

Classification	:

725.5

Requested by

Roald Riise

Subtitle

Compositional analysis on samples from well 15/9-15.

Co-workers

A.M.Martinsen, W.Odden.

- 5 JUL 1983

REGISTRERT

OLJEDIREKTORATET

Title

Compositional analysis for Statoil, well 15/9-15

STATOIL

EXPLORATION & PRODUCTION LABORATORY

Tone Ørke

April 83

LAB 83.12

Prepared

12/4-83 Tone Orke

Approved

4

	CONTENTS	PAGE
1.	INTRODUCTION	3
•	PART 1.	
	1.1 Summary and main results	4
	Total Bulling and main results	
2.	SAMPLE DISCRIPTION	5
∠ •,		5
	2.1 Separator samples from dst no 1.	5
		6
	2.2 Separatorsamples from dst no 2.	. 6
_		-
3.	RESULTS	7
	3.1 Bubble point of separator liquid, dst 1, lowrate.	, 7
	3.2 Molecular composition of separator liquid, from	8
	dst 1, low rate.	
	3.3 Molecular composition of separator products and	
	calculated reservoir fluid composition dst no 1,	9
	low rate.	
	3.4 Bubble point of separator liquid from dst no 1,	10
	high rate	
	3.5 Molecular composition of separator liquid dst no 1,	11
	high rate.	
	3.6 Molecular composition of separator products dst no 1	12
	and calculated reservoir fluid, dst no 1, high rate.	
	3.7 Bubble point of separator liquid from dst no 2,	13
	low rate.	
	3.8 Molecular composition of separator liquid from dst 2,	14
	low rate.	
	3.9 Molecular composition of separator products and	15
	calculated reservoir fluid, dst no 2, low rate.	
	3.10 Bubble point of separator liquid from dst no 2,	16
	high rate.	
	3.11 Molecular composition of separator liquid from	17
	dst no 2, high rate.	
	3.12 Molecular composition of separator products and	18
	calculated reservoir fluid, dst no 2, high rate.	
	outourden repetable attack, and the statements.	

	CONTENTS	PAGE
	3.13 Extended reservoir fluid composition of dst no 2, low rate.	19
	3.14 Simulated constant mass expansion at 120°C,	20
	dst no 2 low rate. 3.15 A summary of experimental and simulated PVT data at 120° C of $15/9-15$ dst no 2, low rate.	21
	3.16 A summary of experimental and simulated PVT data at 120 °C and 106 °C.	22
1.	DISCUSSION.	23
5.	CONCLUSION.	24
5.	METHODS AND EQUIPMENT.	25
7.	PART 2. 7.1 TBP distillation.	27

1. INTRODUCTION.

This report presents compositional data on samples from well 15/9-15. Two sets of separator samples from dst no 1 and two sets of separator samples from dst no 2 were analysed for sample validity and molecular composition.

A PVT simulation is performed on the molecular composition of the reservoir fluid from dst no 2, low rate.

This report also includes data from a TBP distillation fractionated from initial boiling point to 331 Oc.

The separator samples from dst no 2, low rate flow, was sent to Flopetrol for a complete PVT study, including determination of dew point, liquid drop out, and differential depletion. These results will be reported separately.

After Flopetrol had finished the complete PVT study, it has been brought forward that the reservoir temperature is 106° C instead of 120° C which the complete PVT study was performed at.

A PVT simulation is therefore performed at 106° C, and the main results set up together with the experimental and simulated values at 120° C.

1.1 Summary and main results. Calculated reservoir fluid composition of 15/9-15 dst 2.

Component	mole %	mol.weight*	density*
			(g/cm ³)
Carbondioxide	0.87		
Nitrogene	0.84		
Methane	73.57		
Ethane	9.96		
Propane	6.30		
iso-Butane	0.96		
n-Butane	1.76		
iso-Pentane	0.60		
n-Pentane	0.63		V.
Hexanes	0.70	85	0.678
Heptanes	0.93	90	0.747
Octanes	0.95	102	0.776
Nonanes	0.48	121	0.801
Decanes+	1.45	198	0.840
	100.00		

Calculated molecular weight

of reservoir fluid from the composition: 26.49

Calculated gas gravity (air=1) : 0.915

^{*} Densities and molecular weights are measured values from TBP destillation. (Lab 83.04)

2. SAMPLE DISCRIPTION.

2.1 Separator samples from dst no 1.

Surface samples from dst no 1 were collected by Otis, at perforation depht 2880-90m.

