O STATOIL Denne rapport tilhører **UND DOK.SENTER** L.NR. 12453440025 KODE Well 30/2-1 No.4

Returneres etter bruk

, i

Special core analysis

Well 30/2-1 STATOIL EXPLORATION & PRODUCTION LABORATORY

Sept.-83

LAB 8

Den norske stats oljeselskap a.s

Classification

Requested by

Ŋ

ł

T

Terje Helgøy

Subtitle

Co	-wor	kers

R.Furdal, E.Gilje, A.Hove and K.Sørheim

Title		
}		
	Special core analysis	
	Well 30/2-1	}
	STATOIL	
	EXPLORATION & PRODUCTION	}
	LABORATORY	
		}
		1
Sept83	3 LAB 83 37	
		٦
Prepared	Approved	
3/10-83	Trude Haaskjold Eide 3/10-83 D.Malthe-Søren	ssen
	Ind. Happinderic OHIMAN	net
	irune ricasiyoiqtiae Coronan ya	

1

-

T

ľ

1

j

	CONT	ENTS	Page					
1.	SUMM	SUMMARY						
2.	INTR	INTRODUCTION						
3.	THEO	RY	3					
	3.1	Formation factor and resistivity index at	5					
		ambient conditions	3					
	3.2	Co/Cw measurements	4					
	3.3	Mercury Injection Capillary Pressure	5					
4.	EXPE	RIMENTAL PROCEDURE	6					
	4.1	Sample preparation	6					
	4.2	Measurements of grain volume and pore volume	6					
	4.3	Measurements of air permeability	б					
	4.4	Sample description	6					
	4.5	Capillary pressure (air-brine) and electrical						
		measurements	7					
	4.6	Co/Cw measurements	8					
	4.7	Mercury Injection Capillary Pressure Measurements	9					
5.	RESU	LTS	10					
6.	DISC	USSION / CONCLUSION	13					
7.	LITT	ERATURE	14					
8.	APPE	NDIX	15					

1. SUMMARY

Porosity and permeability, Klinkenberg corrected, have been measured on 40 $1\frac{1}{2}$ " X $2\frac{1}{2}$ " plug samples from Well 30/2-1, Ness, Etive, and Rannoch formation.

Formation factor, resistivity index, and saturation exponents have been determined for 20 plug samples from the three zones. Saturation exponents from 1.73 to 2.16 were found, with a mean value of 1.91.

Capillary pressure curves, air-brine, with eight pressure points have been determined for the 20 plug samples.

Saturated rock conductivity have been measured with NaCl solutions of 3 different strengths. Because of uncertainties in the measuring method, the Qv has not been calculated

Mercury injection capillary pressure measurements have been performed on the same 20 plug samples. The pore size distribution are calculated. The mercury injection data show lower irreducible water saturation then the air -brine data.

The results from the trapped gas measurements will be reported later.

2. INTRODUCTION

Prolab was requested to make a study of capillary pressure, air-brine and by mercury injection, electrical parameters, Co/Cw measurements and trapped gas from well 30/2-1, Rannoch, Etive and Ness formation. 20 plug samples were used in this study.

3. THEORY

3.1 Formation factor and resistivity index at ambient conditions

Electrical properties of porous rock are usually represented by the formation factor FF and resistivity index RI defined as:

$$FF = \frac{R_o}{R_w}$$
 and $RI = \frac{R_t}{R_o}$ 3.1.1

Where R_0 and R_t are resistivity of 100% water saturation and partially water saturated rock respectively. R_w is resistivity of water used in experiment.

Formation factor will often be correlated with porosity using the expression

$$FF = a^{\circ} \phi^{-m}$$
 3.1.2

Here, the experimental data have been curvefitted by the use of the least squares method on the logarithmic transform of equation.

Two different methods have been tried out. First, both "a" and "m" have been determined from the curvefitting procedure, secondly the curve have been forced through the point $\emptyset = 1$ and FF = 1 so that a = 1.

Resistivity index on the other hand depend on saturation. For clean, non-shaly sand the following relation is used:

$$RI = S_{W}^{-n}$$
 3.1.3

The saturation exponent, n, are determined with the use of the weighted least squares method on the logarithmic transform of equation.

3.2 Co/Cw Measurements

The measurements are done with the purpose of determining any possible contribution of the conductance in reservoir - rock, caused by clay. The general equation for the conductance in shaly sand is given by:

$$C_{O} = \frac{1}{FF} \star = (B \cdot Q_{V} + C_{W})$$

Plots of Co versus Cw of fully watersaturated core samples show a straight line relationship. If any clay is present there is a positive displacement of the line on the Co axis at Cw = 0.

 $\frac{1}{FF^{\star}}$ = the slope of the straight line portion of the Co vs. Cw curve

- Co = specific conductance of 100 % brine saturated rock.
- Cw = specific conductance of brine
- B = the equivalent conductance of the clay counterions, 38.3
- Qv = the effective concentration of clay cations (meq/ml).

3.3 Mercury Injection Capillary Pressue

Primary use of these data is to find the irreducible water saturation, Swi.

