8	0		0	1323	146	455	7251.89	497291.52
21/7	8-1/2	3678	1.89	. 58		132	174	306	15	41		41	1364	123	429	10452.36	507743.88
22/7	8-1/2	9698	1.91	55		148	136	284	11			18	1382	101	385	5777.46	513521.54
23/7	8-1/2	3696	1.91	52		148	136	284	12			12	1382	89	373	0	513521.34
24/7	8-1/2	3698	1.91	57		148	136	284	0			0	1382	89	373	5721.30	519242.64
25/7	8-1/2	3710	1.91	47		149	158	307	34			11	1393	89	396	7599.56	526842.20
26/7	8-1/2	3717	1.91	51		149	160	309	9			2	1395	125	434	5755.45	532597,65
27/7	8-1/2	3735	1.91	54		149	158	307	4		-	1	1396	125	432	283.92	532881.57
28/7	8-1/2	3758	1.91	55		150	169	319	9			1	1396	121	440	2271.36	534869.01
29/7	8-1/2	3776	1.91	48		151	170	321	17			10	1406	112	433	8568.00	543437.01
30/7	8-1/2	3794	1.91	53		150	150	300	2			4	1410	105	405	0	543437.01

568400.07

24963.06

445

1454

44

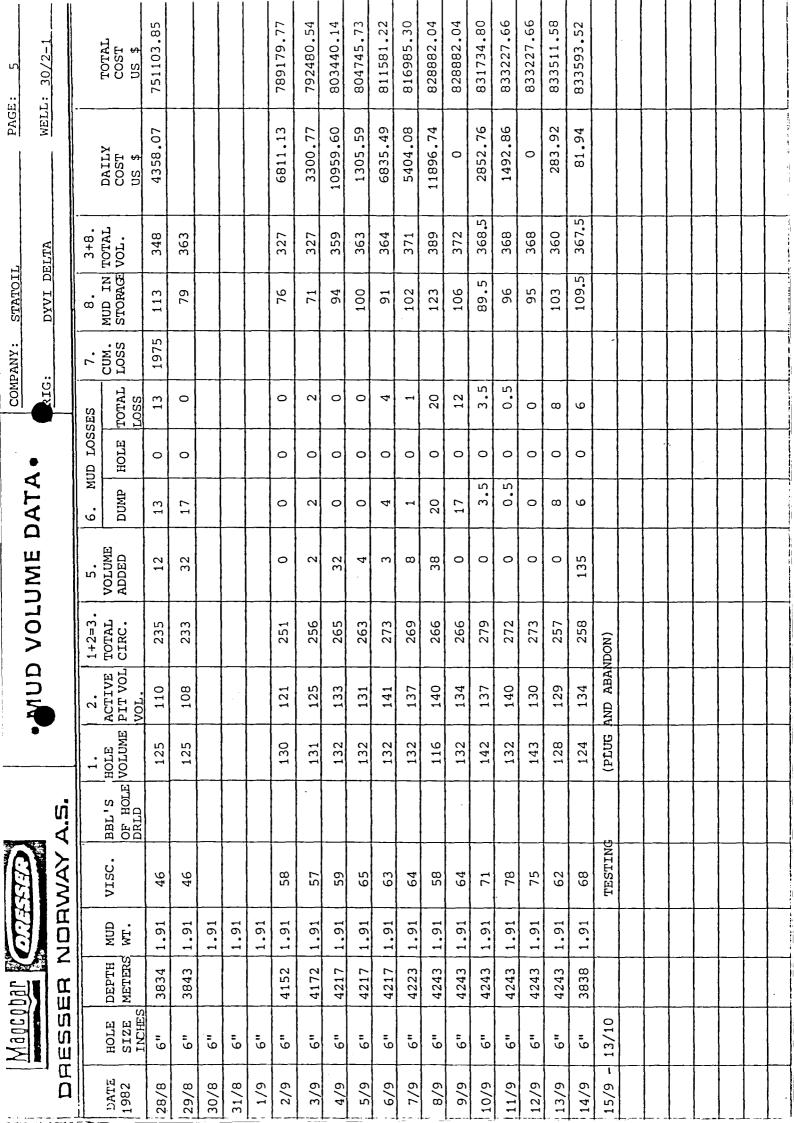
53

159

44

31/7 8-1/2 3836 1.91 1/8 8-1/2 3836 1.91

339


155

582634.22

14234.15

131

****	Magco	Dar V	700	Magcobar Vorgessan					1			COME	COMPANY:	STATOIL	I	PAGE	E: 4
					T	•		• Man Norn	Z Z	DATA	•	TIG:		DYVI DI	DELTA	WELL	L: 30/2-1
ממ	E25	ER.	H D	NDRWAY	A.5.	_											
							2.		5.	6. MUD	ID LOSSES		7.	8	3+8.		!
DATE	HOLE SIZE INCHES	DEPTH METERS	MUD WT.	VISC.	BBL'S OF HOLE DRLD	HOLE VOLUME	ACTIVE PIT VOL	TOTAL CIRC.	VOLUME ADDED	ДМЛО	ноге	TOTAL	CUM. LOSS	MUD IN STORACE	TOTAL VOL.	DAILY COST US \$	TOTAL COST US \$
2/8	8-1/2	3836	1.91	45		155	179	334	29			34	1516	89	423	1 1	loi
3/8	8-1/2	3836	1.91	44		155	183	338	4			0	1516	124	462	11455.65	596061.87
4/8	8-1/2	3836	1.91	49		155	178	333	0			15	1531	126	459	5110.56	601172.43
5/8	8-1/2	3836	1.91	48		155	168	323	38		68	89	1599	106	429	13038.22	614210.65