Low rate flow

The separator samples were marked:

Oil bottle : 8207011
Gas bottle : A-13976

Separator conditions

Pressure (barg) : 43.9
Temperature (°C) : 30.0
Opening pressure of the sep. gas (barg) : 43

High rate flow

The separator samples were marked:

Oil bottle : 8207001
Gas bottle : A-13977

Separator conditions

Pressure (barg) : 32.0
Temperature (°C) : 35.5
Opening pressure of the sep. gas (barg) : 32

2.2 Separator samples from dst no 2

Surface samples from dst no 2 were collected at perforation depth 2830-50m.

Low rate flow

The separator samples were marked:

Oil bottle : 0110
Gas bottle : A-13975

Separator conditions

Pressure (barg) : 33.8

Temperature (°C) : 18.9

Opening pressure of the sep. gas (barg) : 33

High rate flow

The separator samples were marked:

Oil bottle : 0217
Gas bottle : A-13979

Separator conditions

Pressure (barg) : 26.2
Temperature (°C) : 34.4
Opening pressure of the sep. gas (barg) : 26

3.1 Bubble point determination at 30.0°C of separator liquid from dst no 1, bottle no 8207011.

Pressure		Pump reading
Barg		cm ³
and the state of t		
200.0		91.71
155.0		91.25
119.3		90.87
104.4		90.70
90.3		90.59
55.7		90.13
43.8		89.95
43.0 (bu	bble point)	
41.9	egerijaan haannege _{ee} siira aan <mark>aan aan aan aan aan aan aan aan a</mark>	88.42
36.2		81.37
32.7		75.22
28.7	•	66.33

Bubble point determination at 30.0° C Separator liquid, Bottle No. 8207011 15/9 - 15 DST No. 1, low rate.

3.2 Molecular composition ofseparator liquid (Dst no 1, low rate)

Component	0:	il	Gas	Recombined	Mol.*	Density*
	Wt%	Mole%	Mole %	separator fluid	l weight	
				Mole %	· · · · · · · · · · · · · · · · · · ·	(g/cm ³)
Carbondioxi	d -	÷	0.80	0.40		
Nitrogene	<u>—</u> '	-	0.10	0.05		
Methane	_	.	30.37	15.11		
Ethane	0.018	0.07	18.00	8.99		
Propane	0.536	1.52	25.28	13.34		
iso-Butane	0.598	1.29	5.43	3.35		
n-Butane	2.017	4.34	10.49	7.40		
iso-Pentane	2.263	3.92	3.10	3.51	•	
n-Pentane	2.979	5.16	2.84	4.01		
Hexanes	6.178	9.09	1.72	5.42	85	0.678
Heptanes	10.738	14.91	1.30	8.14	90	0.747
Octanes	14.376	17.63	0.50	9.11	102	0.776
Nonanes	9.605	9.92	0.05	5.01	121	0.801
Decanes+	50.692	32.15	0.02	16.16	198	0.840
	100.000	100.00	100.00	100.00		·

Properties of stock tank liquid and single flash results:

Density of oil at 15°C (g/cm³)	:	0.775
Mean molecular weight of oil	:	128
GOR of separator oil (sm ³ /m ³)	:	145.1

^{*} Densities and molecular weights are measured values from TBP destillation.

3.3 Molecular composition of separator samples and calculated reservoir fluid (DST 1, low rate)

	•				
Component	Separator	Separator	Reservoir	*Mole	Density*
	liquid	gas	fluid	weight	
	Mole %	Mole %	Mole %		(g/cm ³)
Carbondioxid	0.40	0.78	0.74		
Nitrogene	0.05	0.88	0.78		
Methane	15.11	79.84	72.23		- 1
Ethane	8.99	10.18	10.04		
Propane	13.34	5.63	6.54		
iso-Butane	3.35	0.71	1.02		
n-Butane	7.40	1.15	1.89		
iso-Pentane	3.50	0.27	0.65		
n-Pentane	4.01	0.24	0.68		•
Hexanes	5.42	0.16	0.77	85	0.678
Heptanes	8.14	0.12	1.06	. 90	0.747
Octanes	9.11	0.04	1.11	102	0.776
Nonanes	5.01	-	0.59	121	0.801
Decanes+	16.16	<u></u>	1.90	198	0.840
	100.00	100.00	100.00		<u> </u>

Separator and recombination data:

GOR at separator conditions (SM ³ /M ³)	:	1436
Bo, (Sep M ³ /M ³ at ambient)	:	1.525
Calculated separator gas gravity (air=1.0)	:	0.714
Calculated Z factor at sep.cond.from composition	:	0.865
Calculated mol. weight of reservoir fluid from composition	:	27.89

^{*} Densities and molecular weights are measured values from TBP destillation.