The fractional mercury - saturation is expressed as:

$$S_{HG} = \frac{Vinj}{V_p}$$
 3.3.1

V_{inj} = injected volume cc

V_p = pore volume, cc

The equivalent water-saturation is then given by

$$S_{W} = 1 - S_{Hg}$$
 3.3.2

The size range of the pores corresponding to each pressure are calculated using the Washburn equation (1).

$$r = \frac{2\sigma \cos \theta}{P_{C}}$$
 3.3.3

 σ = interfacial tension, dynes/cm

 θ = contact angle, degrees

 $\mathbf{P}_{\mathbf{C}}$ = capillary pressure, bar

4. EXPERIMENTAL PROCEDURE

4.1 Sample Preparation

40 $1^{1}/2$ " x $2^{1}/2$ " plug samples had been drilled out by Geco. The samples were washed by extraction using toluene and methanol and then dried at 60° C and 40% humidity.

4.2 Measurements of grain volume and pore volume

Subsequently the samples were weighed, and the helium porosity was measured in a Core Lab Heliumporosimeter. The bulk volume was measured using sliding callpiper.

4.3 Measurements of air permeability

Air permeability was measured and the Klinkenberg gas slippage correction was found for each sample by linear regression of at least 3 pressure points.

4.4 Sample Description

From a plot of log K versus porosity of routine analysis of the 40 30/2-1 plug samples, 20 plug samples were selected to cover a wide range of K and porosity. The table below shows a listing of these plugs.

7

Table 4.1

Plug no.	Depth (m)	Formation
39.1	3703.97	Ness
53.1	3714.47	n
59.1	3718.33	**
63.1	3719.68	**
68.1	3721.12	"
75.1	3723.50	11
88.1	3730.34	11
97.1	3737.00	n
101.1	3738.27	87
118.1	3749.43	17
131.1	3758.13	Etive
138.1	3761.12	17
142.1	3762.32	
178.1	3775.13	19
181.1	3776.15	**
186.1	3777.87	••
190.1	3779.38	Rannoch
198.1	3782.37	n
202.1	3783.77	**
214.1	3787.93	17

4.5 Capillary pressure (Air-brine) and electrical measurements

The plugs were evacuated and saturated with degassed simulated formation water (see Appendix I). To ensure 100% saturation the plugs were placed in a pressure-vessel containing brine and kept at 40 bars for 72 hours.

The resistivity was measured by using two silver painted rubber electrodes pressed against the plug ends.

The plugs were mounted on a brine-saturated porous plate, which was mounted in a cell. A layer of kiesel-guhr was put between the samples and the plate. Pressure was applied to the cell using air saturated with water vapor. At least five days were allowed for water drainage to reach equilibrium. Each plug was then weighed, and the resistivity, Rt was measured as above.

After each weighing and resistivity measurement the plugs were mounted back on the porous plate and a higher pressure was applied. The pressure used were: 0.143, 0.274, 0.586, 1.59, 2.77, 5.0 and 12.0 bars. All resistivities were extrapolated to 20° C. After the last pressure point the plugs were washed and dried.

4.6 Co/Cw-measurements

Each plug sample was evacuated and saturated with degassed brine. To ensure 100% saturation the samples were placed in a pressure vessel containing brine and kept at 40 bars for 72 hours. The samples were left immersed in brine until electrical equilibrium had been attained. The resistivity of each sample was then measured by using two silver- painted rubber electrodes pressed against the plug ends. The plug samples were then washed and dried.

This process was repeated until sample conductivities had been determined with different saturating brines. The brines used were, in chronological order, simulated formation brine, NaCl solutions of concentration 60 000 ppm, 90 000 ppm and 120 000 ppm.

8

4.7 Mercury Injection Capillary Pressure Measurements

20 1½" diameter samples of suitable sizes (appr. 10-12 cc) had been drilled out by Geco. The plugs were washed by extraction using toluene and metanol, and then dried at 60° C and 40 % humidity. These samples were cut in two, set A and B.

9

The bulk volume was measured in a Ruska mercury porosimeter.

The mercury injection capillary measurements were performed using a Ruska mercury pump designed for the range of 0-138 bar.

5. RESULTS

Table 5.1 gives the routine core data from 30/2-1.

Table 5.1 30/2-1

The Klingenberg corrected permeability (KL), the heliumporosity (Por) and the grain density (Grdns).

	Sample nr.	Depth (m)	KL (mD)	Por (Frac)	Grdns (gr/cc)
	39.1	3703.97	1.50	0.193	2.68
	53.1	3714.47	0.22	0.156	2.67
	59.1	3718.33	399.00	0.256	2.65
	63.1	3719.68	991.00	0.268	2.65
	68.1	3721.12	1493.00	0.280	2.65
E 11.	• ×75.1	3723.50	56.50	0.220	2.91
_	88.1	3730.34	0.28	0.160	2.70
	97.1	3737.00	0.66	0.165	2.69
	101.1	3738.27	0.38	0.160	3.20
	118.1	3749.43	2672.00	0.285	2.65
	131.1	3758.13	168.00	0.273	2.67
	138.1	3761.12	151.00	0.272	2.66
	142.1	3762.32	326.00	0.293	2.67
	178.1	3775.13	1.38	0.210	2.70
	181.1	3776.15	1.57	0.196	2.71
	186.1	3777.87	4.65	0.229	2.73
	190.1	3779.38	0.04	0.153	2.79
	198.1	3782.37	0.26	0.193	2.70
	202.1	3783.77	1.61	0.233	2.69
	214.1	3787.93	2,44	0.232	2.67

Fig 8.1 shows a plot of permeability versus porosity.