8/9	8-1/2	3836	1.91	45		155	189	344	38/37		0	0	1599	160	504	12492.68	626703.33
1/8	8-1/2	3836	1.91	47		155	179	334	76		90	0	1689	156	490	36609.85	663313.18
8/8	8-1/2	3836	1.91	50		155	176	331	13		М	3	1692	169	550	8360.75	671673.43
8/6	8-1/2	3836	1.91	55		155	179	334	3		0	0	1692	169	503	642.30	672315.73
10/8	8-1/2	3836	1.91	61		155	190	345	13	9/	0	76	1768	82	427	0	672315.73
11/8	8-1/2	3836	1.91	59		155	188	343	27	0	0	0	1768	111	454	11963.04	684278.77
12/8	8-1/2	3836	1.91	61		155	165	320	0	0	4	4	1772	130	450	4336.05	688614.82
13/8	8-1/2	3836	1.91	99		140	163	303	0	0	11	11	1783	136	439	1063.86	689678.68
14/8	8-1/2	3836	1.91	80		93	172	265	0	3.1	0	31	1814	143	408	779.94	690458.62
15/8	8-1/2	3836	1.91	100		93	144	237	26	46	0	46	1860	151	388	15872.52	706331.14
16/8	8-1/2	3836	2.15	75		106	148	253	15	0	0	0	1860	150	403	14337.96	720669.10
17/8	8-1/2	3836	2.15	94		102	162	264	31	0	0	0	1860	170	434	13691.13	734360.23
18/8	8-1/2	3836	2.15	84		121	126	247	0	0	25	25	1885	162	409	993.72	735353.95
19/8	8-1/2	3836	2.15	85		121	124	245	0	0	0	2	1887	162	407	0	735353.95
20/8	8-1/2	3836	2.15	86		121	120	241	0	0	0	4	1891	162	403	0	735353.95
21/8	8-1/2	3836	2.15	79		121	120	241	2	0	0	20	1911	144	385	5678.40	741032.35
22/8	8-1/2	3836	2,15	73		121	123	244	1	0	0	1	1912	144	388	993.72	742026.07
23/8	8-1/2	3836	1.95	53		107	94	201	32	0	. 0	42	1954	151	352	1134.79	743160.86
24/8	8-1/2	3836	1.95	52		107	84	191	0	0	0	0	1954	151	342	0	743160.86
25/8	8-1/2	3836	1.95	52		107	84	191	0	0	0	0	1954	751	342	0	743160.86
26/8	8-1/2	3836	1.91	50		107	96	203	12	0	0	0	1954	751	354	0	743160.86
27/8	8-1/2	3836	1.91	52		136	100	236	35	8	0	0			-	3589.92	746745.78