3.4 <u>Bubble point determination at 35.5 C of separator</u> liquid from dst no 1, Bottle no 8207001

Press Barg	ıre	Pump reading cm ³
200.0		79.24
134.3		78.61
93.0		78.16
56.8		77.75
41.3		77.56
32.0	(bubble point)	
31.9		77.37
29.9		75.42
25.3		70.82
23.7		66.72
22.4		63.48

Bubble point determination at 35.5° C. Separator liquid, Bottle No. 8207001. 15/9 - 15 DST No. 1, high rate.

3.5 Molecular composition of separator liquid (DST no. 1, high rate)

		· 	_			
Component	0:	i.l	Gas	Recomb	ined Mol.	* Density*
	Wt%	Mole%	Mole %	separator	fluid weig	_
				Mole	8	(g/cm ³)
Carbondioxid	1 –	-	0.74	0.26		•
Nitrogene		=	0.06	0.02		
Methane		- .	26.99	9.54		
Ethane	0.015	0.06	18.21	6.48		
Propane	0.538	1.50	26.86	10.48		
iso-Butane	0.622	1.32	5.84	2.92		
n-Butane	2.093	4.43	11.24	6.84		
iso-Pentane	2.333	3.98	3.29	3.73		
n-Pentane	3.068	5.23	2.99	4.44		
Hexanes	6.396	9.25	1.74	6.60	85	0.678
Heptanes	11.124	15.18	1.70	10.41	90	0.747
Octanes	15.021	18.11	0.35	11.83	102	0.776
Nonanes	10.041	10.21	0.02	6.60	121	0.801
Decanes+	48.750	30.73	_	19.87	198	0.840
]	00.000	100.00	100.00	100.00		

Properties of stock tank liquid and single flash results:

Density of oil at 15°C (g/cm³)	:	0.771
Mean molecular weight of oil	:	123
GOR of separator oil (sm^3/m^3)	:	81.1

^{*} Densities and molecular weights are measured values from TBP destillation.

3.6 Molecular composition of separator samples and calculated reservoir fluid (DST no. 1, high rate)

•					
Component	Separator	Separator	Reservoir	*Mole	Density*
	liquid	gas	fluid	weight	
	Mole %	Mole %	Mole %		(g/cm ³)
Carbondioxid	0.26	0.91	0.86		
Nitrogene	0.02	0.92	0.85		
Methane	9.54	80.20	74.57		
Ethane	6.48	10.20	9.90		
Propane	10.48	5.48	5.88		
iso-Butane	2.92	0.65	0.83		
n-Butane	6.84	1.03	1.50		
iso-Pentane	3.73	0.21	0.49		
n-Pentane	4.44	0.19	0.52		
Hexanes	6.60	0.10	0.62	85	0.678
Heptanes	10.41	0.08	0.90	90	0.747
Octanes	11.83	0.03	0.97	102	0.776
Nonanes	6.60	<i>*</i>	0.53	121	0.801
Decanes+	19.87	·	1.59	198	0.840
	100.00	100.00	100.00		

Separator and recombination data:

GOR at separator conditions (SM ³ /M ³)	:	1996
Bo, (Sep M ³ /M ³ at ambient)	:	1.33
Calculated separator gas gravity (air=1.0)	:	0.706
Calculated Z factor at sep.cond.from composition	:	0.914
Calculated mol. weight of reservoir fluid from composition	:	26.29

^{*} Densities and molecular weights are measured values from TBP destillation.

3.7 <u>Bubble point determination at 18.9 °C of separator liquid from dst no 2, Bottle no 0110</u>

Pressure	Pump reading
Barg	cm ³
207.0	38.50
162.7	35.00
105.9	30.00
76.0	27.50
50.4	25.00
37.0	23.50
32.0 (bubble point)	
31.9	19.00
31.6	16.50
31.5	15.00
31.2	8.00

Bubble point determination at 18.9° C Separator liquid Bottle No. 0110 15/9 - 15 DST No. 2, low rate.