Table 5.2 gives the results of the electrical measurements from 30/2-1.

Table 5.2

Electrical measurements 30/2-1.

Sample nr.	Por (frac)	FF	n	Swi frac
39.1 53.1 59.1 63.1 68.1 75.1 88.1 97.1	0.193 0.156 0.256 0.268 0.280 0.280 0.220 0.160 0.165	37.65 48.80 13.40 11.90 11.60 22.00 47.60 37.40	1.74 1.89 1.90 1.86 1.84 2.12 1.91 1.73	0.437 0.748 0.110 0.106 0.095 0.461 0.614 0.600
101.1 118.1 131.1 138.1 142.1 178.1 181.1 186.1 190.1 198.1 202.1 214.1	0.160 0.285 0.273 0.272 0.293 0.210 0.194 0.229 0.153 0.193 0.233 0.233	52.60 10.70 13.00 15.30 13.60 31.90 30.50 23.30 57.10 40.50 27.50 24.20	2.16 2.03 1.99 2.05 2.09 1.94 1.95 2.07 1.87 1.93 1.94 1.89	0.612 0.093 0.225 0.229 0.197 0.542 0.577 0.461 0.884 0.833 0.567 0.473

Composite :	FF	=	0.59	ø ^{-2.43}	ŗ	R ²	=	0.92
	FF	=	ø ^{-2.10})	,	R ₂	=	0.91
	RI	=	sw ^{-1.9}	€1				

Fig.8.2 is a plot of formation factor versus porosity.

Table 8.1-8.7 list the results of the capillary pressure (air-brine) analysis. The capillary pressure, the corresponding water saturation and the resistivity index.

Fig 8.3-8.12 show the plots of resistivity index versus water saturation for each sample.

Fig 8.13 is a composite plot of all samples, resistivity index versus irreducible water saturation.

Table 8.8-8.10 give the results of the Co/Cw measurements

Fig 8.14-8.33 show the plots of coreconductivity versus brineconductivity.

The mercury injection capillary pressure data are given in table 8.11 - 8.29. The plots of capillary pressure versus mercury injection are given in Fig.8.34-8.37

6. DISCUSSION/CONCLUSION.

The formation factors increase with decreasing porosity as shown in Fig 8.2. A linear regression using Archies equation FF = a \emptyset^{-m} , gives FF = 0.59 $\emptyset^{-2.43}$ and F = $\emptyset^{-2.10}$ when forced through 1.

The saturation exponents, n, listed in table 5.2 go from 1.73 to 2.16 and a linear regression analysis on all data points gives n = 1.91.

In the Co/Cw plots the curves have not been drawn to intersection with the x-axis. Some of the samples will intersect with the positive x-axis (sample no. 39.1, 53.1, 88.1, 97.1, 101.1, 178.1, 181.1, 198.1, 202.1, and 214.1) and this may be due to uncertainties in the Co measurements. The Cw measured values corresponds well with handbook values.

The mercury injection data are showing lower irreducible water saturation than the air-brine data. The plugs with very low permeability has the greatest disagreement.

7. LITTERATURE

 Amyx, Bass & Whiting : "Petroleum Reservoir Engineering", Mc Graw Hill Book Company, London 1960.

8. APPENDIX LIST

- --

Appendix 1

Simulated formation water composition

Appendix 2

Results from electrical measurements	
Fig. 8.1 Permeability versus porosity	17
Fig. 8.2 Formation factor versus porosity	18
Table 8.1 - 8.7 Capillary pressure, the corresponding	
water saturation and the resistivity index.	19
Fig. 8.3 - 8.12 Resistivity index versus water	
saturation for each sample.	26
Fig. 8.13 Resistivity index versus water saturation,	
a composite plot of all samples.	36

Appendix 3

Results from Co/Cw measurements

Table	e 8.8	- 8.10	Results from Co/Cw measurements	37
Fig.	8.14	- 8.33	Coreconductivity versus brine	
		conduct	ivity	40

Appendix 4

Results from mercury injection measurements

Table	e 8.11	1 - 8.29	Capillary	/ pressure	e, mercu	ıry sa	turation
		and por	ce radius				60
Fig.	8.34	- 8.37	Capillary	pressure	versus	mercu	ry
		saturat	ion.				79

15

-

Page

16

Appendix 1

simulated formation water composition:

Na : 11480 ppm
K : 610 ppm
Mg : 1490 ppm
Ca : 1230 ppm

The chloride ions of the cations above were mixed. The spesific conductivity of the water at $20^{\circ}C$:

5.42 S/m R = 0,188 m ved 20°C

Appendix 2

Results from electrical measurements

Fig. 8.1 Permeability versus porosity

Well 30/2-1 Plot of lag K versus porosity from routine plug analysis. All samples.

LAB 83.37

Fig 8.2 Formationfactor versus porosity

Well 30/2-1 Plot of log FF versus log Por. All samples.