3.8 Molecular composition of separator liquid (DST no. 2, low rate)

Component	O d	il .	Gas	Recomb	oined	Mol.*	Density*
	Wt%	Mole%	Mole %	separator	liquid	weight	
				Mole	8		(g/cm ³)
Carbondioxi	- E		0.85	0.39	4	e w	
Nitrogene	,		•	_			
Methane		. 	26.38	12.19			
Ethane	0.056	0.22	17.66	8.28			
Propane	0.971	2.62	27.14	13.95			
iso-Butane	0.879	1.80	6.00	3.74			
n-Butane	2.781	5.69	11.74	8.49			
iso-Pentane	2.789	4.60	3.41	4.05			
n-Pentane	3.612	5.96	3.19	4.68			
Hexanes	6.925	9.70	1.88	6.09		85	0.678
Heptanes	11.424	15.14	1.26	8.73		90	0.747
Octanes	14.620	17.06	0.47	9.39		102	0.776
Nonanes	9.326	9.17	0.01	4.94		121	0.801
Decanes+	46.617	28.04	0.01	15.08		198	0.840
	100.000	100.00	100.00	100.00			

Properties of stock tank liquid and single flash results:

Density of oil at 15°C (g/cm³)	:	0.776
Mean molecular weight of oil	:	119
GOR of separator oil (sm ³ /m ³)	:	132.5

^{*} Densities and molecular weights are measured values from TBP destillation.

3.9 Molecular composition of separator sample and calculated reservoir fluid (DST no. 2, low rate)

Component	Separator	Separator	Reservoir	*Mole	Density*
	liquid	gas	fluid	weight	
	Mole %	Mole %	Mole %		(g/cm ³)
Carbondioxid	0.39	0.92	0.87		
Nitrogene	<u>-</u>	0.93	0.84		
Methane	12.19	80.12	73.57		
Ethane	8.28	10.14	9.96		
Propane	13.95	5.48	6.30		
iso-Butane	3.74	0.65	0.96		
n-Butane	8.49	1.05	1.76		
iso-Pentane	4.05	0.23	0.60	•	
n-Pentane	4.68	0.20	0.63		
Hexanes	6.09	0.12	0.70	85	0.678
Heptanes	8.73	0.10	0.93	90	0.747
Octanes	9.39	0.05	0.95	102	0.776
Nonanes	4.94	0.01	0.48	121	0.801
Decanes+	15.08	-	1.45	198	0.840
	100.00	100.00	100.00		

Separator and recombination data:

GOR at separator conditions (SM ³ /M ³)	:	1846
Bo, (Sep M ³ /M ³ at ambient)	:	1.460
Calculated separator gas gravity (air=1.0)	:	0.709
Calculated Z factor at sep.cond.from composition	i :	0.890
Calculated mol. weight of reservoir fluid from composition	:	26.49

^{*} Densities and molecular weights are measured values from TBP destillation.

3.10 Bubble point determination at 34.4 Oc of separator liquid from dst no 2, Bottle no 0217

Pressur	e		Pu	mp reading
Barg				g/cm ³
245.6		·		49.30
197.3				45.60
130.3				40.15
82.7				36.90
37.7				31.60
26.0	(bubble point)			
24.8	Andrews and the second			26.90
24.6				24.80
24.3				20.00

Bubble point determination at 34.4° C Separator liquid, Bottle No. 0217 15/9 - 15 DST No. 2, high rate.

3.11 Molecular composition of separator liquid
(DST 2, high rate)

Component	0:	il	Gas	Recomb	oined	Mol.*	Density*
	Wt%	Mole%	Mole %	separator	liquid	weight	
				Mole	ક		(g/cm ³)
Carbondioxid	l –	-	0.87	0.26			
Nitrogene		_	0.07	0.02			
Methane	 '	-	27.86	8.50			
Ethane	0.022	0.09	17.72	5.46			
Propane	0.644	1.78	26.46	9.30			
iso-Butane	0.688	1.45	5.71	2.75		· · · · · · · · · · · · · · · · · · ·	
n-Butane	2.276	4.78	11.10	6.70	•		
iso-Pentane	2.449	4.14	3.23	3.86			
n-Pentane	3.209	5.43	3.09	4.71			
Hexanes	6.567	9.43	1.94	7.14		85	0.678
Heptanes	11.394	15.45	1.35	11.15		90.	0.747
Octanes	15.301	18.31	0.55	12.90		102	0.776
Nonanes	10.063	10.14	0.04	7.07		121	0.801
Decanes+	47.387	29.00	0.01	20.18		198	0.840
1	00.000	100.00	100.00	100.00			·

Properties of stock tank liquid and single flash results:

Density of oil at 15 OC (g/cm ³)	:	0.772
Mean molecular weight of oil	:	122
GOR of separator oil (sm^3/m^3)	:	65.6

^{*} Densities and molecular weights are measured values from TBP destillation.

3.12 Molecular composition of separator sample and calculated reservoir fluid (DST 2, high rate)

Component	Separator	Separator	Reservoir	*Mole	Density*
	liquid	gas	fluid	weight	
	Mole %	Mole %	Móle %		(g/cm ³)
Carbondioxid	0.26	0.88	0.83		
Nitrogene	0.02	0.87	0.81		
Methane	8.50	78.30	73.20		:
Ethane	5.46	10.43	10.07		
Propane	9.30	6.19	6.42		
iso-Butane	2.75	0.84	0.98		
n-Butane	6.70	1.41	1.80		
iso-Pentane	3.86	0.35	0.60		•
n-Pentane	4.71	0.32	0.64		
Hexanes	7.14	0.19	0.70	85	0.678
Heptanes	11.15	0.15	0.95	90	0.747
Octanes	12.90	0.06	1.00	102	0.776
Nonanes	7.07	0.01	0.52	121	0.801
Decanes+	20.18		1.48	198	0.840
	100.00	100.00	100.00		

Separator and recombination data:

GOR at separator conditions (SM ³ /M ³)	:	2204
Bo, (Sep M ³ /M ³ at ambient)	:	1.239
Calculated separator gas gravity (air=1.0)	:	0.732
Calculated Z factor at sep.cond.from composition	:	0.924
Calculated mol weight of reservoir fluid from composition	•	26.73

^{*} Densities and molecular weights are measured values from TBP destillation.

3.13 Extended reservoir fluid composition of 15/9-15 dst no 2, low rate

Component	Mol %	Mol weight*	density*
•			(g/cm ³)
co ₂	0.87		
N ₂	0.84		
c_1	73.57		
c_2	9.96		
C ₃	6.30		
i-C ₄	0.96	•	
n-C ₄	1.76		
i-C ₅	0.60		
n-C ₅	0.63		
C ₆	0.70	85	0.678
C ₇ .	0.93	90	0.747
C ₈	0.95	102	0.776
c ₉	0.48	121	0.801
c ₁₀	0.31	133	0.809
c ₁₁	0.18	146	0.808
c ₁₂	0.14	160	0.819
c ₁₃	0.14	176	0.840
C ₁₄	0.12	187	0.850
c ₁₅	0.11	200	0.856
C ₁₆	0.07	212	0.862
c ₁₇	0.09	230	0.844
C ₁₈	0.05	243	0.844
C ₁₉	0.04	256	0.853
c ₂₀ +	0.20	336	0.869

^{*} Densities and molecular weights are measured values from TBP distillation.

3.14 *Simulated constant mass expansion at 120° C 15/9-15, dst no 2.

			,	·
Pressure	relative vol	Liquid vol.	z factor	
(barg)	(vol/sat PT.vol)	(% of sat PT.vol)	vapor	
The state of the s	digagangan yang di agampi di salah sal 	ang ang panggan ang pangga Tanggan panggan ang pangga	inau kaja valas su kinaun vyste ar omani en er en	
400.0	0.915		1.096	
375.0	0.946		1.061	
350.0	0.981		1.028	
		ayay ayaa ka daa ka ahaa ka ka ka ka ka ahaa ay ahaa ahaa		· · ·
338.3	1.000 (SATURATIO	ON POINT)	1.012	
325.0	1.024	0.93	0.996	
275.0	1.145	3.77	0.942	
225.0	1.339	5.58	0.904	
175.0	1.676	6.64	0.886	
150.0	1.947	6.94	0.885	
125.0	2.341	7.06	0.891	
100.0	2.952	6.98	0.902	
75.0	4.000	6.66	0.918	
50.0	6.141	6.04	0.940	

^{*} Simulated data, used as backup to the experimental data reported in report 83/L/011.