18

Well 30/2-1
Capillary pressure, PG(bar),
the corresponding brine
saturation, SW (frac) and the
resistivity index, RI.
Sample 39.1, 53.1 and 59.1

Sample 39.1

PG	SW	RI	
 0.00	1.000	1.00	
0.14	0.999	1.02	
0.27	0.994	1.07	
0.59	0.953	1.17	
1.59	0.499	3.56	
2.77	0.464	3.83	
5.00	0,452	3.90	
12.00	0.437	4.07	

I

Sample 53.1

PG	SW	RI	
0.00 0.14	1.000 0.993	1.00 1.03	
0.27 0.59	0.983 0.975	1.09	
1.59	0.856	1.12	
2.77 5.00	0.806 0.780	1.50	
12.00	0.748	1.57	

Samplè 59.1

PG	SW	RI	
0.00	1.000	1.00	
0.14	0.532	3.69	
0.27	0.302	9.97	
0.59	0.202	21.24	
1.59	0.138	46.47	
2.77	0.120	53.97	
5.00	0.116	59.01	
12.00	0.110	64.46	

-- -

ana isari amu

Well 30/2-1 Capillary pressure, PG(bar), the corresponding brine saturation, SW (frac) and the resistivity index, RI. Sample 63.1, 68.1 and 75.1

Sample 63.1

PG	SW	RI	RI"
0.00	1.000	1.00	
0.14	0.377	5.97	
0.27	0.245	13.66	
0.59	0.173	27.70	
1.59	0.125	52.53	
2.77	0.110	61.15	
5.00	0.107	61.15	
12.00	0.106	60.07	

Sample 68.1

PG	SW	RI	
0.00	1.000	1.00	
0.14	0.310	7.97	
0.27	0.218	16.13	
0.59	0.157	32.03	
1.59	0.108	60.39	
2.77	0.097	71.20	
5.00	0.102	. 65.27	
12.00	0.095	78.68	

Sample 75.1

PG	SW	RI	
 0.00	1.000	1.00	
0.14	0.963	1.10	
0.27	0.759	1.90	
0.59	0.450	2.66	
1.59	0.515	4.20	
2.77	0.496	4.56	
5.00	0.471	4.58	
12.00	0.461	4.94	

Capillary pressure, PG(bar), the corresponding brine saturation, SW (frac) and the resistivity index, RI.

Sample 88.1, 97.1 and 101.1

Sample 88.1

Well 30/2-1

RI	SW	PG
 1.00	1.000	0.00
1.06	0.994	0.14
1.14	0.987	0.27
1.14	0.982	0.59
2.02	0.702	1.59
2.15	0.666	2.77
2.33	0.643	5.00
2.49	0.614	12.00

Sample 97.1

SW	RI	
1.000	1.00	
0.997	1.05	
0 .994	1.08	
0.989	1.11	
0.668	2.09	
0.636	2.18	
0.618	2.23	
0.600	2.41	
	SW 1.000 0.997 0.994 0.989 0.668 0.636 0.636 0.618 0.600	SW RI 1.000 1.00 0.997 1.05 0.994 1.08 0.989 1.11 0.658 2.09 0.636 2.18 0.618 2.23 0.600 2.41

Sample 101.1

RI	SW	PG
 1.00	1.000	0.00
1.04	0.997	0.14
1.12	0.990	0.27
1.12	0.985	0.59
2.30	0.682	1.59
2.70	0.647	2.77
2.67	0.620	5.00
2.88	0.612	12.00

LAB 83.37

21

Well 30/2-1 Capillary pressure, PG(bar), the corresponding brine saturation, SW (frac) and the resistivity index, RI. Sample 118.1, 131.1 and 138.1

22

Sample 118.1

 RI	รพ	PG
 1.00 8.11 15.80	1.000 0.360 0.271	0.00 0.14 0.27
34.91 74.57	0.182	0.59
74.53 90.67	0.124 0.105	1.59
102.24	0.098	5.00
116.04	0.093	12.00

Sample 131.1

P	G.	SW RI	
0.0	0 1.00	00 1.00)
0.1	4 0.9	33 1.20)
0.2	7 0.46	69 4.5 3	
0.5	9 0.33	36 8.95	i
1.5	9 0.24	40 18.02	
2.7	7 0.22	25 19.52	1
5.0	0 0.2:	17 20.21	
12.0	0 0.22	25 18.98	

Sample 138.1

PG	SW	RI	
0.00	1.000	1.00	
0.14	0.920	1.23	
0.27	0.459	4.95	
0.59	0.340	9.14	
1.59	0.252	17.23	
2.77	0.236	18.94	
5.00	0.231	20.34	
12.00	0.229	20.15	

LAB 83.37

Sample 142.1

PG	SW	RI	
0.00 0.14 0.27 0.59 1.59 2.77 5.00	1.000 0.554 0.379 0.297 0.223 0.211 0.203	1.00 3.28 7.40 12.99 24.48 26.40 27.67	
12.00	0.197	29.00	

Sample 178.1

SW	RI	
1.000	1.00	
0. 996	1.05	
0.990	1.15	
0.983	1.15	
0.597	2.84	
0.569	3.02	
0.556	3.03	
0.542	3.22	
	SW 1.000 0.996 0.990 0.983 0.597 0.569 0.556 0.556	SW RI 1.000 1.00 0.996 1.05 0.990 1.15 0.983 1.15 0.597 2.84 0.569 3.02 0.556 3.03 0.542 3.22

Sample 181.1

	PG	SW	RI	
~	0.00	1.000	1.00	
	0.14	0.997	1.04	
	0.27	0.993	1.08	
	0.59	0.988	1.11	
	1.59	0.627	2.64	
	2.77	0.603	2.71	
	5.00	0.592	2.62	
	12.00	0.577	2.38	

3

LAB 83.37

. .

| |

Well 30/2-1 Capillary pressure, PG(bar), the corresponding brine saturation, SW (frac) and the resistivity index, RI. Sample 186.1, 190.1, and 198.1

24

Sample 186.1

PG	SW	RΙ	
0.00 0.14 0.27 0.59 1.59 2.77 5.00	1.000 0.991 0.989 0.815 0.504 0.480 0.472	1.00 1.04 1.10 1.66 4.23 4.54 4.54	
12.00	0.471	4.85	

Sample 190.1

RI	SW	PG
 1.00	1.000	0.00
1.05	0.993	0.14
1.14	0.988	0.27
1.16	0.982	0.59
1.16	0.976	1.59
1.15	0.959	2.77
1.18	0.944	5.00
1.28	0.884	12.00

Sample 198.1

PG	SW	RI	
0.00	1.000	1.00	
0.14	0 . 997	1.04	
0.27	0,993	1.12	
0.59	0.98 6	1.14	
1.59	0.942	1.23	
2.77	0.907	1.22	
5.00	0.887	1.24	
12.00	0.983	1.37	

Ĩ

Well 30/2-1 Capillary pressure, PG(bar), the corresponding brine saturation, SW (frac) and the resistivity index, RI.

Sample 202.1 and `244.1

Sample 202.1

RI		PG
 1.00	1.000	0.00
1.05	0.998	0.14
1.14	0.994	0.27
1.16	0.989	0.59
2.42	0.628	1.59
2.86	0.583	2.77
2.93	0.573	5.00
3.03	0.567	12.00

Sample 214.1

- - -

SW	RI	
1.000	1.00	
0.994	1.02	
0.990	1.18	
0.852	1.42	
0.545	3.07	
0.489	3.73	
0.481	4.04	
0.473	4.28	
	SW 1.000 0.994 0.990 0.852 0.545 0.489 0.481 0.473	SW RI 1.000 1.00 0.994 1.02 0.990 1.18 0.852 1.42 0.545 3.07 0.489 3.73 0.481 4.04 0.473 4.28

LAB 83.37

-- - .

26

Resistivity index versus water saturation Fig 8.3

Well 30/2-1

Plot of log RI versus log Sw for samples 39.1 and 53.1. Saturation exponent, n, is given for each sample.

Franklin the start

n*

Fig 8.5 Resistivity index versus water saturation

Fig 8.6 Resistivity index versus water saturation

30

Well 30/2-1 Plot of log RI versus log Sw for samples 101.1 and 118.1. Saturation exponent, n, is given for each sample.

Fig 8.8 Resistivity index versus water saturation

Fig 8.9 Resistivity index versus water saturation

Fig 8.10 Resistivity index versus water saturation

Fig 8.11 Resistivity index versus water saturation

Fig 8.12 Resistivity index versus water saturation

LAB 83.37

Well 30/2-1 Plot of log RI versus log Sw. All samples.

Appendix 3

Table 8.8 Co/Cw measurements from 30/2-1. Sample 39.1-88.1. Conductivities are given in Siemens/m.

Sample	Salinity	40700	60000	90000	120000	
no.		ppm	ppm	ppm	ppm	
39.1	Co:	0.14	0.20	0.30	0.41	
	Cw:	5.42	7.63	10.21	13.17	
53.1	Co:	0.11	0.17	0.23	0.34	
	Cw:	5.42	7.63	10.21	13.17	
59.1	Co:	0.41	0.54	0.70	0.95	
	Cw:	5.42	7.63	10.21	13.17	
63.1	Co:	0.46	0.60	0.80	1.03	
	Cw:	5.42	7.63	10.21	13.17	
68.1	Co:	0.47	0.60	0.80	1.05	•
	Cw:	5.42	7.63	10.21	13.17	
75 1	Co.	0 25	0 35	0 44	0 62	
, 3 • 1	Cw:	5.42	7.63	10.21	13.17	
00 1	Con	0 11	0 17	0 22	0 22	
00.1	C0:	5 42	U.I/ 7 62	10 21	12 17	
	Cw:	J. 42	1.03	10.21	13.11	

LAB 83.37

Sample Salinity 40700 60000 90000 120000 no. ppmppm ppmppm97.1 Co: 0.15 0.22 0.30 0.40 Cw: 5.42 7.63 10.21 13.17 101.1 Co: 0.10 0.16 0.21 0.29 5.42 7.63 Cw: 10.21 13.17 118.1 Co: 0.51 0.66 0.88 1.16 Cw: 5.42 7.63 10.21 13.17 131.1 0.42 0.51 0.69 Co: 0.97 . Cw: 5.42 7.63 10.21 13.17 0.36 138.1 0.48 Co: 0.63 0.85 5.42 Cw: 7.63 10.21 13.17 142.1 0.40 0.54 0.70 Co; 0.93 5.42 7.63 10.21 Cw: 13.17 178.1 Co: 0.17 0.21 0.36 0.47 5.42 7.63 Cw: 10.21 13.17