^{**} Sat. PT. vol. = Saturation point volume.

3.15 A summary of experimental and simulated PVT data for 15/9-15, dst no 2 at $120^{\circ}\mathrm{C}$

26.6
198
338.3
1.012
0.272
7.06
89.32

^{*} Simulated data, used as backup to the experimental values reported in report 83/L/011

3.16 Experimental and simulated data for 15/9-15, dst no 2 at 120° C, and simulated data at 106° C.

lues at 120°C Flopetrol) 26.3	C values at 120°C (Statoil)	values at 106 ⁰ C (Statoi)
		(Statoi)
26.3		
	26.6	26.6
191	198	198
343.8	338.3	335.5
0.997	1.012	0.997
) 0.277	0.272	0.284
6.68	7.06	8.49
4.75	5.67	6.62
	191 343.8 0.997) 0.277 6.68	191 198 343.8 338.3 0.997 1.012) 0.277 0.272 6.68 7.06

4. DISCUSSION

Separator samples from dst no 2

The calculated reservoir fluids from the two sets of separator samples, one from the low rate flow and one from the high rate flow, are almost identical in composition.

Separator samples from dst no 1

The two sets of separator samples from dst no 1, show a small difference in the calculated reservoir fluids among themselves. The reservoir fluid composition from high rate flow are however very similar to the calculated compositions from dst no 2, and it is likely to think that the difference in the reservoirfluid from the low rate is a consequence of the uncertainty in the GOR measurements on the rig, rather than an unrepresentative sample.

Experimental and simulated data for 15/9-15

The experimental PVT data from Flopetrol are in good agreement with the simulated data at 120°C .

A simulation performed at 106°C, gives only small differences in dewpoint, z-factor, and density.

The max. liquid dropout, however, is influenced by the temperature drop from 120°C to 106°C . Max liquid dropout from constant mass experiment increases with approx 16 % and max. liquid dropout at constant volume depletion increases with approx 14 % regarding to the simulated values.

An increase in max. liquid dropout is expected with decreasing temperature. The liquid dropout, however, is not a good correlation parameter and the simulated difference in liquid dropout between 120° C and 106° C is not greater than observed in experiments performed on two different sets of

separator samples from the same well, which are almost identical in reported reservoir composition.

The changes in the simulated compositions of produced well streams in the depletion study at the two different temperatures are within experimental limits of error, and are close to the experimental data reported by Flopetrol.

TBP distillation
See part two.

5. CONCLUSION.

The good agreement in the calculation of the reservoir fluids from dst no 1 high rate and dst 2 high rate, and lowrate flows, may be a good indication of representative samples from the structure.

The compositional analyses on separator gas and separator liquid and the calculated reservoirfluid performed by Flopetrol, are very similar to the compositional analyses performed by Statoil.

According to the good agreement between the experimental and simulated values at 120°C, and the small differences in the simulated values at 106°C and 120°C, the experimental values reported by Flopetrol (report 83/L/011) seems to be representative also for an PVT experiment performed at 106°C.

METHODS AND EQUIPMENT

6.1 PVT analysis

A single flash to standard conditions (15°C and 1 atm) was performed in a Ruska flash seperator. The gas was sampeled in a Ruska gasometer.

6.2 Compositional analysis

Component analyses were performed using a Hewlett Packard 5880 gas chromatographic system. For gas analysis, non hydrocarbons are determined on a porapack R 1/8" x 3 m steel column with TC detector, and hydrocarbons on chromapack Cp $\frac{\text{tm}}{}$ Sil 5 50 m x 0.22 mm quartz capillary column with FI detector. Oil analysis are performed on a gas chromatograph fitted with chromapack cp tm Sil 5 25 m x 0.22 mm quartz capillary column and FI detector.

Carrier gas

Helium

Over temp. profile for oil analyses

: 10[°] (4 min)

4^O/min

310° (200 min)

Over temp. profile for gas analysis of non hydrocarbons

 $=50^{\circ}$ (4 min)

32⁰/min

160°

Over temp. profile for gas analysis of hydrobarbons $= -30^{\circ}C (4 \text{ min})$

> 80/min 160°

Molecular weights are determined by freezing point depression using a Knauer molecular weight instrument, with benzene as a reference substance.

Densities are determined by Paar DMA 602 frequency densitometer.