Table 8.9 Co/Cw measurement from 30/2-1.Sample 97.1 - 178.1 Conductivities are given in Siemens/m. Sample salinity 40700 60000 90000 120000 ppmno. ppmppmppm 181.1 Co: 0.18 0.27 0.37 1.50 5.42 7.63 10.21 13.17 Cw: 186.1 Co: 0.23 0.34 0.47 0.58 5.42 7.63 10.21 Cw: 13.17 190.1 Co: 0.10 0.14 0.18 0.22 5.42 7.63 Cw: 10.21 13.17 198.1 Co: 0.13 0.20 0.26 0.36 Cw: 5.42 7.63 10.21 13.17 202.1 Co: 0.20 0.28 0.35 0.53 Cw: 5.42 7.63 10.21 13.17 214.1 0.31 0.44 Co: 0.22 0.59 5.42 7.63 10.21 Cw: 13.17

Table 8.10 Co/Cw measurements from 30/2-1. Sample 181.1 -214.1. Condutivities are given in Siemens/m.

đô

42

ł

: [

L

ļ

Ń

LAB 83.37

LAB 83.37

46

L

İ

Í

i

47

ł

ľ

LAB 83.37

ł

LAB 83.37

LAB 83.37

Ì

LAB 83.37

İ

LAB 83.37

.52

ľ

LAB 83.37

Ī

1

LAB 83.37

LAB 83.37

-

1

LAB 83.37

l

7

LAB 83.37

i

5 S

Appendix 4

Table 8.11

ļ

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Capillary_pressure_data_

Well 30/2-1

sample 53.1

.11

۰.

₽L	SHG	PR
PHG	SHG	
0.40	0.5	18.350
0.70	1.1	10.486
0.90	2.1	8.156
7.20	2.8	1.019
7.50	5.0	0.97 9
7.90	8.2	0.929
8.30	11.5	0.884
8.80	14.7	0.834
9.20	20.2	0.798
9.90	23.4	0.741
10.40	26.7	0.706
11.00	30.4	0.667
11.70	33.7	0.627
12.80	36.9	0.573
13.60	39.1	0.540
15.10	42.3	0.486
16.10	43.9	0.456
17.40	45.5	0.422
18.60	4/.1	0.395
20.30	48.7	0.362
21.40	50.3	0.343
23.40 25 50	51.8	0.014
23.30	55 A	0.260
70.80	56.6	0.238
34.90	58.1	0.210
38.90	59.6	0.189
43.40	61.2	0.169
48.70	62.6	0.151
55.00	54.1	0.133
63.30	65.6	0.116
72.60	67.0	0.101
84.40	68.3	0.087
97.10	69.6	0.076
110.30	71.5	0.067
127.90	72.7	0.057
168.10	75.0	0.050
226.60	76.8	0.044
350.60	77.0	0.040
489.40	78.4	0.072

60

LAB 83.37

Fable 8.12

Capillary pressure data_

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 59.1

PHG	SHG	R
0.00	0.0	0.000
0.23	4.3	31.913
0.40	12.5	18.350
0.70	20.5	10.486
1.00	39.7	7.340
1.35	53.5	5.437
2.10	67.0	3.495
2.31	68.9	3.177
3.03	73.7	2.422
4.43	78.7	1.657
9.52	85.6	0.771
15.10	87.8	0.486
25.20	89.9	0.291
49.80	90.4	0.147
74.40	92.0	0.099
105.50	93.4	0.070
131.60	93.9	0.056

61

LAB 83.37

1

8.13 <u>Capillary pressure data</u>

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 63.1

į.

PHG	SHG	Ŕ
0,00	0.0	0.000
0.36	19.8	20.389
0.45	27.0	16.311
0.63	29.4	11.651
0.80	34.1	9.175
0.99	40.5	7.414
1.20	51.6	5.117
1.63	64.3	4.503
2.97	78.6	2.471
5.01	85.7	1.465
8.18	88.9	0.897
12.10	91.3	0.607
19.80	93.7	0.371
39.80	96.Ŭ	0.194
70.80	97.6	0.104
100.00	99.2	0.073
132.40	99.2	0.055

LAB 83.37

Capillary_pressure_data_

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 68.1

PHG	SHG	R
0.00	ú.0	0.000
0.10	3.1	71.262
0.4 0	15.7	18.350
0.50	35.5	14.680
0.60	47.8	12.233
0.70	54.4	10.486
1.01	62.8	7.267
1.51	68.9	4.861
4.00	77.4	1.835
16.30	82.7	0.450
25.50	85.0	0.288
50.30	88.1	0.146
79.60	89.0	0.092
100.50	89.5	0.073
135.00	89.5	0.054

LAB 83.37

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 75.1

PHG	SHG	R
0.00	0.0	0.000
0.20	0.6	36.700
0.40	0.6	18.350
0.60	0.5	12.233
1.01	1.1	7.267
1.50	1.1	4.893
3.09	4.4	2.375
4.06	5.5	1.908
5.04	8.2	1.456
7.01	9.5	1.047
9.13	13.8	0.804
13.10	20.3	0.560
17.10	24.9	0.429
25.00	30.5	0.294
40.00	42.7	0.183
62.10	53.2	0.118
99.00	64.4	0.074
133.80	69.2	0.055

Capillary pressure data_

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 88.1

۶HG	SHG	R
0.00	0.0	0.000
1.01	2.5	7.267
1.76	2.5	4.170
5.45	2.5	1.347
7.03	3.5	1.044
10.60	10.3	0.692
32.90	47.2	0.223
48.40	54.2	0.152
59.60	62.5	0.123
74.00	66.9	0.099
99.70	71.2	0.074
114.60	73.6	0.064
135.00	75.0	0.054

LAB 83.37

Í

Capillary_pressure_data_

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 97.1

PHG	SHG	R	
0.00	0.0	0.000	
0.41	1.1	17.902	
1.49	1.4	4.926	
3.15	1.4	2.330	
5.06	2.7	1.451	
7.02	6.0	1.046	
10.00	13.4	0.734	
15.10	26.7	0.486	
21.30	39.8	0.345	
25.20	45.5	0.291	
35.00	52.9	0.210	
49.50	62.7	0.148	
70.20	66.4	0.105	
98.9 0	72.5	0.083	
108.50	72.9	0.068	
132,80	73.6	0.055	

-

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample101.1

PHG	SHG	Ŕ
0.00	0.Ŭ	0.000
0.49	1.1	14,980
1.01	1.2	7.267
5.11	1.8	1.436
7.04	5.0	1.043
9.90	18.2	0.741
15.10	35.1	0.486
20.10	43.7	0.365
25.30	49.2	0.290
35.20	56.3	0.209
49,80	63.7	0.147
70.20	69.4	0.105
90.30	73.2	0.081
109.20	77.3	0.067
138.00	78.9	0.053

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 118.1

1

PHG	SHG	R
0.00	0.0	0.000
0.11	9.8	66.727
0.20	25.7	36.700
0.66	48.0	11.121
1.01	51.4	7.267
2.48	59.1	2.960
3.47	62.2	2.115
5,34	66.1	1.375
7.11	<i>5</i> 8.8	1.032
9.48	71.4	0.774
12.10	73.5	0.507
16.10	73.5	0.456
25.30	75.7	0.290
41.40	75.9	0.177
62.60	79.2	0.117
98.50	80.9	0.075
128.30	80.9	0.057

63

<u>Capillary pressure data</u>

|

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 131.1

PHG	SHG	R
0.00	0.0	0.000
0.31	3.0	23.677
0.60	4.3	12,233
1.01	23.7	7.267
2.32	31.1	3.164
3.70	43.2	1.984
5.47	55.3	1.342
7.67	62.2	0.957
8.68	64.9	0.846
12.50	70.4	0.587
18.10	74.9	0.406
24.90	78.1	0.295
34.90	81.1	0.210
50.60	83.9	0.145
75.80	85.6	0.097
99. 40	88.1	0.074
131.60	89.5	0.056

LAB 83.37

----- - ----- -- -

<u>Capillary pressure data</u>

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 138.1

PHG	SHG	R
0,00	0.0	0.000
0.02	0.8	367.000
0.10	1.4	73.400
0.30	1.6	24.467
0.50	2.4	14.680
0.68	4.7	10.794
0.75	9.0	9.787
0.81	15.2	9.062
0.85	20.4	8.635
0.90	26.1	8.156
0.96	30.8	7.046
1.01	35.8	7.267
1.15	42.1	6.383
1.25	45.5	5.872
1.50	50.9	4.893
1.72	54.1	4.267
2.00	56.9	3.670
2.64	61.0	2.780
3.50	64.4	2.097
5.17	68.2	1.420
7.00	71.3	1.049
10.00	73.9	0.734
20.00	75.3	0.367
30,00	82.8	0.245
50.00	85.9	0.147
100.00	89.0	0.073
135.00	90.0	0.054

LAB 83.37
<u>Capillary pressure data</u>

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 142.1

PHG	SHG	R
0.00	0.0	0.000
0.05	1.7	146.800
0.20	2.0	36,700
0.43	4.4	17.070
0.55	10.3	13.345
0.60	20.6	12.233
0.70	35.5	10.486
0.75	40.5	9.787
0.83	44.8	8.843
0.95	49.3	7.726
1.01	50.7	7.267
1.20	54.2	6.117
3.45	65.6	2.128
4.50	68.0	1.631
6.00	70.7	1.223
10.30	74.7	0.713
15.00	77.5	0.489
20.00	79.9	0.367
30.00	82.3	0.245
40.40	84.3	0.182
61.00	86.2	0.120
90.00	88.2	0.082
120.00	88.9	0.061
135.00	89.4	0.054

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 178.1

FHG	SHG	R
0.00	0.0	0.000
0.10	1.4	73.400
0.30	1.4	24.467
0.72	1.7	10.194
1.00	2.1	7.340
2.60	2.3	2.823
4.50	5.2	1.631
5.00	7.9	1.468
5.58	15.9	1.315
5.90	20.8	1.244
6.30	25.4	1.165
6.80	28.8	1.079
7.54	33.6	0.973
8.50	36.7	0.864
10.70	42.0	0.386
12.50	45.5	0.587
15.00	49.7	0.489
17.50	53.2	0.419
20.00	55.7	0.367
23.50	59.1	0.312
27.00	61.6	0.272
31.00	64.4	0.237
40.00	67.7	0.183
50,00	74.0	0.147
60.00	73.8	0.122
75.00	76.6	0.0 98
100.00	79.0	0.073
115.00	80.6	0.064
135.00	81.3	0.054

Capillary_pressure_data_

.

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 181.1

FHG	SHG	R
0.00	0.0	0.000
0.20	1.4	36.700
0.50	1.6	14.680
1.00	1.8	7.340
2.00	1.9	3.670
3.20	2.6	2.294
4.00	4.0	1.835
4.50	6.1	1.631
4.92	10.6	1.492
5.20	13.7	1.412
5.40	17.1	1.359
5.70	21.1	1.288
6.00	24.2	1.223
6.40	27.7	1.147
6.90	30.6	1.064
7.62	34.3	0.963
8.00	36.3	0.918
8.60	38.4	0.853
9.20	40.4	0.798
10.00	42.2	0.734
11.00	44.3	0.667
12.30	47.2	0.59 7
14.00	50.1	0.524
15.00	51.4	0.489
16.50	53.3	0.445
18.50	56.1	0.397
21.00	58.5	0.350
24.00	61.2	0.306
27.00	63.6	0.272
30.00 75 00	65./	0.245
33.00	6/.6	0.210
40.00	70.7	0.183
43.00	72.8	0.165
40.00	74.3	0.147
70.00	//.j	0.122
70.00 80 50	/0.7	0,103
90.00	91 7	0.071
100.00	01./ 07 0	0.082
170.00	04.C	0.075
135.00	85.7	0.054
		V. VQT

Capillary_pressure_data_

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 186.1

PHG	SHG	R	
0.00	0.0	0.000	
0.72	2.0	10.194	
1.00	2.3	7.340	
2.54	5.4	2.890	
4.15	27.1	1.769	
5.39	36.2	1.362	
6.38	40.8	1.150	
9.16	50.0	0.801	
10.50	52.5	0.699	
11.90	55.3	0.617	
15.00	60.2	0.489	
20.30	66.0	0.362	
25.00	69.9	0.294	
34.70	75.3	0.212	
48.80	80.1	0.150	
74.50	84.9	0.099	
98.50	87.6	0.075	
129.60	88.7	0.057	

Capillary pressure data

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 190.1

PHG	SHG	R	
0.00	0.0	0.000	
0.65	2.0	11.292	
1.00	2.3	7.340	
2.30	2.5	3.191	
3,78	2.5	1.942	
6.09	3.5	1.205	
9.62	5.2	0.763	
11.80	7.1	0.622	
15.00	14.9	0.489	
18.10	22.7	0.406	
20.90	29.6	0.351	
25.30	37.5	0.290	
29.80	44.2	0.246	
38.70	53.8	0.190	
49.50	59.4	0.148	
73.40	68.2	0.100	
98.10	73.5	0.075	
133.30	77.5	0.055	

75

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Well 30/ 2-1

sample 198.1

FHG	SHG	ĥ
0.00	0.0	0.000
0.38	1.2	19.316
1.00	2.4	7.340
4.98	2.6	1.474
7.38	2.6	0.995
9.98	6.3	0.735
12.40	15.9	0.592
14.90	23.4	0.493
18.40	34.6	0.399
20.10	39.7	0.365
25.50	50.2	0.288
29.90	54.8	0.245
37.10	60.6	0.198
43.70	63.8	0.168
55.10	68.7	0.133
70.50	72.8	0.104
90.00	76.8	0.082
111.30	80.0	0.066
134.50	80.5	0.055

Í

Capillary pressure (bar), mercury saturation (%) and pore radius (micron).

Capillary pressure data

Well 30/ 2-1 . sample 202.1

FHG	SHG	Ŕ	
0.00	0.0	0.000	
0.25	1.4	29.360	
1.00	1.5	7.340	
3.81	5.0	1.927	
5.88	20.4	1.248	
6.82	24.1	1.076	
8.51	31.0	0.863	
9.90	35.7	0.741	
12.50	39.9	0.587	
16.00	45.9	0.459	
20.30	50.7	0.362	
24.90	54.5	0.295	
36.50	61.8	0.201	
50.10	65.0	0.147	
75.20	68.8	0.098	
99.10	71.4	0.074	
130.20	74.3	0.056	

77

Capillary pressure data

Well 30/ 2-1

sample 214.1

PHG	SHG	R
0.00	0.0	0.000
0.66	1.4	11.121
1.00	1.4	7.340
6.64	22.4	1.105
8.90	26.8	0.825
10.20	30.0	0.720
13.70	36.7	0.536
15.90	40.7	0.462
19.50	43.7	0.376
24.90	47.5	0.295
31.20	50.7	0.235
40.90	53.5	0.179
50.40	55.7	0.146
73.50	60.2	0.100
100.40	62.9	0.073
132.50	65.4	0.055

Fig.8.34

```
Capillary pressure versus mercury
saturation.
Well 30/2-1
Plot of PHG versus SHG for samples
53.1, 59.1, 63.1, 68.1 and 75.1.
```


Capillary pressure versus mercury saturation. Well 30/2-1 Plot of PHG versus SHG for samples 88.1, 97.1, 101.1,118.1 and 131.1

Capillary pressure versus mercury saturation. Well 30/2-1 Plot of PHG versus SHG for samples 138.1, 142.1, 178.1, 181.1 and 186.1.

Fig. 8.37

Capillary pressure versus mercury saturation. Well 30/2-1 Plot of PHG versus SHG for samples 190.1, 198.1, 202.1 and 214.1.

